add ESTIMATE_RICE_BITS for speed
[platform/upstream/flac.git] / src / libFLAC / encoder.c
1 /* libFLAC - Free Lossless Audio Coder library
2  * Copyright (C) 2000,2001  Josh Coalson
3  *
4  * This library is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU Library General Public
6  * License as published by the Free Software Foundation; either
7  * version 2 of the License, or (at your option) any later version.
8  *
9  * This library is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * Library General Public License for more details.
13  *
14  * You should have received a copy of the GNU Library General Public
15  * License along with this library; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA  02111-1307, USA.
18  */
19
20 #include <assert.h>
21 #include <stdio.h>
22 #include <stdlib.h> /* for malloc() */
23 #include <string.h> /* for memcpy() */
24 #include "FLAC/encoder.h"
25 #include "private/bitbuffer.h"
26 #include "private/encoder_framing.h"
27 #include "private/fixed.h"
28 #include "private/lpc.h"
29 #include "private/md5.h"
30
31 #ifdef min
32 #undef min
33 #endif
34 #define min(x,y) ((x)<(y)?(x):(y))
35
36 #ifdef max
37 #undef max
38 #endif
39 #define max(x,y) ((x)>(y)?(x):(y))
40
41 #ifdef ESTIMATE_RICE_BITS
42 #undef ESTIMATE_RICE_BITS
43 #endif
44 #define ESTIMATE_RICE_BITS(value, parameter) (2 + (parameter) + (((unsigned)((value) < 0? -(value) : (value))) >> (parameter)))
45
46 typedef struct FLAC__EncoderPrivate {
47         unsigned input_capacity;                    /* current size (in samples) of the signal and residual buffers */
48         int32 *integer_signal[FLAC__MAX_CHANNELS];  /* the integer version of the input signal */
49         int32 *integer_signal_mid_side[2];          /* the integer version of the mid-side input signal (stereo only) */
50         real *real_signal[FLAC__MAX_CHANNELS];      /* the floating-point version of the input signal */
51         real *real_signal_mid_side[2];              /* the floating-point version of the mid-side input signal (stereo only) */
52         int32 *residual[2];                         /* where the candidate and best subframe residual signals will be stored */
53         unsigned best_residual;                     /* index into the above */
54         FLAC__BitBuffer frame;                      /* the current frame being worked on */
55         FLAC__BitBuffer frame_mid_side;             /* special parallel workspace for the mid-side coded version of the current frame */
56         FLAC__BitBuffer frame_left_side;            /* special parallel workspace for the left-side coded version of the current frame */
57         FLAC__BitBuffer frame_right_side;           /* special parallel workspace for the right-side coded version of the current frame */
58         FLAC__SubframeHeader best_subframe, candidate_subframe;
59         bool current_frame_can_do_mid_side;         /* encoder sets this false when any given sample of a frame's side channel exceeds 16 bits */
60         FLAC__StreamMetaData metadata;
61         unsigned current_sample_number;
62         unsigned current_frame_number;
63         struct MD5Context md5context;
64         FLAC__EncoderWriteStatus (*write_callback)(const FLAC__Encoder *encoder, const byte buffer[], unsigned bytes, unsigned samples, unsigned current_frame, void *client_data);
65         void (*metadata_callback)(const FLAC__Encoder *encoder, const FLAC__StreamMetaData *metadata, void *client_data);
66         void *client_data;
67 } FLAC__EncoderPrivate;
68
69 static bool encoder_resize_buffers_(FLAC__Encoder *encoder, unsigned new_size);
70 static bool encoder_process_frame_(FLAC__Encoder *encoder, bool is_last_frame);
71 static bool encoder_process_subframes_(FLAC__Encoder *encoder, bool is_last_frame, const FLAC__FrameHeader *frame_header, unsigned channels, const int32 *integer_signal[], const real *real_signal[], FLAC__BitBuffer *bitbuffer);
72 static unsigned encoder_evaluate_constant_subframe_(const int32 signal, unsigned bits_per_sample, FLAC__SubframeHeader *subframe);
73 static unsigned encoder_evaluate_fixed_subframe_(const int32 signal[], int32 residual[], unsigned blocksize, unsigned bits_per_sample, unsigned order, unsigned rice_parameter, unsigned max_partition_order, FLAC__SubframeHeader *subframe);
74 static unsigned encoder_evaluate_lpc_subframe_(const int32 signal[], int32 residual[], const real lp_coeff[], unsigned blocksize, unsigned bits_per_sample, unsigned order, unsigned qlp_coeff_precision, unsigned rice_parameter, unsigned max_partition_order, FLAC__SubframeHeader *subframe);
75 static unsigned encoder_evaluate_verbatim_subframe_(unsigned blocksize, unsigned bits_per_sample, FLAC__SubframeHeader *subframe);
76 static unsigned encoder_find_best_partition_order_(int32 residual[], unsigned residual_samples, unsigned predictor_order, unsigned rice_parameter, unsigned max_partition_order, unsigned *best_partition_order, unsigned best_parameters[]);
77 static bool encoder_generate_constant_subframe_(const FLAC__SubframeHeader *header, unsigned bits_per_sample, FLAC__BitBuffer *bitbuffer);
78 static bool encoder_generate_fixed_subframe_(const FLAC__SubframeHeader *header, int32 residual[], unsigned blocksize, unsigned bits_per_sample, FLAC__BitBuffer *bitbuffer);
79 static bool encoder_generate_lpc_subframe_(const FLAC__SubframeHeader *header, int32 residual[], unsigned blocksize, unsigned bits_per_sample, FLAC__BitBuffer *bitbuffer);
80 static bool encoder_generate_verbatim_subframe_(const FLAC__SubframeHeader *header, const int32 signal[], unsigned blocksize, unsigned bits_per_sample, FLAC__BitBuffer *bitbuffer);
81 static void encoder_promote_candidate_subframe_(FLAC__Encoder *encoder);
82 static bool encoder_set_partitioned_rice_(const int32 residual[], const unsigned residual_samples, const unsigned predictor_order, const unsigned rice_parameter, const unsigned partition_order, unsigned parameters[], unsigned *bits);
83
84 const char *FLAC__EncoderWriteStatusString[] = {
85         "FLAC__ENCODER_WRITE_OK",
86         "FLAC__ENCODER_WRITE_FATAL_ERROR"
87 };
88
89 const char *FLAC__EncoderStateString[] = {
90         "FLAC__ENCODER_OK",
91         "FLAC__ENCODER_UNINITIALIZED",
92         "FLAC__ENCODER_INVALID_NUMBER_OF_CHANNELS",
93         "FLAC__ENCODER_INVALID_BITS_PER_SAMPLE",
94         "FLAC__ENCODER_INVALID_SAMPLE_RATE",
95         "FLAC__ENCODER_INVALID_BLOCK_SIZE",
96         "FLAC__ENCODER_INVALID_QLP_COEFF_PRECISION",
97         "FLAC__ENCODER_MID_SIDE_CHANNELS_MISMATCH",
98         "FLAC__ENCODER_MID_SIDE_SAMPLE_SIZE_MISMATCH",
99         "FLAC__ENCODER_BLOCK_SIZE_TOO_SMALL_FOR_LPC_ORDER",
100         "FLAC__ENCODER_NOT_STREAMABLE",
101         "FLAC__ENCODER_FRAMING_ERROR",
102         "FLAC__ENCODER_FATAL_ERROR_WHILE_ENCODING",
103         "FLAC__ENCODER_FATAL_ERROR_WHILE_WRITING",
104         "FLAC__ENCODER_MEMORY_ALLOCATION_ERROR"
105 };
106
107
108 bool encoder_resize_buffers_(FLAC__Encoder *encoder, unsigned new_size)
109 {
110         bool ok;
111         unsigned i;
112         int32 *previous_is, *current_is;
113         real *previous_rs, *current_rs;
114         int32 *residual;
115
116         assert(new_size > 0);
117         assert(encoder->state == FLAC__ENCODER_OK);
118         assert(encoder->guts->current_sample_number == 0);
119
120         /* To avoid excessive malloc'ing, we only grow the buffer; no shrinking. */
121         if(new_size <= encoder->guts->input_capacity)
122                 return true;
123
124         ok = 1;
125         if(ok) {
126                 for(i = 0; ok && i < encoder->channels; i++) {
127                         /* integer version of the signal */
128                         previous_is = encoder->guts->integer_signal[i];
129                         current_is = (int32*)malloc(sizeof(int32) * new_size);
130                         if(0 == current_is) {
131                                 encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
132                                 ok = 0;
133                         }
134                         else {
135                                 encoder->guts->integer_signal[i] = current_is;
136                                 if(previous_is != 0)
137                                         free(previous_is);
138                         }
139                         /* real version of the signal */
140                         previous_rs = encoder->guts->real_signal[i];
141                         current_rs = (real*)malloc(sizeof(real) * new_size);
142                         if(0 == current_rs) {
143                                 encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
144                                 ok = 0;
145                         }
146                         else {
147                                 encoder->guts->real_signal[i] = current_rs;
148                                 if(previous_rs != 0)
149                                         free(previous_rs);
150                         }
151                 }
152         }
153         if(ok) {
154                 for(i = 0; ok && i < 2; i++) {
155                         /* integer version of the signal */
156                         previous_is = encoder->guts->integer_signal_mid_side[i];
157                         current_is = (int32*)malloc(sizeof(int32) * new_size);
158                         if(0 == current_is) {
159                                 encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
160                                 ok = 0;
161                         }
162                         else {
163                                 encoder->guts->integer_signal_mid_side[i] = current_is;
164                                 if(previous_is != 0)
165                                         free(previous_is);
166                         }
167                         /* real version of the signal */
168                         previous_rs = encoder->guts->real_signal_mid_side[i];
169                         current_rs = (real*)malloc(sizeof(real) * new_size);
170                         if(0 == current_rs) {
171                                 encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
172                                 ok = 0;
173                         }
174                         else {
175                                 encoder->guts->real_signal_mid_side[i] = current_rs;
176                                 if(previous_rs != 0)
177                                         free(previous_rs);
178                         }
179                 }
180         }
181         if(ok) {
182                 for(i = 0; i < 2; i++) {
183                         residual = (int32*)malloc(sizeof(int32) * new_size);
184                         if(0 == residual) {
185                                 encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
186                                 ok = 0;
187                         }
188                         else {
189                                 if(encoder->guts->residual[i] != 0)
190                                         free(encoder->guts->residual[i]);
191                                 encoder->guts->residual[i] = residual;
192                         }
193                 }
194         }
195         if(ok)
196                 encoder->guts->input_capacity = new_size;
197
198         return ok;
199 }
200
201 FLAC__Encoder *FLAC__encoder_get_new_instance()
202 {
203         FLAC__Encoder *encoder = (FLAC__Encoder*)malloc(sizeof(FLAC__Encoder));
204         if(encoder != 0) {
205                 encoder->state = FLAC__ENCODER_UNINITIALIZED;
206                 encoder->guts = 0;
207         }
208         return encoder;
209 }
210
211 void FLAC__encoder_free_instance(FLAC__Encoder *encoder)
212 {
213         assert(encoder != 0);
214         free(encoder);
215 }
216
217 FLAC__EncoderState FLAC__encoder_init(FLAC__Encoder *encoder, FLAC__EncoderWriteStatus (*write_callback)(const FLAC__Encoder *encoder, const byte buffer[], unsigned bytes, unsigned samples, unsigned current_frame, void *client_data), void (*metadata_callback)(const FLAC__Encoder *encoder, const FLAC__StreamMetaData *metadata, void *client_data), void *client_data)
218 {
219         unsigned i;
220
221         assert(sizeof(int) >= 4); /* we want to die right away if this is not true */
222         assert(encoder != 0);
223         assert(write_callback != 0);
224         assert(metadata_callback != 0);
225         assert(encoder->state == FLAC__ENCODER_UNINITIALIZED);
226         assert(encoder->guts == 0);
227
228         encoder->state = FLAC__ENCODER_OK;
229
230         if(encoder->channels == 0 || encoder->channels > FLAC__MAX_CHANNELS)
231                 return encoder->state = FLAC__ENCODER_INVALID_NUMBER_OF_CHANNELS;
232
233         if(encoder->do_mid_side_stereo && encoder->channels != 2)
234                 return encoder->state = FLAC__ENCODER_MID_SIDE_CHANNELS_MISMATCH;
235
236         if(encoder->do_mid_side_stereo && encoder->bits_per_sample > 16)
237                 return encoder->state = FLAC__ENCODER_MID_SIDE_SAMPLE_SIZE_MISMATCH;
238
239         if(encoder->bits_per_sample == 0 || encoder->bits_per_sample > FLAC__MAX_BITS_PER_SAMPLE)
240                 return encoder->state = FLAC__ENCODER_INVALID_BITS_PER_SAMPLE;
241
242         if(encoder->sample_rate == 0 || encoder->sample_rate > FLAC__MAX_SAMPLE_RATE)
243                 return encoder->state = FLAC__ENCODER_INVALID_SAMPLE_RATE;
244
245         if(encoder->blocksize < FLAC__MIN_BLOCK_SIZE || encoder->blocksize > FLAC__MAX_BLOCK_SIZE)
246                 return encoder->state = FLAC__ENCODER_INVALID_BLOCK_SIZE;
247
248         if(encoder->blocksize < encoder->max_lpc_order)
249                 return encoder->state = FLAC__ENCODER_BLOCK_SIZE_TOO_SMALL_FOR_LPC_ORDER;
250
251         if(encoder->qlp_coeff_precision == 0) {
252                 if(encoder->bits_per_sample < 16) {
253                         /* @@@ need some data about how to set this here w.r.t. blocksize and sample rate */
254                         /* @@@ until then we'll make a guess */
255                         encoder->qlp_coeff_precision = max(5, 2 + encoder->bits_per_sample / 2);
256                 }
257                 else if(encoder->bits_per_sample == 16) {
258                         if(encoder->blocksize <= 192)
259                                 encoder->qlp_coeff_precision = 7;
260                         else if(encoder->blocksize <= 384)
261                                 encoder->qlp_coeff_precision = 8;
262                         else if(encoder->blocksize <= 576)
263                                 encoder->qlp_coeff_precision = 9;
264                         else if(encoder->blocksize <= 1152)
265                                 encoder->qlp_coeff_precision = 10;
266                         else if(encoder->blocksize <= 2304)
267                                 encoder->qlp_coeff_precision = 11;
268                         else if(encoder->blocksize <= 4608)
269                                 encoder->qlp_coeff_precision = 12;
270                         else
271                                 encoder->qlp_coeff_precision = 13;
272                 }
273                 else {
274                         encoder->qlp_coeff_precision = min(13, 8*sizeof(int32) - encoder->bits_per_sample - 1);
275                 }
276         }
277         else if(encoder->qlp_coeff_precision < FLAC__MIN_QLP_COEFF_PRECISION || encoder->qlp_coeff_precision + encoder->bits_per_sample >= 8*sizeof(uint32))
278                 return encoder->state = FLAC__ENCODER_INVALID_QLP_COEFF_PRECISION;
279
280         if(encoder->streamable_subset) {
281                 if(encoder->bits_per_sample != 8 && encoder->bits_per_sample != 12 && encoder->bits_per_sample != 16 && encoder->bits_per_sample != 20 && encoder->bits_per_sample != 24)
282                         return encoder->state = FLAC__ENCODER_NOT_STREAMABLE;
283                 if(encoder->sample_rate > 655350)
284                         return encoder->state = FLAC__ENCODER_NOT_STREAMABLE;
285         }
286
287         if(encoder->rice_optimization_level >= (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN))
288                 encoder->rice_optimization_level = (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN) - 1;
289
290         encoder->guts = (FLAC__EncoderPrivate*)malloc(sizeof(FLAC__EncoderPrivate));
291         if(encoder->guts == 0)
292                 return encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
293
294         encoder->guts->input_capacity = 0;
295         for(i = 0; i < encoder->channels; i++) {
296                 encoder->guts->integer_signal[i] = 0;
297                 encoder->guts->real_signal[i] = 0;
298         }
299         for(i = 0; i < 2; i++) {
300                 encoder->guts->integer_signal_mid_side[i] = 0;
301                 encoder->guts->real_signal_mid_side[i] = 0;
302         }
303         encoder->guts->residual[0] = 0;
304         encoder->guts->residual[1] = 0;
305         encoder->guts->best_residual = 0;
306         encoder->guts->current_frame_can_do_mid_side = true;
307         encoder->guts->current_sample_number = 0;
308         encoder->guts->current_frame_number = 0;
309
310         if(!encoder_resize_buffers_(encoder, encoder->blocksize)) {
311                 /* the above function sets the state for us in case of an error */
312                 return encoder->state;
313         }
314         FLAC__bitbuffer_init(&encoder->guts->frame);
315         encoder->guts->write_callback = write_callback;
316         encoder->guts->metadata_callback = metadata_callback;
317         encoder->guts->client_data = client_data;
318
319         /*
320          * write the stream header
321          */
322         if(!FLAC__bitbuffer_clear(&encoder->guts->frame))
323                 return encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
324
325         if(!FLAC__bitbuffer_write_raw_uint32(&encoder->guts->frame, FLAC__STREAM_SYNC, FLAC__STREAM_SYNC_LEN))
326                 return encoder->state = FLAC__ENCODER_FRAMING_ERROR;
327
328         encoder->guts->metadata.type = FLAC__METADATA_TYPE_ENCODING;
329         encoder->guts->metadata.is_last = true;
330         encoder->guts->metadata.length = FLAC__STREAM_METADATA_ENCODING_LENGTH;
331         encoder->guts->metadata.data.encoding.min_blocksize = encoder->blocksize; /* this encoder uses the same blocksize for the whole stream */
332         encoder->guts->metadata.data.encoding.max_blocksize = encoder->blocksize;
333         encoder->guts->metadata.data.encoding.min_framesize = 0; /* we don't know this yet; have to fill it in later */
334         encoder->guts->metadata.data.encoding.max_framesize = 0; /* we don't know this yet; have to fill it in later */
335         encoder->guts->metadata.data.encoding.sample_rate = encoder->sample_rate;
336         encoder->guts->metadata.data.encoding.channels = encoder->channels;
337         encoder->guts->metadata.data.encoding.bits_per_sample = encoder->bits_per_sample;
338         encoder->guts->metadata.data.encoding.total_samples = 0; /* we don't know this yet; have to fill it in later */
339         memset(encoder->guts->metadata.data.encoding.md5sum, 0, 16); /* we don't know this yet; have to fill it in later */
340         MD5Init(&encoder->guts->md5context);
341         if(!FLAC__add_metadata_block(&encoder->guts->metadata, &encoder->guts->frame))
342                 return encoder->state = FLAC__ENCODER_FRAMING_ERROR;
343
344         assert(encoder->guts->frame.bits == 0); /* assert that we're byte-aligned before writing */
345         assert(encoder->guts->frame.total_consumed_bits == 0); /* assert that no reading of the buffer was done */
346         if(encoder->guts->write_callback(encoder, encoder->guts->frame.buffer, encoder->guts->frame.bytes, 0, encoder->guts->current_frame_number, encoder->guts->client_data) != FLAC__ENCODER_WRITE_OK)
347                 return encoder->state = FLAC__ENCODER_FATAL_ERROR_WHILE_WRITING;
348
349         /* now that the metadata block is written, we can init this to an absurdly-high value */
350         encoder->guts->metadata.data.encoding.min_framesize = (1u << FLAC__STREAM_METADATA_ENCODING_MIN_FRAME_SIZE_LEN) - 1;
351
352         return encoder->state;
353 }
354
355 void FLAC__encoder_finish(FLAC__Encoder *encoder)
356 {
357         unsigned i;
358
359         assert(encoder != 0);
360         if(encoder->state == FLAC__ENCODER_UNINITIALIZED)
361                 return;
362         if(encoder->guts->current_sample_number != 0) {
363                 encoder->blocksize = encoder->guts->current_sample_number;
364                 encoder_process_frame_(encoder, true); /* true => is last frame */
365         }
366         MD5Final(encoder->guts->metadata.data.encoding.md5sum, &encoder->guts->md5context);
367         encoder->guts->metadata_callback(encoder, &encoder->guts->metadata, encoder->guts->client_data);
368         if(encoder->guts != 0) {
369                 for(i = 0; i < encoder->channels; i++) {
370                         if(encoder->guts->integer_signal[i] != 0) {
371                                 free(encoder->guts->integer_signal[i]);
372                                 encoder->guts->integer_signal[i] = 0;
373                         }
374                         if(encoder->guts->real_signal[i] != 0) {
375                                 free(encoder->guts->real_signal[i]);
376                                 encoder->guts->real_signal[i] = 0;
377                         }
378                 }
379                 for(i = 0; i < 2; i++) {
380                         if(encoder->guts->integer_signal_mid_side[i] != 0) {
381                                 free(encoder->guts->integer_signal_mid_side[i]);
382                                 encoder->guts->integer_signal_mid_side[i] = 0;
383                         }
384                         if(encoder->guts->real_signal_mid_side[i] != 0) {
385                                 free(encoder->guts->real_signal_mid_side[i]);
386                                 encoder->guts->real_signal_mid_side[i] = 0;
387                         }
388                 }
389                 for(i = 0; i < 2; i++) {
390                         if(encoder->guts->residual[i] != 0) {
391                                 free(encoder->guts->residual[i]);
392                                 encoder->guts->residual[i] = 0;
393                         }
394                 }
395                 FLAC__bitbuffer_free(&encoder->guts->frame);
396                 free(encoder->guts);
397                 encoder->guts = 0;
398         }
399         encoder->state = FLAC__ENCODER_UNINITIALIZED;
400 }
401
402 bool FLAC__encoder_process(FLAC__Encoder *encoder, const int32 *buf[], unsigned samples)
403 {
404         unsigned i, j, channel;
405         int32 x, mid, side;
406         const bool ms = encoder->do_mid_side_stereo && encoder->channels == 2;
407         const int32 min_side = -((int64)1 << (encoder->bits_per_sample-1));
408         const int32 max_side =  ((int64)1 << (encoder->bits_per_sample-1)) - 1;
409
410         assert(encoder != 0);
411         assert(encoder->state == FLAC__ENCODER_OK);
412
413         j = 0;
414         do {
415                 for(i = encoder->guts->current_sample_number; i < encoder->blocksize && j < samples; i++, j++) {
416                         for(channel = 0; channel < encoder->channels; channel++) {
417                                 x = buf[channel][j];
418                                 encoder->guts->integer_signal[channel][i] = x;
419                                 encoder->guts->real_signal[channel][i] = (real)x;
420                         }
421                         if(ms && encoder->guts->current_frame_can_do_mid_side) {
422                                 side = buf[0][j] - buf[1][j];
423                                 if(side < min_side || side > max_side) {
424                                         encoder->guts->current_frame_can_do_mid_side = false;
425                                 }
426                                 else {
427                                         mid = (buf[0][j] + buf[1][j]) >> 1; /* NOTE: not the same as divide-by-two ! */
428                                         encoder->guts->integer_signal_mid_side[0][i] = mid;
429                                         encoder->guts->integer_signal_mid_side[1][i] = side;
430                                         encoder->guts->real_signal_mid_side[0][i] = (real)mid;
431                                         encoder->guts->real_signal_mid_side[1][i] = (real)side;
432                                 }
433                         }
434                         encoder->guts->current_sample_number++;
435                 }
436                 if(i == encoder->blocksize) {
437                         if(!encoder_process_frame_(encoder, false)) /* false => not last frame */
438                                 return false;
439                 }
440         } while(j < samples);
441
442         return true;
443 }
444
445 /* 'samples' is channel-wide samples, e.g. for 1 second at 44100Hz, 'samples' = 44100 regardless of the number of channels */
446 bool FLAC__encoder_process_interleaved(FLAC__Encoder *encoder, const int32 buf[], unsigned samples)
447 {
448         unsigned i, j, k, channel;
449         int32 x, left = 0, mid, side;
450         const bool ms = encoder->do_mid_side_stereo && encoder->channels == 2;
451         const int32 min_side = -((int64)1 << (encoder->bits_per_sample-1));
452         const int32 max_side =  ((int64)1 << (encoder->bits_per_sample-1)) - 1;
453
454         assert(encoder != 0);
455         assert(encoder->state == FLAC__ENCODER_OK);
456
457         j = k = 0;
458         do {
459                 for(i = encoder->guts->current_sample_number; i < encoder->blocksize && j < samples; i++, j++, k++) {
460                         for(channel = 0; channel < encoder->channels; channel++, k++) {
461                                 x = buf[k];
462                                 encoder->guts->integer_signal[channel][i] = x;
463                                 encoder->guts->real_signal[channel][i] = (real)x;
464                                 if(ms && encoder->guts->current_frame_can_do_mid_side) {
465                                         if(channel == 0) {
466                                                 left = x;
467                                         }
468                                         else {
469                                                 side = left - x;
470                                                 if(side < min_side || side > max_side) {
471                                                         encoder->guts->current_frame_can_do_mid_side = false;
472                                                 }
473                                                 else {
474                                                         mid = (left + x) >> 1; /* NOTE: not the same as divide-by-two ! */
475                                                         encoder->guts->integer_signal_mid_side[0][i] = mid;
476                                                         encoder->guts->integer_signal_mid_side[1][i] = side;
477                                                         encoder->guts->real_signal_mid_side[0][i] = (real)mid;
478                                                         encoder->guts->real_signal_mid_side[1][i] = (real)side;
479                                                 }
480                                         }
481                                 }
482                         }
483                         encoder->guts->current_sample_number++;
484                 }
485                 if(i == encoder->blocksize) {
486                         if(!encoder_process_frame_(encoder, false)) /* false => not last frame */
487                                 return false;
488                 }
489         } while(j < samples);
490
491         return true;
492 }
493
494 bool encoder_process_frame_(FLAC__Encoder *encoder, bool is_last_frame)
495 {
496         FLAC__FrameHeader frame_header;
497         FLAC__BitBuffer *smallest_frame;
498
499         assert(encoder->state == FLAC__ENCODER_OK);
500
501         /*
502          * Accumulate raw signal to the MD5 signature
503          */
504         if(!FLAC__MD5Accumulate(&encoder->guts->md5context, encoder->guts->integer_signal, encoder->channels, encoder->blocksize, (encoder->bits_per_sample+7) / 8)) {
505                 encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
506                 return false;
507         }
508
509         /*
510          * First do a normal encoding pass
511          */
512         frame_header.blocksize = encoder->blocksize;
513         frame_header.sample_rate = encoder->sample_rate;
514         frame_header.channels = encoder->channels;
515         frame_header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT; /* the default unless the encoder determines otherwise */
516         frame_header.bits_per_sample = encoder->bits_per_sample;
517         frame_header.number.frame_number = encoder->guts->current_frame_number;
518
519         if(!FLAC__bitbuffer_clear(&encoder->guts->frame)) {
520                 encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
521                 return false;
522         }
523         if(!FLAC__frame_add_header(&frame_header, encoder->streamable_subset, is_last_frame, &encoder->guts->frame)) {
524                 encoder->state = FLAC__ENCODER_FRAMING_ERROR;
525                 return false;
526         }
527
528         if(!encoder_process_subframes_(encoder, is_last_frame, &frame_header, encoder->channels, encoder->guts->integer_signal, encoder->guts->real_signal, &encoder->guts->frame))
529                 return false;
530
531         smallest_frame = &encoder->guts->frame;
532
533         /*
534          * Now try a mid-side version if necessary; otherwise, just use the previous step's frame
535          */
536         if(encoder->do_mid_side_stereo && encoder->guts->current_frame_can_do_mid_side) {
537                 int32 *integer_signal[2];
538                 real *real_signal[2];
539
540                 assert(encoder->channels == 2);
541
542                 /* mid-side */
543                 frame_header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_MID_SIDE;
544                 if(!FLAC__bitbuffer_clear(&encoder->guts->frame_mid_side)) {
545                         encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
546                         return false;
547                 }
548                 if(!FLAC__frame_add_header(&frame_header, encoder->streamable_subset, is_last_frame, &encoder->guts->frame_mid_side)) {
549                         encoder->state = FLAC__ENCODER_FRAMING_ERROR;
550                         return false;
551                 }
552                 integer_signal[0] = encoder->guts->integer_signal_mid_side[0]; /* mid channel */
553                 integer_signal[1] = encoder->guts->integer_signal_mid_side[1]; /* side channel */
554                 real_signal[0] = encoder->guts->real_signal_mid_side[0]; /* mid channel */
555                 real_signal[1] = encoder->guts->real_signal_mid_side[1]; /* side channel */
556                 if(!encoder_process_subframes_(encoder, is_last_frame, &frame_header, encoder->channels, integer_signal, real_signal, &encoder->guts->frame_mid_side))
557                         return false;
558                 if(encoder->guts->frame_mid_side.total_bits < smallest_frame->total_bits)
559                         smallest_frame = &encoder->guts->frame_mid_side;
560
561                 /* left-side */
562                 frame_header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE;
563                 if(!FLAC__bitbuffer_clear(&encoder->guts->frame_left_side)) {
564                         encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
565                         return false;
566                 }
567                 if(!FLAC__frame_add_header(&frame_header, encoder->streamable_subset, is_last_frame, &encoder->guts->frame_left_side)) {
568                         encoder->state = FLAC__ENCODER_FRAMING_ERROR;
569                         return false;
570                 }
571                 integer_signal[0] = encoder->guts->integer_signal[0]; /* left channel */
572                 integer_signal[1] = encoder->guts->integer_signal_mid_side[1]; /* side channel */
573                 real_signal[0] = encoder->guts->real_signal[0]; /* left channel */
574                 real_signal[1] = encoder->guts->real_signal_mid_side[1]; /* side channel */
575                 if(!encoder_process_subframes_(encoder, is_last_frame, &frame_header, encoder->channels, integer_signal, real_signal, &encoder->guts->frame_left_side))
576                         return false;
577                 if(encoder->guts->frame_left_side.total_bits < smallest_frame->total_bits)
578                         smallest_frame = &encoder->guts->frame_left_side;
579
580                 /* right-side */
581                 frame_header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE;
582                 if(!FLAC__bitbuffer_clear(&encoder->guts->frame_right_side)) {
583                         encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
584                         return false;
585                 }
586                 if(!FLAC__frame_add_header(&frame_header, encoder->streamable_subset, is_last_frame, &encoder->guts->frame_right_side)) {
587                         encoder->state = FLAC__ENCODER_FRAMING_ERROR;
588                         return false;
589                 }
590                 integer_signal[0] = encoder->guts->integer_signal_mid_side[1]; /* side channel */
591                 integer_signal[1] = encoder->guts->integer_signal[1]; /* right channel */
592                 real_signal[0] = encoder->guts->real_signal_mid_side[1]; /* side channel */
593                 real_signal[1] = encoder->guts->real_signal[1]; /* right channel */
594                 if(!encoder_process_subframes_(encoder, is_last_frame, &frame_header, encoder->channels, integer_signal, real_signal, &encoder->guts->frame_right_side))
595                         return false;
596                 if(encoder->guts->frame_right_side.total_bits < smallest_frame->total_bits)
597                         smallest_frame = &encoder->guts->frame_right_side;
598         }
599
600         /*
601          * Zero-pad the frame to a byte_boundary
602          */
603         if(!FLAC__bitbuffer_zero_pad_to_byte_boundary(smallest_frame)) {
604                 encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
605                 return false;
606         }
607
608         /*
609          * Write it
610          */
611         assert(smallest_frame->bits == 0); /* assert that we're byte-aligned before writing */
612         assert(smallest_frame->total_consumed_bits == 0); /* assert that no reading of the buffer was done */
613         if(encoder->guts->write_callback(encoder, smallest_frame->buffer, smallest_frame->bytes, encoder->blocksize, encoder->guts->current_frame_number, encoder->guts->client_data) != FLAC__ENCODER_WRITE_OK) {
614                 encoder->state = FLAC__ENCODER_FATAL_ERROR_WHILE_WRITING;
615                 return false;
616         }
617
618         /*
619          * Get ready for the next frame
620          */
621         encoder->guts->current_frame_can_do_mid_side = true;
622         encoder->guts->current_sample_number = 0;
623         encoder->guts->current_frame_number++;
624         encoder->guts->metadata.data.encoding.total_samples += (uint64)encoder->blocksize;
625         encoder->guts->metadata.data.encoding.min_framesize = min(smallest_frame->bytes, encoder->guts->metadata.data.encoding.min_framesize);
626         encoder->guts->metadata.data.encoding.max_framesize = max(smallest_frame->bytes, encoder->guts->metadata.data.encoding.max_framesize);
627
628         return true;
629 }
630
631 bool encoder_process_subframes_(FLAC__Encoder *encoder, bool is_last_frame, const FLAC__FrameHeader *frame_header, unsigned channels, const int32 *integer_signal[], const real *real_signal[], FLAC__BitBuffer *frame)
632 {
633         real fixed_residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1];
634         real lpc_residual_bits_per_sample;
635         real autoc[FLAC__MAX_LPC_ORDER+1];
636         real lp_coeff[FLAC__MAX_LPC_ORDER][FLAC__MAX_LPC_ORDER];
637         real lpc_error[FLAC__MAX_LPC_ORDER];
638         unsigned channel;
639         unsigned min_lpc_order, max_lpc_order, lpc_order;
640         unsigned min_fixed_order, max_fixed_order, guess_fixed_order, fixed_order;
641         unsigned max_partition_order;
642         unsigned min_qlp_coeff_precision, max_qlp_coeff_precision, qlp_coeff_precision;
643         unsigned rice_parameter;
644         unsigned candidate_bits, best_bits;
645
646         if(is_last_frame) {
647                 max_partition_order = 0;
648         }
649         else {
650                 unsigned limit = 0, b = encoder->blocksize;
651                 while(!(b & 1)) {
652                         limit++;
653                         b >>= 1;
654                 }
655                 max_partition_order = min(encoder->rice_optimization_level, limit);
656         }
657
658         for(channel = 0; channel < channels; channel++) {
659                 /* verbatim subframe is the baseline against which we measure other compressed subframes */
660                 best_bits = encoder_evaluate_verbatim_subframe_(frame_header->blocksize, frame_header->bits_per_sample, &(encoder->guts->best_subframe));
661
662                 if(frame_header->blocksize >= FLAC__MAX_FIXED_ORDER) {
663                         /* check for constant subframe */
664                         guess_fixed_order = FLAC__fixed_compute_best_predictor(integer_signal[channel]+FLAC__MAX_FIXED_ORDER, frame_header->blocksize-FLAC__MAX_FIXED_ORDER, fixed_residual_bits_per_sample);
665                         if(fixed_residual_bits_per_sample[1] == 0.0) {
666                                 /* the above means integer_signal[channel]+FLAC__MAX_FIXED_ORDER is constant, now we just have to check the warmup samples */
667                                 unsigned i, signal_is_constant = true;
668                                 for(i = 1; i <= FLAC__MAX_FIXED_ORDER; i++) {
669                                         if(integer_signal[channel][0] != integer_signal[channel][i]) {
670                                                 signal_is_constant = false;
671                                                 break;
672                                         }
673                                 }
674                                 if(signal_is_constant) {
675                                         candidate_bits = encoder_evaluate_constant_subframe_(integer_signal[channel][0], frame_header->bits_per_sample, &(encoder->guts->candidate_subframe));
676                                         if(candidate_bits < best_bits) {
677                                                 encoder_promote_candidate_subframe_(encoder);
678                                                 best_bits = candidate_bits;
679                                         }
680                                 }
681                         }
682                         else {
683                                 /* encode fixed */
684                                 if(encoder->do_exhaustive_model_search) {
685                                         min_fixed_order = 0;
686                                         max_fixed_order = FLAC__MAX_FIXED_ORDER;
687                                 }
688                                 else {
689                                         min_fixed_order = max_fixed_order = guess_fixed_order;
690                                 }
691                                 for(fixed_order = min_fixed_order; fixed_order <= max_fixed_order; fixed_order++) {
692                                         if(fixed_residual_bits_per_sample[fixed_order] >= (real)frame_header->bits_per_sample)
693                                                 continue; /* don't even try */
694                                         /* 0.5 is for rounding, another 1.0 is to account for the signed->unsigned conversion during rice coding */
695                                         rice_parameter = (fixed_residual_bits_per_sample[fixed_order] > 0.0)? (unsigned)(fixed_residual_bits_per_sample[fixed_order]+1.5) : 0;
696                                         if(rice_parameter >= (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN))
697                                                 rice_parameter = (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN) - 1;
698                                         candidate_bits = encoder_evaluate_fixed_subframe_(integer_signal[channel], encoder->guts->residual[!encoder->guts->best_residual], frame_header->blocksize, frame_header->bits_per_sample, fixed_order, rice_parameter, max_partition_order, &(encoder->guts->candidate_subframe));
699                                         if(candidate_bits < best_bits) {
700                                                 encoder_promote_candidate_subframe_(encoder);
701                                                 best_bits = candidate_bits;
702                                         }
703                                 }
704
705                                 /* encode lpc */
706                                 if(encoder->max_lpc_order > 0) {
707                                         if(encoder->max_lpc_order >= frame_header->blocksize)
708                                                 max_lpc_order = frame_header->blocksize-1;
709                                         else
710                                                 max_lpc_order = encoder->max_lpc_order;
711                                         if(max_lpc_order > 0) {
712                                                 FLAC__lpc_compute_autocorrelation(real_signal[channel], frame_header->blocksize, max_lpc_order+1, autoc);
713                                                 FLAC__lpc_compute_lp_coefficients(autoc, max_lpc_order, lp_coeff, lpc_error);
714                                                 if(encoder->do_exhaustive_model_search) {
715                                                         min_lpc_order = 1;
716                                                 }
717                                                 else {
718                                                         unsigned guess_lpc_order = FLAC__lpc_compute_best_order(lpc_error, max_lpc_order, frame_header->blocksize, frame_header->bits_per_sample);
719                                                         min_lpc_order = max_lpc_order = guess_lpc_order;
720                                                 }
721                                                 if(encoder->do_qlp_coeff_prec_search) {
722                                                         min_qlp_coeff_precision = FLAC__MIN_QLP_COEFF_PRECISION;
723                                                         max_qlp_coeff_precision = 32 - frame_header->bits_per_sample - 1;
724                                                 }
725                                                 else {
726                                                         min_qlp_coeff_precision = max_qlp_coeff_precision = encoder->qlp_coeff_precision;
727                                                 }
728                                                 for(lpc_order = min_lpc_order; lpc_order <= max_lpc_order; lpc_order++) {
729                                                         lpc_residual_bits_per_sample = FLAC__lpc_compute_expected_bits_per_residual_sample(lpc_error[lpc_order-1], frame_header->blocksize);
730                                                         if(lpc_residual_bits_per_sample >= (real)frame_header->bits_per_sample)
731                                                                 continue; /* don't even try */
732                                                         /* 0.5 is for rounding, another 1.0 is to account for the signed->unsigned conversion during rice coding */
733                                                         rice_parameter = (lpc_residual_bits_per_sample > 0.0)? (unsigned)(lpc_residual_bits_per_sample+1.5) : 0;
734                                                         if(rice_parameter >= (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN))
735                                                                 rice_parameter = (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN) - 1;
736                                                         for(qlp_coeff_precision = min_qlp_coeff_precision; qlp_coeff_precision <= max_qlp_coeff_precision; qlp_coeff_precision++) {
737                                                                 candidate_bits = encoder_evaluate_lpc_subframe_(integer_signal[channel], encoder->guts->residual[!encoder->guts->best_residual], lp_coeff[lpc_order-1], frame_header->blocksize, frame_header->bits_per_sample, lpc_order, qlp_coeff_precision, rice_parameter, max_partition_order, &(encoder->guts->candidate_subframe));
738                                                                 if(candidate_bits > 0) { /* if == 0, there was a problem quantizing the lpcoeffs */
739                                                                         if(candidate_bits < best_bits) {
740                                                                                 encoder_promote_candidate_subframe_(encoder);
741                                                                                 best_bits = candidate_bits;
742                                                                         }
743                                                                 }
744                                                         }
745                                                 }
746                                         }
747                                 }
748                         }
749                 }
750
751                 /* add the best subframe */
752                 switch(encoder->guts->best_subframe.type) {
753                         case FLAC__SUBFRAME_TYPE_CONSTANT:
754                                 if(!encoder_generate_constant_subframe_(&(encoder->guts->best_subframe), frame_header->bits_per_sample, frame)) {
755                                         encoder->state = FLAC__ENCODER_FATAL_ERROR_WHILE_ENCODING;
756                                         return false;
757                                 }
758                                 break;
759                         case FLAC__SUBFRAME_TYPE_FIXED:
760                                 if(!encoder_generate_fixed_subframe_(&(encoder->guts->best_subframe), encoder->guts->residual[encoder->guts->best_residual], frame_header->blocksize, frame_header->bits_per_sample, frame)) {
761                                         encoder->state = FLAC__ENCODER_FATAL_ERROR_WHILE_ENCODING;
762                                         return false;
763                                 }
764                                 break;
765                         case FLAC__SUBFRAME_TYPE_LPC:
766                                 if(!encoder_generate_lpc_subframe_(&(encoder->guts->best_subframe), encoder->guts->residual[encoder->guts->best_residual], frame_header->blocksize, frame_header->bits_per_sample, frame)) {
767                                         encoder->state = FLAC__ENCODER_FATAL_ERROR_WHILE_ENCODING;
768                                         return false;
769                                 }
770                                 break;
771                         case FLAC__SUBFRAME_TYPE_VERBATIM:
772                                 if(!encoder_generate_verbatim_subframe_(&(encoder->guts->best_subframe), integer_signal[channel], frame_header->blocksize, frame_header->bits_per_sample, frame)) {
773                                         encoder->state = FLAC__ENCODER_FATAL_ERROR_WHILE_ENCODING;
774                                         return false;
775                                 }
776                                 break;
777                 }
778         }
779
780         return true;
781 }
782
783 unsigned encoder_evaluate_constant_subframe_(const int32 signal, unsigned bits_per_sample, FLAC__SubframeHeader *subframe)
784 {
785         subframe->type = FLAC__SUBFRAME_TYPE_CONSTANT;
786         subframe->data.constant.value = signal;
787
788         return FLAC__SUBFRAME_HEADER_TYPE_LEN + bits_per_sample;
789 }
790
791 unsigned encoder_evaluate_fixed_subframe_(const int32 signal[], int32 residual[], unsigned blocksize, unsigned bits_per_sample, unsigned order, unsigned rice_parameter, unsigned max_partition_order, FLAC__SubframeHeader *subframe)
792 {
793         unsigned i, residual_bits;
794         const unsigned residual_samples = blocksize - order;
795
796         FLAC__fixed_compute_residual(signal+order, residual_samples, order, residual);
797
798         subframe->type = FLAC__SUBFRAME_TYPE_FIXED;
799
800         subframe->data.fixed.entropy_coding_method.type = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE;
801
802         residual_bits = encoder_find_best_partition_order_(residual, residual_samples, order, rice_parameter, max_partition_order, &subframe->data.fixed.entropy_coding_method.data.partitioned_rice.order, subframe->data.fixed.entropy_coding_method.data.partitioned_rice.parameters);
803
804         subframe->data.fixed.order = order;
805         for(i = 0; i < order; i++)
806                 subframe->data.fixed.warmup[i] = signal[i];
807
808         return FLAC__SUBFRAME_HEADER_TYPE_LEN + (order * bits_per_sample) + residual_bits;
809 }
810
811 unsigned encoder_evaluate_lpc_subframe_(const int32 signal[], int32 residual[], const real lp_coeff[], unsigned blocksize, unsigned bits_per_sample, unsigned order, unsigned qlp_coeff_precision, unsigned rice_parameter, unsigned max_partition_order, FLAC__SubframeHeader *subframe)
812 {
813         int32 qlp_coeff[FLAC__MAX_LPC_ORDER];
814         unsigned i, residual_bits;
815         int quantization, ret;
816         const unsigned residual_samples = blocksize - order;
817
818         ret = FLAC__lpc_quantize_coefficients(lp_coeff, order, qlp_coeff_precision, bits_per_sample, qlp_coeff, &quantization);
819         if(ret != 0)
820                 return 0; /* this is a hack to indicate to the caller that we can't do lp at this order on this subframe */
821
822         FLAC__lpc_compute_residual_from_qlp_coefficients(signal+order, residual_samples, qlp_coeff, order, quantization, residual);
823
824         subframe->type = FLAC__SUBFRAME_TYPE_LPC;
825
826         subframe->data.lpc.entropy_coding_method.type = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE;
827
828         residual_bits = encoder_find_best_partition_order_(residual, residual_samples, order, rice_parameter, max_partition_order, &subframe->data.lpc.entropy_coding_method.data.partitioned_rice.order, subframe->data.lpc.entropy_coding_method.data.partitioned_rice.parameters);
829
830         subframe->data.lpc.order = order;
831         subframe->data.lpc.qlp_coeff_precision = qlp_coeff_precision;
832         subframe->data.lpc.quantization_level = quantization;
833         memcpy(subframe->data.lpc.qlp_coeff, qlp_coeff, sizeof(int32)*FLAC__MAX_LPC_ORDER);
834         for(i = 0; i < order; i++)
835                 subframe->data.lpc.warmup[i] = signal[i];
836
837         return FLAC__SUBFRAME_HEADER_TYPE_LEN + FLAC__SUBFRAME_HEADER_LPC_QLP_COEFF_PRECISION_LEN + FLAC__SUBFRAME_HEADER_LPC_QLP_SHIFT_LEN + (order * (qlp_coeff_precision + bits_per_sample)) + residual_bits;
838 }
839
840 unsigned encoder_evaluate_verbatim_subframe_(unsigned blocksize, unsigned bits_per_sample, FLAC__SubframeHeader *subframe)
841 {
842         subframe->type = FLAC__SUBFRAME_TYPE_VERBATIM;
843
844         return FLAC__SUBFRAME_HEADER_TYPE_LEN + (blocksize * bits_per_sample);
845 }
846
847 unsigned encoder_find_best_partition_order_(int32 residual[], unsigned residual_samples, unsigned predictor_order, unsigned rice_parameter, unsigned max_partition_order, unsigned *best_partition_order, unsigned best_parameters[])
848 {
849         unsigned residual_bits, best_residual_bits = 0;
850         unsigned partition_order;
851         unsigned best_parameters_index = 0, parameters[2][1 << FLAC__MAX_RICE_PARTITION_ORDER];
852
853         for(partition_order = 0; partition_order <= max_partition_order; partition_order++) {
854                 if(!encoder_set_partitioned_rice_(residual, residual_samples, predictor_order, rice_parameter, partition_order, parameters[!best_parameters_index], &residual_bits)) {
855                         assert(best_residual_bits != 0);
856                         break;
857                 }
858                 if(best_residual_bits == 0 || residual_bits < best_residual_bits) {
859                         best_residual_bits = residual_bits;
860                         *best_partition_order = partition_order;
861                         best_parameters_index = !best_parameters_index;
862                 }
863         }
864         memcpy(best_parameters, parameters[best_parameters_index], sizeof(unsigned)*(1<<(*best_partition_order)));
865
866         return best_residual_bits;
867 }
868
869 bool encoder_generate_constant_subframe_(const FLAC__SubframeHeader *header, unsigned bits_per_sample, FLAC__BitBuffer *bitbuffer)
870 {
871         assert(header->type == FLAC__SUBFRAME_TYPE_CONSTANT);
872         return FLAC__subframe_add_constant(bits_per_sample, header, bitbuffer);
873 }
874
875 bool encoder_generate_fixed_subframe_(const FLAC__SubframeHeader *header, int32 residual[], unsigned blocksize, unsigned bits_per_sample, FLAC__BitBuffer *bitbuffer)
876 {
877         assert(header->type == FLAC__SUBFRAME_TYPE_FIXED);
878         return FLAC__subframe_add_fixed(residual, blocksize - header->data.fixed.order, bits_per_sample, header, bitbuffer);
879 }
880
881 bool encoder_generate_lpc_subframe_(const FLAC__SubframeHeader *header, int32 residual[], unsigned blocksize, unsigned bits_per_sample, FLAC__BitBuffer *bitbuffer)
882 {
883         assert(header->type == FLAC__SUBFRAME_TYPE_LPC);
884         return FLAC__subframe_add_lpc(residual, blocksize - header->data.lpc.order, bits_per_sample, header, bitbuffer);
885 }
886
887 bool encoder_generate_verbatim_subframe_(const FLAC__SubframeHeader *header, const int32 signal[], unsigned blocksize, unsigned bits_per_sample, FLAC__BitBuffer *bitbuffer)
888 {
889         assert(header->type == FLAC__SUBFRAME_TYPE_VERBATIM);
890 #ifdef NDEBUG
891         (void)header; /* silence compiler warning about unused parameter */
892 #endif
893         return FLAC__subframe_add_verbatim(signal, blocksize, bits_per_sample, bitbuffer);
894 }
895
896 void encoder_promote_candidate_subframe_(FLAC__Encoder *encoder)
897 {
898         assert(encoder->state == FLAC__ENCODER_OK);
899         encoder->guts->best_subframe = encoder->guts->candidate_subframe;
900         encoder->guts->best_residual = !encoder->guts->best_residual;
901 }
902
903 bool encoder_set_partitioned_rice_(const int32 residual[], const unsigned residual_samples, const unsigned predictor_order, const unsigned rice_parameter, const unsigned partition_order, unsigned parameters[], unsigned *bits)
904 {
905         unsigned bits_ = FLAC__ENTROPY_CODING_METHOD_TYPE_LEN + FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN;
906
907         if(partition_order == 0) {
908                 unsigned i;
909                 parameters[0] = rice_parameter;
910                 bits_ += FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN;
911 #ifdef ESTIMATE_RICE_BITS
912                 --rice_parameter;
913 #endif
914                 for(i = 0; i < residual_samples; i++)
915 #ifdef ESTIMATE_RICE_BITS
916                         bits_ += ESTIMATE_RICE_BITS(residual[i], rice_parameter);
917 #else
918                         bits_ += FLAC__bitbuffer_rice_bits(residual[i], rice_parameter);
919 #endif
920         }
921         else {
922                 unsigned i, j, k = 0, k_last = 0;
923                 unsigned mean, parameter, partition_samples;
924                 const unsigned max_parameter = (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN) - 1;
925                 for(i = 0; i < (1u<<partition_order); i++) {
926                         partition_samples = (residual_samples+predictor_order) >> partition_order;
927                         if(i == 0) {
928                                 if(partition_samples <= predictor_order)
929                                         return false;
930                                 else
931                                         partition_samples -= predictor_order;
932                         }
933                         mean = partition_samples >> 1;
934                         for(j = 0; j < partition_samples; j++, k++)
935                                 mean += ((residual[k] < 0)? (unsigned)(-residual[k]) : (unsigned)residual[k]);
936                         mean /= partition_samples;
937                         /* calc parameter = floor(log2(mean)) + 1 */
938                         parameter = 0;
939                         while(mean) {
940                                 parameter++;
941                                 mean >>= 1;
942                         }
943                         if(parameter > max_parameter)
944                                 parameter = max_parameter;
945                         parameters[i] = parameter;
946                         bits_ += FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN;
947 #ifdef ESTIMATE_RICE_BITS
948                         --parameter;
949 #endif
950                         for(j = k_last; j < k; j++)
951 #ifdef ESTIMATE_RICE_BITS
952                                 bits_ += ESTIMATE_RICE_BITS(residual[j], parameter);
953 #else
954                                 bits_ += FLAC__bitbuffer_rice_bits(residual[j], parameter);
955 #endif
956                         k_last = k;
957                 }
958         }
959
960         *bits = bits_;
961         return true;
962 }