Tizen 2.0 Release
[profile/ivi/osmesa.git] / src / mesa / swrast / s_aatriangle.c
1 /*
2  * Mesa 3-D graphics library
3  * Version:  6.5.3
4  *
5  * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the "Software"),
9  * to deal in the Software without restriction, including without limitation
10  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11  * and/or sell copies of the Software, and to permit persons to whom the
12  * Software is furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included
15  * in all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21  * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23  */
24
25
26 /*
27  * Antialiased Triangle rasterizers
28  */
29
30
31 #include "main/glheader.h"
32 #include "main/context.h"
33 #include "main/colormac.h"
34 #include "main/macros.h"
35 #include "main/imports.h"
36 #include "main/state.h"
37 #include "s_aatriangle.h"
38 #include "s_context.h"
39 #include "s_span.h"
40
41
42 /*
43  * Compute coefficients of a plane using the X,Y coords of the v0, v1, v2
44  * vertices and the given Z values.
45  * A point (x,y,z) lies on plane iff a*x+b*y+c*z+d = 0.
46  */
47 static INLINE void
48 compute_plane(const GLfloat v0[], const GLfloat v1[], const GLfloat v2[],
49               GLfloat z0, GLfloat z1, GLfloat z2, GLfloat plane[4])
50 {
51    const GLfloat px = v1[0] - v0[0];
52    const GLfloat py = v1[1] - v0[1];
53    const GLfloat pz = z1 - z0;
54
55    const GLfloat qx = v2[0] - v0[0];
56    const GLfloat qy = v2[1] - v0[1];
57    const GLfloat qz = z2 - z0;
58
59    /* Crossproduct "(a,b,c):= dv1 x dv2" is orthogonal to plane. */
60    const GLfloat a = py * qz - pz * qy;
61    const GLfloat b = pz * qx - px * qz;
62    const GLfloat c = px * qy - py * qx;
63    /* Point on the plane = "r*(a,b,c) + w", with fixed "r" depending
64       on the distance of plane from origin and arbitrary "w" parallel
65       to the plane. */
66    /* The scalar product "(r*(a,b,c)+w)*(a,b,c)" is "r*(a^2+b^2+c^2)",
67       which is equal to "-d" below. */
68    const GLfloat d = -(a * v0[0] + b * v0[1] + c * z0);
69
70    plane[0] = a;
71    plane[1] = b;
72    plane[2] = c;
73    plane[3] = d;
74 }
75
76
77 /*
78  * Compute coefficients of a plane with a constant Z value.
79  */
80 static INLINE void
81 constant_plane(GLfloat value, GLfloat plane[4])
82 {
83    plane[0] = 0.0;
84    plane[1] = 0.0;
85    plane[2] = -1.0;
86    plane[3] = value;
87 }
88
89 #define CONSTANT_PLANE(VALUE, PLANE)    \
90 do {                                    \
91    PLANE[0] = 0.0F;                     \
92    PLANE[1] = 0.0F;                     \
93    PLANE[2] = -1.0F;                    \
94    PLANE[3] = VALUE;                    \
95 } while (0)
96
97
98
99 /*
100  * Solve plane equation for Z at (X,Y).
101  */
102 static INLINE GLfloat
103 solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4])
104 {
105    ASSERT(plane[2] != 0.0F);
106    return (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
107 }
108
109
110 #define SOLVE_PLANE(X, Y, PLANE) \
111    ((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2])
112
113
114 /*
115  * Return 1 / solve_plane().
116  */
117 static INLINE GLfloat
118 solve_plane_recip(GLfloat x, GLfloat y, const GLfloat plane[4])
119 {
120    const GLfloat denom = plane[3] + plane[0] * x + plane[1] * y;
121    if (denom == 0.0F)
122       return 0.0F;
123    else
124       return -plane[2] / denom;
125 }
126
127
128 /*
129  * Solve plane and return clamped GLchan value.
130  */
131 static INLINE GLchan
132 solve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4])
133 {
134    const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
135 #if CHAN_TYPE == GL_FLOAT
136    return CLAMP(z, 0.0F, CHAN_MAXF);
137 #else
138    if (z < 0)
139       return 0;
140    else if (z > CHAN_MAX)
141       return CHAN_MAX;
142    return (GLchan) IROUND_POS(z);
143 #endif
144 }
145
146
147 static INLINE GLfloat
148 plane_dx(const GLfloat plane[4])
149 {
150    return -plane[0] / plane[2];
151 }
152
153 static INLINE GLfloat
154 plane_dy(const GLfloat plane[4])
155 {
156    return -plane[1] / plane[2];
157 }
158
159
160
161 /*
162  * Compute how much (area) of the given pixel is inside the triangle.
163  * Vertices MUST be specified in counter-clockwise order.
164  * Return:  coverage in [0, 1].
165  */
166 static GLfloat
167 compute_coveragef(const GLfloat v0[3], const GLfloat v1[3],
168                   const GLfloat v2[3], GLint winx, GLint winy)
169 {
170    /* Given a position [0,3]x[0,3] return the sub-pixel sample position.
171     * Contributed by Ray Tice.
172     *
173     * Jitter sample positions -
174     * - average should be .5 in x & y for each column
175     * - each of the 16 rows and columns should be used once
176     * - the rectangle formed by the first four points
177     *   should contain the other points
178     * - the distrubition should be fairly even in any given direction
179     *
180     * The pattern drawn below isn't optimal, but it's better than a regular
181     * grid.  In the drawing, the center of each subpixel is surrounded by
182     * four dots.  The "x" marks the jittered position relative to the
183     * subpixel center.
184     */
185 #define POS(a, b) (0.5+a*4+b)/16
186    static const GLfloat samples[16][2] = {
187       /* start with the four corners */
188       { POS(0, 2), POS(0, 0) },
189       { POS(3, 3), POS(0, 2) },
190       { POS(0, 0), POS(3, 1) },
191       { POS(3, 1), POS(3, 3) },
192       /* continue with interior samples */
193       { POS(1, 1), POS(0, 1) },
194       { POS(2, 0), POS(0, 3) },
195       { POS(0, 3), POS(1, 3) },
196       { POS(1, 2), POS(1, 0) },
197       { POS(2, 3), POS(1, 2) },
198       { POS(3, 2), POS(1, 1) },
199       { POS(0, 1), POS(2, 2) },
200       { POS(1, 0), POS(2, 1) },
201       { POS(2, 1), POS(2, 3) },
202       { POS(3, 0), POS(2, 0) },
203       { POS(1, 3), POS(3, 0) },
204       { POS(2, 2), POS(3, 2) }
205    };
206
207    const GLfloat x = (GLfloat) winx;
208    const GLfloat y = (GLfloat) winy;
209    const GLfloat dx0 = v1[0] - v0[0];
210    const GLfloat dy0 = v1[1] - v0[1];
211    const GLfloat dx1 = v2[0] - v1[0];
212    const GLfloat dy1 = v2[1] - v1[1];
213    const GLfloat dx2 = v0[0] - v2[0];
214    const GLfloat dy2 = v0[1] - v2[1];
215    GLint stop = 4, i;
216    GLfloat insideCount = 16.0F;
217
218    ASSERT(dx0 * dy1 - dx1 * dy0 >= 0.0); /* area >= 0.0 */
219
220    for (i = 0; i < stop; i++) {
221       const GLfloat sx = x + samples[i][0];
222       const GLfloat sy = y + samples[i][1];
223       /* cross product determines if sample is inside or outside each edge */
224       GLfloat cross = (dx0 * (sy - v0[1]) - dy0 * (sx - v0[0]));
225       /* Check if the sample is exactly on an edge.  If so, let cross be a
226        * positive or negative value depending on the direction of the edge.
227        */
228       if (cross == 0.0F)
229          cross = dx0 + dy0;
230       if (cross < 0.0F) {
231          /* sample point is outside first edge */
232          insideCount -= 1.0F;
233          stop = 16;
234       }
235       else {
236          /* sample point is inside first edge */
237          cross = (dx1 * (sy - v1[1]) - dy1 * (sx - v1[0]));
238          if (cross == 0.0F)
239             cross = dx1 + dy1;
240          if (cross < 0.0F) {
241             /* sample point is outside second edge */
242             insideCount -= 1.0F;
243             stop = 16;
244          }
245          else {
246             /* sample point is inside first and second edges */
247             cross = (dx2 * (sy - v2[1]) -  dy2 * (sx - v2[0]));
248             if (cross == 0.0F)
249                cross = dx2 + dy2;
250             if (cross < 0.0F) {
251                /* sample point is outside third edge */
252                insideCount -= 1.0F;
253                stop = 16;
254             }
255          }
256       }
257    }
258    if (stop == 4)
259       return 1.0F;
260    else
261       return insideCount * (1.0F / 16.0F);
262 }
263
264
265
266 static void
267 rgba_aa_tri(struct gl_context *ctx,
268             const SWvertex *v0,
269             const SWvertex *v1,
270             const SWvertex *v2)
271 {
272 #define DO_Z
273 #include "s_aatritemp.h"
274 }
275
276
277 static void
278 general_aa_tri(struct gl_context *ctx,
279                const SWvertex *v0,
280                const SWvertex *v1,
281                const SWvertex *v2)
282 {
283 #define DO_Z
284 #define DO_ATTRIBS
285 #include "s_aatritemp.h"
286 }
287
288
289
290 /*
291  * Examine GL state and set swrast->Triangle to an
292  * appropriate antialiased triangle rasterizer function.
293  */
294 void
295 _swrast_set_aa_triangle_function(struct gl_context *ctx)
296 {
297    SWcontext *swrast = SWRAST_CONTEXT(ctx);
298
299    ASSERT(ctx->Polygon.SmoothFlag);
300
301    if (ctx->Texture._EnabledCoordUnits != 0
302        || ctx->FragmentProgram._Current
303        || swrast->_FogEnabled
304        || _mesa_need_secondary_color(ctx)) {
305       SWRAST_CONTEXT(ctx)->Triangle = general_aa_tri;
306    }
307    else {
308       SWRAST_CONTEXT(ctx)->Triangle = rgba_aa_tri;
309    }
310
311    ASSERT(SWRAST_CONTEXT(ctx)->Triangle);
312 }