2b27c1da4a9a717160e6640f84ac77c95d8bb2b4
[platform/framework/web/crosswalk.git] / src / media / base / yuv_convert.cc
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 // This webpage shows layout of YV12 and other YUV formats
6 // http://www.fourcc.org/yuv.php
7 // The actual conversion is best described here
8 // http://en.wikipedia.org/wiki/YUV
9 // An article on optimizing YUV conversion using tables instead of multiplies
10 // http://lestourtereaux.free.fr/papers/data/yuvrgb.pdf
11 //
12 // YV12 is a full plane of Y and a half height, half width chroma planes
13 // YV16 is a full plane of Y and a full height, half width chroma planes
14 //
15 // ARGB pixel format is output, which on little endian is stored as BGRA.
16 // The alpha is set to 255, allowing the application to use RGBA or RGB32.
17
18 #include "media/base/yuv_convert.h"
19
20 #include "base/cpu.h"
21 #include "base/logging.h"
22 #include "base/memory/scoped_ptr.h"
23 #include "base/third_party/dynamic_annotations/dynamic_annotations.h"
24 #include "build/build_config.h"
25 #include "media/base/simd/convert_rgb_to_yuv.h"
26 #include "media/base/simd/convert_yuv_to_rgb.h"
27 #include "media/base/simd/filter_yuv.h"
28
29 #if defined(ARCH_CPU_X86_FAMILY)
30 #if defined(COMPILER_MSVC)
31 #include <intrin.h>
32 #else
33 #include <mmintrin.h>
34 #endif
35 #endif
36
37 // Assembly functions are declared without namespace.
38 extern "C" { void EmptyRegisterState_MMX(); }  // extern "C"
39
40 namespace media {
41
42 typedef void (*FilterYUVRowsProc)(uint8*, const uint8*, const uint8*, int, int);
43
44 typedef void (*ConvertRGBToYUVProc)(const uint8*,
45                                     uint8*,
46                                     uint8*,
47                                     uint8*,
48                                     int,
49                                     int,
50                                     int,
51                                     int,
52                                     int);
53
54 typedef void (*ConvertYUVToRGB32Proc)(const uint8*,
55                                       const uint8*,
56                                       const uint8*,
57                                       uint8*,
58                                       int,
59                                       int,
60                                       int,
61                                       int,
62                                       int,
63                                       YUVType);
64
65 typedef void (*ConvertYUVAToARGBProc)(const uint8*,
66                                       const uint8*,
67                                       const uint8*,
68                                       const uint8*,
69                                       uint8*,
70                                       int,
71                                       int,
72                                       int,
73                                       int,
74                                       int,
75                                       int,
76                                       YUVType);
77
78 typedef void (*ConvertYUVToRGB32RowProc)(const uint8*,
79                                          const uint8*,
80                                          const uint8*,
81                                          uint8*,
82                                          ptrdiff_t);
83
84 typedef void (*ConvertYUVAToARGBRowProc)(const uint8*,
85                                          const uint8*,
86                                          const uint8*,
87                                          const uint8*,
88                                          uint8*,
89                                          ptrdiff_t);
90
91 typedef void (*ScaleYUVToRGB32RowProc)(const uint8*,
92                                        const uint8*,
93                                        const uint8*,
94                                        uint8*,
95                                        ptrdiff_t,
96                                        ptrdiff_t);
97
98 static FilterYUVRowsProc g_filter_yuv_rows_proc_ = NULL;
99 static ConvertYUVToRGB32RowProc g_convert_yuv_to_rgb32_row_proc_ = NULL;
100 static ScaleYUVToRGB32RowProc g_scale_yuv_to_rgb32_row_proc_ = NULL;
101 static ScaleYUVToRGB32RowProc g_linear_scale_yuv_to_rgb32_row_proc_ = NULL;
102 static ConvertRGBToYUVProc g_convert_rgb32_to_yuv_proc_ = NULL;
103 static ConvertRGBToYUVProc g_convert_rgb24_to_yuv_proc_ = NULL;
104 static ConvertYUVToRGB32Proc g_convert_yuv_to_rgb32_proc_ = NULL;
105 static ConvertYUVAToARGBProc g_convert_yuva_to_argb_proc_ = NULL;
106
107 // Empty SIMD registers state after using them.
108 void EmptyRegisterStateStub() {}
109 #if defined(MEDIA_MMX_INTRINSICS_AVAILABLE)
110 void EmptyRegisterStateIntrinsic() { _mm_empty(); }
111 #endif
112 typedef void (*EmptyRegisterStateProc)();
113 static EmptyRegisterStateProc g_empty_register_state_proc_ = NULL;
114
115 void InitializeCPUSpecificYUVConversions() {
116   CHECK(!g_filter_yuv_rows_proc_);
117   CHECK(!g_convert_yuv_to_rgb32_row_proc_);
118   CHECK(!g_scale_yuv_to_rgb32_row_proc_);
119   CHECK(!g_linear_scale_yuv_to_rgb32_row_proc_);
120   CHECK(!g_convert_rgb32_to_yuv_proc_);
121   CHECK(!g_convert_rgb24_to_yuv_proc_);
122   CHECK(!g_convert_yuv_to_rgb32_proc_);
123   CHECK(!g_convert_yuva_to_argb_proc_);
124   CHECK(!g_empty_register_state_proc_);
125
126   g_filter_yuv_rows_proc_ = FilterYUVRows_C;
127   g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_C;
128   g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_C;
129   g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_C;
130   g_convert_rgb32_to_yuv_proc_ = ConvertRGB32ToYUV_C;
131   g_convert_rgb24_to_yuv_proc_ = ConvertRGB24ToYUV_C;
132   g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_C;
133   g_convert_yuva_to_argb_proc_ = ConvertYUVAToARGB_C;
134   g_empty_register_state_proc_ = EmptyRegisterStateStub;
135
136   // Assembly code confuses MemorySanitizer.
137 #if defined(ARCH_CPU_X86_FAMILY) && !defined(MEMORY_SANITIZER)
138   base::CPU cpu;
139   if (cpu.has_mmx()) {
140     g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_MMX;
141     g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_MMX;
142     g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_MMX;
143     g_convert_yuva_to_argb_proc_ = ConvertYUVAToARGB_MMX;
144     g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_MMX;
145
146 #if defined(MEDIA_MMX_INTRINSICS_AVAILABLE)
147     g_filter_yuv_rows_proc_ = FilterYUVRows_MMX;
148     g_empty_register_state_proc_ = EmptyRegisterStateIntrinsic;
149 #else
150     g_empty_register_state_proc_ = EmptyRegisterState_MMX;
151 #endif
152   }
153
154   if (cpu.has_sse()) {
155     g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_SSE;
156     g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_SSE;
157     g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_SSE;
158     g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_SSE;
159   }
160
161   if (cpu.has_sse2()) {
162     g_filter_yuv_rows_proc_ = FilterYUVRows_SSE2;
163     g_convert_rgb32_to_yuv_proc_ = ConvertRGB32ToYUV_SSE2;
164
165 #if defined(ARCH_CPU_X86_64)
166     g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_SSE2_X64;
167
168     // Technically this should be in the MMX section, but MSVC will optimize out
169     // the export of LinearScaleYUVToRGB32Row_MMX, which is required by the unit
170     // tests, if that decision can be made at compile time.  Since all X64 CPUs
171     // have SSE2, we can hack around this by making the selection here.
172     g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_MMX_X64;
173 #endif
174   }
175
176   if (cpu.has_ssse3()) {
177     g_convert_rgb24_to_yuv_proc_ = &ConvertRGB24ToYUV_SSSE3;
178
179     // TODO(hclam): Add ConvertRGB32ToYUV_SSSE3 when the cyan problem is solved.
180     // See: crbug.com/100462
181   }
182 #endif
183 }
184
185 // Empty SIMD registers state after using them.
186 void EmptyRegisterState() { g_empty_register_state_proc_(); }
187
188 // 16.16 fixed point arithmetic
189 const int kFractionBits = 16;
190 const int kFractionMax = 1 << kFractionBits;
191 const int kFractionMask = ((1 << kFractionBits) - 1);
192
193 // Scale a frame of YUV to 32 bit ARGB.
194 void ScaleYUVToRGB32(const uint8* y_buf,
195                      const uint8* u_buf,
196                      const uint8* v_buf,
197                      uint8* rgb_buf,
198                      int source_width,
199                      int source_height,
200                      int width,
201                      int height,
202                      int y_pitch,
203                      int uv_pitch,
204                      int rgb_pitch,
205                      YUVType yuv_type,
206                      Rotate view_rotate,
207                      ScaleFilter filter) {
208   // Handle zero sized sources and destinations.
209   if ((yuv_type == YV12 && (source_width < 2 || source_height < 2)) ||
210       (yuv_type == YV16 && (source_width < 2 || source_height < 1)) ||
211       width == 0 || height == 0)
212     return;
213
214   // 4096 allows 3 buffers to fit in 12k.
215   // Helps performance on CPU with 16K L1 cache.
216   // Large enough for 3830x2160 and 30" displays which are 2560x1600.
217   const int kFilterBufferSize = 4096;
218   // Disable filtering if the screen is too big (to avoid buffer overflows).
219   // This should never happen to regular users: they don't have monitors
220   // wider than 4096 pixels.
221   // TODO(fbarchard): Allow rotated videos to filter.
222   if (source_width > kFilterBufferSize || view_rotate)
223     filter = FILTER_NONE;
224
225   unsigned int y_shift = yuv_type;
226   // Diagram showing origin and direction of source sampling.
227   // ->0   4<-
228   // 7       3
229   //
230   // 6       5
231   // ->1   2<-
232   // Rotations that start at right side of image.
233   if ((view_rotate == ROTATE_180) || (view_rotate == ROTATE_270) ||
234       (view_rotate == MIRROR_ROTATE_0) || (view_rotate == MIRROR_ROTATE_90)) {
235     y_buf += source_width - 1;
236     u_buf += source_width / 2 - 1;
237     v_buf += source_width / 2 - 1;
238     source_width = -source_width;
239   }
240   // Rotations that start at bottom of image.
241   if ((view_rotate == ROTATE_90) || (view_rotate == ROTATE_180) ||
242       (view_rotate == MIRROR_ROTATE_90) || (view_rotate == MIRROR_ROTATE_180)) {
243     y_buf += (source_height - 1) * y_pitch;
244     u_buf += ((source_height >> y_shift) - 1) * uv_pitch;
245     v_buf += ((source_height >> y_shift) - 1) * uv_pitch;
246     source_height = -source_height;
247   }
248
249   int source_dx = source_width * kFractionMax / width;
250
251   if ((view_rotate == ROTATE_90) || (view_rotate == ROTATE_270)) {
252     int tmp = height;
253     height = width;
254     width = tmp;
255     tmp = source_height;
256     source_height = source_width;
257     source_width = tmp;
258     int source_dy = source_height * kFractionMax / height;
259     source_dx = ((source_dy >> kFractionBits) * y_pitch) << kFractionBits;
260     if (view_rotate == ROTATE_90) {
261       y_pitch = -1;
262       uv_pitch = -1;
263       source_height = -source_height;
264     } else {
265       y_pitch = 1;
266       uv_pitch = 1;
267     }
268   }
269
270   // Need padding because FilterRows() will write 1 to 16 extra pixels
271   // after the end for SSE2 version.
272   uint8 yuvbuf[16 + kFilterBufferSize * 3 + 16];
273   uint8* ybuf =
274       reinterpret_cast<uint8*>(reinterpret_cast<uintptr_t>(yuvbuf + 15) & ~15);
275   uint8* ubuf = ybuf + kFilterBufferSize;
276   uint8* vbuf = ubuf + kFilterBufferSize;
277
278   // TODO(fbarchard): Fixed point math is off by 1 on negatives.
279
280   // We take a y-coordinate in [0,1] space in the source image space, and
281   // transform to a y-coordinate in [0,1] space in the destination image space.
282   // Note that the coordinate endpoints lie on pixel boundaries, not on pixel
283   // centers: e.g. a two-pixel-high image will have pixel centers at 0.25 and
284   // 0.75.  The formula is as follows (in fixed-point arithmetic):
285   //   y_dst = dst_height * ((y_src + 0.5) / src_height)
286   //   dst_pixel = clamp([0, dst_height - 1], floor(y_dst - 0.5))
287   // Implement this here as an accumulator + delta, to avoid expensive math
288   // in the loop.
289   int source_y_subpixel_accum =
290       ((kFractionMax / 2) * source_height) / height - (kFractionMax / 2);
291   int source_y_subpixel_delta = ((1 << kFractionBits) * source_height) / height;
292
293   // TODO(fbarchard): Split this into separate function for better efficiency.
294   for (int y = 0; y < height; ++y) {
295     uint8* dest_pixel = rgb_buf + y * rgb_pitch;
296     int source_y_subpixel = source_y_subpixel_accum;
297     source_y_subpixel_accum += source_y_subpixel_delta;
298     if (source_y_subpixel < 0)
299       source_y_subpixel = 0;
300     else if (source_y_subpixel > ((source_height - 1) << kFractionBits))
301       source_y_subpixel = (source_height - 1) << kFractionBits;
302
303     const uint8* y_ptr = NULL;
304     const uint8* u_ptr = NULL;
305     const uint8* v_ptr = NULL;
306     // Apply vertical filtering if necessary.
307     // TODO(fbarchard): Remove memcpy when not necessary.
308     if (filter & media::FILTER_BILINEAR_V) {
309       int source_y = source_y_subpixel >> kFractionBits;
310       y_ptr = y_buf + source_y * y_pitch;
311       u_ptr = u_buf + (source_y >> y_shift) * uv_pitch;
312       v_ptr = v_buf + (source_y >> y_shift) * uv_pitch;
313
314       // Vertical scaler uses 16.8 fixed point.
315       int source_y_fraction = (source_y_subpixel & kFractionMask) >> 8;
316       if (source_y_fraction != 0) {
317         g_filter_yuv_rows_proc_(
318             ybuf, y_ptr, y_ptr + y_pitch, source_width, source_y_fraction);
319       } else {
320         memcpy(ybuf, y_ptr, source_width);
321       }
322       y_ptr = ybuf;
323       ybuf[source_width] = ybuf[source_width - 1];
324
325       int uv_source_width = (source_width + 1) / 2;
326       int source_uv_fraction;
327
328       // For formats with half-height UV planes, each even-numbered pixel row
329       // should not interpolate, since the next row to interpolate from should
330       // be a duplicate of the current row.
331       if (y_shift && (source_y & 0x1) == 0)
332         source_uv_fraction = 0;
333       else
334         source_uv_fraction = source_y_fraction;
335
336       if (source_uv_fraction != 0) {
337         g_filter_yuv_rows_proc_(
338             ubuf, u_ptr, u_ptr + uv_pitch, uv_source_width, source_uv_fraction);
339         g_filter_yuv_rows_proc_(
340             vbuf, v_ptr, v_ptr + uv_pitch, uv_source_width, source_uv_fraction);
341       } else {
342         memcpy(ubuf, u_ptr, uv_source_width);
343         memcpy(vbuf, v_ptr, uv_source_width);
344       }
345       u_ptr = ubuf;
346       v_ptr = vbuf;
347       ubuf[uv_source_width] = ubuf[uv_source_width - 1];
348       vbuf[uv_source_width] = vbuf[uv_source_width - 1];
349     } else {
350       // Offset by 1/2 pixel for center sampling.
351       int source_y = (source_y_subpixel + (kFractionMax / 2)) >> kFractionBits;
352       y_ptr = y_buf + source_y * y_pitch;
353       u_ptr = u_buf + (source_y >> y_shift) * uv_pitch;
354       v_ptr = v_buf + (source_y >> y_shift) * uv_pitch;
355     }
356     if (source_dx == kFractionMax) {  // Not scaled
357       g_convert_yuv_to_rgb32_row_proc_(y_ptr, u_ptr, v_ptr, dest_pixel, width);
358     } else {
359       if (filter & FILTER_BILINEAR_H) {
360         g_linear_scale_yuv_to_rgb32_row_proc_(
361             y_ptr, u_ptr, v_ptr, dest_pixel, width, source_dx);
362       } else {
363         g_scale_yuv_to_rgb32_row_proc_(
364             y_ptr, u_ptr, v_ptr, dest_pixel, width, source_dx);
365       }
366     }
367   }
368
369   g_empty_register_state_proc_();
370 }
371
372 // Scale a frame of YV12 to 32 bit ARGB for a specific rectangle.
373 void ScaleYUVToRGB32WithRect(const uint8* y_buf,
374                              const uint8* u_buf,
375                              const uint8* v_buf,
376                              uint8* rgb_buf,
377                              int source_width,
378                              int source_height,
379                              int dest_width,
380                              int dest_height,
381                              int dest_rect_left,
382                              int dest_rect_top,
383                              int dest_rect_right,
384                              int dest_rect_bottom,
385                              int y_pitch,
386                              int uv_pitch,
387                              int rgb_pitch) {
388   // This routine doesn't currently support up-scaling.
389   CHECK_LE(dest_width, source_width);
390   CHECK_LE(dest_height, source_height);
391
392   // Sanity-check the destination rectangle.
393   DCHECK(dest_rect_left >= 0 && dest_rect_right <= dest_width);
394   DCHECK(dest_rect_top >= 0 && dest_rect_bottom <= dest_height);
395   DCHECK(dest_rect_right > dest_rect_left);
396   DCHECK(dest_rect_bottom > dest_rect_top);
397
398   // Fixed-point value of vertical and horizontal scale down factor.
399   // Values are in the format 16.16.
400   int y_step = kFractionMax * source_height / dest_height;
401   int x_step = kFractionMax * source_width / dest_width;
402
403   // Determine the coordinates of the rectangle in 16.16 coords.
404   // NB: Our origin is the *center* of the top/left pixel, NOT its top/left.
405   // If we're down-scaling by more than a factor of two, we start with a 50%
406   // fraction to avoid degenerating to point-sampling - we should really just
407   // fix the fraction at 50% for all pixels in that case.
408   int source_left = dest_rect_left * x_step;
409   int source_right = (dest_rect_right - 1) * x_step;
410   if (x_step < kFractionMax * 2) {
411     source_left += ((x_step - kFractionMax) / 2);
412     source_right += ((x_step - kFractionMax) / 2);
413   } else {
414     source_left += kFractionMax / 2;
415     source_right += kFractionMax / 2;
416   }
417   int source_top = dest_rect_top * y_step;
418   if (y_step < kFractionMax * 2) {
419     source_top += ((y_step - kFractionMax) / 2);
420   } else {
421     source_top += kFractionMax / 2;
422   }
423
424   // Determine the parts of the Y, U and V buffers to interpolate.
425   int source_y_left = source_left >> kFractionBits;
426   int source_y_right =
427       std::min((source_right >> kFractionBits) + 2, source_width + 1);
428
429   int source_uv_left = source_y_left / 2;
430   int source_uv_right = std::min((source_right >> (kFractionBits + 1)) + 2,
431                                  (source_width + 1) / 2);
432
433   int source_y_width = source_y_right - source_y_left;
434   int source_uv_width = source_uv_right - source_uv_left;
435
436   // Determine number of pixels in each output row.
437   int dest_rect_width = dest_rect_right - dest_rect_left;
438
439   // Intermediate buffer for vertical interpolation.
440   // 4096 bytes allows 3 buffers to fit in 12k, which fits in a 16K L1 cache,
441   // and is bigger than most users will generally need.
442   // The buffer is 16-byte aligned and padded with 16 extra bytes; some of the
443   // FilterYUVRowProcs have alignment requirements, and the SSE version can
444   // write up to 16 bytes past the end of the buffer.
445   const int kFilterBufferSize = 4096;
446   const bool kAvoidUsingOptimizedFilter = source_width > kFilterBufferSize;
447   uint8 yuv_temp[16 + kFilterBufferSize * 3 + 16];
448   // memset() yuv_temp to 0 to avoid bogus warnings when running on Valgrind.
449   if (RunningOnValgrind())
450     memset(yuv_temp, 0, sizeof(yuv_temp));
451   uint8* y_temp = reinterpret_cast<uint8*>(
452       reinterpret_cast<uintptr_t>(yuv_temp + 15) & ~15);
453   uint8* u_temp = y_temp + kFilterBufferSize;
454   uint8* v_temp = u_temp + kFilterBufferSize;
455
456   // Move to the top-left pixel of output.
457   rgb_buf += dest_rect_top * rgb_pitch;
458   rgb_buf += dest_rect_left * 4;
459
460   // For each destination row perform interpolation and color space
461   // conversion to produce the output.
462   for (int row = dest_rect_top; row < dest_rect_bottom; ++row) {
463     // Round the fixed-point y position to get the current row.
464     int source_row = source_top >> kFractionBits;
465     int source_uv_row = source_row / 2;
466     DCHECK(source_row < source_height);
467
468     // Locate the first row for each plane for interpolation.
469     const uint8* y0_ptr = y_buf + y_pitch * source_row + source_y_left;
470     const uint8* u0_ptr = u_buf + uv_pitch * source_uv_row + source_uv_left;
471     const uint8* v0_ptr = v_buf + uv_pitch * source_uv_row + source_uv_left;
472     const uint8* y1_ptr = NULL;
473     const uint8* u1_ptr = NULL;
474     const uint8* v1_ptr = NULL;
475
476     // Locate the second row for interpolation, being careful not to overrun.
477     if (source_row + 1 >= source_height) {
478       y1_ptr = y0_ptr;
479     } else {
480       y1_ptr = y0_ptr + y_pitch;
481     }
482     if (source_uv_row + 1 >= (source_height + 1) / 2) {
483       u1_ptr = u0_ptr;
484       v1_ptr = v0_ptr;
485     } else {
486       u1_ptr = u0_ptr + uv_pitch;
487       v1_ptr = v0_ptr + uv_pitch;
488     }
489
490     if (!kAvoidUsingOptimizedFilter) {
491       // Vertical scaler uses 16.8 fixed point.
492       int fraction = (source_top & kFractionMask) >> 8;
493       g_filter_yuv_rows_proc_(
494           y_temp + source_y_left, y0_ptr, y1_ptr, source_y_width, fraction);
495       g_filter_yuv_rows_proc_(
496           u_temp + source_uv_left, u0_ptr, u1_ptr, source_uv_width, fraction);
497       g_filter_yuv_rows_proc_(
498           v_temp + source_uv_left, v0_ptr, v1_ptr, source_uv_width, fraction);
499
500       // Perform horizontal interpolation and color space conversion.
501       // TODO(hclam): Use the MMX version after more testing.
502       LinearScaleYUVToRGB32RowWithRange_C(y_temp,
503                                           u_temp,
504                                           v_temp,
505                                           rgb_buf,
506                                           dest_rect_width,
507                                           source_left,
508                                           x_step);
509     } else {
510       // If the frame is too large then we linear scale a single row.
511       LinearScaleYUVToRGB32RowWithRange_C(y0_ptr,
512                                           u0_ptr,
513                                           v0_ptr,
514                                           rgb_buf,
515                                           dest_rect_width,
516                                           source_left,
517                                           x_step);
518     }
519
520     // Advance vertically in the source and destination image.
521     source_top += y_step;
522     rgb_buf += rgb_pitch;
523   }
524
525   g_empty_register_state_proc_();
526 }
527
528 void ConvertRGB32ToYUV(const uint8* rgbframe,
529                        uint8* yplane,
530                        uint8* uplane,
531                        uint8* vplane,
532                        int width,
533                        int height,
534                        int rgbstride,
535                        int ystride,
536                        int uvstride) {
537   g_convert_rgb32_to_yuv_proc_(rgbframe,
538                                yplane,
539                                uplane,
540                                vplane,
541                                width,
542                                height,
543                                rgbstride,
544                                ystride,
545                                uvstride);
546 }
547
548 void ConvertRGB24ToYUV(const uint8* rgbframe,
549                        uint8* yplane,
550                        uint8* uplane,
551                        uint8* vplane,
552                        int width,
553                        int height,
554                        int rgbstride,
555                        int ystride,
556                        int uvstride) {
557   g_convert_rgb24_to_yuv_proc_(rgbframe,
558                                yplane,
559                                uplane,
560                                vplane,
561                                width,
562                                height,
563                                rgbstride,
564                                ystride,
565                                uvstride);
566 }
567
568 void ConvertYUY2ToYUV(const uint8* src,
569                       uint8* yplane,
570                       uint8* uplane,
571                       uint8* vplane,
572                       int width,
573                       int height) {
574   for (int i = 0; i < height / 2; ++i) {
575     for (int j = 0; j < (width / 2); ++j) {
576       yplane[0] = src[0];
577       *uplane = src[1];
578       yplane[1] = src[2];
579       *vplane = src[3];
580       src += 4;
581       yplane += 2;
582       uplane++;
583       vplane++;
584     }
585     for (int j = 0; j < (width / 2); ++j) {
586       yplane[0] = src[0];
587       yplane[1] = src[2];
588       src += 4;
589       yplane += 2;
590     }
591   }
592 }
593
594 void ConvertNV21ToYUV(const uint8* src,
595                       uint8* yplane,
596                       uint8* uplane,
597                       uint8* vplane,
598                       int width,
599                       int height) {
600   int y_plane_size = width * height;
601   memcpy(yplane, src, y_plane_size);
602
603   src += y_plane_size;
604   int u_plane_size = y_plane_size >> 2;
605   for (int i = 0; i < u_plane_size; ++i) {
606     *vplane++ = *src++;
607     *uplane++ = *src++;
608   }
609 }
610
611 void ConvertYUVToRGB32(const uint8* yplane,
612                        const uint8* uplane,
613                        const uint8* vplane,
614                        uint8* rgbframe,
615                        int width,
616                        int height,
617                        int ystride,
618                        int uvstride,
619                        int rgbstride,
620                        YUVType yuv_type) {
621   g_convert_yuv_to_rgb32_proc_(yplane,
622                                uplane,
623                                vplane,
624                                rgbframe,
625                                width,
626                                height,
627                                ystride,
628                                uvstride,
629                                rgbstride,
630                                yuv_type);
631 }
632
633 void ConvertYUVAToARGB(const uint8* yplane,
634                        const uint8* uplane,
635                        const uint8* vplane,
636                        const uint8* aplane,
637                        uint8* rgbframe,
638                        int width,
639                        int height,
640                        int ystride,
641                        int uvstride,
642                        int astride,
643                        int rgbstride,
644                        YUVType yuv_type) {
645   g_convert_yuva_to_argb_proc_(yplane,
646                                uplane,
647                                vplane,
648                                aplane,
649                                rgbframe,
650                                width,
651                                height,
652                                ystride,
653                                uvstride,
654                                astride,
655                                rgbstride,
656                                yuv_type);
657 }
658
659 }  // namespace media