Upstream version 7.36.149.0
[platform/framework/web/crosswalk.git] / src / media / filters / audio_renderer_algorithm_unittest.cc
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 //
5 // The format of these tests are to enqueue a known amount of data and then
6 // request the exact amount we expect in order to dequeue the known amount of
7 // data.  This ensures that for any rate we are consuming input data at the
8 // correct rate.  We always pass in a very large destination buffer with the
9 // expectation that FillBuffer() will fill as much as it can but no more.
10
11 #include <algorithm>  // For std::min().
12 #include <cmath>
13 #include <vector>
14
15 #include "base/bind.h"
16 #include "base/callback.h"
17 #include "base/memory/scoped_ptr.h"
18 #include "media/base/audio_buffer.h"
19 #include "media/base/audio_bus.h"
20 #include "media/base/buffers.h"
21 #include "media/base/channel_layout.h"
22 #include "media/base/test_helpers.h"
23 #include "media/filters/audio_renderer_algorithm.h"
24 #include "media/filters/wsola_internals.h"
25 #include "testing/gtest/include/gtest/gtest.h"
26
27 namespace media {
28
29 const int kFrameSize = 250;
30 const int kSamplesPerSecond = 3000;
31 const int kOutputDurationInSec = 10;
32
33 static void FillWithSquarePulseTrain(
34     int half_pulse_width, int offset, int num_samples, float* data) {
35   ASSERT_GE(offset, 0);
36   ASSERT_LE(offset, num_samples);
37
38   // Fill backward from |offset| - 1 toward zero, starting with -1, alternating
39   // between -1 and 1 every |pulse_width| samples.
40   float pulse = -1.0f;
41   for (int n = offset - 1, k = 0; n >= 0; --n, ++k) {
42     if (k >= half_pulse_width) {
43       pulse = -pulse;
44       k = 0;
45     }
46     data[n] = pulse;
47   }
48
49   // Fill forward from |offset| towards the end, starting with 1, alternating
50   // between 1 and -1 every |pulse_width| samples.
51   pulse = 1.0f;
52   for (int n = offset, k = 0; n < num_samples; ++n, ++k) {
53     if (k >= half_pulse_width) {
54       pulse = -pulse;
55       k = 0;
56     }
57     data[n] = pulse;
58   }
59 }
60
61 static void FillWithSquarePulseTrain(
62     int half_pulse_width, int offset, int channel, AudioBus* audio_bus) {
63   FillWithSquarePulseTrain(half_pulse_width, offset, audio_bus->frames(),
64                            audio_bus->channel(channel));
65 }
66
67 class AudioRendererAlgorithmTest : public testing::Test {
68  public:
69   AudioRendererAlgorithmTest()
70       : frames_enqueued_(0),
71         channels_(0),
72         channel_layout_(CHANNEL_LAYOUT_NONE),
73         sample_format_(kUnknownSampleFormat),
74         samples_per_second_(0),
75         bytes_per_sample_(0) {
76   }
77
78   virtual ~AudioRendererAlgorithmTest() {}
79
80   void Initialize() {
81     Initialize(CHANNEL_LAYOUT_STEREO, kSampleFormatS16, 3000);
82   }
83
84   void Initialize(ChannelLayout channel_layout,
85                   SampleFormat sample_format,
86                   int samples_per_second) {
87     channels_ = ChannelLayoutToChannelCount(channel_layout);
88     samples_per_second_ = samples_per_second;
89     channel_layout_ = channel_layout;
90     sample_format_ = sample_format;
91     bytes_per_sample_ = SampleFormatToBytesPerChannel(sample_format);
92     AudioParameters params(media::AudioParameters::AUDIO_PCM_LINEAR,
93                            channel_layout,
94                            samples_per_second,
95                            bytes_per_sample_ * 8,
96                            samples_per_second / 100);
97     algorithm_.Initialize(1, params);
98     FillAlgorithmQueue();
99   }
100
101   void FillAlgorithmQueue() {
102     // The value of the data is meaningless; we just want non-zero data to
103     // differentiate it from muted data.
104     scoped_refptr<AudioBuffer> buffer;
105     while (!algorithm_.IsQueueFull()) {
106       switch (sample_format_) {
107         case kSampleFormatU8:
108           buffer = MakeAudioBuffer<uint8>(
109               sample_format_,
110               channel_layout_,
111               ChannelLayoutToChannelCount(channel_layout_),
112               samples_per_second_,
113               1,
114               1,
115               kFrameSize,
116               kNoTimestamp());
117           break;
118         case kSampleFormatS16:
119           buffer = MakeAudioBuffer<int16>(
120               sample_format_,
121               channel_layout_,
122               ChannelLayoutToChannelCount(channel_layout_),
123               samples_per_second_,
124               1,
125               1,
126               kFrameSize,
127               kNoTimestamp());
128           break;
129         case kSampleFormatS32:
130           buffer = MakeAudioBuffer<int32>(
131               sample_format_,
132               channel_layout_,
133               ChannelLayoutToChannelCount(channel_layout_),
134               samples_per_second_,
135               1,
136               1,
137               kFrameSize,
138               kNoTimestamp());
139           break;
140         default:
141           NOTREACHED() << "Unrecognized format " << sample_format_;
142       }
143       algorithm_.EnqueueBuffer(buffer);
144       frames_enqueued_ += kFrameSize;
145     }
146   }
147
148   void CheckFakeData(AudioBus* audio_data, int frames_written) {
149     // Check each channel individually.
150     for (int ch = 0; ch < channels_; ++ch) {
151       bool all_zero = true;
152       for (int i = 0; i < frames_written && all_zero; ++i)
153         all_zero = audio_data->channel(ch)[i] == 0.0f;
154       ASSERT_FALSE(all_zero) << " for channel " << ch;
155     }
156   }
157
158   int ComputeConsumedFrames(int initial_frames_enqueued,
159                             int initial_frames_buffered) {
160     int frame_delta = frames_enqueued_ - initial_frames_enqueued;
161     int buffered_delta = algorithm_.frames_buffered() - initial_frames_buffered;
162     int consumed = frame_delta - buffered_delta;
163     CHECK_GE(consumed, 0);
164     return consumed;
165   }
166
167   void TestPlaybackRate(double playback_rate) {
168     const int kDefaultBufferSize = algorithm_.samples_per_second() / 100;
169     const int kDefaultFramesRequested = kOutputDurationInSec *
170         algorithm_.samples_per_second();
171
172     TestPlaybackRate(
173         playback_rate, kDefaultBufferSize, kDefaultFramesRequested);
174   }
175
176   void TestPlaybackRate(double playback_rate,
177                         int buffer_size_in_frames,
178                         int total_frames_requested) {
179     int initial_frames_enqueued = frames_enqueued_;
180     int initial_frames_buffered = algorithm_.frames_buffered();
181     algorithm_.SetPlaybackRate(static_cast<float>(playback_rate));
182
183     scoped_ptr<AudioBus> bus =
184         AudioBus::Create(channels_, buffer_size_in_frames);
185     if (playback_rate == 0.0) {
186       int frames_written =
187           algorithm_.FillBuffer(bus.get(), buffer_size_in_frames);
188       EXPECT_EQ(0, frames_written);
189       return;
190     }
191
192     int frames_remaining = total_frames_requested;
193     bool first_fill_buffer = true;
194     while (frames_remaining > 0) {
195       int frames_requested = std::min(buffer_size_in_frames, frames_remaining);
196       int frames_written = algorithm_.FillBuffer(bus.get(), frames_requested);
197       ASSERT_GT(frames_written, 0) << "Requested: " << frames_requested
198                                    << ", playing at " << playback_rate;
199
200       // Do not check data if it is first pull out and only one frame written.
201       // The very first frame out of WSOLA is always zero because of
202       // overlap-and-add window, which is zero for the first sample. Therefore,
203       // if at very first buffer-fill only one frame is written, that is zero
204       // which might cause exception in CheckFakeData().
205       if (!first_fill_buffer || frames_written > 1)
206         CheckFakeData(bus.get(), frames_written);
207       first_fill_buffer = false;
208       frames_remaining -= frames_written;
209
210       FillAlgorithmQueue();
211     }
212
213     int frames_consumed =
214         ComputeConsumedFrames(initial_frames_enqueued, initial_frames_buffered);
215
216     // If playing back at normal speed, we should always get back the same
217     // number of bytes requested.
218     if (playback_rate == 1.0) {
219       EXPECT_EQ(total_frames_requested, frames_consumed);
220       return;
221     }
222
223     // Otherwise, allow |kMaxAcceptableDelta| difference between the target and
224     // actual playback rate.
225     // When |kSamplesPerSecond| and |total_frames_requested| are reasonably
226     // large, one can expect less than a 1% difference in most cases. In our
227     // current implementation, sped up playback is less accurate than slowed
228     // down playback, and for playback_rate > 1, playback rate generally gets
229     // less and less accurate the farther it drifts from 1 (though this is
230     // nonlinear).
231     double actual_playback_rate =
232         1.0 * frames_consumed / total_frames_requested;
233     EXPECT_NEAR(playback_rate, actual_playback_rate, playback_rate / 100.0);
234   }
235
236   void WsolaTest(float playback_rate) {
237     const int kSampleRateHz = 48000;
238     const ChannelLayout kChannelLayout = CHANNEL_LAYOUT_STEREO;
239     const int kBytesPerSample = 2;
240     const int kNumFrames = kSampleRateHz / 100;  // 10 milliseconds.
241
242     channels_ = ChannelLayoutToChannelCount(kChannelLayout);
243     AudioParameters params(AudioParameters::AUDIO_PCM_LINEAR, kChannelLayout,
244                            kSampleRateHz, kBytesPerSample * 8, kNumFrames);
245     algorithm_.Initialize(playback_rate, params);
246
247     // A pulse is 6 milliseconds (even number of samples).
248     const int kPulseWidthSamples = 6 * kSampleRateHz / 1000;
249     const int kHalfPulseWidthSamples = kPulseWidthSamples / 2;
250
251     // For the ease of implementation get 1 frame every call to FillBuffer().
252     scoped_ptr<AudioBus> output = AudioBus::Create(channels_, 1);
253
254     // Input buffer to inject pulses.
255     scoped_refptr<AudioBuffer> input =
256         AudioBuffer::CreateBuffer(kSampleFormatPlanarF32,
257                                   kChannelLayout,
258                                   channels_,
259                                   kSampleRateHz,
260                                   kPulseWidthSamples);
261
262     const std::vector<uint8*>& channel_data = input->channel_data();
263
264     // Fill |input| channels.
265     FillWithSquarePulseTrain(kHalfPulseWidthSamples, 0, kPulseWidthSamples,
266                              reinterpret_cast<float*>(channel_data[0]));
267     FillWithSquarePulseTrain(kHalfPulseWidthSamples, kHalfPulseWidthSamples,
268                              kPulseWidthSamples,
269                              reinterpret_cast<float*>(channel_data[1]));
270
271     // A buffer for the output until a complete pulse is created. Then
272     // reference pulse is compared with this buffer.
273     scoped_ptr<AudioBus> pulse_buffer = AudioBus::Create(
274         channels_, kPulseWidthSamples);
275
276     const float kTolerance = 0.000001f;
277     // Equivalent of 4 seconds.
278     const int kNumRequestedPulses = kSampleRateHz * 4 / kPulseWidthSamples;
279     for (int n = 0; n < kNumRequestedPulses; ++n) {
280       int num_buffered_frames = 0;
281       while (num_buffered_frames < kPulseWidthSamples) {
282         int num_samples = algorithm_.FillBuffer(output.get(), 1);
283         ASSERT_LE(num_samples, 1);
284         if (num_samples > 0) {
285           output->CopyPartialFramesTo(0, num_samples, num_buffered_frames,
286                                       pulse_buffer.get());
287           num_buffered_frames++;
288         } else {
289           algorithm_.EnqueueBuffer(input);
290         }
291       }
292
293       // Pulses in the first half of WSOLA AOL frame are not constructed
294       // perfectly. Do not check them.
295       if (n > 3) {
296          for (int m = 0; m < channels_; ++m) {
297           const float* pulse_ch = pulse_buffer->channel(m);
298
299           // Because of overlap-and-add we might have round off error.
300           for (int k = 0; k < kPulseWidthSamples; ++k) {
301             ASSERT_NEAR(reinterpret_cast<float*>(channel_data[m])[k],
302                         pulse_ch[k], kTolerance) << " loop " << n
303                                 << " channel/sample " << m << "/" << k;
304           }
305         }
306       }
307
308       // Zero out the buffer to be sure the next comparison is relevant.
309       pulse_buffer->Zero();
310     }
311   }
312
313  protected:
314   AudioRendererAlgorithm algorithm_;
315   int frames_enqueued_;
316   int channels_;
317   ChannelLayout channel_layout_;
318   SampleFormat sample_format_;
319   int samples_per_second_;
320   int bytes_per_sample_;
321 };
322
323 TEST_F(AudioRendererAlgorithmTest, FillBuffer_NormalRate) {
324   Initialize();
325   TestPlaybackRate(1.0);
326 }
327
328 TEST_F(AudioRendererAlgorithmTest, FillBuffer_NearlyNormalFasterRate) {
329   Initialize();
330   TestPlaybackRate(1.0001);
331 }
332
333 TEST_F(AudioRendererAlgorithmTest, FillBuffer_NearlyNormalSlowerRate) {
334   Initialize();
335   TestPlaybackRate(0.9999);
336 }
337
338 TEST_F(AudioRendererAlgorithmTest, FillBuffer_OneAndAQuarterRate) {
339   Initialize();
340   TestPlaybackRate(1.25);
341 }
342
343 TEST_F(AudioRendererAlgorithmTest, FillBuffer_OneAndAHalfRate) {
344   Initialize();
345   TestPlaybackRate(1.5);
346 }
347
348 TEST_F(AudioRendererAlgorithmTest, FillBuffer_DoubleRate) {
349   Initialize();
350   TestPlaybackRate(2.0);
351 }
352
353 TEST_F(AudioRendererAlgorithmTest, FillBuffer_EightTimesRate) {
354   Initialize();
355   TestPlaybackRate(8.0);
356 }
357
358 TEST_F(AudioRendererAlgorithmTest, FillBuffer_ThreeQuartersRate) {
359   Initialize();
360   TestPlaybackRate(0.75);
361 }
362
363 TEST_F(AudioRendererAlgorithmTest, FillBuffer_HalfRate) {
364   Initialize();
365   TestPlaybackRate(0.5);
366 }
367
368 TEST_F(AudioRendererAlgorithmTest, FillBuffer_QuarterRate) {
369   Initialize();
370   TestPlaybackRate(0.25);
371 }
372
373 TEST_F(AudioRendererAlgorithmTest, FillBuffer_Pause) {
374   Initialize();
375   TestPlaybackRate(0.0);
376 }
377
378 TEST_F(AudioRendererAlgorithmTest, FillBuffer_SlowDown) {
379   Initialize();
380   TestPlaybackRate(4.5);
381   TestPlaybackRate(3.0);
382   TestPlaybackRate(2.0);
383   TestPlaybackRate(1.0);
384   TestPlaybackRate(0.5);
385   TestPlaybackRate(0.25);
386 }
387
388 TEST_F(AudioRendererAlgorithmTest, FillBuffer_SpeedUp) {
389   Initialize();
390   TestPlaybackRate(0.25);
391   TestPlaybackRate(0.5);
392   TestPlaybackRate(1.0);
393   TestPlaybackRate(2.0);
394   TestPlaybackRate(3.0);
395   TestPlaybackRate(4.5);
396 }
397
398 TEST_F(AudioRendererAlgorithmTest, FillBuffer_JumpAroundSpeeds) {
399   Initialize();
400   TestPlaybackRate(2.1);
401   TestPlaybackRate(0.9);
402   TestPlaybackRate(0.6);
403   TestPlaybackRate(1.4);
404   TestPlaybackRate(0.3);
405 }
406
407 TEST_F(AudioRendererAlgorithmTest, FillBuffer_SmallBufferSize) {
408   Initialize();
409   static const int kBufferSizeInFrames = 1;
410   static const int kFramesRequested = kOutputDurationInSec * kSamplesPerSecond;
411   TestPlaybackRate(1.0, kBufferSizeInFrames, kFramesRequested);
412   TestPlaybackRate(0.5, kBufferSizeInFrames, kFramesRequested);
413   TestPlaybackRate(1.5, kBufferSizeInFrames, kFramesRequested);
414 }
415
416 TEST_F(AudioRendererAlgorithmTest, FillBuffer_LargeBufferSize) {
417   Initialize(CHANNEL_LAYOUT_STEREO, kSampleFormatS16, 44100);
418   TestPlaybackRate(1.0);
419   TestPlaybackRate(0.5);
420   TestPlaybackRate(1.5);
421 }
422
423 TEST_F(AudioRendererAlgorithmTest, FillBuffer_LowerQualityAudio) {
424   Initialize(CHANNEL_LAYOUT_MONO, kSampleFormatU8, kSamplesPerSecond);
425   TestPlaybackRate(1.0);
426   TestPlaybackRate(0.5);
427   TestPlaybackRate(1.5);
428 }
429
430 TEST_F(AudioRendererAlgorithmTest, FillBuffer_HigherQualityAudio) {
431   Initialize(CHANNEL_LAYOUT_STEREO, kSampleFormatS32, kSamplesPerSecond);
432   TestPlaybackRate(1.0);
433   TestPlaybackRate(0.5);
434   TestPlaybackRate(1.5);
435 }
436
437 TEST_F(AudioRendererAlgorithmTest, DotProduct) {
438   const int kChannels = 3;
439   const int kFrames = 20;
440   const int kHalfPulseWidth = 2;
441
442   scoped_ptr<AudioBus> a = AudioBus::Create(kChannels, kFrames);
443   scoped_ptr<AudioBus> b = AudioBus::Create(kChannels, kFrames);
444
445   scoped_ptr<float[]> dot_prod(new float[kChannels]);
446
447   FillWithSquarePulseTrain(kHalfPulseWidth, 0, 0, a.get());
448   FillWithSquarePulseTrain(kHalfPulseWidth, 1, 1, a.get());
449   FillWithSquarePulseTrain(kHalfPulseWidth, 2, 2, a.get());
450
451   FillWithSquarePulseTrain(kHalfPulseWidth, 0, 0, b.get());
452   FillWithSquarePulseTrain(kHalfPulseWidth, 0, 1, b.get());
453   FillWithSquarePulseTrain(kHalfPulseWidth, 0, 2, b.get());
454
455   internal::MultiChannelDotProduct(a.get(), 0, b.get(), 0, kFrames,
456                                    dot_prod.get());
457
458   EXPECT_FLOAT_EQ(kFrames, dot_prod[0]);
459   EXPECT_FLOAT_EQ(0, dot_prod[1]);
460   EXPECT_FLOAT_EQ(-kFrames, dot_prod[2]);
461
462   internal::MultiChannelDotProduct(a.get(), 4, b.get(), 8, kFrames / 2,
463                                    dot_prod.get());
464
465   EXPECT_FLOAT_EQ(kFrames / 2, dot_prod[0]);
466   EXPECT_FLOAT_EQ(0, dot_prod[1]);
467   EXPECT_FLOAT_EQ(-kFrames / 2, dot_prod[2]);
468 }
469
470 TEST_F(AudioRendererAlgorithmTest, MovingBlockEnergy) {
471   const int kChannels = 2;
472   const int kFrames = 20;
473   const int kFramesPerBlock = 3;
474   const int kNumBlocks = kFrames - (kFramesPerBlock - 1);
475   scoped_ptr<AudioBus> a = AudioBus::Create(kChannels, kFrames);
476   scoped_ptr<float[]> energies(new float[kChannels * kNumBlocks]);
477   float* ch_left = a->channel(0);
478   float* ch_right = a->channel(1);
479
480   // Fill up both channels.
481   for (int n = 0; n < kFrames; ++n) {
482     ch_left[n] = n;
483     ch_right[n] = kFrames - 1 - n;
484   }
485
486   internal::MultiChannelMovingBlockEnergies(a.get(), kFramesPerBlock,
487                                             energies.get());
488
489   // Check if the energy of candidate blocks of each channel computed correctly.
490   for (int n = 0; n < kNumBlocks; ++n) {
491     float expected_energy = 0;
492     for (int k = 0; k < kFramesPerBlock; ++k)
493       expected_energy += ch_left[n + k] * ch_left[n + k];
494
495     // Left (first) channel.
496     EXPECT_FLOAT_EQ(expected_energy, energies[2 * n]);
497
498     expected_energy = 0;
499     for (int k = 0; k < kFramesPerBlock; ++k)
500       expected_energy += ch_right[n + k] * ch_right[n + k];
501
502     // Second (right) channel.
503     EXPECT_FLOAT_EQ(expected_energy, energies[2 * n + 1]);
504   }
505 }
506
507 TEST_F(AudioRendererAlgorithmTest, FullAndDecimatedSearch) {
508   const int kFramesInSearchRegion = 12;
509   const int kChannels = 2;
510   float ch_0[] = {
511       0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f };
512   float ch_1[] = {
513       0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.1f, 1.0f, 0.1f, 0.0f, 0.0f };
514   ASSERT_EQ(sizeof(ch_0), sizeof(ch_1));
515   ASSERT_EQ(static_cast<size_t>(kFramesInSearchRegion),
516             sizeof(ch_0) / sizeof(*ch_0));
517   scoped_ptr<AudioBus> search_region = AudioBus::Create(kChannels,
518                                                         kFramesInSearchRegion);
519   float* ch = search_region->channel(0);
520   memcpy(ch, ch_0, sizeof(float) * kFramesInSearchRegion);
521   ch = search_region->channel(1);
522   memcpy(ch, ch_1, sizeof(float) * kFramesInSearchRegion);
523
524   const int kFramePerBlock = 4;
525   float target_0[] = { 1.0f, 1.0f, 1.0f, 0.0f };
526   float target_1[] = { 0.0f, 1.0f, 0.1f, 1.0f };
527   ASSERT_EQ(sizeof(target_0), sizeof(target_1));
528   ASSERT_EQ(static_cast<size_t>(kFramePerBlock),
529             sizeof(target_0) / sizeof(*target_0));
530
531   scoped_ptr<AudioBus> target = AudioBus::Create(kChannels,
532                                                  kFramePerBlock);
533   ch = target->channel(0);
534   memcpy(ch, target_0, sizeof(float) * kFramePerBlock);
535   ch = target->channel(1);
536   memcpy(ch, target_1, sizeof(float) * kFramePerBlock);
537
538   scoped_ptr<float[]> energy_target(new float[kChannels]);
539
540   internal::MultiChannelDotProduct(target.get(), 0, target.get(), 0,
541                                    kFramePerBlock, energy_target.get());
542
543   ASSERT_EQ(3.f, energy_target[0]);
544   ASSERT_EQ(2.01f, energy_target[1]);
545
546   const int kNumCandidBlocks = kFramesInSearchRegion - (kFramePerBlock - 1);
547   scoped_ptr<float[]> energy_candid_blocks(new float[kNumCandidBlocks *
548                                                      kChannels]);
549
550   internal::MultiChannelMovingBlockEnergies(
551       search_region.get(), kFramePerBlock, energy_candid_blocks.get());
552
553   // Check the energy of the candidate blocks of the first channel.
554   ASSERT_FLOAT_EQ(0, energy_candid_blocks[0]);
555   ASSERT_FLOAT_EQ(0, energy_candid_blocks[2]);
556   ASSERT_FLOAT_EQ(1, energy_candid_blocks[4]);
557   ASSERT_FLOAT_EQ(2, energy_candid_blocks[6]);
558   ASSERT_FLOAT_EQ(3, energy_candid_blocks[8]);
559   ASSERT_FLOAT_EQ(3, energy_candid_blocks[10]);
560   ASSERT_FLOAT_EQ(2, energy_candid_blocks[12]);
561   ASSERT_FLOAT_EQ(1, energy_candid_blocks[14]);
562   ASSERT_FLOAT_EQ(0, energy_candid_blocks[16]);
563
564   // Check the energy of the candidate blocks of the second channel.
565   ASSERT_FLOAT_EQ(0, energy_candid_blocks[1]);
566   ASSERT_FLOAT_EQ(0, energy_candid_blocks[3]);
567   ASSERT_FLOAT_EQ(0, energy_candid_blocks[5]);
568   ASSERT_FLOAT_EQ(0, energy_candid_blocks[7]);
569   ASSERT_FLOAT_EQ(0.01f, energy_candid_blocks[9]);
570   ASSERT_FLOAT_EQ(1.01f, energy_candid_blocks[11]);
571   ASSERT_FLOAT_EQ(1.02f, energy_candid_blocks[13]);
572   ASSERT_FLOAT_EQ(1.02f, energy_candid_blocks[15]);
573   ASSERT_FLOAT_EQ(1.01f, energy_candid_blocks[17]);
574
575   // An interval which is of no effect.
576   internal::Interval exclude_interval = std::make_pair(-100, -10);
577   EXPECT_EQ(5, internal::FullSearch(
578       0, kNumCandidBlocks - 1, exclude_interval, target.get(),
579       search_region.get(), energy_target.get(), energy_candid_blocks.get()));
580
581   // Exclude the the best match.
582   exclude_interval = std::make_pair(2, 5);
583   EXPECT_EQ(7, internal::FullSearch(
584       0, kNumCandidBlocks - 1, exclude_interval, target.get(),
585       search_region.get(), energy_target.get(), energy_candid_blocks.get()));
586
587   // An interval which is of no effect.
588   exclude_interval = std::make_pair(-100, -10);
589   EXPECT_EQ(4, internal::DecimatedSearch(
590       4, exclude_interval, target.get(), search_region.get(),
591       energy_target.get(), energy_candid_blocks.get()));
592
593   EXPECT_EQ(5, internal::OptimalIndex(search_region.get(), target.get(),
594                                       exclude_interval));
595 }
596
597 TEST_F(AudioRendererAlgorithmTest, QuadraticInterpolation) {
598   // Arbitrary coefficients.
599   const float kA = 0.7f;
600   const float kB = 1.2f;
601   const float kC = 0.8f;
602
603   float y_values[3];
604   y_values[0] = kA - kB + kC;
605   y_values[1] = kC;
606   y_values[2] = kA + kB + kC;
607
608   float extremum;
609   float extremum_value;
610
611   internal::QuadraticInterpolation(y_values, &extremum, &extremum_value);
612
613   float x_star = -kB / (2.f * kA);
614   float y_star = kA * x_star * x_star + kB * x_star + kC;
615
616   EXPECT_FLOAT_EQ(x_star, extremum);
617   EXPECT_FLOAT_EQ(y_star, extremum_value);
618 }
619
620 TEST_F(AudioRendererAlgorithmTest, QuadraticInterpolation_Colinear) {
621   float y_values[3];
622   y_values[0] = 1.0;
623   y_values[1] = 1.0;
624   y_values[2] = 1.0;
625
626   float extremum;
627   float extremum_value;
628
629   internal::QuadraticInterpolation(y_values, &extremum, &extremum_value);
630
631   EXPECT_FLOAT_EQ(extremum, 0.0);
632   EXPECT_FLOAT_EQ(extremum_value, 1.0);
633 }
634
635 TEST_F(AudioRendererAlgorithmTest, WsolaSlowdown) {
636   WsolaTest(0.6f);
637 }
638
639 TEST_F(AudioRendererAlgorithmTest, WsolaSpeedup) {
640   WsolaTest(1.6f);
641 }
642
643 }  // namespace media