2 * This code implements the MD5 message-digest algorithm.
3 * The algorithm is due to Ron Rivest. This code was
4 * written by Colin Plumb in 1993, no copyright is claimed.
5 * This code is in the public domain; do with it what you wish.
7 * Equivalent code is available from RSA Data Security, Inc.
8 * This code has been tested against that, and is equivalent,
9 * except that you don't need to include two pages of legalese
12 * To compute the message digest of a chunk of bytes, declare an
13 * MD5Context structure, pass it to MD5Init, call MD5Update as
14 * needed on buffers full of bytes, and then call MD5Final, which
15 * will fill a supplied 16-byte array with the digest.
17 * Changed so as no longer to depend on Colin Plumb's `usual.h' header
18 * definitions; now uses stuff from dpkg's config.h.
19 * - Ian Jackson <ijackson@nyx.cs.du.edu>.
20 * Still in the public domain.
22 * Josh Coalson: made some changes to integrate with libFLAC.
23 * Still in the public domain.
26 #include <stdlib.h> /* for malloc() */
27 #include <string.h> /* for memcpy() */
29 #include "private/md5.h"
35 static FLAC__bool is_big_endian_host_;
39 /* The four core functions - F1 is optimized somewhat */
41 /* #define F1(x, y, z) (x & y | ~x & z) */
42 #define F1(x, y, z) (z ^ (x & (y ^ z)))
43 #define F2(x, y, z) F1(z, x, y)
44 #define F3(x, y, z) (x ^ y ^ z)
45 #define F4(x, y, z) (y ^ (x | ~z))
47 /* This is the central step in the MD5 algorithm. */
48 #define MD5STEP(f,w,x,y,z,in,s) \
49 (w += f(x,y,z) + in, w = (w<<s | w>>(32-s)) + x)
52 * The core of the MD5 algorithm, this alters an existing MD5 hash to
53 * reflect the addition of 16 longwords of new data. MD5Update blocks
54 * the data and converts bytes into longwords for this routine.
58 MD5Transform(FLAC__uint32 buf[4], FLAC__uint32 const in[16])
60 register FLAC__uint32 a, b, c, d;
67 MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
68 MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
69 MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
70 MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
71 MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
72 MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
73 MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
74 MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
75 MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
76 MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
77 MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
78 MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
79 MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
80 MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
81 MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
82 MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
84 MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
85 MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
86 MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
87 MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
88 MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
89 MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
90 MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
91 MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
92 MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
93 MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
94 MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
95 MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
96 MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
97 MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
98 MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
99 MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
101 MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
102 MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
103 MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
104 MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
105 MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
106 MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
107 MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
108 MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
109 MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
110 MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
111 MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
112 MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
113 MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
114 MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
115 MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
116 MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
118 MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
119 MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
120 MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
121 MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
122 MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
123 MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
124 MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
125 MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
126 MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
127 MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
128 MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
129 MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
130 MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
131 MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
132 MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
133 MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
145 byteSwap(FLAC__uint32 *buf, unsigned words)
147 md5byte *p = (md5byte *)buf;
149 if(!is_big_endian_host_)
152 *buf++ = (FLAC__uint32)((unsigned)p[3] << 8 | p[2]) << 16 | ((unsigned)p[1] << 8 | p[0]);
158 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
159 * initialization constants.
162 MD5Init(struct MD5Context *ctx)
164 FLAC__uint32 test = 1;
166 is_big_endian_host_ = (*((FLAC__byte*)(&test)))? false : true;
168 ctx->buf[0] = 0x67452301;
169 ctx->buf[1] = 0xefcdab89;
170 ctx->buf[2] = 0x98badcfe;
171 ctx->buf[3] = 0x10325476;
176 ctx->internal_buf = 0;
181 * Update context to reflect the concatenation of another buffer full
185 MD5Update(struct MD5Context *ctx, md5byte const *buf, unsigned len)
189 /* Update byte count */
192 if ((ctx->bytes[0] = t + len) < t)
193 ctx->bytes[1]++; /* Carry from low to high */
195 t = 64 - (t & 0x3f); /* Space available in ctx->in (at least 1) */
197 memcpy((md5byte *)ctx->in + 64 - t, buf, len);
200 /* First chunk is an odd size */
201 memcpy((md5byte *)ctx->in + 64 - t, buf, t);
202 byteSwap(ctx->in, 16);
203 MD5Transform(ctx->buf, ctx->in);
207 /* Process data in 64-byte chunks */
209 memcpy(ctx->in, buf, 64);
210 byteSwap(ctx->in, 16);
211 MD5Transform(ctx->buf, ctx->in);
216 /* Handle any remaining bytes of data. */
217 memcpy(ctx->in, buf, len);
221 * Convert the incoming audio signal to a byte stream and MD5Update it.
224 FLAC__MD5Accumulate(struct MD5Context *ctx, const FLAC__int32 * const signal[], unsigned channels, unsigned samples, unsigned bytes_per_sample)
226 unsigned channel, sample, a_byte;
229 const unsigned bytes_needed = channels * samples * bytes_per_sample;
231 if(ctx->capacity < bytes_needed) {
232 FLAC__byte *tmp = realloc(ctx->internal_buf, bytes_needed);
234 free(ctx->internal_buf);
235 if(0 == (ctx->internal_buf = malloc(bytes_needed)))
238 ctx->internal_buf = tmp;
239 ctx->capacity = bytes_needed;
242 buf_ = ctx->internal_buf;
244 #ifdef FLAC__CPU_IA32
245 if(channels == 2 && bytes_per_sample == 2) {
246 memcpy(buf_, signal[0], sizeof(FLAC__int32) * samples);
247 buf_ += sizeof(FLAC__int16);
248 for(sample = 0; sample < samples; sample++)
249 ((FLAC__int16 *)buf_)[2 * sample] = (FLAC__int16)signal[1][sample];
251 else if(channels == 1 && bytes_per_sample == 2) {
252 for(sample = 0; sample < samples; sample++)
253 ((FLAC__int16 *)buf_)[sample] = (FLAC__int16)signal[0][sample];
257 for(sample = 0; sample < samples; sample++) {
258 for(channel = 0; channel < channels; channel++) {
259 a_word = signal[channel][sample];
260 for(a_byte = 0; a_byte < bytes_per_sample; a_byte++) {
261 *buf_++ = (FLAC__byte)(a_word & 0xff);
267 MD5Update(ctx, ctx->internal_buf, bytes_needed);
273 * Final wrapup - pad to 64-byte boundary with the bit pattern
274 * 1 0* (64-bit count of bits processed, MSB-first)
277 MD5Final(md5byte digest[16], struct MD5Context *ctx)
279 int count = ctx->bytes[0] & 0x3f; /* Number of bytes in ctx->in */
280 md5byte *p = (md5byte *)ctx->in + count;
282 /* Set the first char of padding to 0x80. There is always room. */
285 /* Bytes of padding needed to make 56 bytes (-8..55) */
286 count = 56 - 1 - count;
288 if (count < 0) { /* Padding forces an extra block */
289 memset(p, 0, count + 8);
290 byteSwap(ctx->in, 16);
291 MD5Transform(ctx->buf, ctx->in);
292 p = (md5byte *)ctx->in;
296 byteSwap(ctx->in, 14);
298 /* Append length in bits and transform */
299 ctx->in[14] = ctx->bytes[0] << 3;
300 ctx->in[15] = ctx->bytes[1] << 3 | ctx->bytes[0] >> 29;
301 MD5Transform(ctx->buf, ctx->in);
303 byteSwap(ctx->buf, 4);
304 memcpy(digest, ctx->buf, 16);
305 memset(ctx, 0, sizeof(ctx)); /* In case it's sensitive */
306 if(0 != ctx->internal_buf) {
307 free(ctx->internal_buf);
308 ctx->internal_buf = 0;