Tizen 2.0 Release
[profile/ivi/osmesa.git] / src / mesa / drivers / dri / i965 / brw_urb.c
1 /*
2  Copyright (C) Intel Corp.  2006.  All Rights Reserved.
3  Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4  develop this 3D driver.
5  
6  Permission is hereby granted, free of charge, to any person obtaining
7  a copy of this software and associated documentation files (the
8  "Software"), to deal in the Software without restriction, including
9  without limitation the rights to use, copy, modify, merge, publish,
10  distribute, sublicense, and/or sell copies of the Software, and to
11  permit persons to whom the Software is furnished to do so, subject to
12  the following conditions:
13  
14  The above copyright notice and this permission notice (including the
15  next paragraph) shall be included in all copies or substantial
16  portions of the Software.
17  
18  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21  IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25  
26  **********************************************************************/
27  /*
28   * Authors:
29   *   Keith Whitwell <keith@tungstengraphics.com>
30   */
31         
32
33
34 #include "intel_batchbuffer.h"
35 #include "brw_context.h"
36 #include "brw_state.h"
37 #include "brw_defines.h"
38
39 #define VS 0
40 #define GS 1
41 #define CLP 2
42 #define SF 3
43 #define CS 4
44
45 /** @file brw_urb.c
46  *
47  * Manages the division of the URB space between the various fixed-function
48  * units.
49  *
50  * See the Thread Initiation Management section of the GEN4 B-Spec, and
51  * the individual *_STATE structures for restrictions on numbers of
52  * entries and threads.
53  */
54
55 /*
56  * Generally, a unit requires a min_nr_entries based on how many entries
57  * it produces before the downstream unit gets unblocked and can use and
58  * dereference some of its handles.
59  *
60  * The SF unit preallocates a PUE at the start of thread dispatch, and only
61  * uses that one.  So it requires one entry per thread.
62  *
63  * For CLIP, the SF unit will hold the previous primitive while the
64  * next is getting assembled, meaning that linestrips require 3 CLIP VUEs
65  * (vertices) to ensure continued processing, trifans require 4, and tristrips
66  * require 5.  There can be 1 or 2 threads, and each has the same requirement.
67  *
68  * GS has the same requirement as CLIP, but it never handles tristrips,
69  * so we can lower the minimum to 4 for the POLYGONs (trifans) it produces.
70  * We only run it single-threaded.
71  *
72  * For VS, the number of entries may be 8, 12, 16, or 32 (or 64 on G4X).
73  * Each thread processes 2 preallocated VUEs (vertices) at a time, and they
74  * get streamed down as soon as threads processing earlier vertices get
75  * theirs accepted.
76  *
77  * Each unit will take the number of URB entries we give it (based on the
78  * entry size calculated in brw_vs_emit.c for VUEs, brw_sf_emit.c for PUEs,
79  * and brw_curbe.c for the CURBEs) and decide its maximum number of
80  * threads it can support based on that. in brw_*_state.c.
81  *
82  * XXX: Are the min_entry_size numbers useful?
83  * XXX: Verify min_nr_entries, esp for VS.
84  * XXX: Verify SF min_entry_size.
85  */
86 static const struct {
87    GLuint min_nr_entries;
88    GLuint preferred_nr_entries;
89    GLuint min_entry_size;
90    GLuint max_entry_size;
91 } limits[CS+1] = {
92    { 16, 32, 1, 5 },                    /* vs */
93    { 4, 8,  1, 5 },                     /* gs */
94    { 5, 10,  1, 5 },                    /* clp */
95    { 1, 8,  1, 12 },                    /* sf */
96    { 1, 4,  1, 32 }                     /* cs */
97 };
98
99
100 static GLboolean check_urb_layout( struct brw_context *brw )
101 {
102    brw->urb.vs_start = 0;
103    brw->urb.gs_start = brw->urb.nr_vs_entries * brw->urb.vsize;
104    brw->urb.clip_start = brw->urb.gs_start + brw->urb.nr_gs_entries * brw->urb.vsize;
105    brw->urb.sf_start = brw->urb.clip_start + brw->urb.nr_clip_entries * brw->urb.vsize;
106    brw->urb.cs_start = brw->urb.sf_start + brw->urb.nr_sf_entries * brw->urb.sfsize;
107
108    return brw->urb.cs_start + brw->urb.nr_cs_entries *
109       brw->urb.csize <= brw->urb.size;
110 }
111
112 /* Most minimal update, forces re-emit of URB fence packet after GS
113  * unit turned on/off.
114  */
115 static void recalculate_urb_fence( struct brw_context *brw )
116 {
117    struct intel_context *intel = &brw->intel;
118    GLuint csize = brw->curbe.total_size;
119    GLuint vsize = brw->vs.prog_data->urb_entry_size;
120    GLuint sfsize = brw->sf.prog_data->urb_entry_size;
121
122    if (csize < limits[CS].min_entry_size)
123       csize = limits[CS].min_entry_size;
124
125    if (vsize < limits[VS].min_entry_size)
126       vsize = limits[VS].min_entry_size;
127
128    if (sfsize < limits[SF].min_entry_size)
129       sfsize = limits[SF].min_entry_size;
130
131    if (brw->urb.vsize < vsize ||
132        brw->urb.sfsize < sfsize ||
133        brw->urb.csize < csize ||
134        (brw->urb.constrained && (brw->urb.vsize > vsize ||
135                                  brw->urb.sfsize > sfsize ||
136                                  brw->urb.csize > csize))) {
137       
138
139       brw->urb.csize = csize;
140       brw->urb.sfsize = sfsize;
141       brw->urb.vsize = vsize;
142
143       brw->urb.nr_vs_entries = limits[VS].preferred_nr_entries; 
144       brw->urb.nr_gs_entries = limits[GS].preferred_nr_entries; 
145       brw->urb.nr_clip_entries = limits[CLP].preferred_nr_entries;
146       brw->urb.nr_sf_entries = limits[SF].preferred_nr_entries; 
147       brw->urb.nr_cs_entries = limits[CS].preferred_nr_entries; 
148
149       brw->urb.constrained = 0;
150
151       if (intel->gen == 5) {
152          brw->urb.nr_vs_entries = 128;
153          brw->urb.nr_sf_entries = 48;
154          if (check_urb_layout(brw)) {
155             goto done;
156          } else {
157             brw->urb.constrained = 1;
158             brw->urb.nr_vs_entries = limits[VS].preferred_nr_entries;
159             brw->urb.nr_sf_entries = limits[SF].preferred_nr_entries;
160          }
161       } else if (intel->is_g4x) {
162          brw->urb.nr_vs_entries = 64;
163          if (check_urb_layout(brw)) {
164             goto done;
165          } else {
166             brw->urb.constrained = 1;
167             brw->urb.nr_vs_entries = limits[VS].preferred_nr_entries;
168          }
169       }
170
171       if (!check_urb_layout(brw)) {
172          brw->urb.nr_vs_entries = limits[VS].min_nr_entries;    
173          brw->urb.nr_gs_entries = limits[GS].min_nr_entries;    
174          brw->urb.nr_clip_entries = limits[CLP].min_nr_entries;
175          brw->urb.nr_sf_entries = limits[SF].min_nr_entries;    
176          brw->urb.nr_cs_entries = limits[CS].min_nr_entries;    
177
178          /* Mark us as operating with constrained nr_entries, so that next
179           * time we recalculate we'll resize the fences in the hope of
180           * escaping constrained mode and getting back to normal performance.
181           */
182          brw->urb.constrained = 1;
183          
184          if (!check_urb_layout(brw)) {
185             /* This is impossible, given the maximal sizes of urb
186              * entries and the values for minimum nr of entries
187              * provided above.
188              */
189             printf("couldn't calculate URB layout!\n");
190             exit(1);
191          }
192          
193          if (unlikely(INTEL_DEBUG & (DEBUG_URB|DEBUG_FALLBACKS)))
194             printf("URB CONSTRAINED\n");
195       }
196
197 done:
198       if (unlikely(INTEL_DEBUG & DEBUG_URB))
199          printf("URB fence: %d ..VS.. %d ..GS.. %d ..CLP.. %d ..SF.. %d ..CS.. %d\n",
200                       brw->urb.vs_start,
201                       brw->urb.gs_start,
202                       brw->urb.clip_start,
203                       brw->urb.sf_start,
204                       brw->urb.cs_start, 
205                       brw->urb.size);
206       
207       brw->state.dirty.brw |= BRW_NEW_URB_FENCE;
208    }
209 }
210
211
212 const struct brw_tracked_state brw_recalculate_urb_fence = {
213    .dirty = {
214       .mesa = 0,
215       .brw = BRW_NEW_CURBE_OFFSETS,
216       .cache = (CACHE_NEW_VS_PROG |
217                 CACHE_NEW_SF_PROG)
218    },
219    .prepare = recalculate_urb_fence
220 };
221
222
223
224
225
226 void brw_upload_urb_fence(struct brw_context *brw)
227 {
228    struct brw_urb_fence uf;
229    memset(&uf, 0, sizeof(uf));
230
231    uf.header.opcode = CMD_URB_FENCE;
232    uf.header.length = sizeof(uf)/4-2;
233    uf.header.vs_realloc = 1;
234    uf.header.gs_realloc = 1;
235    uf.header.clp_realloc = 1;
236    uf.header.sf_realloc = 1;
237    uf.header.vfe_realloc = 1;
238    uf.header.cs_realloc = 1;
239
240    /* The ordering below is correct, not the layout in the
241     * instruction.
242     *
243     * There are 256/384 urb reg pairs in total.
244     */
245    uf.bits0.vs_fence  = brw->urb.gs_start;
246    uf.bits0.gs_fence  = brw->urb.clip_start; 
247    uf.bits0.clp_fence = brw->urb.sf_start; 
248    uf.bits1.sf_fence  = brw->urb.cs_start; 
249    uf.bits1.cs_fence  = brw->urb.size;
250
251    /* erratum: URB_FENCE must not cross a 64byte cacheline */
252    if ((brw->intel.batch.used & 15) > 12) {
253       int pad = 16 - (brw->intel.batch.used & 15);
254       do
255          brw->intel.batch.map[brw->intel.batch.used++] = MI_NOOP;
256       while (--pad);
257    }
258
259    BRW_BATCH_STRUCT(brw, &uf);
260 }