5 #include <stdlib.h> /* for malloc() */
6 #include <string.h> /* for memcpy() */
8 #include "private/md5.h"
9 #include "share/alloc.h"
12 * This code implements the MD5 message-digest algorithm.
13 * The algorithm is due to Ron Rivest. This code was
14 * written by Colin Plumb in 1993, no copyright is claimed.
15 * This code is in the public domain; do with it what you wish.
17 * Equivalent code is available from RSA Data Security, Inc.
18 * This code has been tested against that, and is equivalent,
19 * except that you don't need to include two pages of legalese
22 * To compute the message digest of a chunk of bytes, declare an
23 * MD5Context structure, pass it to MD5Init, call MD5Update as
24 * needed on buffers full of bytes, and then call MD5Final, which
25 * will fill a supplied 16-byte array with the digest.
27 * Changed so as no longer to depend on Colin Plumb's `usual.h' header
28 * definitions; now uses stuff from dpkg's config.h.
29 * - Ian Jackson <ijackson@nyx.cs.du.edu>.
30 * Still in the public domain.
32 * Josh Coalson: made some changes to integrate with libFLAC.
33 * Still in the public domain.
36 /* The four core functions - F1 is optimized somewhat */
38 /* #define F1(x, y, z) (x & y | ~x & z) */
39 #define F1(x, y, z) (z ^ (x & (y ^ z)))
40 #define F2(x, y, z) F1(z, x, y)
41 #define F3(x, y, z) (x ^ y ^ z)
42 #define F4(x, y, z) (y ^ (x | ~z))
44 /* This is the central step in the MD5 algorithm. */
45 #define MD5STEP(f,w,x,y,z,in,s) \
46 (w += f(x,y,z) + in, w = (w<<s | w>>(32-s)) + x)
49 * The core of the MD5 algorithm, this alters an existing MD5 hash to
50 * reflect the addition of 16 longwords of new data. MD5Update blocks
51 * the data and converts bytes into longwords for this routine.
53 static void FLAC__MD5Transform(FLAC__uint32 buf[4], FLAC__uint32 const in[16])
55 register FLAC__uint32 a, b, c, d;
62 MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
63 MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
64 MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
65 MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
66 MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
67 MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
68 MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
69 MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
70 MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
71 MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
72 MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
73 MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
74 MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
75 MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
76 MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
77 MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
79 MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
80 MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
81 MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
82 MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
83 MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
84 MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
85 MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
86 MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
87 MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
88 MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
89 MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
90 MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
91 MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
92 MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
93 MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
94 MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
96 MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
97 MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
98 MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
99 MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
100 MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
101 MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
102 MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
103 MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
104 MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
105 MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
106 MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
107 MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
108 MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
109 MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
110 MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
111 MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
113 MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
114 MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
115 MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
116 MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
117 MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
118 MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
119 MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
120 MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
121 MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
122 MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
123 MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
124 MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
125 MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
126 MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
127 MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
128 MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
137 //@@@@@@ OPT: use bswap/intrinsics
138 static void byteSwap(FLAC__uint32 *buf, unsigned words)
140 register FLAC__uint32 x;
143 x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff);
144 *buf++ = (x >> 16) | (x << 16);
147 static void byteSwapX16(FLAC__uint32 *buf)
149 register FLAC__uint32 x;
151 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
152 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
153 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
154 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
155 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
156 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
157 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
158 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
159 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
160 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
161 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
162 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
163 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
164 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
165 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
166 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf = (x >> 16) | (x << 16);
169 #define byteSwap(buf, words)
170 #define byteSwapX16(buf)
174 * Update context to reflect the concatenation of another buffer full
177 static void FLAC__MD5Update(FLAC__MD5Context *ctx, FLAC__byte const *buf, unsigned len)
181 /* Update byte count */
184 if ((ctx->bytes[0] = t + len) < t)
185 ctx->bytes[1]++; /* Carry from low to high */
187 t = 64 - (t & 0x3f); /* Space available in ctx->in (at least 1) */
189 memcpy((FLAC__byte *)ctx->in + 64 - t, buf, len);
192 /* First chunk is an odd size */
193 memcpy((FLAC__byte *)ctx->in + 64 - t, buf, t);
194 byteSwapX16(ctx->in);
195 FLAC__MD5Transform(ctx->buf, ctx->in);
199 /* Process data in 64-byte chunks */
201 memcpy(ctx->in, buf, 64);
202 byteSwapX16(ctx->in);
203 FLAC__MD5Transform(ctx->buf, ctx->in);
208 /* Handle any remaining bytes of data. */
209 memcpy(ctx->in, buf, len);
213 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
214 * initialization constants.
216 void FLAC__MD5Init(FLAC__MD5Context *ctx)
218 ctx->buf[0] = 0x67452301;
219 ctx->buf[1] = 0xefcdab89;
220 ctx->buf[2] = 0x98badcfe;
221 ctx->buf[3] = 0x10325476;
226 ctx->internal_buf = 0;
231 * Final wrapup - pad to 64-byte boundary with the bit pattern
232 * 1 0* (64-bit count of bits processed, MSB-first)
234 void FLAC__MD5Final(FLAC__byte digest[16], FLAC__MD5Context *ctx)
236 int count = ctx->bytes[0] & 0x3f; /* Number of bytes in ctx->in */
237 FLAC__byte *p = (FLAC__byte *)ctx->in + count;
239 /* Set the first char of padding to 0x80. There is always room. */
242 /* Bytes of padding needed to make 56 bytes (-8..55) */
243 count = 56 - 1 - count;
245 if (count < 0) { /* Padding forces an extra block */
246 memset(p, 0, count + 8);
247 byteSwapX16(ctx->in);
248 FLAC__MD5Transform(ctx->buf, ctx->in);
249 p = (FLAC__byte *)ctx->in;
253 byteSwap(ctx->in, 14);
255 /* Append length in bits and transform */
256 ctx->in[14] = ctx->bytes[0] << 3;
257 ctx->in[15] = ctx->bytes[1] << 3 | ctx->bytes[0] >> 29;
258 FLAC__MD5Transform(ctx->buf, ctx->in);
260 byteSwap(ctx->buf, 4);
261 memcpy(digest, ctx->buf, 16);
262 if(0 != ctx->internal_buf) {
263 free(ctx->internal_buf);
264 ctx->internal_buf = 0;
267 memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */
271 * Convert the incoming audio signal to a byte stream
273 static void format_input_(FLAC__byte *buf, const FLAC__int32 * const signal[], unsigned channels, unsigned samples, unsigned bytes_per_sample)
275 unsigned channel, sample;
276 register FLAC__int32 a_word;
277 register FLAC__byte *buf_ = buf;
281 if(channels == 2 && bytes_per_sample == 2) {
282 FLAC__int16 *buf1_ = ((FLAC__int16*)buf_) + 1;
283 memcpy(buf_, signal[0], sizeof(FLAC__int32) * samples);
284 for(sample = 0; sample < samples; sample++, buf1_+=2)
285 *buf1_ = (FLAC__int16)signal[1][sample];
287 else if(channels == 1 && bytes_per_sample == 2) {
288 FLAC__int16 *buf1_ = (FLAC__int16*)buf_;
289 for(sample = 0; sample < samples; sample++)
290 *buf1_++ = (FLAC__int16)signal[0][sample];
294 if(bytes_per_sample == 2) {
296 for(sample = 0; sample < samples; sample++) {
297 a_word = signal[0][sample];
298 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
299 *buf_++ = (FLAC__byte)a_word;
300 a_word = signal[1][sample];
301 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
302 *buf_++ = (FLAC__byte)a_word;
305 else if(channels == 1) {
306 for(sample = 0; sample < samples; sample++) {
307 a_word = signal[0][sample];
308 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
309 *buf_++ = (FLAC__byte)a_word;
313 for(sample = 0; sample < samples; sample++) {
314 for(channel = 0; channel < channels; channel++) {
315 a_word = signal[channel][sample];
316 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
317 *buf_++ = (FLAC__byte)a_word;
322 else if(bytes_per_sample == 3) {
324 for(sample = 0; sample < samples; sample++) {
325 a_word = signal[0][sample];
326 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
327 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
328 *buf_++ = (FLAC__byte)a_word;
329 a_word = signal[1][sample];
330 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
331 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
332 *buf_++ = (FLAC__byte)a_word;
335 else if(channels == 1) {
336 for(sample = 0; sample < samples; sample++) {
337 a_word = signal[0][sample];
338 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
339 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
340 *buf_++ = (FLAC__byte)a_word;
344 for(sample = 0; sample < samples; sample++) {
345 for(channel = 0; channel < channels; channel++) {
346 a_word = signal[channel][sample];
347 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
348 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
349 *buf_++ = (FLAC__byte)a_word;
354 else if(bytes_per_sample == 1) {
356 for(sample = 0; sample < samples; sample++) {
357 a_word = signal[0][sample];
358 *buf_++ = (FLAC__byte)a_word;
359 a_word = signal[1][sample];
360 *buf_++ = (FLAC__byte)a_word;
363 else if(channels == 1) {
364 for(sample = 0; sample < samples; sample++) {
365 a_word = signal[0][sample];
366 *buf_++ = (FLAC__byte)a_word;
370 for(sample = 0; sample < samples; sample++) {
371 for(channel = 0; channel < channels; channel++) {
372 a_word = signal[channel][sample];
373 *buf_++ = (FLAC__byte)a_word;
378 else { /* bytes_per_sample == 4, maybe optimize more later */
379 for(sample = 0; sample < samples; sample++) {
380 for(channel = 0; channel < channels; channel++) {
381 a_word = signal[channel][sample];
382 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
383 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
384 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
385 *buf_++ = (FLAC__byte)a_word;
392 * Convert the incoming audio signal to a byte stream and FLAC__MD5Update it.
394 FLAC__bool FLAC__MD5Accumulate(FLAC__MD5Context *ctx, const FLAC__int32 * const signal[], unsigned channels, unsigned samples, unsigned bytes_per_sample)
396 const size_t bytes_needed = (size_t)channels * (size_t)samples * (size_t)bytes_per_sample;
399 if((size_t)channels > SIZE_MAX / (size_t)bytes_per_sample)
401 if((size_t)channels * (size_t)bytes_per_sample > SIZE_MAX / (size_t)samples)
404 if(ctx->capacity < bytes_needed) {
405 FLAC__byte *tmp = (FLAC__byte*)realloc(ctx->internal_buf, bytes_needed);
407 free(ctx->internal_buf);
408 if(0 == (ctx->internal_buf = (FLAC__byte*)safe_malloc_(bytes_needed)))
412 ctx->internal_buf = tmp;
413 ctx->capacity = bytes_needed;
416 format_input_(ctx->internal_buf, signal, channels, samples, bytes_per_sample);
418 FLAC__MD5Update(ctx, ctx->internal_buf, bytes_needed);