1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
36 #ifndef V8_MIPS_ASSEMBLER_MIPS_H_
37 #define V8_MIPS_ASSEMBLER_MIPS_H_
43 #include "src/assembler.h"
44 #include "src/compiler.h"
45 #include "src/mips/constants-mips.h"
52 // 1) We would prefer to use an enum, but enum values are assignment-
53 // compatible with int, which has caused code-generation bugs.
55 // 2) We would prefer to use a class instead of a struct but we don't like
56 // the register initialization to depend on the particular initialization
57 // order (which appears to be different on OS X, Linux, and Windows for the
58 // installed versions of C++ we tried). Using a struct permits C-style
59 // "initialization". Also, the Register objects cannot be const as this
60 // forces initialization stubs in MSVC, making us dependent on initialization
63 // 3) By not using an enum, we are possibly preventing the compiler from
64 // doing certain constant folds, which may significantly reduce the
65 // code generated for some assembly instructions (because they boil down
66 // to a few constants). If this is a problem, we could change the code
67 // such that we use an enum in optimized mode, and the struct in debug
68 // mode. This way we get the compile-time error checking in debug mode
69 // and best performance in optimized code.
72 // -----------------------------------------------------------------------------
73 // Implementation of Register and FPURegister.
77 static const int kNumRegisters = v8::internal::kNumRegisters;
78 static const int kMaxNumAllocatableRegisters = 14; // v0 through t6 and cp.
79 static const int kSizeInBytes = 4;
80 static const int kCpRegister = 23; // cp (s7) is the 23rd register.
82 #if defined(V8_TARGET_LITTLE_ENDIAN)
83 static const int kMantissaOffset = 0;
84 static const int kExponentOffset = 4;
85 #elif defined(V8_TARGET_BIG_ENDIAN)
86 static const int kMantissaOffset = 4;
87 static const int kExponentOffset = 0;
89 #error Unknown endianness
92 inline static int NumAllocatableRegisters();
94 static int ToAllocationIndex(Register reg) {
95 DCHECK((reg.code() - 2) < (kMaxNumAllocatableRegisters - 1) ||
96 reg.is(from_code(kCpRegister)));
97 return reg.is(from_code(kCpRegister)) ?
98 kMaxNumAllocatableRegisters - 1 : // Return last index for 'cp'.
99 reg.code() - 2; // zero_reg and 'at' are skipped.
102 static Register FromAllocationIndex(int index) {
103 DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
104 return index == kMaxNumAllocatableRegisters - 1 ?
105 from_code(kCpRegister) : // Last index is always the 'cp' register.
106 from_code(index + 2); // zero_reg and 'at' are skipped.
109 static const char* AllocationIndexToString(int index) {
110 DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
111 const char* const names[] = {
130 static Register from_code(int code) {
131 Register r = { code };
135 bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; }
136 bool is(Register reg) const { return code_ == reg.code_; }
146 // Unfortunately we can't make this private in a struct.
150 #define REGISTER(N, C) \
151 const int kRegister_ ## N ## _Code = C; \
152 const Register N = { C }
154 REGISTER(no_reg, -1);
156 REGISTER(zero_reg, 0);
157 // at: Reserved for synthetic instructions.
159 // v0, v1: Used when returning multiple values from subroutines.
162 // a0 - a4: Used to pass non-FP parameters.
167 // t0 - t9: Can be used without reservation, act as temporary registers and are
168 // allowed to be destroyed by subroutines.
177 // s0 - s7: Subroutine register variables. Subroutines that write to these
178 // registers must restore their values before exiting so that the caller can
179 // expect the values to be preserved.
190 // k0, k1: Reserved for system calls and interrupt handlers.
195 // sp: Stack pointer.
197 // fp: Frame pointer.
199 // ra: Return address pointer.
205 int ToNumber(Register reg);
207 Register ToRegister(int num);
209 // Coprocessor register.
211 static const int kMaxNumRegisters = v8::internal::kNumFPURegisters;
213 // TODO(plind): Warning, inconsistent numbering here. kNumFPURegisters refers
214 // to number of 32-bit FPU regs, but kNumAllocatableRegisters refers to
215 // number of Double regs (64-bit regs, or FPU-reg-pairs).
217 // A few double registers are reserved: one as a scratch register and one to
220 // f30: scratch register.
221 static const int kNumReservedRegisters = 2;
222 static const int kMaxNumAllocatableRegisters = kMaxNumRegisters / 2 -
223 kNumReservedRegisters;
225 inline static int NumRegisters();
226 inline static int NumAllocatableRegisters();
228 // TODO(turbofan): Proper support for float32.
229 inline static int NumAllocatableAliasedRegisters();
231 inline static int ToAllocationIndex(FPURegister reg);
232 static const char* AllocationIndexToString(int index);
234 static FPURegister FromAllocationIndex(int index) {
235 DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
236 return from_code(index * 2);
239 static FPURegister from_code(int code) {
240 FPURegister r = { code };
244 bool is_valid() const { return 0 <= code_ && code_ < kMaxNumRegisters ; }
245 bool is(FPURegister creg) const { return code_ == creg.code_; }
246 FPURegister low() const {
247 // Find low reg of a Double-reg pair, which is the reg itself.
248 DCHECK(code_ % 2 == 0); // Specified Double reg must be even.
251 DCHECK(reg.is_valid());
254 FPURegister high() const {
255 // Find high reg of a Doubel-reg pair, which is reg + 1.
256 DCHECK(code_ % 2 == 0); // Specified Double reg must be even.
258 reg.code_ = code_ + 1;
259 DCHECK(reg.is_valid());
271 void setcode(int f) {
275 // Unfortunately we can't make this private in a struct.
279 // V8 now supports the O32 ABI, and the FPU Registers are organized as 32
280 // 32-bit registers, f0 through f31. When used as 'double' they are used
281 // in pairs, starting with the even numbered register. So a double operation
282 // on f0 really uses f0 and f1.
283 // (Modern mips hardware also supports 32 64-bit registers, via setting
284 // (priviledged) Status Register FR bit to 1. This is used by the N32 ABI,
285 // but it is not in common use. Someday we will want to support this in v8.)
287 // For O32 ABI, Floats and Doubles refer to same set of 32 32-bit registers.
288 typedef FPURegister DoubleRegister;
289 typedef FPURegister FloatRegister;
291 const FPURegister no_freg = { -1 };
293 const FPURegister f0 = { 0 }; // Return value in hard float mode.
294 const FPURegister f1 = { 1 };
295 const FPURegister f2 = { 2 };
296 const FPURegister f3 = { 3 };
297 const FPURegister f4 = { 4 };
298 const FPURegister f5 = { 5 };
299 const FPURegister f6 = { 6 };
300 const FPURegister f7 = { 7 };
301 const FPURegister f8 = { 8 };
302 const FPURegister f9 = { 9 };
303 const FPURegister f10 = { 10 };
304 const FPURegister f11 = { 11 };
305 const FPURegister f12 = { 12 }; // Arg 0 in hard float mode.
306 const FPURegister f13 = { 13 };
307 const FPURegister f14 = { 14 }; // Arg 1 in hard float mode.
308 const FPURegister f15 = { 15 };
309 const FPURegister f16 = { 16 };
310 const FPURegister f17 = { 17 };
311 const FPURegister f18 = { 18 };
312 const FPURegister f19 = { 19 };
313 const FPURegister f20 = { 20 };
314 const FPURegister f21 = { 21 };
315 const FPURegister f22 = { 22 };
316 const FPURegister f23 = { 23 };
317 const FPURegister f24 = { 24 };
318 const FPURegister f25 = { 25 };
319 const FPURegister f26 = { 26 };
320 const FPURegister f27 = { 27 };
321 const FPURegister f28 = { 28 };
322 const FPURegister f29 = { 29 };
323 const FPURegister f30 = { 30 };
324 const FPURegister f31 = { 31 };
327 // cp is assumed to be a callee saved register.
328 // Defined using #define instead of "static const Register&" because Clang
329 // complains otherwise when a compilation unit that includes this header
330 // doesn't use the variables.
331 #define kRootRegister s6
333 #define kLithiumScratchReg s3
334 #define kLithiumScratchReg2 s4
335 #define kLithiumScratchDouble f30
336 #define kDoubleRegZero f28
337 // Used on mips32r6 for compare operations.
338 // We use the last non-callee saved odd register for O32 ABI
339 #define kDoubleCompareReg f19
341 // FPU (coprocessor 1) control registers.
342 // Currently only FCSR (#31) is implemented.
343 struct FPUControlRegister {
344 bool is_valid() const { return code_ == kFCSRRegister; }
345 bool is(FPUControlRegister creg) const { return code_ == creg.code_; }
354 void setcode(int f) {
358 // Unfortunately we can't make this private in a struct.
362 const FPUControlRegister no_fpucreg = { kInvalidFPUControlRegister };
363 const FPUControlRegister FCSR = { kFCSRRegister };
366 // -----------------------------------------------------------------------------
367 // Machine instruction Operands.
369 // Class Operand represents a shifter operand in data processing instructions.
370 class Operand BASE_EMBEDDED {
373 INLINE(explicit Operand(int32_t immediate,
374 RelocInfo::Mode rmode = RelocInfo::NONE32));
375 INLINE(explicit Operand(const ExternalReference& f));
376 INLINE(explicit Operand(const char* s));
377 INLINE(explicit Operand(Object** opp));
378 INLINE(explicit Operand(Context** cpp));
379 explicit Operand(Handle<Object> handle);
380 INLINE(explicit Operand(Smi* value));
383 INLINE(explicit Operand(Register rm));
385 // Return true if this is a register operand.
386 INLINE(bool is_reg() const);
388 inline int32_t immediate() const {
393 Register rm() const { return rm_; }
397 int32_t imm32_; // Valid if rm_ == no_reg.
398 RelocInfo::Mode rmode_;
400 friend class Assembler;
401 friend class MacroAssembler;
405 // On MIPS we have only one adressing mode with base_reg + offset.
406 // Class MemOperand represents a memory operand in load and store instructions.
407 class MemOperand : public Operand {
409 // Immediate value attached to offset.
411 offset_minus_one = -1,
415 explicit MemOperand(Register rn, int32_t offset = 0);
416 explicit MemOperand(Register rn, int32_t unit, int32_t multiplier,
417 OffsetAddend offset_addend = offset_zero);
418 int32_t offset() const { return offset_; }
420 bool OffsetIsInt16Encodable() const {
421 return is_int16(offset_);
427 friend class Assembler;
431 class Assembler : public AssemblerBase {
433 // Create an assembler. Instructions and relocation information are emitted
434 // into a buffer, with the instructions starting from the beginning and the
435 // relocation information starting from the end of the buffer. See CodeDesc
436 // for a detailed comment on the layout (globals.h).
438 // If the provided buffer is NULL, the assembler allocates and grows its own
439 // buffer, and buffer_size determines the initial buffer size. The buffer is
440 // owned by the assembler and deallocated upon destruction of the assembler.
442 // If the provided buffer is not NULL, the assembler uses the provided buffer
443 // for code generation and assumes its size to be buffer_size. If the buffer
444 // is too small, a fatal error occurs. No deallocation of the buffer is done
445 // upon destruction of the assembler.
446 Assembler(Isolate* isolate, void* buffer, int buffer_size);
447 virtual ~Assembler() { }
449 // GetCode emits any pending (non-emitted) code and fills the descriptor
450 // desc. GetCode() is idempotent; it returns the same result if no other
451 // Assembler functions are invoked in between GetCode() calls.
452 void GetCode(CodeDesc* desc);
454 // Label operations & relative jumps (PPUM Appendix D).
456 // Takes a branch opcode (cc) and a label (L) and generates
457 // either a backward branch or a forward branch and links it
458 // to the label fixup chain. Usage:
460 // Label L; // unbound label
461 // j(cc, &L); // forward branch to unbound label
462 // bind(&L); // bind label to the current pc
463 // j(cc, &L); // backward branch to bound label
464 // bind(&L); // illegal: a label may be bound only once
466 // Note: The same Label can be used for forward and backward branches
467 // but it may be bound only once.
468 void bind(Label* L); // Binds an unbound label L to current code position.
469 // Determines if Label is bound and near enough so that branch instruction
470 // can be used to reach it, instead of jump instruction.
471 bool is_near(Label* L);
473 // Returns the branch offset to the given label from the current code
474 // position. Links the label to the current position if it is still unbound.
475 // Manages the jump elimination optimization if the second parameter is true.
476 int32_t branch_offset(Label* L, bool jump_elimination_allowed);
477 int32_t branch_offset_compact(Label* L, bool jump_elimination_allowed);
478 int32_t branch_offset21(Label* L, bool jump_elimination_allowed);
479 int32_t branch_offset21_compact(Label* L, bool jump_elimination_allowed);
480 int32_t shifted_branch_offset(Label* L, bool jump_elimination_allowed) {
481 int32_t o = branch_offset(L, jump_elimination_allowed);
482 DCHECK((o & 3) == 0); // Assert the offset is aligned.
485 int32_t shifted_branch_offset_compact(Label* L,
486 bool jump_elimination_allowed) {
487 int32_t o = branch_offset_compact(L, jump_elimination_allowed);
488 DCHECK((o & 3) == 0); // Assert the offset is aligned.
491 uint32_t jump_address(Label* L);
493 // Puts a labels target address at the given position.
494 // The high 8 bits are set to zero.
495 void label_at_put(Label* L, int at_offset);
497 // Read/Modify the code target address in the branch/call instruction at pc.
498 static Address target_address_at(Address pc);
499 static void set_target_address_at(Address pc,
501 ICacheFlushMode icache_flush_mode =
502 FLUSH_ICACHE_IF_NEEDED);
503 // On MIPS there is no Constant Pool so we skip that parameter.
504 INLINE(static Address target_address_at(Address pc, Address constant_pool)) {
505 return target_address_at(pc);
507 INLINE(static void set_target_address_at(
508 Address pc, Address constant_pool, Address target,
509 ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)) {
510 set_target_address_at(pc, target, icache_flush_mode);
512 INLINE(static Address target_address_at(Address pc, Code* code)) {
513 Address constant_pool = code ? code->constant_pool() : NULL;
514 return target_address_at(pc, constant_pool);
516 INLINE(static void set_target_address_at(Address pc,
519 ICacheFlushMode icache_flush_mode =
520 FLUSH_ICACHE_IF_NEEDED)) {
521 Address constant_pool = code ? code->constant_pool() : NULL;
522 set_target_address_at(pc, constant_pool, target, icache_flush_mode);
525 // Return the code target address at a call site from the return address
526 // of that call in the instruction stream.
527 inline static Address target_address_from_return_address(Address pc);
529 static void JumpToJumpRegister(Address pc);
531 static void QuietNaN(HeapObject* nan);
533 // This sets the branch destination (which gets loaded at the call address).
534 // This is for calls and branches within generated code. The serializer
535 // has already deserialized the lui/ori instructions etc.
536 inline static void deserialization_set_special_target_at(
537 Address instruction_payload, Code* code, Address target) {
538 set_target_address_at(
539 instruction_payload - kInstructionsFor32BitConstant * kInstrSize,
544 // This sets the internal reference at the pc.
545 inline static void deserialization_set_target_internal_reference_at(
546 Address pc, Address target,
547 RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);
549 // Size of an instruction.
550 static const int kInstrSize = sizeof(Instr);
552 // Difference between address of current opcode and target address offset.
553 static const int kBranchPCOffset = 4;
555 // Here we are patching the address in the LUI/ORI instruction pair.
556 // These values are used in the serialization process and must be zero for
557 // MIPS platform, as Code, Embedded Object or External-reference pointers
558 // are split across two consecutive instructions and don't exist separately
559 // in the code, so the serializer should not step forwards in memory after
560 // a target is resolved and written.
561 static const int kSpecialTargetSize = 0;
563 // Number of consecutive instructions used to store 32bit constant.
564 // Before jump-optimizations, this constant was used in
565 // RelocInfo::target_address_address() function to tell serializer address of
566 // the instruction that follows LUI/ORI instruction pair. Now, with new jump
567 // optimization, where jump-through-register instruction that usually
568 // follows LUI/ORI pair is substituted with J/JAL, this constant equals
569 // to 3 instructions (LUI+ORI+J/JAL/JR/JALR).
570 static const int kInstructionsFor32BitConstant = 3;
572 // Distance between the instruction referring to the address of the call
573 // target and the return address.
574 static const int kCallTargetAddressOffset = 4 * kInstrSize;
576 // Distance between start of patched debug break slot and the emitted address
578 static const int kPatchDebugBreakSlotAddressOffset = 4 * kInstrSize;
580 // Difference between address of current opcode and value read from pc
582 static const int kPcLoadDelta = 4;
584 static const int kDebugBreakSlotInstructions = 4;
585 static const int kDebugBreakSlotLength =
586 kDebugBreakSlotInstructions * kInstrSize;
589 // ---------------------------------------------------------------------------
592 // Insert the smallest number of nop instructions
593 // possible to align the pc offset to a multiple
594 // of m. m must be a power of 2 (>= 4).
596 // Insert the smallest number of zero bytes possible to align the pc offset
597 // to a mulitple of m. m must be a power of 2 (>= 2).
598 void DataAlign(int m);
599 // Aligns code to something that's optimal for a jump target for the platform.
600 void CodeTargetAlign();
602 // Different nop operations are used by the code generator to detect certain
603 // states of the generated code.
604 enum NopMarkerTypes {
608 PROPERTY_ACCESS_INLINED,
609 PROPERTY_ACCESS_INLINED_CONTEXT,
610 PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
613 FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED,
615 CODE_AGE_MARKER_NOP = 6,
616 CODE_AGE_SEQUENCE_NOP
619 // Type == 0 is the default non-marking nop. For mips this is a
620 // sll(zero_reg, zero_reg, 0). We use rt_reg == at for non-zero
621 // marking, to avoid conflict with ssnop and ehb instructions.
622 void nop(unsigned int type = 0) {
624 Register nop_rt_reg = (type == 0) ? zero_reg : at;
625 sll(zero_reg, nop_rt_reg, type, true);
629 // --------Branch-and-jump-instructions----------
630 // We don't use likely variant of instructions.
631 void b(int16_t offset);
632 void b(Label* L) { b(branch_offset(L, false)>>2); }
633 void bal(int16_t offset);
634 void bal(Label* L) { bal(branch_offset(L, false)>>2); }
635 void bc(int32_t offset);
636 void bc(Label* L) { bc(branch_offset(L, false) >> 2); }
637 void balc(int32_t offset);
638 void balc(Label* L) { balc(branch_offset(L, false) >> 2); }
640 void beq(Register rs, Register rt, int16_t offset);
641 void beq(Register rs, Register rt, Label* L) {
642 beq(rs, rt, branch_offset(L, false) >> 2);
644 void bgez(Register rs, int16_t offset);
645 void bgezc(Register rt, int16_t offset);
646 void bgezc(Register rt, Label* L) {
647 bgezc(rt, branch_offset_compact(L, false)>>2);
649 void bgeuc(Register rs, Register rt, int16_t offset);
650 void bgeuc(Register rs, Register rt, Label* L) {
651 bgeuc(rs, rt, branch_offset_compact(L, false)>>2);
653 void bgec(Register rs, Register rt, int16_t offset);
654 void bgec(Register rs, Register rt, Label* L) {
655 bgec(rs, rt, branch_offset_compact(L, false)>>2);
657 void bgezal(Register rs, int16_t offset);
658 void bgezalc(Register rt, int16_t offset);
659 void bgezalc(Register rt, Label* L) {
660 bgezalc(rt, branch_offset_compact(L, false)>>2);
662 void bgezall(Register rs, int16_t offset);
663 void bgezall(Register rs, Label* L) {
664 bgezall(rs, branch_offset(L, false)>>2);
666 void bgtz(Register rs, int16_t offset);
667 void bgtzc(Register rt, int16_t offset);
668 void bgtzc(Register rt, Label* L) {
669 bgtzc(rt, branch_offset_compact(L, false)>>2);
671 void blez(Register rs, int16_t offset);
672 void blezc(Register rt, int16_t offset);
673 void blezc(Register rt, Label* L) {
674 blezc(rt, branch_offset_compact(L, false)>>2);
676 void bltz(Register rs, int16_t offset);
677 void bltzc(Register rt, int16_t offset);
678 void bltzc(Register rt, Label* L) {
679 bltzc(rt, branch_offset_compact(L, false)>>2);
681 void bltuc(Register rs, Register rt, int16_t offset);
682 void bltuc(Register rs, Register rt, Label* L) {
683 bltuc(rs, rt, branch_offset_compact(L, false)>>2);
685 void bltc(Register rs, Register rt, int16_t offset);
686 void bltc(Register rs, Register rt, Label* L) {
687 bltc(rs, rt, branch_offset_compact(L, false)>>2);
689 void bltzal(Register rs, int16_t offset);
690 void blezalc(Register rt, int16_t offset);
691 void blezalc(Register rt, Label* L) {
692 blezalc(rt, branch_offset_compact(L, false)>>2);
694 void bltzalc(Register rt, int16_t offset);
695 void bltzalc(Register rt, Label* L) {
696 bltzalc(rt, branch_offset_compact(L, false)>>2);
698 void bgtzalc(Register rt, int16_t offset);
699 void bgtzalc(Register rt, Label* L) {
700 bgtzalc(rt, branch_offset_compact(L, false)>>2);
702 void beqzalc(Register rt, int16_t offset);
703 void beqzalc(Register rt, Label* L) {
704 beqzalc(rt, branch_offset_compact(L, false)>>2);
706 void beqc(Register rs, Register rt, int16_t offset);
707 void beqc(Register rs, Register rt, Label* L) {
708 beqc(rs, rt, branch_offset_compact(L, false)>>2);
710 void beqzc(Register rs, int32_t offset);
711 void beqzc(Register rs, Label* L) {
712 beqzc(rs, branch_offset21_compact(L, false)>>2);
714 void bnezalc(Register rt, int16_t offset);
715 void bnezalc(Register rt, Label* L) {
716 bnezalc(rt, branch_offset_compact(L, false)>>2);
718 void bnec(Register rs, Register rt, int16_t offset);
719 void bnec(Register rs, Register rt, Label* L) {
720 bnec(rs, rt, branch_offset_compact(L, false)>>2);
722 void bnezc(Register rt, int32_t offset);
723 void bnezc(Register rt, Label* L) {
724 bnezc(rt, branch_offset21_compact(L, false)>>2);
726 void bne(Register rs, Register rt, int16_t offset);
727 void bne(Register rs, Register rt, Label* L) {
728 bne(rs, rt, branch_offset(L, false)>>2);
730 void bovc(Register rs, Register rt, int16_t offset);
731 void bovc(Register rs, Register rt, Label* L) {
732 bovc(rs, rt, branch_offset_compact(L, false)>>2);
734 void bnvc(Register rs, Register rt, int16_t offset);
735 void bnvc(Register rs, Register rt, Label* L) {
736 bnvc(rs, rt, branch_offset_compact(L, false)>>2);
739 // Never use the int16_t b(l)cond version with a branch offset
740 // instead of using the Label* version.
742 // Jump targets must be in the current 256 MB-aligned region. i.e. 28 bits.
743 void j(int32_t target);
744 void jal(int32_t target);
745 void jalr(Register rs, Register rd = ra);
746 void jr(Register target);
747 void jic(Register rt, int16_t offset);
748 void jialc(Register rt, int16_t offset);
751 // -------Data-processing-instructions---------
754 void addu(Register rd, Register rs, Register rt);
755 void subu(Register rd, Register rs, Register rt);
756 void mult(Register rs, Register rt);
757 void multu(Register rs, Register rt);
758 void div(Register rs, Register rt);
759 void divu(Register rs, Register rt);
760 void div(Register rd, Register rs, Register rt);
761 void divu(Register rd, Register rs, Register rt);
762 void mod(Register rd, Register rs, Register rt);
763 void modu(Register rd, Register rs, Register rt);
764 void mul(Register rd, Register rs, Register rt);
765 void muh(Register rd, Register rs, Register rt);
766 void mulu(Register rd, Register rs, Register rt);
767 void muhu(Register rd, Register rs, Register rt);
769 void addiu(Register rd, Register rs, int32_t j);
772 void and_(Register rd, Register rs, Register rt);
773 void or_(Register rd, Register rs, Register rt);
774 void xor_(Register rd, Register rs, Register rt);
775 void nor(Register rd, Register rs, Register rt);
777 void andi(Register rd, Register rs, int32_t j);
778 void ori(Register rd, Register rs, int32_t j);
779 void xori(Register rd, Register rs, int32_t j);
780 void lui(Register rd, int32_t j);
781 void aui(Register rs, Register rt, int32_t j);
784 // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop
785 // and may cause problems in normal code. coming_from_nop makes sure this
787 void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false);
788 void sllv(Register rd, Register rt, Register rs);
789 void srl(Register rd, Register rt, uint16_t sa);
790 void srlv(Register rd, Register rt, Register rs);
791 void sra(Register rt, Register rd, uint16_t sa);
792 void srav(Register rt, Register rd, Register rs);
793 void rotr(Register rd, Register rt, uint16_t sa);
794 void rotrv(Register rd, Register rt, Register rs);
797 // ------------Memory-instructions-------------
799 void lb(Register rd, const MemOperand& rs);
800 void lbu(Register rd, const MemOperand& rs);
801 void lh(Register rd, const MemOperand& rs);
802 void lhu(Register rd, const MemOperand& rs);
803 void lw(Register rd, const MemOperand& rs);
804 void lwl(Register rd, const MemOperand& rs);
805 void lwr(Register rd, const MemOperand& rs);
806 void sb(Register rd, const MemOperand& rs);
807 void sh(Register rd, const MemOperand& rs);
808 void sw(Register rd, const MemOperand& rs);
809 void swl(Register rd, const MemOperand& rs);
810 void swr(Register rd, const MemOperand& rs);
813 // ---------PC-Relative-instructions-----------
815 void addiupc(Register rs, int32_t imm19);
816 void lwpc(Register rs, int32_t offset19);
817 void auipc(Register rs, int16_t imm16);
818 void aluipc(Register rs, int16_t imm16);
821 // ----------------Prefetch--------------------
823 void pref(int32_t hint, const MemOperand& rs);
826 // -------------Misc-instructions--------------
828 // Break / Trap instructions.
829 void break_(uint32_t code, bool break_as_stop = false);
830 void stop(const char* msg, uint32_t code = kMaxStopCode);
831 void tge(Register rs, Register rt, uint16_t code);
832 void tgeu(Register rs, Register rt, uint16_t code);
833 void tlt(Register rs, Register rt, uint16_t code);
834 void tltu(Register rs, Register rt, uint16_t code);
835 void teq(Register rs, Register rt, uint16_t code);
836 void tne(Register rs, Register rt, uint16_t code);
838 // Move from HI/LO register.
839 void mfhi(Register rd);
840 void mflo(Register rd);
843 void slt(Register rd, Register rs, Register rt);
844 void sltu(Register rd, Register rs, Register rt);
845 void slti(Register rd, Register rs, int32_t j);
846 void sltiu(Register rd, Register rs, int32_t j);
849 void movz(Register rd, Register rs, Register rt);
850 void movn(Register rd, Register rs, Register rt);
851 void movt(Register rd, Register rs, uint16_t cc = 0);
852 void movf(Register rd, Register rs, uint16_t cc = 0);
854 void sel(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
855 void sel_s(FPURegister fd, FPURegister fs, FPURegister ft);
856 void sel_d(FPURegister fd, FPURegister fs, FPURegister ft);
857 void seleqz(Register rd, Register rs, Register rt);
858 void seleqz(SecondaryField fmt, FPURegister fd, FPURegister fs,
860 void selnez(Register rd, Register rs, Register rt);
861 void selnez(SecondaryField fmt, FPURegister fd, FPURegister fs,
863 void seleqz_d(FPURegister fd, FPURegister fs, FPURegister ft);
864 void seleqz_s(FPURegister fd, FPURegister fs, FPURegister ft);
865 void selnez_d(FPURegister fd, FPURegister fs, FPURegister ft);
866 void selnez_s(FPURegister fd, FPURegister fs, FPURegister ft);
868 void movz_s(FPURegister fd, FPURegister fs, Register rt);
869 void movz_d(FPURegister fd, FPURegister fs, Register rt);
870 void movt_s(FPURegister fd, FPURegister fs, uint16_t cc);
871 void movt_d(FPURegister fd, FPURegister fs, uint16_t cc);
872 void movf_s(FPURegister fd, FPURegister fs, uint16_t cc);
873 void movf_d(FPURegister fd, FPURegister fs, uint16_t cc);
874 void movn_s(FPURegister fd, FPURegister fs, Register rt);
875 void movn_d(FPURegister fd, FPURegister fs, Register rt);
877 void clz(Register rd, Register rs);
878 void ins_(Register rt, Register rs, uint16_t pos, uint16_t size);
879 void ext_(Register rt, Register rs, uint16_t pos, uint16_t size);
880 void bitswap(Register rd, Register rt);
881 void align(Register rd, Register rs, Register rt, uint8_t bp);
883 // --------Coprocessor-instructions----------------
885 // Load, store, and move.
886 void lwc1(FPURegister fd, const MemOperand& src);
887 void ldc1(FPURegister fd, const MemOperand& src);
889 void swc1(FPURegister fs, const MemOperand& dst);
890 void sdc1(FPURegister fs, const MemOperand& dst);
892 void mtc1(Register rt, FPURegister fs);
893 void mthc1(Register rt, FPURegister fs);
895 void mfc1(Register rt, FPURegister fs);
896 void mfhc1(Register rt, FPURegister fs);
898 void ctc1(Register rt, FPUControlRegister fs);
899 void cfc1(Register rt, FPUControlRegister fs);
902 void add_s(FPURegister fd, FPURegister fs, FPURegister ft);
903 void add_d(FPURegister fd, FPURegister fs, FPURegister ft);
904 void sub_s(FPURegister fd, FPURegister fs, FPURegister ft);
905 void sub_d(FPURegister fd, FPURegister fs, FPURegister ft);
906 void mul_s(FPURegister fd, FPURegister fs, FPURegister ft);
907 void mul_d(FPURegister fd, FPURegister fs, FPURegister ft);
908 void madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
909 void div_s(FPURegister fd, FPURegister fs, FPURegister ft);
910 void div_d(FPURegister fd, FPURegister fs, FPURegister ft);
911 void abs_s(FPURegister fd, FPURegister fs);
912 void abs_d(FPURegister fd, FPURegister fs);
913 void mov_d(FPURegister fd, FPURegister fs);
914 void mov_s(FPURegister fd, FPURegister fs);
915 void neg_s(FPURegister fd, FPURegister fs);
916 void neg_d(FPURegister fd, FPURegister fs);
917 void sqrt_s(FPURegister fd, FPURegister fs);
918 void sqrt_d(FPURegister fd, FPURegister fs);
919 void rsqrt_s(FPURegister fd, FPURegister fs);
920 void rsqrt_d(FPURegister fd, FPURegister fs);
921 void recip_d(FPURegister fd, FPURegister fs);
922 void recip_s(FPURegister fd, FPURegister fs);
925 void cvt_w_s(FPURegister fd, FPURegister fs);
926 void cvt_w_d(FPURegister fd, FPURegister fs);
927 void trunc_w_s(FPURegister fd, FPURegister fs);
928 void trunc_w_d(FPURegister fd, FPURegister fs);
929 void round_w_s(FPURegister fd, FPURegister fs);
930 void round_w_d(FPURegister fd, FPURegister fs);
931 void floor_w_s(FPURegister fd, FPURegister fs);
932 void floor_w_d(FPURegister fd, FPURegister fs);
933 void ceil_w_s(FPURegister fd, FPURegister fs);
934 void ceil_w_d(FPURegister fd, FPURegister fs);
935 void rint_s(FPURegister fd, FPURegister fs);
936 void rint_d(FPURegister fd, FPURegister fs);
937 void rint(SecondaryField fmt, FPURegister fd, FPURegister fs);
939 void cvt_l_s(FPURegister fd, FPURegister fs);
940 void cvt_l_d(FPURegister fd, FPURegister fs);
941 void trunc_l_s(FPURegister fd, FPURegister fs);
942 void trunc_l_d(FPURegister fd, FPURegister fs);
943 void round_l_s(FPURegister fd, FPURegister fs);
944 void round_l_d(FPURegister fd, FPURegister fs);
945 void floor_l_s(FPURegister fd, FPURegister fs);
946 void floor_l_d(FPURegister fd, FPURegister fs);
947 void ceil_l_s(FPURegister fd, FPURegister fs);
948 void ceil_l_d(FPURegister fd, FPURegister fs);
950 void class_s(FPURegister fd, FPURegister fs);
951 void class_d(FPURegister fd, FPURegister fs);
953 void min(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
954 void mina(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
955 void max(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
956 void maxa(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
957 void min_s(FPURegister fd, FPURegister fs, FPURegister ft);
958 void min_d(FPURegister fd, FPURegister fs, FPURegister ft);
959 void max_s(FPURegister fd, FPURegister fs, FPURegister ft);
960 void max_d(FPURegister fd, FPURegister fs, FPURegister ft);
961 void mina_s(FPURegister fd, FPURegister fs, FPURegister ft);
962 void mina_d(FPURegister fd, FPURegister fs, FPURegister ft);
963 void maxa_s(FPURegister fd, FPURegister fs, FPURegister ft);
964 void maxa_d(FPURegister fd, FPURegister fs, FPURegister ft);
966 void cvt_s_w(FPURegister fd, FPURegister fs);
967 void cvt_s_l(FPURegister fd, FPURegister fs);
968 void cvt_s_d(FPURegister fd, FPURegister fs);
970 void cvt_d_w(FPURegister fd, FPURegister fs);
971 void cvt_d_l(FPURegister fd, FPURegister fs);
972 void cvt_d_s(FPURegister fd, FPURegister fs);
974 // Conditions and branches for MIPSr6.
975 void cmp(FPUCondition cond, SecondaryField fmt,
976 FPURegister fd, FPURegister ft, FPURegister fs);
977 void cmp_s(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft);
978 void cmp_d(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft);
980 void bc1eqz(int16_t offset, FPURegister ft);
981 void bc1eqz(Label* L, FPURegister ft) {
982 bc1eqz(branch_offset(L, false)>>2, ft);
984 void bc1nez(int16_t offset, FPURegister ft);
985 void bc1nez(Label* L, FPURegister ft) {
986 bc1nez(branch_offset(L, false)>>2, ft);
989 // Conditions and branches for non MIPSr6.
990 void c(FPUCondition cond, SecondaryField fmt,
991 FPURegister ft, FPURegister fs, uint16_t cc = 0);
992 void c_s(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0);
993 void c_d(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0);
995 void bc1f(int16_t offset, uint16_t cc = 0);
996 void bc1f(Label* L, uint16_t cc = 0) { bc1f(branch_offset(L, false)>>2, cc); }
997 void bc1t(int16_t offset, uint16_t cc = 0);
998 void bc1t(Label* L, uint16_t cc = 0) { bc1t(branch_offset(L, false)>>2, cc); }
999 void fcmp(FPURegister src1, const double src2, FPUCondition cond);
1001 // Check the code size generated from label to here.
1002 int SizeOfCodeGeneratedSince(Label* label) {
1003 return pc_offset() - label->pos();
1006 // Check the number of instructions generated from label to here.
1007 int InstructionsGeneratedSince(Label* label) {
1008 return SizeOfCodeGeneratedSince(label) / kInstrSize;
1011 // Class for scoping postponing the trampoline pool generation.
1012 class BlockTrampolinePoolScope {
1014 explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) {
1015 assem_->StartBlockTrampolinePool();
1017 ~BlockTrampolinePoolScope() {
1018 assem_->EndBlockTrampolinePool();
1024 DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope);
1027 // Class for postponing the assembly buffer growth. Typically used for
1028 // sequences of instructions that must be emitted as a unit, before
1029 // buffer growth (and relocation) can occur.
1030 // This blocking scope is not nestable.
1031 class BlockGrowBufferScope {
1033 explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) {
1034 assem_->StartBlockGrowBuffer();
1036 ~BlockGrowBufferScope() {
1037 assem_->EndBlockGrowBuffer();
1043 DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope);
1048 // Mark generator continuation.
1049 void RecordGeneratorContinuation();
1051 // Mark address of a debug break slot.
1052 void RecordDebugBreakSlot(RelocInfo::Mode mode, int argc = 0);
1054 // Record the AST id of the CallIC being compiled, so that it can be placed
1055 // in the relocation information.
1056 void SetRecordedAstId(TypeFeedbackId ast_id) {
1057 DCHECK(recorded_ast_id_.IsNone());
1058 recorded_ast_id_ = ast_id;
1061 TypeFeedbackId RecordedAstId() {
1062 DCHECK(!recorded_ast_id_.IsNone());
1063 return recorded_ast_id_;
1066 void ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); }
1068 // Record a comment relocation entry that can be used by a disassembler.
1069 // Use --code-comments to enable.
1070 void RecordComment(const char* msg);
1072 // Record a deoptimization reason that can be used by a log or cpu profiler.
1073 // Use --trace-deopt to enable.
1074 void RecordDeoptReason(const int reason, const SourcePosition position);
1077 static int RelocateInternalReference(RelocInfo::Mode rmode, byte* pc,
1080 // Writes a single byte or word of data in the code stream. Used for
1081 // inline tables, e.g., jump-tables.
1082 void db(uint8_t data);
1083 void dd(uint32_t data);
1084 void dq(uint64_t data);
1085 void dp(uintptr_t data) { dd(data); }
1086 void dd(Label* label);
1088 // Emits the address of the code stub's first instruction.
1089 void emit_code_stub_address(Code* stub);
1091 PositionsRecorder* positions_recorder() { return &positions_recorder_; }
1093 // Postpone the generation of the trampoline pool for the specified number of
1095 void BlockTrampolinePoolFor(int instructions);
1097 // Check if there is less than kGap bytes available in the buffer.
1098 // If this is the case, we need to grow the buffer before emitting
1099 // an instruction or relocation information.
1100 inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
1102 // Get the number of bytes available in the buffer.
1103 inline int available_space() const { return reloc_info_writer.pos() - pc_; }
1105 // Read/patch instructions.
1106 static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); }
1107 static void instr_at_put(byte* pc, Instr instr) {
1108 *reinterpret_cast<Instr*>(pc) = instr;
1110 Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); }
1111 void instr_at_put(int pos, Instr instr) {
1112 *reinterpret_cast<Instr*>(buffer_ + pos) = instr;
1115 // Check if an instruction is a branch of some kind.
1116 static bool IsBranch(Instr instr);
1117 static bool IsBeq(Instr instr);
1118 static bool IsBne(Instr instr);
1120 static bool IsJump(Instr instr);
1121 static bool IsJ(Instr instr);
1122 static bool IsLui(Instr instr);
1123 static bool IsOri(Instr instr);
1125 static bool IsJal(Instr instr);
1126 static bool IsJr(Instr instr);
1127 static bool IsJalr(Instr instr);
1129 static bool IsNop(Instr instr, unsigned int type);
1130 static bool IsPop(Instr instr);
1131 static bool IsPush(Instr instr);
1132 static bool IsLwRegFpOffset(Instr instr);
1133 static bool IsSwRegFpOffset(Instr instr);
1134 static bool IsLwRegFpNegOffset(Instr instr);
1135 static bool IsSwRegFpNegOffset(Instr instr);
1137 static Register GetRtReg(Instr instr);
1138 static Register GetRsReg(Instr instr);
1139 static Register GetRdReg(Instr instr);
1141 static uint32_t GetRt(Instr instr);
1142 static uint32_t GetRtField(Instr instr);
1143 static uint32_t GetRs(Instr instr);
1144 static uint32_t GetRsField(Instr instr);
1145 static uint32_t GetRd(Instr instr);
1146 static uint32_t GetRdField(Instr instr);
1147 static uint32_t GetSa(Instr instr);
1148 static uint32_t GetSaField(Instr instr);
1149 static uint32_t GetOpcodeField(Instr instr);
1150 static uint32_t GetFunction(Instr instr);
1151 static uint32_t GetFunctionField(Instr instr);
1152 static uint32_t GetImmediate16(Instr instr);
1153 static uint32_t GetLabelConst(Instr instr);
1155 static int32_t GetBranchOffset(Instr instr);
1156 static bool IsLw(Instr instr);
1157 static int16_t GetLwOffset(Instr instr);
1158 static Instr SetLwOffset(Instr instr, int16_t offset);
1160 static bool IsSw(Instr instr);
1161 static Instr SetSwOffset(Instr instr, int16_t offset);
1162 static bool IsAddImmediate(Instr instr);
1163 static Instr SetAddImmediateOffset(Instr instr, int16_t offset);
1165 static bool IsAndImmediate(Instr instr);
1166 static bool IsEmittedConstant(Instr instr);
1168 void CheckTrampolinePool();
1170 void PatchConstantPoolAccessInstruction(int pc_offset, int offset,
1171 ConstantPoolEntry::Access access,
1172 ConstantPoolEntry::Type type) {
1173 // No embedded constant pool support.
1178 // Relocation for a type-recording IC has the AST id added to it. This
1179 // member variable is a way to pass the information from the call site to
1180 // the relocation info.
1181 TypeFeedbackId recorded_ast_id_;
1183 int32_t buffer_space() const { return reloc_info_writer.pos() - pc_; }
1185 // Decode branch instruction at pos and return branch target pos.
1186 int target_at(int pos, bool is_internal);
1188 // Patch branch instruction at pos to branch to given branch target pos.
1189 void target_at_put(int pos, int target_pos, bool is_internal);
1191 // Say if we need to relocate with this mode.
1192 bool MustUseReg(RelocInfo::Mode rmode);
1194 // Record reloc info for current pc_.
1195 void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1197 // Block the emission of the trampoline pool before pc_offset.
1198 void BlockTrampolinePoolBefore(int pc_offset) {
1199 if (no_trampoline_pool_before_ < pc_offset)
1200 no_trampoline_pool_before_ = pc_offset;
1203 void StartBlockTrampolinePool() {
1204 trampoline_pool_blocked_nesting_++;
1207 void EndBlockTrampolinePool() {
1208 trampoline_pool_blocked_nesting_--;
1211 bool is_trampoline_pool_blocked() const {
1212 return trampoline_pool_blocked_nesting_ > 0;
1215 bool has_exception() const {
1216 return internal_trampoline_exception_;
1219 void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi);
1221 bool is_trampoline_emitted() const {
1222 return trampoline_emitted_;
1225 // Temporarily block automatic assembly buffer growth.
1226 void StartBlockGrowBuffer() {
1227 DCHECK(!block_buffer_growth_);
1228 block_buffer_growth_ = true;
1231 void EndBlockGrowBuffer() {
1232 DCHECK(block_buffer_growth_);
1233 block_buffer_growth_ = false;
1236 bool is_buffer_growth_blocked() const {
1237 return block_buffer_growth_;
1241 inline static void set_target_internal_reference_encoded_at(Address pc,
1244 // Buffer size and constant pool distance are checked together at regular
1245 // intervals of kBufferCheckInterval emitted bytes.
1246 static const int kBufferCheckInterval = 1*KB/2;
1249 // The relocation writer's position is at least kGap bytes below the end of
1250 // the generated instructions. This is so that multi-instruction sequences do
1251 // not have to check for overflow. The same is true for writes of large
1252 // relocation info entries.
1253 static const int kGap = 32;
1256 // Repeated checking whether the trampoline pool should be emitted is rather
1257 // expensive. By default we only check again once a number of instructions
1258 // has been generated.
1259 static const int kCheckConstIntervalInst = 32;
1260 static const int kCheckConstInterval = kCheckConstIntervalInst * kInstrSize;
1262 int next_buffer_check_; // pc offset of next buffer check.
1264 // Emission of the trampoline pool may be blocked in some code sequences.
1265 int trampoline_pool_blocked_nesting_; // Block emission if this is not zero.
1266 int no_trampoline_pool_before_; // Block emission before this pc offset.
1268 // Keep track of the last emitted pool to guarantee a maximal distance.
1269 int last_trampoline_pool_end_; // pc offset of the end of the last pool.
1271 // Automatic growth of the assembly buffer may be blocked for some sequences.
1272 bool block_buffer_growth_; // Block growth when true.
1274 // Relocation information generation.
1275 // Each relocation is encoded as a variable size value.
1276 static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
1277 RelocInfoWriter reloc_info_writer;
1279 // The bound position, before this we cannot do instruction elimination.
1280 int last_bound_pos_;
1283 inline void CheckBuffer();
1285 inline void emit(Instr x);
1286 inline void CheckTrampolinePoolQuick(int extra_instructions = 0);
1288 // Instruction generation.
1289 // We have 3 different kind of encoding layout on MIPS.
1290 // However due to many different types of objects encoded in the same fields
1291 // we have quite a few aliases for each mode.
1292 // Using the same structure to refer to Register and FPURegister would spare a
1293 // few aliases, but mixing both does not look clean to me.
1294 // Anyway we could surely implement this differently.
1296 void GenInstrRegister(Opcode opcode,
1301 SecondaryField func = NULLSF);
1303 void GenInstrRegister(Opcode opcode,
1308 SecondaryField func);
1310 void GenInstrRegister(Opcode opcode,
1315 SecondaryField func = NULLSF);
1317 void GenInstrRegister(Opcode opcode,
1322 SecondaryField func = NULLSF);
1324 void GenInstrRegister(Opcode opcode,
1329 SecondaryField func = NULLSF);
1331 void GenInstrRegister(Opcode opcode,
1334 FPUControlRegister fs,
1335 SecondaryField func = NULLSF);
1338 void GenInstrImmediate(Opcode opcode,
1342 void GenInstrImmediate(Opcode opcode,
1346 void GenInstrImmediate(Opcode opcode,
1350 void GenInstrImmediate(Opcode opcode, Register rs, int32_t j);
1351 void GenInstrImmediate(Opcode opcode, int32_t offset26);
1354 void GenInstrJump(Opcode opcode,
1358 void LoadRegPlusOffsetToAt(const MemOperand& src);
1361 void print(Label* L);
1362 void bind_to(Label* L, int pos);
1363 void next(Label* L, bool is_internal);
1365 // One trampoline consists of:
1366 // - space for trampoline slots,
1367 // - space for labels.
1369 // Space for trampoline slots is equal to slot_count * 2 * kInstrSize.
1370 // Space for trampoline slots preceeds space for labels. Each label is of one
1371 // instruction size, so total amount for labels is equal to
1372 // label_count * kInstrSize.
1378 free_slot_count_ = 0;
1381 Trampoline(int start, int slot_count) {
1384 free_slot_count_ = slot_count;
1385 end_ = start + slot_count * kTrampolineSlotsSize;
1394 int trampoline_slot = kInvalidSlotPos;
1395 if (free_slot_count_ <= 0) {
1396 // We have run out of space on trampolines.
1397 // Make sure we fail in debug mode, so we become aware of each case
1398 // when this happens.
1400 // Internal exception will be caught.
1402 trampoline_slot = next_slot_;
1404 next_slot_ += kTrampolineSlotsSize;
1406 return trampoline_slot;
1413 int free_slot_count_;
1416 int32_t get_trampoline_entry(int32_t pos);
1417 int unbound_labels_count_;
1418 // If trampoline is emitted, generated code is becoming large. As this is
1419 // already a slow case which can possibly break our code generation for the
1420 // extreme case, we use this information to trigger different mode of
1421 // branch instruction generation, where we use jump instructions rather
1422 // than regular branch instructions.
1423 bool trampoline_emitted_;
1424 static const int kTrampolineSlotsSize = 4 * kInstrSize;
1425 static const int kMaxBranchOffset = (1 << (18 - 1)) - 1;
1426 static const int kInvalidSlotPos = -1;
1428 // Internal reference positions, required for unbounded internal reference
1430 std::set<int> internal_reference_positions_;
1432 Trampoline trampoline_;
1433 bool internal_trampoline_exception_;
1435 friend class RegExpMacroAssemblerMIPS;
1436 friend class RelocInfo;
1437 friend class CodePatcher;
1438 friend class BlockTrampolinePoolScope;
1440 PositionsRecorder positions_recorder_;
1441 friend class PositionsRecorder;
1442 friend class EnsureSpace;
1446 class EnsureSpace BASE_EMBEDDED {
1448 explicit EnsureSpace(Assembler* assembler) {
1449 assembler->CheckBuffer();
1453 } // namespace internal
1456 #endif // V8_ARM_ASSEMBLER_MIPS_H_