1 // Licensed to the .NET Foundation under one or more agreements.
2 // The .NET Foundation licenses this file to you under the MIT license.
3 // See the LICENSE file in the project root for more information.
13 /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
14 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
18 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
19 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
23 #include "ssaconfig.h"
24 #include "ssarenamestate.h"
25 #include "ssabuilder.h"
30 * Visits basic blocks in the depth first order and arranges them in the order of
31 * their DFS finish time.
33 * @param block The fgFirstBB or entry block.
34 * @param comp A pointer to compiler.
35 * @param visited In pointer initialized to false and of size at least fgMaxBBNum.
36 * @param count Out pointer for count of all nodes reachable by DFS.
37 * @param postOrder Out poitner to arrange the blocks and of size at least fgMaxBBNum.
39 static void TopologicalSortHelper(BasicBlock* block, Compiler* comp, bool* visited, int* count, BasicBlock** postOrder)
41 visited[block->bbNum] = true;
43 ArrayStack<BasicBlock*> blocks(comp);
44 ArrayStack<AllSuccessorIter> iterators(comp);
45 ArrayStack<AllSuccessorIter> ends(comp);
47 // there are three stacks used here and all should be same height
48 // the first is for blocks
49 // the second is the iterator to keep track of what succ of the block we are looking at
50 // and the third is the end marker iterator
52 iterators.Push(block->GetAllSuccs(comp).begin());
53 ends.Push(block->GetAllSuccs(comp).end());
55 while (blocks.Height() > 0)
62 printf("[SsaBuilder::TopologicalSortHelper] Visiting BB%02u: ", block->bbNum);
64 unsigned numSucc = block->NumSucc(comp);
65 for (unsigned i = 0; i < numSucc; ++i)
67 printf("BB%02u, ", block->GetSucc(i, comp)->bbNum);
69 EHSuccessorIter end = block->GetEHSuccs(comp).end();
70 for (EHSuccessorIter ehsi = block->GetEHSuccs(comp).begin(); ehsi != end; ++ehsi)
72 printf("[EH]BB%02u, ", (*ehsi)->bbNum);
78 if (iterators.TopRef() != ends.TopRef())
80 // if the block on TOS still has unreached successors, visit them
81 AllSuccessorIter& iter = iterators.TopRef();
82 BasicBlock* succ = *iter;
86 if (!visited[succ->bbNum])
89 iterators.Push(succ->GetAllSuccs(comp).begin());
90 ends.Push(succ->GetAllSuccs(comp).end());
91 visited[succ->bbNum] = true;
96 // all successors have been visited
101 postOrder[*count] = block;
102 block->bbPostOrderNum = *count;
105 DBG_SSA_JITDUMP("postOrder[%d] = [%p] and BB%02u\n", *count, dspPtr(block), block->bbNum);
111 * Method that finds a common IDom parent, much like least common ancestor.
113 * @param finger1 A basic block that might share IDom ancestor with finger2.
114 * @param finger2 A basic block that might share IDom ancestor with finger1.
116 * @see "A simple, fast dominance algorithm" by Keith D. Cooper, Timothy J. Harvey, Ken Kennedy.
118 * @return A basic block whose IDom is the dominator for finger1 and finger2,
119 * or else NULL. This may be called while immediate dominators are being
120 * computed, and if the input values are members of the same loop (each reachable from the other),
121 * then one may not yet have its immediate dominator computed when we are attempting
122 * to find the immediate dominator of the other. So a NULL return value means that the
123 * the two inputs are in a cycle, not that they don't have a common dominator ancestor.
125 static inline BasicBlock* IntersectDom(BasicBlock* finger1, BasicBlock* finger2)
127 while (finger1 != finger2)
129 if (finger1 == nullptr || finger2 == nullptr)
133 while (finger1 != nullptr && finger1->bbPostOrderNum < finger2->bbPostOrderNum)
135 finger1 = finger1->bbIDom;
137 if (finger1 == nullptr)
141 while (finger2 != nullptr && finger2->bbPostOrderNum < finger1->bbPostOrderNum)
143 finger2 = finger2->bbIDom;
149 } // end of anonymous namespace.
151 // =================================================================================
153 // =================================================================================
155 void Compiler::fgSsaBuild()
157 IAllocator* pIAllocator = new (this, CMK_SSA) CompAllocator(this, CMK_SSA);
159 // If this is not the first invocation, reset data structures for SSA.
160 if (fgSsaPassesCompleted > 0)
165 SsaBuilder builder(this, pIAllocator);
167 fgSsaPassesCompleted++;
175 JITDUMP("\nAfter fgSsaBuild:\n");
176 fgDispBasicBlocks(/*dumpTrees*/ true);
181 void Compiler::fgResetForSsa()
183 for (unsigned i = 0; i < lvaCount; ++i)
185 lvaTable[i].lvPerSsaData.Reset();
187 for (BasicBlock* blk = fgFirstBB; blk != nullptr; blk = blk->bbNext)
190 blk->bbHeapSsaPhiFunc = nullptr;
191 if (blk->bbTreeList != nullptr)
193 GenTreePtr last = blk->bbTreeList->gtPrev;
194 blk->bbTreeList = blk->FirstNonPhiDef();
195 if (blk->bbTreeList != nullptr)
197 blk->bbTreeList->gtPrev = last;
204 * Constructor for the SSA builder.
206 * @param pCompiler Current compiler instance.
208 * @remarks Initializes the class and member pointers/objects that use constructors.
210 SsaBuilder::SsaBuilder(Compiler* pCompiler, IAllocator* pIAllocator)
211 : m_pCompiler(pCompiler)
212 , m_allocator(pIAllocator)
214 #ifdef SSA_FEATURE_DOMARR
215 , m_pDomPreOrder(NULL)
216 , m_pDomPostOrder(NULL)
218 #ifdef SSA_FEATURE_USEDEF
219 , m_uses(jitstd::allocator<void>(pIAllocator))
220 , m_defs(jitstd::allocator<void>(pIAllocator))
226 * Topologically sort the graph and return the number of nodes visited.
228 * @param postOrder The array in which the arranged basic blocks have to be returned.
229 * @param count The size of the postOrder array.
231 * @return The number of nodes visited while performing DFS on the graph.
233 int SsaBuilder::TopologicalSort(BasicBlock** postOrder, int count)
235 // Allocate and initialize visited flags.
236 bool* visited = (bool*)alloca(count * sizeof(bool));
237 memset(visited, 0, count * sizeof(bool));
239 // Display basic blocks.
240 DBEXEC(VERBOSE, m_pCompiler->fgDispBasicBlocks());
241 DBEXEC(VERBOSE, m_pCompiler->fgDispHandlerTab());
243 // Call the recursive helper.
245 TopologicalSortHelper(m_pCompiler->fgFirstBB, m_pCompiler, visited, &postIndex, postOrder);
247 // In the absence of EH (because catch/finally have no preds), this should be valid.
248 // assert(postIndex == (count - 1));
254 * Computes the immediate dominator IDom for each block iteratively.
256 * @param postOrder The array of basic blocks arranged in postOrder.
257 * @param count The size of valid elements in the postOrder array.
259 * @see "A simple, fast dominance algorithm." paper.
261 void SsaBuilder::ComputeImmediateDom(BasicBlock** postOrder, int count)
263 JITDUMP("[SsaBuilder::ComputeImmediateDom]\n");
265 // TODO-Cleanup: We currently have two dominance computations happening. We should unify them; for
266 // now, at least forget the results of the first.
267 for (BasicBlock* blk = m_pCompiler->fgFirstBB; blk != nullptr; blk = blk->bbNext)
269 blk->bbIDom = nullptr;
272 // Add entry point to processed as its IDom is NULL.
273 BitVecTraits traits(m_pCompiler->fgBBNumMax + 1, m_pCompiler);
274 BitVec BITVEC_INIT_NOCOPY(processed, BitVecOps::MakeEmpty(&traits));
276 BitVecOps::AddElemD(&traits, processed, m_pCompiler->fgFirstBB->bbNum);
277 assert(postOrder[count - 1] == m_pCompiler->fgFirstBB);
284 // In reverse post order, except for the entry block (count - 1 is entry BB).
285 for (int i = count - 2; i >= 0; --i)
287 BasicBlock* block = postOrder[i];
289 DBG_SSA_JITDUMP("Visiting in reverse post order: BB%02u.\n", block->bbNum);
291 // Find the first processed predecessor block.
292 BasicBlock* predBlock = nullptr;
293 for (flowList* pred = m_pCompiler->BlockPredsWithEH(block); pred; pred = pred->flNext)
295 if (BitVecOps::IsMember(&traits, processed, pred->flBlock->bbNum))
297 predBlock = pred->flBlock;
302 // There could just be a single basic block, so just check if there were any preds.
303 if (predBlock != nullptr)
305 DBG_SSA_JITDUMP("Pred block is BB%02u.\n", predBlock->bbNum);
308 // Intersect DOM, if computed, for all predecessors.
309 BasicBlock* bbIDom = predBlock;
310 for (flowList* pred = m_pCompiler->BlockPredsWithEH(block); pred; pred = pred->flNext)
312 if (predBlock != pred->flBlock)
314 BasicBlock* domAncestor = IntersectDom(pred->flBlock, bbIDom);
315 // The result may be NULL if "block" and "pred->flBlock" are part of a
316 // cycle -- neither is guaranteed ordered wrt the other in reverse postorder,
317 // so we may be computing the IDom of "block" before the IDom of "pred->flBlock" has
318 // been computed. But that's OK -- if they're in a cycle, they share the same immediate
319 // dominator, so the contribution of "pred->flBlock" is not necessary to compute
321 if (domAncestor != nullptr)
323 bbIDom = domAncestor;
328 // Did we change the bbIDom value? If so, we go around the outer loop again.
329 if (block->bbIDom != bbIDom)
333 // IDom has changed, update it.
334 DBG_SSA_JITDUMP("bbIDom of BB%02u becomes BB%02u.\n", block->bbNum, bbIDom ? bbIDom->bbNum : 0);
335 block->bbIDom = bbIDom;
338 // Mark the current block as processed.
339 BitVecOps::AddElemD(&traits, processed, block->bbNum);
341 DBG_SSA_JITDUMP("Marking block BB%02u as processed.\n", block->bbNum);
346 #ifdef SSA_FEATURE_DOMARR
348 * Walk the DOM tree and compute pre and post-order arrangement of the tree.
350 * @param curBlock The current block being operated on at some recursive level.
351 * @param domTree The DOM tree as a map (block -> set of child blocks.)
352 * @param preIndex The initial index given to the first block visited in pre order.
353 * @param postIndex The initial index given to the first block visited in post order.
355 * @remarks This would help us answer queries such as "a dom b?" in constant time.
356 * For example, if a dominated b, then Pre[a] < Pre[b] but Post[a] > Post[b]
358 void SsaBuilder::DomTreeWalk(BasicBlock* curBlock, BlkToBlkSetMap* domTree, int* preIndex, int* postIndex)
360 JITDUMP("[SsaBuilder::DomTreeWalk] block [%p], BB%02u:\n", dspPtr(curBlock), curBlock->bbNum);
362 // Store the order number at the block number in the pre order list.
363 m_pDomPreOrder[curBlock->bbNum] = *preIndex;
367 if (domTree->Lookup(curBlock, &pBlkSet))
369 for (BlkSet::KeyIterator ki = pBlkSet->Begin(); !ki.Equal(pBlkSet->End()); ++ki)
371 if (curBlock != ki.Get())
373 DomTreeWalk(ki.Get(), domTree, preIndex, postIndex);
378 // Store the order number at the block number in the post order list.
379 m_pDomPostOrder[curBlock->bbNum] = *postIndex;
385 * Using IDom of each basic block, add a mapping from block->IDom -> block.
386 * @param pCompiler Compiler instance
387 * @param block The basic block that will become the child node of it's iDom.
388 * @param domTree The output domTree which will hold the mapping "block->bbIDom" -> "block"
392 void SsaBuilder::ConstructDomTreeForBlock(Compiler* pCompiler, BasicBlock* block, BlkToBlkSetMap* domTree)
394 BasicBlock* bbIDom = block->bbIDom;
396 // bbIDom for (only) fgFirstBB will be NULL.
397 if (bbIDom == nullptr)
402 // If the bbIDom map key doesn't exist, create one.
404 if (!domTree->Lookup(bbIDom, &pBlkSet))
406 pBlkSet = new (pCompiler->getAllocator()) BlkSet(pCompiler->getAllocator());
407 domTree->Set(bbIDom, pBlkSet);
410 DBG_SSA_JITDUMP("Inserting BB%02u as dom child of BB%02u.\n", block->bbNum, bbIDom->bbNum);
411 // Insert the block into the block's set.
412 pBlkSet->Set(block, true);
416 * Using IDom of each basic block, compute the whole tree. If a block "b" has IDom "i",
417 * then, block "b" is dominated by "i". The mapping then is i -> { ..., b, ... }, in
418 * other words, "domTree" is a tree represented by nodes mapped to their children.
420 * @param pCompiler Compiler instance
421 * @param domTree The output domTree which will hold the mapping "block->bbIDom" -> "block"
425 void SsaBuilder::ComputeDominators(Compiler* pCompiler, BlkToBlkSetMap* domTree)
427 JITDUMP("*************** In SsaBuilder::ComputeDominators(Compiler*, ...)\n");
429 // Construct the DOM tree from bbIDom
430 for (BasicBlock* block = pCompiler->fgFirstBB; block != nullptr; block = block->bbNext)
432 ConstructDomTreeForBlock(pCompiler, block, domTree);
435 DBEXEC(pCompiler->verboseSsa, DisplayDominators(domTree));
439 * Compute the DOM tree into a map(block -> set of blocks) adjacency representation.
441 * Using IDom of each basic block, compute the whole tree. If a block "b" has IDom "i",
442 * then, block "b" is dominated by "i". The mapping then is i -> { ..., b, ... }
444 * @param postOrder The array of basic blocks arranged in postOrder.
445 * @param count The size of valid elements in the postOrder array.
446 * @param domTree A map of (block -> set of blocks) tree representation that is empty.
449 void SsaBuilder::ComputeDominators(BasicBlock** postOrder, int count, BlkToBlkSetMap* domTree)
451 JITDUMP("*************** In SsaBuilder::ComputeDominators(BasicBlock** postOrder, int count, ...)\n");
453 // Construct the DOM tree from bbIDom
454 for (int i = 0; i < count; ++i)
456 ConstructDomTreeForBlock(m_pCompiler, postOrder[i], domTree);
459 DBEXEC(m_pCompiler->verboseSsa, DisplayDominators(domTree));
461 #ifdef SSA_FEATURE_DOMARR
462 // Allocate space for constant time computation of (a DOM b?) query.
463 unsigned bbArrSize = m_pCompiler->fgBBNumMax + 1; // We will use 1-based bbNums as indices into these arrays, so
465 m_pDomPreOrder = jitstd::utility::allocate<int>(m_allocator, bbArrSize);
466 m_pDomPostOrder = jitstd::utility::allocate<int>(m_allocator, bbArrSize);
472 // Populate the pre and post order of the tree.
473 DomTreeWalk(m_pCompiler->fgFirstBB, domTree, &preIndex, &postIndex);
480 * Display the DOM tree.
482 * @param domTree A map of (block -> set of blocks) tree representation.
485 void SsaBuilder::DisplayDominators(BlkToBlkSetMap* domTree)
487 printf("After computing dominator tree: \n");
488 for (BlkToBlkSetMap::KeyIterator nodes = domTree->Begin(); !nodes.Equal(domTree->End()); ++nodes)
490 printf("BB%02u := {", nodes.Get()->bbNum);
492 BlkSet* pBlkSet = nodes.GetValue();
493 for (BlkSet::KeyIterator ki = pBlkSet->Begin(); !ki.Equal(pBlkSet->End()); ++ki)
495 if (!ki.Equal(pBlkSet->Begin()))
499 printf("BB%02u", ki.Get()->bbNum);
507 // (Spec comment at declaration.)
508 // See "A simple, fast dominance algorithm", by Cooper, Harvey, and Kennedy.
509 // First we compute the dominance frontier for each block, then we convert these to iterated
510 // dominance frontiers by a closure operation.
511 BlkToBlkSetMap* SsaBuilder::ComputeIteratedDominanceFrontier(BasicBlock** postOrder, int count)
513 BlkToBlkSetMap* frontier = new (m_pCompiler->getAllocator()) BlkToBlkSetMap(m_pCompiler->getAllocator());
515 DBG_SSA_JITDUMP("Computing IDF: First computing DF.\n");
517 for (int i = 0; i < count; ++i)
519 BasicBlock* block = postOrder[i];
521 DBG_SSA_JITDUMP("Considering block BB%02u.\n", block->bbNum);
523 // Recall that B3 is in the dom frontier of B1 if there exists a B2
524 // such that B1 dom B2, !(B1 dom B3), and B3 is an immediate successor
525 // of B2. (Note that B1 might be the same block as B2.)
526 // In that definition, we're considering "block" to be B3, and trying
527 // to find B1's. To do so, first we consider the predecessors of "block",
528 // searching for candidate B2's -- "block" is obviously an immediate successor
529 // of its immediate predecessors. If there are zero or one preds, then there
530 // is no pred, or else the single pred dominates "block", so no B2 exists.
532 flowList* blockPreds = m_pCompiler->BlockPredsWithEH(block);
534 // If block has more 0/1 predecessor, skip.
535 if (blockPreds == nullptr || blockPreds->flNext == nullptr)
537 DBG_SSA_JITDUMP(" Has %d preds; skipping.\n", blockPreds == nullptr ? 0 : 1);
541 // Otherwise, there are > 1 preds. Each is a candidate B2 in the definition --
542 // *unless* it dominates "block"/B3.
544 for (flowList* pred = blockPreds; pred; pred = pred->flNext)
546 DBG_SSA_JITDUMP(" Considering predecessor BB%02u.\n", pred->flBlock->bbNum);
548 // If we've found a B2, then consider the possible B1's. We start with
549 // B2, since a block dominates itself, then traverse upwards in the dominator
550 // tree, stopping when we reach the root, or the immediate dominator of "block"/B3.
551 // (Note that we are guaranteed to encounter this immediate dominator of "block"/B3:
552 // a predecessor must be dominated by B3's immediate dominator.)
553 // Along this way, make "block"/B3 part of the dom frontier of the B1.
554 // When we reach this immediate dominator, the definition no longer applies, since this
555 // potential B1 *does* dominate "block"/B3, so we stop.
556 for (BasicBlock* b1 = pred->flBlock; (b1 != nullptr) && (b1 != block->bbIDom); // !root && !loop
559 DBG_SSA_JITDUMP(" Adding BB%02u to dom frontier of pred dom BB%02u.\n", block->bbNum, b1->bbNum);
561 if (!frontier->Lookup(b1, &pBlkSet))
563 pBlkSet = new (m_pCompiler->getAllocator()) BlkSet(m_pCompiler->getAllocator());
564 frontier->Set(b1, pBlkSet);
566 pBlkSet->Set(block, true);
572 if (m_pCompiler->verboseSsa)
574 printf("\nComputed DF:\n");
575 for (int i = 0; i < count; ++i)
577 BasicBlock* block = postOrder[i];
578 printf("Block BB%02u := {", block->bbNum);
582 if (frontier->Lookup(block, &blkDf))
584 for (BlkSet::KeyIterator blkDfIter = blkDf->Begin(); !blkDfIter.Equal(blkDf->End()); blkDfIter++)
590 printf("BB%02u", blkDfIter.Get()->bbNum);
599 // Now do the closure operation to make the dominance frontier into an IDF.
600 // There's probably a better way to do this...
601 BlkToBlkSetMap* idf = new (m_pCompiler->getAllocator()) BlkToBlkSetMap(m_pCompiler->getAllocator());
602 for (BlkToBlkSetMap::KeyIterator kiFrontBlks = frontier->Begin(); !kiFrontBlks.Equal(frontier->End());
606 BlkSet* blkIdf = new (m_pCompiler->getAllocator()) BlkSet(m_pCompiler->getAllocator());
607 idf->Set(kiFrontBlks.Get(), blkIdf);
609 // Keep track of what got newly added to the IDF, so we can go after their DFs.
610 BlkSet* delta = new (m_pCompiler->getAllocator()) BlkSet(m_pCompiler->getAllocator());
611 delta->Set(kiFrontBlks.Get(), true);
613 // Now transitively add DF+(delta) to IDF(b), each step gathering new "delta."
614 while (delta->GetCount() > 0)
616 // Extract a block x to be worked on.
617 BlkSet::KeyIterator ki = delta->Begin();
618 BasicBlock* curBlk = ki.Get();
619 // TODO-Cleanup: Remove(ki) doesn't work correctly in SimplerHash.
620 delta->Remove(curBlk);
624 if (frontier->Lookup(curBlk, &blkDf))
626 // Add DF(x) to IDF(b) and update "delta" i.e., new additions to IDF(b).
627 for (BlkSet::KeyIterator ki = blkDf->Begin(); !ki.Equal(blkDf->End()); ki++)
629 if (!blkIdf->Lookup(ki.Get()))
631 delta->Set(ki.Get(), true);
632 blkIdf->Set(ki.Get(), true);
640 if (m_pCompiler->verboseSsa)
642 printf("\nComputed IDF:\n");
643 for (int i = 0; i < count; ++i)
645 BasicBlock* block = postOrder[i];
646 printf("Block BB%02u := {", block->bbNum);
650 if (idf->Lookup(block, &blkIdf))
652 for (BlkSet::KeyIterator ki = blkIdf->Begin(); !ki.Equal(blkIdf->End()); ki++)
658 printf("BB%02u", ki.Get()->bbNum);
671 * Returns the phi GT_PHI node if the variable already has a phi node.
673 * @param block The block for which the existence of a phi node needs to be checked.
674 * @param lclNum The lclNum for which the occurrence of a phi node needs to be checked.
676 * @return If there is a phi node for the lclNum, returns the GT_PHI tree, else NULL.
678 static GenTree* GetPhiNode(BasicBlock* block, unsigned lclNum)
680 // Walk the statements for phi nodes.
681 for (GenTreePtr stmt = block->bbTreeList; stmt; stmt = stmt->gtNext)
683 // A prefix of the statements of the block are phi definition nodes. If we complete processing
684 // that prefix, exit.
685 if (!stmt->IsPhiDefnStmt())
690 GenTreePtr tree = stmt->gtStmt.gtStmtExpr;
692 GenTreePtr phiLhs = tree->gtOp.gtOp1;
693 assert(phiLhs->OperGet() == GT_LCL_VAR);
694 if (phiLhs->gtLclVarCommon.gtLclNum == lclNum)
696 return tree->gtOp.gtOp2;
703 * Inserts phi functions at DF(b) for variables v that are live after the phi
704 * insertion point i.e., v in live-in(b).
706 * To do so, the function computes liveness, dominance frontier and inserts a phi node,
707 * if we have var v in def(b) and live-in(l) and l is in DF(b).
709 * @param postOrder The array of basic blocks arranged in postOrder.
710 * @param count The size of valid elements in the postOrder array.
712 void SsaBuilder::InsertPhiFunctions(BasicBlock** postOrder, int count)
714 JITDUMP("*************** In SsaBuilder::InsertPhiFunctions()\n");
716 // Compute liveness on the graph.
717 m_pCompiler->fgLocalVarLiveness();
718 EndPhase(PHASE_BUILD_SSA_LIVENESS);
720 // Compute dominance frontier.
721 BlkToBlkSetMap* frontier = ComputeIteratedDominanceFrontier(postOrder, count);
722 EndPhase(PHASE_BUILD_SSA_IDF);
724 JITDUMP("Inserting phi functions:\n");
726 for (int i = 0; i < count; ++i)
728 BasicBlock* block = postOrder[i];
729 DBG_SSA_JITDUMP("Considering dominance frontier of block BB%02u:\n", block->bbNum);
731 // If the block's dominance frontier is empty, go on to the next block.
733 if (!frontier->Lookup(block, &blkIdf))
738 // For each local var number "lclNum" that "block" assigns to...
739 VARSET_ITER_INIT(m_pCompiler, defVars, block->bbVarDef, varIndex);
740 while (defVars.NextElem(m_pCompiler, &varIndex))
742 unsigned lclNum = m_pCompiler->lvaTrackedToVarNum[varIndex];
743 DBG_SSA_JITDUMP(" Considering local var V%02u:\n", lclNum);
745 if (m_pCompiler->fgExcludeFromSsa(lclNum))
747 DBG_SSA_JITDUMP(" Skipping because it is excluded.\n");
751 // For each block "bbInDomFront" that is in the dominance frontier of "block"...
752 for (BlkSet::KeyIterator iterBlk = blkIdf->Begin(); !iterBlk.Equal(blkIdf->End()); ++iterBlk)
754 BasicBlock* bbInDomFront = iterBlk.Get();
755 DBG_SSA_JITDUMP(" Considering BB%02u in dom frontier of BB%02u:\n", bbInDomFront->bbNum,
758 // Check if variable "lclNum" is live in block "*iterBlk".
759 if (!VarSetOps::IsMember(m_pCompiler, bbInDomFront->bbLiveIn, varIndex))
764 // Check if we've already inserted a phi node.
765 if (GetPhiNode(bbInDomFront, lclNum) == nullptr)
767 // We have a variable i that is defined in block j and live at l, and l belongs to dom frontier of
768 // j. So insert a phi node at l.
769 JITDUMP("Inserting phi definition for V%02u at start of BB%02u.\n", lclNum, bbInDomFront->bbNum);
771 GenTreePtr phiLhs = m_pCompiler->gtNewLclvNode(lclNum, m_pCompiler->lvaTable[lclNum].TypeGet());
773 // Create 'phiRhs' as a GT_PHI node for 'lclNum', it will eventually hold a GT_LIST of GT_PHI_ARG
774 // nodes. However we have to construct this list so for now the gtOp1 of 'phiRhs' is a nullptr.
775 // It will get replaced with a GT_LIST of GT_PHI_ARG nodes in
776 // SsaBuilder::AssignPhiNodeRhsVariables() and in SsaBuilder::AddDefToHandlerPhis()
779 m_pCompiler->gtNewOperNode(GT_PHI, m_pCompiler->lvaTable[lclNum].TypeGet(), nullptr);
781 GenTreePtr phiAsg = m_pCompiler->gtNewAssignNode(phiLhs, phiRhs);
783 GenTreePtr stmt = m_pCompiler->fgInsertStmtAtBeg(bbInDomFront, phiAsg);
784 m_pCompiler->gtSetStmtInfo(stmt);
785 m_pCompiler->fgSetStmtSeq(stmt);
790 // Now make a similar phi definition if the block defines Heap.
791 if (block->bbHeapDef)
793 // For each block "bbInDomFront" that is in the dominance frontier of "block".
794 for (BlkSet::KeyIterator iterBlk = blkIdf->Begin(); !iterBlk.Equal(blkIdf->End()); ++iterBlk)
796 BasicBlock* bbInDomFront = iterBlk.Get();
797 DBG_SSA_JITDUMP(" Considering BB%02u in dom frontier of BB%02u for Heap phis:\n",
798 bbInDomFront->bbNum, block->bbNum);
800 // Check if Heap is live into block "*iterBlk".
801 if (!bbInDomFront->bbHeapLiveIn)
806 // Check if we've already inserted a phi node.
807 if (bbInDomFront->bbHeapSsaPhiFunc == nullptr)
809 // We have a variable i that is defined in block j and live at l, and l belongs to dom frontier of
810 // j. So insert a phi node at l.
811 JITDUMP("Inserting phi definition for Heap at start of BB%02u.\n", bbInDomFront->bbNum);
812 bbInDomFront->bbHeapSsaPhiFunc = BasicBlock::EmptyHeapPhiDef;
817 EndPhase(PHASE_BUILD_SSA_INSERT_PHIS);
820 #ifdef SSA_FEATURE_USEDEF
822 * Record a use point of a variable.
824 * The use point is just the tree that is a local variable use.
826 * @param tree Tree node where an SSA variable is used.
828 * @remarks The result is in the m_uses map :: [lclNum, ssaNum] -> tree.
830 void SsaBuilder::AddUsePoint(GenTree* tree)
832 assert(tree->IsLocal());
833 SsaVarName key(tree->gtLclVarCommon.gtLclNum, tree->gtLclVarCommon.gtSsaNum);
834 VarToUses::iterator iter = m_uses.find(key);
835 if (iter == m_uses.end())
837 iter = m_uses.insert(key, VarToUses::mapped_type(m_uses.get_allocator()));
839 (*iter).second.push_back(tree);
841 #endif // !SSA_FEATURE_USEDEF
844 * Record a def point of a variable.
846 * The def point is just the tree that is a local variable def.
848 * @param tree Tree node where an SSA variable is def'ed.
850 * @remarks The result is in the m_defs map :: [lclNum, ssaNum] -> tree.
852 void SsaBuilder::AddDefPoint(GenTree* tree, BasicBlock* blk)
854 Compiler::IndirectAssignmentAnnotation* pIndirAnnot;
855 // In the case of an "indirect assignment", where the LHS is IND of a byref to the local actually being assigned,
856 // we make the ASG tree the def point.
857 assert(tree->IsLocal() || IsIndirectAssign(tree, &pIndirAnnot));
862 lclNum = tree->gtLclVarCommon.gtLclNum;
863 defSsaNum = m_pCompiler->GetSsaNumForLocalVarDef(tree);
867 bool b = m_pCompiler->GetIndirAssignMap()->Lookup(tree, &pIndirAnnot);
869 lclNum = pIndirAnnot->m_lclNum;
870 defSsaNum = pIndirAnnot->m_defSsaNum;
873 // Record that there's a new SSA def.
874 m_pCompiler->lvaTable[lclNum].lvNumSsaNames++;
876 // Record where the defn happens.
877 LclSsaVarDsc* ssaDef = m_pCompiler->lvaTable[lclNum].GetPerSsaData(defSsaNum);
878 ssaDef->m_defLoc.m_blk = blk;
879 ssaDef->m_defLoc.m_tree = tree;
881 #ifdef SSA_FEATURE_USEDEF
882 SsaVarName key(lclNum, defSsaNum);
883 VarToDef::iterator iter = m_defs.find(key);
884 if (iter == m_defs.end())
886 iter = m_defs.insert(key, tree);
889 // There can only be a single definition for an SSA var.
894 bool SsaBuilder::IsIndirectAssign(GenTreePtr tree, Compiler::IndirectAssignmentAnnotation** ppIndirAssign)
896 return tree->OperGet() == GT_ASG && m_pCompiler->m_indirAssignMap != nullptr &&
897 m_pCompiler->GetIndirAssignMap()->Lookup(tree, ppIndirAssign);
901 * Rename the local variable tree node.
903 * If the given tree node is a local variable, then for a def give a new count, if use,
904 * then give the count in the top of stack, i.e., current count (used for last def.)
906 * @param tree Tree node where an SSA variable is used or def'ed.
907 * @param pRenameState The incremental rename information stored during renaming process.
909 * @remarks This method has to maintain parity with TreePopStacks corresponding to pushes
912 void SsaBuilder::TreeRenameVariables(GenTree* tree, BasicBlock* block, SsaRenameState* pRenameState, bool isPhiDefn)
914 // This is perhaps temporary -- maybe should be done elsewhere. Label GT_INDs on LHS of assignments, so we
915 // can skip these during (at least) value numbering.
916 if (tree->OperIsAssignment())
918 GenTreePtr lhs = tree->gtOp.gtOp1->gtEffectiveVal(/*commaOnly*/ true);
919 GenTreePtr trueLhs = lhs->gtEffectiveVal(/*commaOnly*/ true);
920 if (trueLhs->OperGet() == GT_IND)
922 trueLhs->gtFlags |= GTF_IND_ASG_LHS;
924 else if (trueLhs->OperGet() == GT_CLS_VAR)
926 trueLhs->gtFlags |= GTF_CLS_VAR_ASG_LHS;
930 // Figure out if "tree" may make a new heap state (if we care for this block).
931 if (!block->bbHeapHavoc)
933 if (tree->OperIsAssignment() || tree->OperIsBlkOp())
935 if (m_pCompiler->ehBlockHasExnFlowDsc(block))
937 GenTreeLclVarCommon* lclVarNode;
938 if (!tree->DefinesLocal(m_pCompiler, &lclVarNode))
940 // It *may* define the heap in a non-havoc way. Make a new SSA # -- associate with this node.
941 unsigned count = pRenameState->CountForHeapDef();
942 pRenameState->PushHeap(block, count);
943 m_pCompiler->GetHeapSsaMap()->Set(tree, count);
945 if (JitTls::GetCompiler()->verboseSsa)
948 Compiler::printTreeID(tree);
949 printf(" (in try block) may define heap; ssa # = %d.\n", count);
953 // Now add this SSA # to all phis of the reachable catch blocks.
954 AddHeapDefToHandlerPhis(block, count);
960 Compiler::IndirectAssignmentAnnotation* pIndirAssign = nullptr;
961 if (!tree->IsLocal() && !IsIndirectAssign(tree, &pIndirAssign))
966 if (pIndirAssign != nullptr)
968 unsigned lclNum = pIndirAssign->m_lclNum;
969 // Is this a variable we exclude from SSA?
970 if (m_pCompiler->fgExcludeFromSsa(lclNum))
972 pIndirAssign->m_defSsaNum = SsaConfig::RESERVED_SSA_NUM;
976 if (!pIndirAssign->m_isEntire)
978 pIndirAssign->m_useSsaNum = pRenameState->CountForUse(lclNum);
980 unsigned count = pRenameState->CountForDef(lclNum);
981 pIndirAssign->m_defSsaNum = count;
982 pRenameState->Push(block, lclNum, count);
983 AddDefPoint(tree, block);
987 unsigned lclNum = tree->gtLclVarCommon.gtLclNum;
988 // Is this a variable we exclude from SSA?
989 if (m_pCompiler->fgExcludeFromSsa(lclNum))
991 tree->gtLclVarCommon.SetSsaNum(SsaConfig::RESERVED_SSA_NUM);
995 if (tree->gtFlags & GTF_VAR_DEF)
997 if (tree->gtFlags & GTF_VAR_USEASG)
999 // This the "x" in something like "x op= y"; it is both a use (first), then a def.
1000 // The def will define a new SSA name, and record that in "x". If we need the SSA
1001 // name of the use, we record it in a map reserved for that purpose.
1002 unsigned count = pRenameState->CountForUse(lclNum);
1003 tree->gtLclVarCommon.SetSsaNum(count);
1004 #ifdef SSA_FEATURE_USEDEF
1009 // Give a count and increment.
1010 unsigned count = pRenameState->CountForDef(lclNum);
1011 if (tree->gtFlags & GTF_VAR_USEASG)
1013 m_pCompiler->GetOpAsgnVarDefSsaNums()->Set(tree, count);
1017 tree->gtLclVarCommon.SetSsaNum(count);
1019 pRenameState->Push(block, lclNum, count);
1020 AddDefPoint(tree, block);
1022 // If necessary, add "lclNum/count" to the arg list of a phi def in any
1023 // handlers for try blocks that "block" is within. (But only do this for "real" definitions,
1024 // not phi definitions.)
1027 AddDefToHandlerPhis(block, lclNum, count);
1030 else if (!isPhiDefn) // Phi args already have ssa numbers.
1032 // This case is obviated by the short-term "early-out" above...but it's in the right direction.
1033 // Is it a promoted struct local?
1034 if (m_pCompiler->lvaTable[lclNum].lvPromoted)
1036 assert(tree->TypeGet() == TYP_STRUCT);
1037 LclVarDsc* varDsc = &m_pCompiler->lvaTable[lclNum];
1038 // If has only a single field var, treat this as a use of that field var.
1039 // Otherwise, we don't give SSA names to uses of promoted struct vars.
1040 if (varDsc->lvFieldCnt == 1)
1042 lclNum = varDsc->lvFieldLclStart;
1046 tree->gtLclVarCommon.SetSsaNum(SsaConfig::RESERVED_SSA_NUM);
1050 // Give the count as top of stack.
1051 unsigned count = pRenameState->CountForUse(lclNum);
1052 tree->gtLclVarCommon.SetSsaNum(count);
1053 #ifdef SSA_FEATURE_USEDEF
1060 void SsaBuilder::AddDefToHandlerPhis(BasicBlock* block, unsigned lclNum, unsigned count)
1062 assert(m_pCompiler->lvaTable[lclNum].lvTracked); // Precondition.
1063 unsigned lclIndex = m_pCompiler->lvaTable[lclNum].lvVarIndex;
1065 EHblkDsc* tryBlk = m_pCompiler->ehGetBlockExnFlowDsc(block);
1066 if (tryBlk != nullptr)
1069 "Definition of local V%02u/d:%d in block BB%02u has exn handler; adding as phi arg to handlers.\n", lclNum,
1070 count, block->bbNum);
1073 BasicBlock* handler = tryBlk->ExFlowBlock();
1075 // Is "lclNum" live on entry to the handler?
1076 if (VarSetOps::IsMember(m_pCompiler, handler->bbLiveIn, lclIndex))
1079 bool phiFound = false;
1081 // A prefix of blocks statements will be SSA definitions. Search those for "lclNum".
1082 for (GenTreePtr stmt = handler->bbTreeList; stmt; stmt = stmt->gtNext)
1084 // If the tree is not an SSA def, break out of the loop: we're done.
1085 if (!stmt->IsPhiDefnStmt())
1090 GenTreePtr tree = stmt->gtStmt.gtStmtExpr;
1092 assert(tree->IsPhiDefn());
1094 if (tree->gtOp.gtOp1->gtLclVar.gtLclNum == lclNum)
1096 // It's the definition for the right local. Add "count" to the RHS.
1097 GenTreePtr phi = tree->gtOp.gtOp2;
1098 GenTreeArgList* args = nullptr;
1099 if (phi->gtOp.gtOp1 != nullptr)
1101 args = phi->gtOp.gtOp1->AsArgList();
1104 // Make sure it isn't already present: we should only add each definition once.
1105 for (GenTreeArgList* curArgs = args; curArgs != nullptr; curArgs = curArgs->Rest())
1107 GenTreePhiArg* phiArg = curArgs->Current()->AsPhiArg();
1108 assert(phiArg->gtSsaNum != count);
1111 var_types typ = m_pCompiler->lvaTable[lclNum].TypeGet();
1112 GenTreePhiArg* newPhiArg =
1113 new (m_pCompiler, GT_PHI_ARG) GenTreePhiArg(typ, lclNum, count, block);
1115 phi->gtOp.gtOp1 = new (m_pCompiler, GT_LIST) GenTreeArgList(newPhiArg, args);
1116 m_pCompiler->gtSetStmtInfo(stmt);
1117 m_pCompiler->fgSetStmtSeq(stmt);
1121 DBG_SSA_JITDUMP(" Added phi arg u:%d for V%02u to phi defn in handler block BB%02u.\n", count,
1122 lclNum, handler->bbNum);
1129 unsigned nextTryIndex = tryBlk->ebdEnclosingTryIndex;
1130 if (nextTryIndex == EHblkDsc::NO_ENCLOSING_INDEX)
1135 tryBlk = m_pCompiler->ehGetDsc(nextTryIndex);
1140 void SsaBuilder::AddHeapDefToHandlerPhis(BasicBlock* block, unsigned count)
1142 if (m_pCompiler->ehBlockHasExnFlowDsc(block))
1144 // Don't do anything for a compiler-inserted BBJ_ALWAYS that is a "leave helper".
1145 if (block->bbJumpKind == BBJ_ALWAYS && (block->bbFlags & BBF_INTERNAL) && (block->bbPrev->isBBCallAlwaysPair()))
1151 DBG_SSA_JITDUMP("Definition of Heap/d:%d in block BB%02u has exn handler; adding as phi arg to handlers.\n",
1152 count, block->bbNum);
1153 EHblkDsc* tryBlk = m_pCompiler->ehGetBlockExnFlowDsc(block);
1156 BasicBlock* handler = tryBlk->ExFlowBlock();
1158 // Is Heap live on entry to the handler?
1159 if (handler->bbHeapLiveIn)
1161 assert(handler->bbHeapSsaPhiFunc != nullptr);
1163 // Add "count" to the phi args of Heap.
1164 if (handler->bbHeapSsaPhiFunc == BasicBlock::EmptyHeapPhiDef)
1166 handler->bbHeapSsaPhiFunc = new (m_pCompiler) BasicBlock::HeapPhiArg(count);
1171 BasicBlock::HeapPhiArg* curArg = handler->bbHeapSsaPhiFunc;
1172 while (curArg != nullptr)
1174 assert(curArg->GetSsaNum() != count);
1175 curArg = curArg->m_nextArg;
1178 handler->bbHeapSsaPhiFunc =
1179 new (m_pCompiler) BasicBlock::HeapPhiArg(count, handler->bbHeapSsaPhiFunc);
1182 DBG_SSA_JITDUMP(" Added phi arg u:%d for Heap to phi defn in handler block BB%02u.\n", count,
1185 unsigned tryInd = tryBlk->ebdEnclosingTryIndex;
1186 if (tryInd == EHblkDsc::NO_ENCLOSING_INDEX)
1190 tryBlk = m_pCompiler->ehGetDsc(tryInd);
1196 * Walk the block's tree in the evaluation order and give var definitions and uses their
1199 * @param block Block for which SSA variables have to be renamed.
1200 * @param pRenameState The incremental rename information stored during renaming process.
1203 void SsaBuilder::BlockRenameVariables(BasicBlock* block, SsaRenameState* pRenameState)
1205 // Walk the statements of the block and rename the tree variables.
1207 // First handle the incoming Heap state.
1209 // Is there an Phi definition for heap at the start of this block?
1210 if (block->bbHeapSsaPhiFunc != nullptr)
1212 unsigned count = pRenameState->CountForHeapDef();
1213 pRenameState->PushHeap(block, count);
1215 DBG_SSA_JITDUMP("Ssa # for Heap phi on entry to BB%02u is %d.\n", block->bbNum, count);
1218 // Record the "in" Ssa # for Heap.
1219 block->bbHeapSsaNumIn = pRenameState->CountForHeapUse();
1221 // We need to iterate over phi definitions, to give them SSA names, but we need
1222 // to know which are which, so we don't add phi definitions to handler phi arg lists.
1223 // Statements are phi defns until they aren't.
1224 bool isPhiDefn = true;
1225 GenTreePtr firstNonPhi = block->FirstNonPhiDef();
1226 for (GenTreePtr stmt = block->bbTreeList; stmt; stmt = stmt->gtNext)
1228 if (stmt == firstNonPhi)
1233 for (GenTreePtr tree = stmt->gtStmt.gtStmtList; tree; tree = tree->gtNext)
1235 TreeRenameVariables(tree, block, pRenameState, isPhiDefn);
1239 // Now handle the final heap state.
1241 // If the block defines Heap, allocate an SSA variable for the final heap state in the block.
1242 // (This may be redundant with the last SSA var explicitly created, but there's no harm in that.)
1243 if (block->bbHeapDef)
1245 unsigned count = pRenameState->CountForHeapDef();
1246 pRenameState->PushHeap(block, count);
1247 AddHeapDefToHandlerPhis(block, count);
1250 // Record the "out" Ssa" # for Heap.
1251 block->bbHeapSsaNumOut = pRenameState->CountForHeapUse();
1253 DBG_SSA_JITDUMP("Ssa # for Heap on entry to BB%02u is %d; on exit is %d.\n", block->bbNum, block->bbHeapSsaNumIn,
1254 block->bbHeapSsaNumOut);
1258 * Walk through the phi nodes of a given block and assign rhs variables to them.
1260 * Also renumber the rhs variables from top of the stack.
1262 * @param block Block for which phi nodes have to be assigned their rhs arguments.
1263 * @param pRenameState The incremental rename information stored during renaming process.
1266 void SsaBuilder::AssignPhiNodeRhsVariables(BasicBlock* block, SsaRenameState* pRenameState)
1268 BasicBlock::AllSuccs allSuccs = block->GetAllSuccs(m_pCompiler);
1269 AllSuccessorIter allSuccsEnd = allSuccs.end();
1270 for (AllSuccessorIter allSuccsIter = allSuccs.begin(); allSuccsIter != allSuccsEnd; ++allSuccsIter)
1272 BasicBlock* succ = (*allSuccsIter);
1273 // Walk the statements for phi nodes.
1274 for (GenTreePtr stmt = succ->bbTreeList; stmt != nullptr && stmt->IsPhiDefnStmt(); stmt = stmt->gtNext)
1276 GenTreePtr tree = stmt->gtStmt.gtStmtExpr;
1277 assert(tree->IsPhiDefn());
1279 // Get the phi node from GT_ASG.
1280 GenTreePtr phiNode = tree->gtOp.gtOp2;
1281 assert(phiNode->gtOp.gtOp1 == nullptr || phiNode->gtOp.gtOp1->OperGet() == GT_LIST);
1283 unsigned lclNum = tree->gtOp.gtOp1->gtLclVar.gtLclNum;
1284 unsigned ssaNum = pRenameState->CountForUse(lclNum);
1285 // Search the arglist for an existing definition for ssaNum.
1286 // (Can we assert that its the head of the list? This should only happen when we add
1287 // during renaming for a definition that occurs within a try, and then that's the last
1288 // value of the var within that basic block.)
1289 GenTreeArgList* argList = (phiNode->gtOp.gtOp1 == nullptr ? nullptr : phiNode->gtOp.gtOp1->AsArgList());
1291 while (argList != nullptr)
1293 if (argList->Current()->AsLclVarCommon()->GetSsaNum() == ssaNum)
1298 argList = argList->Rest();
1302 GenTreePtr newPhiArg =
1303 new (m_pCompiler, GT_PHI_ARG) GenTreePhiArg(tree->gtOp.gtOp1->TypeGet(), lclNum, ssaNum, block);
1304 argList = (phiNode->gtOp.gtOp1 == nullptr ? nullptr : phiNode->gtOp.gtOp1->AsArgList());
1305 phiNode->gtOp.gtOp1 = new (m_pCompiler, GT_LIST) GenTreeArgList(newPhiArg, argList);
1306 DBG_SSA_JITDUMP(" Added phi arg u:%d for V%02u from BB%02u in BB%02u.\n", ssaNum, lclNum, block->bbNum,
1310 m_pCompiler->gtSetStmtInfo(stmt);
1311 m_pCompiler->fgSetStmtSeq(stmt);
1315 if (succ->bbHeapSsaPhiFunc != nullptr)
1317 if (succ->bbHeapSsaPhiFunc == BasicBlock::EmptyHeapPhiDef)
1319 succ->bbHeapSsaPhiFunc = new (m_pCompiler) BasicBlock::HeapPhiArg(block);
1323 BasicBlock::HeapPhiArg* curArg = succ->bbHeapSsaPhiFunc;
1325 // This is a quadratic algorithm. We might need to consider some switch over to a hash table
1326 // representation for the arguments of a phi node, to make this linear.
1327 while (curArg != nullptr)
1329 if (curArg->m_predBB == block)
1334 curArg = curArg->m_nextArg;
1338 succ->bbHeapSsaPhiFunc = new (m_pCompiler) BasicBlock::HeapPhiArg(block, succ->bbHeapSsaPhiFunc);
1341 DBG_SSA_JITDUMP(" Added phi arg for Heap from BB%02u in BB%02u.\n", block->bbNum, succ->bbNum);
1344 // If "succ" is the first block of a try block (and "block" is not also in that try block)
1345 // then we must look at the vars that have phi defs in the corresponding handler;
1346 // the current SSA name for such vars must be included as an argument to that phi.
1347 if (m_pCompiler->bbIsTryBeg(succ))
1349 assert(succ->hasTryIndex());
1350 unsigned tryInd = succ->getTryIndex();
1352 while (tryInd != EHblkDsc::NO_ENCLOSING_INDEX)
1354 // Check if the predecessor "block" is within the same try block.
1355 if (block->hasTryIndex())
1357 for (unsigned blockTryInd = block->getTryIndex(); blockTryInd != EHblkDsc::NO_ENCLOSING_INDEX;
1358 blockTryInd = m_pCompiler->ehGetEnclosingTryIndex(blockTryInd))
1360 if (blockTryInd == tryInd)
1362 // It is; don't execute the loop below.
1363 tryInd = EHblkDsc::NO_ENCLOSING_INDEX;
1368 // The loop just above found that the predecessor "block" is within the same
1369 // try block as "succ." So we don't need to process this try, or any
1370 // further outer try blocks here, since they would also contain both "succ"
1372 if (tryInd == EHblkDsc::NO_ENCLOSING_INDEX)
1378 EHblkDsc* succTry = m_pCompiler->ehGetDsc(tryInd);
1379 // This is necessarily true on the first iteration, but not
1380 // necessarily on the second and subsequent.
1381 if (succTry->ebdTryBeg != succ)
1386 // succ is the first block of this try. Look at phi defs in the handler.
1387 // For a filter, we consider the filter to be the "real" handler.
1388 BasicBlock* handlerStart = succTry->ExFlowBlock();
1390 for (GenTreePtr stmt = handlerStart->bbTreeList; stmt; stmt = stmt->gtNext)
1392 GenTreePtr tree = stmt->gtStmt.gtStmtExpr;
1394 // Check if the first n of the statements are phi nodes. If not, exit.
1395 if (tree->OperGet() != GT_ASG || tree->gtOp.gtOp2 == nullptr ||
1396 tree->gtOp.gtOp2->OperGet() != GT_PHI)
1401 // Get the phi node from GT_ASG.
1402 GenTreePtr lclVar = tree->gtOp.gtOp1;
1403 unsigned lclNum = lclVar->gtLclVar.gtLclNum;
1405 // If the variable is live-out of "blk", and is therefore live on entry to the try-block-start
1406 // "succ", then we make sure the current SSA name for the
1407 // var is one of the args of the phi node. If not, go on.
1408 LclVarDsc* lclVarDsc = &m_pCompiler->lvaTable[lclNum];
1409 if (!lclVarDsc->lvTracked ||
1410 !VarSetOps::IsMember(m_pCompiler, block->bbLiveOut, lclVarDsc->lvVarIndex))
1415 GenTreePtr phiNode = tree->gtOp.gtOp2;
1416 assert(phiNode->gtOp.gtOp1 == nullptr || phiNode->gtOp.gtOp1->OperGet() == GT_LIST);
1417 GenTreeArgList* argList = reinterpret_cast<GenTreeArgList*>(phiNode->gtOp.gtOp1);
1419 // What is the current SSAName from the predecessor for this local?
1420 unsigned ssaNum = pRenameState->CountForUse(lclNum);
1422 // See if this ssaNum is already an arg to the phi.
1423 bool alreadyArg = false;
1424 for (GenTreeArgList* curArgs = argList; curArgs != nullptr; curArgs = curArgs->Rest())
1426 if (curArgs->Current()->gtPhiArg.gtSsaNum == ssaNum)
1434 // Add the new argument.
1435 GenTreePtr newPhiArg =
1436 new (m_pCompiler, GT_PHI_ARG) GenTreePhiArg(lclVar->TypeGet(), lclNum, ssaNum, block);
1437 phiNode->gtOp.gtOp1 = new (m_pCompiler, GT_LIST) GenTreeArgList(newPhiArg, argList);
1439 DBG_SSA_JITDUMP(" Added phi arg u:%d for V%02u from BB%02u in BB%02u.\n", ssaNum, lclNum,
1440 block->bbNum, handlerStart->bbNum);
1442 m_pCompiler->gtSetStmtInfo(stmt);
1443 m_pCompiler->fgSetStmtSeq(stmt);
1448 if (handlerStart->bbHeapSsaPhiFunc != nullptr)
1450 if (handlerStart->bbHeapSsaPhiFunc == BasicBlock::EmptyHeapPhiDef)
1452 handlerStart->bbHeapSsaPhiFunc = new (m_pCompiler) BasicBlock::HeapPhiArg(block);
1457 BasicBlock::HeapPhiArg* curArg = handlerStart->bbHeapSsaPhiFunc;
1458 while (curArg != nullptr)
1460 assert(curArg->m_predBB != block);
1461 curArg = curArg->m_nextArg;
1464 handlerStart->bbHeapSsaPhiFunc =
1465 new (m_pCompiler) BasicBlock::HeapPhiArg(block, handlerStart->bbHeapSsaPhiFunc);
1467 DBG_SSA_JITDUMP(" Added phi arg for Heap from BB%02u in BB%02u.\n", block->bbNum,
1468 handlerStart->bbNum);
1471 tryInd = succTry->ebdEnclosingTryIndex;
1478 * Walk the block's tree in the evaluation order and reclaim rename stack for var definitions.
1480 * @param block Block for which SSA variables have to be renamed.
1481 * @param pRenameState The incremental rename information stored during renaming process.
1484 void SsaBuilder::BlockPopStacks(BasicBlock* block, SsaRenameState* pRenameState)
1486 // Pop the names given to the non-phi nodes.
1487 pRenameState->PopBlockStacks(block);
1490 pRenameState->PopBlockHeapStack(block);
1494 * Perform variable renaming.
1496 * Walks the blocks and renames all var defs with ssa numbers and all uses with the
1497 * current count that is in the top of the stack. Assigns phi node rhs variables
1498 * (i.e., the arguments to the phi.) Then, calls the function recursively on child
1499 * nodes in the DOM tree to continue the renaming process.
1501 * @param block Block for which SSA variables have to be renamed.
1502 * @param pRenameState The incremental rename information stored during renaming process.
1504 * @remarks At the end of the method, m_uses and m_defs should be populated linking the
1507 * @see Briggs, Cooper, Harvey and Simpson "Practical Improvements to the Construction
1508 * and Destruction of Static Single Assignment Form."
1511 void SsaBuilder::RenameVariables(BlkToBlkSetMap* domTree, SsaRenameState* pRenameState)
1513 JITDUMP("*************** In SsaBuilder::RenameVariables()\n");
1515 // The first thing we do is treat parameters and must-init variables as if they have a
1516 // virtual definition before entry -- they start out at SSA name 1.
1517 for (unsigned i = 0; i < m_pCompiler->lvaCount; i++)
1519 LclVarDsc* varDsc = &m_pCompiler->lvaTable[i];
1522 varDsc->lvNumSsaNames = SsaConfig::UNINIT_SSA_NUM; // Start off fresh...
1525 if (varDsc->lvIsParam || m_pCompiler->info.compInitMem || varDsc->lvMustInit ||
1526 (varDsc->lvTracked &&
1527 VarSetOps::IsMember(m_pCompiler, m_pCompiler->fgFirstBB->bbLiveIn, varDsc->lvVarIndex)))
1529 unsigned count = pRenameState->CountForDef(i);
1531 // In ValueNum we'd assume un-inited variables get FIRST_SSA_NUM.
1532 assert(count == SsaConfig::FIRST_SSA_NUM);
1534 varDsc->lvNumSsaNames++;
1536 pRenameState->Push(nullptr, i, count);
1539 // In ValueNum we'd assume un-inited heap gets FIRST_SSA_NUM.
1540 // The heap is a parameter. Use FIRST_SSA_NUM as first SSA name.
1541 unsigned initHeapCount = pRenameState->CountForHeapDef();
1542 assert(initHeapCount == SsaConfig::FIRST_SSA_NUM);
1543 pRenameState->PushHeap(m_pCompiler->fgFirstBB, initHeapCount);
1545 // Initialize the heap ssa numbers for unreachable blocks. ValueNum expects
1546 // heap ssa numbers to have some intitial value.
1547 for (BasicBlock* block = m_pCompiler->fgFirstBB; block; block = block->bbNext)
1549 if (block->bbIDom == nullptr)
1551 block->bbHeapSsaNumIn = initHeapCount;
1552 block->bbHeapSsaNumOut = initHeapCount;
1559 bool m_processed; // Whether the this block have already been processed: its var renamed, and children
1561 // If so, awaiting only BlockPopStacks.
1562 BlockWork(BasicBlock* blk, bool processed = false) : m_blk(blk), m_processed(processed)
1566 typedef jitstd::vector<BlockWork> BlockWorkStack;
1567 BlockWorkStack* blocksToDo =
1568 new (jitstd::utility::allocate<BlockWorkStack>(m_allocator), jitstd::placement_t()) BlockWorkStack(m_allocator);
1570 blocksToDo->push_back(BlockWork(m_pCompiler->fgFirstBB)); // Probably have to include other roots of dom tree.
1572 while (blocksToDo->size() != 0)
1574 BlockWork blockWrk = blocksToDo->back();
1575 blocksToDo->pop_back();
1576 BasicBlock* block = blockWrk.m_blk;
1578 DBG_SSA_JITDUMP("[SsaBuilder::RenameVariables](BB%02u, processed = %d)\n", block->bbNum, blockWrk.m_processed);
1580 if (!blockWrk.m_processed)
1582 // Push the block back on the stack with "m_processed" true, to record the fact that when its children have
1583 // been (recursively) processed, we still need to call BlockPopStacks on it.
1584 blocksToDo->push_back(BlockWork(block, true));
1586 // Walk the block give counts to DEFs and give top of stack count for USEs.
1587 BlockRenameVariables(block, pRenameState);
1589 // Assign arguments to the phi node of successors, corresponding to the block's index.
1590 AssignPhiNodeRhsVariables(block, pRenameState);
1592 // Recurse with the block's DOM children.
1594 if (domTree->Lookup(block, &pBlkSet))
1596 for (BlkSet::KeyIterator child = pBlkSet->Begin(); !child.Equal(pBlkSet->End()); ++child)
1598 DBG_SSA_JITDUMP("[SsaBuilder::RenameVariables](pushing dom child BB%02u)\n", child.Get()->bbNum);
1599 blocksToDo->push_back(BlockWork(child.Get()));
1605 // Done, pop all the stack count, if there is one for this block.
1606 BlockPopStacks(block, pRenameState);
1607 DBG_SSA_JITDUMP("[SsaBuilder::RenameVariables] done with BB%02u\n", block->bbNum);
1611 // Remember the number of Heap SSA names.
1612 m_pCompiler->lvHeapNumSsaNames = pRenameState->HeapCount();
1617 * Print the blocks, the phi nodes get printed as well.
1620 * [0027CC0C] ----------- stmtExpr void (IL 0x019...0x01B)
1621 * N001 ( 1, 1) [0027CB70] ----------- const int 23
1622 * N003 ( 3, 3) [0027CBD8] -A------R-- = int
1623 * N002 ( 1, 1) [0027CBA4] D------N--- lclVar int V01 arg1 d:5
1626 * [0027D530] ----------- stmtExpr void (IL ???... ???)
1627 * N002 ( 0, 0) [0027D4C8] ----------- phi int
1628 * [0027D8CC] ----------- lclVar int V01 arg1 u:5
1629 * [0027D844] ----------- lclVar int V01 arg1 u:4
1630 * N004 ( 2, 2) [0027D4FC] -A------R-- = int
1631 * N003 ( 1, 1) [0027D460] D------N--- lclVar int V01 arg1 d:3
1633 void SsaBuilder::Print(BasicBlock** postOrder, int count)
1635 for (int i = count - 1; i >= 0; --i)
1637 printf("After SSA BB%02u:\n", postOrder[i]->bbNum);
1638 m_pCompiler->gtDispTreeList(postOrder[i]->bbTreeList);
1646 * Sorts the graph topologically.
1647 * - Collects them in postOrder array.
1649 * Identifies each block's immediate dominator.
1650 * - Computes this in bbIDom of each BasicBlock.
1652 * Computes DOM tree relation.
1653 * - Computes domTree as block -> set of blocks.
1654 * - Computes pre/post order traversal of the DOM tree.
1656 * Inserts phi nodes.
1657 * - Computes dominance frontier as block -> set of blocks.
1658 * - Allocates block use/def/livein/liveout and computes it.
1659 * - Inserts phi nodes with only rhs at the beginning of the blocks.
1661 * Renames variables.
1662 * - Walks blocks in evaluation order and gives uses and defs names.
1663 * - Gives empty phi nodes their rhs arguments as they become known while renaming.
1665 * @return true if successful, for now, this must always be true.
1667 * @see "A simple, fast dominance algorithm" by Keith D. Cooper, Timothy J. Harvey, Ken Kennedy.
1668 * @see Briggs, Cooper, Harvey and Simpson "Practical Improvements to the Construction
1669 * and Destruction of Static Single Assignment Form."
1671 void SsaBuilder::Build()
1674 if (m_pCompiler->verbose)
1676 printf("*************** In SsaBuilder::Build()\n");
1680 // Ensure that there's a first block outside a try, so that the dominator tree has a unique root.
1683 // Just to keep block no. & index same add 1.
1684 int blockCount = m_pCompiler->fgBBNumMax + 1;
1686 JITDUMP("[SsaBuilder] Max block count is %d.\n", blockCount);
1688 // Allocate the postOrder array for the graph.
1689 BasicBlock** postOrder = (BasicBlock**)alloca(blockCount * sizeof(BasicBlock*));
1691 // Topologically sort the graph.
1692 int count = TopologicalSort(postOrder, blockCount);
1693 JITDUMP("[SsaBuilder] Topologically sorted the graph.\n");
1694 EndPhase(PHASE_BUILD_SSA_TOPOSORT);
1697 ComputeImmediateDom(postOrder, count);
1699 // Compute the dominator tree.
1700 BlkToBlkSetMap* domTree = new (m_pCompiler->getAllocator()) BlkToBlkSetMap(m_pCompiler->getAllocator());
1701 ComputeDominators(postOrder, count, domTree);
1702 EndPhase(PHASE_BUILD_SSA_DOMS);
1704 // Insert phi functions.
1705 InsertPhiFunctions(postOrder, count);
1707 // Rename local variables and collect UD information for each ssa var.
1708 SsaRenameState* pRenameState = new (jitstd::utility::allocate<SsaRenameState>(m_allocator), jitstd::placement_t())
1709 SsaRenameState(m_allocator, m_pCompiler->lvaCount);
1710 RenameVariables(domTree, pRenameState);
1711 EndPhase(PHASE_BUILD_SSA_RENAME);
1714 // At this point we are in SSA form. Print the SSA form.
1715 if (m_pCompiler->verboseSsa)
1717 Print(postOrder, count);
1722 void SsaBuilder::SetupBBRoot()
1724 // Allocate a bbroot, if necessary.
1725 // We need a unique block to be the root of the dominator tree.
1726 // This can be violated if the first block is in a try, or if it is the first block of
1727 // a loop (which would necessarily be an infinite loop) -- i.e., it has a predecessor.
1729 // If neither condition holds, no reason to make a new block.
1730 if (!m_pCompiler->fgFirstBB->hasTryIndex() && m_pCompiler->fgFirstBB->bbPreds == nullptr)
1735 BasicBlock* bbRoot = m_pCompiler->bbNewBasicBlock(BBJ_NONE);
1736 bbRoot->bbFlags |= BBF_INTERNAL;
1738 // May need to fix up preds list, so remember the old first block.
1739 BasicBlock* oldFirst = m_pCompiler->fgFirstBB;
1741 // Copy the liveness information from the first basic block.
1742 if (m_pCompiler->fgLocalVarLivenessDone)
1744 VarSetOps::Assign(m_pCompiler, bbRoot->bbLiveIn, oldFirst->bbLiveIn);
1745 VarSetOps::Assign(m_pCompiler, bbRoot->bbLiveOut, oldFirst->bbLiveIn);
1748 // Copy the bbWeight. (This is technically wrong, if the first block is a loop head, but
1749 // it shouldn't matter...)
1750 bbRoot->inheritWeight(oldFirst);
1752 // There's an artifical incoming reference count for the first BB. We're about to make it no longer
1753 // the first BB, so decrement that.
1754 assert(oldFirst->bbRefs > 0);
1757 m_pCompiler->fgInsertBBbefore(m_pCompiler->fgFirstBB, bbRoot);
1759 assert(m_pCompiler->fgFirstBB == bbRoot);
1760 if (m_pCompiler->fgComputePredsDone)
1762 m_pCompiler->fgAddRefPred(oldFirst, bbRoot);
1767 // This method asserts that SSA name constraints specified are satisfied.
1768 void Compiler::JitTestCheckSSA()
1775 static unsigned GetHashCode(SSAName ssaNm)
1777 return ssaNm.m_lvNum << 16 | ssaNm.m_ssaNum;
1780 static bool Equals(SSAName ssaNm1, SSAName ssaNm2)
1782 return ssaNm1.m_lvNum == ssaNm2.m_lvNum && ssaNm1.m_ssaNum == ssaNm2.m_ssaNum;
1786 typedef SimplerHashTable<ssize_t, SmallPrimitiveKeyFuncs<ssize_t>, SSAName, JitSimplerHashBehavior>
1788 typedef SimplerHashTable<SSAName, SSAName, ssize_t, JitSimplerHashBehavior> SSANameToLabelMap;
1790 // If we have no test data, early out.
1791 if (m_nodeTestData == nullptr)
1796 NodeToTestDataMap* testData = GetNodeTestData();
1798 // First we have to know which nodes in the tree are reachable.
1799 NodeToIntMap* reachable = FindReachableNodesInNodeTestData();
1801 LabelToSSANameMap* labelToSSA = new (getAllocatorDebugOnly()) LabelToSSANameMap(getAllocatorDebugOnly());
1802 SSANameToLabelMap* ssaToLabel = new (getAllocatorDebugOnly()) SSANameToLabelMap(getAllocatorDebugOnly());
1806 printf("\nJit Testing: SSA names.\n");
1808 for (NodeToTestDataMap::KeyIterator ki = testData->Begin(); !ki.Equal(testData->End()); ++ki)
1810 TestLabelAndNum tlAndN;
1811 GenTreePtr node = ki.Get();
1812 bool b = testData->Lookup(node, &tlAndN);
1814 if (tlAndN.m_tl == TL_SsaName)
1816 if (node->OperGet() != GT_LCL_VAR)
1818 printf("SSAName constraint put on non-lcl-var expression ");
1820 printf(" (of type %s).\n", varTypeName(node->TypeGet()));
1823 GenTreeLclVarCommon* lcl = node->AsLclVarCommon();
1826 if (!reachable->Lookup(lcl, &dummy))
1830 printf(" had a test constraint declared, but has become unreachable at the time the constraint is "
1832 "(This is probably as a result of some optimization -- \n"
1833 "you may need to modify the test case to defeat this opt.)\n");
1841 printf(", SSA name = <%d, %d> -- SSA name class %d.\n", lcl->gtLclNum, lcl->gtSsaNum, tlAndN.m_num);
1844 if (labelToSSA->Lookup(tlAndN.m_num, &ssaNm))
1848 printf(" Already in hash tables.\n");
1850 // The mapping(s) must be one-to-one: if the label has a mapping, then the ssaNm must, as well.
1852 bool b = ssaToLabel->Lookup(ssaNm, &num2);
1853 // And the mappings must be the same.
1854 if (tlAndN.m_num != num2)
1858 printf(", SSA name = <%d, %d> was declared in SSA name class %d,\n", lcl->gtLclNum, lcl->gtSsaNum,
1861 "but this SSA name <%d,%d> has already been associated with a different SSA name class: %d.\n",
1862 ssaNm.m_lvNum, ssaNm.m_ssaNum, num2);
1865 // And the current node must be of the specified SSA family.
1866 if (!(lcl->gtLclNum == ssaNm.m_lvNum && lcl->gtSsaNum == ssaNm.m_ssaNum))
1870 printf(", SSA name = <%d, %d> was declared in SSA name class %d,\n", lcl->gtLclNum, lcl->gtSsaNum,
1872 printf("but that name class was previously bound to a different SSA name: <%d,%d>.\n",
1873 ssaNm.m_lvNum, ssaNm.m_ssaNum);
1879 ssaNm.m_lvNum = lcl->gtLclNum;
1880 ssaNm.m_ssaNum = lcl->gtSsaNum;
1882 // The mapping(s) must be one-to-one: if the label has no mapping, then the ssaNm may not, either.
1883 if (ssaToLabel->Lookup(ssaNm, &num))
1887 printf(", SSA name = <%d, %d> was declared in SSA name class %d,\n", lcl->gtLclNum, lcl->gtSsaNum,
1889 printf("but this SSA name has already been associated with a different name class: %d.\n", num);
1892 // Add to both mappings.
1893 labelToSSA->Set(tlAndN.m_num, ssaNm);
1894 ssaToLabel->Set(ssaNm, tlAndN.m_num);
1897 printf(" added to hash tables.\n");