2 * This is an OpenSSL-compatible implementation of the RSA Data Security,
3 * Inc. MD5 Message-Digest Algorithm.
5 * Written by Solar Designer <solar@openwall.com> in 2001, and placed in
8 * This differs from Colin Plumb's older public domain implementation in
9 * that no 32-bit integer data type is required, there's no compile-time
10 * endianness configuration, and the function prototypes match OpenSSL's.
11 * The primary goals are portability and ease of use.
13 * This implementation is meant to be fast, but not as fast as possible.
14 * Some known optimizations are not included to reduce source code size
15 * and avoid compile-time configuration.
23 * The basic MD5 functions.
25 * F is optimized compared to its RFC 1321 definition just like in Colin
26 * Plumb's implementation.
28 #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
29 #define G(x, y, z) ((y) ^ ((z) & ((x) ^ (y))))
30 #define H(x, y, z) ((x) ^ (y) ^ (z))
31 #define I(x, y, z) ((y) ^ ((x) | ~(z)))
34 * The MD5 transformation for all four rounds.
36 #define STEP(f, a, b, c, d, x, t, s) \
37 (a) += f((b), (c), (d)) + (x) + (t); \
38 (a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s)))); \
42 * SET reads 4 input bytes in little-endian byte order and stores them
43 * in a properly aligned word in host byte order.
45 * The check for little-endian architectures which tolerate unaligned
46 * memory accesses is just an optimization. Nothing will break if it
49 #if defined(__i386__) || defined(__vax__)
51 (*(MD5_u32plus *)&ptr[(n) * 4])
57 (MD5_u32plus)ptr[(n) * 4] | \
58 ((MD5_u32plus)ptr[(n) * 4 + 1] << 8) | \
59 ((MD5_u32plus)ptr[(n) * 4 + 2] << 16) | \
60 ((MD5_u32plus)ptr[(n) * 4 + 3] << 24))
66 * This processes one or more 64-byte data blocks, but does NOT update
67 * the bit counters. There're no alignment requirements.
69 static void *body(MD5_CTX *ctx, void *data, unsigned long size)
72 MD5_u32plus a, b, c, d;
73 MD5_u32plus saved_a, saved_b, saved_c, saved_d;
89 STEP(F, a, b, c, d, SET(0), 0xd76aa478, 7)
90 STEP(F, d, a, b, c, SET(1), 0xe8c7b756, 12)
91 STEP(F, c, d, a, b, SET(2), 0x242070db, 17)
92 STEP(F, b, c, d, a, SET(3), 0xc1bdceee, 22)
93 STEP(F, a, b, c, d, SET(4), 0xf57c0faf, 7)
94 STEP(F, d, a, b, c, SET(5), 0x4787c62a, 12)
95 STEP(F, c, d, a, b, SET(6), 0xa8304613, 17)
96 STEP(F, b, c, d, a, SET(7), 0xfd469501, 22)
97 STEP(F, a, b, c, d, SET(8), 0x698098d8, 7)
98 STEP(F, d, a, b, c, SET(9), 0x8b44f7af, 12)
99 STEP(F, c, d, a, b, SET(10), 0xffff5bb1, 17)
100 STEP(F, b, c, d, a, SET(11), 0x895cd7be, 22)
101 STEP(F, a, b, c, d, SET(12), 0x6b901122, 7)
102 STEP(F, d, a, b, c, SET(13), 0xfd987193, 12)
103 STEP(F, c, d, a, b, SET(14), 0xa679438e, 17)
104 STEP(F, b, c, d, a, SET(15), 0x49b40821, 22)
107 STEP(G, a, b, c, d, GET(1), 0xf61e2562, 5)
108 STEP(G, d, a, b, c, GET(6), 0xc040b340, 9)
109 STEP(G, c, d, a, b, GET(11), 0x265e5a51, 14)
110 STEP(G, b, c, d, a, GET(0), 0xe9b6c7aa, 20)
111 STEP(G, a, b, c, d, GET(5), 0xd62f105d, 5)
112 STEP(G, d, a, b, c, GET(10), 0x02441453, 9)
113 STEP(G, c, d, a, b, GET(15), 0xd8a1e681, 14)
114 STEP(G, b, c, d, a, GET(4), 0xe7d3fbc8, 20)
115 STEP(G, a, b, c, d, GET(9), 0x21e1cde6, 5)
116 STEP(G, d, a, b, c, GET(14), 0xc33707d6, 9)
117 STEP(G, c, d, a, b, GET(3), 0xf4d50d87, 14)
118 STEP(G, b, c, d, a, GET(8), 0x455a14ed, 20)
119 STEP(G, a, b, c, d, GET(13), 0xa9e3e905, 5)
120 STEP(G, d, a, b, c, GET(2), 0xfcefa3f8, 9)
121 STEP(G, c, d, a, b, GET(7), 0x676f02d9, 14)
122 STEP(G, b, c, d, a, GET(12), 0x8d2a4c8a, 20)
125 STEP(H, a, b, c, d, GET(5), 0xfffa3942, 4)
126 STEP(H, d, a, b, c, GET(8), 0x8771f681, 11)
127 STEP(H, c, d, a, b, GET(11), 0x6d9d6122, 16)
128 STEP(H, b, c, d, a, GET(14), 0xfde5380c, 23)
129 STEP(H, a, b, c, d, GET(1), 0xa4beea44, 4)
130 STEP(H, d, a, b, c, GET(4), 0x4bdecfa9, 11)
131 STEP(H, c, d, a, b, GET(7), 0xf6bb4b60, 16)
132 STEP(H, b, c, d, a, GET(10), 0xbebfbc70, 23)
133 STEP(H, a, b, c, d, GET(13), 0x289b7ec6, 4)
134 STEP(H, d, a, b, c, GET(0), 0xeaa127fa, 11)
135 STEP(H, c, d, a, b, GET(3), 0xd4ef3085, 16)
136 STEP(H, b, c, d, a, GET(6), 0x04881d05, 23)
137 STEP(H, a, b, c, d, GET(9), 0xd9d4d039, 4)
138 STEP(H, d, a, b, c, GET(12), 0xe6db99e5, 11)
139 STEP(H, c, d, a, b, GET(15), 0x1fa27cf8, 16)
140 STEP(H, b, c, d, a, GET(2), 0xc4ac5665, 23)
143 STEP(I, a, b, c, d, GET(0), 0xf4292244, 6)
144 STEP(I, d, a, b, c, GET(7), 0x432aff97, 10)
145 STEP(I, c, d, a, b, GET(14), 0xab9423a7, 15)
146 STEP(I, b, c, d, a, GET(5), 0xfc93a039, 21)
147 STEP(I, a, b, c, d, GET(12), 0x655b59c3, 6)
148 STEP(I, d, a, b, c, GET(3), 0x8f0ccc92, 10)
149 STEP(I, c, d, a, b, GET(10), 0xffeff47d, 15)
150 STEP(I, b, c, d, a, GET(1), 0x85845dd1, 21)
151 STEP(I, a, b, c, d, GET(8), 0x6fa87e4f, 6)
152 STEP(I, d, a, b, c, GET(15), 0xfe2ce6e0, 10)
153 STEP(I, c, d, a, b, GET(6), 0xa3014314, 15)
154 STEP(I, b, c, d, a, GET(13), 0x4e0811a1, 21)
155 STEP(I, a, b, c, d, GET(4), 0xf7537e82, 6)
156 STEP(I, d, a, b, c, GET(11), 0xbd3af235, 10)
157 STEP(I, c, d, a, b, GET(2), 0x2ad7d2bb, 15)
158 STEP(I, b, c, d, a, GET(9), 0xeb86d391, 21)
166 } while (size -= 64);
176 void solv_MD5_Init(MD5_CTX *ctx)
187 void solv_MD5_Update(MD5_CTX *ctx, void *data, unsigned long size)
189 MD5_u32plus saved_lo;
190 unsigned long used, free;
193 if ((ctx->lo = (saved_lo + size) & 0x1fffffff) < saved_lo)
195 ctx->hi += size >> 29;
197 used = saved_lo & 0x3f;
203 memcpy(&ctx->buffer[used], data, size);
207 memcpy(&ctx->buffer[used], data, free);
208 data = (unsigned char *)data + free;
210 body(ctx, ctx->buffer, 64);
214 data = body(ctx, data, size & ~(unsigned long)0x3f);
218 memcpy(ctx->buffer, data, size);
221 void solv_MD5_Final(unsigned char *result, MD5_CTX *ctx)
223 unsigned long used, free;
225 used = ctx->lo & 0x3f;
227 ctx->buffer[used++] = 0x80;
232 memset(&ctx->buffer[used], 0, free);
233 body(ctx, ctx->buffer, 64);
238 memset(&ctx->buffer[used], 0, free - 8);
241 ctx->buffer[56] = ctx->lo;
242 ctx->buffer[57] = ctx->lo >> 8;
243 ctx->buffer[58] = ctx->lo >> 16;
244 ctx->buffer[59] = ctx->lo >> 24;
245 ctx->buffer[60] = ctx->hi;
246 ctx->buffer[61] = ctx->hi >> 8;
247 ctx->buffer[62] = ctx->hi >> 16;
248 ctx->buffer[63] = ctx->hi >> 24;
250 body(ctx, ctx->buffer, 64);
253 result[1] = ctx->a >> 8;
254 result[2] = ctx->a >> 16;
255 result[3] = ctx->a >> 24;
257 result[5] = ctx->b >> 8;
258 result[6] = ctx->b >> 16;
259 result[7] = ctx->b >> 24;
261 result[9] = ctx->c >> 8;
262 result[10] = ctx->c >> 16;
263 result[11] = ctx->c >> 24;
265 result[13] = ctx->d >> 8;
266 result[14] = ctx->d >> 16;
267 result[15] = ctx->d >> 24;
269 memset(ctx, 0, sizeof(*ctx));