1 /* libFLAC - Free Lossless Audio Codec library
2 * Copyright (C) 2000,2001,2002 Josh Coalson
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
21 #include "private/fixed.h"
22 #include "FLAC/assert.h"
25 /* math.h in VC++ doesn't seem to have this (how Microsoft is that?) */
26 #define M_LN2 0.69314718055994530942
32 #define min(x,y) ((x) < (y)? (x) : (y))
37 #define local_abs(x) ((unsigned)((x)<0? -(x) : (x)))
39 unsigned FLAC__fixed_compute_best_predictor(const FLAC__int32 data[], unsigned data_len, FLAC__real residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1])
41 FLAC__int32 last_error_0 = data[-1];
42 FLAC__int32 last_error_1 = data[-1] - data[-2];
43 FLAC__int32 last_error_2 = last_error_1 - (data[-2] - data[-3]);
44 FLAC__int32 last_error_3 = last_error_2 - (data[-2] - 2*data[-3] + data[-4]);
45 FLAC__int32 error, save;
46 FLAC__uint32 total_error_0 = 0, total_error_1 = 0, total_error_2 = 0, total_error_3 = 0, total_error_4 = 0;
49 for(i = 0; i < data_len; i++) {
50 error = data[i] ; total_error_0 += local_abs(error); save = error;
51 error -= last_error_0; total_error_1 += local_abs(error); last_error_0 = save; save = error;
52 error -= last_error_1; total_error_2 += local_abs(error); last_error_1 = save; save = error;
53 error -= last_error_2; total_error_3 += local_abs(error); last_error_2 = save; save = error;
54 error -= last_error_3; total_error_4 += local_abs(error); last_error_3 = save;
57 if(total_error_0 < min(min(min(total_error_1, total_error_2), total_error_3), total_error_4))
59 else if(total_error_1 < min(min(total_error_2, total_error_3), total_error_4))
61 else if(total_error_2 < min(total_error_3, total_error_4))
63 else if(total_error_3 < total_error_4)
68 /* Estimate the expected number of bits per residual signal sample. */
69 /* 'total_error*' is linearly related to the variance of the residual */
70 /* signal, so we use it directly to compute E(|x|) */
71 FLAC__ASSERT(data_len > 0 || total_error_0 == 0);
72 FLAC__ASSERT(data_len > 0 || total_error_1 == 0);
73 FLAC__ASSERT(data_len > 0 || total_error_2 == 0);
74 FLAC__ASSERT(data_len > 0 || total_error_3 == 0);
75 FLAC__ASSERT(data_len > 0 || total_error_4 == 0);
76 residual_bits_per_sample[0] = (FLAC__real)((total_error_0 > 0) ? log(M_LN2 * (double)total_error_0 / (double)data_len) / M_LN2 : 0.0);
77 residual_bits_per_sample[1] = (FLAC__real)((total_error_1 > 0) ? log(M_LN2 * (double)total_error_1 / (double)data_len) / M_LN2 : 0.0);
78 residual_bits_per_sample[2] = (FLAC__real)((total_error_2 > 0) ? log(M_LN2 * (double)total_error_2 / (double)data_len) / M_LN2 : 0.0);
79 residual_bits_per_sample[3] = (FLAC__real)((total_error_3 > 0) ? log(M_LN2 * (double)total_error_3 / (double)data_len) / M_LN2 : 0.0);
80 residual_bits_per_sample[4] = (FLAC__real)((total_error_4 > 0) ? log(M_LN2 * (double)total_error_4 / (double)data_len) / M_LN2 : 0.0);
85 unsigned FLAC__fixed_compute_best_predictor_wide(const FLAC__int32 data[], unsigned data_len, FLAC__real residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1])
87 FLAC__int32 last_error_0 = data[-1];
88 FLAC__int32 last_error_1 = data[-1] - data[-2];
89 FLAC__int32 last_error_2 = last_error_1 - (data[-2] - data[-3]);
90 FLAC__int32 last_error_3 = last_error_2 - (data[-2] - 2*data[-3] + data[-4]);
91 FLAC__int32 error, save;
92 /* total_error_* are 64-bits to avoid overflow when encoding
93 * erratic signals when the bits-per-sample and blocksize are
96 FLAC__uint64 total_error_0 = 0, total_error_1 = 0, total_error_2 = 0, total_error_3 = 0, total_error_4 = 0;
99 for(i = 0; i < data_len; i++) {
100 error = data[i] ; total_error_0 += local_abs(error); save = error;
101 error -= last_error_0; total_error_1 += local_abs(error); last_error_0 = save; save = error;
102 error -= last_error_1; total_error_2 += local_abs(error); last_error_1 = save; save = error;
103 error -= last_error_2; total_error_3 += local_abs(error); last_error_2 = save; save = error;
104 error -= last_error_3; total_error_4 += local_abs(error); last_error_3 = save;
107 if(total_error_0 < min(min(min(total_error_1, total_error_2), total_error_3), total_error_4))
109 else if(total_error_1 < min(min(total_error_2, total_error_3), total_error_4))
111 else if(total_error_2 < min(total_error_3, total_error_4))
113 else if(total_error_3 < total_error_4)
118 /* Estimate the expected number of bits per residual signal sample. */
119 /* 'total_error*' is linearly related to the variance of the residual */
120 /* signal, so we use it directly to compute E(|x|) */
121 FLAC__ASSERT(data_len > 0 || total_error_0 == 0);
122 FLAC__ASSERT(data_len > 0 || total_error_1 == 0);
123 FLAC__ASSERT(data_len > 0 || total_error_2 == 0);
124 FLAC__ASSERT(data_len > 0 || total_error_3 == 0);
125 FLAC__ASSERT(data_len > 0 || total_error_4 == 0);
126 #if defined _MSC_VER || defined __MINGW32__
127 /* with VC++ you have to spoon feed it the casting */
128 residual_bits_per_sample[0] = (FLAC__real)((total_error_0 > 0) ? log(M_LN2 * (double)(FLAC__int64)total_error_0 / (double)data_len) / M_LN2 : 0.0);
129 residual_bits_per_sample[1] = (FLAC__real)((total_error_1 > 0) ? log(M_LN2 * (double)(FLAC__int64)total_error_1 / (double)data_len) / M_LN2 : 0.0);
130 residual_bits_per_sample[2] = (FLAC__real)((total_error_2 > 0) ? log(M_LN2 * (double)(FLAC__int64)total_error_2 / (double)data_len) / M_LN2 : 0.0);
131 residual_bits_per_sample[3] = (FLAC__real)((total_error_3 > 0) ? log(M_LN2 * (double)(FLAC__int64)total_error_3 / (double)data_len) / M_LN2 : 0.0);
132 residual_bits_per_sample[4] = (FLAC__real)((total_error_4 > 0) ? log(M_LN2 * (double)(FLAC__int64)total_error_4 / (double)data_len) / M_LN2 : 0.0);
134 residual_bits_per_sample[0] = (FLAC__real)((total_error_0 > 0) ? log(M_LN2 * (double)total_error_0 / (double)data_len) / M_LN2 : 0.0);
135 residual_bits_per_sample[1] = (FLAC__real)((total_error_1 > 0) ? log(M_LN2 * (double)total_error_1 / (double)data_len) / M_LN2 : 0.0);
136 residual_bits_per_sample[2] = (FLAC__real)((total_error_2 > 0) ? log(M_LN2 * (double)total_error_2 / (double)data_len) / M_LN2 : 0.0);
137 residual_bits_per_sample[3] = (FLAC__real)((total_error_3 > 0) ? log(M_LN2 * (double)total_error_3 / (double)data_len) / M_LN2 : 0.0);
138 residual_bits_per_sample[4] = (FLAC__real)((total_error_4 > 0) ? log(M_LN2 * (double)total_error_4 / (double)data_len) / M_LN2 : 0.0);
144 void FLAC__fixed_compute_residual(const FLAC__int32 data[], unsigned data_len, unsigned order, FLAC__int32 residual[])
146 int i, idata_len = (int)data_len;
150 for(i = 0; i < idata_len; i++) {
151 residual[i] = data[i];
155 for(i = 0; i < idata_len; i++) {
156 residual[i] = data[i] - data[i-1];
160 for(i = 0; i < idata_len; i++) {
161 /* == data[i] - 2*data[i-1] + data[i-2] */
162 residual[i] = data[i] - (data[i-1] << 1) + data[i-2];
166 for(i = 0; i < idata_len; i++) {
167 /* == data[i] - 3*data[i-1] + 3*data[i-2] - data[i-3] */
168 residual[i] = data[i] - (((data[i-1]-data[i-2])<<1) + (data[i-1]-data[i-2])) - data[i-3];
172 for(i = 0; i < idata_len; i++) {
173 /* == data[i] - 4*data[i-1] + 6*data[i-2] - 4*data[i-3] + data[i-4] */
174 residual[i] = data[i] - ((data[i-1]+data[i-3])<<2) + ((data[i-2]<<2) + (data[i-2]<<1)) + data[i-4];
182 void FLAC__fixed_restore_signal(const FLAC__int32 residual[], unsigned data_len, unsigned order, FLAC__int32 data[])
184 int i, idata_len = (int)data_len;
188 for(i = 0; i < idata_len; i++) {
189 data[i] = residual[i];
193 for(i = 0; i < idata_len; i++) {
194 data[i] = residual[i] + data[i-1];
198 for(i = 0; i < idata_len; i++) {
199 /* == residual[i] + 2*data[i-1] - data[i-2] */
200 data[i] = residual[i] + (data[i-1]<<1) - data[i-2];
204 for(i = 0; i < idata_len; i++) {
205 /* residual[i] + 3*data[i-1] - 3*data[i-2]) + data[i-3] */
206 data[i] = residual[i] + (((data[i-1]-data[i-2])<<1) + (data[i-1]-data[i-2])) + data[i-3];
210 for(i = 0; i < idata_len; i++) {
211 /* == residual[i] + 4*data[i-1] - 6*data[i-2] + 4*data[i-3] - data[i-4] */
212 data[i] = residual[i] + ((data[i-1]+data[i-3])<<2) - ((data[i-2]<<2) + (data[i-2]<<1)) - data[i-4];