add string arrays for enums
[platform/upstream/flac.git] / src / libFLAC / encoder.c
1 /* libFLAC - Free Lossless Audio Coder library
2  * Copyright (C) 2000  Josh Coalson
3  *
4  * This library is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU Library General Public
6  * License as published by the Free Software Foundation; either
7  * version 2 of the License, or (at your option) any later version.
8  *
9  * This library is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * Library General Public License for more details.
13  *
14  * You should have received a copy of the GNU Library General Public
15  * License along with this library; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA  02111-1307, USA.
18  */
19
20 #include <assert.h>
21 #include <stdio.h>
22 #include <stdlib.h> /* for malloc() */
23 #include <string.h> /* for memcpy() */
24 #include "FLAC/encoder.h"
25 #include "private/bitbuffer.h"
26 #include "private/encoder_framing.h"
27 #include "private/fixed.h"
28 #include "private/lpc.h"
29
30 #ifdef min
31 #undef min
32 #endif
33 #define min(x,y) ((x)<(y)?(x):(y))
34
35 #ifdef max
36 #undef max
37 #endif
38 #define max(x,y) ((x)>(y)?(x):(y))
39
40 #ifdef RICE_BITS
41 #undef RICE_BITS
42 #endif
43 #define RICE_BITS(value, parameter) (2 + (parameter) + (((unsigned)((value) < 0? -(value) : (value))) >> (parameter)))
44
45 typedef struct FLAC__EncoderPrivate {
46         unsigned input_capacity;                    /* current size (in samples) of the signal and residual buffers */
47         int32 *integer_signal[FLAC__MAX_CHANNELS];  /* the integer version of the input signal */
48         int32 *integer_signal_mid_side[2];          /* the integer version of the mid-side input signal (stereo only) */
49         real *real_signal[FLAC__MAX_CHANNELS];      /* the floating-point version of the input signal */
50         real *real_signal_mid_side[2];              /* the floating-point version of the mid-side input signal (stereo only) */
51         int32 *residual[2];                         /* where the candidate and best subframe residual signals will be stored */
52         unsigned best_residual;                     /* index into the above */
53         FLAC__BitBuffer frame;                      /* the current frame being worked on */
54         FLAC__BitBuffer frame_mid_side;             /* special parallel workspace for the mid-side coded version of the current frame */
55         FLAC__BitBuffer frame_left_side;            /* special parallel workspace for the left-side coded version of the current frame */
56         FLAC__BitBuffer frame_right_side;           /* special parallel workspace for the right-side coded version of the current frame */
57         FLAC__SubframeHeader best_subframe, candidate_subframe;
58         bool current_frame_can_do_mid_side;         /* encoder sets this false when any given sample of a frame's side channel exceeds 16 bits */
59         FLAC__StreamMetaData metadata;
60         unsigned current_sample_number;
61         unsigned current_frame_number;
62         FLAC__EncoderWriteStatus (*write_callback)(const FLAC__Encoder *encoder, const byte buffer[], unsigned bytes, unsigned samples, unsigned current_frame, void *client_data);
63         void (*metadata_callback)(const FLAC__Encoder *encoder, const FLAC__StreamMetaData *metadata, void *client_data);
64         void *client_data;
65 } FLAC__EncoderPrivate;
66
67 static bool encoder_resize_buffers_(FLAC__Encoder *encoder, unsigned new_size);
68 static bool encoder_process_frame_(FLAC__Encoder *encoder, bool is_last_frame);
69 static bool encoder_process_subframes_(FLAC__Encoder *encoder, bool is_last_frame, const FLAC__FrameHeader *frame_header, unsigned channels, const int32 *integer_signal[], const real *real_signal[], FLAC__BitBuffer *bitbuffer);
70 static unsigned encoder_evaluate_constant_subframe_(const int32 signal, unsigned bits_per_sample, FLAC__SubframeHeader *subframe);
71 static unsigned encoder_evaluate_fixed_subframe_(const int32 signal[], int32 residual[], unsigned blocksize, unsigned bits_per_sample, unsigned order, unsigned rice_parameter, unsigned max_partition_order, FLAC__SubframeHeader *subframe);
72 static unsigned encoder_evaluate_lpc_subframe_(const int32 signal[], int32 residual[], const real lp_coeff[], unsigned blocksize, unsigned bits_per_sample, unsigned order, unsigned qlp_coeff_precision, unsigned rice_parameter, unsigned max_partition_order, FLAC__SubframeHeader *subframe);
73 static unsigned encoder_evaluate_verbatim_subframe_(unsigned blocksize, unsigned bits_per_sample, FLAC__SubframeHeader *subframe);
74 static unsigned encoder_find_best_partition_order_(int32 residual[], unsigned residual_samples, unsigned predictor_order, unsigned rice_parameter, unsigned max_partition_order, unsigned *best_partition_order, unsigned best_parameters[]);
75 static bool encoder_generate_constant_subframe_(const FLAC__SubframeHeader *header, unsigned bits_per_sample, FLAC__BitBuffer *bitbuffer);
76 static bool encoder_generate_fixed_subframe_(const FLAC__SubframeHeader *header, int32 residual[], unsigned blocksize, unsigned bits_per_sample, FLAC__BitBuffer *bitbuffer);
77 static bool encoder_generate_lpc_subframe_(const FLAC__SubframeHeader *header, int32 residual[], unsigned blocksize, unsigned bits_per_sample, FLAC__BitBuffer *bitbuffer);
78 static bool encoder_generate_verbatim_subframe_(const FLAC__SubframeHeader *header, const int32 signal[], unsigned blocksize, unsigned bits_per_sample, FLAC__BitBuffer *bitbuffer);
79 static void encoder_promote_candidate_subframe_(FLAC__Encoder *encoder);
80 static bool encoder_set_partitioned_rice_(const int32 residual[], const unsigned residual_samples, const unsigned predictor_order, const unsigned rice_parameter, const unsigned partition_order, unsigned parameters[], unsigned *bits);
81
82 const char *FLAC__EncoderWriteStatusString[] = {
83         "FLAC__ENCODER_WRITE_OK",
84         "FLAC__ENCODER_WRITE_FATAL_ERROR"
85 };
86
87 const char *FLAC__EncoderStateString[] = {
88         "FLAC__ENCODER_OK",
89         "FLAC__ENCODER_UNINITIALIZED",
90         "FLAC__ENCODER_INVALID_NUMBER_OF_CHANNELS",
91         "FLAC__ENCODER_INVALID_BITS_PER_SAMPLE",
92         "FLAC__ENCODER_INVALID_SAMPLE_RATE",
93         "FLAC__ENCODER_INVALID_BLOCK_SIZE",
94         "FLAC__ENCODER_INVALID_QLP_COEFF_PRECISION",
95         "FLAC__ENCODER_MID_SIDE_CHANNELS_MISMATCH",
96         "FLAC__ENCODER_MID_SIDE_SAMPLE_SIZE_MISMATCH",
97         "FLAC__ENCODER_BLOCK_SIZE_TOO_SMALL_FOR_LPC_ORDER",
98         "FLAC__ENCODER_NOT_STREAMABLE",
99         "FLAC__ENCODER_FRAMING_ERROR",
100         "FLAC__ENCODER_FATAL_ERROR_WHILE_ENCODING",
101         "FLAC__ENCODER_FATAL_ERROR_WHILE_WRITING",
102         "FLAC__ENCODER_MEMORY_ALLOCATION_ERROR"
103 };
104
105
106 bool encoder_resize_buffers_(FLAC__Encoder *encoder, unsigned new_size)
107 {
108         bool ok;
109         unsigned i;
110         int32 *previous_is, *current_is;
111         real *previous_rs, *current_rs;
112         int32 *residual;
113
114         assert(new_size > 0);
115         assert(encoder->state == FLAC__ENCODER_OK);
116         assert(encoder->guts->current_sample_number == 0);
117
118         /* To avoid excessive malloc'ing, we only grow the buffer; no shrinking. */
119         if(new_size <= encoder->guts->input_capacity)
120                 return true;
121
122         ok = 1;
123         if(ok) {
124                 for(i = 0; ok && i < encoder->channels; i++) {
125                         /* integer version of the signal */
126                         previous_is = encoder->guts->integer_signal[i];
127                         current_is = (int32*)malloc(sizeof(int32) * new_size);
128                         if(0 == current_is) {
129                                 encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
130                                 ok = 0;
131                         }
132                         else {
133                                 encoder->guts->integer_signal[i] = current_is;
134                                 if(previous_is != 0)
135                                         free(previous_is);
136                         }
137                         /* real version of the signal */
138                         previous_rs = encoder->guts->real_signal[i];
139                         current_rs = (real*)malloc(sizeof(real) * new_size);
140                         if(0 == current_rs) {
141                                 encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
142                                 ok = 0;
143                         }
144                         else {
145                                 encoder->guts->real_signal[i] = current_rs;
146                                 if(previous_rs != 0)
147                                         free(previous_rs);
148                         }
149                 }
150         }
151         if(ok) {
152                 for(i = 0; ok && i < 2; i++) {
153                         /* integer version of the signal */
154                         previous_is = encoder->guts->integer_signal_mid_side[i];
155                         current_is = (int32*)malloc(sizeof(int32) * new_size);
156                         if(0 == current_is) {
157                                 encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
158                                 ok = 0;
159                         }
160                         else {
161                                 encoder->guts->integer_signal_mid_side[i] = current_is;
162                                 if(previous_is != 0)
163                                         free(previous_is);
164                         }
165                         /* real version of the signal */
166                         previous_rs = encoder->guts->real_signal_mid_side[i];
167                         current_rs = (real*)malloc(sizeof(real) * new_size);
168                         if(0 == current_rs) {
169                                 encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
170                                 ok = 0;
171                         }
172                         else {
173                                 encoder->guts->real_signal_mid_side[i] = current_rs;
174                                 if(previous_rs != 0)
175                                         free(previous_rs);
176                         }
177                 }
178         }
179         if(ok) {
180                 for(i = 0; i < 2; i++) {
181                         residual = (int32*)malloc(sizeof(int32) * new_size);
182                         if(0 == residual) {
183                                 encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
184                                 ok = 0;
185                         }
186                         else {
187                                 if(encoder->guts->residual[i] != 0)
188                                         free(encoder->guts->residual[i]);
189                                 encoder->guts->residual[i] = residual;
190                         }
191                 }
192         }
193         if(ok)
194                 encoder->guts->input_capacity = new_size;
195
196         return ok;
197 }
198
199 FLAC__Encoder *FLAC__encoder_get_new_instance()
200 {
201         FLAC__Encoder *encoder = (FLAC__Encoder*)malloc(sizeof(FLAC__Encoder));
202         if(encoder != 0) {
203                 encoder->state = FLAC__ENCODER_UNINITIALIZED;
204                 encoder->guts = 0;
205         }
206         return encoder;
207 }
208
209 void FLAC__encoder_free_instance(FLAC__Encoder *encoder)
210 {
211         assert(encoder != 0);
212         free(encoder);
213 }
214
215 FLAC__EncoderState FLAC__encoder_init(FLAC__Encoder *encoder, FLAC__EncoderWriteStatus (*write_callback)(const FLAC__Encoder *encoder, const byte buffer[], unsigned bytes, unsigned samples, unsigned current_frame, void *client_data), void (*metadata_callback)(const FLAC__Encoder *encoder, const FLAC__StreamMetaData *metadata, void *client_data), void *client_data)
216 {
217         unsigned i;
218
219         assert(sizeof(int) >= 4); /* we want to die right away if this is not true */
220         assert(encoder != 0);
221         assert(write_callback != 0);
222         assert(metadata_callback != 0);
223         assert(encoder->state == FLAC__ENCODER_UNINITIALIZED);
224         assert(encoder->guts == 0);
225
226         encoder->state = FLAC__ENCODER_OK;
227
228         if(encoder->channels == 0 || encoder->channels > FLAC__MAX_CHANNELS)
229                 return encoder->state = FLAC__ENCODER_INVALID_NUMBER_OF_CHANNELS;
230
231         if(encoder->do_mid_side_stereo && encoder->channels != 2)
232                 return encoder->state = FLAC__ENCODER_MID_SIDE_CHANNELS_MISMATCH;
233
234         if(encoder->do_mid_side_stereo && encoder->bits_per_sample > 16)
235                 return encoder->state = FLAC__ENCODER_MID_SIDE_SAMPLE_SIZE_MISMATCH;
236
237         if(encoder->bits_per_sample == 0 || encoder->bits_per_sample > FLAC__MAX_BITS_PER_SAMPLE)
238                 return encoder->state = FLAC__ENCODER_INVALID_BITS_PER_SAMPLE;
239
240         if(encoder->sample_rate == 0 || encoder->sample_rate > FLAC__MAX_SAMPLE_RATE)
241                 return encoder->state = FLAC__ENCODER_INVALID_SAMPLE_RATE;
242
243         if(encoder->blocksize < FLAC__MIN_BLOCK_SIZE || encoder->blocksize > FLAC__MAX_BLOCK_SIZE)
244                 return encoder->state = FLAC__ENCODER_INVALID_BLOCK_SIZE;
245
246         if(encoder->blocksize < encoder->max_lpc_order)
247                 return encoder->state = FLAC__ENCODER_BLOCK_SIZE_TOO_SMALL_FOR_LPC_ORDER;
248
249         if(encoder->qlp_coeff_precision == 0) {
250                 if(encoder->bits_per_sample < 16) {
251                         /* @@@ need some data about how to set this here w.r.t. blocksize and sample rate */
252                         /* @@@ until then we'll make a guess */
253                         encoder->qlp_coeff_precision = max(5, 2 + encoder->bits_per_sample / 2);
254                 }
255                 else if(encoder->bits_per_sample == 16) {
256                         if(encoder->blocksize <= 192)
257                                 encoder->qlp_coeff_precision = 7;
258                         else if(encoder->blocksize <= 384)
259                                 encoder->qlp_coeff_precision = 8;
260                         else if(encoder->blocksize <= 576)
261                                 encoder->qlp_coeff_precision = 9;
262                         else if(encoder->blocksize <= 1152)
263                                 encoder->qlp_coeff_precision = 10;
264                         else if(encoder->blocksize <= 2304)
265                                 encoder->qlp_coeff_precision = 11;
266                         else if(encoder->blocksize <= 4608)
267                                 encoder->qlp_coeff_precision = 12;
268                         else
269                                 encoder->qlp_coeff_precision = 13;
270                 }
271                 else {
272                         encoder->qlp_coeff_precision = min(13, 8*sizeof(int32) - encoder->bits_per_sample - 1);
273                 }
274         }
275         else if(encoder->qlp_coeff_precision < FLAC__MIN_QLP_COEFF_PRECISION || encoder->qlp_coeff_precision + encoder->bits_per_sample >= 8*sizeof(uint32))
276                 return encoder->state = FLAC__ENCODER_INVALID_QLP_COEFF_PRECISION;
277
278         if(encoder->streamable_subset) {
279                 if(encoder->bits_per_sample != 8 && encoder->bits_per_sample != 12 && encoder->bits_per_sample != 16 && encoder->bits_per_sample != 20 && encoder->bits_per_sample != 24)
280                         return encoder->state = FLAC__ENCODER_NOT_STREAMABLE;
281                 if(encoder->sample_rate > 655350)
282                         return encoder->state = FLAC__ENCODER_NOT_STREAMABLE;
283         }
284
285         if(encoder->rice_optimization_level >= (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN))
286                 encoder->rice_optimization_level = (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN) - 1;
287
288         encoder->guts = (FLAC__EncoderPrivate*)malloc(sizeof(FLAC__EncoderPrivate));
289         if(encoder->guts == 0)
290                 return encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
291
292         encoder->guts->input_capacity = 0;
293         for(i = 0; i < encoder->channels; i++) {
294                 encoder->guts->integer_signal[i] = 0;
295                 encoder->guts->real_signal[i] = 0;
296         }
297         for(i = 0; i < 2; i++) {
298                 encoder->guts->integer_signal_mid_side[i] = 0;
299                 encoder->guts->real_signal_mid_side[i] = 0;
300         }
301         encoder->guts->residual[0] = 0;
302         encoder->guts->residual[1] = 0;
303         encoder->guts->best_residual = 0;
304         encoder->guts->current_frame_can_do_mid_side = true;
305         encoder->guts->current_sample_number = 0;
306         encoder->guts->current_frame_number = 0;
307
308         if(!encoder_resize_buffers_(encoder, encoder->blocksize)) {
309                 /* the above function sets the state for us in case of an error */
310                 return encoder->state;
311         }
312         FLAC__bitbuffer_init(&encoder->guts->frame);
313         encoder->guts->write_callback = write_callback;
314         encoder->guts->metadata_callback = metadata_callback;
315         encoder->guts->client_data = client_data;
316
317         /*
318          * write the stream header
319          */
320         if(!FLAC__bitbuffer_clear(&encoder->guts->frame))
321                 return encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
322
323         if(!FLAC__bitbuffer_write_raw_uint32(&encoder->guts->frame, FLAC__STREAM_SYNC, FLAC__STREAM_SYNC_LEN))
324                 return encoder->state = FLAC__ENCODER_FRAMING_ERROR;
325
326         encoder->guts->metadata.type = FLAC__METADATA_TYPE_ENCODING;
327         encoder->guts->metadata.is_last = true;
328         encoder->guts->metadata.length = FLAC__STREAM_METADATA_ENCODING_LENGTH;
329         encoder->guts->metadata.data.encoding.min_blocksize = encoder->blocksize; /* this encoder uses the same blocksize for the whole stream */
330         encoder->guts->metadata.data.encoding.max_blocksize = encoder->blocksize;
331         encoder->guts->metadata.data.encoding.min_framesize = 0; /* we don't know this yet; have to fill it in later */
332         encoder->guts->metadata.data.encoding.max_framesize = 0; /* we don't know this yet; have to fill it in later */
333         encoder->guts->metadata.data.encoding.sample_rate = encoder->sample_rate;
334         encoder->guts->metadata.data.encoding.channels = encoder->channels;
335         encoder->guts->metadata.data.encoding.bits_per_sample = encoder->bits_per_sample;
336         encoder->guts->metadata.data.encoding.total_samples = 0; /* we don't know this yet; have to fill it in later */
337         if(!FLAC__add_metadata_block(&encoder->guts->metadata, &encoder->guts->frame))
338                 return encoder->state = FLAC__ENCODER_FRAMING_ERROR;
339
340         assert(encoder->guts->frame.bits == 0); /* assert that we're byte-aligned before writing */
341         assert(encoder->guts->frame.total_consumed_bits == 0); /* assert that no reading of the buffer was done */
342         if(encoder->guts->write_callback(encoder, encoder->guts->frame.buffer, encoder->guts->frame.bytes, 0, encoder->guts->current_frame_number, encoder->guts->client_data) != FLAC__ENCODER_WRITE_OK)
343                 return encoder->state = FLAC__ENCODER_FATAL_ERROR_WHILE_WRITING;
344
345         /* now that the metadata block is written, we can init this to an absurdly-high value */
346         encoder->guts->metadata.data.encoding.min_framesize = (1u << FLAC__STREAM_METADATA_ENCODING_MIN_FRAME_SIZE_LEN) - 1;
347
348         return encoder->state;
349 }
350
351 void FLAC__encoder_finish(FLAC__Encoder *encoder)
352 {
353         unsigned i;
354
355         assert(encoder != 0);
356         if(encoder->state == FLAC__ENCODER_UNINITIALIZED)
357                 return;
358         if(encoder->guts->current_sample_number != 0) {
359                 encoder->blocksize = encoder->guts->current_sample_number;
360                 encoder_process_frame_(encoder, true); /* true => is last frame */
361         }
362         encoder->guts->metadata_callback(encoder, &encoder->guts->metadata, encoder->guts->client_data);
363         if(encoder->guts != 0) {
364                 for(i = 0; i < encoder->channels; i++) {
365                         if(encoder->guts->integer_signal[i] != 0) {
366                                 free(encoder->guts->integer_signal[i]);
367                                 encoder->guts->integer_signal[i] = 0;
368                         }
369                         if(encoder->guts->real_signal[i] != 0) {
370                                 free(encoder->guts->real_signal[i]);
371                                 encoder->guts->real_signal[i] = 0;
372                         }
373                 }
374                 for(i = 0; i < 2; i++) {
375                         if(encoder->guts->integer_signal_mid_side[i] != 0) {
376                                 free(encoder->guts->integer_signal_mid_side[i]);
377                                 encoder->guts->integer_signal_mid_side[i] = 0;
378                         }
379                         if(encoder->guts->real_signal_mid_side[i] != 0) {
380                                 free(encoder->guts->real_signal_mid_side[i]);
381                                 encoder->guts->real_signal_mid_side[i] = 0;
382                         }
383                 }
384                 for(i = 0; i < 2; i++) {
385                         if(encoder->guts->residual[i] != 0) {
386                                 free(encoder->guts->residual[i]);
387                                 encoder->guts->residual[i] = 0;
388                         }
389                 }
390                 FLAC__bitbuffer_free(&encoder->guts->frame);
391                 free(encoder->guts);
392                 encoder->guts = 0;
393         }
394         encoder->state = FLAC__ENCODER_UNINITIALIZED;
395 }
396
397 bool FLAC__encoder_process(FLAC__Encoder *encoder, const int32 *buf[], unsigned samples)
398 {
399         unsigned i, j, channel;
400         int32 x, mid, side;
401         const bool ms = encoder->do_mid_side_stereo && encoder->channels == 2;
402         const int32 min_side = -((int64)1 << (encoder->bits_per_sample-1));
403         const int32 max_side =  ((int64)1 << (encoder->bits_per_sample-1)) - 1;
404
405         assert(encoder != 0);
406         assert(encoder->state == FLAC__ENCODER_OK);
407
408         j = 0;
409         do {
410                 for(i = encoder->guts->current_sample_number; i < encoder->blocksize && j < samples; i++, j++) {
411                         for(channel = 0; channel < encoder->channels; channel++) {
412                                 x = buf[channel][j];
413                                 encoder->guts->integer_signal[channel][i] = x;
414                                 encoder->guts->real_signal[channel][i] = (real)x;
415                         }
416                         if(ms && encoder->guts->current_frame_can_do_mid_side) {
417                                 side = buf[0][j] - buf[1][j];
418                                 if(side < min_side || side > max_side) {
419                                         encoder->guts->current_frame_can_do_mid_side = false;
420                                 }
421                                 else {
422                                         mid = (buf[0][j] + buf[1][j]) >> 1; /* NOTE: not the same as divide-by-two ! */
423                                         encoder->guts->integer_signal_mid_side[0][i] = mid;
424                                         encoder->guts->integer_signal_mid_side[1][i] = side;
425                                         encoder->guts->real_signal_mid_side[0][i] = (real)mid;
426                                         encoder->guts->real_signal_mid_side[1][i] = (real)side;
427                                 }
428                         }
429                         encoder->guts->current_sample_number++;
430                 }
431                 if(i == encoder->blocksize) {
432                         if(!encoder_process_frame_(encoder, false)) /* false => not last frame */
433                                 return false;
434                 }
435         } while(j < samples);
436
437         return true;
438 }
439
440 /* 'samples' is channel-wide samples, e.g. for 1 second at 44100Hz, 'samples' = 44100 regardless of the number of channels */
441 bool FLAC__encoder_process_interleaved(FLAC__Encoder *encoder, const int32 buf[], unsigned samples)
442 {
443         unsigned i, j, k, channel;
444         int32 x, left = 0, mid, side;
445         const bool ms = encoder->do_mid_side_stereo && encoder->channels == 2;
446         const int32 min_side = -((int64)1 << (encoder->bits_per_sample-1));
447         const int32 max_side =  ((int64)1 << (encoder->bits_per_sample-1)) - 1;
448
449         assert(encoder != 0);
450         assert(encoder->state == FLAC__ENCODER_OK);
451
452         j = k = 0;
453         do {
454                 for(i = encoder->guts->current_sample_number; i < encoder->blocksize && j < samples; i++, j++, k++) {
455                         for(channel = 0; channel < encoder->channels; channel++, k++) {
456                                 x = buf[k];
457                                 encoder->guts->integer_signal[channel][i] = x;
458                                 encoder->guts->real_signal[channel][i] = (real)x;
459                                 if(ms && encoder->guts->current_frame_can_do_mid_side) {
460                                         if(channel == 0) {
461                                                 left = x;
462                                         }
463                                         else {
464                                                 side = left - x;
465                                                 if(side < min_side || side > max_side) {
466                                                         encoder->guts->current_frame_can_do_mid_side = false;
467                                                 }
468                                                 else {
469                                                         mid = (left + x) >> 1; /* NOTE: not the same as divide-by-two ! */
470                                                         encoder->guts->integer_signal_mid_side[0][i] = mid;
471                                                         encoder->guts->integer_signal_mid_side[1][i] = side;
472                                                         encoder->guts->real_signal_mid_side[0][i] = (real)mid;
473                                                         encoder->guts->real_signal_mid_side[1][i] = (real)side;
474                                                 }
475                                         }
476                                 }
477                         }
478                         encoder->guts->current_sample_number++;
479                 }
480                 if(i == encoder->blocksize) {
481                         if(!encoder_process_frame_(encoder, false)) /* false => not last frame */
482                                 return false;
483                 }
484         } while(j < samples);
485
486         return true;
487 }
488
489 bool encoder_process_frame_(FLAC__Encoder *encoder, bool is_last_frame)
490 {
491         FLAC__FrameHeader frame_header;
492         FLAC__BitBuffer *smallest_frame;
493
494         assert(encoder->state == FLAC__ENCODER_OK);
495
496         /*
497          * First do a normal encoding pass
498          */
499         frame_header.blocksize = encoder->blocksize;
500         frame_header.sample_rate = encoder->sample_rate;
501         frame_header.channels = encoder->channels;
502         frame_header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT; /* the default unless the encoder determines otherwise */
503         frame_header.bits_per_sample = encoder->bits_per_sample;
504         frame_header.number.frame_number = encoder->guts->current_frame_number;
505
506         if(!FLAC__bitbuffer_clear(&encoder->guts->frame)) {
507                 encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
508                 return false;
509         }
510         if(!FLAC__frame_add_header(&frame_header, encoder->streamable_subset, is_last_frame, &encoder->guts->frame)) {
511                 encoder->state = FLAC__ENCODER_FRAMING_ERROR;
512                 return false;
513         }
514
515         if(!encoder_process_subframes_(encoder, is_last_frame, &frame_header, encoder->channels, encoder->guts->integer_signal, encoder->guts->real_signal, &encoder->guts->frame))
516                 return false;
517
518         smallest_frame = &encoder->guts->frame;
519
520         /*
521          * Now try a mid-side version if necessary; otherwise, just use the previous step's frame
522          */
523         if(encoder->do_mid_side_stereo && encoder->guts->current_frame_can_do_mid_side) {
524                 int32 *integer_signal[2];
525                 real *real_signal[2];
526
527                 assert(encoder->channels == 2);
528
529                 /* mid-side */
530                 frame_header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_MID_SIDE;
531                 if(!FLAC__bitbuffer_clear(&encoder->guts->frame_mid_side)) {
532                         encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
533                         return false;
534                 }
535                 if(!FLAC__frame_add_header(&frame_header, encoder->streamable_subset, is_last_frame, &encoder->guts->frame_mid_side)) {
536                         encoder->state = FLAC__ENCODER_FRAMING_ERROR;
537                         return false;
538                 }
539                 integer_signal[0] = encoder->guts->integer_signal_mid_side[0]; /* mid channel */
540                 integer_signal[1] = encoder->guts->integer_signal_mid_side[1]; /* side channel */
541                 real_signal[0] = encoder->guts->real_signal_mid_side[0]; /* mid channel */
542                 real_signal[1] = encoder->guts->real_signal_mid_side[1]; /* side channel */
543                 if(!encoder_process_subframes_(encoder, is_last_frame, &frame_header, encoder->channels, integer_signal, real_signal, &encoder->guts->frame_mid_side))
544                         return false;
545                 if(encoder->guts->frame_mid_side.total_bits < smallest_frame->total_bits)
546                         smallest_frame = &encoder->guts->frame_mid_side;
547
548                 /* left-side */
549                 frame_header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE;
550                 if(!FLAC__bitbuffer_clear(&encoder->guts->frame_left_side)) {
551                         encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
552                         return false;
553                 }
554                 if(!FLAC__frame_add_header(&frame_header, encoder->streamable_subset, is_last_frame, &encoder->guts->frame_left_side)) {
555                         encoder->state = FLAC__ENCODER_FRAMING_ERROR;
556                         return false;
557                 }
558                 integer_signal[0] = encoder->guts->integer_signal[0]; /* left channel */
559                 integer_signal[1] = encoder->guts->integer_signal_mid_side[1]; /* side channel */
560                 real_signal[0] = encoder->guts->real_signal[0]; /* left channel */
561                 real_signal[1] = encoder->guts->real_signal_mid_side[1]; /* side channel */
562                 if(!encoder_process_subframes_(encoder, is_last_frame, &frame_header, encoder->channels, integer_signal, real_signal, &encoder->guts->frame_left_side))
563                         return false;
564                 if(encoder->guts->frame_left_side.total_bits < smallest_frame->total_bits)
565                         smallest_frame = &encoder->guts->frame_left_side;
566
567                 /* right-side */
568                 frame_header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE;
569                 if(!FLAC__bitbuffer_clear(&encoder->guts->frame_right_side)) {
570                         encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
571                         return false;
572                 }
573                 if(!FLAC__frame_add_header(&frame_header, encoder->streamable_subset, is_last_frame, &encoder->guts->frame_right_side)) {
574                         encoder->state = FLAC__ENCODER_FRAMING_ERROR;
575                         return false;
576                 }
577                 integer_signal[0] = encoder->guts->integer_signal_mid_side[1]; /* side channel */
578                 integer_signal[1] = encoder->guts->integer_signal[1]; /* right channel */
579                 real_signal[0] = encoder->guts->real_signal_mid_side[1]; /* side channel */
580                 real_signal[1] = encoder->guts->real_signal[1]; /* right channel */
581                 if(!encoder_process_subframes_(encoder, is_last_frame, &frame_header, encoder->channels, integer_signal, real_signal, &encoder->guts->frame_right_side))
582                         return false;
583                 if(encoder->guts->frame_right_side.total_bits < smallest_frame->total_bits)
584                         smallest_frame = &encoder->guts->frame_right_side;
585         }
586
587         /*
588          * Zero-pad the frame to a byte_boundary
589          */
590         if(!FLAC__bitbuffer_zero_pad_to_byte_boundary(smallest_frame)) {
591                 encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
592                 return false;
593         }
594
595         /*
596          * Write it
597          */
598         assert(smallest_frame->bits == 0); /* assert that we're byte-aligned before writing */
599         assert(smallest_frame->total_consumed_bits == 0); /* assert that no reading of the buffer was done */
600         if(encoder->guts->write_callback(encoder, smallest_frame->buffer, smallest_frame->bytes, encoder->blocksize, encoder->guts->current_frame_number, encoder->guts->client_data) != FLAC__ENCODER_WRITE_OK) {
601                 encoder->state = FLAC__ENCODER_FATAL_ERROR_WHILE_WRITING;
602                 return false;
603         }
604
605         /*
606          * Get ready for the next frame
607          */
608         encoder->guts->current_frame_can_do_mid_side = true;
609         encoder->guts->current_sample_number = 0;
610         encoder->guts->current_frame_number++;
611         encoder->guts->metadata.data.encoding.total_samples += (uint64)encoder->blocksize;
612         encoder->guts->metadata.data.encoding.min_framesize = min(smallest_frame->bytes, encoder->guts->metadata.data.encoding.min_framesize);
613         encoder->guts->metadata.data.encoding.max_framesize = max(smallest_frame->bytes, encoder->guts->metadata.data.encoding.max_framesize);
614
615         return true;
616 }
617
618 bool encoder_process_subframes_(FLAC__Encoder *encoder, bool is_last_frame, const FLAC__FrameHeader *frame_header, unsigned channels, const int32 *integer_signal[], const real *real_signal[], FLAC__BitBuffer *frame)
619 {
620         real fixed_residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1];
621         real lpc_residual_bits_per_sample;
622         real autoc[FLAC__MAX_LPC_ORDER+1];
623         real lp_coeff[FLAC__MAX_LPC_ORDER][FLAC__MAX_LPC_ORDER];
624         real lpc_error[FLAC__MAX_LPC_ORDER];
625         unsigned channel;
626         unsigned min_lpc_order, max_lpc_order, lpc_order;
627         unsigned min_fixed_order, max_fixed_order, guess_fixed_order, fixed_order;
628         unsigned max_partition_order;
629         unsigned min_qlp_coeff_precision, max_qlp_coeff_precision, qlp_coeff_precision;
630         unsigned rice_parameter;
631         unsigned candidate_bits, best_bits;
632
633         if(is_last_frame) {
634                 max_partition_order = 0;
635         }
636         else {
637                 unsigned limit = 0, b = encoder->blocksize;
638                 while(!(b & 1)) {
639                         limit++;
640                         b >>= 1;
641                 }
642                 max_partition_order = min(encoder->rice_optimization_level, limit);
643         }
644
645         for(channel = 0; channel < channels; channel++) {
646                 /* verbatim subframe is the baseline against which we measure other compressed subframes */
647                 best_bits = encoder_evaluate_verbatim_subframe_(frame_header->blocksize, frame_header->bits_per_sample, &(encoder->guts->best_subframe));
648
649                 if(frame_header->blocksize >= FLAC__MAX_FIXED_ORDER) {
650                         /* check for constant subframe */
651                         guess_fixed_order = FLAC__fixed_compute_best_predictor(integer_signal[channel]+FLAC__MAX_FIXED_ORDER, frame_header->blocksize-FLAC__MAX_FIXED_ORDER, fixed_residual_bits_per_sample);
652                         if(fixed_residual_bits_per_sample[1] == 0.0) {
653                                 /* the above means integer_signal[channel]+FLAC__MAX_FIXED_ORDER is constant, now we just have to check the warmup samples */
654                                 unsigned i, signal_is_constant = true;
655                                 for(i = 1; i <= FLAC__MAX_FIXED_ORDER; i++) {
656                                         if(integer_signal[channel][0] != integer_signal[channel][i]) {
657                                                 signal_is_constant = false;
658                                                 break;
659                                         }
660                                 }
661                                 if(signal_is_constant) {
662                                         candidate_bits = encoder_evaluate_constant_subframe_(integer_signal[channel][0], frame_header->bits_per_sample, &(encoder->guts->candidate_subframe));
663                                         if(candidate_bits < best_bits) {
664                                                 encoder_promote_candidate_subframe_(encoder);
665                                                 best_bits = candidate_bits;
666                                         }
667                                 }
668                         }
669                         else {
670                                 /* encode fixed */
671                                 if(encoder->do_exhaustive_model_search) {
672                                         min_fixed_order = 0;
673                                         max_fixed_order = FLAC__MAX_FIXED_ORDER;
674                                 }
675                                 else {
676                                         min_fixed_order = max_fixed_order = guess_fixed_order;
677                                 }
678                                 for(fixed_order = min_fixed_order; fixed_order <= max_fixed_order; fixed_order++) {
679                                         if(fixed_residual_bits_per_sample[fixed_order] >= (real)frame_header->bits_per_sample)
680                                                 continue; /* don't even try */
681                                         rice_parameter = (fixed_residual_bits_per_sample[fixed_order] > 0.0)? (unsigned)(fixed_residual_bits_per_sample[fixed_order]+0.5) : 0;
682                                         if(rice_parameter >= (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN))
683                                                 rice_parameter = (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN) - 1;
684                                         candidate_bits = encoder_evaluate_fixed_subframe_(integer_signal[channel], encoder->guts->residual[!encoder->guts->best_residual], frame_header->blocksize, frame_header->bits_per_sample, fixed_order, rice_parameter, max_partition_order, &(encoder->guts->candidate_subframe));
685                                         if(candidate_bits < best_bits) {
686                                                 encoder_promote_candidate_subframe_(encoder);
687                                                 best_bits = candidate_bits;
688                                         }
689                                 }
690
691                                 /* encode lpc */
692                                 if(encoder->max_lpc_order > 0) {
693                                         if(encoder->max_lpc_order >= frame_header->blocksize)
694                                                 max_lpc_order = frame_header->blocksize-1;
695                                         else
696                                                 max_lpc_order = encoder->max_lpc_order;
697                                         if(max_lpc_order > 0) {
698                                                 FLAC__lpc_compute_autocorrelation(real_signal[channel], frame_header->blocksize, max_lpc_order+1, autoc);
699                                                 FLAC__lpc_compute_lp_coefficients(autoc, max_lpc_order, lp_coeff, lpc_error);
700                                                 if(encoder->do_exhaustive_model_search) {
701                                                         min_lpc_order = 1;
702                                                 }
703                                                 else {
704                                                         unsigned guess_lpc_order = FLAC__lpc_compute_best_order(lpc_error, max_lpc_order, frame_header->blocksize, frame_header->bits_per_sample);
705                                                         min_lpc_order = max_lpc_order = guess_lpc_order;
706                                                 }
707                                                 if(encoder->do_qlp_coeff_prec_search) {
708                                                         min_qlp_coeff_precision = FLAC__MIN_QLP_COEFF_PRECISION;
709                                                         max_qlp_coeff_precision = 32 - frame_header->bits_per_sample - 1;
710                                                 }
711                                                 else {
712                                                         min_qlp_coeff_precision = max_qlp_coeff_precision = encoder->qlp_coeff_precision;
713                                                 }
714                                                 for(lpc_order = min_lpc_order; lpc_order <= max_lpc_order; lpc_order++) {
715                                                         lpc_residual_bits_per_sample = FLAC__lpc_compute_expected_bits_per_residual_sample(lpc_error[lpc_order-1], frame_header->blocksize);
716                                                         if(lpc_residual_bits_per_sample >= (real)frame_header->bits_per_sample)
717                                                                 continue; /* don't even try */
718                                                         rice_parameter = (lpc_residual_bits_per_sample > 0.0)? (unsigned)(lpc_residual_bits_per_sample+0.5) : 0;
719                                                         if(rice_parameter >= (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN))
720                                                                 rice_parameter = (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN) - 1;
721                                                         for(qlp_coeff_precision = min_qlp_coeff_precision; qlp_coeff_precision <= max_qlp_coeff_precision; qlp_coeff_precision++) {
722                                                                 candidate_bits = encoder_evaluate_lpc_subframe_(integer_signal[channel], encoder->guts->residual[!encoder->guts->best_residual], lp_coeff[lpc_order-1], frame_header->blocksize, frame_header->bits_per_sample, lpc_order, qlp_coeff_precision, rice_parameter, max_partition_order, &(encoder->guts->candidate_subframe));
723                                                                 if(candidate_bits > 0) { /* if == 0, there was a problem quantizing the lpcoeffs */
724                                                                         if(candidate_bits < best_bits) {
725                                                                                 encoder_promote_candidate_subframe_(encoder);
726                                                                                 best_bits = candidate_bits;
727                                                                         }
728                                                                 }
729                                                         }
730                                                 }
731                                         }
732                                 }
733                         }
734                 }
735
736                 /* add the best subframe */
737                 switch(encoder->guts->best_subframe.type) {
738                         case FLAC__SUBFRAME_TYPE_CONSTANT:
739                                 if(!encoder_generate_constant_subframe_(&(encoder->guts->best_subframe), frame_header->bits_per_sample, frame)) {
740                                         encoder->state = FLAC__ENCODER_FATAL_ERROR_WHILE_ENCODING;
741                                         return false;
742                                 }
743                                 break;
744                         case FLAC__SUBFRAME_TYPE_FIXED:
745                                 if(!encoder_generate_fixed_subframe_(&(encoder->guts->best_subframe), encoder->guts->residual[encoder->guts->best_residual], frame_header->blocksize, frame_header->bits_per_sample, frame)) {
746                                         encoder->state = FLAC__ENCODER_FATAL_ERROR_WHILE_ENCODING;
747                                         return false;
748                                 }
749                                 break;
750                         case FLAC__SUBFRAME_TYPE_LPC:
751                                 if(!encoder_generate_lpc_subframe_(&(encoder->guts->best_subframe), encoder->guts->residual[encoder->guts->best_residual], frame_header->blocksize, frame_header->bits_per_sample, frame)) {
752                                         encoder->state = FLAC__ENCODER_FATAL_ERROR_WHILE_ENCODING;
753                                         return false;
754                                 }
755                                 break;
756                         case FLAC__SUBFRAME_TYPE_VERBATIM:
757                                 if(!encoder_generate_verbatim_subframe_(&(encoder->guts->best_subframe), integer_signal[channel], frame_header->blocksize, frame_header->bits_per_sample, frame)) {
758                                         encoder->state = FLAC__ENCODER_FATAL_ERROR_WHILE_ENCODING;
759                                         return false;
760                                 }
761                                 break;
762                 }
763         }
764
765         return true;
766 }
767
768 unsigned encoder_evaluate_constant_subframe_(const int32 signal, unsigned bits_per_sample, FLAC__SubframeHeader *subframe)
769 {
770         subframe->type = FLAC__SUBFRAME_TYPE_CONSTANT;
771         subframe->data.constant.value = signal;
772
773         return 8 + bits_per_sample;
774 }
775
776 unsigned encoder_evaluate_fixed_subframe_(const int32 signal[], int32 residual[], unsigned blocksize, unsigned bits_per_sample, unsigned order, unsigned rice_parameter, unsigned max_partition_order, FLAC__SubframeHeader *subframe)
777 {
778         unsigned i, residual_bits;
779         const unsigned residual_samples = blocksize - order;
780
781         FLAC__fixed_compute_residual(signal+order, residual_samples, order, residual);
782
783         subframe->type = FLAC__SUBFRAME_TYPE_FIXED;
784
785         subframe->data.fixed.entropy_coding_method.type = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE;
786
787         residual_bits = encoder_find_best_partition_order_(residual, residual_samples, order, rice_parameter, max_partition_order, &subframe->data.fixed.entropy_coding_method.data.partitioned_rice.order, subframe->data.fixed.entropy_coding_method.data.partitioned_rice.parameters);
788
789         subframe->data.fixed.order = order;
790         for(i = 0; i < order; i++)
791                 subframe->data.fixed.warmup[i] = signal[i];
792
793         return 8 + (order * bits_per_sample) + residual_bits;
794 }
795
796 unsigned encoder_evaluate_lpc_subframe_(const int32 signal[], int32 residual[], const real lp_coeff[], unsigned blocksize, unsigned bits_per_sample, unsigned order, unsigned qlp_coeff_precision, unsigned rice_parameter, unsigned max_partition_order, FLAC__SubframeHeader *subframe)
797 {
798         int32 qlp_coeff[FLAC__MAX_LPC_ORDER];
799         unsigned i, residual_bits;
800         int quantization, ret;
801         const unsigned residual_samples = blocksize - order;
802
803         ret = FLAC__lpc_quantize_coefficients(lp_coeff, order, qlp_coeff_precision, bits_per_sample, qlp_coeff, &quantization);
804         if(ret != 0)
805                 return 0; /* this is a hack to indicate to the caller that we can't do lp at this order on this subframe */
806
807         FLAC__lpc_compute_residual_from_qlp_coefficients(signal+order, residual_samples, qlp_coeff, order, quantization, residual);
808
809         subframe->type = FLAC__SUBFRAME_TYPE_LPC;
810
811         subframe->data.lpc.entropy_coding_method.type = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE;
812
813         residual_bits = encoder_find_best_partition_order_(residual, residual_samples, order, rice_parameter, max_partition_order, &subframe->data.lpc.entropy_coding_method.data.partitioned_rice.order, subframe->data.lpc.entropy_coding_method.data.partitioned_rice.parameters);
814
815         subframe->data.lpc.order = order;
816         subframe->data.lpc.qlp_coeff_precision = qlp_coeff_precision;
817         subframe->data.lpc.quantization_level = quantization;
818         memcpy(subframe->data.lpc.qlp_coeff, qlp_coeff, sizeof(int32)*FLAC__MAX_LPC_ORDER);
819         for(i = 0; i < order; i++)
820                 subframe->data.lpc.warmup[i] = signal[i];
821
822         return 8 + 9 + (order * (qlp_coeff_precision + bits_per_sample)) + residual_bits;
823 }
824
825 unsigned encoder_evaluate_verbatim_subframe_(unsigned blocksize, unsigned bits_per_sample, FLAC__SubframeHeader *subframe)
826 {
827         subframe->type = FLAC__SUBFRAME_TYPE_VERBATIM;
828
829         return 8 + (blocksize * bits_per_sample);
830 }
831
832 unsigned encoder_find_best_partition_order_(int32 residual[], unsigned residual_samples, unsigned predictor_order, unsigned rice_parameter, unsigned max_partition_order, unsigned *best_partition_order, unsigned best_parameters[])
833 {
834         unsigned residual_bits, best_residual_bits = 0;
835         unsigned partition_order;
836         unsigned best_parameters_index = 0, parameters[2][1 << FLAC__MAX_RICE_PARTITION_ORDER];
837
838         for(partition_order = 0; partition_order <= max_partition_order; partition_order++) {
839                 if(!encoder_set_partitioned_rice_(residual, residual_samples, predictor_order, rice_parameter, partition_order, parameters[!best_parameters_index], &residual_bits)) {
840                         assert(best_residual_bits != 0);
841                         break;
842                 }
843                 if(best_residual_bits == 0 || residual_bits < best_residual_bits) {
844                         best_residual_bits = residual_bits;
845                         *best_partition_order = partition_order;
846                         best_parameters_index = !best_parameters_index;
847                 }
848         }
849         memcpy(best_parameters, parameters[best_parameters_index], sizeof(unsigned)*(1<<(*best_partition_order)));
850
851         return best_residual_bits;
852 }
853
854 bool encoder_generate_constant_subframe_(const FLAC__SubframeHeader *header, unsigned bits_per_sample, FLAC__BitBuffer *bitbuffer)
855 {
856         assert(header->type == FLAC__SUBFRAME_TYPE_CONSTANT);
857         return FLAC__subframe_add_constant(bits_per_sample, header, bitbuffer);
858 }
859
860 bool encoder_generate_fixed_subframe_(const FLAC__SubframeHeader *header, int32 residual[], unsigned blocksize, unsigned bits_per_sample, FLAC__BitBuffer *bitbuffer)
861 {
862         assert(header->type == FLAC__SUBFRAME_TYPE_FIXED);
863         return FLAC__subframe_add_fixed(residual, blocksize - header->data.fixed.order, bits_per_sample, header, bitbuffer);
864 }
865
866 bool encoder_generate_lpc_subframe_(const FLAC__SubframeHeader *header, int32 residual[], unsigned blocksize, unsigned bits_per_sample, FLAC__BitBuffer *bitbuffer)
867 {
868         assert(header->type == FLAC__SUBFRAME_TYPE_LPC);
869         return FLAC__subframe_add_lpc(residual, blocksize - header->data.lpc.order, bits_per_sample, header, bitbuffer);
870 }
871
872 bool encoder_generate_verbatim_subframe_(const FLAC__SubframeHeader *header, const int32 signal[], unsigned blocksize, unsigned bits_per_sample, FLAC__BitBuffer *bitbuffer)
873 {
874         assert(header->type == FLAC__SUBFRAME_TYPE_VERBATIM);
875 #ifdef NDEBUG
876         (void)header; /* silence compiler warning about unused parameter */
877 #endif
878         return FLAC__subframe_add_verbatim(signal, blocksize, bits_per_sample, bitbuffer);
879 }
880
881 void encoder_promote_candidate_subframe_(FLAC__Encoder *encoder)
882 {
883         assert(encoder->state == FLAC__ENCODER_OK);
884         encoder->guts->best_subframe = encoder->guts->candidate_subframe;
885         encoder->guts->best_residual = !encoder->guts->best_residual;
886 }
887
888 bool encoder_set_partitioned_rice_(const int32 residual[], const unsigned residual_samples, const unsigned predictor_order, const unsigned rice_parameter, const unsigned partition_order, unsigned parameters[], unsigned *bits)
889 {
890         unsigned bits_ = 2 + 3;
891
892         if(partition_order == 0) {
893                 unsigned i;
894                 parameters[0] = rice_parameter;
895                 bits_ += FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN;
896                 for(i = 0; i < residual_samples; i++)
897                         bits_ += RICE_BITS(residual[i], rice_parameter);
898         }
899         else {
900                 unsigned i, j, k = 0, k_last = 0, z;
901                 unsigned mean;
902                 unsigned parameter, partition_samples;
903                 const unsigned max_parameter = (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN) - 1;
904                 for(i = 0; i < (1u<<partition_order); i++) {
905                         partition_samples = (residual_samples+predictor_order) >> partition_order;
906                         if(i == 0) {
907                                 if(partition_samples <= predictor_order)
908                                         return false;
909                                 else
910                                         partition_samples -= predictor_order;
911                         }
912                         mean = partition_samples >> 1;
913                         for(j = 0; j < partition_samples; j++, k++)
914                                 mean += ((residual[k] < 0)? (unsigned)(-residual[k]) : (unsigned)residual[k]);
915                         mean /= partition_samples;
916                         z = 0x80000000;
917                         for(j = 0; j < 32; j++, z >>= 1)
918                                 if(mean & z)
919                                         break;
920                         parameter = j > 31? 0 : 32 - j - 1;
921                         if(parameter > max_parameter)
922                                 parameter = max_parameter;
923                         parameters[i] = parameter;
924                         bits_ += FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN;
925                         for(j = k_last; j < k; j++)
926                                 bits_ += RICE_BITS(residual[j], parameter);
927                         k_last = k;
928                 }
929         }
930
931         *bits = bits_;
932         return true;
933 }