1 // Licensed to the .NET Foundation under one or more agreements.
2 // The .NET Foundation licenses this file to you under the MIT license.
3 // See the LICENSE file in the project root for more information.
13 /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
14 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
18 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
19 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
23 #include "ssaconfig.h"
24 #include "ssarenamestate.h"
25 #include "ssabuilder.h"
30 * Method that finds a common IDom parent, much like least common ancestor.
32 * @param finger1 A basic block that might share IDom ancestor with finger2.
33 * @param finger2 A basic block that might share IDom ancestor with finger1.
35 * @see "A simple, fast dominance algorithm" by Keith D. Cooper, Timothy J. Harvey, Ken Kennedy.
37 * @return A basic block whose IDom is the dominator for finger1 and finger2,
38 * or else NULL. This may be called while immediate dominators are being
39 * computed, and if the input values are members of the same loop (each reachable from the other),
40 * then one may not yet have its immediate dominator computed when we are attempting
41 * to find the immediate dominator of the other. So a NULL return value means that the
42 * the two inputs are in a cycle, not that they don't have a common dominator ancestor.
44 static inline BasicBlock* IntersectDom(BasicBlock* finger1, BasicBlock* finger2)
46 while (finger1 != finger2)
48 if (finger1 == nullptr || finger2 == nullptr)
52 while (finger1 != nullptr && finger1->bbPostOrderNum < finger2->bbPostOrderNum)
54 finger1 = finger1->bbIDom;
56 if (finger1 == nullptr)
60 while (finger2 != nullptr && finger2->bbPostOrderNum < finger1->bbPostOrderNum)
62 finger2 = finger2->bbIDom;
68 } // end of anonymous namespace.
70 // =================================================================================
72 // =================================================================================
74 void Compiler::fgSsaBuild()
76 IAllocator* pIAllocator = new (this, CMK_SSA) CompAllocator(this, CMK_SSA);
78 // If this is not the first invocation, reset data structures for SSA.
79 if (fgSsaPassesCompleted > 0)
84 SsaBuilder builder(this, pIAllocator);
86 fgSsaPassesCompleted++;
94 JITDUMP("\nAfter fgSsaBuild:\n");
95 fgDispBasicBlocks(/*dumpTrees*/ true);
100 void Compiler::fgResetForSsa()
102 for (unsigned i = 0; i < lvaCount; ++i)
104 lvaTable[i].lvPerSsaData.Reset();
106 lvHeapPerSsaData.Reset();
107 m_heapSsaMap = nullptr;
108 for (BasicBlock* blk = fgFirstBB; blk != nullptr; blk = blk->bbNext)
111 blk->bbHeapSsaPhiFunc = nullptr;
112 if (blk->bbTreeList != nullptr)
114 GenTreePtr last = blk->bbTreeList->gtPrev;
115 blk->bbTreeList = blk->FirstNonPhiDef();
116 if (blk->bbTreeList != nullptr)
118 blk->bbTreeList->gtPrev = last;
122 // Clear post-order numbers and SSA numbers; SSA construction will overwrite these,
123 // but only for reachable code, so clear them to avoid analysis getting confused
124 // by stale annotations in unreachable code.
125 blk->bbPostOrderNum = 0;
126 for (GenTreeStmt* stmt = blk->firstStmt(); stmt != nullptr; stmt = stmt->getNextStmt())
128 for (GenTreePtr tree = stmt->gtStmt.gtStmtList; tree != nullptr; tree = tree->gtNext)
132 tree->gtLclVarCommon.SetSsaNum(SsaConfig::RESERVED_SSA_NUM);
136 Compiler::IndirectAssignmentAnnotation* pIndirAssign = nullptr;
137 if ((tree->OperGet() != GT_ASG) || !GetIndirAssignMap()->Lookup(tree, &pIndirAssign) ||
138 (pIndirAssign == nullptr))
143 pIndirAssign->m_defSsaNum = SsaConfig::RESERVED_SSA_NUM;
144 pIndirAssign->m_useSsaNum = SsaConfig::RESERVED_SSA_NUM;
151 * Constructor for the SSA builder.
153 * @param pCompiler Current compiler instance.
155 * @remarks Initializes the class and member pointers/objects that use constructors.
157 SsaBuilder::SsaBuilder(Compiler* pCompiler, IAllocator* pIAllocator)
158 : m_pCompiler(pCompiler)
159 , m_allocator(pIAllocator)
161 #ifdef SSA_FEATURE_DOMARR
162 , m_pDomPreOrder(NULL)
163 , m_pDomPostOrder(NULL)
165 #ifdef SSA_FEATURE_USEDEF
166 , m_uses(jitstd::allocator<void>(pIAllocator))
167 , m_defs(jitstd::allocator<void>(pIAllocator))
172 //------------------------------------------------------------------------
173 // TopologicalSort: Topologically sort the graph and return the number of nodes visited.
176 // postOrder - The array in which the arranged basic blocks have to be returned.
177 // count - The size of the postOrder array.
180 // The number of nodes visited while performing DFS on the graph.
182 int SsaBuilder::TopologicalSort(BasicBlock** postOrder, int count)
184 Compiler* comp = m_pCompiler;
186 BitVecTraits traits(comp->fgBBNumMax + 1, comp);
187 BitVec BITVEC_INIT_NOCOPY(visited, BitVecOps::MakeEmpty(&traits));
189 // Display basic blocks.
190 DBEXEC(VERBOSE, comp->fgDispBasicBlocks());
191 DBEXEC(VERBOSE, comp->fgDispHandlerTab());
195 BasicBlock* block = comp->fgFirstBB;
196 BitVecOps::AddElemD(&traits, visited, block->bbNum);
198 ArrayStack<BasicBlock*> blocks(comp);
199 ArrayStack<AllSuccessorIter> iterators(comp);
200 ArrayStack<AllSuccessorIter> ends(comp);
202 // there are three stacks used here and all should be same height
203 // the first is for blocks
204 // the second is the iterator to keep track of what succ of the block we are looking at
205 // and the third is the end marker iterator
207 iterators.Push(block->GetAllSuccs(comp).begin());
208 ends.Push(block->GetAllSuccs(comp).end());
210 while (blocks.Height() > 0)
212 block = blocks.Top();
215 if (comp->verboseSsa)
217 printf("[SsaBuilder::TopologicalSort] Visiting BB%02u: ", block->bbNum);
219 unsigned numSucc = block->NumSucc(comp);
220 for (unsigned i = 0; i < numSucc; ++i)
222 printf("BB%02u, ", block->GetSucc(i, comp)->bbNum);
224 EHSuccessorIter end = block->GetEHSuccs(comp).end();
225 for (EHSuccessorIter ehsi = block->GetEHSuccs(comp).begin(); ehsi != end; ++ehsi)
227 printf("[EH]BB%02u, ", (*ehsi)->bbNum);
233 if (iterators.TopRef() != ends.TopRef())
235 // if the block on TOS still has unreached successors, visit them
236 AllSuccessorIter& iter = iterators.TopRef();
237 BasicBlock* succ = *iter;
241 if (!BitVecOps::IsMember(&traits, visited, succ->bbNum))
244 iterators.Push(succ->GetAllSuccs(comp).begin());
245 ends.Push(succ->GetAllSuccs(comp).end());
246 BitVecOps::AddElemD(&traits, visited, succ->bbNum);
251 // all successors have been visited
256 postOrder[postIndex] = block;
257 block->bbPostOrderNum = postIndex;
260 DBG_SSA_JITDUMP("postOrder[%d] = [%p] and BB%02u\n", postIndex, dspPtr(block), block->bbNum);
264 // In the absence of EH (because catch/finally have no preds), this should be valid.
265 // assert(postIndex == (count - 1));
271 * Computes the immediate dominator IDom for each block iteratively.
273 * @param postOrder The array of basic blocks arranged in postOrder.
274 * @param count The size of valid elements in the postOrder array.
276 * @see "A simple, fast dominance algorithm." paper.
278 void SsaBuilder::ComputeImmediateDom(BasicBlock** postOrder, int count)
280 JITDUMP("[SsaBuilder::ComputeImmediateDom]\n");
282 // TODO-Cleanup: We currently have two dominance computations happening. We should unify them; for
283 // now, at least forget the results of the first.
284 for (BasicBlock* blk = m_pCompiler->fgFirstBB; blk != nullptr; blk = blk->bbNext)
286 blk->bbIDom = nullptr;
289 // Add entry point to processed as its IDom is NULL.
290 BitVecTraits traits(m_pCompiler->fgBBNumMax + 1, m_pCompiler);
291 BitVec BITVEC_INIT_NOCOPY(processed, BitVecOps::MakeEmpty(&traits));
293 BitVecOps::AddElemD(&traits, processed, m_pCompiler->fgFirstBB->bbNum);
294 assert(postOrder[count - 1] == m_pCompiler->fgFirstBB);
301 // In reverse post order, except for the entry block (count - 1 is entry BB).
302 for (int i = count - 2; i >= 0; --i)
304 BasicBlock* block = postOrder[i];
306 DBG_SSA_JITDUMP("Visiting in reverse post order: BB%02u.\n", block->bbNum);
308 // Find the first processed predecessor block.
309 BasicBlock* predBlock = nullptr;
310 for (flowList* pred = m_pCompiler->BlockPredsWithEH(block); pred; pred = pred->flNext)
312 if (BitVecOps::IsMember(&traits, processed, pred->flBlock->bbNum))
314 predBlock = pred->flBlock;
319 // There could just be a single basic block, so just check if there were any preds.
320 if (predBlock != nullptr)
322 DBG_SSA_JITDUMP("Pred block is BB%02u.\n", predBlock->bbNum);
325 // Intersect DOM, if computed, for all predecessors.
326 BasicBlock* bbIDom = predBlock;
327 for (flowList* pred = m_pCompiler->BlockPredsWithEH(block); pred; pred = pred->flNext)
329 if (predBlock != pred->flBlock)
331 BasicBlock* domAncestor = IntersectDom(pred->flBlock, bbIDom);
332 // The result may be NULL if "block" and "pred->flBlock" are part of a
333 // cycle -- neither is guaranteed ordered wrt the other in reverse postorder,
334 // so we may be computing the IDom of "block" before the IDom of "pred->flBlock" has
335 // been computed. But that's OK -- if they're in a cycle, they share the same immediate
336 // dominator, so the contribution of "pred->flBlock" is not necessary to compute
338 if (domAncestor != nullptr)
340 bbIDom = domAncestor;
345 // Did we change the bbIDom value? If so, we go around the outer loop again.
346 if (block->bbIDom != bbIDom)
350 // IDom has changed, update it.
351 DBG_SSA_JITDUMP("bbIDom of BB%02u becomes BB%02u.\n", block->bbNum, bbIDom ? bbIDom->bbNum : 0);
352 block->bbIDom = bbIDom;
355 // Mark the current block as processed.
356 BitVecOps::AddElemD(&traits, processed, block->bbNum);
358 DBG_SSA_JITDUMP("Marking block BB%02u as processed.\n", block->bbNum);
363 #ifdef SSA_FEATURE_DOMARR
365 * Walk the DOM tree and compute pre and post-order arrangement of the tree.
367 * @param curBlock The current block being operated on at some recursive level.
368 * @param domTree The DOM tree as a map (block -> set of child blocks.)
369 * @param preIndex The initial index given to the first block visited in pre order.
370 * @param postIndex The initial index given to the first block visited in post order.
372 * @remarks This would help us answer queries such as "a dom b?" in constant time.
373 * For example, if a dominated b, then Pre[a] < Pre[b] but Post[a] > Post[b]
375 void SsaBuilder::DomTreeWalk(BasicBlock* curBlock, BlkToBlkSetMap* domTree, int* preIndex, int* postIndex)
377 JITDUMP("[SsaBuilder::DomTreeWalk] block [%p], BB%02u:\n", dspPtr(curBlock), curBlock->bbNum);
379 // Store the order number at the block number in the pre order list.
380 m_pDomPreOrder[curBlock->bbNum] = *preIndex;
384 if (domTree->Lookup(curBlock, &pBlkSet))
386 for (BlkSet::KeyIterator ki = pBlkSet->Begin(); !ki.Equal(pBlkSet->End()); ++ki)
388 if (curBlock != ki.Get())
390 DomTreeWalk(ki.Get(), domTree, preIndex, postIndex);
395 // Store the order number at the block number in the post order list.
396 m_pDomPostOrder[curBlock->bbNum] = *postIndex;
402 * Using IDom of each basic block, add a mapping from block->IDom -> block.
403 * @param pCompiler Compiler instance
404 * @param block The basic block that will become the child node of it's iDom.
405 * @param domTree The output domTree which will hold the mapping "block->bbIDom" -> "block"
409 void SsaBuilder::ConstructDomTreeForBlock(Compiler* pCompiler, BasicBlock* block, BlkToBlkSetMap* domTree)
411 BasicBlock* bbIDom = block->bbIDom;
413 // bbIDom for (only) fgFirstBB will be NULL.
414 if (bbIDom == nullptr)
419 // If the bbIDom map key doesn't exist, create one.
421 if (!domTree->Lookup(bbIDom, &pBlkSet))
423 pBlkSet = new (pCompiler->getAllocator()) BlkSet(pCompiler->getAllocator());
424 domTree->Set(bbIDom, pBlkSet);
427 DBG_SSA_JITDUMP("Inserting BB%02u as dom child of BB%02u.\n", block->bbNum, bbIDom->bbNum);
428 // Insert the block into the block's set.
429 pBlkSet->Set(block, true);
433 * Using IDom of each basic block, compute the whole tree. If a block "b" has IDom "i",
434 * then, block "b" is dominated by "i". The mapping then is i -> { ..., b, ... }, in
435 * other words, "domTree" is a tree represented by nodes mapped to their children.
437 * @param pCompiler Compiler instance
438 * @param domTree The output domTree which will hold the mapping "block->bbIDom" -> "block"
442 void SsaBuilder::ComputeDominators(Compiler* pCompiler, BlkToBlkSetMap* domTree)
444 JITDUMP("*************** In SsaBuilder::ComputeDominators(Compiler*, ...)\n");
446 // Construct the DOM tree from bbIDom
447 for (BasicBlock* block = pCompiler->fgFirstBB; block != nullptr; block = block->bbNext)
449 ConstructDomTreeForBlock(pCompiler, block, domTree);
452 DBEXEC(pCompiler->verboseSsa, DisplayDominators(domTree));
456 * Compute the DOM tree into a map(block -> set of blocks) adjacency representation.
458 * Using IDom of each basic block, compute the whole tree. If a block "b" has IDom "i",
459 * then, block "b" is dominated by "i". The mapping then is i -> { ..., b, ... }
461 * @param postOrder The array of basic blocks arranged in postOrder.
462 * @param count The size of valid elements in the postOrder array.
463 * @param domTree A map of (block -> set of blocks) tree representation that is empty.
466 void SsaBuilder::ComputeDominators(BasicBlock** postOrder, int count, BlkToBlkSetMap* domTree)
468 JITDUMP("*************** In SsaBuilder::ComputeDominators(BasicBlock** postOrder, int count, ...)\n");
470 // Construct the DOM tree from bbIDom
471 for (int i = 0; i < count; ++i)
473 ConstructDomTreeForBlock(m_pCompiler, postOrder[i], domTree);
476 DBEXEC(m_pCompiler->verboseSsa, DisplayDominators(domTree));
478 #ifdef SSA_FEATURE_DOMARR
479 // Allocate space for constant time computation of (a DOM b?) query.
480 unsigned bbArrSize = m_pCompiler->fgBBNumMax + 1; // We will use 1-based bbNums as indices into these arrays, so
482 m_pDomPreOrder = jitstd::utility::allocate<int>(m_allocator, bbArrSize);
483 m_pDomPostOrder = jitstd::utility::allocate<int>(m_allocator, bbArrSize);
489 // Populate the pre and post order of the tree.
490 DomTreeWalk(m_pCompiler->fgFirstBB, domTree, &preIndex, &postIndex);
497 * Display the DOM tree.
499 * @param domTree A map of (block -> set of blocks) tree representation.
502 void SsaBuilder::DisplayDominators(BlkToBlkSetMap* domTree)
504 printf("After computing dominator tree: \n");
505 for (BlkToBlkSetMap::KeyIterator nodes = domTree->Begin(); !nodes.Equal(domTree->End()); ++nodes)
507 printf("BB%02u := {", nodes.Get()->bbNum);
509 BlkSet* pBlkSet = nodes.GetValue();
510 for (BlkSet::KeyIterator ki = pBlkSet->Begin(); !ki.Equal(pBlkSet->End()); ++ki)
512 if (!ki.Equal(pBlkSet->Begin()))
516 printf("BB%02u", ki.Get()->bbNum);
524 // (Spec comment at declaration.)
525 // See "A simple, fast dominance algorithm", by Cooper, Harvey, and Kennedy.
526 // First we compute the dominance frontier for each block, then we convert these to iterated
527 // dominance frontiers by a closure operation.
528 BlkToBlkSetMap* SsaBuilder::ComputeIteratedDominanceFrontier(BasicBlock** postOrder, int count)
530 BlkToBlkSetMap* frontier = new (m_pCompiler->getAllocator()) BlkToBlkSetMap(m_pCompiler->getAllocator());
532 DBG_SSA_JITDUMP("Computing IDF: First computing DF.\n");
534 for (int i = 0; i < count; ++i)
536 BasicBlock* block = postOrder[i];
538 DBG_SSA_JITDUMP("Considering block BB%02u.\n", block->bbNum);
540 // Recall that B3 is in the dom frontier of B1 if there exists a B2
541 // such that B1 dom B2, !(B1 dom B3), and B3 is an immediate successor
542 // of B2. (Note that B1 might be the same block as B2.)
543 // In that definition, we're considering "block" to be B3, and trying
544 // to find B1's. To do so, first we consider the predecessors of "block",
545 // searching for candidate B2's -- "block" is obviously an immediate successor
546 // of its immediate predecessors. If there are zero or one preds, then there
547 // is no pred, or else the single pred dominates "block", so no B2 exists.
549 flowList* blockPreds = m_pCompiler->BlockPredsWithEH(block);
551 // If block has more 0/1 predecessor, skip.
552 if (blockPreds == nullptr || blockPreds->flNext == nullptr)
554 DBG_SSA_JITDUMP(" Has %d preds; skipping.\n", blockPreds == nullptr ? 0 : 1);
558 // Otherwise, there are > 1 preds. Each is a candidate B2 in the definition --
559 // *unless* it dominates "block"/B3.
561 for (flowList* pred = blockPreds; pred; pred = pred->flNext)
563 DBG_SSA_JITDUMP(" Considering predecessor BB%02u.\n", pred->flBlock->bbNum);
565 // If we've found a B2, then consider the possible B1's. We start with
566 // B2, since a block dominates itself, then traverse upwards in the dominator
567 // tree, stopping when we reach the root, or the immediate dominator of "block"/B3.
568 // (Note that we are guaranteed to encounter this immediate dominator of "block"/B3:
569 // a predecessor must be dominated by B3's immediate dominator.)
570 // Along this way, make "block"/B3 part of the dom frontier of the B1.
571 // When we reach this immediate dominator, the definition no longer applies, since this
572 // potential B1 *does* dominate "block"/B3, so we stop.
573 for (BasicBlock* b1 = pred->flBlock; (b1 != nullptr) && (b1 != block->bbIDom); // !root && !loop
576 DBG_SSA_JITDUMP(" Adding BB%02u to dom frontier of pred dom BB%02u.\n", block->bbNum, b1->bbNum);
578 if (!frontier->Lookup(b1, &pBlkSet))
580 pBlkSet = new (m_pCompiler->getAllocator()) BlkSet(m_pCompiler->getAllocator());
581 frontier->Set(b1, pBlkSet);
583 pBlkSet->Set(block, true);
589 if (m_pCompiler->verboseSsa)
591 printf("\nComputed DF:\n");
592 for (int i = 0; i < count; ++i)
594 BasicBlock* block = postOrder[i];
595 printf("Block BB%02u := {", block->bbNum);
599 if (frontier->Lookup(block, &blkDf))
601 for (BlkSet::KeyIterator blkDfIter = blkDf->Begin(); !blkDfIter.Equal(blkDf->End()); blkDfIter++)
607 printf("BB%02u", blkDfIter.Get()->bbNum);
616 // Now do the closure operation to make the dominance frontier into an IDF.
617 // There's probably a better way to do this...
618 BlkToBlkSetMap* idf = new (m_pCompiler->getAllocator()) BlkToBlkSetMap(m_pCompiler->getAllocator());
619 for (BlkToBlkSetMap::KeyIterator kiFrontBlks = frontier->Begin(); !kiFrontBlks.Equal(frontier->End());
623 BlkSet* blkIdf = new (m_pCompiler->getAllocator()) BlkSet(m_pCompiler->getAllocator());
624 idf->Set(kiFrontBlks.Get(), blkIdf);
626 // Keep track of what got newly added to the IDF, so we can go after their DFs.
627 BlkSet* delta = new (m_pCompiler->getAllocator()) BlkSet(m_pCompiler->getAllocator());
628 delta->Set(kiFrontBlks.Get(), true);
630 // Now transitively add DF+(delta) to IDF(b), each step gathering new "delta."
631 while (delta->GetCount() > 0)
633 // Extract a block x to be worked on.
634 BlkSet::KeyIterator ki = delta->Begin();
635 BasicBlock* curBlk = ki.Get();
636 // TODO-Cleanup: Remove(ki) doesn't work correctly in SimplerHash.
637 delta->Remove(curBlk);
641 if (frontier->Lookup(curBlk, &blkDf))
643 // Add DF(x) to IDF(b) and update "delta" i.e., new additions to IDF(b).
644 for (BlkSet::KeyIterator ki = blkDf->Begin(); !ki.Equal(blkDf->End()); ki++)
646 if (!blkIdf->Lookup(ki.Get()))
648 delta->Set(ki.Get(), true);
649 blkIdf->Set(ki.Get(), true);
657 if (m_pCompiler->verboseSsa)
659 printf("\nComputed IDF:\n");
660 for (int i = 0; i < count; ++i)
662 BasicBlock* block = postOrder[i];
663 printf("Block BB%02u := {", block->bbNum);
667 if (idf->Lookup(block, &blkIdf))
669 for (BlkSet::KeyIterator ki = blkIdf->Begin(); !ki.Equal(blkIdf->End()); ki++)
675 printf("BB%02u", ki.Get()->bbNum);
688 * Returns the phi GT_PHI node if the variable already has a phi node.
690 * @param block The block for which the existence of a phi node needs to be checked.
691 * @param lclNum The lclNum for which the occurrence of a phi node needs to be checked.
693 * @return If there is a phi node for the lclNum, returns the GT_PHI tree, else NULL.
695 static GenTree* GetPhiNode(BasicBlock* block, unsigned lclNum)
697 // Walk the statements for phi nodes.
698 for (GenTreePtr stmt = block->bbTreeList; stmt; stmt = stmt->gtNext)
700 // A prefix of the statements of the block are phi definition nodes. If we complete processing
701 // that prefix, exit.
702 if (!stmt->IsPhiDefnStmt())
707 GenTreePtr tree = stmt->gtStmt.gtStmtExpr;
709 GenTreePtr phiLhs = tree->gtOp.gtOp1;
710 assert(phiLhs->OperGet() == GT_LCL_VAR);
711 if (phiLhs->gtLclVarCommon.gtLclNum == lclNum)
713 return tree->gtOp.gtOp2;
720 * Inserts phi functions at DF(b) for variables v that are live after the phi
721 * insertion point i.e., v in live-in(b).
723 * To do so, the function computes liveness, dominance frontier and inserts a phi node,
724 * if we have var v in def(b) and live-in(l) and l is in DF(b).
726 * @param postOrder The array of basic blocks arranged in postOrder.
727 * @param count The size of valid elements in the postOrder array.
729 void SsaBuilder::InsertPhiFunctions(BasicBlock** postOrder, int count)
731 JITDUMP("*************** In SsaBuilder::InsertPhiFunctions()\n");
733 // Compute liveness on the graph.
734 m_pCompiler->fgLocalVarLiveness();
735 EndPhase(PHASE_BUILD_SSA_LIVENESS);
737 // Compute dominance frontier.
738 BlkToBlkSetMap* frontier = ComputeIteratedDominanceFrontier(postOrder, count);
739 EndPhase(PHASE_BUILD_SSA_IDF);
741 JITDUMP("Inserting phi functions:\n");
743 for (int i = 0; i < count; ++i)
745 BasicBlock* block = postOrder[i];
746 DBG_SSA_JITDUMP("Considering dominance frontier of block BB%02u:\n", block->bbNum);
748 // If the block's dominance frontier is empty, go on to the next block.
750 if (!frontier->Lookup(block, &blkIdf))
755 // For each local var number "lclNum" that "block" assigns to...
756 VARSET_ITER_INIT(m_pCompiler, defVars, block->bbVarDef, varIndex);
757 while (defVars.NextElem(m_pCompiler, &varIndex))
759 unsigned lclNum = m_pCompiler->lvaTrackedToVarNum[varIndex];
760 DBG_SSA_JITDUMP(" Considering local var V%02u:\n", lclNum);
762 if (m_pCompiler->fgExcludeFromSsa(lclNum))
764 DBG_SSA_JITDUMP(" Skipping because it is excluded.\n");
768 // For each block "bbInDomFront" that is in the dominance frontier of "block"...
769 for (BlkSet::KeyIterator iterBlk = blkIdf->Begin(); !iterBlk.Equal(blkIdf->End()); ++iterBlk)
771 BasicBlock* bbInDomFront = iterBlk.Get();
772 DBG_SSA_JITDUMP(" Considering BB%02u in dom frontier of BB%02u:\n", bbInDomFront->bbNum,
775 // Check if variable "lclNum" is live in block "*iterBlk".
776 if (!VarSetOps::IsMember(m_pCompiler, bbInDomFront->bbLiveIn, varIndex))
781 // Check if we've already inserted a phi node.
782 if (GetPhiNode(bbInDomFront, lclNum) == nullptr)
784 // We have a variable i that is defined in block j and live at l, and l belongs to dom frontier of
785 // j. So insert a phi node at l.
786 JITDUMP("Inserting phi definition for V%02u at start of BB%02u.\n", lclNum, bbInDomFront->bbNum);
788 GenTreePtr phiLhs = m_pCompiler->gtNewLclvNode(lclNum, m_pCompiler->lvaTable[lclNum].TypeGet());
790 // Create 'phiRhs' as a GT_PHI node for 'lclNum', it will eventually hold a GT_LIST of GT_PHI_ARG
791 // nodes. However we have to construct this list so for now the gtOp1 of 'phiRhs' is a nullptr.
792 // It will get replaced with a GT_LIST of GT_PHI_ARG nodes in
793 // SsaBuilder::AssignPhiNodeRhsVariables() and in SsaBuilder::AddDefToHandlerPhis()
796 m_pCompiler->gtNewOperNode(GT_PHI, m_pCompiler->lvaTable[lclNum].TypeGet(), nullptr);
798 GenTreePtr phiAsg = m_pCompiler->gtNewAssignNode(phiLhs, phiRhs);
800 GenTreePtr stmt = m_pCompiler->fgInsertStmtAtBeg(bbInDomFront, phiAsg);
801 m_pCompiler->gtSetStmtInfo(stmt);
802 m_pCompiler->fgSetStmtSeq(stmt);
807 // Now make a similar phi definition if the block defines Heap.
808 if (block->bbHeapDef)
810 // For each block "bbInDomFront" that is in the dominance frontier of "block".
811 for (BlkSet::KeyIterator iterBlk = blkIdf->Begin(); !iterBlk.Equal(blkIdf->End()); ++iterBlk)
813 BasicBlock* bbInDomFront = iterBlk.Get();
814 DBG_SSA_JITDUMP(" Considering BB%02u in dom frontier of BB%02u for Heap phis:\n",
815 bbInDomFront->bbNum, block->bbNum);
817 // Check if Heap is live into block "*iterBlk".
818 if (!bbInDomFront->bbHeapLiveIn)
823 // Check if we've already inserted a phi node.
824 if (bbInDomFront->bbHeapSsaPhiFunc == nullptr)
826 // We have a variable i that is defined in block j and live at l, and l belongs to dom frontier of
827 // j. So insert a phi node at l.
828 JITDUMP("Inserting phi definition for Heap at start of BB%02u.\n", bbInDomFront->bbNum);
829 bbInDomFront->bbHeapSsaPhiFunc = BasicBlock::EmptyHeapPhiDef;
834 EndPhase(PHASE_BUILD_SSA_INSERT_PHIS);
837 #ifdef SSA_FEATURE_USEDEF
839 * Record a use point of a variable.
841 * The use point is just the tree that is a local variable use.
843 * @param tree Tree node where an SSA variable is used.
845 * @remarks The result is in the m_uses map :: [lclNum, ssaNum] -> tree.
847 void SsaBuilder::AddUsePoint(GenTree* tree)
849 assert(tree->IsLocal());
850 SsaVarName key(tree->gtLclVarCommon.gtLclNum, tree->gtLclVarCommon.gtSsaNum);
851 VarToUses::iterator iter = m_uses.find(key);
852 if (iter == m_uses.end())
854 iter = m_uses.insert(key, VarToUses::mapped_type(m_uses.get_allocator()));
856 (*iter).second.push_back(tree);
858 #endif // !SSA_FEATURE_USEDEF
861 * Record a def point of a variable.
863 * The def point is just the tree that is a local variable def.
865 * @param tree Tree node where an SSA variable is def'ed.
867 * @remarks The result is in the m_defs map :: [lclNum, ssaNum] -> tree.
869 void SsaBuilder::AddDefPoint(GenTree* tree, BasicBlock* blk)
871 Compiler::IndirectAssignmentAnnotation* pIndirAnnot;
872 // In the case of an "indirect assignment", where the LHS is IND of a byref to the local actually being assigned,
873 // we make the ASG tree the def point.
874 assert(tree->IsLocal() || IsIndirectAssign(tree, &pIndirAnnot));
879 lclNum = tree->gtLclVarCommon.gtLclNum;
880 defSsaNum = m_pCompiler->GetSsaNumForLocalVarDef(tree);
884 bool b = m_pCompiler->GetIndirAssignMap()->Lookup(tree, &pIndirAnnot);
886 lclNum = pIndirAnnot->m_lclNum;
887 defSsaNum = pIndirAnnot->m_defSsaNum;
890 // Record that there's a new SSA def.
891 m_pCompiler->lvaTable[lclNum].lvNumSsaNames++;
893 // Record where the defn happens.
894 LclSsaVarDsc* ssaDef = m_pCompiler->lvaTable[lclNum].GetPerSsaData(defSsaNum);
895 ssaDef->m_defLoc.m_blk = blk;
896 ssaDef->m_defLoc.m_tree = tree;
898 #ifdef SSA_FEATURE_USEDEF
899 SsaVarName key(lclNum, defSsaNum);
900 VarToDef::iterator iter = m_defs.find(key);
901 if (iter == m_defs.end())
903 iter = m_defs.insert(key, tree);
906 // There can only be a single definition for an SSA var.
911 bool SsaBuilder::IsIndirectAssign(GenTreePtr tree, Compiler::IndirectAssignmentAnnotation** ppIndirAssign)
913 return tree->OperGet() == GT_ASG && m_pCompiler->m_indirAssignMap != nullptr &&
914 m_pCompiler->GetIndirAssignMap()->Lookup(tree, ppIndirAssign);
918 * Rename the local variable tree node.
920 * If the given tree node is a local variable, then for a def give a new count, if use,
921 * then give the count in the top of stack, i.e., current count (used for last def.)
923 * @param tree Tree node where an SSA variable is used or def'ed.
924 * @param pRenameState The incremental rename information stored during renaming process.
926 * @remarks This method has to maintain parity with TreePopStacks corresponding to pushes
929 void SsaBuilder::TreeRenameVariables(GenTree* tree, BasicBlock* block, SsaRenameState* pRenameState, bool isPhiDefn)
931 // This is perhaps temporary -- maybe should be done elsewhere. Label GT_INDs on LHS of assignments, so we
932 // can skip these during (at least) value numbering.
933 if (tree->OperIsAssignment())
935 GenTreePtr lhs = tree->gtOp.gtOp1->gtEffectiveVal(/*commaOnly*/ true);
936 GenTreePtr trueLhs = lhs->gtEffectiveVal(/*commaOnly*/ true);
937 if (trueLhs->OperIsIndir())
939 trueLhs->gtFlags |= GTF_IND_ASG_LHS;
941 else if (trueLhs->OperGet() == GT_CLS_VAR)
943 trueLhs->gtFlags |= GTF_CLS_VAR_ASG_LHS;
947 // Figure out if "tree" may make a new heap state (if we care for this block).
948 if (!block->bbHeapHavoc)
950 if (tree->OperIsAssignment() || tree->OperIsBlkOp())
952 if (m_pCompiler->ehBlockHasExnFlowDsc(block))
954 GenTreeLclVarCommon* lclVarNode;
955 if (!tree->DefinesLocal(m_pCompiler, &lclVarNode))
957 // It *may* define the heap in a non-havoc way. Make a new SSA # -- associate with this node.
958 unsigned count = pRenameState->CountForHeapDef();
959 pRenameState->PushHeap(block, count);
960 m_pCompiler->GetHeapSsaMap()->Set(tree, count);
962 if (JitTls::GetCompiler()->verboseSsa)
965 Compiler::printTreeID(tree);
966 printf(" (in try block) may define heap; ssa # = %d.\n", count);
970 // Now add this SSA # to all phis of the reachable catch blocks.
971 AddHeapDefToHandlerPhis(block, count);
977 Compiler::IndirectAssignmentAnnotation* pIndirAssign = nullptr;
978 if (!tree->IsLocal() && !IsIndirectAssign(tree, &pIndirAssign))
983 if (pIndirAssign != nullptr)
985 unsigned lclNum = pIndirAssign->m_lclNum;
986 // Is this a variable we exclude from SSA?
987 if (m_pCompiler->fgExcludeFromSsa(lclNum))
989 pIndirAssign->m_defSsaNum = SsaConfig::RESERVED_SSA_NUM;
993 if (!pIndirAssign->m_isEntire)
995 pIndirAssign->m_useSsaNum = pRenameState->CountForUse(lclNum);
997 unsigned count = pRenameState->CountForDef(lclNum);
998 pIndirAssign->m_defSsaNum = count;
999 pRenameState->Push(block, lclNum, count);
1000 AddDefPoint(tree, block);
1004 unsigned lclNum = tree->gtLclVarCommon.gtLclNum;
1005 // Is this a variable we exclude from SSA?
1006 if (m_pCompiler->fgExcludeFromSsa(lclNum))
1008 tree->gtLclVarCommon.SetSsaNum(SsaConfig::RESERVED_SSA_NUM);
1012 if (tree->gtFlags & GTF_VAR_DEF)
1014 if (tree->gtFlags & GTF_VAR_USEASG)
1016 // This the "x" in something like "x op= y"; it is both a use (first), then a def.
1017 // The def will define a new SSA name, and record that in "x". If we need the SSA
1018 // name of the use, we record it in a map reserved for that purpose.
1019 unsigned count = pRenameState->CountForUse(lclNum);
1020 tree->gtLclVarCommon.SetSsaNum(count);
1021 #ifdef SSA_FEATURE_USEDEF
1026 // Give a count and increment.
1027 unsigned count = pRenameState->CountForDef(lclNum);
1028 if (tree->gtFlags & GTF_VAR_USEASG)
1030 m_pCompiler->GetOpAsgnVarDefSsaNums()->Set(tree, count);
1034 tree->gtLclVarCommon.SetSsaNum(count);
1036 pRenameState->Push(block, lclNum, count);
1037 AddDefPoint(tree, block);
1039 // If necessary, add "lclNum/count" to the arg list of a phi def in any
1040 // handlers for try blocks that "block" is within. (But only do this for "real" definitions,
1041 // not phi definitions.)
1044 AddDefToHandlerPhis(block, lclNum, count);
1047 else if (!isPhiDefn) // Phi args already have ssa numbers.
1049 // This case is obviated by the short-term "early-out" above...but it's in the right direction.
1050 // Is it a promoted struct local?
1051 if (m_pCompiler->lvaTable[lclNum].lvPromoted)
1053 assert(tree->TypeGet() == TYP_STRUCT);
1054 LclVarDsc* varDsc = &m_pCompiler->lvaTable[lclNum];
1055 // If has only a single field var, treat this as a use of that field var.
1056 // Otherwise, we don't give SSA names to uses of promoted struct vars.
1057 if (varDsc->lvFieldCnt == 1)
1059 lclNum = varDsc->lvFieldLclStart;
1063 tree->gtLclVarCommon.SetSsaNum(SsaConfig::RESERVED_SSA_NUM);
1067 // Give the count as top of stack.
1068 unsigned count = pRenameState->CountForUse(lclNum);
1069 tree->gtLclVarCommon.SetSsaNum(count);
1070 #ifdef SSA_FEATURE_USEDEF
1077 void SsaBuilder::AddDefToHandlerPhis(BasicBlock* block, unsigned lclNum, unsigned count)
1079 assert(m_pCompiler->lvaTable[lclNum].lvTracked); // Precondition.
1080 unsigned lclIndex = m_pCompiler->lvaTable[lclNum].lvVarIndex;
1082 EHblkDsc* tryBlk = m_pCompiler->ehGetBlockExnFlowDsc(block);
1083 if (tryBlk != nullptr)
1086 "Definition of local V%02u/d:%d in block BB%02u has exn handler; adding as phi arg to handlers.\n", lclNum,
1087 count, block->bbNum);
1090 BasicBlock* handler = tryBlk->ExFlowBlock();
1092 // Is "lclNum" live on entry to the handler?
1093 if (VarSetOps::IsMember(m_pCompiler, handler->bbLiveIn, lclIndex))
1096 bool phiFound = false;
1098 // A prefix of blocks statements will be SSA definitions. Search those for "lclNum".
1099 for (GenTreePtr stmt = handler->bbTreeList; stmt; stmt = stmt->gtNext)
1101 // If the tree is not an SSA def, break out of the loop: we're done.
1102 if (!stmt->IsPhiDefnStmt())
1107 GenTreePtr tree = stmt->gtStmt.gtStmtExpr;
1109 assert(tree->IsPhiDefn());
1111 if (tree->gtOp.gtOp1->gtLclVar.gtLclNum == lclNum)
1113 // It's the definition for the right local. Add "count" to the RHS.
1114 GenTreePtr phi = tree->gtOp.gtOp2;
1115 GenTreeArgList* args = nullptr;
1116 if (phi->gtOp.gtOp1 != nullptr)
1118 args = phi->gtOp.gtOp1->AsArgList();
1121 // Make sure it isn't already present: we should only add each definition once.
1122 for (GenTreeArgList* curArgs = args; curArgs != nullptr; curArgs = curArgs->Rest())
1124 GenTreePhiArg* phiArg = curArgs->Current()->AsPhiArg();
1125 assert(phiArg->gtSsaNum != count);
1128 var_types typ = m_pCompiler->lvaTable[lclNum].TypeGet();
1129 GenTreePhiArg* newPhiArg =
1130 new (m_pCompiler, GT_PHI_ARG) GenTreePhiArg(typ, lclNum, count, block);
1132 phi->gtOp.gtOp1 = new (m_pCompiler, GT_LIST) GenTreeArgList(newPhiArg, args);
1133 m_pCompiler->gtSetStmtInfo(stmt);
1134 m_pCompiler->fgSetStmtSeq(stmt);
1138 DBG_SSA_JITDUMP(" Added phi arg u:%d for V%02u to phi defn in handler block BB%02u.\n", count,
1139 lclNum, handler->bbNum);
1146 unsigned nextTryIndex = tryBlk->ebdEnclosingTryIndex;
1147 if (nextTryIndex == EHblkDsc::NO_ENCLOSING_INDEX)
1152 tryBlk = m_pCompiler->ehGetDsc(nextTryIndex);
1157 void SsaBuilder::AddHeapDefToHandlerPhis(BasicBlock* block, unsigned count)
1159 if (m_pCompiler->ehBlockHasExnFlowDsc(block))
1161 // Don't do anything for a compiler-inserted BBJ_ALWAYS that is a "leave helper".
1162 if (block->bbJumpKind == BBJ_ALWAYS && (block->bbFlags & BBF_INTERNAL) && (block->bbPrev->isBBCallAlwaysPair()))
1168 DBG_SSA_JITDUMP("Definition of Heap/d:%d in block BB%02u has exn handler; adding as phi arg to handlers.\n",
1169 count, block->bbNum);
1170 EHblkDsc* tryBlk = m_pCompiler->ehGetBlockExnFlowDsc(block);
1173 BasicBlock* handler = tryBlk->ExFlowBlock();
1175 // Is Heap live on entry to the handler?
1176 if (handler->bbHeapLiveIn)
1178 assert(handler->bbHeapSsaPhiFunc != nullptr);
1180 // Add "count" to the phi args of Heap.
1181 if (handler->bbHeapSsaPhiFunc == BasicBlock::EmptyHeapPhiDef)
1183 handler->bbHeapSsaPhiFunc = new (m_pCompiler) BasicBlock::HeapPhiArg(count);
1188 BasicBlock::HeapPhiArg* curArg = handler->bbHeapSsaPhiFunc;
1189 while (curArg != nullptr)
1191 assert(curArg->GetSsaNum() != count);
1192 curArg = curArg->m_nextArg;
1195 handler->bbHeapSsaPhiFunc =
1196 new (m_pCompiler) BasicBlock::HeapPhiArg(count, handler->bbHeapSsaPhiFunc);
1199 DBG_SSA_JITDUMP(" Added phi arg u:%d for Heap to phi defn in handler block BB%02u.\n", count,
1202 unsigned tryInd = tryBlk->ebdEnclosingTryIndex;
1203 if (tryInd == EHblkDsc::NO_ENCLOSING_INDEX)
1207 tryBlk = m_pCompiler->ehGetDsc(tryInd);
1213 * Walk the block's tree in the evaluation order and give var definitions and uses their
1216 * @param block Block for which SSA variables have to be renamed.
1217 * @param pRenameState The incremental rename information stored during renaming process.
1220 void SsaBuilder::BlockRenameVariables(BasicBlock* block, SsaRenameState* pRenameState)
1222 // Walk the statements of the block and rename the tree variables.
1224 // First handle the incoming Heap state.
1226 // Is there an Phi definition for heap at the start of this block?
1227 if (block->bbHeapSsaPhiFunc != nullptr)
1229 unsigned count = pRenameState->CountForHeapDef();
1230 pRenameState->PushHeap(block, count);
1232 DBG_SSA_JITDUMP("Ssa # for Heap phi on entry to BB%02u is %d.\n", block->bbNum, count);
1235 // Record the "in" Ssa # for Heap.
1236 block->bbHeapSsaNumIn = pRenameState->CountForHeapUse();
1238 // We need to iterate over phi definitions, to give them SSA names, but we need
1239 // to know which are which, so we don't add phi definitions to handler phi arg lists.
1240 // Statements are phi defns until they aren't.
1241 bool isPhiDefn = true;
1242 GenTreePtr firstNonPhi = block->FirstNonPhiDef();
1243 for (GenTreePtr stmt = block->bbTreeList; stmt; stmt = stmt->gtNext)
1245 if (stmt == firstNonPhi)
1250 for (GenTreePtr tree = stmt->gtStmt.gtStmtList; tree; tree = tree->gtNext)
1252 TreeRenameVariables(tree, block, pRenameState, isPhiDefn);
1256 // Now handle the final heap state.
1258 // If the block defines Heap, allocate an SSA variable for the final heap state in the block.
1259 // (This may be redundant with the last SSA var explicitly created, but there's no harm in that.)
1260 if (block->bbHeapDef)
1262 unsigned count = pRenameState->CountForHeapDef();
1263 pRenameState->PushHeap(block, count);
1264 AddHeapDefToHandlerPhis(block, count);
1267 // Record the "out" Ssa" # for Heap.
1268 block->bbHeapSsaNumOut = pRenameState->CountForHeapUse();
1270 DBG_SSA_JITDUMP("Ssa # for Heap on entry to BB%02u is %d; on exit is %d.\n", block->bbNum, block->bbHeapSsaNumIn,
1271 block->bbHeapSsaNumOut);
1275 * Walk through the phi nodes of a given block and assign rhs variables to them.
1277 * Also renumber the rhs variables from top of the stack.
1279 * @param block Block for which phi nodes have to be assigned their rhs arguments.
1280 * @param pRenameState The incremental rename information stored during renaming process.
1283 void SsaBuilder::AssignPhiNodeRhsVariables(BasicBlock* block, SsaRenameState* pRenameState)
1285 BasicBlock::AllSuccs allSuccs = block->GetAllSuccs(m_pCompiler);
1286 AllSuccessorIter allSuccsEnd = allSuccs.end();
1287 for (AllSuccessorIter allSuccsIter = allSuccs.begin(); allSuccsIter != allSuccsEnd; ++allSuccsIter)
1289 BasicBlock* succ = (*allSuccsIter);
1290 // Walk the statements for phi nodes.
1291 for (GenTreePtr stmt = succ->bbTreeList; stmt != nullptr && stmt->IsPhiDefnStmt(); stmt = stmt->gtNext)
1293 GenTreePtr tree = stmt->gtStmt.gtStmtExpr;
1294 assert(tree->IsPhiDefn());
1296 // Get the phi node from GT_ASG.
1297 GenTreePtr phiNode = tree->gtOp.gtOp2;
1298 assert(phiNode->gtOp.gtOp1 == nullptr || phiNode->gtOp.gtOp1->OperGet() == GT_LIST);
1300 unsigned lclNum = tree->gtOp.gtOp1->gtLclVar.gtLclNum;
1301 unsigned ssaNum = pRenameState->CountForUse(lclNum);
1302 // Search the arglist for an existing definition for ssaNum.
1303 // (Can we assert that its the head of the list? This should only happen when we add
1304 // during renaming for a definition that occurs within a try, and then that's the last
1305 // value of the var within that basic block.)
1306 GenTreeArgList* argList = (phiNode->gtOp.gtOp1 == nullptr ? nullptr : phiNode->gtOp.gtOp1->AsArgList());
1308 while (argList != nullptr)
1310 if (argList->Current()->AsLclVarCommon()->GetSsaNum() == ssaNum)
1315 argList = argList->Rest();
1319 GenTreePtr newPhiArg =
1320 new (m_pCompiler, GT_PHI_ARG) GenTreePhiArg(tree->gtOp.gtOp1->TypeGet(), lclNum, ssaNum, block);
1321 argList = (phiNode->gtOp.gtOp1 == nullptr ? nullptr : phiNode->gtOp.gtOp1->AsArgList());
1322 phiNode->gtOp.gtOp1 = new (m_pCompiler, GT_LIST) GenTreeArgList(newPhiArg, argList);
1323 DBG_SSA_JITDUMP(" Added phi arg u:%d for V%02u from BB%02u in BB%02u.\n", ssaNum, lclNum, block->bbNum,
1327 m_pCompiler->gtSetStmtInfo(stmt);
1328 m_pCompiler->fgSetStmtSeq(stmt);
1332 if (succ->bbHeapSsaPhiFunc != nullptr)
1334 if (succ->bbHeapSsaPhiFunc == BasicBlock::EmptyHeapPhiDef)
1336 succ->bbHeapSsaPhiFunc = new (m_pCompiler) BasicBlock::HeapPhiArg(block->bbHeapSsaNumOut);
1340 BasicBlock::HeapPhiArg* curArg = succ->bbHeapSsaPhiFunc;
1341 unsigned ssaNum = block->bbHeapSsaNumOut;
1343 // This is a quadratic algorithm. We might need to consider some switch over to a hash table
1344 // representation for the arguments of a phi node, to make this linear.
1345 while (curArg != nullptr)
1347 if (curArg->m_ssaNum == ssaNum)
1352 curArg = curArg->m_nextArg;
1356 succ->bbHeapSsaPhiFunc = new (m_pCompiler) BasicBlock::HeapPhiArg(ssaNum, succ->bbHeapSsaPhiFunc);
1359 DBG_SSA_JITDUMP(" Added phi arg for Heap from BB%02u in BB%02u.\n", block->bbNum, succ->bbNum);
1362 // If "succ" is the first block of a try block (and "block" is not also in that try block)
1363 // then we must look at the vars that have phi defs in the corresponding handler;
1364 // the current SSA name for such vars must be included as an argument to that phi.
1365 if (m_pCompiler->bbIsTryBeg(succ))
1367 assert(succ->hasTryIndex());
1368 unsigned tryInd = succ->getTryIndex();
1370 while (tryInd != EHblkDsc::NO_ENCLOSING_INDEX)
1372 // Check if the predecessor "block" is within the same try block.
1373 if (block->hasTryIndex())
1375 for (unsigned blockTryInd = block->getTryIndex(); blockTryInd != EHblkDsc::NO_ENCLOSING_INDEX;
1376 blockTryInd = m_pCompiler->ehGetEnclosingTryIndex(blockTryInd))
1378 if (blockTryInd == tryInd)
1380 // It is; don't execute the loop below.
1381 tryInd = EHblkDsc::NO_ENCLOSING_INDEX;
1386 // The loop just above found that the predecessor "block" is within the same
1387 // try block as "succ." So we don't need to process this try, or any
1388 // further outer try blocks here, since they would also contain both "succ"
1390 if (tryInd == EHblkDsc::NO_ENCLOSING_INDEX)
1396 EHblkDsc* succTry = m_pCompiler->ehGetDsc(tryInd);
1397 // This is necessarily true on the first iteration, but not
1398 // necessarily on the second and subsequent.
1399 if (succTry->ebdTryBeg != succ)
1404 // succ is the first block of this try. Look at phi defs in the handler.
1405 // For a filter, we consider the filter to be the "real" handler.
1406 BasicBlock* handlerStart = succTry->ExFlowBlock();
1408 for (GenTreePtr stmt = handlerStart->bbTreeList; stmt; stmt = stmt->gtNext)
1410 GenTreePtr tree = stmt->gtStmt.gtStmtExpr;
1412 // Check if the first n of the statements are phi nodes. If not, exit.
1413 if (tree->OperGet() != GT_ASG || tree->gtOp.gtOp2 == nullptr ||
1414 tree->gtOp.gtOp2->OperGet() != GT_PHI)
1419 // Get the phi node from GT_ASG.
1420 GenTreePtr lclVar = tree->gtOp.gtOp1;
1421 unsigned lclNum = lclVar->gtLclVar.gtLclNum;
1423 // If the variable is live-out of "blk", and is therefore live on entry to the try-block-start
1424 // "succ", then we make sure the current SSA name for the
1425 // var is one of the args of the phi node. If not, go on.
1426 LclVarDsc* lclVarDsc = &m_pCompiler->lvaTable[lclNum];
1427 if (!lclVarDsc->lvTracked ||
1428 !VarSetOps::IsMember(m_pCompiler, block->bbLiveOut, lclVarDsc->lvVarIndex))
1433 GenTreePtr phiNode = tree->gtOp.gtOp2;
1434 assert(phiNode->gtOp.gtOp1 == nullptr || phiNode->gtOp.gtOp1->OperGet() == GT_LIST);
1435 GenTreeArgList* argList = reinterpret_cast<GenTreeArgList*>(phiNode->gtOp.gtOp1);
1437 // What is the current SSAName from the predecessor for this local?
1438 unsigned ssaNum = pRenameState->CountForUse(lclNum);
1440 // See if this ssaNum is already an arg to the phi.
1441 bool alreadyArg = false;
1442 for (GenTreeArgList* curArgs = argList; curArgs != nullptr; curArgs = curArgs->Rest())
1444 if (curArgs->Current()->gtPhiArg.gtSsaNum == ssaNum)
1452 // Add the new argument.
1453 GenTreePtr newPhiArg =
1454 new (m_pCompiler, GT_PHI_ARG) GenTreePhiArg(lclVar->TypeGet(), lclNum, ssaNum, block);
1455 phiNode->gtOp.gtOp1 = new (m_pCompiler, GT_LIST) GenTreeArgList(newPhiArg, argList);
1457 DBG_SSA_JITDUMP(" Added phi arg u:%d for V%02u from BB%02u in BB%02u.\n", ssaNum, lclNum,
1458 block->bbNum, handlerStart->bbNum);
1460 m_pCompiler->gtSetStmtInfo(stmt);
1461 m_pCompiler->fgSetStmtSeq(stmt);
1466 if (handlerStart->bbHeapSsaPhiFunc != nullptr)
1468 if (handlerStart->bbHeapSsaPhiFunc == BasicBlock::EmptyHeapPhiDef)
1470 handlerStart->bbHeapSsaPhiFunc =
1471 new (m_pCompiler) BasicBlock::HeapPhiArg(block->bbHeapSsaNumOut);
1475 // This path has a potential to introduce redundant phi args, due to multiple
1476 // preds of the same try-begin block having the same live-out heap def, and/or
1477 // due to nested try-begins each having preds with the same live-out heap def.
1478 // Avoid doing quadratic processing on handler phis, and instead live with the
1479 // occasional redundancy.
1480 handlerStart->bbHeapSsaPhiFunc = new (m_pCompiler)
1481 BasicBlock::HeapPhiArg(block->bbHeapSsaNumOut, handlerStart->bbHeapSsaPhiFunc);
1483 DBG_SSA_JITDUMP(" Added phi arg for Heap from BB%02u in BB%02u.\n", block->bbNum,
1484 handlerStart->bbNum);
1487 tryInd = succTry->ebdEnclosingTryIndex;
1494 * Walk the block's tree in the evaluation order and reclaim rename stack for var definitions.
1496 * @param block Block for which SSA variables have to be renamed.
1497 * @param pRenameState The incremental rename information stored during renaming process.
1500 void SsaBuilder::BlockPopStacks(BasicBlock* block, SsaRenameState* pRenameState)
1502 // Pop the names given to the non-phi nodes.
1503 pRenameState->PopBlockStacks(block);
1506 pRenameState->PopBlockHeapStack(block);
1510 * Perform variable renaming.
1512 * Walks the blocks and renames all var defs with ssa numbers and all uses with the
1513 * current count that is in the top of the stack. Assigns phi node rhs variables
1514 * (i.e., the arguments to the phi.) Then, calls the function recursively on child
1515 * nodes in the DOM tree to continue the renaming process.
1517 * @param block Block for which SSA variables have to be renamed.
1518 * @param pRenameState The incremental rename information stored during renaming process.
1520 * @remarks At the end of the method, m_uses and m_defs should be populated linking the
1523 * @see Briggs, Cooper, Harvey and Simpson "Practical Improvements to the Construction
1524 * and Destruction of Static Single Assignment Form."
1527 void SsaBuilder::RenameVariables(BlkToBlkSetMap* domTree, SsaRenameState* pRenameState)
1529 JITDUMP("*************** In SsaBuilder::RenameVariables()\n");
1531 // The first thing we do is treat parameters and must-init variables as if they have a
1532 // virtual definition before entry -- they start out at SSA name 1.
1533 for (unsigned i = 0; i < m_pCompiler->lvaCount; i++)
1535 LclVarDsc* varDsc = &m_pCompiler->lvaTable[i];
1538 varDsc->lvNumSsaNames = SsaConfig::UNINIT_SSA_NUM; // Start off fresh...
1541 if (varDsc->lvIsParam || m_pCompiler->info.compInitMem || varDsc->lvMustInit ||
1542 (varDsc->lvTracked &&
1543 VarSetOps::IsMember(m_pCompiler, m_pCompiler->fgFirstBB->bbLiveIn, varDsc->lvVarIndex)))
1545 unsigned count = pRenameState->CountForDef(i);
1547 // In ValueNum we'd assume un-inited variables get FIRST_SSA_NUM.
1548 assert(count == SsaConfig::FIRST_SSA_NUM);
1550 varDsc->lvNumSsaNames++;
1552 pRenameState->Push(nullptr, i, count);
1555 // In ValueNum we'd assume un-inited heap gets FIRST_SSA_NUM.
1556 // The heap is a parameter. Use FIRST_SSA_NUM as first SSA name.
1557 unsigned initHeapCount = pRenameState->CountForHeapDef();
1558 assert(initHeapCount == SsaConfig::FIRST_SSA_NUM);
1559 pRenameState->PushHeap(m_pCompiler->fgFirstBB, initHeapCount);
1561 // Initialize the heap ssa numbers for unreachable blocks. ValueNum expects
1562 // heap ssa numbers to have some intitial value.
1563 for (BasicBlock* block = m_pCompiler->fgFirstBB; block; block = block->bbNext)
1565 if (block->bbIDom == nullptr)
1567 block->bbHeapSsaNumIn = initHeapCount;
1568 block->bbHeapSsaNumOut = initHeapCount;
1575 bool m_processed; // Whether the this block have already been processed: its var renamed, and children
1577 // If so, awaiting only BlockPopStacks.
1578 BlockWork(BasicBlock* blk, bool processed = false) : m_blk(blk), m_processed(processed)
1582 typedef jitstd::vector<BlockWork> BlockWorkStack;
1583 BlockWorkStack* blocksToDo =
1584 new (jitstd::utility::allocate<BlockWorkStack>(m_allocator), jitstd::placement_t()) BlockWorkStack(m_allocator);
1586 blocksToDo->push_back(BlockWork(m_pCompiler->fgFirstBB)); // Probably have to include other roots of dom tree.
1588 while (blocksToDo->size() != 0)
1590 BlockWork blockWrk = blocksToDo->back();
1591 blocksToDo->pop_back();
1592 BasicBlock* block = blockWrk.m_blk;
1594 DBG_SSA_JITDUMP("[SsaBuilder::RenameVariables](BB%02u, processed = %d)\n", block->bbNum, blockWrk.m_processed);
1596 if (!blockWrk.m_processed)
1598 // Push the block back on the stack with "m_processed" true, to record the fact that when its children have
1599 // been (recursively) processed, we still need to call BlockPopStacks on it.
1600 blocksToDo->push_back(BlockWork(block, true));
1602 // Walk the block give counts to DEFs and give top of stack count for USEs.
1603 BlockRenameVariables(block, pRenameState);
1605 // Assign arguments to the phi node of successors, corresponding to the block's index.
1606 AssignPhiNodeRhsVariables(block, pRenameState);
1608 // Recurse with the block's DOM children.
1610 if (domTree->Lookup(block, &pBlkSet))
1612 for (BlkSet::KeyIterator child = pBlkSet->Begin(); !child.Equal(pBlkSet->End()); ++child)
1614 DBG_SSA_JITDUMP("[SsaBuilder::RenameVariables](pushing dom child BB%02u)\n", child.Get()->bbNum);
1615 blocksToDo->push_back(BlockWork(child.Get()));
1621 // Done, pop all the stack count, if there is one for this block.
1622 BlockPopStacks(block, pRenameState);
1623 DBG_SSA_JITDUMP("[SsaBuilder::RenameVariables] done with BB%02u\n", block->bbNum);
1627 // Remember the number of Heap SSA names.
1628 m_pCompiler->lvHeapNumSsaNames = pRenameState->HeapCount();
1633 * Print the blocks, the phi nodes get printed as well.
1636 * [0027CC0C] ----------- stmtExpr void (IL 0x019...0x01B)
1637 * N001 ( 1, 1) [0027CB70] ----------- const int 23
1638 * N003 ( 3, 3) [0027CBD8] -A------R-- = int
1639 * N002 ( 1, 1) [0027CBA4] D------N--- lclVar int V01 arg1 d:5
1642 * [0027D530] ----------- stmtExpr void (IL ???... ???)
1643 * N002 ( 0, 0) [0027D4C8] ----------- phi int
1644 * [0027D8CC] ----------- lclVar int V01 arg1 u:5
1645 * [0027D844] ----------- lclVar int V01 arg1 u:4
1646 * N004 ( 2, 2) [0027D4FC] -A------R-- = int
1647 * N003 ( 1, 1) [0027D460] D------N--- lclVar int V01 arg1 d:3
1649 void SsaBuilder::Print(BasicBlock** postOrder, int count)
1651 for (int i = count - 1; i >= 0; --i)
1653 printf("After SSA BB%02u:\n", postOrder[i]->bbNum);
1654 m_pCompiler->gtDispTreeList(postOrder[i]->bbTreeList);
1662 * Sorts the graph topologically.
1663 * - Collects them in postOrder array.
1665 * Identifies each block's immediate dominator.
1666 * - Computes this in bbIDom of each BasicBlock.
1668 * Computes DOM tree relation.
1669 * - Computes domTree as block -> set of blocks.
1670 * - Computes pre/post order traversal of the DOM tree.
1672 * Inserts phi nodes.
1673 * - Computes dominance frontier as block -> set of blocks.
1674 * - Allocates block use/def/livein/liveout and computes it.
1675 * - Inserts phi nodes with only rhs at the beginning of the blocks.
1677 * Renames variables.
1678 * - Walks blocks in evaluation order and gives uses and defs names.
1679 * - Gives empty phi nodes their rhs arguments as they become known while renaming.
1681 * @return true if successful, for now, this must always be true.
1683 * @see "A simple, fast dominance algorithm" by Keith D. Cooper, Timothy J. Harvey, Ken Kennedy.
1684 * @see Briggs, Cooper, Harvey and Simpson "Practical Improvements to the Construction
1685 * and Destruction of Static Single Assignment Form."
1687 void SsaBuilder::Build()
1690 if (m_pCompiler->verbose)
1692 printf("*************** In SsaBuilder::Build()\n");
1696 // Ensure that there's a first block outside a try, so that the dominator tree has a unique root.
1699 // Just to keep block no. & index same add 1.
1700 int blockCount = m_pCompiler->fgBBNumMax + 1;
1702 JITDUMP("[SsaBuilder] Max block count is %d.\n", blockCount);
1704 // Allocate the postOrder array for the graph.
1706 BasicBlock** postOrder;
1708 if (blockCount > DEFAULT_MIN_OPTS_BB_COUNT)
1710 postOrder = new (m_pCompiler->getAllocator()) BasicBlock*[blockCount];
1714 postOrder = (BasicBlock**)alloca(blockCount * sizeof(BasicBlock*));
1717 // Topologically sort the graph.
1718 int count = TopologicalSort(postOrder, blockCount);
1719 JITDUMP("[SsaBuilder] Topologically sorted the graph.\n");
1720 EndPhase(PHASE_BUILD_SSA_TOPOSORT);
1723 ComputeImmediateDom(postOrder, count);
1725 // Compute the dominator tree.
1726 BlkToBlkSetMap* domTree = new (m_pCompiler->getAllocator()) BlkToBlkSetMap(m_pCompiler->getAllocator());
1727 ComputeDominators(postOrder, count, domTree);
1728 EndPhase(PHASE_BUILD_SSA_DOMS);
1730 // Insert phi functions.
1731 InsertPhiFunctions(postOrder, count);
1733 // Rename local variables and collect UD information for each ssa var.
1734 SsaRenameState* pRenameState = new (jitstd::utility::allocate<SsaRenameState>(m_allocator), jitstd::placement_t())
1735 SsaRenameState(m_allocator, m_pCompiler->lvaCount);
1736 RenameVariables(domTree, pRenameState);
1737 EndPhase(PHASE_BUILD_SSA_RENAME);
1740 // At this point we are in SSA form. Print the SSA form.
1741 if (m_pCompiler->verboseSsa)
1743 Print(postOrder, count);
1748 void SsaBuilder::SetupBBRoot()
1750 // Allocate a bbroot, if necessary.
1751 // We need a unique block to be the root of the dominator tree.
1752 // This can be violated if the first block is in a try, or if it is the first block of
1753 // a loop (which would necessarily be an infinite loop) -- i.e., it has a predecessor.
1755 // If neither condition holds, no reason to make a new block.
1756 if (!m_pCompiler->fgFirstBB->hasTryIndex() && m_pCompiler->fgFirstBB->bbPreds == nullptr)
1761 BasicBlock* bbRoot = m_pCompiler->bbNewBasicBlock(BBJ_NONE);
1762 bbRoot->bbFlags |= BBF_INTERNAL;
1764 // May need to fix up preds list, so remember the old first block.
1765 BasicBlock* oldFirst = m_pCompiler->fgFirstBB;
1767 // Copy the liveness information from the first basic block.
1768 if (m_pCompiler->fgLocalVarLivenessDone)
1770 VarSetOps::Assign(m_pCompiler, bbRoot->bbLiveIn, oldFirst->bbLiveIn);
1771 VarSetOps::Assign(m_pCompiler, bbRoot->bbLiveOut, oldFirst->bbLiveIn);
1774 // Copy the bbWeight. (This is technically wrong, if the first block is a loop head, but
1775 // it shouldn't matter...)
1776 bbRoot->inheritWeight(oldFirst);
1778 // There's an artifical incoming reference count for the first BB. We're about to make it no longer
1779 // the first BB, so decrement that.
1780 assert(oldFirst->bbRefs > 0);
1783 m_pCompiler->fgInsertBBbefore(m_pCompiler->fgFirstBB, bbRoot);
1785 assert(m_pCompiler->fgFirstBB == bbRoot);
1786 if (m_pCompiler->fgComputePredsDone)
1788 m_pCompiler->fgAddRefPred(oldFirst, bbRoot);
1793 // This method asserts that SSA name constraints specified are satisfied.
1794 void Compiler::JitTestCheckSSA()
1801 static unsigned GetHashCode(SSAName ssaNm)
1803 return ssaNm.m_lvNum << 16 | ssaNm.m_ssaNum;
1806 static bool Equals(SSAName ssaNm1, SSAName ssaNm2)
1808 return ssaNm1.m_lvNum == ssaNm2.m_lvNum && ssaNm1.m_ssaNum == ssaNm2.m_ssaNum;
1812 typedef SimplerHashTable<ssize_t, SmallPrimitiveKeyFuncs<ssize_t>, SSAName, JitSimplerHashBehavior>
1814 typedef SimplerHashTable<SSAName, SSAName, ssize_t, JitSimplerHashBehavior> SSANameToLabelMap;
1816 // If we have no test data, early out.
1817 if (m_nodeTestData == nullptr)
1822 NodeToTestDataMap* testData = GetNodeTestData();
1824 // First we have to know which nodes in the tree are reachable.
1825 NodeToIntMap* reachable = FindReachableNodesInNodeTestData();
1827 LabelToSSANameMap* labelToSSA = new (getAllocatorDebugOnly()) LabelToSSANameMap(getAllocatorDebugOnly());
1828 SSANameToLabelMap* ssaToLabel = new (getAllocatorDebugOnly()) SSANameToLabelMap(getAllocatorDebugOnly());
1832 printf("\nJit Testing: SSA names.\n");
1834 for (NodeToTestDataMap::KeyIterator ki = testData->Begin(); !ki.Equal(testData->End()); ++ki)
1836 TestLabelAndNum tlAndN;
1837 GenTreePtr node = ki.Get();
1838 bool b = testData->Lookup(node, &tlAndN);
1840 if (tlAndN.m_tl == TL_SsaName)
1842 if (node->OperGet() != GT_LCL_VAR)
1844 printf("SSAName constraint put on non-lcl-var expression ");
1846 printf(" (of type %s).\n", varTypeName(node->TypeGet()));
1849 GenTreeLclVarCommon* lcl = node->AsLclVarCommon();
1852 if (!reachable->Lookup(lcl, &dummy))
1856 printf(" had a test constraint declared, but has become unreachable at the time the constraint is "
1858 "(This is probably as a result of some optimization -- \n"
1859 "you may need to modify the test case to defeat this opt.)\n");
1867 printf(", SSA name = <%d, %d> -- SSA name class %d.\n", lcl->gtLclNum, lcl->gtSsaNum, tlAndN.m_num);
1870 if (labelToSSA->Lookup(tlAndN.m_num, &ssaNm))
1874 printf(" Already in hash tables.\n");
1876 // The mapping(s) must be one-to-one: if the label has a mapping, then the ssaNm must, as well.
1878 bool b = ssaToLabel->Lookup(ssaNm, &num2);
1879 // And the mappings must be the same.
1880 if (tlAndN.m_num != num2)
1884 printf(", SSA name = <%d, %d> was declared in SSA name class %d,\n", lcl->gtLclNum, lcl->gtSsaNum,
1887 "but this SSA name <%d,%d> has already been associated with a different SSA name class: %d.\n",
1888 ssaNm.m_lvNum, ssaNm.m_ssaNum, num2);
1891 // And the current node must be of the specified SSA family.
1892 if (!(lcl->gtLclNum == ssaNm.m_lvNum && lcl->gtSsaNum == ssaNm.m_ssaNum))
1896 printf(", SSA name = <%d, %d> was declared in SSA name class %d,\n", lcl->gtLclNum, lcl->gtSsaNum,
1898 printf("but that name class was previously bound to a different SSA name: <%d,%d>.\n",
1899 ssaNm.m_lvNum, ssaNm.m_ssaNum);
1905 ssaNm.m_lvNum = lcl->gtLclNum;
1906 ssaNm.m_ssaNum = lcl->gtSsaNum;
1908 // The mapping(s) must be one-to-one: if the label has no mapping, then the ssaNm may not, either.
1909 if (ssaToLabel->Lookup(ssaNm, &num))
1913 printf(", SSA name = <%d, %d> was declared in SSA name class %d,\n", lcl->gtLclNum, lcl->gtSsaNum,
1915 printf("but this SSA name has already been associated with a different name class: %d.\n", num);
1918 // Add to both mappings.
1919 labelToSSA->Set(tlAndN.m_num, ssaNm);
1920 ssaToLabel->Set(ssaNm, tlAndN.m_num);
1923 printf(" added to hash tables.\n");