EFL core migration revision 70308
[framework/uifw/eet.git] / src / lib / Eet.h
1 /**
2    @brief Eet Data Handling Library Public API Calls
3
4    These routines are used for Eet Library interaction
5
6    @mainpage Eet Library Documentation
7
8    @version 1.5.0
9    @date 2000-2012
10
11    Please see the @ref authors page for contact details.
12
13    @section toc Table of Contents
14
15    @li @ref intro
16    @li @ref example
17    @li @ref compiling
18    @li @ref install
19    @li @ref next_steps
20    @li @ref intro_example
21
22    @section intro What is Eet?
23
24    It is a tiny library designed to write an arbitrary set of chunks of data
25    to a file and optionally compress each chunk (very much like a zip file)
26    and allow fast random-access reading of the file later on. It does not
27    do zip as a zip itself has more complexity than is needed, and it was much
28    simpler to implement this once here.
29
30    Eet is extremely fast, small and simple. Eet files can be very small and
31    highly compressed, making them very optimal for just sending across the
32    internet without having to archive, compress or decompress and install them.
33    They allow for lightning-fast random-access reads once created, making them
34    perfect for storing data that is written once (or rarely) and read many
35    times, but the program does not want to have to read it all in at once.
36
37    It also can encode and decode data structures in memory, as well as image
38    data for saving to Eet files or sending across the network to other
39    machines, or just writing to arbitrary files on the system. All data is
40    encoded in a platform independent way and can be written and read by any
41    architecture.
42
43    @section example A simple example on using Eet
44
45    Here is a simple example on how to use Eet to save a series of strings to a
46    file and load them again. The advantage of using Eet over just
47    fprintf() and
48    fscanf() is that not only can these entries be strings, they need no special
49    parsing to handle delimiter characters or escaping, they can be binary data,
50    image data, data structures containing integers, strings, other data
51    structures, linked lists and much more, without the programmer having to
52    worry about parsing, and best of all, Eet is very fast.
53
54    This is just a very simple example that doesn't show all of the capabilities
55    of Eet, but it serves to illustrate its simplicity.
56
57    @include eet-basic.c
58
59    @section compiling How to compile using Eet ?
60
61    Eet is a library your application links to. The procedure for this is very
62    simple. You simply have to compile your application with the appropriate
63    compiler flags that the @p pkg-config script outputs. For example:
64
65    Compiling C or C++ files into object files:
66
67    @verbatim
68    gcc -c -o main.o main.c `pkg-config --cflags eet`
69    @endverbatim
70
71    Linking object files into a binary executable:
72
73    @verbatim
74    gcc -o my_application main.o `pkg-config --libs eet`
75    @endverbatim
76
77    You simply have to make sure that pkg-config is in your shell's PATH (see
78    the manual page for your appropriate shell) and eet.pc in /usr/lib/pkgconfig
79    or its path is in the PKG_CONFIG_PATH environment variable. It's that simple
80    to link and use Eet once you have written your code to use it.
81
82    Since the program is linked to Eet, it is now able to use any advertised
83    API calls to serialize your data.
84
85    You should make sure you add any extra compile and link flags to your
86    compile commands that your application may need as well. The above example
87    is only guaranteed to make Eet add it's own requirements.
88
89
90    @section install How is it installed?
91
92    Simple:
93
94    @verbatim
95    ./configure
96    make
97    su -
98    ...
99    make install
100    @endverbatim
101
102    @section next_steps Next Steps
103
104    After you understood what Eet is and installed it in your system you
105    should proceed understanding the programming interface. We'd recommend
106    you to take a while to learn Eina
107    (http://docs.enlightenment.org/auto/eina/) as it is very convenient
108    and optimized, and Eet provides integration with it.
109
110    Recommended reading:
111
112    @li @ref Eet_File_Group to know the basics to open and save files.
113    @li @ref Eet_Data_Group to know the convenient way to serialize and
114     parse your data structures automatically. Just create your
115     descriptors and let Eet do the work for you.
116
117    @section intro_example Introductory Examples
118
119    @ref Examples
120
121    @todo Document data format for images and data structures.
122
123  */
124
125 /**
126    @page authors Authors
127    @author Carsten Haitzler <raster@@rasterman.com>
128    @author David Goodlad <dgoodlad@@gmail.com>
129    @author Cedric Bail <cedric.bail@@free.fr>
130    @author Arnaud de Turckheim <quarium@@gmail.com>
131    @author Luis Felipe Strano Moraes <lfelipe@@profusion.mobi>
132    @author Chidambar Zinnoury <illogict@@online.fr>
133    @author Vincent Torri <vtorri@@univ-evry.fr>
134    @author Gustavo Sverzut Barbieri <barbieri@@profusion.mobi>
135    @author Raphael Kubo da Costa <kubo@@profusion.mobi>
136    @author Mathieu Taillefumier <mathieu.taillefumier@@free.fr>
137    @author Albin "Lutin" Tonnerre <albin.tonnerre@@gmail.com>
138    @author Adam Simpkins <adam@@adamsimpkins.net>
139    @author Mike Blumenkrantz <michael.blumenkrantz@gmail.com>
140
141    Please contact <enlightenment-devel@lists.sourceforge.net> to get in
142    contact with the developers and maintainers.
143  */
144
145 #ifndef _EET_H
146 #define _EET_H
147
148 #include <stdlib.h>
149 #include <stdio.h>
150 #include <Eina.h>
151
152 #ifdef EAPI
153 # undef EAPI
154 #endif /* ifdef EAPI */
155
156 #ifdef _WIN32
157 # ifdef EFL_EET_BUILD
158 #  ifdef DLL_EXPORT
159 #   define EAPI __declspec(dllexport)
160 #  else /* ifdef DLL_EXPORT */
161 #   define EAPI
162 #  endif /* ! DLL_EXPORT */
163 # else /* ifdef EFL_EET_BUILD */
164 #  define EAPI __declspec(dllimport)
165 # endif /* ! EFL_EET_BUILD */
166 #else /* ifdef _WIN32 */
167 # ifdef __GNUC__
168 #  if __GNUC__ >= 4
169 #   define EAPI __attribute__ ((visibility("default")))
170 #  else /* if __GNUC__ >= 4 */
171 #   define EAPI
172 #  endif /* if __GNUC__ >= 4 */
173 # else /* ifdef __GNUC__ */
174 #  define EAPI
175 # endif /* ifdef __GNUC__ */
176 #endif /* ! _WIN32 */
177
178 #ifdef __cplusplus
179 extern "C" {
180 #endif /* ifdef __cplusplus */
181
182 /**
183  * @file Eet.h
184  * @brief The file that provides the eet functions.
185  *
186  * This header provides the Eet management functions.
187  *
188  */
189
190 #define EET_VERSION_MAJOR 1
191 #define EET_VERSION_MINOR 6
192 /**
193  * @typedef Eet_Version
194  *
195  * This is the Eet version information structure that can be used at
196  * runtime to detect which version of eet is being used and adapt
197  * appropriately as follows for example:
198  *
199  * @code
200  * #if defined(EET_VERSION_MAJOR) && (EET_VERSION_MAJOR >= 1) && defined(EET_VERSION_MINOR) && (EET_VERSION_MINOR > 2)
201  * printf("Eet version: %i.%i.%i\n",
202  *        eet_version->major,
203  *        eet_version->minor,
204  *        eet_version->micro);
205  * if (eet_version->revision > 0)
206  *   {
207  *     printf("  Built from SVN revision # %i\n", eet_version->revision);
208  *   }
209  * #endif
210  * @endcode
211  *
212  * Note the \#if check can be dropped if your program refuses to compile or
213  * work with an Eet version less than 1.3.0.
214  */
215 typedef struct _Eet_Version
216 {
217    int major; /** < major (binary or source incompatible changes) */
218    int minor; /** < minor (new features, bugfixes, major improvements version) */
219    int micro; /** < micro (bugfix, internal improvements, no new features version) */
220    int revision; /** < svn revision (0 if a proper release or the svn revision number Eet is built from) */
221 } Eet_Version;
222
223 EAPI extern Eet_Version *eet_version;
224
225 /**
226  * @defgroup Eet_Group Top level functions
227  * Functions that affect Eet as a whole.
228  *
229  * @{
230  */
231
232 /**
233  * @enum _Eet_Error
234  * All the error identifiers known by Eet.
235  */
236 typedef enum _Eet_Error
237 {
238    EET_ERROR_NONE, /**< No error, it's all fine! */
239    EET_ERROR_BAD_OBJECT, /**< Given object or handle is NULL or invalid */
240    EET_ERROR_EMPTY, /**< There was nothing to do */
241    EET_ERROR_NOT_WRITABLE, /**< Could not write to file or file is #EET_FILE_MODE_READ */
242    EET_ERROR_OUT_OF_MEMORY, /**< Could not allocate memory */
243    EET_ERROR_WRITE_ERROR, /**< Failed to write data to destination */
244    EET_ERROR_WRITE_ERROR_FILE_TOO_BIG, /**< Failed to write file since it is too big */
245    EET_ERROR_WRITE_ERROR_IO_ERROR, /**< Failed to write due a generic Input/Output error */
246    EET_ERROR_WRITE_ERROR_OUT_OF_SPACE, /**< Failed to write due out of space */
247    EET_ERROR_WRITE_ERROR_FILE_CLOSED, /**< Failed to write because file was closed */
248    EET_ERROR_MMAP_FAILED, /**< Could not mmap file */
249    EET_ERROR_X509_ENCODING_FAILED, /**< Could not encode using X509 */
250    EET_ERROR_SIGNATURE_FAILED, /**< Could not validate signature */
251    EET_ERROR_INVALID_SIGNATURE, /**< Signature is invalid */
252    EET_ERROR_NOT_SIGNED, /**< File or contents are not signed */
253    EET_ERROR_NOT_IMPLEMENTED, /**< Function is not implemented */
254    EET_ERROR_PRNG_NOT_SEEDED, /**< Could not introduce random seed */
255    EET_ERROR_ENCRYPT_FAILED, /**< Could not encrypt contents */
256    EET_ERROR_DECRYPT_FAILED /**< Could not decrypt contents */
257 } Eet_Error; /**< Eet error identifiers */
258
259 /**
260  * @}
261  */
262
263 /**
264  * Initialize the EET library.
265  *
266  * The first time this function is called, it will perform all the internal
267  * initialization required for the library to function properly and increment
268  * the initialization counter. Any subsequent call only increment this counter
269  * and return its new value, so it's safe to call this function more than once.
270  *
271  * @return The new init count. Will be 0 if initialization failed.
272  *
273  * @since 1.0.0
274  * @ingroup Eet_Group
275  */
276 EAPI int
277 eet_init(void);
278
279 /**
280  * Shut down the EET library.
281  *
282  * If eet_init() was called more than once for the running application,
283  * eet_shutdown() will decrement the initialization counter and return its
284  * new value, without doing anything else. When the counter reaches 0, all
285  * of the internal elements will be shutdown and any memory used freed.
286  *
287  * @return The new init count.
288  *
289  * @since 1.0.0
290  * @ingroup Eet_Group
291  */
292 EAPI int
293 eet_shutdown(void);
294
295 /**
296  * Clear eet cache
297  *
298  * For a faster access to previously accessed data, Eet keeps an internal
299  * cache of files. These files will be freed automatically only when
300  * they are unused and the cache gets full, in order based on the last time
301  * they were used.
302  * On systems with little memory this may present an unnecessary constraint,
303  * so eet_clearcache() is available for users to reclaim the memory used by
304  * files that are no longer needed. Those that were open using
305  * ::EET_FILE_MODE_WRITE or ::EET_FILE_MODE_READ_WRITE and have modifications,
306  * will be written down to disk before flushing them from memory.
307  *
308  * @since 1.0.0
309  * @ingroup Eet_Group
310  */
311 EAPI void
312 eet_clearcache(void);
313
314 /**
315  * @defgroup Eet_File_Group Eet File Main Functions
316  *
317  * Functions to create, destroy and do basic manipulation of
318  * #Eet_File handles.
319  *
320  * This sections explains how to use the most basic Eet functions, which
321  * are used to work with eet files, read data from them, store it back in or
322  * take a look at what entries it contains, without making use of the
323  * serialization capabilities explained in @ref Eet_Data_Group.
324  *
325  * The following example will serve as an introduction to most, if not all,
326  * of these functions.
327  *
328  * If you are only using Eet, this is the only header you need to include.
329  * @dontinclude eet-file.c
330  * @skipline Eet.h
331  *
332  * Now let's create ourselves an eet file to play with. The following function
333  * shows step by step how to open a file and write some data in it.
334  * First, we define our file handler and some other things we'll put in it.
335  * @line static int
336  * @skip Eet_File
337  * @until ";
338  * @skip eet_open
339  *
340  * We open a new file in write mode, and if it fails, we just return, since
341  * there's not much more we can do about it..
342  * @until return
343  *
344  * Now, we need to write some data in our file. For now, strings will suffice,
345  * so let's just dump a bunch of them in there.
346  * @until }
347  *
348  * As you can see, we copied a string into our static buffer, which is a bit
349  * bigger than the full length of the string, and then told Eet to write it
350  * into the file, compressed, returning the size of the data written into the
351  * file.
352  * This is all to show that Eet treats data as just data. It doesn't matter
353  * what that data represents (for now), it's all just bytes for it. As running
354  * the following code will show, we took a string of around 30 bytes and put it
355  * in a buffer of 1024 bytes, but the returned size won't be any of those.
356  * @until printf
357  *
358  * Next, we copy into our buffer our set of strings, including their null
359  * terminators and write them into the file. No error checking for the sake
360  * of brevity. And a call to eet_sync() to make sure all out data is
361  * properly written down to disk, even though we haven't yet closed the file.
362  * @until eet_sync
363  *
364  * One more write, this time our large array of binary data and... well, I
365  * couldn't come up with a valid use of the last set of strings we stored,
366  * so let's take it out from the file with eet_delete().
367  * @until eet_delete
368  *
369  * Finally, we close the file, saving any changes back to disk and return.
370  * Notice how, if there's any error closing the file or saving its contents,
371  * the return value from the function will be a false one, which later on
372  * will make the program exit with an error code.
373  * @until return
374  *
375  * Moving onto our main function, we will open the same file and read it back.
376  * Trivial, but it'll show how we can do so in more than one way. We'll skip
377  * the variable declarations, as they aren't very different from what we've
378  * seen already.
379  *
380  * We start from the beginning by initializing Eet so things in general work.
381  * Forgetting to do so will result in weird results or crashes when calling
382  * any eet function, so if you experience something like that, the first thing
383  * to look at is whether eet_init() is missing.
384  * Then we call our @p create_eet_file function, described above, to make
385  * sure we have something to work with. If the function fails it will return
386  * 0 and we just exit, since nothing from here onwards will work anyway.
387  * @skip eet_init
388  * @until return
389  *
390  * Let's take a look now at what entries our file has. For this, we use
391  * eet_list(), which will return a list of strings, each being the name of
392  * one entry. Since we skipped before, it may be worth noting that @p list
393  * is declared as a @p char **.
394  * The @p num parameter will, of course, have the number of entries contained
395  * in our file.
396  * If everything's fine, we'll get our list and print it to the screen, and
397  * once done with it, we free the list. That's just the list, not its contents,
398  * as they are internal strings used by Eet and trying to free them will surely
399  * break things.
400  * @until }
401  *
402  * Reading back plain data is simple. Just a call to eet_read() with the file
403  * to read from, and the name of the entry we are interested in. We get back
404  * our data and the passed @p size parameter will contain the size of it. If
405  * the data was stored compressed, it will decompressed first.
406  * @until }
407  *
408  * Another simple read for the set of strings from before, except those were
409  * deleted, so we should get a NULL return and continue normally.
410  * @until }
411  *
412  * Finally, we'll get our binary data in the same way we got the strings. Once
413  * again, it makes no difference for Eet what the data is, it's up to us to
414  * know how to handle it.
415  * @until {
416  *
417  * Now some cheating, we know that this data is an Eet file because, well...
418  * we just know it. So we are going to open it and take a look at its insides.
419  * For this, eet_open() won't work, as it needs to have a file on disk to read
420  * from and all we have is some data in RAM.
421  *
422  * So how do we do? One way would be to create a normal file and write down
423  * our data, then open it with eet_open(). Another, faster and more efficient
424  * if all we want to do is read the file, is to use eet_memopen_read().
425  * @until memopen
426  *
427  * As you can see, the size we got from our previous read was put to good use
428  * this time. Unlike the first one where all we had were strings, the size
429  * of the data read only serves to demonstrate that we are reading back the
430  * entire size of our original @p buf variable.
431  *
432  * A little peeking to see how many entries the file has and to make an
433  * example of eet_num_entries() to get that number when we don't care about
434  * their names.
435  * @until printf
436  *
437  * More cheating follows. Just like we knew this was an Eet file, we also know
438  * what key to read from, and ontop of that we know that the data in it is not
439  * compressed.
440  * Knowing all this allows us to take some shortcuts.
441  * @until read_direct
442  *
443  * That's a direct print of our data, whatever that data is. We don't want
444  * to worry about having to free it later, so we just used eet_direct_read()
445  * to tell Eet to gives a pointer to the internal data in the file, without
446  * duplicating it. Since we said that data was not compressed, we shouldn't
447  * worry about printing garbage to the screen (and yes, we also know the data
448  * is yet another string).
449  * We also don't care about the size of the data as it was stored in the file,
450  * so we passed NULL as the size parameter.
451  * One very important note about this, however, is that we don't care about
452  * the size parameter because the data in the file contains the null
453  * terminator for the string. So when using Eet to store strings this way,
454  * it's very important to consider whether you will keep that final null
455  * byte, or to always get the size read and do the necessary checks and copies.
456  * It's up to the user and the particular use cases to decide how this will
457  * be done.
458  *
459  * With everything done, close this second file and free the data used to open
460  * it. And this is important, we can't free that data until we are done with
461  * the file, as Eet is using it. When opening with eet_memopen_read(), the data
462  * passed to it must be available for as long as the the file is open.
463  * @until }
464  *
465  * Finally, we close the first file, shutdown all internal resources used by
466  * Eet and leave our main function, thus terminating our program.
467  * @until return
468  *
469  * You can look at the full code of the example @ref eet-file.c "here".
470  * @{
471  */
472
473 /**
474  * @enum _Eet_File_Mode
475  * Modes that a file can be opened.
476  */
477 typedef enum _Eet_File_Mode
478 {
479    EET_FILE_MODE_INVALID = -1,
480    EET_FILE_MODE_READ, /**< File is read-only. */
481    EET_FILE_MODE_WRITE, /**< File is write-only. */
482    EET_FILE_MODE_READ_WRITE /**< File is for both read and write */
483 } Eet_File_Mode; /**< Modes that a file can be opened. */
484
485 /**
486  * @typedef Eet_File
487  * Opaque handle that defines an Eet file (or memory).
488  *
489  * This handle will be returned by the functions eet_open() and
490  * eet_memopen_read() and is used by every other function that affects the
491  * file in any way. When you are done with it, call eet_close() to close it
492  * and, if the file was open for writing, write down to disk any changes made
493  * to it.
494  *
495  * @see eet_open()
496  * @see eet_memopen_read()
497  * @see eet_close()
498  */
499 typedef struct _Eet_File Eet_File;
500
501 /**
502  * @typedef Eet_Dictionary
503  * Opaque handle that defines a file-backed (mmaped) dictionary of strings.
504  */
505 typedef struct _Eet_Dictionary Eet_Dictionary;
506
507 /**
508  * @}
509  */
510
511 /**
512  * Open an eet file on disk, and returns a handle to it.
513  * @param file The file path to the eet file. eg: @c "/tmp/file.eet".
514  * @param mode The mode for opening. Either #EET_FILE_MODE_READ,
515  *        #EET_FILE_MODE_WRITE or #EET_FILE_MODE_READ_WRITE.
516  * @return An opened eet file handle.
517  * @ingroup Eet_File_Group
518  *
519  * This function will open an exiting eet file for reading, and build
520  * the directory table in memory and return a handle to the file, if it
521  * exists and can be read, and no memory errors occur on the way, otherwise
522  * NULL will be returned.
523  *
524  * It will also open an eet file for writing. This will, if successful,
525  * delete the original file and replace it with a new empty file, till
526  * the eet file handle is closed or flushed. If it cannot be opened for
527  * writing or a memory error occurs, NULL is returned.
528  *
529  * You can also open the file for read/write. If you then write a key that
530  * does not exist it will be created, if the key exists it will be replaced
531  * by the new data.
532  *
533  * If the same file is opened multiple times, then the same file handle will
534  * be returned as eet maintains an internal list of all currently open
535  * files. Note that it considers files opened for read only and those opened
536  * for read/write and write only as 2 separate sets. Those that do not write
537  * to the file and those that do. Eet will allow 2 handles to the same file
538  * if they are in the 2 separate lists/groups. That means opening a file for
539  * read only looks in the read only set, and returns a handle to that file
540  * handle and increments its reference count. If you open a file for read/write
541  * or write only it looks in the write set and returns a handle after
542  * incrementing the reference count. You need to close an eet file handle
543  * as many times as it has been opened to maintain correct reference counts.
544  * Files whose modified timestamp or size do not match those of the existing
545  * referenced file handles will not be returned and a new handle will be
546  * returned instead.
547  *
548  * @since 1.0.0
549  */
550 EAPI Eet_File *
551 eet_open(const char *file,
552          Eet_File_Mode mode);
553
554 /**
555  * Open an eet file directly from a memory location. The data is not copied,
556  * so you must keep it around as long as the eet file is open. There is
557  * currently no cache for this kind of Eet_File, so it's reopened every time
558  * you use eet_memopen_read.
559  * @param data Address of file in memory.
560  * @param size Size of memory to be read.
561  * @return A handle to the file.
562  *
563  * Files opened this way will always be in read-only mode.
564  *
565  * @since 1.1.0
566  * @ingroup Eet_File_Group
567  */
568 EAPI Eet_File *
569 eet_memopen_read(const void *data,
570                  size_t size);
571
572 /**
573  * Get the mode an Eet_File was opened with.
574  * @param ef A valid eet file handle.
575  * @return The mode ef was opened with.
576  *
577  * @since 1.0.0
578  * @ingroup Eet_File_Group
579  */
580 EAPI Eet_File_Mode
581 eet_mode_get(Eet_File *ef);
582
583 /**
584  * Close an eet file handle and flush pending writes.
585  * @param ef A valid eet file handle.
586  * @return An eet error identifier.
587  *
588  * This function will flush any pending writes to disk if the eet file
589  * was opened for write, and free all data associated with the file handle
590  * and file, and close the file. If it was opened for read (or read/write),
591  * the file handle may still be held open internally for caching purposes.
592  * To flush speculatively held eet file handles use eet_clearcache().
593  *
594  * If the eet file handle is not valid nothing will be done.
595  *
596  * @since 1.0.0
597  * @ingroup Eet_File_Group
598  * 
599  * @see eet_clearcache()
600  */
601 EAPI Eet_Error
602 eet_close(Eet_File *ef);
603
604 /**
605  * Sync content of an eet file handle, flushing pending writes.
606  * @param ef A valid eet file handle.
607  * @return An eet error identifier.
608  *
609  * This function will flush any pending writes to disk. The eet file must
610  * be opened for write.
611  *
612  * If the eet file handle is not valid nothing will be done.
613  *
614  * @since 1.2.4
615  * @ingroup Eet_File_Group
616  */
617 EAPI Eet_Error
618 eet_sync(Eet_File *ef);
619
620 /**
621  * Return a handle to the shared string dictionary of the Eet file
622  * @param ef A valid eet file handle.
623  * @return A handle to the dictionary of the file
624  *
625  * This function returns a handle to the dictionary of an Eet file whose
626  * handle is @p ef, if a dictionary exists. NULL is returned otherwise or
627  * if the file handle is known to be invalid.
628  *
629  * @see eet_dictionary_string_check() to know if given string came
630  *      from the dictionary or it was dynamically allocated using
631  *      the #Eet_Data_Descriptor_Class instructions.
632  *
633  * @since 1.0.0
634  * @ingroup Eet_File_Group
635  */
636 EAPI Eet_Dictionary *
637 eet_dictionary_get(Eet_File *ef);
638
639 /**
640  * Check if a given string comes from a given dictionary
641  * @param ed A valid dictionary handle
642  * @param string A valid 0 byte terminated C string
643  * @return 1 if it is in the dictionary, 0 otherwise
644  *
645  * This checks the given dictionary to see if the given string is actually
646  * inside that dictionary (i.e. comes from it) and returns 1 if it does.
647  * If the dictionary handle is invalid, the string is NULL or the string is
648  * not in the dictionary, 0 is returned.
649  *
650  * @since 1.0.0
651  * @ingroup Eet_File_Group
652  */
653 EAPI int
654 eet_dictionary_string_check(Eet_Dictionary *ed,
655                             const char *string);
656
657 /**
658  * Return the number of strings inside a dictionary
659  * @param ed A valid dictionary handle
660  * @return the number of strings inside a dictionary
661  *
662  * @since 1.6.0
663  * @ingroup Eet_File_Group
664  */
665 EAPI int
666 eet_dictionary_count(const Eet_Dictionary *ed);
667
668 /**
669  * Read a specified entry from an eet file and return data
670  * @param ef A valid eet file handle opened for reading.
671  * @param name Name of the entry. eg: "/base/file_i_want".
672  * @param size_ret Number of bytes read from entry and returned.
673  * @return The data stored in that entry in the eet file.
674  *
675  * This function finds an entry in the eet file that is stored under the
676  * name specified, and returns that data, decompressed, if successful.
677  * NULL is returned if the lookup fails or if memory errors are
678  * encountered. It is the job of the calling program to call free() on
679  * the returned data. The number of bytes in the returned data chunk are
680  * placed in size_ret.
681  *
682  * If the eet file handle is not valid NULL is returned and size_ret is
683  * filled with 0.
684  *
685  * @see eet_read_cipher()
686  *
687  * @since 1.0.0
688  * @ingroup Eet_File_Group
689  */
690 EAPI void *
691 eet_read(Eet_File *ef,
692          const char *name,
693          int *size_ret);
694
695 /**
696  * Read a specified entry from an eet file and return data
697  * @param ef A valid eet file handle opened for reading.
698  * @param name Name of the entry. eg: "/base/file_i_want".
699  * @param size_ret Number of bytes read from entry and returned.
700  * @return The data stored in that entry in the eet file.
701  *
702  * This function finds an entry in the eet file that is stored under the
703  * name specified, and returns that data if not compressed and successful.
704  * NULL is returned if the lookup fails or if memory errors are
705  * encountered or if the data is compressed. The calling program must never
706  * call free() on the returned data. The number of bytes in the returned
707  * data chunk are placed in size_ret.
708  *
709  * If the eet file handle is not valid NULL is returned and size_ret is
710  * filled with 0.
711  *
712  * @since 1.0.0
713  * @ingroup Eet_File_Group
714  */
715 EAPI const void *
716 eet_read_direct(Eet_File *ef,
717                 const char *name,
718                 int *size_ret);
719
720 /**
721  * Write a specified entry to an eet file handle
722  * @param ef A valid eet file handle opened for writing.
723  * @param name Name of the entry. eg: "/base/file_i_want".
724  * @param data Pointer to the data to be stored.
725  * @param size Length in bytes in the data to be stored.
726  * @param compress Compression flags (1 == compress, 0 = don't compress).
727  * @return bytes written on successful write, 0 on failure.
728  *
729  * This function will write the specified chunk of data to the eet file
730  * and return greater than 0 on success. 0 will be returned on failure.
731  *
732  * The eet file handle must be a valid file handle for an eet file opened
733  * for writing. If it is not, 0 will be returned and no action will be
734  * performed.
735  *
736  * Name, and data must not be NULL, and size must be > 0. If these
737  * conditions are not met, 0 will be returned.
738  *
739  * The data will be copied (and optionally compressed) in ram, pending
740  * a flush to disk (it will stay in ram till the eet file handle is
741  * closed though).
742  *
743  * @see eet_write_cipher()
744  *
745  * @since 1.0.0
746  * @ingroup Eet_File_Group
747  */
748 EAPI int
749 eet_write(Eet_File *ef,
750           const char *name,
751           const void *data,
752           int size,
753           int compress);
754
755 /**
756  * Delete a specified entry from an Eet file being written or re-written
757  * @param ef A valid eet file handle opened for writing.
758  * @param name Name of the entry. eg: "/base/file_i_want".
759  * @return Success or failure of the delete.
760  *
761  * This function will delete the specified chunk of data from the eet file
762  * and return greater than 0 on success. 0 will be returned on failure.
763  *
764  * The eet file handle must be a valid file handle for an eet file opened
765  * for writing. If it is not, 0 will be returned and no action will be
766  * performed.
767  *
768  * Name, must not be NULL, otherwise 0 will be returned.
769  *
770  * @since 1.0.0
771  * @ingroup Eet_File_Group
772  */
773 EAPI int
774 eet_delete(Eet_File *ef,
775            const char *name);
776
777 /**
778  * Alias a specific section to another one. Destination may exist or not,
779  * no checks are done.
780  * @param ef A valid eet file handle opened for writing.
781  * @param name Name of the new entry. eg: "/base/file_i_want".
782  * @param destination Actual source of the aliased entry eg: "/base/the_real_stuff_i_want".
783  * @param compress Compression flags (1 == compress, 0 = don't compress).
784  * @return EINA_TRUE on success, EINA_FALSE on failure.
785  *
786  * Name and Destination must not be NULL, otherwise EINA_FALSE will be returned.
787  * The equivalent of this would be calling 'ln -s destination name'
788  *
789  * @since 1.3.3
790  * @ingroup Eet_File_Group
791  */
792 EAPI Eina_Bool
793 eet_alias(Eet_File *ef,
794           const char *name,
795           const char *destination,
796           int compress);
797
798 /**
799  * Retrieve the filename of an Eet_File
800  * @param ef A valid eet file handle opened for writing.
801  * @return The stringshared file string opened with eet_open(), or NULL on error
802  *
803  * @note This function will return NULL for files opened with eet_memopen_read()
804  *
805  * @since 1.6
806  * @ingroup Eet_File_Group
807  */
808 EAPI const char *
809 eet_file_get(Eet_File *ef);
810
811 /**
812  * Retrieve the destination name of an alias
813  * @param ef A valid eet file handle opened for writing
814  * @param name Name of the entry. eg: "/base/file_i_want"
815  * @return Destination of the alias. eg: "/base/the_real_stuff_i_want", NULL on failure
816  *
817  * Name must not be NULL, otherwise NULL will be returned.
818  *
819  * @since 1.5
820  * @ingroup Eet_File_Group
821  */
822 EAPI const char *
823 eet_alias_get(Eet_File *ef,
824               const char *name);
825
826 /**
827  * List all entries in eet file matching shell glob.
828  * @param ef A valid eet file handle.
829  * @param glob A shell glob to match against.
830  * @param count_ret Number of entries found to match.
831  * @return Pointer to an array of strings.
832  *
833  * This function will list all entries in the eet file matching the
834  * supplied shell glob and return an allocated list of their names, if
835  * there are any, and if no memory errors occur.
836  *
837  * The eet file handle must be valid and glob must not be NULL, or NULL
838  * will be returned and count_ret will be filled with 0.
839  *
840  * The calling program must call free() on the array returned, but NOT
841  * on the string pointers in the array. They are taken as read-only
842  * internals from the eet file handle. They are only valid as long as
843  * the file handle is not closed. When it is closed those pointers in the
844  * array are now not valid and should not be used.
845  *
846  * On success the array returned will have a list of string pointers
847  * that are the names of the entries that matched, and count_ret will have
848  * the number of entries in this array placed in it.
849  *
850  * Hint: an easy way to list all entries in an eet file is to use a glob
851  * value of "*".
852  *
853  * @since 1.0.0
854  * @ingroup Eet_File_Group
855  */
856 EAPI char **
857 eet_list(Eet_File *ef,
858          const char *glob,
859          int *count_ret);
860
861 /**
862  * Return the number of entries in the specified eet file.
863  * @param ef A valid eet file handle.
864  * @return Number of entries in ef or -1 if the number of entries
865  *         cannot be read due to open mode restrictions.
866  *
867  * @since 1.0.0
868  * @ingroup Eet_File_Group
869  */
870 EAPI int
871 eet_num_entries(Eet_File *ef);
872
873 /**
874  * @defgroup Eet_File_Cipher_Group Eet File Ciphered Main Functions
875  *
876  * Most of the @ref Eet_File_Group have alternative versions that
877  * accounts for ciphers to protect their content.
878  *
879  * @see @ref Eet_Cipher_Group
880  *
881  * @ingroup Eet_File_Group
882  */
883
884 /**
885  * Read a specified entry from an eet file and return data using a cipher.
886  * @param ef A valid eet file handle opened for reading.
887  * @param name Name of the entry. eg: "/base/file_i_want".
888  * @param size_ret Number of bytes read from entry and returned.
889  * @param cipher_key The key to use as cipher.
890  * @return The data stored in that entry in the eet file.
891  *
892  * This function finds an entry in the eet file that is stored under the
893  * name specified, and returns that data, decompressed, if successful.
894  * NULL is returned if the lookup fails or if memory errors are
895  * encountered. It is the job of the calling program to call free() on
896  * the returned data. The number of bytes in the returned data chunk are
897  * placed in size_ret.
898  *
899  * If the eet file handle is not valid NULL is returned and size_ret is
900  * filled with 0.
901  *
902  * @see eet_read()
903  *
904  * @since 1.0.0
905  * @ingroup Eet_File_Cipher_Group
906  */
907 EAPI void *
908 eet_read_cipher(Eet_File *ef,
909                 const char *name,
910                 int *size_ret,
911                 const char *cipher_key);
912
913 /**
914  * Write a specified entry to an eet file handle using a cipher.
915  * @param ef A valid eet file handle opened for writing.
916  * @param name Name of the entry. eg: "/base/file_i_want".
917  * @param data Pointer to the data to be stored.
918  * @param size Length in bytes in the data to be stored.
919  * @param compress Compression flags (1 == compress, 0 = don't compress).
920  * @param cipher_key The key to use as cipher.
921  * @return bytes written on successful write, 0 on failure.
922  *
923  * This function will write the specified chunk of data to the eet file
924  * and return greater than 0 on success. 0 will be returned on failure.
925  *
926  * The eet file handle must be a valid file handle for an eet file opened
927  * for writing. If it is not, 0 will be returned and no action will be
928  * performed.
929  *
930  * Name, and data must not be NULL, and size must be > 0. If these
931  * conditions are not met, 0 will be returned.
932  *
933  * The data will be copied (and optionally compressed) in ram, pending
934  * a flush to disk (it will stay in ram till the eet file handle is
935  * closed though).
936  *
937  * @see eet_write()
938  *
939  * @since 1.0.0
940  * @ingroup Eet_File_Cipher_Group
941  */
942 EAPI int
943 eet_write_cipher(Eet_File *ef,
944                  const char *name,
945                  const void *data,
946                  int size,
947                  int compress,
948                  const char *cipher_key);
949
950 /**
951  * @defgroup Eet_File_Image_Group Image Store and Load
952  *
953  * Eet efficiently stores and loads images, including alpha
954  * channels and lossy compressions.
955  *
956  * Eet can handle both lossy compression with different levels of quality and
957  * non-lossy compression with different compression levels. It's also possible,
958  * given an image data, to only read its header to get the image information
959  * without decoding the entire content for it.
960  *
961  * The encode family of functions will take an image raw buffer and its
962  * parameters and compress it in memory, returning the new buffer.
963  * Likewise, the decode functions will read from the given location in memory
964  * and return the uncompressed image.
965  *
966  * The read and write functions will, respectively, encode and decode to or
967  * from an Eet file, under the specified key.
968  *
969  * These functions are fairly low level and the same functionality can be
970  * achieved using Evas and Edje, making it much easier to work with images
971  * as well as not needing to worry about things like scaling them.
972  */
973
974 /**
975  * Read just the header data for an image and dont decode the pixels.
976  * @param ef A valid eet file handle opened for reading.
977  * @param name Name of the entry. eg: "/base/file_i_want".
978  * @param w A pointer to the unsigned int to hold the width in pixels.
979  * @param h A pointer to the unsigned int to hold the height in pixels.
980  * @param alpha A pointer to the int to hold the alpha flag.
981  * @param compress A pointer to the int to hold the compression amount.
982  * @param quality A pointer to the int to hold the quality amount.
983  * @param lossy A pointer to the int to hold the lossiness flag.
984  * @return 1 on successful decode, 0 otherwise
985  *
986  * Reads and decodes the image header data stored under the given key and
987  * Eet file.
988  *
989  * The information decoded is placed in each of the parameters, which must be
990  * provided. The width and height, measured in pixels, will be stored under
991  * the variables pointed by @p w and @p h, respectively. If the read or
992  * decode of the header fails, this values will be 0. The @p alpha parameter
993  * will be 1 or 0, denoting if the alpha channel of the image is used or not.
994  * If the image was losslessly compressed, the @p compress parameter will hold
995  * the compression amount used, ranging from 0 to 9 and @p lossy will be 0.
996  * In the case of lossy compression, @p lossy will be 1, and the compression
997  * quality will be placed under @p quality, with a value ranging from 0 to 100.
998  *
999  * @see eet_data_image_header_decode()
1000  * @see eet_data_image_header_read_cipher()
1001  *
1002  * @since 1.0.0
1003  * @ingroup Eet_File_Image_Group
1004  */
1005 EAPI int
1006 eet_data_image_header_read(Eet_File *ef,
1007                            const char *name,
1008                            unsigned int *w,
1009                            unsigned int *h,
1010                            int *alpha,
1011                            int *compress,
1012                            int *quality,
1013                            int *lossy);
1014
1015 /**
1016  * Read image data from the named key in the eet file.
1017  * @param ef A valid eet file handle opened for reading.
1018  * @param name Name of the entry. eg: "/base/file_i_want".
1019  * @param w A pointer to the unsigned int to hold the width in pixels.
1020  * @param h A pointer to the unsigned int to hold the height in pixels.
1021  * @param alpha A pointer to the int to hold the alpha flag.
1022  * @param compress A pointer to the int to hold the compression amount.
1023  * @param quality A pointer to the int to hold the quality amount.
1024  * @param lossy A pointer to the int to hold the lossiness flag.
1025  * @return The image pixel data decoded
1026  *
1027  * Reads and decodes the image stored in the given Eet file under the named
1028  * key.
1029  *
1030  * The returned pixel data is a linear array of pixels starting from the
1031  * top-left of the image, scanning row by row from left to right. Each pile
1032  * is a 32bit value, with the high byte being the alpha channel, the next being
1033  * red, then green, and the low byte being blue.
1034  *
1035  * The rest of the parameters are the same as in eet_data_image_header_read().
1036  *
1037  * On success the function returns a pointer to the image data decoded. The
1038  * calling application is responsible for calling free() on the image data
1039  * when it is done with it. On failure NULL is returned and the parameter
1040  * values may not contain any sensible data.
1041  *
1042  * @see eet_data_image_header_read()
1043  * @see eet_data_image_decode()
1044  * @see eet_data_image_read_cipher()
1045  * @see eet_data_image_read_to_surface()
1046  *
1047  * @since 1.0.0
1048  * @ingroup Eet_File_Image_Group
1049  */
1050 EAPI void *
1051 eet_data_image_read(Eet_File *ef,
1052                     const char *name,
1053                     unsigned int *w,
1054                     unsigned int *h,
1055                     int *alpha,
1056                     int *compress,
1057                     int *quality,
1058                     int *lossy);
1059
1060 /**
1061  * Read image data from the named key in the eet file and store it in the given buffer.
1062  * @param ef A valid eet file handle opened for reading.
1063  * @param name Name of the entry. eg: "/base/file_i_want".
1064  * @param src_x The starting x coordinate from where to dump the stream.
1065  * @param src_y The starting y coordinate from where to dump the stream.
1066  * @param d A pointer to the pixel surface.
1067  * @param w The expected width in pixels of the pixel surface to decode.
1068  * @param h The expected height in pixels of the pixel surface to decode.
1069  * @param row_stride The length of a pixels line in the destination surface.
1070  * @param alpha A pointer to the int to hold the alpha flag.
1071  * @param compress A pointer to the int to hold the compression amount.
1072  * @param quality A pointer to the int to hold the quality amount.
1073  * @param lossy A pointer to the int to hold the lossiness flag.
1074  * @return 1 on success, 0 otherwise.
1075  *
1076  * Reads and decodes the image stored in the given Eet file, placing the
1077  * resulting pixel data in the buffer pointed by the user.
1078  *
1079  * Like eet_data_image_read(), it takes the image data stored under the
1080  * @p name key in the @p ef file, but instead of returning a new buffer with
1081  * the pixel data, it places the result in the buffer pointed by @p d, which
1082  * must be provided by the user and of sufficient size to hold the requested
1083  * portion of the image.
1084  *
1085  * The @p src_x and @p src_y parameters indicate the top-left corner of the
1086  * section of the image to decode. These have to be higher or equal than 0 and
1087  * less than the respective total width and height of the image. The width
1088  * and height of the section of the image to decode are given in @p w and @p h
1089  * and also can't be higher than the total width and height of the image.
1090  *
1091  * The @p row_stride parameter indicates the length in bytes of each line in
1092  * the destination buffer and it has to be at least @p w * 4.
1093  *
1094  * All the other parameters are the same as in eet_data_image_read().
1095  *
1096  * On success the function returns 1, and 0 on failure. On failure the
1097  * parameter values may not contain any sensible data.
1098  *
1099  * @see eet_data_image_read()
1100  * @see eet_data_image_decode()
1101  * @see eet_data_image_decode_to_surface()
1102  * @see eet_data_image_read_to_surface_cipher()
1103  *
1104  * @since 1.0.2
1105  * @ingroup Eet_File_Image_Group
1106  */
1107 EAPI int
1108 eet_data_image_read_to_surface(Eet_File *ef,
1109                                const char *name,
1110                                unsigned int src_x,
1111                                unsigned int src_y,
1112                                unsigned int *d,
1113                                unsigned int w,
1114                                unsigned int h,
1115                                unsigned int row_stride,
1116                                int *alpha,
1117                                int *compress,
1118                                int *quality,
1119                                int *lossy);
1120
1121 /**
1122  * Write image data to the named key in an eet file.
1123  * @param ef A valid eet file handle opened for writing.
1124  * @param name Name of the entry. eg: "/base/file_i_want".
1125  * @param data A pointer to the image pixel data.
1126  * @param w The width of the image in pixels.
1127  * @param h The height of the image in pixels.
1128  * @param alpha The alpha channel flag.
1129  * @param compress The compression amount.
1130  * @param quality The quality encoding amount.
1131  * @param lossy The lossiness flag.
1132  * @return Success if the data was encoded and written or not.
1133  *
1134  * This function takes image pixel data and encodes it in an eet file
1135  * stored under the supplied name key, and returns how many bytes were
1136  * actually written to encode the image data.
1137  *
1138  * The data expected is the same format as returned by eet_data_image_read.
1139  * If this is not the case weird things may happen. Width and height must
1140  * be between 1 and 8000 pixels. The alpha flags can be 0 or 1 (0 meaning
1141  * the alpha values are not useful and 1 meaning they are). Compress can
1142  * be from 0 to 9 (0 meaning no compression, 9 meaning full compression).
1143  * This is only used if the image is not lossily encoded. Quality is used on
1144  * lossy compression and should be a value from 0 to 100. The lossy flag
1145  * can be 0 or 1. 0 means encode losslessly and 1 means to encode with
1146  * image quality loss (but then have a much smaller encoding).
1147  *
1148  * On success this function returns the number of bytes that were required
1149  * to encode the image data, or on failure it returns 0.
1150  *
1151  * @see eet_data_image_read()
1152  * @see eet_data_image_encode()
1153  * @see eet_data_image_write_cipher()
1154  *
1155  * @since 1.0.0
1156  * @ingroup Eet_File_Image_Group
1157  */
1158 EAPI int
1159 eet_data_image_write(Eet_File *ef,
1160                      const char *name,
1161                      const void *data,
1162                      unsigned int w,
1163                      unsigned int h,
1164                      int alpha,
1165                      int compress,
1166                      int quality,
1167                      int lossy);
1168
1169 /**
1170  * Decode Image data header only to get information.
1171  * @param data The encoded pixel data.
1172  * @param size The size, in bytes, of the encoded pixel data.
1173  * @param w A pointer to the unsigned int to hold the width in pixels.
1174  * @param h A pointer to the unsigned int to hold the height in pixels.
1175  * @param alpha A pointer to the int to hold the alpha flag.
1176  * @param compress A pointer to the int to hold the compression amount.
1177  * @param quality A pointer to the int to hold the quality amount.
1178  * @param lossy A pointer to the int to hold the lossiness flag.
1179  * @return 1 on success, 0 on failure.
1180  *
1181  * This function works exactly like eet_data_image_header_read(), but instead
1182  * of reading from an Eet file, it takes the buffer of size @p size pointed
1183  * by @p data, which must be a valid Eet encoded image.
1184  *
1185  * On success the function returns 1 indicating the header was read and
1186  * decoded properly, or 0 on failure.
1187  *
1188  * @see eet_data_image_header_read()
1189  * @see eet_data_image_header_decode_cipher()
1190  *
1191  * @since 1.0.0
1192  * @ingroup Eet_File_Image_Group
1193  */
1194 EAPI int
1195 eet_data_image_header_decode(const void *data,
1196                              int size,
1197                              unsigned int *w,
1198                              unsigned int *h,
1199                              int *alpha,
1200                              int *compress,
1201                              int *quality,
1202                              int *lossy);
1203
1204 /**
1205  * Decode Image data into pixel data.
1206  * @param data The encoded pixel data.
1207  * @param size The size, in bytes, of the encoded pixel data.
1208  * @param w A pointer to the unsigned int to hold the width in pixels.
1209  * @param h A pointer to the unsigned int to hold the height in pixels.
1210  * @param alpha A pointer to the int to hold the alpha flag.
1211  * @param compress A pointer to the int to hold the compression amount.
1212  * @param quality A pointer to the int to hold the quality amount.
1213  * @param lossy A pointer to the int to hold the lossiness flag.
1214  * @return The image pixel data decoded
1215  *
1216  * This function takes encoded pixel data and decodes it into raw RGBA
1217  * pixels on success.
1218  *
1219  * It works exactly like eet_data_image_read(), but it takes the encoded
1220  * data in the @p data buffer of size @p size, instead of reading from a file.
1221  * All the others parameters are also the same.
1222  *
1223  * On success the function returns a pointer to the image data decoded. The
1224  * calling application is responsible for calling free() on the image data
1225  * when it is done with it. On failure NULL is returned and the parameter
1226  * values may not contain any sensible data.
1227  *
1228  * @see eet_data_image_read()
1229  * @see eet_data_image_decode_cipher()
1230  *
1231  * @since 1.0.0
1232  * @ingroup Eet_File_Image_Group
1233  */
1234 EAPI void *
1235 eet_data_image_decode(const void *data,
1236                       int size,
1237                       unsigned int *w,
1238                       unsigned int *h,
1239                       int *alpha,
1240                       int *compress,
1241                       int *quality,
1242                       int *lossy);
1243
1244 /**
1245  * Decode Image data into pixel data and stores in the given buffer.
1246  * @param data The encoded pixel data.
1247  * @param size The size, in bytes, of the encoded pixel data.
1248  * @param src_x The starting x coordinate from where to dump the stream.
1249  * @param src_y The starting y coordinate from where to dump the stream.
1250  * @param d A pointer to the pixel surface.
1251  * @param w The expected width in pixels of the pixel surface to decode.
1252  * @param h The expected height in pixels of the pixel surface to decode.
1253  * @param row_stride The length of a pixels line in the destination surface.
1254  * @param alpha A pointer to the int to hold the alpha flag.
1255  * @param compress A pointer to the int to hold the compression amount.
1256  * @param quality A pointer to the int to hold the quality amount.
1257  * @param lossy A pointer to the int to hold the lossiness flag.
1258  * @return 1 on success, 0 otherwise.
1259  *
1260  * Like eet_data_image_read_to_surface(), but reading the given @p data buffer
1261  * instead of a file.
1262  *
1263  * On success the function returns 1, and 0 on failure. On failure the
1264  * parameter values may not contain any sensible data.
1265  *
1266  * @see eet_data_image_read_to_surface()
1267  * @see eet_data_image_decode_to_surface_cipher()
1268  *
1269  * @since 1.0.2
1270  * @ingroup Eet_File_Image_Group
1271  */
1272 EAPI int
1273 eet_data_image_decode_to_surface(const void *data,
1274                                  int size,
1275                                  unsigned int src_x,
1276                                  unsigned int src_y,
1277                                  unsigned int *d,
1278                                  unsigned int w,
1279                                  unsigned int h,
1280                                  unsigned int row_stride,
1281                                  int *alpha,
1282                                  int *compress,
1283                                  int *quality,
1284                                  int *lossy);
1285
1286 /**
1287  * Encode image data for storage or transmission.
1288  * @param data A pointer to the image pixel data.
1289  * @param size_ret A pointer to an int to hold the size of the returned data.
1290  * @param w The width of the image in pixels.
1291  * @param h The height of the image in pixels.
1292  * @param alpha The alpha channel flag.
1293  * @param compress The compression amount.
1294  * @param quality The quality encoding amount.
1295  * @param lossy The lossiness flag.
1296  * @return The encoded image data.
1297  *
1298  * This function stakes image pixel data and encodes it with compression and
1299  * possible loss of quality (as a trade off for size) for storage or
1300  * transmission to another system.
1301  *
1302  * It works like eet_data_image_write(), but instead of writing the encoded
1303  * image into an Eet file, it allocates a new buffer of the size required and
1304  * returns the encoded data in it.
1305  *
1306  * On success this function returns a pointer to the encoded data that you
1307  * can free with free() when no longer needed.
1308  *
1309  * @see eet_data_image_write()
1310  * @see eet_data_image_read()
1311  * @see eet_data_image_encode_cipher()
1312  *
1313  * @since 1.0.0
1314  * @ingroup Eet_File_Image_Group
1315  */
1316 EAPI void *
1317 eet_data_image_encode(const void *data,
1318                       int *size_ret,
1319                       unsigned int w,
1320                       unsigned int h,
1321                       int alpha,
1322                       int compress,
1323                       int quality,
1324                       int lossy);
1325
1326 /**
1327  * @defgroup Eet_File_Image_Cipher_Group Image Store and Load using a Cipher
1328  *
1329  * Most of the @ref Eet_File_Image_Group have alternative versions
1330  * that accounts for ciphers to protect their content.
1331  *
1332  * @see @ref Eet_Cipher_Group
1333  *
1334  * @ingroup Eet_File_Image_Group
1335  */
1336
1337 /**
1338  * Read just the header data for an image and dont decode the pixels using a cipher.
1339  * @param ef A valid eet file handle opened for reading.
1340  * @param name Name of the entry. eg: "/base/file_i_want".
1341  * @param cipher_key The key to use as cipher.
1342  * @param w A pointer to the unsigned int to hold the width in pixels.
1343  * @param h A pointer to the unsigned int to hold the height in pixels.
1344  * @param alpha A pointer to the int to hold the alpha flag.
1345  * @param compress A pointer to the int to hold the compression amount.
1346  * @param quality A pointer to the int to hold the quality amount.
1347  * @param lossy A pointer to the int to hold the lossiness flag.
1348  * @return 1 on successful decode, 0 otherwise
1349  *
1350  * This function reads an image from an eet file stored under the named
1351  * key in the eet file and return a pointer to the decompressed pixel data.
1352  *
1353  * The other parameters of the image (width, height etc.) are placed into
1354  * the values pointed to (they must be supplied). The pixel data is a linear
1355  * array of pixels starting from the top-left of the image scanning row by
1356  * row from left to right. Each pixel is a 32bit value, with the high byte
1357  * being the alpha channel, the next being red, then green, and the low byte
1358  * being blue. The width and height are measured in pixels and will be
1359  * greater than 0 when returned. The alpha flag is either 0 or 1. 0 denotes
1360  * that the alpha channel is not used. 1 denotes that it is significant.
1361  * Compress is filled with the compression value/amount the image was
1362  * stored with. The quality value is filled with the quality encoding of
1363  * the image file (0 - 100). The lossy flags is either 0 or 1 as to if
1364  * the image was encoded lossily or not.
1365  *
1366  * On success the function returns 1 indicating the header was read and
1367  * decoded properly, or 0 on failure.
1368  *
1369  * @see eet_data_image_header_read()
1370  *
1371  * @since 1.0.0
1372  * @ingroup Eet_File_Image_Cipher_Group
1373  */
1374 EAPI int
1375 eet_data_image_header_read_cipher(Eet_File *ef,
1376                                   const char *name,
1377                                   const char *cipher_key,
1378                                   unsigned int *w,
1379                                   unsigned int *h,
1380                                   int *alpha,
1381                                   int *compress,
1382                                   int *quality,
1383                                   int *lossy);
1384
1385 /**
1386  * Read image data from the named key in the eet file using a cipher.
1387  * @param ef A valid eet file handle opened for reading.
1388  * @param name Name of the entry. eg: "/base/file_i_want".
1389  * @param cipher_key The key to use as cipher.
1390  * @param w A pointer to the unsigned int to hold the width in pixels.
1391  * @param h A pointer to the unsigned int to hold the height in pixels.
1392  * @param alpha A pointer to the int to hold the alpha flag.
1393  * @param compress A pointer to the int to hold the compression amount.
1394  * @param quality A pointer to the int to hold the quality amount.
1395  * @param lossy A pointer to the int to hold the lossiness flag.
1396  * @return The image pixel data decoded
1397  *
1398  * This function reads an image from an eet file stored under the named
1399  * key in the eet file and return a pointer to the decompressed pixel data.
1400  *
1401  * The other parameters of the image (width, height etc.) are placed into
1402  * the values pointed to (they must be supplied). The pixel data is a linear
1403  * array of pixels starting from the top-left of the image scanning row by
1404  * row from left to right. Each pixel is a 32bit value, with the high byte
1405  * being the alpha channel, the next being red, then green, and the low byte
1406  * being blue. The width and height are measured in pixels and will be
1407  * greater than 0 when returned. The alpha flag is either 0 or 1. 0 denotes
1408  * that the alpha channel is not used. 1 denotes that it is significant.
1409  * Compress is filled with the compression value/amount the image was
1410  * stored with. The quality value is filled with the quality encoding of
1411  * the image file (0 - 100). The lossy flags is either 0 or 1 as to if
1412  * the image was encoded lossily or not.
1413  *
1414  * On success the function returns a pointer to the image data decoded. The
1415  * calling application is responsible for calling free() on the image data
1416  * when it is done with it. On failure NULL is returned and the parameter
1417  * values may not contain any sensible data.
1418  *
1419  * @see eet_data_image_read()
1420  *
1421  * @since 1.0.0
1422  * @ingroup Eet_File_Image_Cipher_Group
1423  */
1424 EAPI void *
1425 eet_data_image_read_cipher(Eet_File *ef,
1426                            const char *name,
1427                            const char *cipher_key,
1428                            unsigned int *w,
1429                            unsigned int *h,
1430                            int *alpha,
1431                            int *compress,
1432                            int *quality,
1433                            int *lossy);
1434
1435 /**
1436  * Read image data from the named key in the eet file using a cipher.
1437  * @param ef A valid eet file handle opened for reading.
1438  * @param name Name of the entry. eg: "/base/file_i_want".
1439  * @param cipher_key The key to use as cipher.
1440  * @param src_x The starting x coordinate from where to dump the stream.
1441  * @param src_y The starting y coordinate from where to dump the stream.
1442  * @param d A pointer to the pixel surface.
1443  * @param w The expected width in pixels of the pixel surface to decode.
1444  * @param h The expected height in pixels of the pixel surface to decode.
1445  * @param row_stride The length of a pixels line in the destination surface.
1446  * @param alpha A pointer to the int to hold the alpha flag.
1447  * @param compress A pointer to the int to hold the compression amount.
1448  * @param quality A pointer to the int to hold the quality amount.
1449  * @param lossy A pointer to the int to hold the lossiness flag.
1450  * @return 1 on success, 0 otherwise.
1451  *
1452  * This function reads an image from an eet file stored under the named
1453  * key in the eet file and return a pointer to the decompressed pixel data.
1454  *
1455  * The other parameters of the image (width, height etc.) are placed into
1456  * the values pointed to (they must be supplied). The pixel data is a linear
1457  * array of pixels starting from the top-left of the image scanning row by
1458  * row from left to right. Each pixel is a 32bit value, with the high byte
1459  * being the alpha channel, the next being red, then green, and the low byte
1460  * being blue. The width and height are measured in pixels and will be
1461  * greater than 0 when returned. The alpha flag is either 0 or 1. 0 denotes
1462  * that the alpha channel is not used. 1 denotes that it is significant.
1463  * Compress is filled with the compression value/amount the image was
1464  * stored with. The quality value is filled with the quality encoding of
1465  * the image file (0 - 100). The lossy flags is either 0 or 1 as to if
1466  * the image was encoded lossily or not.
1467  *
1468  * On success the function returns 1, and 0 on failure. On failure the
1469  * parameter values may not contain any sensible data.
1470  *
1471  * @see eet_data_image_read_to_surface()
1472  *
1473  * @since 1.0.2
1474  * @ingroup Eet_File_Image_Cipher_Group
1475  */
1476 EAPI int
1477 eet_data_image_read_to_surface_cipher(Eet_File *ef,
1478                                       const char *name,
1479                                       const char *cipher_key,
1480                                       unsigned int src_x,
1481                                       unsigned int src_y,
1482                                       unsigned int *d,
1483                                       unsigned int w,
1484                                       unsigned int h,
1485                                       unsigned int row_stride,
1486                                       int *alpha,
1487                                       int *compress,
1488                                       int *quality,
1489                                       int *lossy);
1490
1491 /**
1492  * Write image data to the named key in an eet file using a cipher.
1493  * @param ef A valid eet file handle opened for writing.
1494  * @param name Name of the entry. eg: "/base/file_i_want".
1495  * @param cipher_key The key to use as cipher.
1496  * @param data A pointer to the image pixel data.
1497  * @param w The width of the image in pixels.
1498  * @param h The height of the image in pixels.
1499  * @param alpha The alpha channel flag.
1500  * @param compress The compression amount.
1501  * @param quality The quality encoding amount.
1502  * @param lossy The lossiness flag.
1503  * @return Success if the data was encoded and written or not.
1504  *
1505  * This function takes image pixel data and encodes it in an eet file
1506  * stored under the supplied name key, and returns how many bytes were
1507  * actually written to encode the image data.
1508  *
1509  * The data expected is the same format as returned by eet_data_image_read.
1510  * If this is not the case weird things may happen. Width and height must
1511  * be between 1 and 8000 pixels. The alpha flags can be 0 or 1 (0 meaning
1512  * the alpha values are not useful and 1 meaning they are). Compress can
1513  * be from 0 to 9 (0 meaning no compression, 9 meaning full compression).
1514  * This is only used if the image is not lossily encoded. Quality is used on
1515  * lossy compression and should be a value from 0 to 100. The lossy flag
1516  * can be 0 or 1. 0 means encode losslessly and 1 means to encode with
1517  * image quality loss (but then have a much smaller encoding).
1518  *
1519  * On success this function returns the number of bytes that were required
1520  * to encode the image data, or on failure it returns 0.
1521  *
1522  * @see eet_data_image_write()
1523  *
1524  * @since 1.0.0
1525  * @ingroup Eet_File_Image_Cipher_Group
1526  */
1527 EAPI int
1528 eet_data_image_write_cipher(Eet_File *ef,
1529                             const char *name,
1530                             const char *cipher_key,
1531                             const void *data,
1532                             unsigned int w,
1533                             unsigned int h,
1534                             int alpha,
1535                             int compress,
1536                             int quality,
1537                             int lossy);
1538
1539 /**
1540  * Decode Image data header only to get information using a cipher.
1541  * @param data The encoded pixel data.
1542  * @param cipher_key The key to use as cipher.
1543  * @param size The size, in bytes, of the encoded pixel data.
1544  * @param w A pointer to the unsigned int to hold the width in pixels.
1545  * @param h A pointer to the unsigned int to hold the height in pixels.
1546  * @param alpha A pointer to the int to hold the alpha flag.
1547  * @param compress A pointer to the int to hold the compression amount.
1548  * @param quality A pointer to the int to hold the quality amount.
1549  * @param lossy A pointer to the int to hold the lossiness flag.
1550  * @return 1 on success, 0 on failure.
1551  *
1552  * This function takes encoded pixel data and decodes it into raw RGBA
1553  * pixels on success.
1554  *
1555  * The other parameters of the image (width, height etc.) are placed into
1556  * the values pointed to (they must be supplied). The pixel data is a linear
1557  * array of pixels starting from the top-left of the image scanning row by
1558  * row from left to right. Each pixel is a 32bit value, with the high byte
1559  * being the alpha channel, the next being red, then green, and the low byte
1560  * being blue. The width and height are measured in pixels and will be
1561  * greater than 0 when returned. The alpha flag is either 0 or 1. 0 denotes
1562  * that the alpha channel is not used. 1 denotes that it is significant.
1563  * Compress is filled with the compression value/amount the image was
1564  * stored with. The quality value is filled with the quality encoding of
1565  * the image file (0 - 100). The lossy flags is either 0 or 1 as to if
1566  * the image was encoded lossily or not.
1567  *
1568  * On success the function returns 1 indicating the header was read and
1569  * decoded properly, or 0 on failure.
1570  *
1571  * @see eet_data_image_header_decode()
1572  *
1573  * @since 1.0.0
1574  * @ingroup Eet_File_Image_Cipher_Group
1575  */
1576 EAPI int
1577 eet_data_image_header_decode_cipher(const void *data,
1578                                     const char *cipher_key,
1579                                     int size,
1580                                     unsigned int *w,
1581                                     unsigned int *h,
1582                                     int *alpha,
1583                                     int *compress,
1584                                     int *quality,
1585                                     int *lossy);
1586
1587 /**
1588  * Decode Image data into pixel data using a cipher.
1589  * @param data The encoded pixel data.
1590  * @param cipher_key The key to use as cipher.
1591  * @param size The size, in bytes, of the encoded pixel data.
1592  * @param w A pointer to the unsigned int to hold the width in pixels.
1593  * @param h A pointer to the unsigned int to hold the height in pixels.
1594  * @param alpha A pointer to the int to hold the alpha flag.
1595  * @param compress A pointer to the int to hold the compression amount.
1596  * @param quality A pointer to the int to hold the quality amount.
1597  * @param lossy A pointer to the int to hold the lossiness flag.
1598  * @return The image pixel data decoded
1599  *
1600  * This function takes encoded pixel data and decodes it into raw RGBA
1601  * pixels on success.
1602  *
1603  * The other parameters of the image (width, height etc.) are placed into
1604  * the values pointed to (they must be supplied). The pixel data is a linear
1605  * array of pixels starting from the top-left of the image scanning row by
1606  * row from left to right. Each pixel is a 32bit value, with the high byte
1607  * being the alpha channel, the next being red, then green, and the low byte
1608  * being blue. The width and height are measured in pixels and will be
1609  * greater than 0 when returned. The alpha flag is either 0 or 1. 0 denotes
1610  * that the alpha channel is not used. 1 denotes that it is significant.
1611  * Compress is filled with the compression value/amount the image was
1612  * stored with. The quality value is filled with the quality encoding of
1613  * the image file (0 - 100). The lossy flags is either 0 or 1 as to if
1614  * the image was encoded lossily or not.
1615  *
1616  * On success the function returns a pointer to the image data decoded. The
1617  * calling application is responsible for calling free() on the image data
1618  * when it is done with it. On failure NULL is returned and the parameter
1619  * values may not contain any sensible data.
1620  *
1621  * @see eet_data_image_decode()
1622  *
1623  * @since 1.0.0
1624  * @ingroup Eet_File_Image_Cipher_Group
1625  */
1626 EAPI void *
1627 eet_data_image_decode_cipher(const void *data,
1628                              const char *cipher_key,
1629                              int size,
1630                              unsigned int *w,
1631                              unsigned int *h,
1632                              int *alpha,
1633                              int *compress,
1634                              int *quality,
1635                              int *lossy);
1636
1637 /**
1638  * Decode Image data into pixel data using a cipher.
1639  * @param data The encoded pixel data.
1640  * @param cipher_key The key to use as cipher.
1641  * @param size The size, in bytes, of the encoded pixel data.
1642  * @param src_x The starting x coordinate from where to dump the stream.
1643  * @param src_y The starting y coordinate from where to dump the stream.
1644  * @param d A pointer to the pixel surface.
1645  * @param w The expected width in pixels of the pixel surface to decode.
1646  * @param h The expected height in pixels of the pixel surface to decode.
1647  * @param row_stride The length of a pixels line in the destination surface.
1648  * @param alpha A pointer to the int to hold the alpha flag.
1649  * @param compress A pointer to the int to hold the compression amount.
1650  * @param quality A pointer to the int to hold the quality amount.
1651  * @param lossy A pointer to the int to hold the lossiness flag.
1652  * @return 1 on success, 0 otherwise.
1653  *
1654  * This function takes encoded pixel data and decodes it into raw RGBA
1655  * pixels on success.
1656  *
1657  * The other parameters of the image (alpha, compress etc.) are placed into
1658  * the values pointed to (they must be supplied). The pixel data is a linear
1659  * array of pixels starting from the top-left of the image scanning row by
1660  * row from left to right. Each pixel is a 32bit value, with the high byte
1661  * being the alpha channel, the next being red, then green, and the low byte
1662  * being blue. The width and height are measured in pixels and will be
1663  * greater than 0 when returned. The alpha flag is either 0 or 1. 0 denotes
1664  * that the alpha channel is not used. 1 denotes that it is significant.
1665  * Compress is filled with the compression value/amount the image was
1666  * stored with. The quality value is filled with the quality encoding of
1667  * the image file (0 - 100). The lossy flags is either 0 or 1 as to if
1668  * the image was encoded lossily or not.
1669  *
1670  * On success the function returns 1, and 0 on failure. On failure the
1671  * parameter values may not contain any sensible data.
1672  *
1673  * @see eet_data_image_decode_to_surface()
1674  *
1675  * @since 1.0.2
1676  * @ingroup Eet_File_Image_Cipher_Group
1677  */
1678 EAPI int
1679 eet_data_image_decode_to_surface_cipher(const void *data,
1680                                         const char *cipher_key,
1681                                         int size,
1682                                         unsigned int src_x,
1683                                         unsigned int src_y,
1684                                         unsigned int *d,
1685                                         unsigned int w,
1686                                         unsigned int h,
1687                                         unsigned int row_stride,
1688                                         int *alpha,
1689                                         int *compress,
1690                                         int *quality,
1691                                         int *lossy);
1692
1693 /**
1694  * Encode image data for storage or transmission using a cipher.
1695  * @param data A pointer to the image pixel data.
1696  * @param cipher_key The key to use as cipher.
1697  * @param size_ret A pointer to an int to hold the size of the returned data.
1698  * @param w The width of the image in pixels.
1699  * @param h The height of the image in pixels.
1700  * @param alpha The alpha channel flag.
1701  * @param compress The compression amount.
1702  * @param quality The quality encoding amount.
1703  * @param lossy The lossiness flag.
1704  * @return The encoded image data.
1705  *
1706  * This function stakes image pixel data and encodes it with compression and
1707  * possible loss of quality (as a trade off for size) for storage or
1708  * transmission to another system.
1709  *
1710  * The data expected is the same format as returned by eet_data_image_read.
1711  * If this is not the case weird things may happen. Width and height must
1712  * be between 1 and 8000 pixels. The alpha flags can be 0 or 1 (0 meaning
1713  * the alpha values are not useful and 1 meaning they are). Compress can
1714  * be from 0 to 9 (0 meaning no compression, 9 meaning full compression).
1715  * This is only used if the image is not lossily encoded. Quality is used on
1716  * lossy compression and should be a value from 0 to 100. The lossy flag
1717  * can be 0 or 1. 0 means encode losslessly and 1 means to encode with
1718  * image quality loss (but then have a much smaller encoding).
1719  *
1720  * On success this function returns a pointer to the encoded data that you
1721  * can free with free() when no longer needed.
1722  *
1723  * @see eet_data_image_encode()
1724  *
1725  * @since 1.0.0
1726  * @ingroup Eet_File_Image_Cipher_Group
1727  */
1728 EAPI void *
1729 eet_data_image_encode_cipher(const void *data,
1730                              const char *cipher_key,
1731                              unsigned int w,
1732                              unsigned int h,
1733                              int alpha,
1734                              int compress,
1735                              int quality,
1736                              int lossy,
1737                              int *size_ret);
1738
1739 /**
1740  * @defgroup Eet_Cipher_Group Cipher, Identity and Protection Mechanisms
1741  *
1742  * Eet allows one to protect entries of an #Eet_File
1743  * individually. This may be used to ensure data was not tampered or
1744  * that third party does not read your data.
1745  *
1746  * @see @ref Eet_File_Cipher_Group
1747  * @see @ref Eet_File_Image_Cipher_Group
1748  *
1749  * @{
1750  */
1751
1752 /**
1753  * @typedef Eet_Key
1754  * Opaque handle that defines an identity (also known as key)
1755  * in Eet's cipher system.
1756  */
1757 typedef struct _Eet_Key Eet_Key;
1758
1759 /**
1760  * @}
1761  */
1762
1763 /**
1764  * Callback used to request if needed the password of a private key.
1765  *
1766  * @param buffer the buffer where to store the password.
1767  * @param size the maximum password size (size of buffer, including '@\0').
1768  * @param rwflag if the buffer is also readable or just writable.
1769  * @param data currently unused, may contain some context in future.
1770  * @return 1 on success and password was set to @p buffer, 0 on failure.
1771  *
1772  * @since 1.2.0
1773  * @ingroup Eet_Cipher_Group
1774  */
1775 typedef int (*Eet_Key_Password_Callback)(char *buffer, int size, int rwflag, void *data);
1776
1777 /**
1778  * Create an Eet_Key needed for signing an eet file.
1779  *
1780  * The certificate should provide the public that match the private key.
1781  * No verification is done to ensure that.
1782  *
1783  * @param certificate_file The file where to find the certificate.
1784  * @param private_key_file The file that contains the private key.
1785  * @param cb Function to callback if password is required to unlock
1786  *        private key.
1787  * @return A key handle to use, or @c NULL on failure.
1788  *
1789  * @see eet_identity_close()
1790  *
1791  * @since 1.2.0
1792  * @ingroup Eet_Cipher_Group
1793  */
1794 EAPI Eet_Key *
1795 eet_identity_open(const char *certificate_file,
1796                   const char *private_key_file,
1797                   Eet_Key_Password_Callback cb);
1798
1799 /**
1800  * Close and release all resource used by an Eet_Key.  An
1801  * reference counter prevent it from being freed until all file
1802  * using it are also closed.
1803  *
1804  * @param key the key handle to close and free resources.
1805  *
1806  * @since 1.2.0
1807  * @ingroup Eet_Cipher_Group
1808  */
1809 EAPI void
1810 eet_identity_close(Eet_Key *key);
1811
1812 /**
1813  * Set a key to sign a file
1814  *
1815  * @param ef the file to set the identity.
1816  * @param key the key handle to set as identity.
1817  * @return #EET_ERROR_BAD_OBJECT if @p ef is invalid or
1818  *         #EET_ERROR_NONE on success.
1819  *
1820  * @since 1.2.0
1821  * @ingroup Eet_Cipher_Group
1822  */
1823 EAPI Eet_Error
1824 eet_identity_set(Eet_File *ef,
1825                  Eet_Key *key);
1826
1827 /**
1828  * Display both private and public key of an Eet_Key.
1829  *
1830  * @param key the handle to print.
1831  * @param out where to print.
1832  *
1833  * @since 1.2.0
1834  * @ingroup Eet_Cipher_Group
1835  */
1836 EAPI void
1837 eet_identity_print(Eet_Key *key,
1838                    FILE *out);
1839
1840 /**
1841  * Get the x509 der certificate associated with an Eet_File. Will return NULL
1842  * if the file is not signed.
1843  *
1844  * @param ef The file handle to query.
1845  * @param der_length The length of returned data, may be @c NULL.
1846  * @return the x509 certificate or @c NULL on error.
1847  *
1848  * @since 1.2.0
1849  * @ingroup Eet_Cipher_Group
1850  */
1851 EAPI const void *
1852 eet_identity_x509(Eet_File *ef,
1853                   int *der_length);
1854
1855 /**
1856  * Get the raw signature associated with an Eet_File. Will return NULL
1857  * if the file is not signed.
1858  *
1859  * @param ef The file handle to query.
1860  * @param signature_length The length of returned data, may be @c NULL.
1861  * @return the raw signature or @c NULL on error.
1862  *
1863  * @ingroup Eet_Cipher_Group
1864  */
1865 EAPI const void *
1866 eet_identity_signature(Eet_File *ef,
1867                        int *signature_length);
1868
1869 /**
1870  * Get the SHA1 associated with a file. Could be the one used to
1871  * sign the data or if the data where not signed, it will be the
1872  * SHA1 of the file.
1873  *
1874  * @param ef The file handle to query.
1875  * @param sha1_length The length of returned data, may be @c NULL.
1876  * @return the associated SHA1 or @c NULL on error.
1877  *
1878  * @since 1.2.0
1879  * @ingroup Eet_Cipher_Group
1880  */
1881 EAPI const void *
1882 eet_identity_sha1(Eet_File *ef,
1883                   int *sha1_length);
1884
1885 /**
1886  * Display the x509 der certificate to out.
1887  *
1888  * @param certificate the x509 certificate to print
1889  * @param der_length The length the certificate.
1890  * @param out where to print.
1891  *
1892  * @since 1.2.0
1893  * @ingroup Eet_Cipher_Group
1894  */
1895 EAPI void
1896 eet_identity_certificate_print(const unsigned char *certificate,
1897                                int der_length,
1898                                FILE *out);
1899
1900 /**
1901  * @defgroup Eet_Data_Group Eet Data Serialization
1902  *
1903  * Convenience functions to serialize and parse complex data
1904  * structures to binary blobs.
1905  *
1906  * While Eet core just handles binary blobs, it is often required
1907  * to save some structured data of different types, such as
1908  * strings, integers, lists, hashes and so on.
1909  *
1910  * Eet can serialize and then parse data types given some
1911  * construction instructions. These are defined in two levels:
1912  *
1913  * - #Eet_Data_Descriptor_Class to tell generic memory handling,
1914  *   such as the size of the type, how to allocate memory, strings,
1915  *   lists, hashes and so on.
1916  *
1917  * - #Eet_Data_Descriptor to tell inside such type, the members and
1918  *   their offsets inside the memory blob, their types and
1919  *   names. These members can be simple types or other
1920  *   #Eet_Data_Descriptor, allowing hierarchical types to be
1921  *   defined.
1922  *
1923  * Given that C provides no introspection, this process can be
1924  * quite cumbersome, so we provide lots of macros and convenience
1925  * functions to aid creating the types.
1926  *
1927  * We make now a quick overview of some of the most commonly used elements
1928  * of this part of the library. A simple example of a configuration system
1929  * will work as a somewhat real life example that is still simple enough to
1930  * follow.
1931  * Only the relevant sections will be shown here, but you can get the full
1932  * code @ref eet-data-simple.c "here".
1933  *
1934  * Ignoring the included headers, we'll begin by defining our configuration
1935  * struct.
1936  * @dontinclude eet-data-simple.c
1937  * @skip typedef
1938  * @until }
1939  *
1940  * When using Eet, you don't think in matters of what data the program needs
1941  * to run and which you would like to store. It's all the same and if it makes
1942  * more sense to keep them together, it's perfectly fine to do so. At the time
1943  * of telling Eet how your data is comprised you can leave out the things
1944  * that are runtime only and let Eet take care of the rest for you.
1945  *
1946  * The key used to store the config follows, as well as the variable used to
1947  * store our data descriptor.
1948  * This last one is very important. It's the one thing that Eet will use to
1949  * identify your data, both at the time of writing it to the file and when
1950  * loading from it.
1951  * @skipline MY_CONF
1952  * @skipline Eet_Data_Descriptor
1953  *
1954  * Now we'll see how to create this descriptor, so Eet knows how to handle
1955  * our data later on.
1956  * Begin our function by declaring an Eet_Data_Descriptor_Class, which is
1957  * used to create the actual descriptor. This class contains the name of
1958  * our data type, its size and several functions that dictate how Eet should
1959  * handle memory to allocate the necessary bits to bring our data to life.
1960  * You, as a user, will very hardly set this class' contents directly. The
1961  * most common scenario is to use one of the provided macros that set it using
1962  * the Eina data types, so that's what we'll be doing across all our examples.
1963  * @skip static void
1964  * @until eet_data_descriptor_stream_new
1965  *
1966  * Now that we have our descriptor, we need to make it describe something.
1967  * We do so by telling it which members of our struct we want it to know about
1968  * and their types.
1969  * The eet_data_descriptor_element_add() function takes care of this, but it's
1970  * too cumbersome for normal use, so several macros are provided that make
1971  * it easier to handle. Even with them, however, code can get very repetitive
1972  * and it's not uncommon to define custom macros using them to save on typing.
1973  * @skip #define
1974  * @until }
1975  *
1976  * Now our descriptor knows about the parts of our structure that we are
1977  * interesting in saving. You can see that not all of them are there, yet Eet
1978  * will find those that need saving and do the right thing. When loading our
1979  * data, any non-described fields in the structure will be zeroed, so there's
1980  * no need to worry about garbage memory in them.
1981  * Refer to the documentation of #EET_DATA_DESCRIPTOR_ADD_BASIC to understand
1982  * what our macro does.
1983  *
1984  * We are done with our descriptor init function and it's proper to have the
1985  * relevant shutdown. Proper coding guidelines indiciate that all memory
1986  * allocated should be freed when the program ends, and since you will most
1987  * likely keep your descriptor around for the life or your application, it's
1988  * only right to free it at the end.
1989  * @skip static void
1990  * @until }
1991  *
1992  * Not listed here, but included in the full example are functions to create
1993  * a blank configuration and free it. The first one will only be used when
1994  * no file exists to load from, or nothing is found in it, but the latter is
1995  * used regardless of where our data comes from. Unless you are reading direct
1996  * data from the Eet file, you will be in charge of freeing anything loaded
1997  * from it.
1998  *
1999  * Now it's time to look at how we can load our config from some file.
2000  * Begin by opening the Eet file normally.
2001  * @skip static My_Conf_Type
2002  * @until }
2003  *
2004  * And now we need to read the data from the file and decode it using our
2005  * descriptor. Fortunately, that's all done in one single step.
2006  * @until goto
2007  *
2008  * And that's it for all Eet cares about. But since we are dealing with a
2009  * common case, as is save and load of user configurations, the next fragment
2010  * of code shows why we have a version field in our struct, and how you can
2011  * use it to load older configuration files and update them as needed.
2012  * @until }
2013  *
2014  * Finally, close the file and return the newly loaded config data.
2015  * @until }
2016  *
2017  * Saving data is just as easy. The full version of the following function
2018  * includes code to save to a temporary file first, so you can be sure not
2019  * to lose all your data in the case of a failure mid-writing. You can look
2020  * at it @ref eet-data-simple.c "here".
2021  * @skip static Eina_Bool
2022  * @until {
2023  * @skipline Eina_Bool ret
2024  * @skip eet_open
2025  * @until eet_close
2026  * @skip return
2027  * @until }
2028  *
2029  * To close, our main function, which doesn't do much. Just take some arguments
2030  * from the command line with the name of the file to load and another one
2031  * where to save again. If input file doesn't exist, a new config structure
2032  * will be created and saved to our output file.
2033  * @skip int main
2034  * @until return ret
2035  * @until }
2036  *
2037  * The following is a list of more advanced and detailed examples.
2038  * @li @ref eet_data_nested_example
2039  * @li @ref eet_data_file_descriptor
2040  * @li @ref Example_Eet_Data_File_Descriptor_02
2041  * @li @ref Example_Eet_Data_Cipher_Decipher
2042  */
2043
2044 /**
2045  * @page eet_data_nested_example Nested structures and Eet Data Descriptors
2046  *
2047  * We've seen already a simple example of how to use Eet Data Descriptors
2048  * to handle our structures, but it didn't show how this works when you
2049  * have structures inside other structures.
2050  *
2051  * Now, there's a very simple case of this, for when you have inline structs
2052  * to keep your big structure more organized, you don't need anything else
2053  * besides what @ref eet-data-simple.c "this simple example does".
2054  * Just use something like @p some_struct.sub_struct.member when adding the
2055  * member to the descriptor and it will work.
2056  *
2057  * For example:
2058  * @code
2059  * typedef struct
2060  * {
2061  *    int a_number;
2062  *    char *a_string;
2063  *    struct {
2064  *       int other_num;
2065  *       int one_more;
2066  *    } sub;
2067  * } some_struct;
2068  *
2069  * void some_function()
2070  * {
2071  *    ...
2072  *    my_desc = eet_data_descriptor_stream_new(&eddc);
2073  *    EET_DATA_DESCRIPTOR_ADD_BASIC(my_desc, some_struct, "a_number",
2074  *                                  a_number, EET_T_INT);
2075  *    EET_DATA_DESCRIPTOR_ADD_BASIC(my_desc, some_struct, "a_string",
2076  *                                  a_string, EET_T_STRING);
2077  *    EET_DATA_DESCRIPTOR_ADD_BASIC(my_desc, some_struct, "sub.other_num",
2078  *                                  sub.other_num, EET_T_INT);
2079  *    EET_DATA_DESCRIPTOR_ADD_BASIC(my_desc, some_struct, "sub.one_more",
2080  *                                  sub.one_more", EET_T_INT);
2081  *    ...
2082  * }
2083  * @endcode
2084  *
2085  * But this is not what we are here for today. When we talk about nested
2086  * structures, what we really want are things like lists and hashes to be
2087  * taken into consideration automatically, and all their contents saved and
2088  * loaded just like ordinary integers and strings are.
2089  *
2090  * And of course, Eet can do that, and considering the work it saves you as a
2091  * programmer, we could say it's even easier to do than handling just integers.
2092  *
2093  * Let's begin with our example then, which is not all too different from the
2094  * simple one introduced earlier.
2095  *
2096  * We won't ignore the headers this time to show how easy it is to use Eina
2097  * data types with Eet, but we'll still skip most of the code that is not
2098  * pertinent to what we want to show now, but as usual, you can get it full
2099  * by following @ref eet-data-nested.c "this link".
2100  *
2101  * @dontinclude eet-data-nested.c
2102  * @skipline Eina.h
2103  * @skipline Eet.h
2104  * @skip typedef struct
2105  * @until } My_Conf_Subtype
2106  *
2107  * Extremely similar to our previous example. Just a new struct in there, and
2108  * a pointer to a list in the one we already had. Handling a list of subtypes
2109  * is easy on our program, but now we'll see what Eet needs to work with them
2110  * (Hint: it's easy too).
2111  * @skip _my_conf_descriptor
2112  * @until _my_conf_sub_descriptor
2113  *
2114  * Since we have two structures now, it's only natural that we'll need two
2115  * descriptors. One for each, which will be defined exactly as before.
2116  * @skip static void
2117  * @until eddc
2118  * @skip EET_EINA_STREAM_DATA_DESCRIPTOR_CLASS_SET
2119  * @until _my_conf_sub_descriptor
2120  *
2121  * We create our descriptors, each for one type, and as before, we are going to
2122  * use a simple macro to set their contents, to save on typing.
2123  * @skip #define
2124  * @until EET_T_UCHAR
2125  *
2126  * So far, nothing new. We have our descriptors and we know already how to
2127  * save them separately. But what we want is to link them together, and even
2128  * more so, we want our main type to hold a list of more than one of the new
2129  * sub type. So how do we do that?
2130  *
2131  * Simple enough, we tell Eet that our main descriptor will hold a list, of
2132  * which each node will point to some type described by our new descriptor.
2133  * @skip EET_DATA_DESCRIPTOR_ADD_LIST
2134  * @until _my_conf_sub_descriptor
2135  *
2136  * And that's all. We are closing the function now so as to not leave dangling
2137  * curly braces, but there's nothing more to show in this example. Only other
2138  * additions are the necessary code to free our new data, but you can see it
2139  * in the full code listing.
2140  * @until }
2141  */
2142
2143 /**
2144  * @page eet_data_file_descriptor Advanced use of Eet Data Descriptors
2145  *
2146  * A real life example is usually the best way to see how things are used,
2147  * but they also involve a lot more code than what needs to be shown, so
2148  * instead of going that way, we'll be borrowing some pieces from one in
2149  * the following example. It's been slightly modified from the original
2150  * source to show more of the varied ways in which Eet can handle our data.
2151  *
2152  * @ref eet-data-file_descriptor_01.c "This example" shows a cache of user
2153  * accounts and messages received, and it's a bit more interactive than
2154  * previous examples.
2155  *
2156  * Let's begin by looking at the structures we'll be using. First we have
2157  * one to define the messages the user receives and one for the one he posts.
2158  * Straight forward and nothing new here.
2159  * @dontinclude eet-data-file_descriptor_01.c
2160  * @skip typedef
2161  * @until My_Post
2162  *
2163  * One more to declare the account itself. This one will contain a list of
2164  * all messages received, and the posts we make ourselves will be kept in an
2165  * array. No special reason other than to show how to use arrays with Eet.
2166  * @until My_Account
2167  *
2168  * Finally, the main structure to hold our cache of accounts. We'll be looking
2169  * for these accounts by their names, so let's keep them in a hash, using
2170  * that name as the key.
2171  * @until My_Cache
2172  *
2173  * As explained before, we need one descriptor for each struct we want Eet
2174  * to handle, but this time we also want to keep around our Eet file and its
2175  * string dictionary. You will see why in a moment.
2176  * @skip Eet_Data_Descriptor
2177  * @until _my_post_descriptor
2178  * @skip Eet_File
2179  * @until Eet_Dictionary
2180  *
2181  * The differences begin now. They aren't much, but we'll be creating our
2182  * descriptors differently. Things can be added to our cache, but we won't
2183  * be modifying the current contents, so we can consider the data read from
2184  * it to be read-only, and thus allow Eet to save time and memory by not
2185  * duplicating thins unnecessary.
2186  * @skip static void
2187  * @until _my_post_descriptor
2188  *
2189  * As the comment in the code explains, we are asking Eet to give us strings
2190  * directly from the mapped file, which avoids having to load it in memory
2191  * and data duplication.
2192  * Of course, there are things to take into account when doing things this
2193  * way, and they will be mentioned as we encounter those special cases.
2194  *
2195  * Next comes the actual description of our data, just like we did in the
2196  * previous examples.
2197  * @skip #define
2198  * @until #undef
2199  * @until #define
2200  * @until #undef
2201  *
2202  * And the account struct's description doesn't add much new, but it's worth
2203  * commenting on it.
2204  * @skip #define
2205  * @until _my_post_descriptor
2206  *
2207  * How to add a list we've seen before, but now we are also adding an array.
2208  * There's nothing really special about it, but it's important to note that
2209  * the EET_DATA_DESCRIPTOR_ADD_VAR_ARRAY is used to add arrays of variable
2210  * length to a descriptor. That is, arrays just like the one we defined.
2211  * Since there's no way in C to know how long they are, we need to keep
2212  * track of the count ourselves and Eet needs to know how to do so as well.
2213  * That's what the @p posts_count member of our struct is for. When adding
2214  * our array member, this macro will look for another variable in the struct
2215  * named just like the array, but with @p _count attached to the end.
2216  * When saving our data, Eet will know how many elements the array contains
2217  * by looking into this count variable. When loading back from a file, this
2218  * variable will be set to the right number of elements.
2219  *
2220  * Another option for arrays is to use EET_DATA_DESCRIPTOR_ADD_ARRAY, which
2221  * takes care of fixed sized arrays.
2222  * For example, let's suppose that we want to keep track of only the last
2223  * ten posts the user sent, and we declare our account struct as follows
2224  * @code
2225  * typedef struct
2226  * {
2227  *    unsigned int id;
2228  *    const char  *name;
2229  *    Eina_List   *messages;
2230  *    My_Post      posts[10];
2231  * } My_Account;
2232  * @endcode
2233  * Then we would add the array to our descriptor with
2234  * @code
2235  * EET_DATA_DESCRIPTOR_ADD_ARRAY(_my_account_descriptor, My_Account, "posts",
2236  *                               posts, _my_post_descriptor);
2237  * @endcode
2238  *
2239  * Notice how this time we don't have a @p posts_count variable in our struct.
2240  * We could have it for the program to keep track of how many posts the
2241  * array actually contains, but Eet no longer needs it. Being defined that
2242  * way the array is already taking up all the memory needed for the ten
2243  * elements, and it is possible in C to determine how much it is in code.
2244  * When saving our data, Eet will just dump the entire memory blob into the
2245  * file, regardless of how much of it is really used. So it's important to
2246  * take into consideration this kind of things when defining your data types.
2247  * Each has its uses, its advantages and disadvantages and it's up to you
2248  * to decide which to use.
2249  *
2250  * Now, going back to our example, we have to finish adding our data to the
2251  * descriptors. We are only missing the main one for the cache, which
2252  * contains our hash of accounts.
2253  * Unless you are using your own hash functions when setting the descriptor
2254  * class, always use hashes with string type keys.
2255  * @skip #define
2256  * @until }
2257  *
2258  * If you remember, we told Eet not to duplicate memory when possible at the
2259  * time of loading back our data. But this doesn't mean everything will be
2260  * loaded straight from disk and we don't have to worry about freeing it.
2261  * Data in the Eet file is compressed and encoded, so it still needs to be
2262  * decoded and memory will be allocated to convert it back into something we
2263  * can use. We also need to take care of anything we add in the current
2264  * instance of the program.
2265  * To summarize, any string we get from Eet is likely to be a pointer to the
2266  * internal dictionary, and trying to free it will, in the best case, crash
2267  * our application right away.
2268  *
2269  * So how do we know if we have to free a string? We check if it's part of
2270  * the dictionary, and if it's not there we can be sure it's safe to get
2271  * rid of it.
2272  * @skip static void
2273  * @skip }
2274  * @skip static void
2275  * @until }
2276  *
2277  * See how this is used when adding a new message to our cache.
2278  * @skip static My_Message
2279  * @until return msg
2280  * @until free(msg)
2281  * @until }
2282  *
2283  * Skipping all the utility functions used by our program (remember you can
2284  * look at the full example @ref eet-data-file_descriptor_01.c "here") we get to
2285  * our cache loading code. Nothing out of the ordinary at first, just the
2286  * same old open file, read data using our main descriptor to decode it
2287  * into something we can use and check version of loaded data and if it doesn't
2288  * match, do something accordingly.
2289  * @skip static My_Cache
2290  * @until }
2291  * @until }
2292  * @until }
2293  *
2294  * Then comes the interesting part. Remember how we kept two more global
2295  * variables with our descriptors? One of them we already used to check if
2296  * it was right to free a string or not, but we didn't know where it came from.
2297  * Loading our data straight from the mmapped file means that we can't close
2298  * it until we are done using it, so we need to keep its handler around until
2299  * then. It also means that any changes done to the file can, and will,
2300  * invalidate all our pointers to the file backed data, so if we add something
2301  * and save the file, we need to reload our cache.
2302  *
2303  * Thus our load function checks if we had an open file, if there is it gets
2304  * closed and our variable is updated to the new handler. Then we get the
2305  * string dictionary we use to check if a string is part of it or not.
2306  * Updating any references to the cache data is up you as a programmer to
2307  * handle properly, there's nothing Eet can do in this situation.
2308  * @until }
2309  *
2310  * The save function doesn't have anything new, and all that's left after it
2311  * is the main program, which doesn't really have anything of interest within
2312  * the scope of what we are learning.
2313  */
2314
2315 /**
2316  * @addtogroup Eet_Data_Group
2317  * @{
2318  */
2319 #define EET_T_UNKNOW         0 /**< Unknown data encoding type */
2320 #define EET_T_CHAR           1 /**< Data type: char */
2321 #define EET_T_SHORT          2 /**< Data type: short */
2322 #define EET_T_INT            3 /**< Data type: int */
2323 #define EET_T_LONG_LONG      4 /**< Data type: long long */
2324 #define EET_T_FLOAT          5 /**< Data type: float */
2325 #define EET_T_DOUBLE         6 /**< Data type: double */
2326 #define EET_T_UCHAR          7 /**< Data type: unsigned char */
2327 #define EET_T_USHORT         8 /**< Data type: unsigned short */
2328 #define EET_T_UINT           9 /**< Data type: unsigned int */
2329 #define EET_T_ULONG_LONG     10 /**< Data type: unsigned long long */
2330 #define EET_T_STRING         11 /**< Data type: char * */
2331 #define EET_T_INLINED_STRING 12 /**< Data type: char * (but compressed inside the resulting eet) */
2332 #define EET_T_NULL           13 /**< Data type: (void *) (only use it if you know why) */
2333 #define EET_T_F32P32         14 /**< Data type: fixed point 32.32 */
2334 #define EET_T_F16P16         15 /**< Data type: fixed point 16.16 */
2335 #define EET_T_F8P24          16 /**< Data type: fixed point 8.24 */
2336 #define EET_T_LAST           18 /**< Last data type */
2337
2338 #define EET_G_UNKNOWN        100 /**< Unknown group data encoding type */
2339 #define EET_G_ARRAY          101 /**< Fixed size array group type */
2340 #define EET_G_VAR_ARRAY      102 /**< Variable size array group type */
2341 #define EET_G_LIST           103 /**< Linked list group type */
2342 #define EET_G_HASH           104 /**< Hash table group type */
2343 #define EET_G_UNION          105 /**< Union group type */
2344 #define EET_G_VARIANT        106 /**< Selectable subtype group */
2345 #define EET_G_LAST           107 /**< Last group type */
2346
2347 #define EET_I_LIMIT          128 /**< Other type exist but are reserved for internal purpose. */
2348
2349 /**
2350  * @typedef Eet_Data_Descriptor
2351  *
2352  * Opaque handle that have information on a type members.
2353  *
2354  * Descriptors are created using an #Eet_Data_Descriptor_Class, and they
2355  * describe the contents of the structure that will be serialized by Eet.
2356  * Not all members need be described by it, just those that should be handled
2357  * by Eet. This way it's possible to have one structure with both data to be
2358  * saved to a file, like application configuration, and runtime information
2359  * that would be meaningless to store, but is appropriate to keep together
2360  * during the program execution.
2361  * The members are added by means of
2362  * EET_DATA_DESCRIPTOR_ADD_BASIC(), EET_DATA_DESCRIPTOR_ADD_SUB(),
2363  * EET_DATA_DESCRIPTOR_ADD_LIST(), EET_DATA_DESCRIPTOR_ADD_HASH()
2364  * or eet_data_descriptor_element_add().
2365  *
2366  * @see eet_data_descriptor_stream_new()
2367  * @see eet_data_descriptor_file_new()
2368  * @see eet_data_descriptor_free()
2369  */
2370 typedef struct _Eet_Data_Descriptor Eet_Data_Descriptor;
2371
2372 /**
2373  * @def EET_DATA_DESCRIPTOR_CLASS_VERSION
2374  * The version of #Eet_Data_Descriptor_Class at the time of the
2375  * distribution of the sources. One should define this to its
2376  * version member so it is compatible with abi changes, or at least
2377  * will not crash with them.
2378  */
2379 #define EET_DATA_DESCRIPTOR_CLASS_VERSION 4
2380
2381 /**
2382  * @typedef Eet_Data_Descriptor_Class
2383  *
2384  * Instructs Eet about memory management for different needs under
2385  * serialization and parse process.
2386  */
2387 typedef struct _Eet_Data_Descriptor_Class Eet_Data_Descriptor_Class;
2388
2389 typedef int                             (*Eet_Descriptor_Hash_Foreach_Callback_Callback)(void *h, const char *k, void *dt, void *fdt);
2390
2391 typedef void *                          (*Eet_Descriptor_Mem_Alloc_Callback)(size_t size);
2392 typedef void                            (*Eet_Descriptor_Mem_Free_Callback)(void *mem);
2393 typedef char *                          (*Eet_Descriptor_Str_Alloc_Callback)(const char *str);
2394 typedef void                            (*Eet_Descriptor_Str_Free_Callback)(const char *str);
2395 typedef void *                          (*Eet_Descriptor_List_Next_Callback)(void *l);
2396 typedef void *                          (*Eet_Descriptor_List_Append_Callback)(void *l, void *d);
2397 typedef void *                          (*Eet_Descriptor_List_Data_Callback)(void *l);
2398 typedef void *                          (*Eet_Descriptor_List_Free_Callback)(void *l);
2399 typedef void                            (*Eet_Descriptor_Hash_Foreach_Callback)(void *h, Eet_Descriptor_Hash_Foreach_Callback_Callback func, void *fdt);
2400 typedef void *                          (*Eet_Descriptor_Hash_Add_Callback)(void *h, const char *k, void *d);
2401 typedef void                            (*Eet_Descriptor_Hash_Free_Callback)(void *h);
2402 typedef char *                          (*Eet_Descriptor_Str_Direct_Alloc_Callback)(const char *str);
2403 typedef void                            (*Eet_Descriptor_Str_Direct_Free_Callback)(const char *str);
2404 typedef const char *                    (*Eet_Descriptor_Type_Get_Callback)(const void *data, Eina_Bool *unknow);
2405 typedef Eina_Bool                       (*Eet_Descriptor_Type_Set_Callback)(const char *type, void *data, Eina_Bool unknow);
2406 typedef void *                          (*Eet_Descriptor_Array_Alloc_Callback)(size_t size);
2407 typedef void                            (*Eet_Descriptor_Array_Free_Callback)(void *mem);
2408 /**
2409  * @struct _Eet_Data_Descriptor_Class
2410  *
2411  * Instructs Eet about memory management for different needs under
2412  * serialization and parse process.
2413  *
2414  * The list and hash methods match the Eina API, so for a more detailed
2415  * reference on them, look at the Eina_List and Eina_Hash documentation,
2416  * respectively.
2417  * For the most part these will be used with the standard Eina functions,
2418  * so using EET_EINA_STREAM_DATA_DESCRIPTOR_CLASS_SET() and
2419  * EET_EINA_FILE_DATA_DESCRIPTOR_CLASS_SET() will set up everything
2420  * accordingly.
2421  */
2422 struct _Eet_Data_Descriptor_Class
2423 {
2424    int         version;  /**< ABI version. Should always be set to #EET_DATA_DESCRIPTOR_CLASS_VERSION */
2425    const char *name;  /**< Name of the user data type to be serialized */
2426    int         size;  /**< Size in bytes of the user data type to be serialized */
2427    struct
2428    {
2429       Eet_Descriptor_Mem_Alloc_Callback        mem_alloc; /**< how to allocate memory (usually malloc()) */
2430       Eet_Descriptor_Mem_Free_Callback         mem_free; /**< how to free memory (usually free()) */
2431       Eet_Descriptor_Str_Alloc_Callback        str_alloc; /**< how to allocate a string */
2432       Eet_Descriptor_Str_Free_Callback         str_free; /**< how to free a string */
2433       Eet_Descriptor_List_Next_Callback        list_next; /**< how to iterate to the next element of a list. Receives and should return the list node. */
2434       Eet_Descriptor_List_Append_Callback      list_append; /**< how to append data @p d to list which head node is @p l */
2435       Eet_Descriptor_List_Data_Callback        list_data; /**< retrieves the data from node @p l */
2436       Eet_Descriptor_List_Free_Callback        list_free; /**< free all the nodes from the list which head node is @p l */
2437       Eet_Descriptor_Hash_Foreach_Callback     hash_foreach; /**< iterates over all elements in the hash @p h in no specific order */
2438       Eet_Descriptor_Hash_Add_Callback         hash_add; /**< add a new data @p d with key @p k in hash @p h */
2439       Eet_Descriptor_Hash_Free_Callback        hash_free; /**< free all entries from the hash @p h */
2440       Eet_Descriptor_Str_Direct_Alloc_Callback str_direct_alloc; /**< how to allocate a string directly from file backed/mmaped region pointed by @p str */
2441       Eet_Descriptor_Str_Direct_Free_Callback  str_direct_free; /**< how to free a string returned by str_direct_alloc */
2442       Eet_Descriptor_Type_Get_Callback         type_get; /**< get the type, as used in the union or variant mapping, that should be used to store the given data into the eet file. */
2443       Eet_Descriptor_Type_Set_Callback         type_set; /**< called when loading a mapped type with the given @p type used to describe the type in the descriptor */
2444       Eet_Descriptor_Array_Alloc_Callback      array_alloc; /**< how to allocate memory for array (usually malloc()) */
2445       Eet_Descriptor_Array_Free_Callback       array_free; /**< how to free memory for array (usually free()) */
2446    } func;
2447 };
2448
2449 /**
2450  * @}
2451  */
2452
2453 /**
2454  * Create a new empty data structure descriptor.
2455  * @param name The string name of this data structure (most be a
2456  *        global constant and never change).
2457  * @param size The size of the struct (in bytes).
2458  * @param func_list_next The function to get the next list node.
2459  * @param func_list_append The function to append a member to a list.
2460  * @param func_list_data The function to get the data from a list node.
2461  * @param func_list_free The function to free an entire linked list.
2462  * @param func_hash_foreach The function to iterate through all
2463  *        hash table entries.
2464  * @param func_hash_add The function to add a member to a hash table.
2465  * @param func_hash_free The function to free an entire hash table.
2466  * @return A new empty data descriptor.
2467  *
2468  * This function creates a new data descriptor and returns a handle to the
2469  * new data descriptor. On creation it will be empty, containing no contents
2470  * describing anything other than the shell of the data structure.
2471  *
2472  * You add structure members to the data descriptor using the macros
2473  * EET_DATA_DESCRIPTOR_ADD_BASIC(), EET_DATA_DESCRIPTOR_ADD_SUB() and
2474  * EET_DATA_DESCRIPTOR_ADD_LIST(), depending on what type of member you are
2475  * adding to the description.
2476  *
2477  * Once you have described all the members of a struct you want loaded, or
2478  * saved eet can load and save those members for you, encode them into
2479  * endian-independent serialised data chunks for transmission across a
2480  * a network or more.
2481  *
2482  * The function pointers to the list and hash table functions are only
2483  * needed if you use those data types, else you can pass NULL instead.
2484  *
2485  * @since 1.0.0
2486  * @ingroup Eet_Data_Group
2487  *
2488  * @deprecated use eet_data_descriptor_stream_new() or
2489  *             eet_data_descriptor_file_new()
2490  */
2491 EINA_DEPRECATED EAPI Eet_Data_Descriptor *
2492 eet_data_descriptor_new(const char *name,
2493                         int size,
2494                         Eet_Descriptor_List_Next_Callback func_list_next,
2495                         Eet_Descriptor_List_Append_Callback func_list_append,
2496                         Eet_Descriptor_List_Data_Callback func_list_data,
2497                         Eet_Descriptor_List_Free_Callback func_list_free,
2498                         Eet_Descriptor_Hash_Foreach_Callback func_hash_foreach,
2499                         Eet_Descriptor_Hash_Add_Callback func_hash_add,
2500                         Eet_Descriptor_Hash_Free_Callback func_hash_free);
2501 /*
2502  * FIXME:
2503  *
2504  * moving to this api from the old above. this will break things when the
2505  * move happens - but be warned
2506  */
2507 EINA_DEPRECATED EAPI Eet_Data_Descriptor *
2508  eet_data_descriptor2_new(const Eet_Data_Descriptor_Class *eddc);
2509 EINA_DEPRECATED EAPI Eet_Data_Descriptor *
2510  eet_data_descriptor3_new(const Eet_Data_Descriptor_Class *eddc);
2511
2512 /**
2513  * This function creates a new data descriptor and returns a handle to the
2514  * new data descriptor. On creation it will be empty, containing no contents
2515  * describing anything other than the shell of the data structure.
2516  * @param eddc The class from where to create the data descriptor.
2517  * @return A handle to the new data descriptor.
2518  *
2519  * You add structure members to the data descriptor using the macros
2520  * EET_DATA_DESCRIPTOR_ADD_BASIC(), EET_DATA_DESCRIPTOR_ADD_SUB() and
2521  * EET_DATA_DESCRIPTOR_ADD_LIST(), depending on what type of member you are
2522  * adding to the description.
2523  *
2524  * Once you have described all the members of a struct you want loaded or
2525  * saved, eet can load and save those members for you, encode them into
2526  * endian-independent serialised data chunks for transmission across a
2527  * network or more.
2528  *
2529  * This function specially ignores str_direct_alloc and str_direct_free. It
2530  * is useful when the eet_data you are reading doesn't have a dictionary,
2531  * like network stream or IPC. It also mean that all string will be allocated
2532  * and duplicated in memory.
2533  *
2534  * @since 1.2.3
2535  * @ingroup Eet_Data_Group
2536  */
2537 EAPI Eet_Data_Descriptor *
2538 eet_data_descriptor_stream_new(const Eet_Data_Descriptor_Class *eddc);
2539
2540 /**
2541  * This function creates a new data descriptor and returns a handle to the
2542  * new data descriptor. On creation it will be empty, containing no contents
2543  * describing anything other than the shell of the data structure.
2544  * @param eddc The class from where to create the data descriptor.
2545  * @return A handle to the new data descriptor.
2546  *
2547  * You add structure members to the data descriptor using the macros
2548  * EET_DATA_DESCRIPTOR_ADD_BASIC(), EET_DATA_DESCRIPTOR_ADD_SUB() and
2549  * EET_DATA_DESCRIPTOR_ADD_LIST(), depending on what type of member you are
2550  * adding to the description.
2551  *
2552  * Once you have described all the members of a struct you want loaded or
2553  * saved, eet can load and save those members for you, encode them into
2554  * endian-independent serialised data chunks for transmission across a
2555  * a network or more.
2556  *
2557  * This function uses str_direct_alloc and str_direct_free. It is
2558  * useful when the eet_data you are reading come from a file and
2559  * have a dictionary. This will reduce memory use and improve the
2560  * possibility for the OS to page this string out.
2561  * However, the load speed and memory saving comes with some drawbacks to keep
2562  * in mind. If you never modify the contents of the structures loaded from
2563  * the file, all you need to remember is that closing the eet file will make
2564  * the strings go away. On the other hand, should you need to free a string,
2565  * before doing so you have to verify that it's not part of the eet dictionary.
2566  * You can do this in the following way, assuming @p ef is a valid Eet_File
2567  * and @p str is a string loaded from said file.
2568  *
2569  * @code
2570  * void eet_string_free(Eet_File *ef, const char *str)
2571  * {
2572  *    Eet_Dictionary *dict = eet_dictionary_get(ef);
2573  *    if (dict && eet_dictionary_string_check(dict, str))
2574  *      {
2575  *         // The file contains a dictionary and the given string is a part of
2576  *         // of it, so we can't free it, just return.
2577  *         return;
2578  *      }
2579  *    // We assume eina_stringshare was used on the descriptor
2580  *    eina_stringshare_del(str);
2581  * }
2582  * @endcode
2583  *
2584  * @since 1.2.3
2585  * @ingroup Eet_Data_Group
2586  */
2587 EAPI Eet_Data_Descriptor *
2588 eet_data_descriptor_file_new(const Eet_Data_Descriptor_Class *eddc);
2589
2590 /**
2591  * This function is an helper that set all the parameters of an
2592  * Eet_Data_Descriptor_Class correctly when you use Eina data type
2593  * with a stream.
2594  * @param eddc The Eet_Data_Descriptor_Class you want to set.
2595  * @param eddc_size The size of the Eet_Data_Descriptor_Class at the compilation time.
2596  * @param name The name of the structure described by this class.
2597  * @param size The size of the structure described by this class.
2598  * @return EINA_TRUE if the structure was correctly set (The only
2599  *         reason that could make it fail is if you did give wrong
2600  *         parameter).
2601  *
2602  * @note Unless there's a very specific reason to use this function directly,
2603  * the EET_EINA_STREAM_DATA_DESCRIPTOR_CLASS_SET macro is recommended.
2604  *
2605  * @since 1.2.3
2606  * @ingroup Eet_Data_Group
2607  */
2608 EAPI Eina_Bool
2609 eet_eina_stream_data_descriptor_class_set(Eet_Data_Descriptor_Class *eddc,
2610                                           unsigned int eddc_size,
2611                                           const char *name,
2612                                           int size);
2613
2614 /**
2615  * This macro is an helper that set all the parameter of an
2616  * Eet_Data_Descriptor_Class correctly when you use Eina data type
2617  * with stream.
2618  * @param clas The Eet_Data_Descriptor_Class you want to set.
2619  * @param type The type of the structure described by this class.
2620  * @return EINA_TRUE if the structure was correctly set (The only
2621  *         reason that could make it fail is if you did give wrong
2622  *         parameter).
2623  *
2624  * @see eet_data_descriptor_stream_new
2625  * @since 1.2.3
2626  * @ingroup Eet_Data_Group
2627  */
2628 #define EET_EINA_STREAM_DATA_DESCRIPTOR_CLASS_SET(clas, type) \
2629   (eet_eina_stream_data_descriptor_class_set(clas, sizeof (*(clas)), # type, sizeof(type)))
2630
2631 /**
2632  * This function is an helper that set all the parameter of an
2633  * Eet_Data_Descriptor_Class correctly when you use Eina data type
2634  * with a file.
2635  * @param eddc The Eet_Data_Descriptor_Class you want to set.
2636  * @param eddc_size The size of the Eet_Data_Descriptor_Class at the compilation time.
2637  * @param name The name of the structure described by this class.
2638  * @param size The size of the structure described by this class.
2639  * @return EINA_TRUE if the structure was correctly set (The only
2640  *         reason that could make it fail is if you did give wrong
2641  *         parameter).
2642  *
2643  * @note Unless there's a very specific reason to use this function directly,
2644  * the EET_EINA_FILE_DATA_DESCRIPTOR_CLASS_SET macro is recommended.
2645  *
2646  * @since 1.2.3
2647  * @ingroup Eet_Data_Group
2648  */
2649 EAPI Eina_Bool
2650 eet_eina_file_data_descriptor_class_set(Eet_Data_Descriptor_Class *eddc,
2651                                         unsigned int eddc_size,
2652                                         const char *name,
2653                                         int size);
2654
2655 /**
2656  * This macro is an helper that set all the parameter of an
2657  * Eet_Data_Descriptor_Class correctly when you use Eina data type
2658  * with file.
2659  * @param clas The Eet_Data_Descriptor_Class you want to set.
2660  * @param type The type of the structure described by this class.
2661  * @return EINA_TRUE if the structure was correctly set (The only
2662  *         reason that could make it fail is if you did give wrong
2663  *         parameter).
2664  *
2665  * @see eet_data_descriptor_file_new
2666  * @since 1.2.3
2667  * @ingroup Eet_Data_Group
2668  */
2669 #define EET_EINA_FILE_DATA_DESCRIPTOR_CLASS_SET(clas, type) \
2670   (eet_eina_file_data_descriptor_class_set(clas, sizeof (*(clas)), # type, sizeof(type)))
2671
2672 /**
2673  * This function frees a data descriptor when it is not needed anymore.
2674  * @param edd The data descriptor to free.
2675  *
2676  * This function takes a data descriptor handle as a parameter and frees all
2677  * data allocated for the data descriptor and the handle itself. After this
2678  * call the descriptor is no longer valid.
2679  *
2680  * @since 1.0.0
2681  * @ingroup Eet_Data_Group
2682  */
2683 EAPI void
2684 eet_data_descriptor_free(Eet_Data_Descriptor *edd);
2685
2686 /**
2687  * This function is an internal used by macros.
2688  *
2689  * This function is used by macros EET_DATA_DESCRIPTOR_ADD_BASIC(),
2690  * EET_DATA_DESCRIPTOR_ADD_SUB() and EET_DATA_DESCRIPTOR_ADD_LIST(). It is
2691  * complex to use by hand and should be left to be used by the macros, and
2692  * thus is not documented.
2693  *
2694  * @param edd The data descriptor handle to add element (member).
2695  * @param name The name of element to be serialized.
2696  * @param type The type of element to be serialized, like
2697  *        #EET_T_INT. If #EET_T_UNKNOW, then it is considered to be a
2698  *        group, list or hash.
2699  * @param group_type If element type is #EET_T_UNKNOW, then the @p
2700  *        group_type will specify if it is a list (#EET_G_LIST),
2701  *        array (#EET_G_ARRAY) and so on. If #EET_G_UNKNOWN, then
2702  *        the member is a subtype (pointer to another type defined by
2703  *        another #Eet_Data_Descriptor).
2704  * @param offset byte offset inside the source memory to be serialized.
2705  * @param count number of elements (if #EET_G_ARRAY or #EET_G_VAR_ARRAY).
2706  * @param counter_name variable that defines the name of number of elements.
2707  * @param subtype If contains a subtype, then its data descriptor.
2708  *
2709  * @since 1.0.0
2710  * @ingroup Eet_Data_Group
2711  */
2712 EAPI void
2713 eet_data_descriptor_element_add(Eet_Data_Descriptor *edd,
2714                                 const char *name,
2715                                 int type,
2716                                 int group_type,
2717                                 int offset,
2718      /* int                  count_offset, */
2719                                 int count,
2720                                 const char *counter_name,
2721                                 Eet_Data_Descriptor *subtype);
2722
2723 /**
2724  * Read a data structure from an eet file and decodes it.
2725  * @param ef The eet file handle to read from.
2726  * @param edd The data descriptor handle to use when decoding.
2727  * @param name The key the data is stored under in the eet file.
2728  * @return A pointer to the decoded data structure.
2729  *
2730  * This function decodes a data structure stored in an eet file, returning
2731  * a pointer to it if it decoded successfully, or NULL on failure. This
2732  * can save a programmer dozens of hours of work in writing configuration
2733  * file parsing and writing code, as eet does all that work for the program
2734  * and presents a program-friendly data structure, just as the programmer
2735  * likes. Eet can handle members being added or deleted from the data in
2736  * storage and safely zero-fills unfilled members if they were not found
2737  * in the data. It checks sizes and headers whenever it reads data, allowing
2738  * the programmer to not worry about corrupt data.
2739  *
2740  * Once a data structure has been described by the programmer with the
2741  * fields they wish to save or load, storing or retrieving a data structure
2742  * from an eet file, or from a chunk of memory is as simple as a single
2743  * function call.
2744  *
2745  * @see eet_data_read_cipher()
2746  *
2747  * @since 1.0.0
2748  * @ingroup Eet_Data_Group
2749  */
2750 EAPI void *
2751 eet_data_read(Eet_File *ef,
2752               Eet_Data_Descriptor *edd,
2753               const char *name);
2754
2755 /**
2756  * Write a data structure from memory and store in an eet file.
2757  * @param ef The eet file handle to write to.
2758  * @param edd The data descriptor to use when encoding.
2759  * @param name The key to store the data under in the eet file.
2760  * @param data A pointer to the data structure to save and encode.
2761  * @param compress Compression flags for storage.
2762  * @return bytes written on successful write, 0 on failure.
2763  *
2764  * This function is the reverse of eet_data_read(), saving a data structure
2765  * to an eet file. The file must have been opening in write mode and the data
2766  * will be kept in memory until the file is either closed or eet_sync() is
2767  * called to flush any unwritten changes.
2768  *
2769  * @see eet_data_write_cipher()
2770  *
2771  * @since 1.0.0
2772  * @ingroup Eet_Data_Group
2773  */
2774 EAPI int
2775 eet_data_write(Eet_File *ef,
2776                Eet_Data_Descriptor *edd,
2777                const char *name,
2778                const void *data,
2779                int compress);
2780
2781 typedef void (*Eet_Dump_Callback)(void *data, const char *str);
2782
2783 /**
2784  * Dump an eet encoded data structure into ascii text
2785  * @param data_in The pointer to the data to decode into a struct.
2786  * @param size_in The size of the data pointed to in bytes.
2787  * @param dumpfunc The function to call passed a string when new
2788  *        data is converted to text
2789  * @param dumpdata The data to pass to the @p dumpfunc callback.
2790  * @return 1 on success, 0 on failure
2791  *
2792  * This function will take a chunk of data encoded by
2793  * eet_data_descriptor_encode() and convert it into human readable
2794  * ascii text.  It does this by calling the @p dumpfunc callback
2795  * for all new text that is generated. This callback should append
2796  * to any existing text buffer and will be passed the pointer @p
2797  * dumpdata as a parameter as well as a string with new text to be
2798  * appended.
2799  *
2800  * Example:
2801  *
2802  * @code
2803  * void output(void *data, const char *string)
2804  * {
2805  *   printf("%s", string);
2806  * }
2807  *
2808  * void dump(const char *file)
2809  * {
2810  *   FILE *f;
2811  *   int len;
2812  *   void *data;
2813  *
2814  *   f = fopen(file, "r");
2815  *   fseek(f, 0, SEEK_END);
2816  *   len = ftell(f);
2817  *   rewind(f);
2818  *   data = malloc(len);
2819  *   fread(data, len, 1, f);
2820  *   fclose(f);
2821  *   eet_data_text_dump(data, len, output, NULL);
2822  * }
2823  * @endcode
2824  *
2825  * @see eet_data_text_dump_cipher()
2826  *
2827  * @since 1.0.0
2828  * @ingroup Eet_Data_Group
2829  */
2830 EAPI int
2831 eet_data_text_dump(const void *data_in,
2832                    int size_in,
2833                    Eet_Dump_Callback dumpfunc,
2834                    void *dumpdata);
2835
2836 /**
2837  * Take an ascii encoding from eet_data_text_dump() and re-encode in binary.
2838  * @param text The pointer to the string data to parse and encode.
2839  * @param textlen The size of the string in bytes (not including 0
2840  *        byte terminator).
2841  * @param size_ret This gets filled in with the encoded data blob
2842  *        size in bytes.
2843  * @return The encoded data on success, NULL on failure.
2844  *
2845  * This function will parse the string pointed to by @p text and return
2846  * an encoded data lump the same way eet_data_descriptor_encode() takes an
2847  * in-memory data struct and encodes into a binary blob. @p text is a normal
2848  * C string.
2849  *
2850  * @see eet_data_text_undump_cipher()
2851  *
2852  * @since 1.0.0
2853  * @ingroup Eet_Data_Group
2854  */
2855 EAPI void *
2856 eet_data_text_undump(const char *text,
2857                      int textlen,
2858                      int *size_ret);
2859
2860 /**
2861  * Dump an eet encoded data structure from an eet file into ascii text
2862  * @param ef A valid eet file handle.
2863  * @param name Name of the entry. eg: "/base/file_i_want".
2864  * @param dumpfunc The function to call passed a string when new
2865  *        data is converted to text
2866  * @param dumpdata The data to pass to the @p dumpfunc callback.
2867  * @return 1 on success, 0 on failure
2868  *
2869  * This function will take an open and valid eet file from
2870  * eet_open() request the data encoded by
2871  * eet_data_descriptor_encode() corresponding to the key @p name
2872  * and convert it into human readable ascii text. It does this by
2873  * calling the @p dumpfunc callback for all new text that is
2874  * generated. This callback should append to any existing text
2875  * buffer and will be passed the pointer @p dumpdata as a parameter
2876  * as well as a string with new text to be appended.
2877  *
2878  * @see eet_data_dump_cipher()
2879  *
2880  * @since 1.0.0
2881  * @ingroup Eet_Data_Group
2882  */
2883 EAPI int
2884 eet_data_dump(Eet_File *ef,
2885               const char *name,
2886               Eet_Dump_Callback dumpfunc,
2887               void *dumpdata);
2888
2889 /**
2890  * Take an ascii encoding from eet_data_dump() and re-encode in binary.
2891  * @param ef A valid eet file handle.
2892  * @param name Name of the entry. eg: "/base/file_i_want".
2893  * @param text The pointer to the string data to parse and encode.
2894  * @param textlen The size of the string in bytes (not including 0
2895  *        byte terminator).
2896  * @param compress Compression flags (1 == compress, 0 = don't compress).
2897  * @return 1 on success, 0 on failure
2898  *
2899  * This function will parse the string pointed to by @p text,
2900  * encode it the same way eet_data_descriptor_encode() takes an
2901  * in-memory data struct and encodes into a binary blob.
2902  *
2903  * The data (optionally compressed) will be in ram, pending a flush to
2904  * disk (it will stay in ram till the eet file handle is closed though).
2905  *
2906  * @see eet_data_undump_cipher()
2907  *
2908  * @since 1.0.0
2909  * @ingroup Eet_Data_Group
2910  */
2911 EAPI int
2912 eet_data_undump(Eet_File *ef,
2913                 const char *name,
2914                 const char *text,
2915                 int textlen,
2916                 int compress);
2917
2918 /**
2919  * Decode a data structure from an arbitrary location in memory.
2920  * @param edd The data  descriptor to use when decoding.
2921  * @param data_in The pointer to the data to decode into a struct.
2922  * @param size_in The size of the data pointed to in bytes.
2923  * @return NULL on failure, or a valid decoded struct pointer on success.
2924  *
2925  * This function will decode a data structure that has been encoded using
2926  * eet_data_descriptor_encode(), and return a data structure with all its
2927  * elements filled out, if successful, or NULL on failure.
2928  *
2929  * The data to be decoded is stored at the memory pointed to by @p data_in,
2930  * and is described by the descriptor pointed to by @p edd. The data size is
2931  * passed in as the value to @p size_in, ande must be greater than 0 to
2932  * succeed.
2933  *
2934  * This function is useful for decoding data structures delivered to the
2935  * application by means other than an eet file, such as an IPC or socket
2936  * connection, raw files, shared memory etc.
2937  *
2938  * Please see eet_data_read() for more information.
2939  *
2940  * @see eet_data_descriptor_decode_cipher()
2941  *
2942  * @since 1.0.0
2943  * @ingroup Eet_Data_Group
2944  */
2945 EAPI void *
2946 eet_data_descriptor_decode(Eet_Data_Descriptor *edd,
2947                            const void *data_in,
2948                            int size_in);
2949
2950 /**
2951  * Encode a dsata struct to memory and return that encoded data.
2952  * @param edd The data  descriptor to use when encoding.
2953  * @param data_in The pointer to the struct to encode into data.
2954  * @param size_ret pointer to the an int to be filled with the decoded size.
2955  * @return NULL on failure, or a valid encoded data chunk on success.
2956  *
2957  * This function takes a data structutre in memory and encodes it into a
2958  * serialised chunk of data that can be decoded again by
2959  * eet_data_descriptor_decode(). This is useful for being able to transmit
2960  * data structures across sockets, pipes, IPC or shared file mechanisms,
2961  * without having to worry about memory space, machine type, endianness etc.
2962  *
2963  * The parameter @p edd must point to a valid data descriptor, and
2964  * @p data_in must point to the right data structure to encode. If not, the
2965  * encoding may fail.
2966  *
2967  * On success a non NULL valid pointer is returned and what @p size_ret
2968  * points to is set to the size of this decoded data, in bytes. When the
2969  * encoded data is no longer needed, call free() on it. On failure NULL is
2970  * returned and what @p size_ret points to is set to 0.
2971  *
2972  * Please see eet_data_write() for more information.
2973  *
2974  * @see eet_data_descriptor_encode_cipher()
2975  *
2976  * @since 1.0.0
2977  * @ingroup Eet_Data_Group
2978  */
2979 EAPI void *
2980 eet_data_descriptor_encode(Eet_Data_Descriptor *edd,
2981                            const void *data_in,
2982                            int *size_ret);
2983
2984 /**
2985  * Add a basic data element to a data descriptor.
2986  * @param edd The data descriptor to add the type to.
2987  * @param struct_type The type of the struct.
2988  * @param name The string name to use to encode/decode this member
2989  *        (must be a constant global and never change).
2990  * @param member The struct member itself to be encoded.
2991  * @param type The type of the member to encode.
2992  *
2993  * This macro is a convenience macro provided to add a member to
2994  * the data descriptor @p edd. The type of the structure is
2995  * provided as the @p struct_type parameter (for example: struct
2996  * my_struct). The @p name parameter defines a string that will be
2997  * used to uniquely name that member of the struct (it is suggested
2998  * to use the struct member itself).  The @p member parameter is
2999  * the actual struct member itself (for example: values), and @p type is the
3000  * basic data type of the member which must be one of: EET_T_CHAR, EET_T_SHORT,
3001  * EET_T_INT, EET_T_LONG_LONG, EET_T_FLOAT, EET_T_DOUBLE, EET_T_UCHAR,
3002  * EET_T_USHORT, EET_T_UINT, EET_T_ULONG_LONG or EET_T_STRING.
3003  *
3004  * @since 1.0.0
3005  * @ingroup Eet_Data_Group
3006  */
3007 #define EET_DATA_DESCRIPTOR_ADD_BASIC(edd, struct_type, name, member, type) \
3008   do {                                                                      \
3009        struct_type ___ett;                                                  \
3010        eet_data_descriptor_element_add(edd, name, type, EET_G_UNKNOWN,      \
3011                                        (char *)(& (___ett.member)) -        \
3012                                        (char *)(& (___ett)),                \
3013                                        0, /* 0,  */ NULL, NULL);            \
3014     } while(0)
3015
3016 /**
3017  * Add a sub-element type to a data descriptor
3018  * @param edd The data descriptor to add the type to.
3019  * @param struct_type The type of the struct.
3020  * @param name The string name to use to encode/decode this member
3021  *        (must be a constant global and never change).
3022  * @param member The struct member itself to be encoded.
3023  * @param subtype The type of sub-type struct to add.
3024  *
3025  * This macro lets you easily add a sub-type (a struct that's pointed to
3026  * by this one). All the parameters are the same as for
3027  * EET_DATA_DESCRIPTOR_ADD_BASIC(), with the @p subtype being the exception.
3028  * This must be the data descriptor of the struct that is pointed to by
3029  * this element.
3030  *
3031  * @since 1.0.0
3032  * @ingroup Eet_Data_Group
3033  */
3034 #define EET_DATA_DESCRIPTOR_ADD_SUB(edd, struct_type, name, member, subtype)   \
3035   do {                                                                         \
3036        struct_type ___ett;                                                     \
3037        eet_data_descriptor_element_add(edd, name, EET_T_UNKNOW, EET_G_UNKNOWN, \
3038                                        (char *)(& (___ett.member)) -           \
3039                                        (char *)(& (___ett)),                   \
3040                                        0, /* 0,  */ NULL, subtype);            \
3041     } while (0)
3042
3043 /**
3044  * Add a linked list type to a data descriptor
3045  * @param edd The data descriptor to add the type to.
3046  * @param struct_type The type of the struct.
3047  * @param name The string name to use to encode/decode this member
3048  *        (must be a constant global and never change).
3049  * @param member The struct member itself to be encoded.
3050  * @param subtype The type of linked list member to add.
3051  *
3052  * This macro lets you easily add a linked list of other data types. All the
3053  * parameters are the same as for EET_DATA_DESCRIPTOR_ADD_BASIC(), with the
3054  * @p subtype being the exception. This must be the data descriptor of the
3055  * element that is in each member of the linked list to be stored.
3056  *
3057  * @since 1.0.0
3058  * @ingroup Eet_Data_Group
3059  */
3060 #define EET_DATA_DESCRIPTOR_ADD_LIST(edd, struct_type, name, member, subtype) \
3061   do {                                                                        \
3062        struct_type ___ett;                                                    \
3063        eet_data_descriptor_element_add(edd, name, EET_T_UNKNOW, EET_G_LIST,   \
3064                                        (char *)(& (___ett.member)) -          \
3065                                        (char *)(& (___ett)),                  \
3066                                        0, /* 0,  */ NULL, subtype);           \
3067     } while (0)
3068
3069 /**
3070  * Add a linked list of string to a data descriptor
3071  * @param edd The data descriptor to add the type to.
3072  * @param struct_type The type of the struct.
3073  * @param name The string name to use to encode/decode this member
3074  *        (must be a constant global and never change).
3075  * @param member The struct member itself to be encoded.
3076  *
3077  * This macro lets you easily add a linked list of char *. All the
3078  * parameters are the same as for EET_DATA_DESCRIPTOR_ADD_BASIC().
3079  *
3080  * @since 1.5.0
3081  * @ingroup Eet_Data_Group
3082  */
3083 #define EET_DATA_DESCRIPTOR_ADD_LIST_STRING(edd, struct_type, name, member) \
3084   do {                                                                      \
3085        struct_type ___ett;                                                  \
3086        eet_data_descriptor_element_add(edd, name, EET_T_STRING, EET_G_LIST, \
3087                                        (char *)(& (___ett.member)) -        \
3088                                        (char *)(& (___ett)),                \
3089                                        0, /* 0,  */ NULL, NULL);            \
3090     } while (0)
3091
3092 /**
3093  * Add a hash type to a data descriptor
3094  * @param edd The data descriptor to add the type to.
3095  * @param struct_type The type of the struct.
3096  * @param name The string name to use to encode/decode this member
3097  *        (must be a constant global and never change).
3098  * @param member The struct member itself to be encoded.
3099  * @param subtype The type of hash member to add.
3100  *
3101  * This macro lets you easily add a hash of other data types. All the
3102  * parameters are the same as for EET_DATA_DESCRIPTOR_ADD_BASIC(), with the
3103  * @p subtype being the exception. This must be the data descriptor of the
3104  * element that is in each member of the hash to be stored.
3105  * The hash keys must be strings.
3106  *
3107  * @since 1.0.0
3108  * @ingroup Eet_Data_Group
3109  */
3110 #define EET_DATA_DESCRIPTOR_ADD_HASH(edd, struct_type, name, member, subtype) \
3111   do {                                                                        \
3112        struct_type ___ett;                                                    \
3113        eet_data_descriptor_element_add(edd, name, EET_T_UNKNOW, EET_G_HASH,   \
3114                                        (char *)(& (___ett.member)) -          \
3115                                        (char *)(& (___ett)),                  \
3116                                        0, /* 0,  */ NULL, subtype);           \
3117     } while (0)
3118
3119 /**
3120  * Add a hash of string to a data descriptor
3121  * @param edd The data descriptor to add the type to.
3122  * @param struct_type The type of the struct.
3123  * @param name The string name to use to encode/decode this member
3124  *        (must be a constant global and never change).
3125  * @param member The struct member itself to be encoded.
3126  *
3127  * This macro lets you easily add a hash of string elements. All the
3128  * parameters are the same as for EET_DATA_DESCRIPTOR_ADD_HASH().
3129  *
3130  * @since 1.3.4
3131  * @ingroup Eet_Data_Group
3132  */
3133 #define EET_DATA_DESCRIPTOR_ADD_HASH_STRING(edd, struct_type, name, member) \
3134   do {                                                                      \
3135        struct_type ___ett;                                                  \
3136        eet_data_descriptor_element_add(edd, name, EET_T_STRING, EET_G_HASH, \
3137                                        (char *)(& (___ett.member)) -        \
3138                                        (char *)(& (___ett)),                \
3139                                        0, /* 0,  */ NULL, NULL);            \
3140     } while (0)
3141
3142 /**
3143  * Add an array of basic data elements to a data descriptor.
3144  * @param edd The data descriptor to add the type to.
3145  * @param struct_type The type of the struct.
3146  * @param name The string name to use to encode/decode this member
3147  *        (must be a constant global and never change).
3148  * @param member The struct member itself to be encoded.
3149  * @param type The type of the member to encode.
3150  *
3151  * This macro lets you easily add a fixed size array of basic data
3152  * types. All the parameters are the same as for
3153  * EET_DATA_DESCRIPTOR_ADD_BASIC().
3154  * The array must be defined with a fixed size in the declaration of the
3155  * struct containing it.
3156  *
3157  * @since 1.5.0
3158  * @ingroup Eet_Data_Group
3159  */
3160 #define EET_DATA_DESCRIPTOR_ADD_BASIC_ARRAY(edd, struct_type, name, member, type) \
3161   do {                                                                            \
3162        struct_type ___ett;                                                        \
3163        eet_data_descriptor_element_add(edd, name, type, EET_G_ARRAY,              \
3164                                        (char *)(& (___ett.member)) -              \
3165                                        (char *)(& (___ett)),                      \
3166                                        sizeof(___ett.member) /                    \
3167                                        sizeof(___ett.member[0]),                  \
3168                                        NULL, NULL);                               \
3169     } while(0)
3170
3171 /**
3172  * Add a variable array of basic data elements to a data descriptor.
3173  * @param edd The data descriptor to add the type to.
3174  * @param struct_type The type of the struct.
3175  * @param name The string name to use to encode/decode this member
3176  *        (must be a constant global and never change).
3177  * @param member The struct member itself to be encoded.
3178  * @param type The type of the member to encode.
3179  *
3180  * This macro lets you easily add a variable size array of basic data
3181  * types. All the parameters are the same as for
3182  * EET_DATA_DESCRIPTOR_ADD_BASIC(). This assumes you have
3183  * a struct member (of type EET_T_INT) called member_count (note the
3184  * _count appended to the member) that holds the number of items in
3185  * the array. This array will be allocated separately to the struct it
3186  * is in.
3187  *
3188  * @since 1.6.0
3189  * @ingroup Eet_Data_Group
3190  */
3191 #define EET_DATA_DESCRIPTOR_ADD_BASIC_VAR_ARRAY(edd, struct_type, name, member, type) \
3192   do {                                                                                \
3193        struct_type ___ett;                                                            \
3194        eet_data_descriptor_element_add(edd, name, type, EET_G_VAR_ARRAY,              \
3195                                        (char *)(& (___ett.member)) -                  \
3196                                        (char *)(& (___ett)),                          \
3197                                        (char *)(& (___ett.member ## _count)) -        \
3198                                        (char *)(& (___ett)),                          \
3199                                        NULL,                                          \
3200                                        NULL);                                         \
3201     } while(0)
3202
3203 /**
3204  * Add a fixed size array type to a data descriptor
3205  * @param edd The data descriptor to add the type to.
3206  * @param struct_type The type of the struct.
3207  * @param name The string name to use to encode/decode this member
3208  *        (must be a constant global and never change).
3209  * @param member The struct member itself to be encoded.
3210  * @param subtype The type of hash member to add.
3211  *
3212  * This macro lets you easily add a fixed size array of other data
3213  * types. All the parameters are the same as for
3214  * EET_DATA_DESCRIPTOR_ADD_BASIC(), with the @p subtype being the
3215  * exception. This must be the data descriptor of the element that
3216  * is in each member of the array to be stored.
3217  * The array must be defined with a fixed size in the declaration of the
3218  * struct containing it.
3219  *
3220  * @since 1.0.2
3221  * @ingroup Eet_Data_Group
3222  */
3223 #define EET_DATA_DESCRIPTOR_ADD_ARRAY(edd, struct_type, name, member, subtype)   \
3224   do {                                                                           \
3225        struct_type ___ett;                                                       \
3226        eet_data_descriptor_element_add(edd, name, EET_T_UNKNOW, EET_G_ARRAY,     \
3227                                        (char *)(& (___ett.member)) -             \
3228                                        (char *)(& (___ett)),                     \
3229                                        /* 0,  */ sizeof(___ett.member) /         \
3230                                        sizeof(___ett.member[0]), NULL, subtype); \
3231     } while (0)
3232
3233 /**
3234  * Add a variable size array type to a data descriptor
3235  * @param edd The data descriptor to add the type to.
3236  * @param struct_type The type of the struct.
3237  * @param name The string name to use to encode/decode this member
3238  *        (must be a constant global and never change).
3239  * @param member The struct member itself to be encoded.
3240  * @param subtype The type of hash member to add.
3241  *
3242  * This macro lets you easily add a variable size array of other data
3243  * types. All the parameters are the same as for
3244  * EET_DATA_DESCRIPTOR_ADD_BASIC(), with the @p subtype being the
3245  * exception. This must be the data descriptor of the element that
3246  * is in each member of the array to be stored. This assumes you have
3247  * a struct member (of type EET_T_INT) called member_count (note the
3248  * _count appended to the member) that holds the number of items in
3249  * the array. This array will be allocated separately to the struct it
3250  * is in.
3251  *
3252  * @since 1.0.2
3253  * @ingroup Eet_Data_Group
3254  */
3255 #define EET_DATA_DESCRIPTOR_ADD_VAR_ARRAY(edd, struct_type, name, member, subtype) \
3256   do {                                                                             \
3257        struct_type ___ett;                                                         \
3258        eet_data_descriptor_element_add(edd,                                        \
3259                                        name,                                       \
3260                                        EET_T_UNKNOW,                               \
3261                                        EET_G_VAR_ARRAY,                            \
3262                                        (char *)(& (___ett.member)) -               \
3263                                        (char *)(& (___ett)),                       \
3264                                        (char *)(& (___ett.member ## _count)) -     \
3265                                        (char *)(& (___ett)),                       \
3266                                        /* 0,  */ NULL,                             \
3267                                        subtype);                                   \
3268     } while (0)
3269
3270 /**
3271  * Add a variable size array type to a data descriptor
3272  * @param edd The data descriptor to add the type to.
3273  * @param struct_type The type of the struct.
3274  * @param name The string name to use to encode/decode this member
3275  *        (must be a constant global and never change).
3276  * @param member The struct member itself to be encoded.
3277  *
3278  * This macro lets you easily add a variable size array of strings. All
3279  * the parameters are the same as for EET_DATA_DESCRIPTOR_ADD_BASIC().
3280  *
3281  * @since 1.4.0
3282  * @ingroup Eet_Data_Group
3283  */
3284 #define EET_DATA_DESCRIPTOR_ADD_VAR_ARRAY_STRING(edd, struct_type, name, member) \
3285   do {                                                                           \
3286        struct_type ___ett;                                                       \
3287        eet_data_descriptor_element_add(edd,                                      \
3288                                        name,                                     \
3289                                        EET_T_STRING,                             \
3290                                        EET_G_VAR_ARRAY,                          \
3291                                        (char *)(& (___ett.member)) -             \
3292                                        (char *)(& (___ett)),                     \
3293                                        (char *)(& (___ett.member ## _count)) -   \
3294                                        (char *)(& (___ett)),                     \
3295                                        /* 0,  */ NULL,                           \
3296                                        NULL);                                    \
3297     } while (0)
3298
3299 /**
3300  * Add an union type to a data descriptor
3301  * @param edd The data descriptor to add the type to.
3302  * @param struct_type The type of the struct.
3303  * @param name The string name to use to encode/decode this member
3304  *        (must be a constant global and never change).
3305  * @param member The struct member itself to be encoded.
3306  * @param type_member The member that give hints on what is in the union.
3307  * @param unified_type Describe all possible type the union could handle.
3308  *
3309  * This macro lets you easily add an union with a member that specify what is inside.
3310  * The @p unified_type is an Eet_Data_Descriptor, but only the entry that match the name
3311  * returned by type_get will be used for each serialized data. The type_get and type_set
3312  * callback of unified_type should be defined.
3313  *
3314  * @since 1.2.4
3315  * @ingroup Eet_Data_Group
3316  * @see Eet_Data_Descriptor_Class
3317  */
3318 #define EET_DATA_DESCRIPTOR_ADD_UNION(edd, struct_type, name, member, type_member, unified_type) \
3319   do {                                                                                           \
3320        struct_type ___ett;                                                                       \
3321        eet_data_descriptor_element_add(edd, name, EET_T_UNKNOW, EET_G_UNION,                     \
3322                                        (char *)(& (___ett.member)) -                             \
3323                                        (char *)(& (___ett)),                                     \
3324                                        (char *)(& (___ett.type_member)) -                        \
3325                                        (char *)(& (___ett)),                                     \
3326                                        NULL, unified_type);                                      \
3327     } while (0)
3328
3329 /**
3330  * Add a automatically selectable type to a data descriptor
3331  * @param edd The data descriptor to add the type to.
3332  * @param struct_type The type of the struct.
3333  * @param name The string name to use to encode/decode this member
3334  *        (must be a constant global and never change).
3335  * @param member The struct member itself to be encoded.
3336  * @param type_member The member that give hints on what is in the union.
3337  * @param unified_type Describe all possible type the union could handle.
3338  *
3339  * This macro lets you easily define what the content of @p member points to depending of
3340  * the content of @p type_member. The type_get and type_set callback of unified_type should
3341  * be defined. If the the type is not know at the time of restoring it, eet will still call
3342  * type_set of @p unified_type but the pointer will be set to a serialized binary representation
3343  * of what eet know. This make it possible, to save this pointer again by just returning the string
3344  * given previously and telling it by setting unknow to EINA_TRUE.
3345  *
3346  * @since 1.2.4
3347  * @ingroup Eet_Data_Group
3348  * @see Eet_Data_Descriptor_Class
3349  */
3350 #define EET_DATA_DESCRIPTOR_ADD_VARIANT(edd, struct_type, name, member, type_member, unified_type) \
3351   do {                                                                                             \
3352        struct_type ___ett;                                                                         \
3353        eet_data_descriptor_element_add(edd, name, EET_T_UNKNOW, EET_G_VARIANT,                     \
3354                                        (char *)(& (___ett.member)) -                               \
3355                                        (char *)(& (___ett)),                                       \
3356                                        (char *)(& (___ett.type_member)) -                          \
3357                                        (char *)(& (___ett)),                                       \
3358                                        NULL, unified_type);                                        \
3359     } while (0)
3360
3361 /**
3362  * Add a mapping to a data descriptor that will be used by union, variant or inherited type
3363  * @param unified_type The data descriptor to add the mapping to.
3364  * @param name The string name to get/set type.
3365  * @param subtype The matching data descriptor.
3366  *
3367  * @since 1.2.4
3368  * @ingroup Eet_Data_Group
3369  * @see Eet_Data_Descriptor_Class
3370  */
3371 #define EET_DATA_DESCRIPTOR_ADD_MAPPING(unified_type, name, subtype) \
3372   eet_data_descriptor_element_add(unified_type,                      \
3373                                   name,                              \
3374                                   EET_T_UNKNOW,                      \
3375                                   EET_G_UNKNOWN,                     \
3376                                   0,                                 \
3377                                   0,                                 \
3378                                   NULL,                              \
3379                                   subtype)
3380
3381 /**
3382  * @defgroup Eet_Data_Cipher_Group Eet Data Serialization using A Ciphers
3383  *
3384  * Most of the @ref Eet_Data_Group have alternative versions that
3385  * accounts for ciphers to protect their content.
3386  *
3387  * @see @ref Eet_Cipher_Group
3388  *
3389  * @ingroup Eet_Data_Group
3390  */
3391
3392 /**
3393  * Read a data structure from an eet file and decodes it using a cipher.
3394  * @param ef The eet file handle to read from.
3395  * @param edd The data descriptor handle to use when decoding.
3396  * @param name The key the data is stored under in the eet file.
3397  * @param cipher_key The key to use as cipher.
3398  * @return A pointer to the decoded data structure.
3399  *
3400  * This function decodes a data structure stored in an eet file, returning
3401  * a pointer to it if it decoded successfully, or NULL on failure. This
3402  * can save a programmer dozens of hours of work in writing configuration
3403  * file parsing and writing code, as eet does all that work for the program
3404  * and presents a program-friendly data structure, just as the programmer
3405  * likes. Eet can handle members being added or deleted from the data in
3406  * storage and safely zero-fills unfilled members if they were not found
3407  * in the data. It checks sizes and headers whenever it reads data, allowing
3408  * the programmer to not worry about corrupt data.
3409  *
3410  * Once a data structure has been described by the programmer with the
3411  * fields they wish to save or load, storing or retrieving a data structure
3412  * from an eet file, or from a chunk of memory is as simple as a single
3413  * function call.
3414  *
3415  * @see eet_data_read()
3416  *
3417  * @since 1.0.0
3418  * @ingroup Eet_Data_Cipher_Group
3419  */
3420 EAPI void *
3421 eet_data_read_cipher(Eet_File *ef,
3422                      Eet_Data_Descriptor *edd,
3423                      const char *name,
3424                      const char *cipher_key);
3425
3426 /**
3427  * Read a data structure from an eet extended attribute and decodes it using a cipher.
3428  * @param filename The file to extract the extended attribute from.
3429  * @param attribute The attribute to get the data from.
3430  * @param edd The data descriptor handle to use when decoding.
3431  * @param cipher_key The key to use as cipher.
3432  * @return A pointer to the decoded data structure.
3433  *
3434  * This function decodes a data structure stored in an eet extended attribute,
3435  * returning a pointer to it if it decoded successfully, or NULL on failure.
3436  * Eet can handle members being added or deleted from the data in
3437  * storage and safely zero-fills unfilled members if they were not found
3438  * in the data. It checks sizes and headers whenever it reads data, allowing
3439  * the programmer to not worry about corrupt data.
3440  *
3441  * Once a data structure has been described by the programmer with the
3442  * fields they wish to save or load, storing or retrieving a data structure
3443  * from an eet file, from a chunk of memory or from an extended attribute
3444  * is as simple as a single function call.
3445  *
3446  * @since 1.5.0
3447  * @ingroup Eet_Data_Cipher_Group
3448  */
3449 EAPI void *
3450 eet_data_xattr_cipher_get(const char *filename,
3451                           const char *attribute,
3452                           Eet_Data_Descriptor *edd,
3453                           const char *cipher_key);
3454
3455 /**
3456  * Write a data structure from memory and store in an eet file
3457  * using a cipher.
3458  * @param ef The eet file handle to write to.
3459  * @param edd The data descriptor to use when encoding.
3460  * @param name The key to store the data under in the eet file.
3461  * @param cipher_key The key to use as cipher.
3462  * @param data A pointer to the data structure to save and encode.
3463  * @param compress Compression flags for storage.
3464  * @return bytes written on successful write, 0 on failure.
3465  *
3466  * This function is the reverse of eet_data_read_cipher(), saving a data structure
3467  * to an eet file.
3468  *
3469  * @since 1.0.0
3470  * @ingroup Eet_Data_Cipher_Group
3471  */
3472 EAPI int
3473 eet_data_write_cipher(Eet_File *ef,
3474                       Eet_Data_Descriptor *edd,
3475                       const char *name,
3476                       const char *cipher_key,
3477                       const void *data,
3478                       int compress);
3479
3480 /**
3481  * Write a data structure from memory and store in an eet extended attribute
3482  * using a cipher.
3483  * @param filename The file to write the extended attribute to.
3484  * @param attribute The attribute to store the data to.
3485  * @param edd The data descriptor to use when encoding.
3486  * @param cipher_key The key to use as cipher.
3487  * @param data A pointer to the data structure to save and encode.
3488  * @param flags The policy to use when setting the data.
3489  * @return EINA_TRUE on success, EINA_FALSE on failure.
3490  *
3491  * This function is the reverse of eet_data_xattr_cipher_get(), saving a data structure
3492  * to an eet extended attribute.
3493  *
3494  * @since 1.5.0
3495  * @ingroup Eet_Data_Cipher_Group
3496  */
3497 EAPI Eina_Bool
3498 eet_data_xattr_cipher_set(const char *filename,
3499                           const char *attribute,
3500                           Eet_Data_Descriptor *edd,
3501                           const char *cipher_key,
3502                           const void *data,
3503                           Eina_Xattr_Flags flags);
3504
3505 /**
3506  * Dump an eet encoded data structure into ascii text using a cipher.
3507  * @param data_in The pointer to the data to decode into a struct.
3508  * @param cipher_key The key to use as cipher.
3509  * @param size_in The size of the data pointed to in bytes.
3510  * @param dumpfunc The function to call passed a string when new
3511  *        data is converted to text
3512  * @param dumpdata The data to pass to the @p dumpfunc callback.
3513  * @return 1 on success, 0 on failure
3514  *
3515  * This function will take a chunk of data encoded by
3516  * eet_data_descriptor_encode() and convert it into human readable
3517  * ascii text.  It does this by calling the @p dumpfunc callback
3518  * for all new text that is generated. This callback should append
3519  * to any existing text buffer and will be passed the pointer @p
3520  * dumpdata as a parameter as well as a string with new text to be
3521  * appended.
3522  *
3523  * Example:
3524  *
3525  * @code
3526  * void output(void *data, const char *string)
3527  * {
3528  *   printf("%s", string);
3529  * }
3530  *
3531  * void dump(const char *file)
3532  * {
3533  *   FILE *f;
3534  *   int len;
3535  *   void *data;
3536  *
3537  *   f = fopen(file, "r");
3538  *   fseek(f, 0, SEEK_END);
3539  *   len = ftell(f);
3540  *   rewind(f);
3541  *   data = malloc(len);
3542  *   fread(data, len, 1, f);
3543  *   fclose(f);
3544  *   eet_data_text_dump_cipher(data, cipher_key, len, output, NULL);
3545  * }
3546  * @endcode
3547  *
3548  * @see eet_data_text_dump()
3549  *
3550  * @since 1.0.0
3551  * @ingroup Eet_Data_Cipher_Group
3552  */
3553 EAPI int
3554 eet_data_text_dump_cipher(const void *data_in,
3555                           const char *cipher_key,
3556                           int size_in,
3557                           Eet_Dump_Callback dumpfunc,
3558                           void *dumpdata);
3559
3560 /**
3561  * Take an ascii encoding from eet_data_text_dump() and re-encode
3562  * in binary using a cipher.
3563  * @param text The pointer to the string data to parse and encode.
3564  * @param cipher_key The key to use as cipher.
3565  * @param textlen The size of the string in bytes (not including 0
3566  *        byte terminator).
3567  * @param size_ret This gets filled in with the encoded data blob
3568  *        size in bytes.
3569  * @return The encoded data on success, NULL on failure.
3570  *
3571  * This function will parse the string pointed to by @p text and return
3572  * an encoded data lump the same way eet_data_descriptor_encode() takes an
3573  * in-memory data struct and encodes into a binary blob. @p text is a normal
3574  * C string.
3575  *
3576  * @see eet_data_text_undump()
3577  *
3578  * @since 1.0.0
3579  * @ingroup Eet_Data_Cipher_Group
3580  */
3581 EAPI void *
3582 eet_data_text_undump_cipher(const char *text,
3583                             const char *cipher_key,
3584                             int textlen,
3585                             int *size_ret);
3586
3587 /**
3588  * Dump an eet encoded data structure from an eet file into ascii
3589  * text using a cipher.
3590  * @param ef A valid eet file handle.
3591  * @param name Name of the entry. eg: "/base/file_i_want".
3592  * @param cipher_key The key to use as cipher.
3593  * @param dumpfunc The function to call passed a string when new
3594  *        data is converted to text
3595  * @param dumpdata The data to pass to the @p dumpfunc callback.
3596  * @return 1 on success, 0 on failure
3597  *
3598  * This function will take an open and valid eet file from
3599  * eet_open() request the data encoded by
3600  * eet_data_descriptor_encode() corresponding to the key @p name
3601  * and convert it into human readable ascii text. It does this by
3602  * calling the @p dumpfunc callback for all new text that is
3603  * generated. This callback should append to any existing text
3604  * buffer and will be passed the pointer @p dumpdata as a parameter
3605  * as well as a string with new text to be appended.
3606  *
3607  * @see eet_data_dump()
3608  *
3609  * @since 1.0.0
3610  * @ingroup Eet_Data_Cipher_Group
3611  */
3612 EAPI int
3613 eet_data_dump_cipher(Eet_File *ef,
3614                      const char *name,
3615                      const char *cipher_key,
3616                      Eet_Dump_Callback dumpfunc,
3617                      void *dumpdata);
3618
3619 /**
3620  * Take an ascii encoding from eet_data_dump() and re-encode in
3621  * binary using a cipher.
3622  * @param ef A valid eet file handle.
3623  * @param name Name of the entry. eg: "/base/file_i_want".
3624  * @param cipher_key The key to use as cipher.
3625  * @param text The pointer to the string data to parse and encode.
3626  * @param textlen The size of the string in bytes (not including 0
3627  *        byte terminator).
3628  * @param compress Compression flags (1 == compress, 0 = don't compress).
3629  * @return 1 on success, 0 on failure
3630  *
3631  * This function will parse the string pointed to by @p text,
3632  * encode it the same way eet_data_descriptor_encode() takes an
3633  * in-memory data struct and encodes into a binary blob.
3634  *
3635  * The data (optionally compressed) will be in ram, pending a flush to
3636  * disk (it will stay in ram till the eet file handle is closed though).
3637  *
3638  * @see eet_data_undump()
3639  *
3640  * @since 1.0.0
3641  * @ingroup Eet_Data_Cipher_Group
3642  */
3643 EAPI int
3644 eet_data_undump_cipher(Eet_File *ef,
3645                        const char *name,
3646                        const char *cipher_key,
3647                        const char *text,
3648                        int textlen,
3649                        int compress);
3650
3651 /**
3652  * Decode a data structure from an arbitrary location in memory
3653  * using a cipher.
3654  * @param edd The data  descriptor to use when decoding.
3655  * @param data_in The pointer to the data to decode into a struct.
3656  * @param cipher_key The key to use as cipher.
3657  * @param size_in The size of the data pointed to in bytes.
3658  * @return NULL on failure, or a valid decoded struct pointer on success.
3659  *
3660  * This function will decode a data structure that has been encoded using
3661  * eet_data_descriptor_encode(), and return a data structure with all its
3662  * elements filled out, if successful, or NULL on failure.
3663  *
3664  * The data to be decoded is stored at the memory pointed to by @p data_in,
3665  * and is described by the descriptor pointed to by @p edd. The data size is
3666  * passed in as the value to @p size_in, ande must be greater than 0 to
3667  * succeed.
3668  *
3669  * This function is useful for decoding data structures delivered to the
3670  * application by means other than an eet file, such as an IPC or socket
3671  * connection, raw files, shared memory etc.
3672  *
3673  * Please see eet_data_read() for more information.
3674  *
3675  * @see eet_data_descriptor_decode()
3676  *
3677  * @since 1.0.0
3678  * @ingroup Eet_Data_Cipher_Group
3679  */
3680 EAPI void *
3681 eet_data_descriptor_decode_cipher(Eet_Data_Descriptor *edd,
3682                                   const void *data_in,
3683                                   const char *cipher_key,
3684                                   int size_in);
3685
3686 /**
3687  * Encode a data struct to memory and return that encoded data
3688  * using a cipher.
3689  * @param edd The data  descriptor to use when encoding.
3690  * @param data_in The pointer to the struct to encode into data.
3691  * @param cipher_key The key to use as cipher.
3692  * @param size_ret pointer to the an int to be filled with the decoded size.
3693  * @return NULL on failure, or a valid encoded data chunk on success.
3694  *
3695  * This function takes a data structutre in memory and encodes it into a
3696  * serialised chunk of data that can be decoded again by
3697  * eet_data_descriptor_decode(). This is useful for being able to transmit
3698  * data structures across sockets, pipes, IPC or shared file mechanisms,
3699  * without having to worry about memory space, machine type, endianess etc.
3700  *
3701  * The parameter @p edd must point to a valid data descriptor, and
3702  * @p data_in must point to the right data structure to encode. If not, the
3703  * encoding may fail.
3704  *
3705  * On success a non NULL valid pointer is returned and what @p size_ret
3706  * points to is set to the size of this decoded data, in bytes. When the
3707  * encoded data is no longer needed, call free() on it. On failure NULL is
3708  * returned and what @p size_ret points to is set to 0.
3709  *
3710  * Please see eet_data_write() for more information.
3711  *
3712  * @see eet_data_descriptor_encode()
3713  *
3714  * @since 1.0.0
3715  * @ingroup Eet_Data_Cipher_Group
3716  */
3717 EAPI void *
3718 eet_data_descriptor_encode_cipher(Eet_Data_Descriptor *edd,
3719                                   const void *data_in,
3720                                   const char *cipher_key,
3721                                   int *size_ret);
3722
3723 /**
3724  * @defgroup Eet_Node_Group Low-level Serialization Structures.
3725  *
3726  * Functions that create, destroy and manipulate serialization nodes
3727  * used by @ref Eet_Data_Group.
3728  *
3729  * @{
3730  */
3731
3732 /**
3733  * @typedef Eet_Node
3734  * Opaque handle to manage serialization node.
3735  */
3736 typedef struct _Eet_Node Eet_Node;
3737
3738 /**
3739  * @typedef Eet_Node_Data
3740  * Contains an union that can fit any kind of node.
3741  */
3742 typedef struct _Eet_Node_Data Eet_Node_Data;
3743
3744 /**
3745  * @struct _Eet_Node_Data
3746  * Contains an union that can fit any kind of node.
3747  */
3748 struct _Eet_Node_Data
3749 {
3750    union {
3751       char               c;
3752       short              s;
3753       int                i;
3754       long long          l;
3755       float              f;
3756       double             d;
3757       unsigned char      uc;
3758       unsigned short     us;
3759       unsigned int       ui;
3760       unsigned long long ul;
3761       const char        *str;
3762    } value;
3763 };
3764
3765 /**
3766  * @}
3767  */
3768
3769 /**
3770  * TODO FIX ME
3771  * @ingroup Eet_Node_Group
3772  */
3773 EAPI Eet_Node *
3774 eet_node_char_new(const char *name,
3775                   char c);
3776
3777 /**
3778  * TODO FIX ME
3779  * @ingroup Eet_Node_Group
3780  */
3781 EAPI Eet_Node *
3782 eet_node_short_new(const char *name,
3783                    short s);
3784
3785 /**
3786  * TODO FIX ME
3787  * @ingroup Eet_Node_Group
3788  */
3789 EAPI Eet_Node *
3790 eet_node_int_new(const char *name,
3791                  int i);
3792
3793 /**
3794  * TODO FIX ME
3795  * @ingroup Eet_Node_Group
3796  */
3797 EAPI Eet_Node *
3798 eet_node_long_long_new(const char *name,
3799                        long long l);
3800
3801 /**
3802  * TODO FIX ME
3803  * @ingroup Eet_Node_Group
3804  */
3805 EAPI Eet_Node *
3806 eet_node_float_new(const char *name,
3807                    float f);
3808
3809 /**
3810  * TODO FIX ME
3811  * @ingroup Eet_Node_Group
3812  */
3813 EAPI Eet_Node *
3814 eet_node_double_new(const char *name,
3815                     double d);
3816
3817 /**
3818  * TODO FIX ME
3819  * @ingroup Eet_Node_Group
3820  */
3821 EAPI Eet_Node *
3822 eet_node_unsigned_char_new(const char *name,
3823                            unsigned char uc);
3824
3825 /**
3826  * TODO FIX ME
3827  * @ingroup Eet_Node_Group
3828  */
3829 EAPI Eet_Node *
3830 eet_node_unsigned_short_new(const char *name,
3831                             unsigned short us);
3832
3833 /**
3834  * TODO FIX ME
3835  * @ingroup Eet_Node_Group
3836  */
3837 EAPI Eet_Node *
3838 eet_node_unsigned_int_new(const char *name,
3839                           unsigned int ui);
3840
3841 /**
3842  * TODO FIX ME
3843  * @ingroup Eet_Node_Group
3844  */
3845 EAPI Eet_Node *
3846 eet_node_unsigned_long_long_new(const char *name,
3847                                 unsigned long long l);
3848
3849 /**
3850  * TODO FIX ME
3851  * @ingroup Eet_Node_Group
3852  */
3853 EAPI Eet_Node *
3854 eet_node_string_new(const char *name,
3855                     const char *str);
3856
3857 /**
3858  * TODO FIX ME
3859  * @ingroup Eet_Node_Group
3860  */
3861 EAPI Eet_Node *
3862 eet_node_inlined_string_new(const char *name,
3863                             const char *str);
3864
3865 /**
3866  * TODO FIX ME
3867  * @ingroup Eet_Node_Group
3868  */
3869 EAPI Eet_Node *
3870 eet_node_null_new(const char *name);
3871
3872 /**
3873  * TODO FIX ME
3874  * @ingroup Eet_Node_Group
3875  */
3876 EAPI Eet_Node *
3877 eet_node_list_new(const char *name,
3878                   Eina_List *nodes);
3879
3880 /**
3881  * TODO FIX ME
3882  * @ingroup Eet_Node_Group
3883  */
3884 EAPI Eet_Node *
3885 eet_node_array_new(const char *name,
3886                    int count,
3887                    Eina_List *nodes);
3888
3889 /**
3890  * TODO FIX ME
3891  * @ingroup Eet_Node_Group
3892  */
3893 EAPI Eet_Node *
3894 eet_node_var_array_new(const char *name,
3895                        Eina_List *nodes);
3896
3897 /**
3898  * TODO FIX ME
3899  * @ingroup Eet_Node_Group
3900  */
3901 EAPI Eet_Node *
3902 eet_node_hash_new(const char *name,
3903                   const char *key,
3904                   Eet_Node *node);
3905
3906 /**
3907  * TODO FIX ME
3908  * @ingroup Eet_Node_Group
3909  */
3910 EAPI Eet_Node *
3911 eet_node_struct_new(const char *name,
3912                     Eina_List *nodes);
3913
3914 /**
3915  * TODO FIX ME
3916  * @ingroup Eet_Node_Group
3917  */
3918 EAPI Eet_Node *
3919 eet_node_struct_child_new(const char *parent,
3920                           Eet_Node *child);
3921
3922 /**
3923  * @brief Get a node's child nodes
3924  * @param node The node
3925  * @return The first child node which contains a pointer to the
3926  * next child node and the parent.
3927  * @since 1.5
3928  */
3929 EAPI Eet_Node *
3930 eet_node_children_get(Eet_Node *node);
3931
3932 /**
3933  * @brief Get the next node in a list of nodes
3934  * @param node The node
3935  * @return A node which contains a pointer to the
3936  * next child node and the parent.
3937  * @since 1.5
3938  */
3939 EAPI Eet_Node *
3940 eet_node_next_get(Eet_Node *node);
3941
3942 /**
3943  * @brief Get the parent node of a node
3944  * @param node The node
3945  * @return The parent node of @p node
3946  * @since 1.5
3947  */
3948 EAPI Eet_Node *
3949 eet_node_parent_get(Eet_Node *node);
3950
3951 /**
3952  * TODO FIX ME
3953  * @ingroup Eet_Node_Group
3954  */
3955 EAPI void
3956 eet_node_list_append(Eet_Node *parent,
3957                      const char *name,
3958                      Eet_Node *child);
3959
3960 /**
3961  * TODO FIX ME
3962  * @ingroup Eet_Node_Group
3963  */
3964 EAPI void
3965 eet_node_struct_append(Eet_Node *parent,
3966                        const char *name,
3967                        Eet_Node *child);
3968
3969 /**
3970  * TODO FIX ME
3971  * @ingroup Eet_Node_Group
3972  */
3973 EAPI void
3974 eet_node_hash_add(Eet_Node *parent,
3975                   const char *name,
3976                   const char *key,
3977                   Eet_Node *child);
3978
3979 /**
3980  * TODO FIX ME
3981  * @ingroup Eet_Node_Group
3982  */
3983 EAPI void
3984 eet_node_dump(Eet_Node *n,
3985               int dumplevel,
3986               Eet_Dump_Callback dumpfunc,
3987               void *dumpdata);
3988
3989 /**
3990  * @brief Return the type of a node
3991  * @param node The node
3992  * @return The node's type (EET_T_$TYPE)
3993  * @since 1.5
3994  */
3995 EAPI int
3996 eet_node_type_get(Eet_Node *node);
3997
3998 /**
3999  * @brief Return the node's data
4000  * @param node The node
4001  * @return The data contained in the node
4002  * @since 1.5
4003  */
4004 EAPI Eet_Node_Data *
4005 eet_node_value_get(Eet_Node *node);
4006
4007 /**
4008  * TODO FIX ME
4009  * @ingroup Eet_Node_Group
4010  */
4011 EAPI void
4012 eet_node_del(Eet_Node *n);
4013
4014 /**
4015  * TODO FIX ME
4016  * @ingroup Eet_Node_Group
4017  */
4018 EAPI void *
4019 eet_data_node_encode_cipher(Eet_Node *node,
4020                             const char *cipher_key,
4021                             int *size_ret);
4022
4023 /**
4024  * TODO FIX ME
4025  * @ingroup Eet_Node_Group
4026  */
4027 EAPI Eet_Node *
4028 eet_data_node_decode_cipher(const void *data_in,
4029                             const char *cipher_key,
4030                             int size_in);
4031
4032 /**
4033  * TODO FIX ME
4034  * @ingroup Eet_Node_Group
4035  */
4036 EAPI Eet_Node *
4037 eet_data_node_read_cipher(Eet_File *ef,
4038                           const char *name,
4039                           const char *cipher_key);
4040
4041 /**
4042  * TODO FIX ME
4043  * @ingroup Eet_Node_Group
4044  */
4045 EAPI int
4046 eet_data_node_write_cipher(Eet_File *ef,
4047                            const char *name,
4048                            const char *cipher_key,
4049                            Eet_Node *node,
4050                            int compress);
4051
4052 /* EXPERIMENTAL: THIS API MAY CHANGE IN THE FUTURE, USE IT ONLY IF YOU KNOW WHAT YOU ARE DOING. */
4053
4054 /**
4055  * @typedef Eet_Node_Walk
4056  * Describes how to walk trees of #Eet_Node.
4057  */
4058 typedef struct _Eet_Node_Walk Eet_Node_Walk;
4059
4060 typedef void *              (*Eet_Node_Walk_Struct_Alloc_Callback)(const char *type, void *user_data);
4061 typedef void                (*Eet_Node_Walk_Struct_Add_Callback)(void *parent, const char *name, void *child, void *user_data);
4062 typedef void *              (*Eet_Node_Walk_Array_Callback)(Eina_Bool variable, const char *name, int count, void *user_data);
4063 typedef void                (*Eet_Node_Walk_Insert_Callback)(void *array, int index, void *child, void *user_data);
4064 typedef void *              (*Eet_Node_Walk_List_Callback)(const char *name, void *user_data);
4065 typedef void                (*Eet_Node_Walk_Append_Callback)(void *list, void *child, void *user_data);
4066 typedef void *              (*Eet_Node_Walk_Hash_Callback)(void *parent, const char *name, const char *key, void *value, void *user_data);
4067 typedef void *              (*Eet_Node_Walk_Simple_Callback)(int type, Eet_Node_Data *data, void *user_data);
4068
4069 /**
4070  * @struct _Eet_Node_Walk
4071  * Describes how to walk trees of #Eet_Node.
4072  */
4073 struct _Eet_Node_Walk
4074 {
4075    Eet_Node_Walk_Struct_Alloc_Callback struct_alloc;
4076    Eet_Node_Walk_Struct_Add_Callback   struct_add;
4077    Eet_Node_Walk_Array_Callback        array;
4078    Eet_Node_Walk_Insert_Callback       insert;
4079    Eet_Node_Walk_List_Callback         list;
4080    Eet_Node_Walk_Append_Callback       append;
4081    Eet_Node_Walk_Hash_Callback         hash;
4082    Eet_Node_Walk_Simple_Callback       simple;
4083 };
4084
4085 EAPI void *
4086 eet_node_walk(void *parent,
4087               const char *name,
4088               Eet_Node *root,
4089               Eet_Node_Walk *cb,
4090               void *user_data);
4091
4092 /*******/
4093
4094 /**
4095  * @defgroup Eet_Connection_Group Helper function to use eet over a network link
4096  *
4097  * Function that reconstruct and prepare packet of @ref Eet_Data_Group to be send.
4098  *
4099  */
4100
4101 /**
4102  * @typedef Eet_Connection
4103  * Opaque handle to track paquet for a specific connection.
4104  *
4105  * @ingroup Eet_Connection_Group
4106  */
4107 typedef struct _Eet_Connection Eet_Connection;
4108
4109 /**
4110  * @typedef Eet_Read_Cb
4111  * Called back when an @ref Eet_Data_Group has been received completely and could be used.
4112  *
4113  * @ingroup Eet_Connection_Group
4114  */
4115 typedef Eina_Bool Eet_Read_Cb (const void *eet_data, size_t size, void *user_data);
4116
4117 /**
4118  * @typedef Eet_Write_Cb
4119  * Called back when a packet containing @ref Eet_Data_Group data is ready to be send.
4120  *
4121  * @ingroup Eet_Connection_Group
4122  */
4123 typedef Eina_Bool Eet_Write_Cb (const void *data, size_t size, void *user_data);
4124
4125 /**
4126  * Instanciate a new connection to track.
4127  * @param eet_read_cb Function to call when one Eet_Data packet has been fully assemble.
4128  * @param eet_write_cb Function to call when one Eet_Data packet is ready to be send over the wire.
4129  * @param user_data Pointer provided to both functions to be used as a context handler.
4130  * @return NULL on failure, or a valid Eet_Connection handler.
4131  *
4132  * For every connection to track you will need a separate Eet_Connection provider.
4133  *
4134  * @since 1.2.4
4135  * @ingroup Eet_Connection_Group
4136  */
4137 EAPI Eet_Connection *
4138 eet_connection_new(Eet_Read_Cb *eet_read_cb,
4139                    Eet_Write_Cb *eet_write_cb,
4140                    const void *user_data);
4141
4142 /**
4143  * Process a raw packet received over the link
4144  * @param conn Connection handler to track.
4145  * @param data Raw data packet.
4146  * @param size The size of that packet.
4147  * @return 0 on complete success, any other value indicate where in the stream it got wrong (It could be before that packet).
4148  *
4149  * Every time you receive a packet related to your connection, you should pass
4150  * it to that function so that it could process and assemble packet has you
4151  * receive it. It will automatically call Eet_Read_Cb when one is fully received.
4152  *
4153  * @since 1.2.4
4154  * @ingroup Eet_Connection_Group
4155  */
4156 EAPI int
4157 eet_connection_received(Eet_Connection *conn,
4158                         const void *data,
4159                         size_t size);
4160
4161 /**
4162  * Convert a complex structure and prepare it to be send.
4163  * @param conn Connection handler to track.
4164  * @param edd The data descriptor to use when encoding.
4165  * @param data_in The pointer to the struct to encode into data.
4166  * @param cipher_key The key to use as cipher.
4167  * @return EINA_TRUE if the data where correctly send, EINA_FALSE if they don't.
4168  *
4169  * This function serialize data_in with edd, assemble the packet and call
4170  * Eet_Write_Cb when ready. The data passed Eet_Write_Cb are temporary allocated
4171  * and will vanish just after the return of the callback.
4172  *
4173  * @see eet_data_descriptor_encode_cipher
4174  *
4175  * @since 1.2.4
4176  * @ingroup Eet_Connection_Group
4177  */
4178 EAPI Eina_Bool
4179 eet_connection_send(Eet_Connection *conn,
4180                     Eet_Data_Descriptor *edd,
4181                     const void *data_in,
4182                     const char *cipher_key);
4183
4184 /**
4185  * Convert a Eet_Node tree and prepare it to be send.
4186  * @param conn Connection handler to track.
4187  * @param node The data tree to use when encoding.
4188  * @param cipher_key The key to use as cipher.
4189  * @return EINA_TRUE if the data where correctly send, EINA_FALSE if they don't.
4190  *
4191  * This function serialize node, assemble the packet and call
4192  * Eet_Write_Cb when ready. The data passed Eet_Write_Cb are temporary allocated
4193  * and will vanish just after the return of the callback.
4194  *
4195  * @see eet_data_node_encode_cipher
4196  *
4197  * @since 1.2.4
4198  * @ingroup Eet_Connection_Group
4199  */
4200 EAPI Eina_Bool
4201 eet_connection_node_send(Eet_Connection *conn,
4202                          Eet_Node *node,
4203                          const char *cipher_key);
4204
4205 /**
4206  * Close a connection and lost its track.
4207  * @param conn Connection handler to close.
4208  * @param on_going Signal if a partial packet wasn't completed.
4209  * @return the user_data passed to both callback.
4210  *
4211  * @since 1.2.4
4212  * @ingroup Eet_Connection_Group
4213  */
4214 EAPI void *
4215 eet_connection_close(Eet_Connection *conn,
4216                      Eina_Bool *on_going);
4217
4218 /***************************************************************************/
4219
4220 #ifdef __cplusplus
4221 }
4222 #endif /* ifdef __cplusplus */
4223
4224 #endif /* ifndef _EET_H */