1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #if V8_TARGET_ARCH_MIPS
7 #include "src/codegen.h"
8 #include "src/debug/debug.h"
9 #include "src/deoptimizer.h"
10 #include "src/full-codegen/full-codegen.h"
11 #include "src/runtime/runtime.h"
18 #define __ ACCESS_MASM(masm)
21 void Builtins::Generate_Adaptor(MacroAssembler* masm,
23 BuiltinExtraArguments extra_args) {
24 // ----------- S t a t e -------------
25 // -- a0 : number of arguments excluding receiver
26 // -- a1 : called function (only guaranteed when
27 // -- extra_args requires it)
29 // -- sp[0] : last argument
31 // -- sp[4 * (argc - 1)] : first argument
32 // -- sp[4 * agrc] : receiver
33 // -----------------------------------
35 // Insert extra arguments.
36 int num_extra_args = 0;
37 if (extra_args == NEEDS_CALLED_FUNCTION) {
41 DCHECK(extra_args == NO_EXTRA_ARGUMENTS);
44 // JumpToExternalReference expects a0 to contain the number of arguments
45 // including the receiver and the extra arguments.
46 __ Addu(a0, a0, num_extra_args + 1);
47 __ JumpToExternalReference(ExternalReference(id, masm->isolate()));
51 // Load the built-in InternalArray function from the current context.
52 static void GenerateLoadInternalArrayFunction(MacroAssembler* masm,
54 // Load the native context.
57 MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
59 FieldMemOperand(result, GlobalObject::kNativeContextOffset));
60 // Load the InternalArray function from the native context.
64 Context::INTERNAL_ARRAY_FUNCTION_INDEX)));
68 // Load the built-in Array function from the current context.
69 static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) {
70 // Load the native context.
73 MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
75 FieldMemOperand(result, GlobalObject::kNativeContextOffset));
76 // Load the Array function from the native context.
79 Context::SlotOffset(Context::ARRAY_FUNCTION_INDEX)));
83 void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) {
84 // ----------- S t a t e -------------
85 // -- a0 : number of arguments
86 // -- ra : return address
87 // -- sp[...]: constructor arguments
88 // -----------------------------------
89 Label generic_array_code, one_or_more_arguments, two_or_more_arguments;
91 // Get the InternalArray function.
92 GenerateLoadInternalArrayFunction(masm, a1);
94 if (FLAG_debug_code) {
95 // Initial map for the builtin InternalArray functions should be maps.
96 __ lw(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
98 __ Assert(ne, kUnexpectedInitialMapForInternalArrayFunction,
99 t0, Operand(zero_reg));
100 __ GetObjectType(a2, a3, t0);
101 __ Assert(eq, kUnexpectedInitialMapForInternalArrayFunction,
102 t0, Operand(MAP_TYPE));
105 // Run the native code for the InternalArray function called as a normal
108 InternalArrayConstructorStub stub(masm->isolate());
109 __ TailCallStub(&stub);
113 void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
114 // ----------- S t a t e -------------
115 // -- a0 : number of arguments
116 // -- ra : return address
117 // -- sp[...]: constructor arguments
118 // -----------------------------------
119 Label generic_array_code;
121 // Get the Array function.
122 GenerateLoadArrayFunction(masm, a1);
124 if (FLAG_debug_code) {
125 // Initial map for the builtin Array functions should be maps.
126 __ lw(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
128 __ Assert(ne, kUnexpectedInitialMapForArrayFunction1,
129 t0, Operand(zero_reg));
130 __ GetObjectType(a2, a3, t0);
131 __ Assert(eq, kUnexpectedInitialMapForArrayFunction2,
132 t0, Operand(MAP_TYPE));
135 // Run the native code for the Array function called as a normal function.
138 __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
139 ArrayConstructorStub stub(masm->isolate());
140 __ TailCallStub(&stub);
144 void Builtins::Generate_StringConstructCode(MacroAssembler* masm) {
145 // ----------- S t a t e -------------
146 // -- a0 : number of arguments
147 // -- a1 : constructor function
148 // -- ra : return address
149 // -- sp[(argc - n - 1) * 4] : arg[n] (zero based)
150 // -- sp[argc * 4] : receiver
151 // -----------------------------------
152 Counters* counters = masm->isolate()->counters();
153 __ IncrementCounter(counters->string_ctor_calls(), 1, a2, a3);
155 Register function = a1;
156 if (FLAG_debug_code) {
157 __ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, a2);
158 __ Assert(eq, kUnexpectedStringFunction, function, Operand(a2));
161 // Load the first arguments in a0 and get rid of the rest.
163 __ Branch(&no_arguments, eq, a0, Operand(zero_reg));
164 // First args = sp[(argc - 1) * 4].
165 __ Subu(a0, a0, Operand(1));
166 __ sll(a0, a0, kPointerSizeLog2);
168 __ lw(a0, MemOperand(sp));
169 // sp now point to args[0], drop args[0] + receiver.
172 Register argument = a2;
173 Label not_cached, argument_is_string;
174 __ LookupNumberStringCache(a0, // Input.
180 __ IncrementCounter(counters->string_ctor_cached_number(), 1, a3, t0);
181 __ bind(&argument_is_string);
183 // ----------- S t a t e -------------
184 // -- a2 : argument converted to string
185 // -- a1 : constructor function
186 // -- ra : return address
187 // -----------------------------------
190 __ Allocate(JSValue::kSize,
197 // Initialising the String Object.
199 __ LoadGlobalFunctionInitialMap(function, map, t0);
200 if (FLAG_debug_code) {
201 __ lbu(t0, FieldMemOperand(map, Map::kInstanceSizeOffset));
202 __ Assert(eq, kUnexpectedStringWrapperInstanceSize,
203 t0, Operand(JSValue::kSize >> kPointerSizeLog2));
204 __ lbu(t0, FieldMemOperand(map, Map::kUnusedPropertyFieldsOffset));
205 __ Assert(eq, kUnexpectedUnusedPropertiesOfStringWrapper,
206 t0, Operand(zero_reg));
208 __ sw(map, FieldMemOperand(v0, HeapObject::kMapOffset));
210 __ LoadRoot(a3, Heap::kEmptyFixedArrayRootIndex);
211 __ sw(a3, FieldMemOperand(v0, JSObject::kPropertiesOffset));
212 __ sw(a3, FieldMemOperand(v0, JSObject::kElementsOffset));
214 __ sw(argument, FieldMemOperand(v0, JSValue::kValueOffset));
216 // Ensure the object is fully initialized.
217 STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
221 // The argument was not found in the number to string cache. Check
222 // if it's a string already before calling the conversion builtin.
223 Label convert_argument;
224 __ bind(¬_cached);
225 __ JumpIfSmi(a0, &convert_argument);
228 __ lw(a2, FieldMemOperand(a0, HeapObject::kMapOffset));
229 __ lbu(a3, FieldMemOperand(a2, Map::kInstanceTypeOffset));
230 STATIC_ASSERT(kNotStringTag != 0);
231 __ And(t0, a3, Operand(kIsNotStringMask));
232 __ Branch(&convert_argument, ne, t0, Operand(zero_reg));
233 __ mov(argument, a0);
234 __ IncrementCounter(counters->string_ctor_conversions(), 1, a3, t0);
235 __ Branch(&argument_is_string);
237 // Invoke the conversion builtin and put the result into a2.
238 __ bind(&convert_argument);
239 __ push(function); // Preserve the function.
240 __ IncrementCounter(counters->string_ctor_conversions(), 1, a3, t0);
242 FrameScope scope(masm, StackFrame::INTERNAL);
243 ToStringStub stub(masm->isolate());
247 __ mov(argument, v0);
248 __ Branch(&argument_is_string);
250 // Load the empty string into a2, remove the receiver from the
251 // stack, and jump back to the case where the argument is a string.
252 __ bind(&no_arguments);
253 __ LoadRoot(argument, Heap::kempty_stringRootIndex);
255 __ Branch(&argument_is_string);
257 // At this point the argument is already a string. Call runtime to
258 // create a string wrapper.
259 __ bind(&gc_required);
260 __ IncrementCounter(counters->string_ctor_gc_required(), 1, a3, t0);
262 FrameScope scope(masm, StackFrame::INTERNAL);
264 __ CallRuntime(Runtime::kNewStringWrapper, 1);
270 static void CallRuntimePassFunction(
271 MacroAssembler* masm, Runtime::FunctionId function_id) {
272 FrameScope scope(masm, StackFrame::INTERNAL);
273 // Push a copy of the function onto the stack.
274 // Push call kind information and function as parameter to the runtime call.
277 __ CallRuntime(function_id, 1);
278 // Restore call kind information and receiver.
283 static void GenerateTailCallToSharedCode(MacroAssembler* masm) {
284 __ lw(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
285 __ lw(a2, FieldMemOperand(a2, SharedFunctionInfo::kCodeOffset));
286 __ Addu(at, a2, Operand(Code::kHeaderSize - kHeapObjectTag));
291 static void GenerateTailCallToReturnedCode(MacroAssembler* masm) {
292 __ Addu(at, v0, Operand(Code::kHeaderSize - kHeapObjectTag));
297 void Builtins::Generate_InOptimizationQueue(MacroAssembler* masm) {
298 // Checking whether the queued function is ready for install is optional,
299 // since we come across interrupts and stack checks elsewhere. However,
300 // not checking may delay installing ready functions, and always checking
301 // would be quite expensive. A good compromise is to first check against
302 // stack limit as a cue for an interrupt signal.
304 __ LoadRoot(t0, Heap::kStackLimitRootIndex);
305 __ Branch(&ok, hs, sp, Operand(t0));
307 CallRuntimePassFunction(masm, Runtime::kTryInstallOptimizedCode);
308 GenerateTailCallToReturnedCode(masm);
311 GenerateTailCallToSharedCode(masm);
315 static void Generate_JSConstructStubHelper(MacroAssembler* masm,
316 bool is_api_function,
317 bool create_memento) {
318 // ----------- S t a t e -------------
319 // -- a0 : number of arguments
320 // -- a1 : constructor function
321 // -- a2 : allocation site or undefined
322 // -- a3 : original constructor
323 // -- ra : return address
324 // -- sp[...]: constructor arguments
325 // -----------------------------------
327 // Should never create mementos for api functions.
328 DCHECK(!is_api_function || !create_memento);
330 Isolate* isolate = masm->isolate();
332 // Enter a construct frame.
334 FrameScope scope(masm, StackFrame::CONSTRUCT);
336 // Preserve the incoming parameters on the stack.
337 __ AssertUndefinedOrAllocationSite(a2, t0);
339 __ Push(a2, a0, a1, a3);
341 // Try to allocate the object without transitioning into C code. If any of
342 // the preconditions is not met, the code bails out to the runtime call.
343 Label rt_call, allocated;
344 if (FLAG_inline_new) {
345 ExternalReference debug_step_in_fp =
346 ExternalReference::debug_step_in_fp_address(isolate);
347 __ li(a2, Operand(debug_step_in_fp));
348 __ lw(a2, MemOperand(a2));
349 __ Branch(&rt_call, ne, a2, Operand(zero_reg));
351 // Fall back to runtime if the original constructor and function differ.
352 __ Branch(&rt_call, ne, a1, Operand(a3));
354 // Load the initial map and verify that it is in fact a map.
355 // a1: constructor function
356 __ lw(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
357 __ JumpIfSmi(a2, &rt_call);
358 __ GetObjectType(a2, t5, t4);
359 __ Branch(&rt_call, ne, t4, Operand(MAP_TYPE));
361 // Check that the constructor is not constructing a JSFunction (see
362 // comments in Runtime_NewObject in runtime.cc). In which case the
363 // initial map's instance type would be JS_FUNCTION_TYPE.
364 // a1: constructor function
366 __ lbu(t5, FieldMemOperand(a2, Map::kInstanceTypeOffset));
367 __ Branch(&rt_call, eq, t5, Operand(JS_FUNCTION_TYPE));
369 if (!is_api_function) {
371 MemOperand bit_field3 = FieldMemOperand(a2, Map::kBitField3Offset);
372 // Check if slack tracking is enabled.
373 __ lw(t0, bit_field3);
374 __ DecodeField<Map::Counter>(t2, t0);
375 __ Branch(&allocate, lt, t2, Operand(Map::kSlackTrackingCounterEnd));
376 // Decrease generous allocation count.
377 __ Subu(t0, t0, Operand(1 << Map::Counter::kShift));
378 __ Branch(USE_DELAY_SLOT, &allocate, ne, t2,
379 Operand(Map::kSlackTrackingCounterEnd));
380 __ sw(t0, bit_field3); // In delay slot.
382 __ Push(a1, a2, a1); // a1 = Constructor.
383 __ CallRuntime(Runtime::kFinalizeInstanceSize, 1);
386 __ li(t2, Operand(Map::kSlackTrackingCounterEnd - 1));
391 // Now allocate the JSObject on the heap.
392 // a1: constructor function
394 Label rt_call_reload_new_target;
395 __ lbu(a3, FieldMemOperand(a2, Map::kInstanceSizeOffset));
396 if (create_memento) {
397 __ Addu(a3, a3, Operand(AllocationMemento::kSize / kPointerSize));
400 __ Allocate(a3, t4, t5, t6, &rt_call_reload_new_target, SIZE_IN_WORDS);
402 // Allocated the JSObject, now initialize the fields. Map is set to
403 // initial map and properties and elements are set to empty fixed array.
404 // a1: constructor function
406 // a3: object size (including memento if create_memento)
407 // t4: JSObject (not tagged)
408 __ LoadRoot(t6, Heap::kEmptyFixedArrayRootIndex);
410 __ sw(a2, MemOperand(t5, JSObject::kMapOffset));
411 __ sw(t6, MemOperand(t5, JSObject::kPropertiesOffset));
412 __ sw(t6, MemOperand(t5, JSObject::kElementsOffset));
413 __ Addu(t5, t5, Operand(3*kPointerSize));
414 DCHECK_EQ(0 * kPointerSize, JSObject::kMapOffset);
415 DCHECK_EQ(1 * kPointerSize, JSObject::kPropertiesOffset);
416 DCHECK_EQ(2 * kPointerSize, JSObject::kElementsOffset);
418 // Fill all the in-object properties with appropriate filler.
419 // a1: constructor function
421 // a3: object size (in words, including memento if create_memento)
422 // t4: JSObject (not tagged)
423 // t5: First in-object property of JSObject (not tagged)
424 // t2: slack tracking counter (non-API function case)
425 DCHECK_EQ(3 * kPointerSize, JSObject::kHeaderSize);
427 // Use t7 to hold undefined, which is used in several places below.
428 __ LoadRoot(t7, Heap::kUndefinedValueRootIndex);
430 if (!is_api_function) {
431 Label no_inobject_slack_tracking;
433 // Check if slack tracking is enabled.
434 __ Branch(&no_inobject_slack_tracking, lt, t2,
435 Operand(Map::kSlackTrackingCounterEnd));
437 // Allocate object with a slack.
441 a2, Map::kInObjectPropertiesOrConstructorFunctionIndexOffset));
442 __ lbu(a2, FieldMemOperand(a2, Map::kUnusedPropertyFieldsOffset));
444 __ sll(at, a0, kPointerSizeLog2);
446 // a0: offset of first field after pre-allocated fields
447 if (FLAG_debug_code) {
448 __ sll(at, a3, kPointerSizeLog2);
449 __ Addu(t6, t4, Operand(at)); // End of object.
450 __ Assert(le, kUnexpectedNumberOfPreAllocatedPropertyFields,
453 __ InitializeFieldsWithFiller(t5, a0, t7);
454 // To allow for truncation.
455 __ LoadRoot(t7, Heap::kOnePointerFillerMapRootIndex);
456 // Fill the remaining fields with one pointer filler map.
458 __ bind(&no_inobject_slack_tracking);
461 if (create_memento) {
462 __ Subu(a0, a3, Operand(AllocationMemento::kSize / kPointerSize));
463 __ sll(a0, a0, kPointerSizeLog2);
464 __ Addu(a0, t4, Operand(a0)); // End of object.
465 __ InitializeFieldsWithFiller(t5, a0, t7);
467 // Fill in memento fields.
468 // t5: points to the allocated but uninitialized memento.
469 __ LoadRoot(t7, Heap::kAllocationMementoMapRootIndex);
470 DCHECK_EQ(0 * kPointerSize, AllocationMemento::kMapOffset);
471 __ sw(t7, MemOperand(t5));
472 __ Addu(t5, t5, kPointerSize);
473 // Load the AllocationSite.
474 __ lw(t7, MemOperand(sp, 3 * kPointerSize));
475 __ AssertUndefinedOrAllocationSite(a2, t0);
476 DCHECK_EQ(1 * kPointerSize, AllocationMemento::kAllocationSiteOffset);
477 __ sw(t7, MemOperand(t5));
478 __ Addu(t5, t5, kPointerSize);
480 __ sll(at, a3, kPointerSizeLog2);
481 __ Addu(a0, t4, Operand(at)); // End of object.
482 __ InitializeFieldsWithFiller(t5, a0, t7);
485 // Add the object tag to make the JSObject real, so that we can continue
486 // and jump into the continuation code at any time from now on.
487 __ Addu(t4, t4, Operand(kHeapObjectTag));
489 // Continue with JSObject being successfully allocated.
493 // Reload the original constructor and fall-through.
494 __ bind(&rt_call_reload_new_target);
495 __ lw(a3, MemOperand(sp, 0 * kPointerSize));
498 // Allocate the new receiver object using the runtime call.
499 // a1: constructor function
500 // a3: original constructor
502 if (create_memento) {
503 // Get the cell or allocation site.
504 __ lw(a2, MemOperand(sp, 3 * kPointerSize));
505 __ push(a2); // argument 1: allocation site
508 __ Push(a1, a3); // arguments 2-3 / 1-2
509 if (create_memento) {
510 __ CallRuntime(Runtime::kNewObjectWithAllocationSite, 3);
512 __ CallRuntime(Runtime::kNewObject, 2);
516 // Runtime_NewObjectWithAllocationSite increments allocation count.
517 // Skip the increment.
518 Label count_incremented;
519 if (create_memento) {
520 __ jmp(&count_incremented);
523 // Receiver for constructor call allocated.
527 if (create_memento) {
528 __ lw(a2, MemOperand(sp, 3 * kPointerSize));
529 __ LoadRoot(t5, Heap::kUndefinedValueRootIndex);
530 __ Branch(&count_incremented, eq, a2, Operand(t5));
531 // a2 is an AllocationSite. We are creating a memento from it, so we
532 // need to increment the memento create count.
533 __ lw(a3, FieldMemOperand(a2,
534 AllocationSite::kPretenureCreateCountOffset));
535 __ Addu(a3, a3, Operand(Smi::FromInt(1)));
536 __ sw(a3, FieldMemOperand(a2,
537 AllocationSite::kPretenureCreateCountOffset));
538 __ bind(&count_incremented);
541 // Restore the parameters.
542 __ Pop(a3); // new.target
545 // Retrieve smi-tagged arguments count from the stack.
546 __ lw(a0, MemOperand(sp));
551 // Set up pointer to last argument.
552 __ Addu(a2, fp, Operand(StandardFrameConstants::kCallerSPOffset));
554 // Copy arguments and receiver to the expression stack.
555 // a0: number of arguments
556 // a1: constructor function
557 // a2: address of last argument (caller sp)
558 // a3: number of arguments (smi-tagged)
562 // sp[3]: number of arguments (smi-tagged)
567 __ sll(t0, a3, kPointerSizeLog2 - kSmiTagSize);
568 __ Addu(t0, a2, Operand(t0));
569 __ lw(t1, MemOperand(t0));
572 __ Addu(a3, a3, Operand(-2));
573 __ Branch(&loop, greater_equal, a3, Operand(zero_reg));
575 // Call the function.
576 // a0: number of arguments
577 // a1: constructor function
578 if (is_api_function) {
579 __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
581 masm->isolate()->builtins()->HandleApiCallConstruct();
582 __ Call(code, RelocInfo::CODE_TARGET);
584 ParameterCount actual(a0);
585 __ InvokeFunction(a1, actual, CALL_FUNCTION, NullCallWrapper());
588 // Store offset of return address for deoptimizer.
589 if (!is_api_function) {
590 masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset());
593 // Restore context from the frame.
594 __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
596 // If the result is an object (in the ECMA sense), we should get rid
597 // of the receiver and use the result; see ECMA-262 section 13.2.2-7
599 Label use_receiver, exit;
601 // If the result is a smi, it is *not* an object in the ECMA sense.
603 // sp[0]: receiver (newly allocated object)
605 // sp[2]: number of arguments (smi-tagged)
606 __ JumpIfSmi(v0, &use_receiver);
608 // If the type of the result (stored in its map) is less than
609 // FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense.
610 __ GetObjectType(v0, a1, a3);
611 __ Branch(&exit, greater_equal, a3, Operand(FIRST_SPEC_OBJECT_TYPE));
613 // Throw away the result of the constructor invocation and use the
614 // on-stack receiver as the result.
615 __ bind(&use_receiver);
616 __ lw(v0, MemOperand(sp));
618 // Remove receiver from the stack, remove caller arguments, and
622 // sp[0]: receiver (newly allocated object)
623 // sp[1]: new.target (original constructor)
624 // sp[2]: number of arguments (smi-tagged)
625 __ lw(a1, MemOperand(sp, 2 * kPointerSize));
627 // Leave construct frame.
630 __ sll(t0, a1, kPointerSizeLog2 - 1);
632 __ Addu(sp, sp, kPointerSize);
633 __ IncrementCounter(isolate->counters()->constructed_objects(), 1, a1, a2);
638 void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
639 Generate_JSConstructStubHelper(masm, false, FLAG_pretenuring_call_new);
643 void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
644 Generate_JSConstructStubHelper(masm, true, false);
648 void Builtins::Generate_JSConstructStubForDerived(MacroAssembler* masm) {
649 // ----------- S t a t e -------------
650 // -- a0 : number of arguments
651 // -- a1 : constructor function
652 // -- a2 : allocation site or undefined
653 // -- a3 : original constructor
654 // -- ra : return address
655 // -- sp[...]: constructor arguments
656 // -----------------------------------
659 FrameScope frame_scope(masm, StackFrame::CONSTRUCT);
661 __ AssertUndefinedOrAllocationSite(a2, t0);
666 __ push(t0); // Smi-tagged arguments count.
671 // receiver is the hole.
672 __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
675 // Set up pointer to last argument.
676 __ Addu(a2, fp, Operand(StandardFrameConstants::kCallerSPOffset));
678 // Copy arguments and receiver to the expression stack.
679 // a0: number of arguments
680 // a1: constructor function
681 // a2: address of last argument (caller sp)
682 // t0: number of arguments (smi-tagged)
685 // sp[2]: number of arguments (smi-tagged)
689 __ sll(at, t0, kPointerSizeLog2 - 1);
690 __ Addu(at, a2, Operand(at));
691 __ lw(at, MemOperand(at));
694 __ Subu(t0, t0, Operand(2));
695 __ Branch(&loop, ge, t0, Operand(zero_reg));
699 ExternalReference debug_step_in_fp =
700 ExternalReference::debug_step_in_fp_address(masm->isolate());
701 __ li(a2, Operand(debug_step_in_fp));
702 __ lw(a2, MemOperand(a2));
703 __ Branch(&skip_step_in, eq, a2, Operand(zero_reg));
706 __ CallRuntime(Runtime::kHandleStepInForDerivedConstructors, 1);
709 __ bind(&skip_step_in);
711 // Call the function.
712 // a0: number of arguments
713 // a1: constructor function
714 ParameterCount actual(a0);
715 __ InvokeFunction(a1, actual, CALL_FUNCTION, NullCallWrapper());
717 // Restore context from the frame.
720 // sp[1]: number of arguments (smi-tagged)
721 __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
722 __ lw(a1, MemOperand(sp, kPointerSize));
724 // Leave construct frame.
727 __ sll(at, a1, kPointerSizeLog2 - 1);
728 __ Addu(sp, sp, Operand(at));
729 __ Addu(sp, sp, Operand(kPointerSize));
734 enum IsTagged { kArgcIsSmiTagged, kArgcIsUntaggedInt };
737 // Clobbers a2; preserves all other registers.
738 static void Generate_CheckStackOverflow(MacroAssembler* masm,
739 const int calleeOffset, Register argc,
740 IsTagged argc_is_tagged) {
741 // Check the stack for overflow. We are not trying to catch
742 // interruptions (e.g. debug break and preemption) here, so the "real stack
743 // limit" is checked.
745 __ LoadRoot(a2, Heap::kRealStackLimitRootIndex);
746 // Make a2 the space we have left. The stack might already be overflowed
747 // here which will cause r2 to become negative.
749 // Check if the arguments will overflow the stack.
750 if (argc_is_tagged == kArgcIsSmiTagged) {
751 __ sll(t3, argc, kPointerSizeLog2 - kSmiTagSize);
753 DCHECK(argc_is_tagged == kArgcIsUntaggedInt);
754 __ sll(t3, argc, kPointerSizeLog2);
756 // Signed comparison.
757 __ Branch(&okay, gt, a2, Operand(t3));
759 // Out of stack space.
760 __ lw(a1, MemOperand(fp, calleeOffset));
761 if (argc_is_tagged == kArgcIsUntaggedInt) {
765 __ CallRuntime(Runtime::kThrowStackOverflow, 0);
771 static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
773 // Called from JSEntryStub::GenerateBody
775 // ----------- S t a t e -------------
778 // -- a2: receiver_pointer
781 // -----------------------------------
782 ProfileEntryHookStub::MaybeCallEntryHook(masm);
784 // Clear the context before we push it when entering the JS frame.
785 __ mov(cp, zero_reg);
787 // Enter an internal frame.
789 FrameScope scope(masm, StackFrame::INTERNAL);
791 // Set up the context from the function argument.
792 __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
794 // Push the function and the receiver onto the stack.
797 // Check if we have enough stack space to push all arguments.
798 // The function is the first thing that was pushed above after entering
799 // the internal frame.
800 const int kFunctionOffset =
801 InternalFrameConstants::kCodeOffset - kPointerSize;
803 Generate_CheckStackOverflow(masm, kFunctionOffset, a3, kArgcIsUntaggedInt);
805 // Copy arguments to the stack in a loop.
807 // s0: argv, i.e. points to first arg
809 __ sll(t0, a3, kPointerSizeLog2);
812 __ nop(); // Branch delay slot nop.
813 // t2 points past last arg.
815 __ lw(t0, MemOperand(s0)); // Read next parameter.
816 __ addiu(s0, s0, kPointerSize);
817 __ lw(t0, MemOperand(t0)); // Dereference handle.
818 __ push(t0); // Push parameter.
820 __ Branch(&loop, ne, s0, Operand(t2));
822 // Initialize all JavaScript callee-saved registers, since they will be seen
823 // by the garbage collector as part of handlers.
824 __ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
830 // s6 holds the root address. Do not clobber.
831 // s7 is cp. Do not init.
833 // Invoke the code and pass argc as a0.
836 // No type feedback cell is available
837 __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
838 CallConstructStub stub(masm->isolate(), NO_CALL_CONSTRUCTOR_FLAGS);
841 ParameterCount actual(a0);
842 __ InvokeFunction(a1, actual, CALL_FUNCTION, NullCallWrapper());
845 // Leave internal frame.
852 void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
853 Generate_JSEntryTrampolineHelper(masm, false);
857 void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
858 Generate_JSEntryTrampolineHelper(masm, true);
862 // Generate code for entering a JS function with the interpreter.
863 // On entry to the function the receiver and arguments have been pushed on the
864 // stack left to right. The actual argument count matches the formal parameter
865 // count expected by the function.
867 // The live registers are:
868 // o a1: the JS function object being called.
870 // o fp: the caller's frame pointer
871 // o sp: stack pointer
872 // o ra: return address
874 // The function builds a JS frame. Please see JavaScriptFrameConstants in
875 // frames-mips.h for its layout.
876 // TODO(rmcilroy): We will need to include the current bytecode pointer in the
878 void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
879 // Open a frame scope to indicate that there is a frame on the stack. The
880 // MANUAL indicates that the scope shouldn't actually generate code to set up
881 // the frame (that is done below).
882 FrameScope frame_scope(masm, StackFrame::MANUAL);
884 __ Push(ra, fp, cp, a1);
885 __ Addu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
887 // Get the bytecode array from the function object and load the pointer to the
888 // first entry into kInterpreterBytecodeRegister.
889 __ lw(a0, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
890 __ lw(kInterpreterBytecodeArrayRegister,
891 FieldMemOperand(a0, SharedFunctionInfo::kFunctionDataOffset));
893 if (FLAG_debug_code) {
894 // Check function data field is actually a BytecodeArray object.
895 __ SmiTst(kInterpreterBytecodeArrayRegister, t0);
896 __ Assert(ne, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, t0,
898 __ GetObjectType(kInterpreterBytecodeArrayRegister, t0, t0);
899 __ Assert(eq, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, t0,
900 Operand(BYTECODE_ARRAY_TYPE));
903 // Allocate the local and temporary register file on the stack.
905 // Load frame size from the BytecodeArray object.
906 __ lw(t0, FieldMemOperand(kInterpreterBytecodeArrayRegister,
907 BytecodeArray::kFrameSizeOffset));
909 // Do a stack check to ensure we don't go over the limit.
911 __ Subu(t1, sp, Operand(t0));
912 __ LoadRoot(a2, Heap::kRealStackLimitRootIndex);
913 __ Branch(&ok, hs, t1, Operand(a2));
914 __ CallRuntime(Runtime::kThrowStackOverflow, 0);
917 // If ok, push undefined as the initial value for all register file entries.
920 __ LoadRoot(t1, Heap::kUndefinedValueRootIndex);
921 __ Branch(&loop_check);
922 __ bind(&loop_header);
923 // TODO(rmcilroy): Consider doing more than one push per loop iteration.
925 // Continue loop if not done.
926 __ bind(&loop_check);
927 __ Subu(t0, t0, Operand(kPointerSize));
928 __ Branch(&loop_header, ge, t0, Operand(zero_reg));
931 // TODO(rmcilroy): List of things not currently dealt with here but done in
932 // fullcodegen's prologue:
933 // - Support profiler (specifically profiling_counter).
934 // - Call ProfileEntryHookStub when isolate has a function_entry_hook.
935 // - Allow simulator stop operations if FLAG_stop_at is set.
936 // - Deal with sloppy mode functions which need to replace the
937 // receiver with the global proxy when called as functions (without an
938 // explicit receiver object).
939 // - Code aging of the BytecodeArray object.
940 // - Supporting FLAG_trace.
942 // The following items are also not done here, and will probably be done using
943 // explicit bytecodes instead:
944 // - Allocating a new local context if applicable.
945 // - Setting up a local binding to the this function, which is used in
946 // derived constructors with super calls.
947 // - Setting new.target if required.
948 // - Dealing with REST parameters (only if
949 // https://codereview.chromium.org/1235153006 doesn't land by then).
950 // - Dealing with argument objects.
952 // Perform stack guard check.
955 __ LoadRoot(at, Heap::kStackLimitRootIndex);
956 __ Branch(&ok, hs, sp, Operand(at));
957 __ CallRuntime(Runtime::kStackGuard, 0);
961 // Load bytecode offset and dispatch table into registers.
962 __ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex);
964 kInterpreterRegisterFileRegister, fp,
965 Operand(kPointerSize + StandardFrameConstants::kFixedFrameSizeFromFp));
966 __ li(kInterpreterBytecodeOffsetRegister,
967 Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
968 __ LoadRoot(kInterpreterDispatchTableRegister,
969 Heap::kInterpreterTableRootIndex);
970 __ Addu(kInterpreterDispatchTableRegister, kInterpreterDispatchTableRegister,
971 Operand(FixedArray::kHeaderSize - kHeapObjectTag));
973 // Dispatch to the first bytecode handler for the function.
974 __ Addu(a0, kInterpreterBytecodeArrayRegister,
975 kInterpreterBytecodeOffsetRegister);
976 __ lbu(a0, MemOperand(a0));
977 __ sll(at, a0, kPointerSizeLog2);
978 __ Addu(at, kInterpreterDispatchTableRegister, at);
979 __ lw(at, MemOperand(at));
980 // TODO(rmcilroy): Make dispatch table point to code entrys to avoid untagging
981 // and header removal.
982 __ Addu(at, at, Operand(Code::kHeaderSize - kHeapObjectTag));
987 void Builtins::Generate_InterpreterExitTrampoline(MacroAssembler* masm) {
988 // TODO(rmcilroy): List of things not currently dealt with here but done in
989 // fullcodegen's EmitReturnSequence.
990 // - Supporting FLAG_trace for Runtime::TraceExit.
991 // - Support profiler (specifically decrementing profiling_counter
992 // appropriately and calling out to HandleInterrupts if necessary).
994 // The return value is in accumulator, which is already in v0.
996 // Leave the frame (also dropping the register file).
997 __ LeaveFrame(StackFrame::JAVA_SCRIPT);
999 // Drop receiver + arguments and return.
1000 __ lw(at, FieldMemOperand(kInterpreterBytecodeArrayRegister,
1001 BytecodeArray::kParameterSizeOffset));
1002 __ Addu(sp, sp, at);
1007 void Builtins::Generate_CompileLazy(MacroAssembler* masm) {
1008 CallRuntimePassFunction(masm, Runtime::kCompileLazy);
1009 GenerateTailCallToReturnedCode(masm);
1013 static void CallCompileOptimized(MacroAssembler* masm, bool concurrent) {
1014 FrameScope scope(masm, StackFrame::INTERNAL);
1015 // Push a copy of the function onto the stack.
1016 // Push function as parameter to the runtime call.
1018 // Whether to compile in a background thread.
1020 at, concurrent ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex);
1023 __ CallRuntime(Runtime::kCompileOptimized, 2);
1024 // Restore receiver.
1029 void Builtins::Generate_CompileOptimized(MacroAssembler* masm) {
1030 CallCompileOptimized(masm, false);
1031 GenerateTailCallToReturnedCode(masm);
1035 void Builtins::Generate_CompileOptimizedConcurrent(MacroAssembler* masm) {
1036 CallCompileOptimized(masm, true);
1037 GenerateTailCallToReturnedCode(masm);
1042 static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) {
1043 // For now, we are relying on the fact that make_code_young doesn't do any
1044 // garbage collection which allows us to save/restore the registers without
1045 // worrying about which of them contain pointers. We also don't build an
1046 // internal frame to make the code faster, since we shouldn't have to do stack
1047 // crawls in MakeCodeYoung. This seems a bit fragile.
1049 // Set a0 to point to the head of the PlatformCodeAge sequence.
1051 Operand(kNoCodeAgeSequenceLength - Assembler::kInstrSize));
1053 // The following registers must be saved and restored when calling through to
1055 // a0 - contains return address (beginning of patch sequence)
1057 RegList saved_regs =
1058 (a0.bit() | a1.bit() | ra.bit() | fp.bit()) & ~sp.bit();
1059 FrameScope scope(masm, StackFrame::MANUAL);
1060 __ MultiPush(saved_regs);
1061 __ PrepareCallCFunction(2, 0, a2);
1062 __ li(a1, Operand(ExternalReference::isolate_address(masm->isolate())));
1064 ExternalReference::get_make_code_young_function(masm->isolate()), 2);
1065 __ MultiPop(saved_regs);
1069 #define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C) \
1070 void Builtins::Generate_Make##C##CodeYoungAgainEvenMarking( \
1071 MacroAssembler* masm) { \
1072 GenerateMakeCodeYoungAgainCommon(masm); \
1074 void Builtins::Generate_Make##C##CodeYoungAgainOddMarking( \
1075 MacroAssembler* masm) { \
1076 GenerateMakeCodeYoungAgainCommon(masm); \
1078 CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR)
1079 #undef DEFINE_CODE_AGE_BUILTIN_GENERATOR
1082 void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) {
1083 // For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact
1084 // that make_code_young doesn't do any garbage collection which allows us to
1085 // save/restore the registers without worrying about which of them contain
1088 // Set a0 to point to the head of the PlatformCodeAge sequence.
1090 Operand(kNoCodeAgeSequenceLength - Assembler::kInstrSize));
1092 // The following registers must be saved and restored when calling through to
1094 // a0 - contains return address (beginning of patch sequence)
1096 RegList saved_regs =
1097 (a0.bit() | a1.bit() | ra.bit() | fp.bit()) & ~sp.bit();
1098 FrameScope scope(masm, StackFrame::MANUAL);
1099 __ MultiPush(saved_regs);
1100 __ PrepareCallCFunction(2, 0, a2);
1101 __ li(a1, Operand(ExternalReference::isolate_address(masm->isolate())));
1103 ExternalReference::get_mark_code_as_executed_function(masm->isolate()),
1105 __ MultiPop(saved_regs);
1107 // Perform prologue operations usually performed by the young code stub.
1108 __ Push(ra, fp, cp, a1);
1109 __ Addu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
1111 // Jump to point after the code-age stub.
1112 __ Addu(a0, a0, Operand(kNoCodeAgeSequenceLength));
1117 void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) {
1118 GenerateMakeCodeYoungAgainCommon(masm);
1122 void Builtins::Generate_MarkCodeAsToBeExecutedOnce(MacroAssembler* masm) {
1123 Generate_MarkCodeAsExecutedOnce(masm);
1127 static void Generate_NotifyStubFailureHelper(MacroAssembler* masm,
1128 SaveFPRegsMode save_doubles) {
1130 FrameScope scope(masm, StackFrame::INTERNAL);
1132 // Preserve registers across notification, this is important for compiled
1133 // stubs that tail call the runtime on deopts passing their parameters in
1135 __ MultiPush(kJSCallerSaved | kCalleeSaved);
1136 // Pass the function and deoptimization type to the runtime system.
1137 __ CallRuntime(Runtime::kNotifyStubFailure, 0, save_doubles);
1138 __ MultiPop(kJSCallerSaved | kCalleeSaved);
1141 __ Addu(sp, sp, Operand(kPointerSize)); // Ignore state
1142 __ Jump(ra); // Jump to miss handler
1146 void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) {
1147 Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs);
1151 void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) {
1152 Generate_NotifyStubFailureHelper(masm, kSaveFPRegs);
1156 static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
1157 Deoptimizer::BailoutType type) {
1159 FrameScope scope(masm, StackFrame::INTERNAL);
1160 // Pass the function and deoptimization type to the runtime system.
1161 __ li(a0, Operand(Smi::FromInt(static_cast<int>(type))));
1163 __ CallRuntime(Runtime::kNotifyDeoptimized, 1);
1166 // Get the full codegen state from the stack and untag it -> t2.
1167 __ lw(t2, MemOperand(sp, 0 * kPointerSize));
1169 // Switch on the state.
1170 Label with_tos_register, unknown_state;
1171 __ Branch(&with_tos_register,
1172 ne, t2, Operand(FullCodeGenerator::NO_REGISTERS));
1173 __ Ret(USE_DELAY_SLOT);
1174 // Safe to fill delay slot Addu will emit one instruction.
1175 __ Addu(sp, sp, Operand(1 * kPointerSize)); // Remove state.
1177 __ bind(&with_tos_register);
1178 __ lw(v0, MemOperand(sp, 1 * kPointerSize));
1179 __ Branch(&unknown_state, ne, t2, Operand(FullCodeGenerator::TOS_REG));
1181 __ Ret(USE_DELAY_SLOT);
1182 // Safe to fill delay slot Addu will emit one instruction.
1183 __ Addu(sp, sp, Operand(2 * kPointerSize)); // Remove state.
1185 __ bind(&unknown_state);
1186 __ stop("no cases left");
1190 void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
1191 Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
1195 void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) {
1196 Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT);
1200 void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
1201 Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
1205 void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
1206 // Lookup the function in the JavaScript frame.
1207 __ lw(a0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1209 FrameScope scope(masm, StackFrame::INTERNAL);
1210 // Pass function as argument.
1212 __ CallRuntime(Runtime::kCompileForOnStackReplacement, 1);
1215 // If the code object is null, just return to the unoptimized code.
1216 __ Ret(eq, v0, Operand(Smi::FromInt(0)));
1218 // Load deoptimization data from the code object.
1219 // <deopt_data> = <code>[#deoptimization_data_offset]
1220 __ lw(a1, MemOperand(v0, Code::kDeoptimizationDataOffset - kHeapObjectTag));
1222 // Load the OSR entrypoint offset from the deoptimization data.
1223 // <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset]
1224 __ lw(a1, MemOperand(a1, FixedArray::OffsetOfElementAt(
1225 DeoptimizationInputData::kOsrPcOffsetIndex) - kHeapObjectTag));
1228 // Compute the target address = code_obj + header_size + osr_offset
1229 // <entry_addr> = <code_obj> + #header_size + <osr_offset>
1230 __ addu(v0, v0, a1);
1231 __ addiu(ra, v0, Code::kHeaderSize - kHeapObjectTag);
1233 // And "return" to the OSR entry point of the function.
1238 void Builtins::Generate_OsrAfterStackCheck(MacroAssembler* masm) {
1239 // We check the stack limit as indicator that recompilation might be done.
1241 __ LoadRoot(at, Heap::kStackLimitRootIndex);
1242 __ Branch(&ok, hs, sp, Operand(at));
1244 FrameScope scope(masm, StackFrame::INTERNAL);
1245 __ CallRuntime(Runtime::kStackGuard, 0);
1247 __ Jump(masm->isolate()->builtins()->OnStackReplacement(),
1248 RelocInfo::CODE_TARGET);
1256 void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
1257 // 1. Make sure we have at least one argument.
1258 // a0: actual number of arguments
1261 __ Branch(&done, ne, a0, Operand(zero_reg));
1262 __ PushRoot(Heap::kUndefinedValueRootIndex);
1263 __ Addu(a0, a0, Operand(1));
1267 // 2. Get the function to call (passed as receiver) from the stack.
1268 // a0: actual number of arguments
1269 __ sll(at, a0, kPointerSizeLog2);
1270 __ addu(at, sp, at);
1271 __ lw(a1, MemOperand(at));
1273 // 3. Shift arguments and return address one slot down on the stack
1274 // (overwriting the original receiver). Adjust argument count to make
1275 // the original first argument the new receiver.
1276 // a0: actual number of arguments
1280 // Calculate the copy start address (destination). Copy end address is sp.
1281 __ sll(at, a0, kPointerSizeLog2);
1282 __ addu(a2, sp, at);
1285 __ lw(at, MemOperand(a2, -kPointerSize));
1286 __ sw(at, MemOperand(a2));
1287 __ Subu(a2, a2, Operand(kPointerSize));
1288 __ Branch(&loop, ne, a2, Operand(sp));
1289 // Adjust the actual number of arguments and remove the top element
1290 // (which is a copy of the last argument).
1291 __ Subu(a0, a0, Operand(1));
1295 // 4. Call the callable.
1296 __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
1300 static void Generate_PushAppliedArguments(MacroAssembler* masm,
1301 const int argumentsOffset,
1302 const int indexOffset,
1303 const int limitOffset) {
1305 Register receiver = LoadDescriptor::ReceiverRegister();
1306 Register key = LoadDescriptor::NameRegister();
1307 Register slot = LoadDescriptor::SlotRegister();
1308 Register vector = LoadWithVectorDescriptor::VectorRegister();
1310 __ lw(key, MemOperand(fp, indexOffset));
1313 // Load the current argument from the arguments array.
1315 __ lw(receiver, MemOperand(fp, argumentsOffset));
1317 // Use inline caching to speed up access to arguments.
1318 Code::Kind kinds[] = {Code::KEYED_LOAD_IC};
1319 FeedbackVectorSpec spec(0, 1, kinds);
1320 Handle<TypeFeedbackVector> feedback_vector =
1321 masm->isolate()->factory()->NewTypeFeedbackVector(&spec);
1322 int index = feedback_vector->GetIndex(FeedbackVectorICSlot(0));
1323 __ li(slot, Operand(Smi::FromInt(index)));
1324 __ li(vector, feedback_vector);
1326 KeyedLoadICStub(masm->isolate(), LoadICState(kNoExtraICState)).GetCode();
1327 __ Call(ic, RelocInfo::CODE_TARGET);
1331 // Use inline caching to access the arguments.
1332 __ lw(key, MemOperand(fp, indexOffset));
1333 __ Addu(key, key, Operand(1 << kSmiTagSize));
1334 __ sw(key, MemOperand(fp, indexOffset));
1336 // Test if the copy loop has finished copying all the elements from the
1337 // arguments object.
1339 __ lw(a1, MemOperand(fp, limitOffset));
1340 __ Branch(&loop, ne, key, Operand(a1));
1342 // On exit, the pushed arguments count is in a0, untagged
1348 // Used by FunctionApply and ReflectApply
1349 static void Generate_ApplyHelper(MacroAssembler* masm, bool targetIsArgument) {
1350 const int kFormalParameters = targetIsArgument ? 3 : 2;
1351 const int kStackSize = kFormalParameters + 1;
1354 FrameScope frame_scope(masm, StackFrame::INTERNAL);
1355 const int kArgumentsOffset = kFPOnStackSize + kPCOnStackSize;
1356 const int kReceiverOffset = kArgumentsOffset + kPointerSize;
1357 const int kFunctionOffset = kReceiverOffset + kPointerSize;
1359 __ lw(a0, MemOperand(fp, kFunctionOffset)); // Get the function.
1360 __ lw(a1, MemOperand(fp, kArgumentsOffset)); // Get the args array.
1362 // Returns (in v0) number of arguments to copy to stack as Smi.
1363 if (targetIsArgument) {
1364 __ InvokeBuiltin(Context::REFLECT_APPLY_PREPARE_BUILTIN_INDEX,
1367 __ InvokeBuiltin(Context::APPLY_PREPARE_BUILTIN_INDEX, CALL_FUNCTION);
1370 // Returns the result in v0.
1371 Generate_CheckStackOverflow(masm, kFunctionOffset, v0, kArgcIsSmiTagged);
1373 // Push current limit and index.
1374 const int kIndexOffset =
1375 StandardFrameConstants::kExpressionsOffset - (2 * kPointerSize);
1376 const int kLimitOffset =
1377 StandardFrameConstants::kExpressionsOffset - (1 * kPointerSize);
1378 __ mov(a1, zero_reg);
1379 __ lw(a2, MemOperand(fp, kReceiverOffset));
1380 __ Push(v0, a1, a2); // limit, initial index and receiver.
1382 // Copy all arguments from the array to the stack.
1383 Generate_PushAppliedArguments(masm, kArgumentsOffset, kIndexOffset,
1386 // Call the callable.
1387 // TODO(bmeurer): This should be a tail call according to ES6.
1388 __ lw(a1, MemOperand(fp, kFunctionOffset));
1389 __ Call(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
1391 // Tear down the internal frame and remove function, receiver and args.
1394 __ Ret(USE_DELAY_SLOT);
1395 __ Addu(sp, sp, Operand(kStackSize * kPointerSize)); // In delay slot.
1399 static void Generate_ConstructHelper(MacroAssembler* masm) {
1400 const int kFormalParameters = 3;
1401 const int kStackSize = kFormalParameters + 1;
1404 FrameScope frame_scope(masm, StackFrame::INTERNAL);
1405 const int kNewTargetOffset = kFPOnStackSize + kPCOnStackSize;
1406 const int kArgumentsOffset = kNewTargetOffset + kPointerSize;
1407 const int kFunctionOffset = kArgumentsOffset + kPointerSize;
1409 // If newTarget is not supplied, set it to constructor
1410 Label validate_arguments;
1411 __ lw(a0, MemOperand(fp, kNewTargetOffset));
1412 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
1413 __ Branch(&validate_arguments, ne, a0, Operand(at));
1414 __ lw(a0, MemOperand(fp, kFunctionOffset));
1415 __ sw(a0, MemOperand(fp, kNewTargetOffset));
1417 // Validate arguments
1418 __ bind(&validate_arguments);
1419 __ lw(a0, MemOperand(fp, kFunctionOffset)); // get the function
1421 __ lw(a0, MemOperand(fp, kArgumentsOffset)); // get the args array
1423 __ lw(a0, MemOperand(fp, kNewTargetOffset)); // get the new.target
1425 // Returns argument count in v0.
1426 __ InvokeBuiltin(Context::REFLECT_CONSTRUCT_PREPARE_BUILTIN_INDEX,
1429 // Returns result in v0.
1430 Generate_CheckStackOverflow(masm, kFunctionOffset, v0, kArgcIsSmiTagged);
1432 // Push current limit and index.
1433 const int kIndexOffset =
1434 StandardFrameConstants::kExpressionsOffset - (2 * kPointerSize);
1435 const int kLimitOffset =
1436 StandardFrameConstants::kExpressionsOffset - (1 * kPointerSize);
1437 __ push(v0); // limit
1438 __ mov(a1, zero_reg); // initial index
1440 // Push the constructor function as callee.
1441 __ lw(a0, MemOperand(fp, kFunctionOffset));
1444 // Copy all arguments from the array to the stack.
1445 Generate_PushAppliedArguments(
1446 masm, kArgumentsOffset, kIndexOffset, kLimitOffset);
1448 // Use undefined feedback vector
1449 __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
1450 __ lw(a1, MemOperand(fp, kFunctionOffset));
1451 __ lw(t0, MemOperand(fp, kNewTargetOffset));
1453 // Call the function.
1454 CallConstructStub stub(masm->isolate(), SUPER_CONSTRUCTOR_CALL);
1455 __ Call(stub.GetCode(), RelocInfo::CONSTRUCT_CALL);
1457 // Leave internal frame.
1460 __ Addu(sp, sp, Operand(kStackSize * kPointerSize)); // In delay slot.
1464 void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
1465 Generate_ApplyHelper(masm, false);
1469 void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
1470 Generate_ApplyHelper(masm, true);
1474 void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
1475 Generate_ConstructHelper(masm);
1479 static void ArgumentAdaptorStackCheck(MacroAssembler* masm,
1480 Label* stack_overflow) {
1481 // ----------- S t a t e -------------
1482 // -- a0 : actual number of arguments
1483 // -- a1 : function (passed through to callee)
1484 // -- a2 : expected number of arguments
1485 // -----------------------------------
1486 // Check the stack for overflow. We are not trying to catch
1487 // interruptions (e.g. debug break and preemption) here, so the "real stack
1488 // limit" is checked.
1489 __ LoadRoot(t1, Heap::kRealStackLimitRootIndex);
1490 // Make t1 the space we have left. The stack might already be overflowed
1491 // here which will cause t1 to become negative.
1492 __ subu(t1, sp, t1);
1493 // Check if the arguments will overflow the stack.
1494 __ sll(at, a2, kPointerSizeLog2);
1495 // Signed comparison.
1496 __ Branch(stack_overflow, le, t1, Operand(at));
1500 static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
1501 __ sll(a0, a0, kSmiTagSize);
1502 __ li(t0, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1503 __ MultiPush(a0.bit() | a1.bit() | t0.bit() | fp.bit() | ra.bit());
1505 Operand(StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize));
1509 static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
1510 // ----------- S t a t e -------------
1511 // -- v0 : result being passed through
1512 // -----------------------------------
1513 // Get the number of arguments passed (as a smi), tear down the frame and
1514 // then tear down the parameters.
1515 __ lw(a1, MemOperand(fp, -(StandardFrameConstants::kFixedFrameSizeFromFp +
1518 __ MultiPop(fp.bit() | ra.bit());
1519 __ sll(t0, a1, kPointerSizeLog2 - kSmiTagSize);
1520 __ Addu(sp, sp, t0);
1521 // Adjust for the receiver.
1522 __ Addu(sp, sp, Operand(kPointerSize));
1527 void Builtins::Generate_CallFunction(MacroAssembler* masm) {
1528 // ----------- S t a t e -------------
1529 // -- a0 : the number of arguments (not including the receiver)
1530 // -- a1 : the function to call (checked to be a JSFunction)
1531 // -----------------------------------
1533 Label convert, convert_global_proxy, convert_to_object, done_convert;
1534 __ AssertFunction(a1);
1535 // TODO(bmeurer): Throw a TypeError if function's [[FunctionKind]] internal
1536 // slot is "classConstructor".
1537 // Enter the context of the function; ToObject has to run in the function
1538 // context, and we also need to take the global proxy from the function
1539 // context in case of conversion.
1540 // See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
1541 STATIC_ASSERT(SharedFunctionInfo::kNativeByteOffset ==
1542 SharedFunctionInfo::kStrictModeByteOffset);
1543 __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
1544 __ lw(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
1545 // We need to convert the receiver for non-native sloppy mode functions.
1546 __ lbu(a3, FieldMemOperand(a2, SharedFunctionInfo::kNativeByteOffset));
1547 __ And(at, a3, Operand((1 << SharedFunctionInfo::kNativeBitWithinByte) |
1548 (1 << SharedFunctionInfo::kStrictModeBitWithinByte)));
1549 __ Branch(&done_convert, ne, at, Operand(zero_reg));
1551 __ sll(at, a0, kPointerSizeLog2);
1552 __ addu(at, sp, at);
1553 __ lw(a3, MemOperand(at));
1555 // ----------- S t a t e -------------
1556 // -- a0 : the number of arguments (not including the receiver)
1557 // -- a1 : the function to call (checked to be a JSFunction)
1558 // -- a2 : the shared function info.
1559 // -- a3 : the receiver
1560 // -- cp : the function context.
1561 // -----------------------------------
1563 Label convert_receiver;
1564 __ JumpIfSmi(a3, &convert_to_object);
1565 STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
1566 __ GetObjectType(a3, t0, t0);
1567 __ Branch(&done_convert, hs, t0, Operand(FIRST_JS_RECEIVER_TYPE));
1568 __ JumpIfRoot(a3, Heap::kUndefinedValueRootIndex, &convert_global_proxy);
1569 __ JumpIfNotRoot(a3, Heap::kNullValueRootIndex, &convert_to_object);
1570 __ bind(&convert_global_proxy);
1572 // Patch receiver to global proxy.
1573 __ LoadGlobalProxy(a3);
1575 __ Branch(&convert_receiver);
1576 __ bind(&convert_to_object);
1578 // Convert receiver using ToObject.
1579 // TODO(bmeurer): Inline the allocation here to avoid building the frame
1580 // in the fast case? (fall back to AllocateInNewSpace?)
1581 FrameScope scope(masm, StackFrame::INTERNAL);
1582 __ sll(a0, a0, kSmiTagSize); // Smi tagged.
1585 ToObjectStub stub(masm->isolate());
1589 __ sra(a0, a0, kSmiTagSize); // Un-tag.
1591 __ lw(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
1592 __ bind(&convert_receiver);
1593 __ sll(at, a0, kPointerSizeLog2);
1594 __ addu(at, sp, at);
1595 __ sw(a3, MemOperand(at));
1597 __ bind(&done_convert);
1599 // ----------- S t a t e -------------
1600 // -- a0 : the number of arguments (not including the receiver)
1601 // -- a1 : the function to call (checked to be a JSFunction)
1602 // -- a2 : the shared function info.
1603 // -- cp : the function context.
1604 // -----------------------------------
1607 FieldMemOperand(a2, SharedFunctionInfo::kFormalParameterCountOffset));
1608 __ sra(a2, a2, kSmiTagSize); // Un-tag.
1609 __ lw(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
1610 ParameterCount actual(a0);
1611 ParameterCount expected(a2);
1612 __ InvokeCode(a3, expected, actual, JUMP_FUNCTION, NullCallWrapper());
1617 void Builtins::Generate_Call(MacroAssembler* masm) {
1618 // ----------- S t a t e -------------
1619 // -- a0 : the number of arguments (not including the receiver)
1620 // -- a1 : the target to call (can be any Object).
1621 // -----------------------------------
1623 Label non_smi, non_function;
1624 __ JumpIfSmi(a1, &non_function);
1626 __ GetObjectType(a1, a2, a2);
1627 __ Jump(masm->isolate()->builtins()->CallFunction(), RelocInfo::CODE_TARGET,
1628 eq, a2, Operand(JS_FUNCTION_TYPE));
1629 __ Branch(&non_function, ne, a2, Operand(JS_FUNCTION_PROXY_TYPE));
1632 // 1. Call to function proxy.
1633 // TODO(neis): This doesn't match the ES6 spec for [[Call]] on proxies.
1634 __ lw(a1, FieldMemOperand(a1, JSFunctionProxy::kCallTrapOffset));
1635 __ AssertNotSmi(a1);
1636 __ Branch(&non_smi);
1638 // 2. Call to something else, which might have a [[Call]] internal method (if
1639 // not we raise an exception).
1640 __ bind(&non_function);
1641 // TODO(bmeurer): I wonder why we prefer to have slow API calls? This could
1642 // be awesome instead; i.e. a trivial improvement would be to call into the
1643 // runtime and just deal with the API function there instead of returning a
1644 // delegate from a runtime call that just jumps back to the runtime once
1645 // called. Or, bonus points, call directly into the C API function here, as
1646 // we do in some Crankshaft fast cases.
1647 // Overwrite the original receiver with the (original) target.
1648 __ sll(at, a0, kPointerSizeLog2);
1649 __ addu(at, sp, at);
1650 __ sw(a1, MemOperand(at));
1652 // Determine the delegate for the target (if any).
1653 FrameScope scope(masm, StackFrame::INTERNAL);
1654 __ sll(a0, a0, kSmiTagSize); // Smi tagged.
1656 __ CallRuntime(Runtime::kGetFunctionDelegate, 1);
1659 __ sra(a0, a0, kSmiTagSize); // Un-tag.
1661 // The delegate is always a regular function.
1662 __ AssertFunction(a1);
1663 __ Jump(masm->isolate()->builtins()->CallFunction(), RelocInfo::CODE_TARGET);
1667 void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
1668 // State setup as expected by MacroAssembler::InvokePrologue.
1669 // ----------- S t a t e -------------
1670 // -- a0: actual arguments count
1671 // -- a1: function (passed through to callee)
1672 // -- a2: expected arguments count
1673 // -----------------------------------
1675 Label stack_overflow;
1676 ArgumentAdaptorStackCheck(masm, &stack_overflow);
1677 Label invoke, dont_adapt_arguments;
1679 Label enough, too_few;
1680 __ lw(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
1681 __ Branch(&dont_adapt_arguments, eq,
1682 a2, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
1683 // We use Uless as the number of argument should always be greater than 0.
1684 __ Branch(&too_few, Uless, a0, Operand(a2));
1686 { // Enough parameters: actual >= expected.
1687 // a0: actual number of arguments as a smi
1689 // a2: expected number of arguments
1690 // a3: code entry to call
1692 EnterArgumentsAdaptorFrame(masm);
1694 // Calculate copy start address into a0 and copy end address into t1.
1695 __ sll(a0, a0, kPointerSizeLog2 - kSmiTagSize);
1696 __ Addu(a0, fp, a0);
1697 // Adjust for return address and receiver.
1698 __ Addu(a0, a0, Operand(2 * kPointerSize));
1699 // Compute copy end address.
1700 __ sll(t1, a2, kPointerSizeLog2);
1701 __ subu(t1, a0, t1);
1703 // Copy the arguments (including the receiver) to the new stack frame.
1704 // a0: copy start address
1706 // a2: expected number of arguments
1707 // a3: code entry to call
1708 // t1: copy end address
1712 __ lw(t0, MemOperand(a0));
1714 __ Branch(USE_DELAY_SLOT, ©, ne, a0, Operand(t1));
1715 __ addiu(a0, a0, -kPointerSize); // In delay slot.
1720 { // Too few parameters: Actual < expected.
1723 // If the function is strong we need to throw an error.
1724 Label no_strong_error;
1725 __ lw(t1, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
1726 __ lw(t2, FieldMemOperand(t1, SharedFunctionInfo::kCompilerHintsOffset));
1727 __ And(t3, t2, Operand(1 << (SharedFunctionInfo::kStrongModeFunction +
1729 __ Branch(&no_strong_error, eq, t3, Operand(zero_reg));
1731 // What we really care about is the required number of arguments.
1732 __ lw(t2, FieldMemOperand(t1, SharedFunctionInfo::kLengthOffset));
1734 __ Branch(&no_strong_error, ge, a0, Operand(t2));
1737 FrameScope frame(masm, StackFrame::MANUAL);
1738 EnterArgumentsAdaptorFrame(masm);
1739 __ CallRuntime(Runtime::kThrowStrongModeTooFewArguments, 0);
1742 __ bind(&no_strong_error);
1743 EnterArgumentsAdaptorFrame(masm);
1745 // Calculate copy start address into a0 and copy end address into t3.
1746 // a0: actual number of arguments as a smi
1748 // a2: expected number of arguments
1749 // a3: code entry to call
1750 __ sll(a0, a0, kPointerSizeLog2 - kSmiTagSize);
1751 __ Addu(a0, fp, a0);
1752 // Adjust for return address and receiver.
1753 __ Addu(a0, a0, Operand(2 * kPointerSize));
1754 // Compute copy end address. Also adjust for return address.
1755 __ Addu(t3, fp, kPointerSize);
1757 // Copy the arguments (including the receiver) to the new stack frame.
1758 // a0: copy start address
1760 // a2: expected number of arguments
1761 // a3: code entry to call
1762 // t3: copy end address
1765 __ lw(t0, MemOperand(a0)); // Adjusted above for return addr and receiver.
1766 __ Subu(sp, sp, kPointerSize);
1767 __ Subu(a0, a0, kPointerSize);
1768 __ Branch(USE_DELAY_SLOT, ©, ne, a0, Operand(t3));
1769 __ sw(t0, MemOperand(sp)); // In the delay slot.
1771 // Fill the remaining expected arguments with undefined.
1773 // a2: expected number of arguments
1774 // a3: code entry to call
1775 __ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
1776 __ sll(t2, a2, kPointerSizeLog2);
1777 __ Subu(t1, fp, Operand(t2));
1778 // Adjust for frame.
1779 __ Subu(t1, t1, Operand(StandardFrameConstants::kFixedFrameSizeFromFp +
1784 __ Subu(sp, sp, kPointerSize);
1785 __ Branch(USE_DELAY_SLOT, &fill, ne, sp, Operand(t1));
1786 __ sw(t0, MemOperand(sp));
1789 // Call the entry point.
1792 // a0 : expected number of arguments
1793 // a1 : function (passed through to callee)
1796 // Store offset of return address for deoptimizer.
1797 masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
1799 // Exit frame and return.
1800 LeaveArgumentsAdaptorFrame(masm);
1804 // -------------------------------------------
1805 // Don't adapt arguments.
1806 // -------------------------------------------
1807 __ bind(&dont_adapt_arguments);
1810 __ bind(&stack_overflow);
1812 FrameScope frame(masm, StackFrame::MANUAL);
1813 EnterArgumentsAdaptorFrame(masm);
1814 __ CallRuntime(Runtime::kThrowStackOverflow, 0);
1822 } // namespace internal
1825 #endif // V8_TARGET_ARCH_MIPS