Merge pull request #9566 from pgavlin/MeasureIR
[platform/upstream/coreclr.git] / src / jit / importer.cpp
1 // Licensed to the .NET Foundation under one or more agreements.
2 // The .NET Foundation licenses this file to you under the MIT license.
3 // See the LICENSE file in the project root for more information.
4
5 /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
6 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
7 XX                                                                           XX
8 XX                           Importer                                        XX
9 XX                                                                           XX
10 XX   Imports the given method and converts it to semantic trees              XX
11 XX                                                                           XX
12 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
13 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
14 */
15
16 #include "jitpch.h"
17 #ifdef _MSC_VER
18 #pragma hdrstop
19 #endif
20
21 #include "corexcep.h"
22
23 #define Verify(cond, msg)                                                                                              \
24     do                                                                                                                 \
25     {                                                                                                                  \
26         if (!(cond))                                                                                                   \
27         {                                                                                                              \
28             verRaiseVerifyExceptionIfNeeded(INDEBUG(msg) DEBUGARG(__FILE__) DEBUGARG(__LINE__));                       \
29         }                                                                                                              \
30     } while (0)
31
32 #define VerifyOrReturn(cond, msg)                                                                                      \
33     do                                                                                                                 \
34     {                                                                                                                  \
35         if (!(cond))                                                                                                   \
36         {                                                                                                              \
37             verRaiseVerifyExceptionIfNeeded(INDEBUG(msg) DEBUGARG(__FILE__) DEBUGARG(__LINE__));                       \
38             return;                                                                                                    \
39         }                                                                                                              \
40     } while (0)
41
42 #define VerifyOrReturnSpeculative(cond, msg, speculative)                                                              \
43     do                                                                                                                 \
44     {                                                                                                                  \
45         if (speculative)                                                                                               \
46         {                                                                                                              \
47             if (!(cond))                                                                                               \
48             {                                                                                                          \
49                 return false;                                                                                          \
50             }                                                                                                          \
51         }                                                                                                              \
52         else                                                                                                           \
53         {                                                                                                              \
54             if (!(cond))                                                                                               \
55             {                                                                                                          \
56                 verRaiseVerifyExceptionIfNeeded(INDEBUG(msg) DEBUGARG(__FILE__) DEBUGARG(__LINE__));                   \
57                 return false;                                                                                          \
58             }                                                                                                          \
59         }                                                                                                              \
60     } while (0)
61
62 /*****************************************************************************/
63
64 void Compiler::impInit()
65 {
66
67 #ifdef DEBUG
68     impTreeList        = nullptr;
69     impTreeLast        = nullptr;
70     impInlinedCodeSize = 0;
71 #endif
72 }
73
74 /*****************************************************************************
75  *
76  *  Pushes the given tree on the stack.
77  */
78
79 void Compiler::impPushOnStack(GenTreePtr tree, typeInfo ti)
80 {
81     /* Check for overflow. If inlining, we may be using a bigger stack */
82
83     if ((verCurrentState.esStackDepth >= info.compMaxStack) &&
84         (verCurrentState.esStackDepth >= impStkSize || ((compCurBB->bbFlags & BBF_IMPORTED) == 0)))
85     {
86         BADCODE("stack overflow");
87     }
88
89 #ifdef DEBUG
90     // If we are pushing a struct, make certain we know the precise type!
91     if (tree->TypeGet() == TYP_STRUCT)
92     {
93         assert(ti.IsType(TI_STRUCT));
94         CORINFO_CLASS_HANDLE clsHnd = ti.GetClassHandle();
95         assert(clsHnd != NO_CLASS_HANDLE);
96     }
97
98     if (tiVerificationNeeded && !ti.IsDead())
99     {
100         assert(typeInfo::AreEquivalent(NormaliseForStack(ti), ti)); // types are normalized
101
102         // The ti type is consistent with the tree type.
103         //
104
105         // On 64-bit systems, nodes whose "proper" type is "native int" get labeled TYP_LONG.
106         // In the verification type system, we always transform "native int" to "TI_INT".
107         // Ideally, we would keep track of which nodes labeled "TYP_LONG" are really "native int", but
108         // attempts to do that have proved too difficult.  Instead, we'll assume that in checks like this,
109         // when there's a mismatch, it's because of this reason -- the typeInfo::AreEquivalentModuloNativeInt
110         // method used in the last disjunct allows exactly this mismatch.
111         assert(ti.IsDead() || ti.IsByRef() && (tree->TypeGet() == TYP_I_IMPL || tree->TypeGet() == TYP_BYREF) ||
112                ti.IsUnboxedGenericTypeVar() && tree->TypeGet() == TYP_REF ||
113                ti.IsObjRef() && tree->TypeGet() == TYP_REF || ti.IsMethod() && tree->TypeGet() == TYP_I_IMPL ||
114                ti.IsType(TI_STRUCT) && tree->TypeGet() != TYP_REF ||
115                typeInfo::AreEquivalentModuloNativeInt(NormaliseForStack(ti),
116                                                       NormaliseForStack(typeInfo(tree->TypeGet()))));
117
118         // If it is a struct type, make certain we normalized the primitive types
119         assert(!ti.IsType(TI_STRUCT) ||
120                info.compCompHnd->getTypeForPrimitiveValueClass(ti.GetClassHandle()) == CORINFO_TYPE_UNDEF);
121     }
122
123 #if VERBOSE_VERIFY
124     if (VERBOSE && tiVerificationNeeded)
125     {
126         printf("\n");
127         printf(TI_DUMP_PADDING);
128         printf("About to push to stack: ");
129         ti.Dump();
130     }
131 #endif // VERBOSE_VERIFY
132
133 #endif // DEBUG
134
135     verCurrentState.esStack[verCurrentState.esStackDepth].seTypeInfo = ti;
136     verCurrentState.esStack[verCurrentState.esStackDepth++].val      = tree;
137
138     if ((tree->gtType == TYP_LONG) && (compLongUsed == false))
139     {
140         compLongUsed = true;
141     }
142     else if (((tree->gtType == TYP_FLOAT) || (tree->gtType == TYP_DOUBLE)) && (compFloatingPointUsed == false))
143     {
144         compFloatingPointUsed = true;
145     }
146 }
147
148 /******************************************************************************/
149 // used in the inliner, where we can assume typesafe code. please don't use in the importer!!
150 inline void Compiler::impPushOnStackNoType(GenTreePtr tree)
151 {
152     assert(verCurrentState.esStackDepth < impStkSize);
153     INDEBUG(verCurrentState.esStack[verCurrentState.esStackDepth].seTypeInfo = typeInfo());
154     verCurrentState.esStack[verCurrentState.esStackDepth++].val              = tree;
155
156     if ((tree->gtType == TYP_LONG) && (compLongUsed == false))
157     {
158         compLongUsed = true;
159     }
160     else if (((tree->gtType == TYP_FLOAT) || (tree->gtType == TYP_DOUBLE)) && (compFloatingPointUsed == false))
161     {
162         compFloatingPointUsed = true;
163     }
164 }
165
166 inline void Compiler::impPushNullObjRefOnStack()
167 {
168     impPushOnStack(gtNewIconNode(0, TYP_REF), typeInfo(TI_NULL));
169 }
170
171 // This method gets called when we run into unverifiable code
172 // (and we are verifying the method)
173
174 inline void Compiler::verRaiseVerifyExceptionIfNeeded(INDEBUG(const char* msg) DEBUGARG(const char* file)
175                                                           DEBUGARG(unsigned line))
176 {
177     // Remember that the code is not verifiable
178     // Note that the method may yet pass canSkipMethodVerification(),
179     // and so the presence of unverifiable code may not be an issue.
180     tiIsVerifiableCode = FALSE;
181
182 #ifdef DEBUG
183     const char* tail = strrchr(file, '\\');
184     if (tail)
185     {
186         file = tail + 1;
187     }
188
189     if (JitConfig.JitBreakOnUnsafeCode())
190     {
191         assert(!"Unsafe code detected");
192     }
193 #endif
194
195     JITLOG((LL_INFO10000, "Detected unsafe code: %s:%d : %s, while compiling %s opcode %s, IL offset %x\n", file, line,
196             msg, info.compFullName, impCurOpcName, impCurOpcOffs));
197
198     if (verNeedsVerification() || compIsForImportOnly())
199     {
200         JITLOG((LL_ERROR, "Verification failure:  %s:%d : %s, while compiling %s opcode %s, IL offset %x\n", file, line,
201                 msg, info.compFullName, impCurOpcName, impCurOpcOffs));
202         verRaiseVerifyException(INDEBUG(msg) DEBUGARG(file) DEBUGARG(line));
203     }
204 }
205
206 inline void DECLSPEC_NORETURN Compiler::verRaiseVerifyException(INDEBUG(const char* msg) DEBUGARG(const char* file)
207                                                                     DEBUGARG(unsigned line))
208 {
209     JITLOG((LL_ERROR, "Verification failure:  %s:%d : %s, while compiling %s opcode %s, IL offset %x\n", file, line,
210             msg, info.compFullName, impCurOpcName, impCurOpcOffs));
211
212 #ifdef DEBUG
213     //    BreakIfDebuggerPresent();
214     if (getBreakOnBadCode())
215     {
216         assert(!"Typechecking error");
217     }
218 #endif
219
220     RaiseException(SEH_VERIFICATION_EXCEPTION, EXCEPTION_NONCONTINUABLE, 0, nullptr);
221     UNREACHABLE();
222 }
223
224 // helper function that will tell us if the IL instruction at the addr passed
225 // by param consumes an address at the top of the stack. We use it to save
226 // us lvAddrTaken
227 bool Compiler::impILConsumesAddr(const BYTE* codeAddr, CORINFO_METHOD_HANDLE fncHandle, CORINFO_MODULE_HANDLE scpHandle)
228 {
229     assert(!compIsForInlining());
230
231     OPCODE opcode;
232
233     opcode = (OPCODE)getU1LittleEndian(codeAddr);
234
235     switch (opcode)
236     {
237         // case CEE_LDFLDA: We're taking this one out as if you have a sequence
238         // like
239         //
240         //          ldloca.0
241         //          ldflda whatever
242         //
243         // of a primitivelike struct, you end up after morphing with addr of a local
244         // that's not marked as addrtaken, which is wrong. Also ldflda is usually used
245         // for structs that contain other structs, which isnt a case we handle very
246         // well now for other reasons.
247
248         case CEE_LDFLD:
249         {
250             // We won't collapse small fields. This is probably not the right place to have this
251             // check, but we're only using the function for this purpose, and is easy to factor
252             // out if we need to do so.
253
254             CORINFO_RESOLVED_TOKEN resolvedToken;
255             impResolveToken(codeAddr + sizeof(__int8), &resolvedToken, CORINFO_TOKENKIND_Field);
256
257             CORINFO_CLASS_HANDLE clsHnd;
258             var_types lclTyp = JITtype2varType(info.compCompHnd->getFieldType(resolvedToken.hField, &clsHnd));
259
260             // Preserve 'small' int types
261             if (lclTyp > TYP_INT)
262             {
263                 lclTyp = genActualType(lclTyp);
264             }
265
266             if (varTypeIsSmall(lclTyp))
267             {
268                 return false;
269             }
270
271             return true;
272         }
273         default:
274             break;
275     }
276
277     return false;
278 }
279
280 void Compiler::impResolveToken(const BYTE* addr, CORINFO_RESOLVED_TOKEN* pResolvedToken, CorInfoTokenKind kind)
281 {
282     pResolvedToken->tokenContext = impTokenLookupContextHandle;
283     pResolvedToken->tokenScope   = info.compScopeHnd;
284     pResolvedToken->token        = getU4LittleEndian(addr);
285     pResolvedToken->tokenType    = kind;
286
287     if (!tiVerificationNeeded)
288     {
289         info.compCompHnd->resolveToken(pResolvedToken);
290     }
291     else
292     {
293         Verify(eeTryResolveToken(pResolvedToken), "Token resolution failed");
294     }
295 }
296
297 /*****************************************************************************
298  *
299  *  Pop one tree from the stack.
300  */
301
302 StackEntry Compiler::impPopStack()
303 {
304     if (verCurrentState.esStackDepth == 0)
305     {
306         BADCODE("stack underflow");
307     }
308
309 #ifdef DEBUG
310 #if VERBOSE_VERIFY
311     if (VERBOSE && tiVerificationNeeded)
312     {
313         JITDUMP("\n");
314         printf(TI_DUMP_PADDING);
315         printf("About to pop from the stack: ");
316         const typeInfo& ti = verCurrentState.esStack[verCurrentState.esStackDepth - 1].seTypeInfo;
317         ti.Dump();
318     }
319 #endif // VERBOSE_VERIFY
320 #endif // DEBUG
321
322     return verCurrentState.esStack[--verCurrentState.esStackDepth];
323 }
324
325 StackEntry Compiler::impPopStack(CORINFO_CLASS_HANDLE& structType)
326 {
327     StackEntry ret = impPopStack();
328     structType     = verCurrentState.esStack[verCurrentState.esStackDepth].seTypeInfo.GetClassHandle();
329     return (ret);
330 }
331
332 GenTreePtr Compiler::impPopStack(typeInfo& ti)
333 {
334     StackEntry ret = impPopStack();
335     ti             = ret.seTypeInfo;
336     return (ret.val);
337 }
338
339 /*****************************************************************************
340  *
341  *  Peep at n'th (0-based) tree on the top of the stack.
342  */
343
344 StackEntry& Compiler::impStackTop(unsigned n)
345 {
346     if (verCurrentState.esStackDepth <= n)
347     {
348         BADCODE("stack underflow");
349     }
350
351     return verCurrentState.esStack[verCurrentState.esStackDepth - n - 1];
352 }
353 /*****************************************************************************
354  *  Some of the trees are spilled specially. While unspilling them, or
355  *  making a copy, these need to be handled specially. The function
356  *  enumerates the operators possible after spilling.
357  */
358
359 #ifdef DEBUG // only used in asserts
360 static bool impValidSpilledStackEntry(GenTreePtr tree)
361 {
362     if (tree->gtOper == GT_LCL_VAR)
363     {
364         return true;
365     }
366
367     if (tree->OperIsConst())
368     {
369         return true;
370     }
371
372     return false;
373 }
374 #endif
375
376 /*****************************************************************************
377  *
378  *  The following logic is used to save/restore stack contents.
379  *  If 'copy' is true, then we make a copy of the trees on the stack. These
380  *  have to all be cloneable/spilled values.
381  */
382
383 void Compiler::impSaveStackState(SavedStack* savePtr, bool copy)
384 {
385     savePtr->ssDepth = verCurrentState.esStackDepth;
386
387     if (verCurrentState.esStackDepth)
388     {
389         savePtr->ssTrees = new (this, CMK_ImpStack) StackEntry[verCurrentState.esStackDepth];
390         size_t saveSize  = verCurrentState.esStackDepth * sizeof(*savePtr->ssTrees);
391
392         if (copy)
393         {
394             StackEntry* table = savePtr->ssTrees;
395
396             /* Make a fresh copy of all the stack entries */
397
398             for (unsigned level = 0; level < verCurrentState.esStackDepth; level++, table++)
399             {
400                 table->seTypeInfo = verCurrentState.esStack[level].seTypeInfo;
401                 GenTreePtr tree   = verCurrentState.esStack[level].val;
402
403                 assert(impValidSpilledStackEntry(tree));
404
405                 switch (tree->gtOper)
406                 {
407                     case GT_CNS_INT:
408                     case GT_CNS_LNG:
409                     case GT_CNS_DBL:
410                     case GT_CNS_STR:
411                     case GT_LCL_VAR:
412                         table->val = gtCloneExpr(tree);
413                         break;
414
415                     default:
416                         assert(!"Bad oper - Not covered by impValidSpilledStackEntry()");
417                         break;
418                 }
419             }
420         }
421         else
422         {
423             memcpy(savePtr->ssTrees, verCurrentState.esStack, saveSize);
424         }
425     }
426 }
427
428 void Compiler::impRestoreStackState(SavedStack* savePtr)
429 {
430     verCurrentState.esStackDepth = savePtr->ssDepth;
431
432     if (verCurrentState.esStackDepth)
433     {
434         memcpy(verCurrentState.esStack, savePtr->ssTrees,
435                verCurrentState.esStackDepth * sizeof(*verCurrentState.esStack));
436     }
437 }
438
439 /*****************************************************************************
440  *
441  *  Get the tree list started for a new basic block.
442  */
443 inline void Compiler::impBeginTreeList()
444 {
445     assert(impTreeList == nullptr && impTreeLast == nullptr);
446
447     impTreeList = impTreeLast = new (this, GT_BEG_STMTS) GenTree(GT_BEG_STMTS, TYP_VOID);
448 }
449
450 /*****************************************************************************
451  *
452  *  Store the given start and end stmt in the given basic block. This is
453  *  mostly called by impEndTreeList(BasicBlock *block). It is called
454  *  directly only for handling CEE_LEAVEs out of finally-protected try's.
455  */
456
457 inline void Compiler::impEndTreeList(BasicBlock* block, GenTreePtr firstStmt, GenTreePtr lastStmt)
458 {
459     assert(firstStmt->gtOper == GT_STMT);
460     assert(lastStmt->gtOper == GT_STMT);
461
462     /* Make the list circular, so that we can easily walk it backwards */
463
464     firstStmt->gtPrev = lastStmt;
465
466     /* Store the tree list in the basic block */
467
468     block->bbTreeList = firstStmt;
469
470     /* The block should not already be marked as imported */
471     assert((block->bbFlags & BBF_IMPORTED) == 0);
472
473     block->bbFlags |= BBF_IMPORTED;
474 }
475
476 /*****************************************************************************
477  *
478  *  Store the current tree list in the given basic block.
479  */
480
481 inline void Compiler::impEndTreeList(BasicBlock* block)
482 {
483     assert(impTreeList->gtOper == GT_BEG_STMTS);
484
485     GenTreePtr firstTree = impTreeList->gtNext;
486
487     if (!firstTree)
488     {
489         /* The block should not already be marked as imported */
490         assert((block->bbFlags & BBF_IMPORTED) == 0);
491
492         // Empty block. Just mark it as imported
493         block->bbFlags |= BBF_IMPORTED;
494     }
495     else
496     {
497         // Ignore the GT_BEG_STMTS
498         assert(firstTree->gtPrev == impTreeList);
499
500         impEndTreeList(block, firstTree, impTreeLast);
501     }
502
503 #ifdef DEBUG
504     if (impLastILoffsStmt != nullptr)
505     {
506         impLastILoffsStmt->gtStmt.gtStmtLastILoffs = compIsForInlining() ? BAD_IL_OFFSET : impCurOpcOffs;
507         impLastILoffsStmt                          = nullptr;
508     }
509
510     impTreeList = impTreeLast = nullptr;
511 #endif
512 }
513
514 /*****************************************************************************
515  *
516  *  Check that storing the given tree doesnt mess up the semantic order. Note
517  *  that this has only limited value as we can only check [0..chkLevel).
518  */
519
520 inline void Compiler::impAppendStmtCheck(GenTreePtr stmt, unsigned chkLevel)
521 {
522 #ifndef DEBUG
523     return;
524 #else
525     assert(stmt->gtOper == GT_STMT);
526
527     if (chkLevel == (unsigned)CHECK_SPILL_ALL)
528     {
529         chkLevel = verCurrentState.esStackDepth;
530     }
531
532     if (verCurrentState.esStackDepth == 0 || chkLevel == 0 || chkLevel == (unsigned)CHECK_SPILL_NONE)
533     {
534         return;
535     }
536
537     GenTreePtr tree = stmt->gtStmt.gtStmtExpr;
538
539     // Calls can only be appended if there are no GTF_GLOB_EFFECT on the stack
540
541     if (tree->gtFlags & GTF_CALL)
542     {
543         for (unsigned level = 0; level < chkLevel; level++)
544         {
545             assert((verCurrentState.esStack[level].val->gtFlags & GTF_GLOB_EFFECT) == 0);
546         }
547     }
548
549     if (tree->gtOper == GT_ASG)
550     {
551         // For an assignment to a local variable, all references of that
552         // variable have to be spilled. If it is aliased, all calls and
553         // indirect accesses have to be spilled
554
555         if (tree->gtOp.gtOp1->gtOper == GT_LCL_VAR)
556         {
557             unsigned lclNum = tree->gtOp.gtOp1->gtLclVarCommon.gtLclNum;
558             for (unsigned level = 0; level < chkLevel; level++)
559             {
560                 assert(!gtHasRef(verCurrentState.esStack[level].val, lclNum, false));
561                 assert(!lvaTable[lclNum].lvAddrExposed ||
562                        (verCurrentState.esStack[level].val->gtFlags & GTF_SIDE_EFFECT) == 0);
563             }
564         }
565
566         // If the access may be to global memory, all side effects have to be spilled.
567
568         else if (tree->gtOp.gtOp1->gtFlags & GTF_GLOB_REF)
569         {
570             for (unsigned level = 0; level < chkLevel; level++)
571             {
572                 assert((verCurrentState.esStack[level].val->gtFlags & GTF_GLOB_REF) == 0);
573             }
574         }
575     }
576 #endif
577 }
578
579 /*****************************************************************************
580  *
581  *  Append the given GT_STMT node to the current block's tree list.
582  *  [0..chkLevel) is the portion of the stack which we will check for
583  *    interference with stmt and spill if needed.
584  */
585
586 inline void Compiler::impAppendStmt(GenTreePtr stmt, unsigned chkLevel)
587 {
588     assert(stmt->gtOper == GT_STMT);
589     noway_assert(impTreeLast != nullptr);
590
591     /* If the statement being appended has any side-effects, check the stack
592        to see if anything needs to be spilled to preserve correct ordering. */
593
594     GenTreePtr expr  = stmt->gtStmt.gtStmtExpr;
595     unsigned   flags = expr->gtFlags & GTF_GLOB_EFFECT;
596
597     // Assignment to (unaliased) locals don't count as a side-effect as
598     // we handle them specially using impSpillLclRefs(). Temp locals should
599     // be fine too.
600
601     if ((expr->gtOper == GT_ASG) && (expr->gtOp.gtOp1->gtOper == GT_LCL_VAR) &&
602         !(expr->gtOp.gtOp1->gtFlags & GTF_GLOB_REF) && !gtHasLocalsWithAddrOp(expr->gtOp.gtOp2))
603     {
604         unsigned op2Flags = expr->gtOp.gtOp2->gtFlags & GTF_GLOB_EFFECT;
605         assert(flags == (op2Flags | GTF_ASG));
606         flags = op2Flags;
607     }
608
609     if (chkLevel == (unsigned)CHECK_SPILL_ALL)
610     {
611         chkLevel = verCurrentState.esStackDepth;
612     }
613
614     if (chkLevel && chkLevel != (unsigned)CHECK_SPILL_NONE)
615     {
616         assert(chkLevel <= verCurrentState.esStackDepth);
617
618         if (flags)
619         {
620             // If there is a call, we have to spill global refs
621             bool spillGlobEffects = (flags & GTF_CALL) ? true : false;
622
623             if (expr->gtOper == GT_ASG)
624             {
625                 GenTree* lhs = expr->gtGetOp1();
626                 // If we are assigning to a global ref, we have to spill global refs on stack.
627                 // TODO-1stClassStructs: Previously, spillGlobEffects was set to true for
628                 // GT_INITBLK and GT_COPYBLK, but this is overly conservative, and should be
629                 // revisited. (Note that it was NOT set to true for GT_COPYOBJ.)
630                 if (!expr->OperIsBlkOp())
631                 {
632                     // If we are assigning to a global ref, we have to spill global refs on stack
633                     if ((lhs->gtFlags & GTF_GLOB_REF) != 0)
634                     {
635                         spillGlobEffects = true;
636                     }
637                 }
638                 else if ((lhs->OperIsBlk() && !lhs->AsBlk()->HasGCPtr()) ||
639                          ((lhs->OperGet() == GT_LCL_VAR) &&
640                           (lvaTable[lhs->AsLclVarCommon()->gtLclNum].lvStructGcCount == 0)))
641                 {
642                     spillGlobEffects = true;
643                 }
644             }
645
646             impSpillSideEffects(spillGlobEffects, chkLevel DEBUGARG("impAppendStmt"));
647         }
648         else
649         {
650             impSpillSpecialSideEff();
651         }
652     }
653
654     impAppendStmtCheck(stmt, chkLevel);
655
656     /* Point 'prev' at the previous node, so that we can walk backwards */
657
658     stmt->gtPrev = impTreeLast;
659
660     /* Append the expression statement to the list */
661
662     impTreeLast->gtNext = stmt;
663     impTreeLast         = stmt;
664
665 #ifdef FEATURE_SIMD
666     impMarkContiguousSIMDFieldAssignments(stmt);
667 #endif
668
669     /* Once we set impCurStmtOffs in an appended tree, we are ready to
670        report the following offsets. So reset impCurStmtOffs */
671
672     if (impTreeLast->gtStmt.gtStmtILoffsx == impCurStmtOffs)
673     {
674         impCurStmtOffsSet(BAD_IL_OFFSET);
675     }
676
677 #ifdef DEBUG
678     if (impLastILoffsStmt == nullptr)
679     {
680         impLastILoffsStmt = stmt;
681     }
682
683     if (verbose)
684     {
685         printf("\n\n");
686         gtDispTree(stmt);
687     }
688 #endif
689 }
690
691 /*****************************************************************************
692  *
693  *  Insert the given GT_STMT "stmt" before GT_STMT "stmtBefore"
694  */
695
696 inline void Compiler::impInsertStmtBefore(GenTreePtr stmt, GenTreePtr stmtBefore)
697 {
698     assert(stmt->gtOper == GT_STMT);
699     assert(stmtBefore->gtOper == GT_STMT);
700
701     GenTreePtr stmtPrev = stmtBefore->gtPrev;
702     stmt->gtPrev        = stmtPrev;
703     stmt->gtNext        = stmtBefore;
704     stmtPrev->gtNext    = stmt;
705     stmtBefore->gtPrev  = stmt;
706 }
707
708 /*****************************************************************************
709  *
710  *  Append the given expression tree to the current block's tree list.
711  *  Return the newly created statement.
712  */
713
714 GenTreePtr Compiler::impAppendTree(GenTreePtr tree, unsigned chkLevel, IL_OFFSETX offset)
715 {
716     assert(tree);
717
718     /* Allocate an 'expression statement' node */
719
720     GenTreePtr expr = gtNewStmt(tree, offset);
721
722     /* Append the statement to the current block's stmt list */
723
724     impAppendStmt(expr, chkLevel);
725
726     return expr;
727 }
728
729 /*****************************************************************************
730  *
731  *  Insert the given exression tree before GT_STMT "stmtBefore"
732  */
733
734 void Compiler::impInsertTreeBefore(GenTreePtr tree, IL_OFFSETX offset, GenTreePtr stmtBefore)
735 {
736     assert(stmtBefore->gtOper == GT_STMT);
737
738     /* Allocate an 'expression statement' node */
739
740     GenTreePtr expr = gtNewStmt(tree, offset);
741
742     /* Append the statement to the current block's stmt list */
743
744     impInsertStmtBefore(expr, stmtBefore);
745 }
746
747 /*****************************************************************************
748  *
749  *  Append an assignment of the given value to a temp to the current tree list.
750  *  curLevel is the stack level for which the spill to the temp is being done.
751  */
752
753 void Compiler::impAssignTempGen(unsigned    tmp,
754                                 GenTreePtr  val,
755                                 unsigned    curLevel,
756                                 GenTreePtr* pAfterStmt, /* = NULL */
757                                 IL_OFFSETX  ilOffset,   /* = BAD_IL_OFFSET */
758                                 BasicBlock* block       /* = NULL */
759                                 )
760 {
761     GenTreePtr asg = gtNewTempAssign(tmp, val);
762
763     if (!asg->IsNothingNode())
764     {
765         if (pAfterStmt)
766         {
767             GenTreePtr asgStmt = gtNewStmt(asg, ilOffset);
768             *pAfterStmt        = fgInsertStmtAfter(block, *pAfterStmt, asgStmt);
769         }
770         else
771         {
772             impAppendTree(asg, curLevel, impCurStmtOffs);
773         }
774     }
775 }
776
777 /*****************************************************************************
778  * same as above, but handle the valueclass case too
779  */
780
781 void Compiler::impAssignTempGen(unsigned             tmpNum,
782                                 GenTreePtr           val,
783                                 CORINFO_CLASS_HANDLE structType,
784                                 unsigned             curLevel,
785                                 GenTreePtr*          pAfterStmt, /* = NULL */
786                                 IL_OFFSETX           ilOffset,   /* = BAD_IL_OFFSET */
787                                 BasicBlock*          block       /* = NULL */
788                                 )
789 {
790     GenTreePtr asg;
791
792     if (varTypeIsStruct(val))
793     {
794         assert(tmpNum < lvaCount);
795         assert(structType != NO_CLASS_HANDLE);
796
797         // if the method is non-verifiable the assert is not true
798         // so at least ignore it in the case when verification is turned on
799         // since any block that tries to use the temp would have failed verification.
800         var_types varType = lvaTable[tmpNum].lvType;
801         assert(tiVerificationNeeded || varType == TYP_UNDEF || varTypeIsStruct(varType));
802         lvaSetStruct(tmpNum, structType, false);
803
804         // Now, set the type of the struct value. Note that lvaSetStruct may modify the type
805         // of the lclVar to a specialized type (e.g. TYP_SIMD), based on the handle (structType)
806         // that has been passed in for the value being assigned to the temp, in which case we
807         // need to set 'val' to that same type.
808         // Note also that if we always normalized the types of any node that might be a struct
809         // type, this would not be necessary - but that requires additional JIT/EE interface
810         // calls that may not actually be required - e.g. if we only access a field of a struct.
811
812         val->gtType = lvaTable[tmpNum].lvType;
813
814         GenTreePtr dst = gtNewLclvNode(tmpNum, val->gtType);
815         asg            = impAssignStruct(dst, val, structType, curLevel, pAfterStmt, block);
816     }
817     else
818     {
819         asg = gtNewTempAssign(tmpNum, val);
820     }
821
822     if (!asg->IsNothingNode())
823     {
824         if (pAfterStmt)
825         {
826             GenTreePtr asgStmt = gtNewStmt(asg, ilOffset);
827             *pAfterStmt        = fgInsertStmtAfter(block, *pAfterStmt, asgStmt);
828         }
829         else
830         {
831             impAppendTree(asg, curLevel, impCurStmtOffs);
832         }
833     }
834 }
835
836 /*****************************************************************************
837  *
838  *  Pop the given number of values from the stack and return a list node with
839  *  their values.
840  *  The 'prefixTree' argument may optionally contain an argument
841  *  list that is prepended to the list returned from this function.
842  *
843  *  The notion of prepended is a bit misleading in that the list is backwards
844  *  from the way I would expect: The first element popped is at the end of
845  *  the returned list, and prefixTree is 'before' that, meaning closer to
846  *  the end of the list.  To get to prefixTree, you have to walk to the
847  *  end of the list.
848  *
849  *  For ARG_ORDER_R2L prefixTree is only used to insert extra arguments, as
850  *  such we reverse its meaning such that returnValue has a reversed
851  *  prefixTree at the head of the list.
852  */
853
854 GenTreeArgList* Compiler::impPopList(unsigned          count,
855                                      unsigned*         flagsPtr,
856                                      CORINFO_SIG_INFO* sig,
857                                      GenTreeArgList*   prefixTree)
858 {
859     assert(sig == nullptr || count == sig->numArgs);
860
861     unsigned             flags = 0;
862     CORINFO_CLASS_HANDLE structType;
863     GenTreeArgList*      treeList;
864
865     if (Target::g_tgtArgOrder == Target::ARG_ORDER_R2L)
866     {
867         treeList = nullptr;
868     }
869     else
870     { // ARG_ORDER_L2R
871         treeList = prefixTree;
872     }
873
874     while (count--)
875     {
876         StackEntry se   = impPopStack();
877         typeInfo   ti   = se.seTypeInfo;
878         GenTreePtr temp = se.val;
879
880         if (varTypeIsStruct(temp))
881         {
882             // Morph trees that aren't already OBJs or MKREFANY to be OBJs
883             assert(ti.IsType(TI_STRUCT));
884             structType = ti.GetClassHandleForValueClass();
885             temp       = impNormStructVal(temp, structType, (unsigned)CHECK_SPILL_ALL);
886         }
887
888         /* NOTE: we defer bashing the type for I_IMPL to fgMorphArgs */
889         flags |= temp->gtFlags;
890         treeList = gtNewListNode(temp, treeList);
891     }
892
893     *flagsPtr = flags;
894
895     if (sig != nullptr)
896     {
897         if (sig->retTypeSigClass != nullptr && sig->retType != CORINFO_TYPE_CLASS &&
898             sig->retType != CORINFO_TYPE_BYREF && sig->retType != CORINFO_TYPE_PTR && sig->retType != CORINFO_TYPE_VAR)
899         {
900             // Make sure that all valuetypes (including enums) that we push are loaded.
901             // This is to guarantee that if a GC is triggerred from the prestub of this methods,
902             // all valuetypes in the method signature are already loaded.
903             // We need to be able to find the size of the valuetypes, but we cannot
904             // do a class-load from within GC.
905             info.compCompHnd->classMustBeLoadedBeforeCodeIsRun(sig->retTypeSigClass);
906         }
907
908         CORINFO_ARG_LIST_HANDLE argLst = sig->args;
909         CORINFO_CLASS_HANDLE    argClass;
910         CORINFO_CLASS_HANDLE    argRealClass;
911         GenTreeArgList*         args;
912         unsigned                sigSize;
913
914         for (args = treeList, count = sig->numArgs; count > 0; args = args->Rest(), count--)
915         {
916             PREFIX_ASSUME(args != nullptr);
917
918             CorInfoType corType = strip(info.compCompHnd->getArgType(sig, argLst, &argClass));
919
920             // insert implied casts (from float to double or double to float)
921
922             if (corType == CORINFO_TYPE_DOUBLE && args->Current()->TypeGet() == TYP_FLOAT)
923             {
924                 args->Current() = gtNewCastNode(TYP_DOUBLE, args->Current(), TYP_DOUBLE);
925             }
926             else if (corType == CORINFO_TYPE_FLOAT && args->Current()->TypeGet() == TYP_DOUBLE)
927             {
928                 args->Current() = gtNewCastNode(TYP_FLOAT, args->Current(), TYP_FLOAT);
929             }
930
931             // insert any widening or narrowing casts for backwards compatibility
932
933             args->Current() = impImplicitIorI4Cast(args->Current(), JITtype2varType(corType));
934
935             if (corType != CORINFO_TYPE_CLASS && corType != CORINFO_TYPE_BYREF && corType != CORINFO_TYPE_PTR &&
936                 corType != CORINFO_TYPE_VAR && (argRealClass = info.compCompHnd->getArgClass(sig, argLst)) != nullptr)
937             {
938                 // Everett MC++ could generate IL with a mismatched valuetypes. It used to work with Everett JIT,
939                 // but it stopped working in Whidbey when we have started passing simple valuetypes as underlying
940                 // primitive types.
941                 // We will try to adjust for this case here to avoid breaking customers code (see VSW 485789 for
942                 // details).
943                 if (corType == CORINFO_TYPE_VALUECLASS && !varTypeIsStruct(args->Current()))
944                 {
945                     args->Current() = impNormStructVal(args->Current(), argRealClass, (unsigned)CHECK_SPILL_ALL, true);
946                 }
947
948                 // Make sure that all valuetypes (including enums) that we push are loaded.
949                 // This is to guarantee that if a GC is triggered from the prestub of this methods,
950                 // all valuetypes in the method signature are already loaded.
951                 // We need to be able to find the size of the valuetypes, but we cannot
952                 // do a class-load from within GC.
953                 info.compCompHnd->classMustBeLoadedBeforeCodeIsRun(argRealClass);
954             }
955
956             argLst = info.compCompHnd->getArgNext(argLst);
957         }
958     }
959
960     if (Target::g_tgtArgOrder == Target::ARG_ORDER_R2L)
961     {
962         // Prepend the prefixTree
963
964         // Simple in-place reversal to place treeList
965         // at the end of a reversed prefixTree
966         while (prefixTree != nullptr)
967         {
968             GenTreeArgList* next = prefixTree->Rest();
969             prefixTree->Rest()   = treeList;
970             treeList             = prefixTree;
971             prefixTree           = next;
972         }
973     }
974     return treeList;
975 }
976
977 /*****************************************************************************
978  *
979  *  Pop the given number of values from the stack in reverse order (STDCALL/CDECL etc.)
980  *  The first "skipReverseCount" items are not reversed.
981  */
982
983 GenTreeArgList* Compiler::impPopRevList(unsigned          count,
984                                         unsigned*         flagsPtr,
985                                         CORINFO_SIG_INFO* sig,
986                                         unsigned          skipReverseCount)
987
988 {
989     assert(skipReverseCount <= count);
990
991     GenTreeArgList* list = impPopList(count, flagsPtr, sig);
992
993     // reverse the list
994     if (list == nullptr || skipReverseCount == count)
995     {
996         return list;
997     }
998
999     GenTreeArgList* ptr          = nullptr; // Initialized to the first node that needs to be reversed
1000     GenTreeArgList* lastSkipNode = nullptr; // Will be set to the last node that does not need to be reversed
1001
1002     if (skipReverseCount == 0)
1003     {
1004         ptr = list;
1005     }
1006     else
1007     {
1008         lastSkipNode = list;
1009         // Get to the first node that needs to be reversed
1010         for (unsigned i = 0; i < skipReverseCount - 1; i++)
1011         {
1012             lastSkipNode = lastSkipNode->Rest();
1013         }
1014
1015         PREFIX_ASSUME(lastSkipNode != nullptr);
1016         ptr = lastSkipNode->Rest();
1017     }
1018
1019     GenTreeArgList* reversedList = nullptr;
1020
1021     do
1022     {
1023         GenTreeArgList* tmp = ptr->Rest();
1024         ptr->Rest()         = reversedList;
1025         reversedList        = ptr;
1026         ptr                 = tmp;
1027     } while (ptr != nullptr);
1028
1029     if (skipReverseCount)
1030     {
1031         lastSkipNode->Rest() = reversedList;
1032         return list;
1033     }
1034     else
1035     {
1036         return reversedList;
1037     }
1038 }
1039
1040 /*****************************************************************************
1041    Assign (copy) the structure from 'src' to 'dest'.  The structure is a value
1042    class of type 'clsHnd'.  It returns the tree that should be appended to the
1043    statement list that represents the assignment.
1044    Temp assignments may be appended to impTreeList if spilling is necessary.
1045    curLevel is the stack level for which a spill may be being done.
1046  */
1047
1048 GenTreePtr Compiler::impAssignStruct(GenTreePtr           dest,
1049                                      GenTreePtr           src,
1050                                      CORINFO_CLASS_HANDLE structHnd,
1051                                      unsigned             curLevel,
1052                                      GenTreePtr*          pAfterStmt, /* = NULL */
1053                                      BasicBlock*          block       /* = NULL */
1054                                      )
1055 {
1056     assert(varTypeIsStruct(dest));
1057
1058     while (dest->gtOper == GT_COMMA)
1059     {
1060         assert(varTypeIsStruct(dest->gtOp.gtOp2)); // Second thing is the struct
1061
1062         // Append all the op1 of GT_COMMA trees before we evaluate op2 of the GT_COMMA tree.
1063         if (pAfterStmt)
1064         {
1065             *pAfterStmt = fgInsertStmtAfter(block, *pAfterStmt, gtNewStmt(dest->gtOp.gtOp1, impCurStmtOffs));
1066         }
1067         else
1068         {
1069             impAppendTree(dest->gtOp.gtOp1, curLevel, impCurStmtOffs); // do the side effect
1070         }
1071
1072         // set dest to the second thing
1073         dest = dest->gtOp.gtOp2;
1074     }
1075
1076     assert(dest->gtOper == GT_LCL_VAR || dest->gtOper == GT_RETURN || dest->gtOper == GT_FIELD ||
1077            dest->gtOper == GT_IND || dest->gtOper == GT_OBJ || dest->gtOper == GT_INDEX);
1078
1079     if (dest->OperGet() == GT_LCL_VAR && src->OperGet() == GT_LCL_VAR &&
1080         src->gtLclVarCommon.gtLclNum == dest->gtLclVarCommon.gtLclNum)
1081     {
1082         // Make this a NOP
1083         return gtNewNothingNode();
1084     }
1085
1086     // TODO-1stClassStructs: Avoid creating an address if it is not needed,
1087     // or re-creating a Blk node if it is.
1088     GenTreePtr destAddr;
1089
1090     if (dest->gtOper == GT_IND || dest->OperIsBlk())
1091     {
1092         destAddr = dest->gtOp.gtOp1;
1093     }
1094     else
1095     {
1096         destAddr = gtNewOperNode(GT_ADDR, TYP_BYREF, dest);
1097     }
1098
1099     return (impAssignStructPtr(destAddr, src, structHnd, curLevel, pAfterStmt, block));
1100 }
1101
1102 /*****************************************************************************/
1103
1104 GenTreePtr Compiler::impAssignStructPtr(GenTreePtr           destAddr,
1105                                         GenTreePtr           src,
1106                                         CORINFO_CLASS_HANDLE structHnd,
1107                                         unsigned             curLevel,
1108                                         GenTreePtr*          pAfterStmt, /* = NULL */
1109                                         BasicBlock*          block       /* = NULL */
1110                                         )
1111 {
1112     var_types  destType;
1113     GenTreePtr dest      = nullptr;
1114     unsigned   destFlags = 0;
1115
1116 #if defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)
1117     assert(varTypeIsStruct(src) || (src->gtOper == GT_ADDR && src->TypeGet() == TYP_BYREF));
1118     // TODO-ARM-BUG: Does ARM need this?
1119     // TODO-ARM64-BUG: Does ARM64 need this?
1120     assert(src->gtOper == GT_LCL_VAR || src->gtOper == GT_FIELD || src->gtOper == GT_IND || src->gtOper == GT_OBJ ||
1121            src->gtOper == GT_CALL || src->gtOper == GT_MKREFANY || src->gtOper == GT_RET_EXPR ||
1122            src->gtOper == GT_COMMA || src->gtOper == GT_ADDR ||
1123            (src->TypeGet() != TYP_STRUCT && (GenTree::OperIsSIMD(src->gtOper) || src->gtOper == GT_LCL_FLD)));
1124 #else  // !defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)
1125     assert(varTypeIsStruct(src));
1126
1127     assert(src->gtOper == GT_LCL_VAR || src->gtOper == GT_FIELD || src->gtOper == GT_IND || src->gtOper == GT_OBJ ||
1128            src->gtOper == GT_CALL || src->gtOper == GT_MKREFANY || src->gtOper == GT_RET_EXPR ||
1129            src->gtOper == GT_COMMA ||
1130            (src->TypeGet() != TYP_STRUCT && (GenTree::OperIsSIMD(src->gtOper) || src->gtOper == GT_LCL_FLD)));
1131 #endif // !defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)
1132     if (destAddr->OperGet() == GT_ADDR)
1133     {
1134         GenTree* destNode = destAddr->gtGetOp1();
1135         // If the actual destination is a local (for non-LEGACY_BACKEND), or already a block node, or is a node that
1136         // will be morphed, don't insert an OBJ(ADDR).
1137         if (destNode->gtOper == GT_INDEX || destNode->OperIsBlk()
1138 #ifndef LEGACY_BACKEND
1139             || ((destNode->OperGet() == GT_LCL_VAR) && (destNode->TypeGet() == src->TypeGet()))
1140 #endif // !LEGACY_BACKEND
1141                 )
1142         {
1143             dest = destNode;
1144         }
1145         destType = destNode->TypeGet();
1146     }
1147     else
1148     {
1149         destType = src->TypeGet();
1150     }
1151
1152     var_types asgType = src->TypeGet();
1153
1154     if (src->gtOper == GT_CALL)
1155     {
1156         if (src->AsCall()->TreatAsHasRetBufArg(this))
1157         {
1158             // Case of call returning a struct via hidden retbuf arg
1159
1160             // insert the return value buffer into the argument list as first byref parameter
1161             src->gtCall.gtCallArgs = gtNewListNode(destAddr, src->gtCall.gtCallArgs);
1162
1163             // now returns void, not a struct
1164             src->gtType = TYP_VOID;
1165
1166             // return the morphed call node
1167             return src;
1168         }
1169         else
1170         {
1171             // Case of call returning a struct in one or more registers.
1172
1173             var_types returnType = (var_types)src->gtCall.gtReturnType;
1174
1175             // We won't use a return buffer, so change the type of src->gtType to 'returnType'
1176             src->gtType = genActualType(returnType);
1177
1178             // First we try to change this to "LclVar/LclFld = call"
1179             //
1180             if ((destAddr->gtOper == GT_ADDR) && (destAddr->gtOp.gtOp1->gtOper == GT_LCL_VAR))
1181             {
1182                 // If it is a multi-reg struct return, don't change the oper to GT_LCL_FLD.
1183                 // That is, the IR will be of the form lclVar = call for multi-reg return
1184                 //
1185                 GenTreePtr lcl = destAddr->gtOp.gtOp1;
1186                 if (src->AsCall()->HasMultiRegRetVal())
1187                 {
1188                     // Mark the struct LclVar as used in a MultiReg return context
1189                     //  which currently makes it non promotable.
1190                     // TODO-1stClassStructs: Eliminate this pessimization when we can more generally
1191                     // handle multireg returns.
1192                     lcl->gtFlags |= GTF_DONT_CSE;
1193                     lvaTable[lcl->gtLclVarCommon.gtLclNum].lvIsMultiRegRet = true;
1194                 }
1195                 else // The call result is not a multireg return
1196                 {
1197                     // We change this to a GT_LCL_FLD (from a GT_ADDR of a GT_LCL_VAR)
1198                     lcl->ChangeOper(GT_LCL_FLD);
1199                     fgLclFldAssign(lcl->gtLclVarCommon.gtLclNum);
1200                 }
1201
1202                 lcl->gtType = src->gtType;
1203                 asgType     = src->gtType;
1204                 dest        = lcl;
1205
1206 #if defined(_TARGET_ARM_)
1207                 // TODO-Cleanup: This should have been taken care of in the above HasMultiRegRetVal() case,
1208                 // but that method has not been updadted to include ARM.
1209                 impMarkLclDstNotPromotable(lcl->gtLclVarCommon.gtLclNum, src, structHnd);
1210                 lcl->gtFlags |= GTF_DONT_CSE;
1211 #elif defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)
1212                 // Not allowed for FEATURE_CORCLR which is the only SKU available for System V OSs.
1213                 assert(!src->gtCall.IsVarargs() && "varargs not allowed for System V OSs.");
1214
1215                 // Make the struct non promotable. The eightbytes could contain multiple fields.
1216                 // TODO-1stClassStructs: Eliminate this pessimization when we can more generally
1217                 // handle multireg returns.
1218                 // TODO-Cleanup: Why is this needed here? This seems that it will set this even for
1219                 // non-multireg returns.
1220                 lcl->gtFlags |= GTF_DONT_CSE;
1221                 lvaTable[lcl->gtLclVarCommon.gtLclNum].lvIsMultiRegRet = true;
1222 #endif
1223             }
1224             else // we don't have a GT_ADDR of a GT_LCL_VAR
1225             {
1226                 // !!! The destination could be on stack. !!!
1227                 // This flag will let us choose the correct write barrier.
1228                 asgType   = returnType;
1229                 destFlags = GTF_IND_TGTANYWHERE;
1230             }
1231         }
1232     }
1233     else if (src->gtOper == GT_RET_EXPR)
1234     {
1235         GenTreePtr call = src->gtRetExpr.gtInlineCandidate;
1236         noway_assert(call->gtOper == GT_CALL);
1237
1238         if (call->AsCall()->HasRetBufArg())
1239         {
1240             // insert the return value buffer into the argument list as first byref parameter
1241             call->gtCall.gtCallArgs = gtNewListNode(destAddr, call->gtCall.gtCallArgs);
1242
1243             // now returns void, not a struct
1244             src->gtType  = TYP_VOID;
1245             call->gtType = TYP_VOID;
1246
1247             // We already have appended the write to 'dest' GT_CALL's args
1248             // So now we just return an empty node (pruning the GT_RET_EXPR)
1249             return src;
1250         }
1251         else
1252         {
1253             // Case of inline method returning a struct in one or more registers.
1254             //
1255             var_types returnType = (var_types)call->gtCall.gtReturnType;
1256
1257             // We won't need a return buffer
1258             asgType      = returnType;
1259             src->gtType  = genActualType(returnType);
1260             call->gtType = src->gtType;
1261
1262             // If we've changed the type, and it no longer matches a local destination,
1263             // we must use an indirection.
1264             if ((dest != nullptr) && (dest->OperGet() == GT_LCL_VAR) && (dest->TypeGet() != asgType))
1265             {
1266                 dest = nullptr;
1267             }
1268
1269             // !!! The destination could be on stack. !!!
1270             // This flag will let us choose the correct write barrier.
1271             destFlags = GTF_IND_TGTANYWHERE;
1272         }
1273     }
1274     else if (src->OperIsBlk())
1275     {
1276         asgType = impNormStructType(structHnd);
1277         if (src->gtOper == GT_OBJ)
1278         {
1279             assert(src->gtObj.gtClass == structHnd);
1280         }
1281     }
1282     else if (src->gtOper == GT_INDEX)
1283     {
1284         asgType = impNormStructType(structHnd);
1285         assert(src->gtIndex.gtStructElemClass == structHnd);
1286     }
1287     else if (src->gtOper == GT_MKREFANY)
1288     {
1289         // Since we are assigning the result of a GT_MKREFANY,
1290         // "destAddr" must point to a refany.
1291
1292         GenTreePtr destAddrClone;
1293         destAddr =
1294             impCloneExpr(destAddr, &destAddrClone, structHnd, curLevel, pAfterStmt DEBUGARG("MKREFANY assignment"));
1295
1296         assert(offsetof(CORINFO_RefAny, dataPtr) == 0);
1297         assert(destAddr->gtType == TYP_I_IMPL || destAddr->gtType == TYP_BYREF);
1298         GetZeroOffsetFieldMap()->Set(destAddr, GetFieldSeqStore()->CreateSingleton(GetRefanyDataField()));
1299         GenTreePtr     ptrSlot         = gtNewOperNode(GT_IND, TYP_I_IMPL, destAddr);
1300         GenTreeIntCon* typeFieldOffset = gtNewIconNode(offsetof(CORINFO_RefAny, type), TYP_I_IMPL);
1301         typeFieldOffset->gtFieldSeq    = GetFieldSeqStore()->CreateSingleton(GetRefanyTypeField());
1302         GenTreePtr typeSlot =
1303             gtNewOperNode(GT_IND, TYP_I_IMPL, gtNewOperNode(GT_ADD, destAddr->gtType, destAddrClone, typeFieldOffset));
1304
1305         // append the assign of the pointer value
1306         GenTreePtr asg = gtNewAssignNode(ptrSlot, src->gtOp.gtOp1);
1307         if (pAfterStmt)
1308         {
1309             *pAfterStmt = fgInsertStmtAfter(block, *pAfterStmt, gtNewStmt(asg, impCurStmtOffs));
1310         }
1311         else
1312         {
1313             impAppendTree(asg, curLevel, impCurStmtOffs);
1314         }
1315
1316         // return the assign of the type value, to be appended
1317         return gtNewAssignNode(typeSlot, src->gtOp.gtOp2);
1318     }
1319     else if (src->gtOper == GT_COMMA)
1320     {
1321         // The second thing is the struct or its address.
1322         assert(varTypeIsStruct(src->gtOp.gtOp2) || src->gtOp.gtOp2->gtType == TYP_BYREF);
1323         if (pAfterStmt)
1324         {
1325             *pAfterStmt = fgInsertStmtAfter(block, *pAfterStmt, gtNewStmt(src->gtOp.gtOp1, impCurStmtOffs));
1326         }
1327         else
1328         {
1329             impAppendTree(src->gtOp.gtOp1, curLevel, impCurStmtOffs); // do the side effect
1330         }
1331
1332         // Evaluate the second thing using recursion.
1333         return impAssignStructPtr(destAddr, src->gtOp.gtOp2, structHnd, curLevel, pAfterStmt, block);
1334     }
1335     else if (src->IsLocal())
1336     {
1337         asgType = src->TypeGet();
1338     }
1339     else if (asgType == TYP_STRUCT)
1340     {
1341         asgType     = impNormStructType(structHnd);
1342         src->gtType = asgType;
1343 #ifdef LEGACY_BACKEND
1344         if (asgType == TYP_STRUCT)
1345         {
1346             GenTree* srcAddr = gtNewOperNode(GT_ADDR, TYP_BYREF, src);
1347             src              = gtNewOperNode(GT_IND, TYP_STRUCT, srcAddr);
1348         }
1349 #endif
1350     }
1351     if (dest == nullptr)
1352     {
1353         // TODO-1stClassStructs: We shouldn't really need a block node as the destination
1354         // if this is a known struct type.
1355         if (asgType == TYP_STRUCT)
1356         {
1357             dest = gtNewObjNode(structHnd, destAddr);
1358             gtSetObjGcInfo(dest->AsObj());
1359             // Although an obj as a call argument was always assumed to be a globRef
1360             // (which is itself overly conservative), that is not true of the operands
1361             // of a block assignment.
1362             dest->gtFlags &= ~GTF_GLOB_REF;
1363             dest->gtFlags |= (destAddr->gtFlags & GTF_GLOB_REF);
1364         }
1365         else if (varTypeIsStruct(asgType))
1366         {
1367             dest = new (this, GT_BLK) GenTreeBlk(GT_BLK, asgType, destAddr, genTypeSize(asgType));
1368         }
1369         else
1370         {
1371             dest = gtNewOperNode(GT_IND, asgType, destAddr);
1372         }
1373     }
1374     else
1375     {
1376         dest->gtType = asgType;
1377     }
1378
1379     dest->gtFlags |= destFlags;
1380     destFlags = dest->gtFlags;
1381
1382     // return an assignment node, to be appended
1383     GenTree* asgNode = gtNewAssignNode(dest, src);
1384     gtBlockOpInit(asgNode, dest, src, false);
1385
1386     // TODO-1stClassStructs: Clean up the settings of GTF_DONT_CSE on the lhs
1387     // of assignments.
1388     if ((destFlags & GTF_DONT_CSE) == 0)
1389     {
1390         dest->gtFlags &= ~(GTF_DONT_CSE);
1391     }
1392     return asgNode;
1393 }
1394
1395 /*****************************************************************************
1396    Given a struct value, and the class handle for that structure, return
1397    the expression for the address for that structure value.
1398
1399    willDeref - does the caller guarantee to dereference the pointer.
1400 */
1401
1402 GenTreePtr Compiler::impGetStructAddr(GenTreePtr           structVal,
1403                                       CORINFO_CLASS_HANDLE structHnd,
1404                                       unsigned             curLevel,
1405                                       bool                 willDeref)
1406 {
1407     assert(varTypeIsStruct(structVal) || eeIsValueClass(structHnd));
1408
1409     var_types type = structVal->TypeGet();
1410
1411     genTreeOps oper = structVal->gtOper;
1412
1413     if (oper == GT_OBJ && willDeref)
1414     {
1415         assert(structVal->gtObj.gtClass == structHnd);
1416         return (structVal->gtObj.Addr());
1417     }
1418     else if (oper == GT_CALL || oper == GT_RET_EXPR || oper == GT_OBJ || oper == GT_MKREFANY)
1419     {
1420         unsigned tmpNum = lvaGrabTemp(true DEBUGARG("struct address for call/obj"));
1421
1422         impAssignTempGen(tmpNum, structVal, structHnd, curLevel);
1423
1424         // The 'return value' is now the temp itself
1425
1426         type            = genActualType(lvaTable[tmpNum].TypeGet());
1427         GenTreePtr temp = gtNewLclvNode(tmpNum, type);
1428         temp            = gtNewOperNode(GT_ADDR, TYP_BYREF, temp);
1429         return temp;
1430     }
1431     else if (oper == GT_COMMA)
1432     {
1433         assert(structVal->gtOp.gtOp2->gtType == type); // Second thing is the struct
1434
1435         GenTreePtr oldTreeLast = impTreeLast;
1436         structVal->gtOp.gtOp2  = impGetStructAddr(structVal->gtOp.gtOp2, structHnd, curLevel, willDeref);
1437         structVal->gtType      = TYP_BYREF;
1438
1439         if (oldTreeLast != impTreeLast)
1440         {
1441             // Some temp assignment statement was placed on the statement list
1442             // for Op2, but that would be out of order with op1, so we need to
1443             // spill op1 onto the statement list after whatever was last
1444             // before we recursed on Op2 (i.e. before whatever Op2 appended).
1445             impInsertTreeBefore(structVal->gtOp.gtOp1, impCurStmtOffs, oldTreeLast->gtNext);
1446             structVal->gtOp.gtOp1 = gtNewNothingNode();
1447         }
1448
1449         return (structVal);
1450     }
1451
1452     return (gtNewOperNode(GT_ADDR, TYP_BYREF, structVal));
1453 }
1454
1455 //------------------------------------------------------------------------
1456 // impNormStructType: Given a (known to be) struct class handle structHnd, normalize its type,
1457 //                    and optionally determine the GC layout of the struct.
1458 //
1459 // Arguments:
1460 //    structHnd       - The class handle for the struct type of interest.
1461 //    gcLayout        - (optional, default nullptr) - a BYTE pointer, allocated by the caller,
1462 //                      into which the gcLayout will be written.
1463 //    pNumGCVars      - (optional, default nullptr) - if non-null, a pointer to an unsigned,
1464 //                      which will be set to the number of GC fields in the struct.
1465 //    pSimdBaseType   - (optional, default nullptr) - if non-null, and the struct is a SIMD
1466 //                      type, set to the SIMD base type
1467 //
1468 // Return Value:
1469 //    The JIT type for the struct (e.g. TYP_STRUCT, or TYP_SIMD*).
1470 //    The gcLayout will be returned using the pointers provided by the caller, if non-null.
1471 //    It may also modify the compFloatingPointUsed flag if the type is a SIMD type.
1472 //
1473 // Assumptions:
1474 //    The caller must set gcLayout to nullptr OR ensure that it is large enough
1475 //    (see ICorStaticInfo::getClassGClayout in corinfo.h).
1476 //
1477 // Notes:
1478 //    Normalizing the type involves examining the struct type to determine if it should
1479 //    be modified to one that is handled specially by the JIT, possibly being a candidate
1480 //    for full enregistration, e.g. TYP_SIMD16.
1481
1482 var_types Compiler::impNormStructType(CORINFO_CLASS_HANDLE structHnd,
1483                                       BYTE*                gcLayout,
1484                                       unsigned*            pNumGCVars,
1485                                       var_types*           pSimdBaseType)
1486 {
1487     assert(structHnd != NO_CLASS_HANDLE);
1488
1489     const DWORD structFlags = info.compCompHnd->getClassAttribs(structHnd);
1490     var_types   structType  = TYP_STRUCT;
1491
1492     // On coreclr the check for GC includes a "may" to account for the special
1493     // ByRef like span structs.  The added check for "CONTAINS_STACK_PTR" is the particular bit.
1494     // When this is set the struct will contain a ByRef that could be a GC pointer or a native
1495     // pointer.
1496     const bool mayContainGCPtrs =
1497         ((structFlags & CORINFO_FLG_CONTAINS_STACK_PTR) != 0 || ((structFlags & CORINFO_FLG_CONTAINS_GC_PTR) != 0));
1498
1499 #ifdef FEATURE_SIMD
1500     // Check to see if this is a SIMD type.
1501     if (featureSIMD && !mayContainGCPtrs)
1502     {
1503         unsigned originalSize = info.compCompHnd->getClassSize(structHnd);
1504
1505         if ((originalSize >= minSIMDStructBytes()) && (originalSize <= maxSIMDStructBytes()))
1506         {
1507             unsigned int sizeBytes;
1508             var_types    simdBaseType = getBaseTypeAndSizeOfSIMDType(structHnd, &sizeBytes);
1509             if (simdBaseType != TYP_UNKNOWN)
1510             {
1511                 assert(sizeBytes == originalSize);
1512                 structType = getSIMDTypeForSize(sizeBytes);
1513                 if (pSimdBaseType != nullptr)
1514                 {
1515                     *pSimdBaseType = simdBaseType;
1516                 }
1517                 // Also indicate that we use floating point registers.
1518                 compFloatingPointUsed = true;
1519             }
1520         }
1521     }
1522 #endif // FEATURE_SIMD
1523
1524     // Fetch GC layout info if requested
1525     if (gcLayout != nullptr)
1526     {
1527         unsigned numGCVars = info.compCompHnd->getClassGClayout(structHnd, gcLayout);
1528
1529         // Verify that the quick test up above via the class attributes gave a
1530         // safe view of the type's GCness.
1531         //
1532         // Note there are cases where mayContainGCPtrs is true but getClassGClayout
1533         // does not report any gc fields.
1534
1535         assert(mayContainGCPtrs || (numGCVars == 0));
1536
1537         if (pNumGCVars != nullptr)
1538         {
1539             *pNumGCVars = numGCVars;
1540         }
1541     }
1542     else
1543     {
1544         // Can't safely ask for number of GC pointers without also
1545         // asking for layout.
1546         assert(pNumGCVars == nullptr);
1547     }
1548
1549     return structType;
1550 }
1551
1552 //****************************************************************************
1553 //  Given TYP_STRUCT value 'structVal', make sure it is 'canonical', that is
1554 //  it is either an OBJ or a MKREFANY node, or a node (e.g. GT_INDEX) that will be morphed.
1555 //
1556 GenTreePtr Compiler::impNormStructVal(GenTreePtr           structVal,
1557                                       CORINFO_CLASS_HANDLE structHnd,
1558                                       unsigned             curLevel,
1559                                       bool                 forceNormalization /*=false*/)
1560 {
1561     assert(forceNormalization || varTypeIsStruct(structVal));
1562     assert(structHnd != NO_CLASS_HANDLE);
1563     var_types structType = structVal->TypeGet();
1564     bool      makeTemp   = false;
1565     if (structType == TYP_STRUCT)
1566     {
1567         structType = impNormStructType(structHnd);
1568     }
1569     bool                 alreadyNormalized = false;
1570     GenTreeLclVarCommon* structLcl         = nullptr;
1571
1572     genTreeOps oper = structVal->OperGet();
1573     switch (oper)
1574     {
1575         // GT_RETURN and GT_MKREFANY don't capture the handle.
1576         case GT_RETURN:
1577             break;
1578         case GT_MKREFANY:
1579             alreadyNormalized = true;
1580             break;
1581
1582         case GT_CALL:
1583             structVal->gtCall.gtRetClsHnd = structHnd;
1584             makeTemp                      = true;
1585             break;
1586
1587         case GT_RET_EXPR:
1588             structVal->gtRetExpr.gtRetClsHnd = structHnd;
1589             makeTemp                         = true;
1590             break;
1591
1592         case GT_ARGPLACE:
1593             structVal->gtArgPlace.gtArgPlaceClsHnd = structHnd;
1594             break;
1595
1596         case GT_INDEX:
1597             // This will be transformed to an OBJ later.
1598             alreadyNormalized                    = true;
1599             structVal->gtIndex.gtStructElemClass = structHnd;
1600             structVal->gtIndex.gtIndElemSize     = info.compCompHnd->getClassSize(structHnd);
1601             break;
1602
1603         case GT_FIELD:
1604             // Wrap it in a GT_OBJ.
1605             structVal->gtType = structType;
1606             structVal         = gtNewObjNode(structHnd, gtNewOperNode(GT_ADDR, TYP_BYREF, structVal));
1607             break;
1608
1609         case GT_LCL_VAR:
1610         case GT_LCL_FLD:
1611             structLcl = structVal->AsLclVarCommon();
1612             // Wrap it in a GT_OBJ.
1613             structVal = gtNewObjNode(structHnd, gtNewOperNode(GT_ADDR, TYP_BYREF, structVal));
1614             __fallthrough;
1615
1616         case GT_OBJ:
1617         case GT_BLK:
1618         case GT_DYN_BLK:
1619         case GT_ASG:
1620             // These should already have the appropriate type.
1621             assert(structVal->gtType == structType);
1622             alreadyNormalized = true;
1623             break;
1624
1625         case GT_IND:
1626             assert(structVal->gtType == structType);
1627             structVal         = gtNewObjNode(structHnd, structVal->gtGetOp1());
1628             alreadyNormalized = true;
1629             break;
1630
1631 #ifdef FEATURE_SIMD
1632         case GT_SIMD:
1633             assert(varTypeIsSIMD(structVal) && (structVal->gtType == structType));
1634             break;
1635 #endif // FEATURE_SIMD
1636
1637         case GT_COMMA:
1638         {
1639             // The second thing could either be a block node or a GT_SIMD or a GT_COMMA node.
1640             GenTree* blockNode = structVal->gtOp.gtOp2;
1641             assert(blockNode->gtType == structType);
1642
1643             // Is this GT_COMMA(op1, GT_COMMA())?
1644             GenTree* parent = structVal;
1645             if (blockNode->OperGet() == GT_COMMA)
1646             {
1647                 // Find the last node in the comma chain.
1648                 do
1649                 {
1650                     assert(blockNode->gtType == structType);
1651                     parent    = blockNode;
1652                     blockNode = blockNode->gtOp.gtOp2;
1653                 } while (blockNode->OperGet() == GT_COMMA);
1654             }
1655
1656 #ifdef FEATURE_SIMD
1657             if (blockNode->OperGet() == GT_SIMD)
1658             {
1659                 parent->gtOp.gtOp2 = impNormStructVal(blockNode, structHnd, curLevel, forceNormalization);
1660                 alreadyNormalized  = true;
1661             }
1662             else
1663 #endif
1664             {
1665                 assert(blockNode->OperIsBlk());
1666
1667                 // Sink the GT_COMMA below the blockNode addr.
1668                 // That is GT_COMMA(op1, op2=blockNode) is tranformed into
1669                 // blockNode(GT_COMMA(TYP_BYREF, op1, op2's op1)).
1670                 //
1671                 // In case of a chained GT_COMMA case, we sink the last
1672                 // GT_COMMA below the blockNode addr.
1673                 GenTree* blockNodeAddr = blockNode->gtOp.gtOp1;
1674                 assert(blockNodeAddr->gtType == TYP_BYREF);
1675                 GenTree* commaNode    = parent;
1676                 commaNode->gtType     = TYP_BYREF;
1677                 commaNode->gtOp.gtOp2 = blockNodeAddr;
1678                 blockNode->gtOp.gtOp1 = commaNode;
1679                 if (parent == structVal)
1680                 {
1681                     structVal = blockNode;
1682                 }
1683                 alreadyNormalized = true;
1684             }
1685         }
1686         break;
1687
1688         default:
1689             assert(!"Unexpected node in impNormStructVal()");
1690             break;
1691     }
1692     structVal->gtType  = structType;
1693     GenTree* structObj = structVal;
1694
1695     if (!alreadyNormalized || forceNormalization)
1696     {
1697         if (makeTemp)
1698         {
1699             unsigned tmpNum = lvaGrabTemp(true DEBUGARG("struct address for call/obj"));
1700
1701             impAssignTempGen(tmpNum, structVal, structHnd, curLevel);
1702
1703             // The structVal is now the temp itself
1704
1705             structLcl = gtNewLclvNode(tmpNum, structType)->AsLclVarCommon();
1706             // TODO-1stClassStructs: Avoid always wrapping in GT_OBJ.
1707             structObj = gtNewObjNode(structHnd, gtNewOperNode(GT_ADDR, TYP_BYREF, structLcl));
1708         }
1709         else if (varTypeIsStruct(structType) && !structVal->OperIsBlk())
1710         {
1711             // Wrap it in a GT_OBJ
1712             structObj = gtNewObjNode(structHnd, gtNewOperNode(GT_ADDR, TYP_BYREF, structVal));
1713         }
1714     }
1715
1716     if (structLcl != nullptr)
1717     {
1718         // A OBJ on a ADDR(LCL_VAR) can never raise an exception
1719         // so we don't set GTF_EXCEPT here.
1720         if (!lvaIsImplicitByRefLocal(structLcl->gtLclNum))
1721         {
1722             structObj->gtFlags &= ~GTF_GLOB_REF;
1723         }
1724     }
1725     else
1726     {
1727         // In general a OBJ is an indirection and could raise an exception.
1728         structObj->gtFlags |= GTF_EXCEPT;
1729     }
1730     return (structObj);
1731 }
1732
1733 /******************************************************************************/
1734 // Given a type token, generate code that will evaluate to the correct
1735 // handle representation of that token (type handle, field handle, or method handle)
1736 //
1737 // For most cases, the handle is determined at compile-time, and the code
1738 // generated is simply an embedded handle.
1739 //
1740 // Run-time lookup is required if the enclosing method is shared between instantiations
1741 // and the token refers to formal type parameters whose instantiation is not known
1742 // at compile-time.
1743 //
1744 GenTreePtr Compiler::impTokenToHandle(CORINFO_RESOLVED_TOKEN* pResolvedToken,
1745                                       BOOL*                   pRuntimeLookup /* = NULL */,
1746                                       BOOL                    mustRestoreHandle /* = FALSE */,
1747                                       BOOL                    importParent /* = FALSE */)
1748 {
1749     assert(!fgGlobalMorph);
1750
1751     CORINFO_GENERICHANDLE_RESULT embedInfo;
1752     info.compCompHnd->embedGenericHandle(pResolvedToken, importParent, &embedInfo);
1753
1754     if (pRuntimeLookup)
1755     {
1756         *pRuntimeLookup = embedInfo.lookup.lookupKind.needsRuntimeLookup;
1757     }
1758
1759     if (mustRestoreHandle && !embedInfo.lookup.lookupKind.needsRuntimeLookup)
1760     {
1761         switch (embedInfo.handleType)
1762         {
1763             case CORINFO_HANDLETYPE_CLASS:
1764                 info.compCompHnd->classMustBeLoadedBeforeCodeIsRun((CORINFO_CLASS_HANDLE)embedInfo.compileTimeHandle);
1765                 break;
1766
1767             case CORINFO_HANDLETYPE_METHOD:
1768                 info.compCompHnd->methodMustBeLoadedBeforeCodeIsRun((CORINFO_METHOD_HANDLE)embedInfo.compileTimeHandle);
1769                 break;
1770
1771             case CORINFO_HANDLETYPE_FIELD:
1772                 info.compCompHnd->classMustBeLoadedBeforeCodeIsRun(
1773                     info.compCompHnd->getFieldClass((CORINFO_FIELD_HANDLE)embedInfo.compileTimeHandle));
1774                 break;
1775
1776             default:
1777                 break;
1778         }
1779     }
1780
1781     return impLookupToTree(pResolvedToken, &embedInfo.lookup, gtTokenToIconFlags(pResolvedToken->token),
1782                            embedInfo.compileTimeHandle);
1783 }
1784
1785 GenTreePtr Compiler::impLookupToTree(CORINFO_RESOLVED_TOKEN* pResolvedToken,
1786                                      CORINFO_LOOKUP*         pLookup,
1787                                      unsigned                handleFlags,
1788                                      void*                   compileTimeHandle)
1789 {
1790     if (!pLookup->lookupKind.needsRuntimeLookup)
1791     {
1792         // No runtime lookup is required.
1793         // Access is direct or memory-indirect (of a fixed address) reference
1794
1795         CORINFO_GENERIC_HANDLE handle       = nullptr;
1796         void*                  pIndirection = nullptr;
1797         assert(pLookup->constLookup.accessType != IAT_PPVALUE);
1798
1799         if (pLookup->constLookup.accessType == IAT_VALUE)
1800         {
1801             handle = pLookup->constLookup.handle;
1802         }
1803         else if (pLookup->constLookup.accessType == IAT_PVALUE)
1804         {
1805             pIndirection = pLookup->constLookup.addr;
1806         }
1807         return gtNewIconEmbHndNode(handle, pIndirection, handleFlags, 0, nullptr, compileTimeHandle);
1808     }
1809     else if (compIsForInlining())
1810     {
1811         // Don't import runtime lookups when inlining
1812         // Inlining has to be aborted in such a case
1813         compInlineResult->NoteFatal(InlineObservation::CALLSITE_GENERIC_DICTIONARY_LOOKUP);
1814         return nullptr;
1815     }
1816     else
1817     {
1818         // Need to use dictionary-based access which depends on the typeContext
1819         // which is only available at runtime, not at compile-time.
1820
1821         return impRuntimeLookupToTree(pResolvedToken, pLookup, compileTimeHandle);
1822     }
1823 }
1824
1825 #ifdef FEATURE_READYTORUN_COMPILER
1826 GenTreePtr Compiler::impReadyToRunLookupToTree(CORINFO_CONST_LOOKUP* pLookup,
1827                                                unsigned              handleFlags,
1828                                                void*                 compileTimeHandle)
1829 {
1830     CORINFO_GENERIC_HANDLE handle       = nullptr;
1831     void*                  pIndirection = nullptr;
1832     assert(pLookup->accessType != IAT_PPVALUE);
1833
1834     if (pLookup->accessType == IAT_VALUE)
1835     {
1836         handle = pLookup->handle;
1837     }
1838     else if (pLookup->accessType == IAT_PVALUE)
1839     {
1840         pIndirection = pLookup->addr;
1841     }
1842     return gtNewIconEmbHndNode(handle, pIndirection, handleFlags, 0, nullptr, compileTimeHandle);
1843 }
1844
1845 GenTreePtr Compiler::impReadyToRunHelperToTree(
1846     CORINFO_RESOLVED_TOKEN* pResolvedToken,
1847     CorInfoHelpFunc         helper,
1848     var_types               type,
1849     GenTreeArgList*         args /* =NULL*/,
1850     CORINFO_LOOKUP_KIND*    pGenericLookupKind /* =NULL. Only used with generics */)
1851 {
1852     CORINFO_CONST_LOOKUP lookup;
1853 #if COR_JIT_EE_VERSION > 460
1854     if (!info.compCompHnd->getReadyToRunHelper(pResolvedToken, pGenericLookupKind, helper, &lookup))
1855     {
1856         return nullptr;
1857     }
1858 #else
1859     info.compCompHnd->getReadyToRunHelper(pResolvedToken, helper, &lookup);
1860 #endif
1861
1862     GenTreePtr op1 = gtNewHelperCallNode(helper, type, GTF_EXCEPT, args);
1863
1864     op1->gtCall.setEntryPoint(lookup);
1865
1866     return op1;
1867 }
1868 #endif
1869
1870 GenTreePtr Compiler::impMethodPointer(CORINFO_RESOLVED_TOKEN* pResolvedToken, CORINFO_CALL_INFO* pCallInfo)
1871 {
1872     GenTreePtr op1 = nullptr;
1873
1874     switch (pCallInfo->kind)
1875     {
1876         case CORINFO_CALL:
1877             op1 = new (this, GT_FTN_ADDR) GenTreeFptrVal(TYP_I_IMPL, pCallInfo->hMethod);
1878
1879 #ifdef FEATURE_READYTORUN_COMPILER
1880             if (opts.IsReadyToRun())
1881             {
1882                 op1->gtFptrVal.gtEntryPoint          = pCallInfo->codePointerLookup.constLookup;
1883                 op1->gtFptrVal.gtLdftnResolvedToken  = new (this, CMK_Unknown) CORINFO_RESOLVED_TOKEN;
1884                 *op1->gtFptrVal.gtLdftnResolvedToken = *pResolvedToken;
1885             }
1886             else
1887             {
1888                 op1->gtFptrVal.gtEntryPoint.addr = nullptr;
1889             }
1890 #endif
1891             break;
1892
1893         case CORINFO_CALL_CODE_POINTER:
1894             if (compIsForInlining())
1895             {
1896                 // Don't import runtime lookups when inlining
1897                 // Inlining has to be aborted in such a case
1898                 compInlineResult->NoteFatal(InlineObservation::CALLSITE_GENERIC_DICTIONARY_LOOKUP);
1899                 return nullptr;
1900             }
1901
1902             op1 = impLookupToTree(pResolvedToken, &pCallInfo->codePointerLookup, GTF_ICON_FTN_ADDR, pCallInfo->hMethod);
1903             break;
1904
1905         default:
1906             noway_assert(!"unknown call kind");
1907             break;
1908     }
1909
1910     return op1;
1911 }
1912
1913 //------------------------------------------------------------------------
1914 // getRuntimeContextTree: find pointer to context for runtime lookup.
1915 //
1916 // Arguments:
1917 //    kind - lookup kind.
1918 //
1919 // Return Value:
1920 //    Return GenTree pointer to generic shared context.
1921 //
1922 // Notes:
1923 //    Reports about generic context using.
1924
1925 GenTreePtr Compiler::getRuntimeContextTree(CORINFO_RUNTIME_LOOKUP_KIND kind)
1926 {
1927     GenTreePtr ctxTree = nullptr;
1928
1929     // Collectible types requires that for shared generic code, if we use the generic context parameter
1930     // that we report it. (This is a conservative approach, we could detect some cases particularly when the
1931     // context parameter is this that we don't need the eager reporting logic.)
1932     lvaGenericsContextUsed = true;
1933
1934     if (kind == CORINFO_LOOKUP_THISOBJ)
1935     {
1936         // this Object
1937         ctxTree = gtNewLclvNode(info.compThisArg, TYP_REF);
1938
1939         // Vtable pointer of this object
1940         ctxTree = gtNewOperNode(GT_IND, TYP_I_IMPL, ctxTree);
1941         ctxTree->gtFlags |= GTF_EXCEPT; // Null-pointer exception
1942         ctxTree->gtFlags |= GTF_IND_INVARIANT;
1943     }
1944     else
1945     {
1946         assert(kind == CORINFO_LOOKUP_METHODPARAM || kind == CORINFO_LOOKUP_CLASSPARAM);
1947
1948         ctxTree = gtNewLclvNode(info.compTypeCtxtArg, TYP_I_IMPL); // Exact method descriptor as passed in as last arg
1949     }
1950     return ctxTree;
1951 }
1952
1953 /*****************************************************************************/
1954 /* Import a dictionary lookup to access a handle in code shared between
1955    generic instantiations.
1956    The lookup depends on the typeContext which is only available at
1957    runtime, and not at compile-time.
1958    pLookup->token1 and pLookup->token2 specify the handle that is needed.
1959    The cases are:
1960
1961    1. pLookup->indirections == CORINFO_USEHELPER : Call a helper passing it the
1962       instantiation-specific handle, and the tokens to lookup the handle.
1963    2. pLookup->indirections != CORINFO_USEHELPER :
1964       2a. pLookup->testForNull == false : Dereference the instantiation-specific handle
1965           to get the handle.
1966       2b. pLookup->testForNull == true : Dereference the instantiation-specific handle.
1967           If it is non-NULL, it is the handle required. Else, call a helper
1968           to lookup the handle.
1969  */
1970
1971 GenTreePtr Compiler::impRuntimeLookupToTree(CORINFO_RESOLVED_TOKEN* pResolvedToken,
1972                                             CORINFO_LOOKUP*         pLookup,
1973                                             void*                   compileTimeHandle)
1974 {
1975
1976     // This method can only be called from the importer instance of the Compiler.
1977     // In other word, it cannot be called by the instance of the Compiler for the inlinee.
1978     assert(!compIsForInlining());
1979
1980     GenTreePtr ctxTree = getRuntimeContextTree(pLookup->lookupKind.runtimeLookupKind);
1981
1982 #ifdef FEATURE_READYTORUN_COMPILER
1983     if (opts.IsReadyToRun())
1984     {
1985         return impReadyToRunHelperToTree(pResolvedToken, CORINFO_HELP_READYTORUN_GENERIC_HANDLE, TYP_I_IMPL,
1986                                          gtNewArgList(ctxTree), &pLookup->lookupKind);
1987     }
1988 #endif
1989
1990     CORINFO_RUNTIME_LOOKUP* pRuntimeLookup = &pLookup->runtimeLookup;
1991     // It's available only via the run-time helper function
1992     if (pRuntimeLookup->indirections == CORINFO_USEHELPER)
1993     {
1994         GenTreeArgList* helperArgs =
1995             gtNewArgList(ctxTree, gtNewIconEmbHndNode(pRuntimeLookup->signature, nullptr, GTF_ICON_TOKEN_HDL, 0,
1996                                                       nullptr, compileTimeHandle));
1997
1998         return gtNewHelperCallNode(pRuntimeLookup->helper, TYP_I_IMPL, GTF_EXCEPT, helperArgs);
1999     }
2000
2001     // Slot pointer
2002     GenTreePtr slotPtrTree = ctxTree;
2003
2004     if (pRuntimeLookup->testForNull)
2005     {
2006         slotPtrTree = impCloneExpr(ctxTree, &ctxTree, NO_CLASS_HANDLE, (unsigned)CHECK_SPILL_ALL,
2007                                    nullptr DEBUGARG("impRuntimeLookup slot"));
2008     }
2009
2010     // Applied repeated indirections
2011     for (WORD i = 0; i < pRuntimeLookup->indirections; i++)
2012     {
2013         if (i != 0)
2014         {
2015             slotPtrTree = gtNewOperNode(GT_IND, TYP_I_IMPL, slotPtrTree);
2016             slotPtrTree->gtFlags |= GTF_IND_NONFAULTING;
2017             slotPtrTree->gtFlags |= GTF_IND_INVARIANT;
2018         }
2019         if (pRuntimeLookup->offsets[i] != 0)
2020         {
2021             slotPtrTree =
2022                 gtNewOperNode(GT_ADD, TYP_I_IMPL, slotPtrTree, gtNewIconNode(pRuntimeLookup->offsets[i], TYP_I_IMPL));
2023         }
2024     }
2025
2026     // No null test required
2027     if (!pRuntimeLookup->testForNull)
2028     {
2029         if (pRuntimeLookup->indirections == 0)
2030         {
2031             return slotPtrTree;
2032         }
2033
2034         slotPtrTree = gtNewOperNode(GT_IND, TYP_I_IMPL, slotPtrTree);
2035         slotPtrTree->gtFlags |= GTF_IND_NONFAULTING;
2036
2037         if (!pRuntimeLookup->testForFixup)
2038         {
2039             return slotPtrTree;
2040         }
2041
2042         impSpillSideEffects(true, CHECK_SPILL_ALL DEBUGARG("bubbling QMark0"));
2043
2044         GenTreePtr op1 = impCloneExpr(slotPtrTree, &slotPtrTree, NO_CLASS_HANDLE, (unsigned)CHECK_SPILL_ALL,
2045                                       nullptr DEBUGARG("impRuntimeLookup test"));
2046         op1 = impImplicitIorI4Cast(op1, TYP_INT); // downcast the pointer to a TYP_INT on 64-bit targets
2047
2048         // Use a GT_AND to check for the lowest bit and indirect if it is set
2049         GenTreePtr testTree = gtNewOperNode(GT_AND, TYP_INT, op1, gtNewIconNode(1));
2050         GenTreePtr relop    = gtNewOperNode(GT_EQ, TYP_INT, testTree, gtNewIconNode(0));
2051         relop->gtFlags |= GTF_RELOP_QMARK;
2052
2053         op1 = impCloneExpr(slotPtrTree, &slotPtrTree, NO_CLASS_HANDLE, (unsigned)CHECK_SPILL_ALL,
2054                            nullptr DEBUGARG("impRuntimeLookup indir"));
2055         op1 = gtNewOperNode(GT_ADD, TYP_I_IMPL, op1, gtNewIconNode(-1, TYP_I_IMPL)); // subtract 1 from the pointer
2056         GenTreePtr indirTree = gtNewOperNode(GT_IND, TYP_I_IMPL, op1);
2057         GenTreePtr colon     = new (this, GT_COLON) GenTreeColon(TYP_I_IMPL, slotPtrTree, indirTree);
2058
2059         GenTreePtr qmark = gtNewQmarkNode(TYP_I_IMPL, relop, colon);
2060
2061         unsigned tmp = lvaGrabTemp(true DEBUGARG("spilling QMark0"));
2062         impAssignTempGen(tmp, qmark, (unsigned)CHECK_SPILL_NONE);
2063         return gtNewLclvNode(tmp, TYP_I_IMPL);
2064     }
2065
2066     assert(pRuntimeLookup->indirections != 0);
2067
2068     impSpillSideEffects(true, CHECK_SPILL_ALL DEBUGARG("bubbling QMark1"));
2069
2070     // Extract the handle
2071     GenTreePtr handle = gtNewOperNode(GT_IND, TYP_I_IMPL, slotPtrTree);
2072     handle->gtFlags |= GTF_IND_NONFAULTING;
2073
2074     GenTreePtr handleCopy = impCloneExpr(handle, &handle, NO_CLASS_HANDLE, (unsigned)CHECK_SPILL_ALL,
2075                                          nullptr DEBUGARG("impRuntimeLookup typehandle"));
2076
2077     // Call to helper
2078     GenTreeArgList* helperArgs =
2079         gtNewArgList(ctxTree, gtNewIconEmbHndNode(pRuntimeLookup->signature, nullptr, GTF_ICON_TOKEN_HDL, 0, nullptr,
2080                                                   compileTimeHandle));
2081     GenTreePtr helperCall = gtNewHelperCallNode(pRuntimeLookup->helper, TYP_I_IMPL, GTF_EXCEPT, helperArgs);
2082
2083     // Check for null and possibly call helper
2084     GenTreePtr relop = gtNewOperNode(GT_NE, TYP_INT, handle, gtNewIconNode(0, TYP_I_IMPL));
2085     relop->gtFlags |= GTF_RELOP_QMARK;
2086
2087     GenTreePtr colon = new (this, GT_COLON) GenTreeColon(TYP_I_IMPL,
2088                                                          gtNewNothingNode(), // do nothing if nonnull
2089                                                          helperCall);
2090
2091     GenTreePtr qmark = gtNewQmarkNode(TYP_I_IMPL, relop, colon);
2092
2093     unsigned tmp;
2094     if (handleCopy->IsLocal())
2095     {
2096         tmp = handleCopy->gtLclVarCommon.gtLclNum;
2097     }
2098     else
2099     {
2100         tmp = lvaGrabTemp(true DEBUGARG("spilling QMark1"));
2101     }
2102
2103     impAssignTempGen(tmp, qmark, (unsigned)CHECK_SPILL_NONE);
2104     return gtNewLclvNode(tmp, TYP_I_IMPL);
2105 }
2106
2107 /******************************************************************************
2108  *  Spills the stack at verCurrentState.esStack[level] and replaces it with a temp.
2109  *  If tnum!=BAD_VAR_NUM, the temp var used to replace the tree is tnum,
2110  *     else, grab a new temp.
2111  *  For structs (which can be pushed on the stack using obj, etc),
2112  *  special handling is needed
2113  */
2114
2115 struct RecursiveGuard
2116 {
2117 public:
2118     RecursiveGuard()
2119     {
2120         m_pAddress = nullptr;
2121     }
2122
2123     ~RecursiveGuard()
2124     {
2125         if (m_pAddress)
2126         {
2127             *m_pAddress = false;
2128         }
2129     }
2130
2131     void Init(bool* pAddress, bool bInitialize)
2132     {
2133         assert(pAddress && *pAddress == false && "Recursive guard violation");
2134         m_pAddress = pAddress;
2135
2136         if (bInitialize)
2137         {
2138             *m_pAddress = true;
2139         }
2140     }
2141
2142 protected:
2143     bool* m_pAddress;
2144 };
2145
2146 bool Compiler::impSpillStackEntry(unsigned level,
2147                                   unsigned tnum
2148 #ifdef DEBUG
2149                                   ,
2150                                   bool        bAssertOnRecursion,
2151                                   const char* reason
2152 #endif
2153                                   )
2154 {
2155
2156 #ifdef DEBUG
2157     RecursiveGuard guard;
2158     guard.Init(&impNestedStackSpill, bAssertOnRecursion);
2159 #endif
2160
2161     GenTreePtr tree = verCurrentState.esStack[level].val;
2162
2163     /* Allocate a temp if we haven't been asked to use a particular one */
2164
2165     if (tiVerificationNeeded)
2166     {
2167         // Ignore bad temp requests (they will happen with bad code and will be
2168         // catched when importing the destblock)
2169         if ((tnum != BAD_VAR_NUM && tnum >= lvaCount) && verNeedsVerification())
2170         {
2171             return false;
2172         }
2173     }
2174     else
2175     {
2176         if (tnum != BAD_VAR_NUM && (tnum >= lvaCount))
2177         {
2178             return false;
2179         }
2180     }
2181
2182     if (tnum == BAD_VAR_NUM)
2183     {
2184         tnum = lvaGrabTemp(true DEBUGARG(reason));
2185     }
2186     else if (tiVerificationNeeded && lvaTable[tnum].TypeGet() != TYP_UNDEF)
2187     {
2188         // if verification is needed and tnum's type is incompatible with
2189         // type on that stack, we grab a new temp. This is safe since
2190         // we will throw a verification exception in the dest block.
2191
2192         var_types valTyp = tree->TypeGet();
2193         var_types dstTyp = lvaTable[tnum].TypeGet();
2194
2195         // if the two types are different, we return. This will only happen with bad code and will
2196         // be catched when importing the destblock. We still allow int/byrefs and float/double differences.
2197         if ((genActualType(valTyp) != genActualType(dstTyp)) &&
2198             !(
2199 #ifndef _TARGET_64BIT_
2200                 (valTyp == TYP_I_IMPL && dstTyp == TYP_BYREF) || (valTyp == TYP_BYREF && dstTyp == TYP_I_IMPL) ||
2201 #endif // !_TARGET_64BIT_
2202                 (varTypeIsFloating(dstTyp) && varTypeIsFloating(valTyp))))
2203         {
2204             if (verNeedsVerification())
2205             {
2206                 return false;
2207             }
2208         }
2209     }
2210
2211     /* Assign the spilled entry to the temp */
2212     impAssignTempGen(tnum, tree, verCurrentState.esStack[level].seTypeInfo.GetClassHandle(), level);
2213
2214     // The tree type may be modified by impAssignTempGen, so use the type of the lclVar.
2215     var_types  type                    = genActualType(lvaTable[tnum].TypeGet());
2216     GenTreePtr temp                    = gtNewLclvNode(tnum, type);
2217     verCurrentState.esStack[level].val = temp;
2218
2219     return true;
2220 }
2221
2222 /*****************************************************************************
2223  *
2224  *  Ensure that the stack has only spilled values
2225  */
2226
2227 void Compiler::impSpillStackEnsure(bool spillLeaves)
2228 {
2229     assert(!spillLeaves || opts.compDbgCode);
2230
2231     for (unsigned level = 0; level < verCurrentState.esStackDepth; level++)
2232     {
2233         GenTreePtr tree = verCurrentState.esStack[level].val;
2234
2235         if (!spillLeaves && tree->OperIsLeaf())
2236         {
2237             continue;
2238         }
2239
2240         // Temps introduced by the importer itself don't need to be spilled
2241
2242         bool isTempLcl = (tree->OperGet() == GT_LCL_VAR) && (tree->gtLclVarCommon.gtLclNum >= info.compLocalsCount);
2243
2244         if (isTempLcl)
2245         {
2246             continue;
2247         }
2248
2249         impSpillStackEntry(level, BAD_VAR_NUM DEBUGARG(false) DEBUGARG("impSpillStackEnsure"));
2250     }
2251 }
2252
2253 void Compiler::impSpillEvalStack()
2254 {
2255     for (unsigned level = 0; level < verCurrentState.esStackDepth; level++)
2256     {
2257         impSpillStackEntry(level, BAD_VAR_NUM DEBUGARG(false) DEBUGARG("impSpillEvalStack"));
2258     }
2259 }
2260
2261 /*****************************************************************************
2262  *
2263  *  If the stack contains any trees with side effects in them, assign those
2264  *  trees to temps and append the assignments to the statement list.
2265  *  On return the stack is guaranteed to be empty.
2266  */
2267
2268 inline void Compiler::impEvalSideEffects()
2269 {
2270     impSpillSideEffects(false, (unsigned)CHECK_SPILL_ALL DEBUGARG("impEvalSideEffects"));
2271     verCurrentState.esStackDepth = 0;
2272 }
2273
2274 /*****************************************************************************
2275  *
2276  *  If the stack contains any trees with side effects in them, assign those
2277  *  trees to temps and replace them on the stack with refs to their temps.
2278  *  [0..chkLevel) is the portion of the stack which will be checked and spilled.
2279  */
2280
2281 inline void Compiler::impSpillSideEffects(bool spillGlobEffects, unsigned chkLevel DEBUGARG(const char* reason))
2282 {
2283     assert(chkLevel != (unsigned)CHECK_SPILL_NONE);
2284
2285     /* Before we make any appends to the tree list we must spill the
2286      * "special" side effects (GTF_ORDER_SIDEEFF on a GT_CATCH_ARG) */
2287
2288     impSpillSpecialSideEff();
2289
2290     if (chkLevel == (unsigned)CHECK_SPILL_ALL)
2291     {
2292         chkLevel = verCurrentState.esStackDepth;
2293     }
2294
2295     assert(chkLevel <= verCurrentState.esStackDepth);
2296
2297     unsigned spillFlags = spillGlobEffects ? GTF_GLOB_EFFECT : GTF_SIDE_EFFECT;
2298
2299     for (unsigned i = 0; i < chkLevel; i++)
2300     {
2301         GenTreePtr tree = verCurrentState.esStack[i].val;
2302
2303         GenTreePtr lclVarTree;
2304
2305         if ((tree->gtFlags & spillFlags) != 0 ||
2306             (spillGlobEffects &&                        // Only consider the following when  spillGlobEffects == TRUE
2307              !impIsAddressInLocal(tree, &lclVarTree) && // No need to spill the GT_ADDR node on a local.
2308              gtHasLocalsWithAddrOp(tree))) // Spill if we still see GT_LCL_VAR that contains lvHasLdAddrOp or
2309                                            // lvAddrTaken flag.
2310         {
2311             impSpillStackEntry(i, BAD_VAR_NUM DEBUGARG(false) DEBUGARG(reason));
2312         }
2313     }
2314 }
2315
2316 /*****************************************************************************
2317  *
2318  *  If the stack contains any trees with special side effects in them, assign
2319  *  those trees to temps and replace them on the stack with refs to their temps.
2320  */
2321
2322 inline void Compiler::impSpillSpecialSideEff()
2323 {
2324     // Only exception objects need to be carefully handled
2325
2326     if (!compCurBB->bbCatchTyp)
2327     {
2328         return;
2329     }
2330
2331     for (unsigned level = 0; level < verCurrentState.esStackDepth; level++)
2332     {
2333         GenTreePtr tree = verCurrentState.esStack[level].val;
2334         // Make sure if we have an exception object in the sub tree we spill ourselves.
2335         if (gtHasCatchArg(tree))
2336         {
2337             impSpillStackEntry(level, BAD_VAR_NUM DEBUGARG(false) DEBUGARG("impSpillSpecialSideEff"));
2338         }
2339     }
2340 }
2341
2342 /*****************************************************************************
2343  *
2344  *  Spill all stack references to value classes (TYP_STRUCT nodes)
2345  */
2346
2347 void Compiler::impSpillValueClasses()
2348 {
2349     for (unsigned level = 0; level < verCurrentState.esStackDepth; level++)
2350     {
2351         GenTreePtr tree = verCurrentState.esStack[level].val;
2352
2353         if (fgWalkTreePre(&tree, impFindValueClasses) == WALK_ABORT)
2354         {
2355             // Tree walk was aborted, which means that we found a
2356             // value class on the stack.  Need to spill that
2357             // stack entry.
2358
2359             impSpillStackEntry(level, BAD_VAR_NUM DEBUGARG(false) DEBUGARG("impSpillValueClasses"));
2360         }
2361     }
2362 }
2363
2364 /*****************************************************************************
2365  *
2366  *  Callback that checks if a tree node is TYP_STRUCT
2367  */
2368
2369 Compiler::fgWalkResult Compiler::impFindValueClasses(GenTreePtr* pTree, fgWalkData* data)
2370 {
2371     fgWalkResult walkResult = WALK_CONTINUE;
2372
2373     if ((*pTree)->gtType == TYP_STRUCT)
2374     {
2375         // Abort the walk and indicate that we found a value class
2376
2377         walkResult = WALK_ABORT;
2378     }
2379
2380     return walkResult;
2381 }
2382
2383 /*****************************************************************************
2384  *
2385  *  If the stack contains any trees with references to local #lclNum, assign
2386  *  those trees to temps and replace their place on the stack with refs to
2387  *  their temps.
2388  */
2389
2390 void Compiler::impSpillLclRefs(ssize_t lclNum)
2391 {
2392     /* Before we make any appends to the tree list we must spill the
2393      * "special" side effects (GTF_ORDER_SIDEEFF) - GT_CATCH_ARG */
2394
2395     impSpillSpecialSideEff();
2396
2397     for (unsigned level = 0; level < verCurrentState.esStackDepth; level++)
2398     {
2399         GenTreePtr tree = verCurrentState.esStack[level].val;
2400
2401         /* If the tree may throw an exception, and the block has a handler,
2402            then we need to spill assignments to the local if the local is
2403            live on entry to the handler.
2404            Just spill 'em all without considering the liveness */
2405
2406         bool xcptnCaught = ehBlockHasExnFlowDsc(compCurBB) && (tree->gtFlags & (GTF_CALL | GTF_EXCEPT));
2407
2408         /* Skip the tree if it doesn't have an affected reference,
2409            unless xcptnCaught */
2410
2411         if (xcptnCaught || gtHasRef(tree, lclNum, false))
2412         {
2413             impSpillStackEntry(level, BAD_VAR_NUM DEBUGARG(false) DEBUGARG("impSpillLclRefs"));
2414         }
2415     }
2416 }
2417
2418 /*****************************************************************************
2419  *
2420  *  Push catch arg onto the stack.
2421  *  If there are jumps to the beginning of the handler, insert basic block
2422  *  and spill catch arg to a temp. Update the handler block if necessary.
2423  *
2424  *  Returns the basic block of the actual handler.
2425  */
2426
2427 BasicBlock* Compiler::impPushCatchArgOnStack(BasicBlock* hndBlk, CORINFO_CLASS_HANDLE clsHnd)
2428 {
2429     // Do not inject the basic block twice on reimport. This should be
2430     // hit only under JIT stress. See if the block is the one we injected.
2431     // Note that EH canonicalization can inject internal blocks here. We might
2432     // be able to re-use such a block (but we don't, right now).
2433     if ((hndBlk->bbFlags & (BBF_IMPORTED | BBF_INTERNAL | BBF_DONT_REMOVE | BBF_HAS_LABEL | BBF_JMP_TARGET)) ==
2434         (BBF_IMPORTED | BBF_INTERNAL | BBF_DONT_REMOVE | BBF_HAS_LABEL | BBF_JMP_TARGET))
2435     {
2436         GenTreePtr tree = hndBlk->bbTreeList;
2437
2438         if (tree != nullptr && tree->gtOper == GT_STMT)
2439         {
2440             tree = tree->gtStmt.gtStmtExpr;
2441             assert(tree != nullptr);
2442
2443             if ((tree->gtOper == GT_ASG) && (tree->gtOp.gtOp1->gtOper == GT_LCL_VAR) &&
2444                 (tree->gtOp.gtOp2->gtOper == GT_CATCH_ARG))
2445             {
2446                 tree = gtNewLclvNode(tree->gtOp.gtOp1->gtLclVarCommon.gtLclNum, TYP_REF);
2447
2448                 impPushOnStack(tree, typeInfo(TI_REF, clsHnd));
2449
2450                 return hndBlk->bbNext;
2451             }
2452         }
2453
2454         // If we get here, it must have been some other kind of internal block. It's possible that
2455         // someone prepended something to our injected block, but that's unlikely.
2456     }
2457
2458     /* Push the exception address value on the stack */
2459     GenTreePtr arg = new (this, GT_CATCH_ARG) GenTree(GT_CATCH_ARG, TYP_REF);
2460
2461     /* Mark the node as having a side-effect - i.e. cannot be
2462      * moved around since it is tied to a fixed location (EAX) */
2463     arg->gtFlags |= GTF_ORDER_SIDEEFF;
2464
2465     /* Spill GT_CATCH_ARG to a temp if there are jumps to the beginning of the handler */
2466     if (hndBlk->bbRefs > 1 || compStressCompile(STRESS_CATCH_ARG, 5))
2467     {
2468         if (hndBlk->bbRefs == 1)
2469         {
2470             hndBlk->bbRefs++;
2471         }
2472
2473         /* Create extra basic block for the spill */
2474         BasicBlock* newBlk = fgNewBBbefore(BBJ_NONE, hndBlk, /* extendRegion */ true);
2475         newBlk->bbFlags |= BBF_IMPORTED | BBF_DONT_REMOVE | BBF_HAS_LABEL | BBF_JMP_TARGET;
2476         newBlk->setBBWeight(hndBlk->bbWeight);
2477         newBlk->bbCodeOffs = hndBlk->bbCodeOffs;
2478
2479         /* Account for the new link we are about to create */
2480         hndBlk->bbRefs++;
2481
2482         /* Spill into a temp */
2483         unsigned tempNum         = lvaGrabTemp(false DEBUGARG("SpillCatchArg"));
2484         lvaTable[tempNum].lvType = TYP_REF;
2485         arg                      = gtNewTempAssign(tempNum, arg);
2486
2487         hndBlk->bbStkTempsIn = tempNum;
2488
2489         /* Report the debug info. impImportBlockCode won't treat
2490          * the actual handler as exception block and thus won't do it for us. */
2491         if (info.compStmtOffsetsImplicit & ICorDebugInfo::CALL_SITE_BOUNDARIES)
2492         {
2493             impCurStmtOffs = newBlk->bbCodeOffs | IL_OFFSETX_STKBIT;
2494             arg            = gtNewStmt(arg, impCurStmtOffs);
2495         }
2496
2497         fgInsertStmtAtEnd(newBlk, arg);
2498
2499         arg = gtNewLclvNode(tempNum, TYP_REF);
2500     }
2501
2502     impPushOnStack(arg, typeInfo(TI_REF, clsHnd));
2503
2504     return hndBlk;
2505 }
2506
2507 /*****************************************************************************
2508  *
2509  *  Given a tree, clone it. *pClone is set to the cloned tree.
2510  *  Returns the original tree if the cloning was easy,
2511  *   else returns the temp to which the tree had to be spilled to.
2512  *  If the tree has side-effects, it will be spilled to a temp.
2513  */
2514
2515 GenTreePtr Compiler::impCloneExpr(GenTreePtr           tree,
2516                                   GenTreePtr*          pClone,
2517                                   CORINFO_CLASS_HANDLE structHnd,
2518                                   unsigned             curLevel,
2519                                   GenTreePtr* pAfterStmt DEBUGARG(const char* reason))
2520 {
2521     if (!(tree->gtFlags & GTF_GLOB_EFFECT))
2522     {
2523         GenTreePtr clone = gtClone(tree, true);
2524
2525         if (clone)
2526         {
2527             *pClone = clone;
2528             return tree;
2529         }
2530     }
2531
2532     /* Store the operand in a temp and return the temp */
2533
2534     unsigned temp = lvaGrabTemp(true DEBUGARG(reason));
2535
2536     // impAssignTempGen() may change tree->gtType to TYP_VOID for calls which
2537     // return a struct type. It also may modify the struct type to a more
2538     // specialized type (e.g. a SIMD type).  So we will get the type from
2539     // the lclVar AFTER calling impAssignTempGen().
2540
2541     impAssignTempGen(temp, tree, structHnd, curLevel, pAfterStmt, impCurStmtOffs);
2542     var_types type = genActualType(lvaTable[temp].TypeGet());
2543
2544     *pClone = gtNewLclvNode(temp, type);
2545     return gtNewLclvNode(temp, type);
2546 }
2547
2548 /*****************************************************************************
2549  * Remember the IL offset (including stack-empty info) for the trees we will
2550  * generate now.
2551  */
2552
2553 inline void Compiler::impCurStmtOffsSet(IL_OFFSET offs)
2554 {
2555     if (compIsForInlining())
2556     {
2557         GenTreePtr callStmt = impInlineInfo->iciStmt;
2558         assert(callStmt->gtOper == GT_STMT);
2559         impCurStmtOffs = callStmt->gtStmt.gtStmtILoffsx;
2560     }
2561     else
2562     {
2563         assert(offs == BAD_IL_OFFSET || (offs & IL_OFFSETX_BITS) == 0);
2564         IL_OFFSETX stkBit = (verCurrentState.esStackDepth > 0) ? IL_OFFSETX_STKBIT : 0;
2565         impCurStmtOffs    = offs | stkBit;
2566     }
2567 }
2568
2569 /*****************************************************************************
2570  * Returns current IL offset with stack-empty and call-instruction info incorporated
2571  */
2572 inline IL_OFFSETX Compiler::impCurILOffset(IL_OFFSET offs, bool callInstruction)
2573 {
2574     if (compIsForInlining())
2575     {
2576         return BAD_IL_OFFSET;
2577     }
2578     else
2579     {
2580         assert(offs == BAD_IL_OFFSET || (offs & IL_OFFSETX_BITS) == 0);
2581         IL_OFFSETX stkBit             = (verCurrentState.esStackDepth > 0) ? IL_OFFSETX_STKBIT : 0;
2582         IL_OFFSETX callInstructionBit = callInstruction ? IL_OFFSETX_CALLINSTRUCTIONBIT : 0;
2583         return offs | stkBit | callInstructionBit;
2584     }
2585 }
2586
2587 /*****************************************************************************
2588  *
2589  *  Remember the instr offset for the statements
2590  *
2591  *  When we do impAppendTree(tree), we can't set tree->gtStmtLastILoffs to
2592  *  impCurOpcOffs, if the append was done because of a partial stack spill,
2593  *  as some of the trees corresponding to code up to impCurOpcOffs might
2594  *  still be sitting on the stack.
2595  *  So we delay marking of gtStmtLastILoffs until impNoteLastILoffs().
2596  *  This should be called when an opcode finally/explicitly causes
2597  *  impAppendTree(tree) to be called (as opposed to being called because of
2598  *  a spill caused by the opcode)
2599  */
2600
2601 #ifdef DEBUG
2602
2603 void Compiler::impNoteLastILoffs()
2604 {
2605     if (impLastILoffsStmt == nullptr)
2606     {
2607         // We should have added a statement for the current basic block
2608         // Is this assert correct ?
2609
2610         assert(impTreeLast);
2611         assert(impTreeLast->gtOper == GT_STMT);
2612
2613         impTreeLast->gtStmt.gtStmtLastILoffs = compIsForInlining() ? BAD_IL_OFFSET : impCurOpcOffs;
2614     }
2615     else
2616     {
2617         impLastILoffsStmt->gtStmt.gtStmtLastILoffs = compIsForInlining() ? BAD_IL_OFFSET : impCurOpcOffs;
2618         impLastILoffsStmt                          = nullptr;
2619     }
2620 }
2621
2622 #endif // DEBUG
2623
2624 /*****************************************************************************
2625  * We don't create any GenTree (excluding spills) for a branch.
2626  * For debugging info, we need a placeholder so that we can note
2627  * the IL offset in gtStmt.gtStmtOffs. So append an empty statement.
2628  */
2629
2630 void Compiler::impNoteBranchOffs()
2631 {
2632     if (opts.compDbgCode)
2633     {
2634         impAppendTree(gtNewNothingNode(), (unsigned)CHECK_SPILL_NONE, impCurStmtOffs);
2635     }
2636 }
2637
2638 /*****************************************************************************
2639  * Locate the next stmt boundary for which we need to record info.
2640  * We will have to spill the stack at such boundaries if it is not
2641  * already empty.
2642  * Returns the next stmt boundary (after the start of the block)
2643  */
2644
2645 unsigned Compiler::impInitBlockLineInfo()
2646 {
2647     /* Assume the block does not correspond with any IL offset. This prevents
2648        us from reporting extra offsets. Extra mappings can cause confusing
2649        stepping, especially if the extra mapping is a jump-target, and the
2650        debugger does not ignore extra mappings, but instead rewinds to the
2651        nearest known offset */
2652
2653     impCurStmtOffsSet(BAD_IL_OFFSET);
2654
2655     if (compIsForInlining())
2656     {
2657         return ~0;
2658     }
2659
2660     IL_OFFSET blockOffs = compCurBB->bbCodeOffs;
2661
2662     if ((verCurrentState.esStackDepth == 0) && (info.compStmtOffsetsImplicit & ICorDebugInfo::STACK_EMPTY_BOUNDARIES))
2663     {
2664         impCurStmtOffsSet(blockOffs);
2665     }
2666
2667     if (false && (info.compStmtOffsetsImplicit & ICorDebugInfo::CALL_SITE_BOUNDARIES))
2668     {
2669         impCurStmtOffsSet(blockOffs);
2670     }
2671
2672     /* Always report IL offset 0 or some tests get confused.
2673        Probably a good idea anyways */
2674
2675     if (blockOffs == 0)
2676     {
2677         impCurStmtOffsSet(blockOffs);
2678     }
2679
2680     if (!info.compStmtOffsetsCount)
2681     {
2682         return ~0;
2683     }
2684
2685     /* Find the lowest explicit stmt boundary within the block */
2686
2687     /* Start looking at an entry that is based on our instr offset */
2688
2689     unsigned index = (info.compStmtOffsetsCount * blockOffs) / info.compILCodeSize;
2690
2691     if (index >= info.compStmtOffsetsCount)
2692     {
2693         index = info.compStmtOffsetsCount - 1;
2694     }
2695
2696     /* If we've guessed too far, back up */
2697
2698     while (index > 0 && info.compStmtOffsets[index - 1] >= blockOffs)
2699     {
2700         index--;
2701     }
2702
2703     /* If we guessed short, advance ahead */
2704
2705     while (info.compStmtOffsets[index] < blockOffs)
2706     {
2707         index++;
2708
2709         if (index == info.compStmtOffsetsCount)
2710         {
2711             return info.compStmtOffsetsCount;
2712         }
2713     }
2714
2715     assert(index < info.compStmtOffsetsCount);
2716
2717     if (info.compStmtOffsets[index] == blockOffs)
2718     {
2719         /* There is an explicit boundary for the start of this basic block.
2720            So we will start with bbCodeOffs. Else we will wait until we
2721            get to the next explicit boundary */
2722
2723         impCurStmtOffsSet(blockOffs);
2724
2725         index++;
2726     }
2727
2728     return index;
2729 }
2730
2731 /*****************************************************************************/
2732
2733 static inline bool impOpcodeIsCallOpcode(OPCODE opcode)
2734 {
2735     switch (opcode)
2736     {
2737         case CEE_CALL:
2738         case CEE_CALLI:
2739         case CEE_CALLVIRT:
2740             return true;
2741
2742         default:
2743             return false;
2744     }
2745 }
2746
2747 /*****************************************************************************/
2748
2749 static inline bool impOpcodeIsCallSiteBoundary(OPCODE opcode)
2750 {
2751     switch (opcode)
2752     {
2753         case CEE_CALL:
2754         case CEE_CALLI:
2755         case CEE_CALLVIRT:
2756         case CEE_JMP:
2757         case CEE_NEWOBJ:
2758         case CEE_NEWARR:
2759             return true;
2760
2761         default:
2762             return false;
2763     }
2764 }
2765
2766 /*****************************************************************************/
2767
2768 // One might think it is worth caching these values, but results indicate
2769 // that it isn't.
2770 // In addition, caching them causes SuperPMI to be unable to completely
2771 // encapsulate an individual method context.
2772 CORINFO_CLASS_HANDLE Compiler::impGetRefAnyClass()
2773 {
2774     CORINFO_CLASS_HANDLE refAnyClass = info.compCompHnd->getBuiltinClass(CLASSID_TYPED_BYREF);
2775     assert(refAnyClass != (CORINFO_CLASS_HANDLE) nullptr);
2776     return refAnyClass;
2777 }
2778
2779 CORINFO_CLASS_HANDLE Compiler::impGetTypeHandleClass()
2780 {
2781     CORINFO_CLASS_HANDLE typeHandleClass = info.compCompHnd->getBuiltinClass(CLASSID_TYPE_HANDLE);
2782     assert(typeHandleClass != (CORINFO_CLASS_HANDLE) nullptr);
2783     return typeHandleClass;
2784 }
2785
2786 CORINFO_CLASS_HANDLE Compiler::impGetRuntimeArgumentHandle()
2787 {
2788     CORINFO_CLASS_HANDLE argIteratorClass = info.compCompHnd->getBuiltinClass(CLASSID_ARGUMENT_HANDLE);
2789     assert(argIteratorClass != (CORINFO_CLASS_HANDLE) nullptr);
2790     return argIteratorClass;
2791 }
2792
2793 CORINFO_CLASS_HANDLE Compiler::impGetStringClass()
2794 {
2795     CORINFO_CLASS_HANDLE stringClass = info.compCompHnd->getBuiltinClass(CLASSID_STRING);
2796     assert(stringClass != (CORINFO_CLASS_HANDLE) nullptr);
2797     return stringClass;
2798 }
2799
2800 CORINFO_CLASS_HANDLE Compiler::impGetObjectClass()
2801 {
2802     CORINFO_CLASS_HANDLE objectClass = info.compCompHnd->getBuiltinClass(CLASSID_SYSTEM_OBJECT);
2803     assert(objectClass != (CORINFO_CLASS_HANDLE) nullptr);
2804     return objectClass;
2805 }
2806
2807 /*****************************************************************************
2808  *  "&var" can be used either as TYP_BYREF or TYP_I_IMPL, but we
2809  *  set its type to TYP_BYREF when we create it. We know if it can be
2810  *  changed to TYP_I_IMPL only at the point where we use it
2811  */
2812
2813 /* static */
2814 void Compiler::impBashVarAddrsToI(GenTreePtr tree1, GenTreePtr tree2)
2815 {
2816     if (tree1->IsVarAddr())
2817     {
2818         tree1->gtType = TYP_I_IMPL;
2819     }
2820
2821     if (tree2 && tree2->IsVarAddr())
2822     {
2823         tree2->gtType = TYP_I_IMPL;
2824     }
2825 }
2826
2827 /*****************************************************************************
2828  *  TYP_INT and TYP_I_IMPL can be used almost interchangeably, but we want
2829  *  to make that an explicit cast in our trees, so any implicit casts that
2830  *  exist in the IL (at least on 64-bit where TYP_I_IMPL != TYP_INT) are
2831  *  turned into explicit casts here.
2832  *  We also allow an implicit conversion of a ldnull into a TYP_I_IMPL(0)
2833  */
2834
2835 GenTreePtr Compiler::impImplicitIorI4Cast(GenTreePtr tree, var_types dstTyp)
2836 {
2837     var_types currType   = genActualType(tree->gtType);
2838     var_types wantedType = genActualType(dstTyp);
2839
2840     if (wantedType != currType)
2841     {
2842         // Automatic upcast for a GT_CNS_INT into TYP_I_IMPL
2843         if ((tree->OperGet() == GT_CNS_INT) && varTypeIsI(dstTyp))
2844         {
2845             if (!varTypeIsI(tree->gtType) || ((tree->gtType == TYP_REF) && (tree->gtIntCon.gtIconVal == 0)))
2846             {
2847                 tree->gtType = TYP_I_IMPL;
2848             }
2849         }
2850 #ifdef _TARGET_64BIT_
2851         else if (varTypeIsI(wantedType) && (currType == TYP_INT))
2852         {
2853             // Note that this allows TYP_INT to be cast to a TYP_I_IMPL when wantedType is a TYP_BYREF or TYP_REF
2854             tree = gtNewCastNode(TYP_I_IMPL, tree, TYP_I_IMPL);
2855         }
2856         else if ((wantedType == TYP_INT) && varTypeIsI(currType))
2857         {
2858             // Note that this allows TYP_BYREF or TYP_REF to be cast to a TYP_INT
2859             tree = gtNewCastNode(TYP_INT, tree, TYP_INT);
2860         }
2861 #endif // _TARGET_64BIT_
2862     }
2863
2864     return tree;
2865 }
2866
2867 /*****************************************************************************
2868  *  TYP_FLOAT and TYP_DOUBLE can be used almost interchangeably in some cases,
2869  *  but we want to make that an explicit cast in our trees, so any implicit casts
2870  *  that exist in the IL are turned into explicit casts here.
2871  */
2872
2873 GenTreePtr Compiler::impImplicitR4orR8Cast(GenTreePtr tree, var_types dstTyp)
2874 {
2875 #ifndef LEGACY_BACKEND
2876     if (varTypeIsFloating(tree) && varTypeIsFloating(dstTyp) && (dstTyp != tree->gtType))
2877     {
2878         tree = gtNewCastNode(dstTyp, tree, dstTyp);
2879     }
2880 #endif // !LEGACY_BACKEND
2881
2882     return tree;
2883 }
2884
2885 //------------------------------------------------------------------------
2886 // impInitializeArrayIntrinsic: Attempts to replace a call to InitializeArray
2887 //    with a GT_COPYBLK node.
2888 //
2889 // Arguments:
2890 //    sig - The InitializeArray signature.
2891 //
2892 // Return Value:
2893 //    A pointer to the newly created GT_COPYBLK node if the replacement succeeds or
2894 //    nullptr otherwise.
2895 //
2896 // Notes:
2897 //    The function recognizes the following IL pattern:
2898 //      ldc <length> or a list of ldc <lower bound>/<length>
2899 //      newarr or newobj
2900 //      dup
2901 //      ldtoken <field handle>
2902 //      call InitializeArray
2903 //    The lower bounds need not be constant except when the array rank is 1.
2904 //    The function recognizes all kinds of arrays thus enabling a small runtime
2905 //    such as CoreRT to skip providing an implementation for InitializeArray.
2906
2907 GenTreePtr Compiler::impInitializeArrayIntrinsic(CORINFO_SIG_INFO* sig)
2908 {
2909     assert(sig->numArgs == 2);
2910
2911     GenTreePtr fieldTokenNode = impStackTop(0).val;
2912     GenTreePtr arrayLocalNode = impStackTop(1).val;
2913
2914     //
2915     // Verify that the field token is known and valid.  Note that It's also
2916     // possible for the token to come from reflection, in which case we cannot do
2917     // the optimization and must therefore revert to calling the helper.  You can
2918     // see an example of this in bvt\DynIL\initarray2.exe (in Main).
2919     //
2920
2921     // Check to see if the ldtoken helper call is what we see here.
2922     if (fieldTokenNode->gtOper != GT_CALL || (fieldTokenNode->gtCall.gtCallType != CT_HELPER) ||
2923         (fieldTokenNode->gtCall.gtCallMethHnd != eeFindHelper(CORINFO_HELP_FIELDDESC_TO_STUBRUNTIMEFIELD)))
2924     {
2925         return nullptr;
2926     }
2927
2928     // Strip helper call away
2929     fieldTokenNode = fieldTokenNode->gtCall.gtCallArgs->Current();
2930
2931     if (fieldTokenNode->gtOper == GT_IND)
2932     {
2933         fieldTokenNode = fieldTokenNode->gtOp.gtOp1;
2934     }
2935
2936     // Check for constant
2937     if (fieldTokenNode->gtOper != GT_CNS_INT)
2938     {
2939         return nullptr;
2940     }
2941
2942     CORINFO_FIELD_HANDLE fieldToken = (CORINFO_FIELD_HANDLE)fieldTokenNode->gtIntCon.gtCompileTimeHandle;
2943     if (!fieldTokenNode->IsIconHandle(GTF_ICON_FIELD_HDL) || (fieldToken == nullptr))
2944     {
2945         return nullptr;
2946     }
2947
2948     //
2949     // We need to get the number of elements in the array and the size of each element.
2950     // We verify that the newarr statement is exactly what we expect it to be.
2951     // If it's not then we just return NULL and we don't optimize this call
2952     //
2953
2954     //
2955     // It is possible the we don't have any statements in the block yet
2956     //
2957     if (impTreeLast->gtOper != GT_STMT)
2958     {
2959         assert(impTreeLast->gtOper == GT_BEG_STMTS);
2960         return nullptr;
2961     }
2962
2963     //
2964     // We start by looking at the last statement, making sure it's an assignment, and
2965     // that the target of the assignment is the array passed to InitializeArray.
2966     //
2967     GenTreePtr arrayAssignment = impTreeLast->gtStmt.gtStmtExpr;
2968     if ((arrayAssignment->gtOper != GT_ASG) || (arrayAssignment->gtOp.gtOp1->gtOper != GT_LCL_VAR) ||
2969         (arrayLocalNode->gtOper != GT_LCL_VAR) ||
2970         (arrayAssignment->gtOp.gtOp1->gtLclVarCommon.gtLclNum != arrayLocalNode->gtLclVarCommon.gtLclNum))
2971     {
2972         return nullptr;
2973     }
2974
2975     //
2976     // Make sure that the object being assigned is a helper call.
2977     //
2978
2979     GenTreePtr newArrayCall = arrayAssignment->gtOp.gtOp2;
2980     if ((newArrayCall->gtOper != GT_CALL) || (newArrayCall->gtCall.gtCallType != CT_HELPER))
2981     {
2982         return nullptr;
2983     }
2984
2985     //
2986     // Verify that it is one of the new array helpers.
2987     //
2988
2989     bool isMDArray = false;
2990
2991     if (newArrayCall->gtCall.gtCallMethHnd != eeFindHelper(CORINFO_HELP_NEWARR_1_DIRECT) &&
2992         newArrayCall->gtCall.gtCallMethHnd != eeFindHelper(CORINFO_HELP_NEWARR_1_OBJ) &&
2993         newArrayCall->gtCall.gtCallMethHnd != eeFindHelper(CORINFO_HELP_NEWARR_1_VC) &&
2994         newArrayCall->gtCall.gtCallMethHnd != eeFindHelper(CORINFO_HELP_NEWARR_1_ALIGN8)
2995 #ifdef FEATURE_READYTORUN_COMPILER
2996         && newArrayCall->gtCall.gtCallMethHnd != eeFindHelper(CORINFO_HELP_READYTORUN_NEWARR_1)
2997 #endif
2998             )
2999     {
3000 #if COR_JIT_EE_VERSION > 460
3001         if (newArrayCall->gtCall.gtCallMethHnd != eeFindHelper(CORINFO_HELP_NEW_MDARR_NONVARARG))
3002         {
3003             return nullptr;
3004         }
3005
3006         isMDArray = true;
3007 #endif
3008     }
3009
3010     CORINFO_CLASS_HANDLE arrayClsHnd = (CORINFO_CLASS_HANDLE)newArrayCall->gtCall.compileTimeHelperArgumentHandle;
3011
3012     //
3013     // Make sure we found a compile time handle to the array
3014     //
3015
3016     if (!arrayClsHnd)
3017     {
3018         return nullptr;
3019     }
3020
3021     unsigned rank = 0;
3022     S_UINT32 numElements;
3023
3024     if (isMDArray)
3025     {
3026         rank = info.compCompHnd->getArrayRank(arrayClsHnd);
3027
3028         if (rank == 0)
3029         {
3030             return nullptr;
3031         }
3032
3033         GenTreeArgList* tokenArg = newArrayCall->gtCall.gtCallArgs;
3034         assert(tokenArg != nullptr);
3035         GenTreeArgList* numArgsArg = tokenArg->Rest();
3036         assert(numArgsArg != nullptr);
3037         GenTreeArgList* argsArg = numArgsArg->Rest();
3038         assert(argsArg != nullptr);
3039
3040         //
3041         // The number of arguments should be a constant between 1 and 64. The rank can't be 0
3042         // so at least one length must be present and the rank can't exceed 32 so there can
3043         // be at most 64 arguments - 32 lengths and 32 lower bounds.
3044         //
3045
3046         if ((!numArgsArg->Current()->IsCnsIntOrI()) || (numArgsArg->Current()->AsIntCon()->IconValue() < 1) ||
3047             (numArgsArg->Current()->AsIntCon()->IconValue() > 64))
3048         {
3049             return nullptr;
3050         }
3051
3052         unsigned numArgs = static_cast<unsigned>(numArgsArg->Current()->AsIntCon()->IconValue());
3053         bool     lowerBoundsSpecified;
3054
3055         if (numArgs == rank * 2)
3056         {
3057             lowerBoundsSpecified = true;
3058         }
3059         else if (numArgs == rank)
3060         {
3061             lowerBoundsSpecified = false;
3062
3063             //
3064             // If the rank is 1 and a lower bound isn't specified then the runtime creates
3065             // a SDArray. Note that even if a lower bound is specified it can be 0 and then
3066             // we get a SDArray as well, see the for loop below.
3067             //
3068
3069             if (rank == 1)
3070             {
3071                 isMDArray = false;
3072             }
3073         }
3074         else
3075         {
3076             return nullptr;
3077         }
3078
3079         //
3080         // The rank is known to be at least 1 so we can start with numElements being 1
3081         // to avoid the need to special case the first dimension.
3082         //
3083
3084         numElements = S_UINT32(1);
3085
3086         struct Match
3087         {
3088             static bool IsArgsFieldInit(GenTree* tree, unsigned index, unsigned lvaNewObjArrayArgs)
3089             {
3090                 return (tree->OperGet() == GT_ASG) && IsArgsFieldIndir(tree->gtGetOp1(), index, lvaNewObjArrayArgs) &&
3091                        IsArgsAddr(tree->gtGetOp1()->gtGetOp1()->gtGetOp1(), lvaNewObjArrayArgs);
3092             }
3093
3094             static bool IsArgsFieldIndir(GenTree* tree, unsigned index, unsigned lvaNewObjArrayArgs)
3095             {
3096                 return (tree->OperGet() == GT_IND) && (tree->gtGetOp1()->OperGet() == GT_ADD) &&
3097                        (tree->gtGetOp1()->gtGetOp2()->IsIntegralConst(sizeof(INT32) * index)) &&
3098                        IsArgsAddr(tree->gtGetOp1()->gtGetOp1(), lvaNewObjArrayArgs);
3099             }
3100
3101             static bool IsArgsAddr(GenTree* tree, unsigned lvaNewObjArrayArgs)
3102             {
3103                 return (tree->OperGet() == GT_ADDR) && (tree->gtGetOp1()->OperGet() == GT_LCL_VAR) &&
3104                        (tree->gtGetOp1()->AsLclVar()->GetLclNum() == lvaNewObjArrayArgs);
3105             }
3106
3107             static bool IsComma(GenTree* tree)
3108             {
3109                 return (tree != nullptr) && (tree->OperGet() == GT_COMMA);
3110             }
3111         };
3112
3113         unsigned argIndex = 0;
3114         GenTree* comma;
3115
3116         for (comma = argsArg->Current(); Match::IsComma(comma); comma = comma->gtGetOp2())
3117         {
3118             if (lowerBoundsSpecified)
3119             {
3120                 //
3121                 // In general lower bounds can be ignored because they're not needed to
3122                 // calculate the total number of elements. But for single dimensional arrays
3123                 // we need to know if the lower bound is 0 because in this case the runtime
3124                 // creates a SDArray and this affects the way the array data offset is calculated.
3125                 //
3126
3127                 if (rank == 1)
3128                 {
3129                     GenTree* lowerBoundAssign = comma->gtGetOp1();
3130                     assert(Match::IsArgsFieldInit(lowerBoundAssign, argIndex, lvaNewObjArrayArgs));
3131                     GenTree* lowerBoundNode = lowerBoundAssign->gtGetOp2();
3132
3133                     if (lowerBoundNode->IsIntegralConst(0))
3134                     {
3135                         isMDArray = false;
3136                     }
3137                 }
3138
3139                 comma = comma->gtGetOp2();
3140                 argIndex++;
3141             }
3142
3143             GenTree* lengthNodeAssign = comma->gtGetOp1();
3144             assert(Match::IsArgsFieldInit(lengthNodeAssign, argIndex, lvaNewObjArrayArgs));
3145             GenTree* lengthNode = lengthNodeAssign->gtGetOp2();
3146
3147             if (!lengthNode->IsCnsIntOrI())
3148             {
3149                 return nullptr;
3150             }
3151
3152             numElements *= S_SIZE_T(lengthNode->AsIntCon()->IconValue());
3153             argIndex++;
3154         }
3155
3156         assert((comma != nullptr) && Match::IsArgsAddr(comma, lvaNewObjArrayArgs));
3157
3158         if (argIndex != numArgs)
3159         {
3160             return nullptr;
3161         }
3162     }
3163     else
3164     {
3165         //
3166         // Make sure there are exactly two arguments:  the array class and
3167         // the number of elements.
3168         //
3169
3170         GenTreePtr arrayLengthNode;
3171
3172         GenTreeArgList* args = newArrayCall->gtCall.gtCallArgs;
3173 #ifdef FEATURE_READYTORUN_COMPILER
3174         if (newArrayCall->gtCall.gtCallMethHnd == eeFindHelper(CORINFO_HELP_READYTORUN_NEWARR_1))
3175         {
3176             // Array length is 1st argument for readytorun helper
3177             arrayLengthNode = args->Current();
3178         }
3179         else
3180 #endif
3181         {
3182             // Array length is 2nd argument for regular helper
3183             arrayLengthNode = args->Rest()->Current();
3184         }
3185
3186         //
3187         // Make sure that the number of elements look valid.
3188         //
3189         if (arrayLengthNode->gtOper != GT_CNS_INT)
3190         {
3191             return nullptr;
3192         }
3193
3194         numElements = S_SIZE_T(arrayLengthNode->gtIntCon.gtIconVal);
3195
3196         if (!info.compCompHnd->isSDArray(arrayClsHnd))
3197         {
3198             return nullptr;
3199         }
3200     }
3201
3202     CORINFO_CLASS_HANDLE elemClsHnd;
3203     var_types            elementType = JITtype2varType(info.compCompHnd->getChildType(arrayClsHnd, &elemClsHnd));
3204
3205     //
3206     // Note that genTypeSize will return zero for non primitive types, which is exactly
3207     // what we want (size will then be 0, and we will catch this in the conditional below).
3208     // Note that we don't expect this to fail for valid binaries, so we assert in the
3209     // non-verification case (the verification case should not assert but rather correctly
3210     // handle bad binaries).  This assert is not guarding any specific invariant, but rather
3211     // saying that we don't expect this to happen, and if it is hit, we need to investigate
3212     // why.
3213     //
3214
3215     S_UINT32 elemSize(genTypeSize(elementType));
3216     S_UINT32 size = elemSize * S_UINT32(numElements);
3217
3218     if (size.IsOverflow())
3219     {
3220         return nullptr;
3221     }
3222
3223     if ((size.Value() == 0) || (varTypeIsGC(elementType)))
3224     {
3225         assert(verNeedsVerification());
3226         return nullptr;
3227     }
3228
3229     void* initData = info.compCompHnd->getArrayInitializationData(fieldToken, size.Value());
3230     if (!initData)
3231     {
3232         return nullptr;
3233     }
3234
3235     //
3236     // At this point we are ready to commit to implementing the InitializeArray
3237     // intrinsic using a struct assignment.  Pop the arguments from the stack and
3238     // return the struct assignment node.
3239     //
3240
3241     impPopStack();
3242     impPopStack();
3243
3244     const unsigned blkSize = size.Value();
3245     GenTreePtr     dst;
3246
3247     if (isMDArray)
3248     {
3249         unsigned dataOffset = eeGetMDArrayDataOffset(elementType, rank);
3250
3251         dst = gtNewOperNode(GT_ADD, TYP_BYREF, arrayLocalNode, gtNewIconNode(dataOffset, TYP_I_IMPL));
3252     }
3253     else
3254     {
3255         dst = gtNewOperNode(GT_ADDR, TYP_BYREF, gtNewIndexRef(elementType, arrayLocalNode, gtNewIconNode(0)));
3256     }
3257     GenTreePtr blk     = gtNewBlockVal(dst, blkSize);
3258     GenTreePtr srcAddr = gtNewIconHandleNode((size_t)initData, GTF_ICON_STATIC_HDL);
3259     GenTreePtr src     = gtNewOperNode(GT_IND, TYP_STRUCT, srcAddr);
3260
3261     return gtNewBlkOpNode(blk,     // dst
3262                           src,     // src
3263                           blkSize, // size
3264                           false,   // volatil
3265                           true);   // copyBlock
3266 }
3267
3268 /*****************************************************************************/
3269 // Returns the GenTree that should be used to do the intrinsic instead of the call.
3270 // Returns NULL if an intrinsic cannot be used
3271
3272 GenTreePtr Compiler::impIntrinsic(GenTreePtr            newobjThis,
3273                                   CORINFO_CLASS_HANDLE  clsHnd,
3274                                   CORINFO_METHOD_HANDLE method,
3275                                   CORINFO_SIG_INFO*     sig,
3276                                   int                   memberRef,
3277                                   bool                  readonlyCall,
3278                                   bool                  tailCall,
3279                                   CorInfoIntrinsics*    pIntrinsicID)
3280 {
3281     bool mustExpand = false;
3282 #if COR_JIT_EE_VERSION > 460
3283     CorInfoIntrinsics intrinsicID = info.compCompHnd->getIntrinsicID(method, &mustExpand);
3284 #else
3285     CorInfoIntrinsics intrinsicID                                      = info.compCompHnd->getIntrinsicID(method);
3286 #endif
3287     *pIntrinsicID = intrinsicID;
3288
3289 #ifndef _TARGET_ARM_
3290     genTreeOps interlockedOperator;
3291 #endif
3292
3293     if (intrinsicID == CORINFO_INTRINSIC_StubHelpers_GetStubContext)
3294     {
3295         // must be done regardless of DbgCode and MinOpts
3296         return gtNewLclvNode(lvaStubArgumentVar, TYP_I_IMPL);
3297     }
3298 #ifdef _TARGET_64BIT_
3299     if (intrinsicID == CORINFO_INTRINSIC_StubHelpers_GetStubContextAddr)
3300     {
3301         // must be done regardless of DbgCode and MinOpts
3302         return gtNewOperNode(GT_ADDR, TYP_I_IMPL, gtNewLclvNode(lvaStubArgumentVar, TYP_I_IMPL));
3303     }
3304 #else
3305     assert(intrinsicID != CORINFO_INTRINSIC_StubHelpers_GetStubContextAddr);
3306 #endif
3307
3308     GenTreePtr retNode = nullptr;
3309
3310     //
3311     // We disable the inlining of instrinsics for MinOpts.
3312     //
3313     if (!mustExpand && (opts.compDbgCode || opts.MinOpts()))
3314     {
3315         *pIntrinsicID = CORINFO_INTRINSIC_Illegal;
3316         return retNode;
3317     }
3318
3319     // Currently we don't have CORINFO_INTRINSIC_Exp because it does not
3320     // seem to work properly for Infinity values, we don't do
3321     // CORINFO_INTRINSIC_Pow because it needs a Helper which we currently don't have
3322
3323     var_types callType = JITtype2varType(sig->retType);
3324
3325     /* First do the intrinsics which are always smaller than a call */
3326
3327     switch (intrinsicID)
3328     {
3329         GenTreePtr op1, op2;
3330
3331         case CORINFO_INTRINSIC_Sin:
3332         case CORINFO_INTRINSIC_Sqrt:
3333         case CORINFO_INTRINSIC_Abs:
3334         case CORINFO_INTRINSIC_Cos:
3335         case CORINFO_INTRINSIC_Round:
3336         case CORINFO_INTRINSIC_Cosh:
3337         case CORINFO_INTRINSIC_Sinh:
3338         case CORINFO_INTRINSIC_Tan:
3339         case CORINFO_INTRINSIC_Tanh:
3340         case CORINFO_INTRINSIC_Asin:
3341         case CORINFO_INTRINSIC_Acos:
3342         case CORINFO_INTRINSIC_Atan:
3343         case CORINFO_INTRINSIC_Atan2:
3344         case CORINFO_INTRINSIC_Log10:
3345         case CORINFO_INTRINSIC_Pow:
3346         case CORINFO_INTRINSIC_Exp:
3347         case CORINFO_INTRINSIC_Ceiling:
3348         case CORINFO_INTRINSIC_Floor:
3349
3350             // These are math intrinsics
3351
3352             assert(callType != TYP_STRUCT);
3353
3354             op1 = nullptr;
3355
3356 #if defined(LEGACY_BACKEND)
3357             if (IsTargetIntrinsic(intrinsicID))
3358 #elif !defined(_TARGET_X86_)
3359             // Intrinsics that are not implemented directly by target instructions will
3360             // be re-materialized as users calls in rationalizer. For prefixed tail calls,
3361             // don't do this optimization, because
3362             //  a) For back compatibility reasons on desktop.Net 4.6 / 4.6.1
3363             //  b) It will be non-trivial task or too late to re-materialize a surviving
3364             //     tail prefixed GT_INTRINSIC as tail call in rationalizer.
3365             if (!IsIntrinsicImplementedByUserCall(intrinsicID) || !tailCall)
3366 #else
3367             // On x86 RyuJIT, importing intrinsics that are implemented as user calls can cause incorrect calculation
3368             // of the depth of the stack if these intrinsics are used as arguments to another call. This causes bad
3369             // code generation for certain EH constructs.
3370             if (!IsIntrinsicImplementedByUserCall(intrinsicID))
3371 #endif
3372             {
3373                 switch (sig->numArgs)
3374                 {
3375                     case 1:
3376                         op1 = impPopStack().val;
3377
3378 #if FEATURE_X87_DOUBLES
3379
3380                         // X87 stack doesn't differentiate between float/double
3381                         // so it doesn't need a cast, but everybody else does
3382                         // Just double check it is at least a FP type
3383                         noway_assert(varTypeIsFloating(op1));
3384
3385 #else // FEATURE_X87_DOUBLES
3386
3387                         if (op1->TypeGet() != callType)
3388                         {
3389                             op1 = gtNewCastNode(callType, op1, callType);
3390                         }
3391
3392 #endif // FEATURE_X87_DOUBLES
3393
3394                         op1 = new (this, GT_INTRINSIC)
3395                             GenTreeIntrinsic(genActualType(callType), op1, intrinsicID, method);
3396                         break;
3397
3398                     case 2:
3399                         op2 = impPopStack().val;
3400                         op1 = impPopStack().val;
3401
3402 #if FEATURE_X87_DOUBLES
3403
3404                         // X87 stack doesn't differentiate between float/double
3405                         // so it doesn't need a cast, but everybody else does
3406                         // Just double check it is at least a FP type
3407                         noway_assert(varTypeIsFloating(op2));
3408                         noway_assert(varTypeIsFloating(op1));
3409
3410 #else // FEATURE_X87_DOUBLES
3411
3412                         if (op2->TypeGet() != callType)
3413                         {
3414                             op2 = gtNewCastNode(callType, op2, callType);
3415                         }
3416                         if (op1->TypeGet() != callType)
3417                         {
3418                             op1 = gtNewCastNode(callType, op1, callType);
3419                         }
3420
3421 #endif // FEATURE_X87_DOUBLES
3422
3423                         op1 = new (this, GT_INTRINSIC)
3424                             GenTreeIntrinsic(genActualType(callType), op1, op2, intrinsicID, method);
3425                         break;
3426
3427                     default:
3428                         NO_WAY("Unsupported number of args for Math Instrinsic");
3429                 }
3430
3431 #ifndef LEGACY_BACKEND
3432                 if (IsIntrinsicImplementedByUserCall(intrinsicID))
3433                 {
3434                     op1->gtFlags |= GTF_CALL;
3435                 }
3436 #endif
3437             }
3438
3439             retNode = op1;
3440             break;
3441
3442 #ifdef _TARGET_XARCH_
3443         // TODO-ARM-CQ: reenable treating Interlocked operation as intrinsic
3444         case CORINFO_INTRINSIC_InterlockedAdd32:
3445             interlockedOperator = GT_LOCKADD;
3446             goto InterlockedBinOpCommon;
3447         case CORINFO_INTRINSIC_InterlockedXAdd32:
3448             interlockedOperator = GT_XADD;
3449             goto InterlockedBinOpCommon;
3450         case CORINFO_INTRINSIC_InterlockedXchg32:
3451             interlockedOperator = GT_XCHG;
3452             goto InterlockedBinOpCommon;
3453
3454 #ifdef _TARGET_AMD64_
3455         case CORINFO_INTRINSIC_InterlockedAdd64:
3456             interlockedOperator = GT_LOCKADD;
3457             goto InterlockedBinOpCommon;
3458         case CORINFO_INTRINSIC_InterlockedXAdd64:
3459             interlockedOperator = GT_XADD;
3460             goto InterlockedBinOpCommon;
3461         case CORINFO_INTRINSIC_InterlockedXchg64:
3462             interlockedOperator = GT_XCHG;
3463             goto InterlockedBinOpCommon;
3464 #endif // _TARGET_AMD64_
3465
3466         InterlockedBinOpCommon:
3467             assert(callType != TYP_STRUCT);
3468             assert(sig->numArgs == 2);
3469
3470             op2 = impPopStack().val;
3471             op1 = impPopStack().val;
3472
3473             // This creates:
3474             //   val
3475             // XAdd
3476             //   addr
3477             //     field (for example)
3478             //
3479             // In the case where the first argument is the address of a local, we might
3480             // want to make this *not* make the var address-taken -- but atomic instructions
3481             // on a local are probably pretty useless anyway, so we probably don't care.
3482
3483             op1 = gtNewOperNode(interlockedOperator, genActualType(callType), op1, op2);
3484             op1->gtFlags |= GTF_GLOB_EFFECT;
3485             retNode = op1;
3486             break;
3487 #endif // _TARGET_XARCH_
3488
3489         case CORINFO_INTRINSIC_MemoryBarrier:
3490
3491             assert(sig->numArgs == 0);
3492
3493             op1 = new (this, GT_MEMORYBARRIER) GenTree(GT_MEMORYBARRIER, TYP_VOID);
3494             op1->gtFlags |= GTF_GLOB_EFFECT;
3495             retNode = op1;
3496             break;
3497
3498 #ifdef _TARGET_XARCH_
3499         // TODO-ARM-CQ: reenable treating InterlockedCmpXchg32 operation as intrinsic
3500         case CORINFO_INTRINSIC_InterlockedCmpXchg32:
3501 #ifdef _TARGET_AMD64_
3502         case CORINFO_INTRINSIC_InterlockedCmpXchg64:
3503 #endif
3504         {
3505             assert(callType != TYP_STRUCT);
3506             assert(sig->numArgs == 3);
3507             GenTreePtr op3;
3508
3509             op3 = impPopStack().val; // comparand
3510             op2 = impPopStack().val; // value
3511             op1 = impPopStack().val; // location
3512
3513             GenTreePtr node = new (this, GT_CMPXCHG) GenTreeCmpXchg(genActualType(callType), op1, op2, op3);
3514
3515             node->gtCmpXchg.gtOpLocation->gtFlags |= GTF_DONT_CSE;
3516             retNode = node;
3517             break;
3518         }
3519 #endif
3520
3521         case CORINFO_INTRINSIC_StringLength:
3522             op1 = impPopStack().val;
3523             if (!opts.MinOpts() && !opts.compDbgCode)
3524             {
3525                 GenTreeArrLen* arrLen =
3526                     new (this, GT_ARR_LENGTH) GenTreeArrLen(TYP_INT, op1, offsetof(CORINFO_String, stringLen));
3527                 op1 = arrLen;
3528             }
3529             else
3530             {
3531                 /* Create the expression "*(str_addr + stringLengthOffset)" */
3532                 op1 = gtNewOperNode(GT_ADD, TYP_BYREF, op1,
3533                                     gtNewIconNode(offsetof(CORINFO_String, stringLen), TYP_I_IMPL));
3534                 op1 = gtNewOperNode(GT_IND, TYP_INT, op1);
3535             }
3536             retNode = op1;
3537             break;
3538
3539         case CORINFO_INTRINSIC_StringGetChar:
3540             op2 = impPopStack().val;
3541             op1 = impPopStack().val;
3542             op1 = gtNewIndexRef(TYP_CHAR, op1, op2);
3543             op1->gtFlags |= GTF_INX_STRING_LAYOUT;
3544             retNode = op1;
3545             break;
3546
3547         case CORINFO_INTRINSIC_InitializeArray:
3548             retNode = impInitializeArrayIntrinsic(sig);
3549             break;
3550
3551         case CORINFO_INTRINSIC_Array_Address:
3552         case CORINFO_INTRINSIC_Array_Get:
3553         case CORINFO_INTRINSIC_Array_Set:
3554             retNode = impArrayAccessIntrinsic(clsHnd, sig, memberRef, readonlyCall, intrinsicID);
3555             break;
3556
3557         case CORINFO_INTRINSIC_GetTypeFromHandle:
3558             op1 = impStackTop(0).val;
3559             if (op1->gtOper == GT_CALL && (op1->gtCall.gtCallType == CT_HELPER) &&
3560                 gtIsTypeHandleToRuntimeTypeHelper(op1))
3561             {
3562                 op1 = impPopStack().val;
3563                 // Change call to return RuntimeType directly.
3564                 op1->gtType = TYP_REF;
3565                 retNode     = op1;
3566             }
3567             // Call the regular function.
3568             break;
3569
3570         case CORINFO_INTRINSIC_RTH_GetValueInternal:
3571             op1 = impStackTop(0).val;
3572             if (op1->gtOper == GT_CALL && (op1->gtCall.gtCallType == CT_HELPER) &&
3573                 gtIsTypeHandleToRuntimeTypeHelper(op1))
3574             {
3575                 // Old tree
3576                 // Helper-RuntimeTypeHandle -> TreeToGetNativeTypeHandle
3577                 //
3578                 // New tree
3579                 // TreeToGetNativeTypeHandle
3580
3581                 // Remove call to helper and return the native TypeHandle pointer that was the parameter
3582                 // to that helper.
3583
3584                 op1 = impPopStack().val;
3585
3586                 // Get native TypeHandle argument to old helper
3587                 op1 = op1->gtCall.gtCallArgs;
3588                 assert(op1->OperIsList());
3589                 assert(op1->gtOp.gtOp2 == nullptr);
3590                 op1     = op1->gtOp.gtOp1;
3591                 retNode = op1;
3592             }
3593             // Call the regular function.
3594             break;
3595
3596 #ifndef LEGACY_BACKEND
3597         case CORINFO_INTRINSIC_Object_GetType:
3598
3599             op1 = impPopStack().val;
3600             op1 = new (this, GT_INTRINSIC) GenTreeIntrinsic(genActualType(callType), op1, intrinsicID, method);
3601
3602             // Set the CALL flag to indicate that the operator is implemented by a call.
3603             // Set also the EXCEPTION flag because the native implementation of
3604             // CORINFO_INTRINSIC_Object_GetType intrinsic can throw NullReferenceException.
3605             op1->gtFlags |= (GTF_CALL | GTF_EXCEPT);
3606             retNode = op1;
3607             break;
3608 #endif
3609         // Implement ByReference Ctor.  This wraps the assignment of the ref into a byref-like field
3610         // in a value type.  The canonical example of this is Span<T>. In effect this is just a
3611         // substitution.  The parameter byref will be assigned into the newly allocated object.
3612         case CORINFO_INTRINSIC_ByReference_Ctor:
3613         {
3614             // Remove call to constructor and directly assign the byref passed
3615             // to the call to the first slot of the ByReference struct.
3616             op1                                    = impPopStack().val;
3617             GenTreePtr           thisptr           = newobjThis;
3618             CORINFO_FIELD_HANDLE fldHnd            = info.compCompHnd->getFieldInClass(clsHnd, 0);
3619             GenTreePtr           field             = gtNewFieldRef(TYP_BYREF, fldHnd, thisptr, 0, false);
3620             GenTreePtr           assign            = gtNewAssignNode(field, op1);
3621             GenTreePtr           byReferenceStruct = gtCloneExpr(thisptr->gtGetOp1());
3622             assert(byReferenceStruct != nullptr);
3623             impPushOnStack(byReferenceStruct, typeInfo(TI_STRUCT, clsHnd));
3624             retNode = assign;
3625             break;
3626         }
3627         // Implement ptr value getter for ByReference struct.
3628         case CORINFO_INTRINSIC_ByReference_Value:
3629         {
3630             op1                         = impPopStack().val;
3631             CORINFO_FIELD_HANDLE fldHnd = info.compCompHnd->getFieldInClass(clsHnd, 0);
3632             GenTreePtr           field  = gtNewFieldRef(TYP_BYREF, fldHnd, op1, 0, false);
3633             retNode                     = field;
3634             break;
3635         }
3636         default:
3637             /* Unknown intrinsic */
3638             break;
3639     }
3640
3641     if (mustExpand)
3642     {
3643         if (retNode == nullptr)
3644         {
3645             NO_WAY("JIT must expand the intrinsic!");
3646         }
3647     }
3648
3649     return retNode;
3650 }
3651
3652 /*****************************************************************************/
3653
3654 GenTreePtr Compiler::impArrayAccessIntrinsic(
3655     CORINFO_CLASS_HANDLE clsHnd, CORINFO_SIG_INFO* sig, int memberRef, bool readonlyCall, CorInfoIntrinsics intrinsicID)
3656 {
3657     /* If we are generating SMALL_CODE, we don't want to use intrinsics for
3658        the following, as it generates fatter code.
3659     */
3660
3661     if (compCodeOpt() == SMALL_CODE)
3662     {
3663         return nullptr;
3664     }
3665
3666     /* These intrinsics generate fatter (but faster) code and are only
3667        done if we don't need SMALL_CODE */
3668
3669     unsigned rank = (intrinsicID == CORINFO_INTRINSIC_Array_Set) ? (sig->numArgs - 1) : sig->numArgs;
3670
3671     // The rank 1 case is special because it has to handle two array formats
3672     // we will simply not do that case
3673     if (rank > GT_ARR_MAX_RANK || rank <= 1)
3674     {
3675         return nullptr;
3676     }
3677
3678     CORINFO_CLASS_HANDLE arrElemClsHnd = nullptr;
3679     var_types            elemType      = JITtype2varType(info.compCompHnd->getChildType(clsHnd, &arrElemClsHnd));
3680
3681     // For the ref case, we will only be able to inline if the types match
3682     // (verifier checks for this, we don't care for the nonverified case and the
3683     // type is final (so we don't need to do the cast)
3684     if ((intrinsicID != CORINFO_INTRINSIC_Array_Get) && !readonlyCall && varTypeIsGC(elemType))
3685     {
3686         // Get the call site signature
3687         CORINFO_SIG_INFO LocalSig;
3688         eeGetCallSiteSig(memberRef, info.compScopeHnd, impTokenLookupContextHandle, &LocalSig);
3689         assert(LocalSig.hasThis());
3690
3691         CORINFO_CLASS_HANDLE actualElemClsHnd;
3692
3693         if (intrinsicID == CORINFO_INTRINSIC_Array_Set)
3694         {
3695             // Fetch the last argument, the one that indicates the type we are setting.
3696             CORINFO_ARG_LIST_HANDLE argType = LocalSig.args;
3697             for (unsigned r = 0; r < rank; r++)
3698             {
3699                 argType = info.compCompHnd->getArgNext(argType);
3700             }
3701
3702             typeInfo argInfo = verParseArgSigToTypeInfo(&LocalSig, argType);
3703             actualElemClsHnd = argInfo.GetClassHandle();
3704         }
3705         else
3706         {
3707             assert(intrinsicID == CORINFO_INTRINSIC_Array_Address);
3708
3709             // Fetch the return type
3710             typeInfo retInfo = verMakeTypeInfo(LocalSig.retType, LocalSig.retTypeClass);
3711             assert(retInfo.IsByRef());
3712             actualElemClsHnd = retInfo.GetClassHandle();
3713         }
3714
3715         // if it's not final, we can't do the optimization
3716         if (!(info.compCompHnd->getClassAttribs(actualElemClsHnd) & CORINFO_FLG_FINAL))
3717         {
3718             return nullptr;
3719         }
3720     }
3721
3722     unsigned arrayElemSize;
3723     if (elemType == TYP_STRUCT)
3724     {
3725         assert(arrElemClsHnd);
3726
3727         arrayElemSize = info.compCompHnd->getClassSize(arrElemClsHnd);
3728     }
3729     else
3730     {
3731         arrayElemSize = genTypeSize(elemType);
3732     }
3733
3734     if ((unsigned char)arrayElemSize != arrayElemSize)
3735     {
3736         // arrayElemSize would be truncated as an unsigned char.
3737         // This means the array element is too large. Don't do the optimization.
3738         return nullptr;
3739     }
3740
3741     GenTreePtr val = nullptr;
3742
3743     if (intrinsicID == CORINFO_INTRINSIC_Array_Set)
3744     {
3745         // Assignment of a struct is more work, and there are more gets than sets.
3746         if (elemType == TYP_STRUCT)
3747         {
3748             return nullptr;
3749         }
3750
3751         val = impPopStack().val;
3752         assert(genActualType(elemType) == genActualType(val->gtType) ||
3753                (elemType == TYP_FLOAT && val->gtType == TYP_DOUBLE) ||
3754                (elemType == TYP_INT && val->gtType == TYP_BYREF) ||
3755                (elemType == TYP_DOUBLE && val->gtType == TYP_FLOAT));
3756     }
3757
3758     noway_assert((unsigned char)GT_ARR_MAX_RANK == GT_ARR_MAX_RANK);
3759
3760     GenTreePtr inds[GT_ARR_MAX_RANK];
3761     for (unsigned k = rank; k > 0; k--)
3762     {
3763         inds[k - 1] = impPopStack().val;
3764     }
3765
3766     GenTreePtr arr = impPopStack().val;
3767     assert(arr->gtType == TYP_REF);
3768
3769     GenTreePtr arrElem =
3770         new (this, GT_ARR_ELEM) GenTreeArrElem(TYP_BYREF, arr, static_cast<unsigned char>(rank),
3771                                                static_cast<unsigned char>(arrayElemSize), elemType, &inds[0]);
3772
3773     if (intrinsicID != CORINFO_INTRINSIC_Array_Address)
3774     {
3775         arrElem = gtNewOperNode(GT_IND, elemType, arrElem);
3776     }
3777
3778     if (intrinsicID == CORINFO_INTRINSIC_Array_Set)
3779     {
3780         assert(val != nullptr);
3781         return gtNewAssignNode(arrElem, val);
3782     }
3783     else
3784     {
3785         return arrElem;
3786     }
3787 }
3788
3789 BOOL Compiler::verMergeEntryStates(BasicBlock* block, bool* changed)
3790 {
3791     unsigned i;
3792
3793     // do some basic checks first
3794     if (block->bbStackDepthOnEntry() != verCurrentState.esStackDepth)
3795     {
3796         return FALSE;
3797     }
3798
3799     if (verCurrentState.esStackDepth > 0)
3800     {
3801         // merge stack types
3802         StackEntry* parentStack = block->bbStackOnEntry();
3803         StackEntry* childStack  = verCurrentState.esStack;
3804
3805         for (i = 0; i < verCurrentState.esStackDepth; i++, parentStack++, childStack++)
3806         {
3807             if (tiMergeToCommonParent(&parentStack->seTypeInfo, &childStack->seTypeInfo, changed) == FALSE)
3808             {
3809                 return FALSE;
3810             }
3811         }
3812     }
3813
3814     // merge initialization status of this ptr
3815
3816     if (verTrackObjCtorInitState)
3817     {
3818         // If we're tracking the CtorInitState, then it must not be unknown in the current state.
3819         assert(verCurrentState.thisInitialized != TIS_Bottom);
3820
3821         // If the successor block's thisInit state is unknown, copy it from the current state.
3822         if (block->bbThisOnEntry() == TIS_Bottom)
3823         {
3824             *changed = true;
3825             verSetThisInit(block, verCurrentState.thisInitialized);
3826         }
3827         else if (verCurrentState.thisInitialized != block->bbThisOnEntry())
3828         {
3829             if (block->bbThisOnEntry() != TIS_Top)
3830             {
3831                 *changed = true;
3832                 verSetThisInit(block, TIS_Top);
3833
3834                 if (block->bbFlags & BBF_FAILED_VERIFICATION)
3835                 {
3836                     // The block is bad. Control can flow through the block to any handler that catches the
3837                     // verification exception, but the importer ignores bad blocks and therefore won't model
3838                     // this flow in the normal way. To complete the merge into the bad block, the new state
3839                     // needs to be manually pushed to the handlers that may be reached after the verification
3840                     // exception occurs.
3841                     //
3842                     // Usually, the new state was already propagated to the relevant handlers while processing
3843                     // the predecessors of the bad block. The exception is when the bad block is at the start
3844                     // of a try region, meaning it is protected by additional handlers that do not protect its
3845                     // predecessors.
3846                     //
3847                     if (block->hasTryIndex() && ((block->bbFlags & BBF_TRY_BEG) != 0))
3848                     {
3849                         // Push TIS_Top to the handlers that protect the bad block. Note that this can cause
3850                         // recursive calls back into this code path (if successors of the current bad block are
3851                         // also bad blocks).
3852                         //
3853                         ThisInitState origTIS           = verCurrentState.thisInitialized;
3854                         verCurrentState.thisInitialized = TIS_Top;
3855                         impVerifyEHBlock(block, true);
3856                         verCurrentState.thisInitialized = origTIS;
3857                     }
3858                 }
3859             }
3860         }
3861     }
3862     else
3863     {
3864         assert(verCurrentState.thisInitialized == TIS_Bottom && block->bbThisOnEntry() == TIS_Bottom);
3865     }
3866
3867     return TRUE;
3868 }
3869
3870 /*****************************************************************************
3871  * 'logMsg' is true if a log message needs to be logged. false if the caller has
3872  *   already logged it (presumably in a more detailed fashion than done here)
3873  * 'bVerificationException' is true for a verification exception, false for a
3874  *   "call unauthorized by host" exception.
3875  */
3876
3877 void Compiler::verConvertBBToThrowVerificationException(BasicBlock* block DEBUGARG(bool logMsg))
3878 {
3879     block->bbJumpKind = BBJ_THROW;
3880     block->bbFlags |= BBF_FAILED_VERIFICATION;
3881
3882     impCurStmtOffsSet(block->bbCodeOffs);
3883
3884 #ifdef DEBUG
3885     // we need this since BeginTreeList asserts otherwise
3886     impTreeList = impTreeLast = nullptr;
3887     block->bbFlags &= ~BBF_IMPORTED;
3888
3889     if (logMsg)
3890     {
3891         JITLOG((LL_ERROR, "Verification failure: while compiling %s near IL offset %x..%xh \n", info.compFullName,
3892                 block->bbCodeOffs, block->bbCodeOffsEnd));
3893         if (verbose)
3894         {
3895             printf("\n\nVerification failure: %s near IL %xh \n", info.compFullName, block->bbCodeOffs);
3896         }
3897     }
3898
3899     if (JitConfig.DebugBreakOnVerificationFailure())
3900     {
3901         DebugBreak();
3902     }
3903 #endif
3904
3905     impBeginTreeList();
3906
3907     // if the stack is non-empty evaluate all the side-effects
3908     if (verCurrentState.esStackDepth > 0)
3909     {
3910         impEvalSideEffects();
3911     }
3912     assert(verCurrentState.esStackDepth == 0);
3913
3914     GenTreePtr op1 = gtNewHelperCallNode(CORINFO_HELP_VERIFICATION, TYP_VOID, GTF_EXCEPT,
3915                                          gtNewArgList(gtNewIconNode(block->bbCodeOffs)));
3916     // verCurrentState.esStackDepth = 0;
3917     impAppendTree(op1, (unsigned)CHECK_SPILL_NONE, impCurStmtOffs);
3918
3919     // The inliner is not able to handle methods that require throw block, so
3920     // make sure this methods never gets inlined.
3921     info.compCompHnd->setMethodAttribs(info.compMethodHnd, CORINFO_FLG_BAD_INLINEE);
3922 }
3923
3924 /*****************************************************************************
3925  *
3926  */
3927 void Compiler::verHandleVerificationFailure(BasicBlock* block DEBUGARG(bool logMsg))
3928
3929 {
3930     // In AMD64, for historical reasons involving design limitations of JIT64, the VM has a
3931     // slightly different mechanism in which it calls the JIT to perform IL verification:
3932     // in the case of transparent methods the VM calls for a predicate IsVerifiable()
3933     // that consists of calling the JIT with the IMPORT_ONLY flag and with the IL verify flag on.
3934     // If the JIT determines the method is not verifiable, it should raise the exception to the VM and let
3935     // it bubble up until reported by the runtime.  Currently in RyuJIT, this method doesn't bubble
3936     // up the exception, instead it embeds a throw inside the offending basic block and lets this
3937     // to fail upon runtime of the jitted method.
3938     //
3939     // For AMD64 we don't want this behavior when the JIT has been called only for verification (i.e.
3940     // with the IMPORT_ONLY and IL Verification flag set) because this won't actually generate code,
3941     // just try to find out whether to fail this method before even actually jitting it.  So, in case
3942     // we detect these two conditions, instead of generating a throw statement inside the offending
3943     // basic block, we immediately fail to JIT and notify the VM to make the IsVerifiable() predicate
3944     // to return false and make RyuJIT behave the same way JIT64 does.
3945     //
3946     // The rationale behind this workaround is to avoid modifying the VM and maintain compatibility between JIT64 and
3947     // RyuJIT for the time being until we completely replace JIT64.
3948     // TODO-ARM64-Cleanup:  We probably want to actually modify the VM in the future to avoid the unnecesary two passes.
3949
3950     // In AMD64 we must make sure we're behaving the same way as JIT64, meaning we should only raise the verification
3951     // exception if we are only importing and verifying.  The method verNeedsVerification() can also modify the
3952     // tiVerificationNeeded flag in the case it determines it can 'skip verification' during importation and defer it
3953     // to a runtime check. That's why we must assert one or the other (since the flag tiVerificationNeeded can
3954     // be turned off during importation).
3955     CLANG_FORMAT_COMMENT_ANCHOR;
3956
3957 #ifdef _TARGET_64BIT_
3958
3959 #ifdef DEBUG
3960     bool canSkipVerificationResult =
3961         info.compCompHnd->canSkipMethodVerification(info.compMethodHnd) != CORINFO_VERIFICATION_CANNOT_SKIP;
3962     assert(tiVerificationNeeded || canSkipVerificationResult);
3963 #endif // DEBUG
3964
3965     // Add the non verifiable flag to the compiler
3966     if (opts.jitFlags->IsSet(JitFlags::JIT_FLAG_IMPORT_ONLY))
3967     {
3968         tiIsVerifiableCode = FALSE;
3969     }
3970 #endif //_TARGET_64BIT_
3971     verResetCurrentState(block, &verCurrentState);
3972     verConvertBBToThrowVerificationException(block DEBUGARG(logMsg));
3973
3974 #ifdef DEBUG
3975     impNoteLastILoffs(); // Remember at which BC offset the tree was finished
3976 #endif                   // DEBUG
3977 }
3978
3979 /******************************************************************************/
3980 typeInfo Compiler::verMakeTypeInfo(CorInfoType ciType, CORINFO_CLASS_HANDLE clsHnd)
3981 {
3982     assert(ciType < CORINFO_TYPE_COUNT);
3983
3984     typeInfo tiResult;
3985     switch (ciType)
3986     {
3987         case CORINFO_TYPE_STRING:
3988         case CORINFO_TYPE_CLASS:
3989             tiResult = verMakeTypeInfo(clsHnd);
3990             if (!tiResult.IsType(TI_REF))
3991             { // type must be consistent with element type
3992                 return typeInfo();
3993             }
3994             break;
3995
3996 #ifdef _TARGET_64BIT_
3997         case CORINFO_TYPE_NATIVEINT:
3998         case CORINFO_TYPE_NATIVEUINT:
3999             if (clsHnd)
4000             {
4001                 // If we have more precise information, use it
4002                 return verMakeTypeInfo(clsHnd);
4003             }
4004             else
4005             {
4006                 return typeInfo::nativeInt();
4007             }
4008             break;
4009 #endif // _TARGET_64BIT_
4010
4011         case CORINFO_TYPE_VALUECLASS:
4012         case CORINFO_TYPE_REFANY:
4013             tiResult = verMakeTypeInfo(clsHnd);
4014             // type must be constant with element type;
4015             if (!tiResult.IsValueClass())
4016             {
4017                 return typeInfo();
4018             }
4019             break;
4020         case CORINFO_TYPE_VAR:
4021             return verMakeTypeInfo(clsHnd);
4022
4023         case CORINFO_TYPE_PTR: // for now, pointers are treated as an error
4024         case CORINFO_TYPE_VOID:
4025             return typeInfo();
4026             break;
4027
4028         case CORINFO_TYPE_BYREF:
4029         {
4030             CORINFO_CLASS_HANDLE childClassHandle;
4031             CorInfoType          childType = info.compCompHnd->getChildType(clsHnd, &childClassHandle);
4032             return ByRef(verMakeTypeInfo(childType, childClassHandle));
4033         }
4034         break;
4035
4036         default:
4037             if (clsHnd)
4038             { // If we have more precise information, use it
4039                 return typeInfo(TI_STRUCT, clsHnd);
4040             }
4041             else
4042             {
4043                 return typeInfo(JITtype2tiType(ciType));
4044             }
4045     }
4046     return tiResult;
4047 }
4048
4049 /******************************************************************************/
4050
4051 typeInfo Compiler::verMakeTypeInfo(CORINFO_CLASS_HANDLE clsHnd, bool bashStructToRef /* = false */)
4052 {
4053     if (clsHnd == nullptr)
4054     {
4055         return typeInfo();
4056     }
4057
4058     // Byrefs should only occur in method and local signatures, which are accessed
4059     // using ICorClassInfo and ICorClassInfo.getChildType.
4060     // So findClass() and getClassAttribs() should not be called for byrefs
4061
4062     if (JITtype2varType(info.compCompHnd->asCorInfoType(clsHnd)) == TYP_BYREF)
4063     {
4064         assert(!"Did findClass() return a Byref?");
4065         return typeInfo();
4066     }
4067
4068     unsigned attribs = info.compCompHnd->getClassAttribs(clsHnd);
4069
4070     if (attribs & CORINFO_FLG_VALUECLASS)
4071     {
4072         CorInfoType t = info.compCompHnd->getTypeForPrimitiveValueClass(clsHnd);
4073
4074         // Meta-data validation should ensure that CORINF_TYPE_BYREF should
4075         // not occur here, so we may want to change this to an assert instead.
4076         if (t == CORINFO_TYPE_VOID || t == CORINFO_TYPE_BYREF || t == CORINFO_TYPE_PTR)
4077         {
4078             return typeInfo();
4079         }
4080
4081 #ifdef _TARGET_64BIT_
4082         if (t == CORINFO_TYPE_NATIVEINT || t == CORINFO_TYPE_NATIVEUINT)
4083         {
4084             return typeInfo::nativeInt();
4085         }
4086 #endif // _TARGET_64BIT_
4087
4088         if (t != CORINFO_TYPE_UNDEF)
4089         {
4090             return (typeInfo(JITtype2tiType(t)));
4091         }
4092         else if (bashStructToRef)
4093         {
4094             return (typeInfo(TI_REF, clsHnd));
4095         }
4096         else
4097         {
4098             return (typeInfo(TI_STRUCT, clsHnd));
4099         }
4100     }
4101     else if (attribs & CORINFO_FLG_GENERIC_TYPE_VARIABLE)
4102     {
4103         // See comment in _typeInfo.h for why we do it this way.
4104         return (typeInfo(TI_REF, clsHnd, true));
4105     }
4106     else
4107     {
4108         return (typeInfo(TI_REF, clsHnd));
4109     }
4110 }
4111
4112 /******************************************************************************/
4113 BOOL Compiler::verIsSDArray(typeInfo ti)
4114 {
4115     if (ti.IsNullObjRef())
4116     { // nulls are SD arrays
4117         return TRUE;
4118     }
4119
4120     if (!ti.IsType(TI_REF))
4121     {
4122         return FALSE;
4123     }
4124
4125     if (!info.compCompHnd->isSDArray(ti.GetClassHandleForObjRef()))
4126     {
4127         return FALSE;
4128     }
4129     return TRUE;
4130 }
4131
4132 /******************************************************************************/
4133 /* Given 'arrayObjectType' which is an array type, fetch the element type. */
4134 /* Returns an error type if anything goes wrong */
4135
4136 typeInfo Compiler::verGetArrayElemType(typeInfo arrayObjectType)
4137 {
4138     assert(!arrayObjectType.IsNullObjRef()); // you need to check for null explictly since that is a success case
4139
4140     if (!verIsSDArray(arrayObjectType))
4141     {
4142         return typeInfo();
4143     }
4144
4145     CORINFO_CLASS_HANDLE childClassHandle = nullptr;
4146     CorInfoType ciType = info.compCompHnd->getChildType(arrayObjectType.GetClassHandleForObjRef(), &childClassHandle);
4147
4148     return verMakeTypeInfo(ciType, childClassHandle);
4149 }
4150
4151 /*****************************************************************************
4152  */
4153 typeInfo Compiler::verParseArgSigToTypeInfo(CORINFO_SIG_INFO* sig, CORINFO_ARG_LIST_HANDLE args)
4154 {
4155     CORINFO_CLASS_HANDLE classHandle;
4156     CorInfoType          ciType = strip(info.compCompHnd->getArgType(sig, args, &classHandle));
4157
4158     var_types type = JITtype2varType(ciType);
4159     if (varTypeIsGC(type))
4160     {
4161         // For efficiency, getArgType only returns something in classHandle for
4162         // value types.  For other types that have addition type info, you
4163         // have to call back explicitly
4164         classHandle = info.compCompHnd->getArgClass(sig, args);
4165         if (!classHandle)
4166         {
4167             NO_WAY("Could not figure out Class specified in argument or local signature");
4168         }
4169     }
4170
4171     return verMakeTypeInfo(ciType, classHandle);
4172 }
4173
4174 /*****************************************************************************/
4175
4176 // This does the expensive check to figure out whether the method
4177 // needs to be verified. It is called only when we fail verification,
4178 // just before throwing the verification exception.
4179
4180 BOOL Compiler::verNeedsVerification()
4181 {
4182     // If we have previously determined that verification is NOT needed
4183     // (for example in Compiler::compCompile), that means verification is really not needed.
4184     // Return the same decision we made before.
4185     // (Note: This literally means that tiVerificationNeeded can never go from 0 to 1.)
4186
4187     if (!tiVerificationNeeded)
4188     {
4189         return tiVerificationNeeded;
4190     }
4191
4192     assert(tiVerificationNeeded);
4193
4194     // Ok, we haven't concluded that verification is NOT needed. Consult the EE now to
4195     // obtain the answer.
4196     CorInfoCanSkipVerificationResult canSkipVerificationResult =
4197         info.compCompHnd->canSkipMethodVerification(info.compMethodHnd);
4198
4199     // canSkipVerification will return one of the following three values:
4200     //    CORINFO_VERIFICATION_CANNOT_SKIP = 0,       // Cannot skip verification during jit time.
4201     //    CORINFO_VERIFICATION_CAN_SKIP = 1,          // Can skip verification during jit time.
4202     //    CORINFO_VERIFICATION_RUNTIME_CHECK = 2,     // Skip verification during jit time,
4203     //     but need to insert a callout to the VM to ask during runtime
4204     //     whether to skip verification or not.
4205
4206     // Set tiRuntimeCalloutNeeded if canSkipVerification() instructs us to insert a callout for runtime check
4207     if (canSkipVerificationResult == CORINFO_VERIFICATION_RUNTIME_CHECK)
4208     {
4209         tiRuntimeCalloutNeeded = true;
4210     }
4211
4212     if (canSkipVerificationResult == CORINFO_VERIFICATION_DONT_JIT)
4213     {
4214         // Dev10 706080 - Testers don't like the assert, so just silence it
4215         // by not using the macros that invoke debugAssert.
4216         badCode();
4217     }
4218
4219     // When tiVerificationNeeded is true, JIT will do the verification during JIT time.
4220     // The following line means we will NOT do jit time verification if canSkipVerification
4221     // returns CORINFO_VERIFICATION_CAN_SKIP or CORINFO_VERIFICATION_RUNTIME_CHECK.
4222     tiVerificationNeeded = (canSkipVerificationResult == CORINFO_VERIFICATION_CANNOT_SKIP);
4223     return tiVerificationNeeded;
4224 }
4225
4226 BOOL Compiler::verIsByRefLike(const typeInfo& ti)
4227 {
4228     if (ti.IsByRef())
4229     {
4230         return TRUE;
4231     }
4232     if (!ti.IsType(TI_STRUCT))
4233     {
4234         return FALSE;
4235     }
4236     return info.compCompHnd->getClassAttribs(ti.GetClassHandleForValueClass()) & CORINFO_FLG_CONTAINS_STACK_PTR;
4237 }
4238
4239 BOOL Compiler::verIsSafeToReturnByRef(const typeInfo& ti)
4240 {
4241     if (ti.IsPermanentHomeByRef())
4242     {
4243         return TRUE;
4244     }
4245     else
4246     {
4247         return FALSE;
4248     }
4249 }
4250
4251 BOOL Compiler::verIsBoxable(const typeInfo& ti)
4252 {
4253     return (ti.IsPrimitiveType() || ti.IsObjRef() // includes boxed generic type variables
4254             || ti.IsUnboxedGenericTypeVar() ||
4255             (ti.IsType(TI_STRUCT) &&
4256              // exclude byreflike structs
4257              !(info.compCompHnd->getClassAttribs(ti.GetClassHandleForValueClass()) & CORINFO_FLG_CONTAINS_STACK_PTR)));
4258 }
4259
4260 // Is it a boxed value type?
4261 bool Compiler::verIsBoxedValueType(typeInfo ti)
4262 {
4263     if (ti.GetType() == TI_REF)
4264     {
4265         CORINFO_CLASS_HANDLE clsHnd = ti.GetClassHandleForObjRef();
4266         return !!eeIsValueClass(clsHnd);
4267     }
4268     else
4269     {
4270         return false;
4271     }
4272 }
4273
4274 /*****************************************************************************
4275  *
4276  *  Check if a TailCall is legal.
4277  */
4278
4279 bool Compiler::verCheckTailCallConstraint(
4280     OPCODE                  opcode,
4281     CORINFO_RESOLVED_TOKEN* pResolvedToken,
4282     CORINFO_RESOLVED_TOKEN* pConstrainedResolvedToken, // Is this a "constrained." call on a type parameter?
4283     bool                    speculative                // If true, won't throw if verificatoin fails. Instead it will
4284                                                        // return false to the caller.
4285                                                        // If false, it will throw.
4286     )
4287 {
4288     DWORD            mflags;
4289     CORINFO_SIG_INFO sig;
4290     unsigned int     popCount = 0; // we can't pop the stack since impImportCall needs it, so
4291                                    // this counter is used to keep track of how many items have been
4292                                    // virtually popped
4293
4294     CORINFO_METHOD_HANDLE methodHnd       = nullptr;
4295     CORINFO_CLASS_HANDLE  methodClassHnd  = nullptr;
4296     unsigned              methodClassFlgs = 0;
4297
4298     assert(impOpcodeIsCallOpcode(opcode));
4299
4300     if (compIsForInlining())
4301     {
4302         return false;
4303     }
4304
4305     // for calli, VerifyOrReturn that this is not a virtual method
4306     if (opcode == CEE_CALLI)
4307     {
4308         /* Get the call sig */
4309         eeGetSig(pResolvedToken->token, info.compScopeHnd, impTokenLookupContextHandle, &sig);
4310
4311         // We don't know the target method, so we have to infer the flags, or
4312         // assume the worst-case.
4313         mflags = (sig.callConv & CORINFO_CALLCONV_HASTHIS) ? 0 : CORINFO_FLG_STATIC;
4314     }
4315     else
4316     {
4317         methodHnd = pResolvedToken->hMethod;
4318
4319         mflags = info.compCompHnd->getMethodAttribs(methodHnd);
4320
4321         // When verifying generic code we pair the method handle with its
4322         // owning class to get the exact method signature.
4323         methodClassHnd = pResolvedToken->hClass;
4324         assert(methodClassHnd);
4325
4326         eeGetMethodSig(methodHnd, &sig, methodClassHnd);
4327
4328         // opcode specific check
4329         methodClassFlgs = info.compCompHnd->getClassAttribs(methodClassHnd);
4330     }
4331
4332     // We must have got the methodClassHnd if opcode is not CEE_CALLI
4333     assert((methodHnd != nullptr && methodClassHnd != nullptr) || opcode == CEE_CALLI);
4334
4335     if ((sig.callConv & CORINFO_CALLCONV_MASK) == CORINFO_CALLCONV_VARARG)
4336     {
4337         eeGetCallSiteSig(pResolvedToken->token, info.compScopeHnd, impTokenLookupContextHandle, &sig);
4338     }
4339
4340     // check compatibility of the arguments
4341     unsigned int argCount;
4342     argCount = sig.numArgs;
4343     CORINFO_ARG_LIST_HANDLE args;
4344     args = sig.args;
4345     while (argCount--)
4346     {
4347         typeInfo tiDeclared = verParseArgSigToTypeInfo(&sig, args).NormaliseForStack();
4348
4349         // check that the argument is not a byref for tailcalls
4350         VerifyOrReturnSpeculative(!verIsByRefLike(tiDeclared), "tailcall on byrefs", speculative);
4351
4352         // For unsafe code, we might have parameters containing pointer to the stack location.
4353         // Disallow the tailcall for this kind.
4354         CORINFO_CLASS_HANDLE classHandle;
4355         CorInfoType          ciType = strip(info.compCompHnd->getArgType(&sig, args, &classHandle));
4356         VerifyOrReturnSpeculative(ciType != CORINFO_TYPE_PTR, "tailcall on CORINFO_TYPE_PTR", speculative);
4357
4358         args = info.compCompHnd->getArgNext(args);
4359     }
4360
4361     // update popCount
4362     popCount += sig.numArgs;
4363
4364     // check for 'this' which is on non-static methods, not called via NEWOBJ
4365     if (!(mflags & CORINFO_FLG_STATIC))
4366     {
4367         // Always update the popCount.
4368         // This is crucial for the stack calculation to be correct.
4369         typeInfo tiThis = impStackTop(popCount).seTypeInfo;
4370         popCount++;
4371
4372         if (opcode == CEE_CALLI)
4373         {
4374             // For CALLI, we don't know the methodClassHnd. Therefore, let's check the "this" object
4375             // on the stack.
4376             if (tiThis.IsValueClass())
4377             {
4378                 tiThis.MakeByRef();
4379             }
4380             VerifyOrReturnSpeculative(!verIsByRefLike(tiThis), "byref in tailcall", speculative);
4381         }
4382         else
4383         {
4384             // Check type compatibility of the this argument
4385             typeInfo tiDeclaredThis = verMakeTypeInfo(methodClassHnd);
4386             if (tiDeclaredThis.IsValueClass())
4387             {
4388                 tiDeclaredThis.MakeByRef();
4389             }
4390
4391             VerifyOrReturnSpeculative(!verIsByRefLike(tiDeclaredThis), "byref in tailcall", speculative);
4392         }
4393     }
4394
4395     // Tail calls on constrained calls should be illegal too:
4396     // when instantiated at a value type, a constrained call may pass the address of a stack allocated value
4397     VerifyOrReturnSpeculative(!pConstrainedResolvedToken, "byref in constrained tailcall", speculative);
4398
4399     // Get the exact view of the signature for an array method
4400     if (sig.retType != CORINFO_TYPE_VOID)
4401     {
4402         if (methodClassFlgs & CORINFO_FLG_ARRAY)
4403         {
4404             assert(opcode != CEE_CALLI);
4405             eeGetCallSiteSig(pResolvedToken->token, info.compScopeHnd, impTokenLookupContextHandle, &sig);
4406         }
4407     }
4408
4409     typeInfo tiCalleeRetType = verMakeTypeInfo(sig.retType, sig.retTypeClass);
4410     typeInfo tiCallerRetType =
4411         verMakeTypeInfo(info.compMethodInfo->args.retType, info.compMethodInfo->args.retTypeClass);
4412
4413     // void return type gets morphed into the error type, so we have to treat them specially here
4414     if (sig.retType == CORINFO_TYPE_VOID)
4415     {
4416         VerifyOrReturnSpeculative(info.compMethodInfo->args.retType == CORINFO_TYPE_VOID, "tailcall return mismatch",
4417                                   speculative);
4418     }
4419     else
4420     {
4421         VerifyOrReturnSpeculative(tiCompatibleWith(NormaliseForStack(tiCalleeRetType),
4422                                                    NormaliseForStack(tiCallerRetType), true),
4423                                   "tailcall return mismatch", speculative);
4424     }
4425
4426     // for tailcall, stack must be empty
4427     VerifyOrReturnSpeculative(verCurrentState.esStackDepth == popCount, "stack non-empty on tailcall", speculative);
4428
4429     return true; // Yes, tailcall is legal
4430 }
4431
4432 /*****************************************************************************
4433  *
4434  *  Checks the IL verification rules for the call
4435  */
4436
4437 void Compiler::verVerifyCall(OPCODE                  opcode,
4438                              CORINFO_RESOLVED_TOKEN* pResolvedToken,
4439                              CORINFO_RESOLVED_TOKEN* pConstrainedResolvedToken,
4440                              bool                    tailCall,
4441                              bool                    readonlyCall,
4442                              const BYTE*             delegateCreateStart,
4443                              const BYTE*             codeAddr,
4444                              CORINFO_CALL_INFO* callInfo DEBUGARG(const char* methodName))
4445 {
4446     DWORD             mflags;
4447     CORINFO_SIG_INFO* sig      = nullptr;
4448     unsigned int      popCount = 0; // we can't pop the stack since impImportCall needs it, so
4449                                     // this counter is used to keep track of how many items have been
4450                                     // virtually popped
4451
4452     // for calli, VerifyOrReturn that this is not a virtual method
4453     if (opcode == CEE_CALLI)
4454     {
4455         Verify(false, "Calli not verifiable");
4456         return;
4457     }
4458
4459     //<NICE> It would be nice to cache the rest of it, but eeFindMethod is the big ticket item.
4460     mflags = callInfo->verMethodFlags;
4461
4462     sig = &callInfo->verSig;
4463
4464     if ((sig->callConv & CORINFO_CALLCONV_MASK) == CORINFO_CALLCONV_VARARG)
4465     {
4466         eeGetCallSiteSig(pResolvedToken->token, pResolvedToken->tokenScope, pResolvedToken->tokenContext, sig);
4467     }
4468
4469     // opcode specific check
4470     unsigned methodClassFlgs = callInfo->classFlags;
4471     switch (opcode)
4472     {
4473         case CEE_CALLVIRT:
4474             // cannot do callvirt on valuetypes
4475             VerifyOrReturn(!(methodClassFlgs & CORINFO_FLG_VALUECLASS), "callVirt on value class");
4476             VerifyOrReturn(sig->hasThis(), "CallVirt on static method");
4477             break;
4478
4479         case CEE_NEWOBJ:
4480         {
4481             assert(!tailCall); // Importer should not allow this
4482             VerifyOrReturn((mflags & CORINFO_FLG_CONSTRUCTOR) && !(mflags & CORINFO_FLG_STATIC),
4483                            "newobj must be on instance");
4484
4485             if (methodClassFlgs & CORINFO_FLG_DELEGATE)
4486             {
4487                 VerifyOrReturn(sig->numArgs == 2, "wrong number args to delegate ctor");
4488                 typeInfo tiDeclaredObj = verParseArgSigToTypeInfo(sig, sig->args).NormaliseForStack();
4489                 typeInfo tiDeclaredFtn =
4490                     verParseArgSigToTypeInfo(sig, info.compCompHnd->getArgNext(sig->args)).NormaliseForStack();
4491                 VerifyOrReturn(tiDeclaredFtn.IsNativeIntType(), "ftn arg needs to be a native int type");
4492
4493                 assert(popCount == 0);
4494                 typeInfo tiActualObj = impStackTop(1).seTypeInfo;
4495                 typeInfo tiActualFtn = impStackTop(0).seTypeInfo;
4496
4497                 VerifyOrReturn(tiActualFtn.IsMethod(), "delegate needs method as first arg");
4498                 VerifyOrReturn(tiCompatibleWith(tiActualObj, tiDeclaredObj, true), "delegate object type mismatch");
4499                 VerifyOrReturn(tiActualObj.IsNullObjRef() || tiActualObj.IsType(TI_REF),
4500                                "delegate object type mismatch");
4501
4502                 CORINFO_CLASS_HANDLE objTypeHandle =
4503                     tiActualObj.IsNullObjRef() ? nullptr : tiActualObj.GetClassHandleForObjRef();
4504
4505                 // the method signature must be compatible with the delegate's invoke method
4506
4507                 // check that for virtual functions, the type of the object used to get the
4508                 // ftn ptr is the same as the type of the object passed to the delegate ctor.
4509                 // since this is a bit of work to determine in general, we pattern match stylized
4510                 // code sequences
4511
4512                 // the delegate creation code check, which used to be done later, is now done here
4513                 // so we can read delegateMethodRef directly from
4514                 // from the preceding LDFTN or CEE_LDVIRTFN instruction sequence;
4515                 // we then use it in our call to isCompatibleDelegate().
4516
4517                 mdMemberRef delegateMethodRef = mdMemberRefNil;
4518                 VerifyOrReturn(verCheckDelegateCreation(delegateCreateStart, codeAddr, delegateMethodRef),
4519                                "must create delegates with certain IL");
4520
4521                 CORINFO_RESOLVED_TOKEN delegateResolvedToken;
4522                 delegateResolvedToken.tokenContext = impTokenLookupContextHandle;
4523                 delegateResolvedToken.tokenScope   = info.compScopeHnd;
4524                 delegateResolvedToken.token        = delegateMethodRef;
4525                 delegateResolvedToken.tokenType    = CORINFO_TOKENKIND_Method;
4526                 info.compCompHnd->resolveToken(&delegateResolvedToken);
4527
4528                 CORINFO_CALL_INFO delegateCallInfo;
4529                 eeGetCallInfo(&delegateResolvedToken, nullptr /* constraint typeRef */,
4530                               addVerifyFlag(CORINFO_CALLINFO_SECURITYCHECKS), &delegateCallInfo);
4531
4532                 BOOL isOpenDelegate = FALSE;
4533                 VerifyOrReturn(info.compCompHnd->isCompatibleDelegate(objTypeHandle, delegateResolvedToken.hClass,
4534                                                                       tiActualFtn.GetMethod(), pResolvedToken->hClass,
4535                                                                       &isOpenDelegate),
4536                                "function incompatible with delegate");
4537
4538                 // check the constraints on the target method
4539                 VerifyOrReturn(info.compCompHnd->satisfiesClassConstraints(delegateResolvedToken.hClass),
4540                                "delegate target has unsatisfied class constraints");
4541                 VerifyOrReturn(info.compCompHnd->satisfiesMethodConstraints(delegateResolvedToken.hClass,
4542                                                                             tiActualFtn.GetMethod()),
4543                                "delegate target has unsatisfied method constraints");
4544
4545                 // See ECMA spec section 1.8.1.5.2 (Delegating via instance dispatch)
4546                 // for additional verification rules for delegates
4547                 CORINFO_METHOD_HANDLE actualMethodHandle  = tiActualFtn.GetMethod();
4548                 DWORD                 actualMethodAttribs = info.compCompHnd->getMethodAttribs(actualMethodHandle);
4549                 if (impIsLDFTN_TOKEN(delegateCreateStart, codeAddr))
4550                 {
4551
4552                     if ((actualMethodAttribs & CORINFO_FLG_VIRTUAL) && ((actualMethodAttribs & CORINFO_FLG_FINAL) == 0)
4553 #ifdef DEBUG
4554                         && StrictCheckForNonVirtualCallToVirtualMethod()
4555 #endif
4556                             )
4557                     {
4558                         if (info.compCompHnd->shouldEnforceCallvirtRestriction(info.compScopeHnd))
4559                         {
4560                             VerifyOrReturn(tiActualObj.IsThisPtr() && lvaIsOriginalThisReadOnly() ||
4561                                                verIsBoxedValueType(tiActualObj),
4562                                            "The 'this' parameter to the call must be either the calling method's "
4563                                            "'this' parameter or "
4564                                            "a boxed value type.");
4565                         }
4566                     }
4567                 }
4568
4569                 if (actualMethodAttribs & CORINFO_FLG_PROTECTED)
4570                 {
4571                     BOOL targetIsStatic = actualMethodAttribs & CORINFO_FLG_STATIC;
4572
4573                     Verify(targetIsStatic || !isOpenDelegate,
4574                            "Unverifiable creation of an open instance delegate for a protected member.");
4575
4576                     CORINFO_CLASS_HANDLE instanceClassHnd = (tiActualObj.IsNullObjRef() || targetIsStatic)
4577                                                                 ? info.compClassHnd
4578                                                                 : tiActualObj.GetClassHandleForObjRef();
4579
4580                     // In the case of protected methods, it is a requirement that the 'this'
4581                     // pointer be a subclass of the current context.  Perform this check.
4582                     Verify(info.compCompHnd->canAccessFamily(info.compMethodHnd, instanceClassHnd),
4583                            "Accessing protected method through wrong type.");
4584                 }
4585                 goto DONE_ARGS;
4586             }
4587         }
4588         // fall thru to default checks
4589         default:
4590             VerifyOrReturn(!(mflags & CORINFO_FLG_ABSTRACT), "method abstract");
4591     }
4592     VerifyOrReturn(!((mflags & CORINFO_FLG_CONSTRUCTOR) && (methodClassFlgs & CORINFO_FLG_DELEGATE)),
4593                    "can only newobj a delegate constructor");
4594
4595     // check compatibility of the arguments
4596     unsigned int argCount;
4597     argCount = sig->numArgs;
4598     CORINFO_ARG_LIST_HANDLE args;
4599     args = sig->args;
4600     while (argCount--)
4601     {
4602         typeInfo tiActual = impStackTop(popCount + argCount).seTypeInfo;
4603
4604         typeInfo tiDeclared = verParseArgSigToTypeInfo(sig, args).NormaliseForStack();
4605         VerifyOrReturn(tiCompatibleWith(tiActual, tiDeclared, true), "type mismatch");
4606
4607         args = info.compCompHnd->getArgNext(args);
4608     }
4609
4610 DONE_ARGS:
4611
4612     // update popCount
4613     popCount += sig->numArgs;
4614
4615     // check for 'this' which are is non-static methods, not called via NEWOBJ
4616     CORINFO_CLASS_HANDLE instanceClassHnd = info.compClassHnd;
4617     if (!(mflags & CORINFO_FLG_STATIC) && (opcode != CEE_NEWOBJ))
4618     {
4619         typeInfo tiThis = impStackTop(popCount).seTypeInfo;
4620         popCount++;
4621
4622         // If it is null, we assume we can access it (since it will AV shortly)
4623         // If it is anything but a reference class, there is no hierarchy, so
4624         // again, we don't need the precise instance class to compute 'protected' access
4625         if (tiThis.IsType(TI_REF))
4626         {
4627             instanceClassHnd = tiThis.GetClassHandleForObjRef();
4628         }
4629
4630         // Check type compatibility of the this argument
4631         typeInfo tiDeclaredThis = verMakeTypeInfo(pResolvedToken->hClass);
4632         if (tiDeclaredThis.IsValueClass())
4633         {
4634             tiDeclaredThis.MakeByRef();
4635         }
4636
4637         // If this is a call to the base class .ctor, set thisPtr Init for
4638         // this block.
4639         if (mflags & CORINFO_FLG_CONSTRUCTOR)
4640         {
4641             if (verTrackObjCtorInitState && tiThis.IsThisPtr() &&
4642                 verIsCallToInitThisPtr(info.compClassHnd, pResolvedToken->hClass))
4643             {
4644                 assert(verCurrentState.thisInitialized !=
4645                        TIS_Bottom); // This should never be the case just from the logic of the verifier.
4646                 VerifyOrReturn(verCurrentState.thisInitialized == TIS_Uninit,
4647                                "Call to base class constructor when 'this' is possibly initialized");
4648                 // Otherwise, 'this' is now initialized.
4649                 verCurrentState.thisInitialized = TIS_Init;
4650                 tiThis.SetInitialisedObjRef();
4651             }
4652             else
4653             {
4654                 // We allow direct calls to value type constructors
4655                 // NB: we have to check that the contents of tiThis is a value type, otherwise we could use a
4656                 // constrained callvirt to illegally re-enter a .ctor on a value of reference type.
4657                 VerifyOrReturn(tiThis.IsByRef() && DereferenceByRef(tiThis).IsValueClass(),
4658                                "Bad call to a constructor");
4659             }
4660         }
4661
4662         if (pConstrainedResolvedToken != nullptr)
4663         {
4664             VerifyOrReturn(tiThis.IsByRef(), "non-byref this type in constrained call");
4665
4666             typeInfo tiConstraint = verMakeTypeInfo(pConstrainedResolvedToken->hClass);
4667
4668             // We just dereference this and test for equality
4669             tiThis.DereferenceByRef();
4670             VerifyOrReturn(typeInfo::AreEquivalent(tiThis, tiConstraint),
4671                            "this type mismatch with constrained type operand");
4672
4673             // Now pretend the this type is the boxed constrained type, for the sake of subsequent checks
4674             tiThis = typeInfo(TI_REF, pConstrainedResolvedToken->hClass);
4675         }
4676
4677         // To support direct calls on readonly byrefs, just pretend tiDeclaredThis is readonly too
4678         if (tiDeclaredThis.IsByRef() && tiThis.IsReadonlyByRef())
4679         {
4680             tiDeclaredThis.SetIsReadonlyByRef();
4681         }
4682
4683         VerifyOrReturn(tiCompatibleWith(tiThis, tiDeclaredThis, true), "this type mismatch");
4684
4685         if (tiThis.IsByRef())
4686         {
4687             // Find the actual type where the method exists (as opposed to what is declared
4688             // in the metadata). This is to prevent passing a byref as the "this" argument
4689             // while calling methods like System.ValueType.GetHashCode() which expect boxed objects.
4690
4691             CORINFO_CLASS_HANDLE actualClassHnd = info.compCompHnd->getMethodClass(pResolvedToken->hMethod);
4692             VerifyOrReturn(eeIsValueClass(actualClassHnd),
4693                            "Call to base type of valuetype (which is never a valuetype)");
4694         }
4695
4696         // Rules for non-virtual call to a non-final virtual method:
4697
4698         // Define:
4699         // The "this" pointer is considered to be "possibly written" if
4700         //   1. Its address have been taken (LDARGA 0) anywhere in the method.
4701         //   (or)
4702         //   2. It has been stored to (STARG.0) anywhere in the method.
4703
4704         // A non-virtual call to a non-final virtual method is only allowed if
4705         //   1. The this pointer passed to the callee is an instance of a boxed value type.
4706         //   (or)
4707         //   2. The this pointer passed to the callee is the current method's this pointer.
4708         //      (and) The current method's this pointer is not "possibly written".
4709
4710         // Thus the rule is that if you assign to this ANYWHERE you can't make "base" calls to
4711         // virtual methods.  (Luckily this does affect .ctors, since they are not virtual).
4712         // This is stronger that is strictly needed, but implementing a laxer rule is significantly
4713         // hard and more error prone.
4714
4715         if (opcode == CEE_CALL && (mflags & CORINFO_FLG_VIRTUAL) && ((mflags & CORINFO_FLG_FINAL) == 0)
4716 #ifdef DEBUG
4717             && StrictCheckForNonVirtualCallToVirtualMethod()
4718 #endif
4719                 )
4720         {
4721             if (info.compCompHnd->shouldEnforceCallvirtRestriction(info.compScopeHnd))
4722             {
4723                 VerifyOrReturn(
4724                     tiThis.IsThisPtr() && lvaIsOriginalThisReadOnly() || verIsBoxedValueType(tiThis),
4725                     "The 'this' parameter to the call must be either the calling method's 'this' parameter or "
4726                     "a boxed value type.");
4727             }
4728         }
4729     }
4730
4731     // check any constraints on the callee's class and type parameters
4732     VerifyOrReturn(info.compCompHnd->satisfiesClassConstraints(pResolvedToken->hClass),
4733                    "method has unsatisfied class constraints");
4734     VerifyOrReturn(info.compCompHnd->satisfiesMethodConstraints(pResolvedToken->hClass, pResolvedToken->hMethod),
4735                    "method has unsatisfied method constraints");
4736
4737     if (mflags & CORINFO_FLG_PROTECTED)
4738     {
4739         VerifyOrReturn(info.compCompHnd->canAccessFamily(info.compMethodHnd, instanceClassHnd),
4740                        "Can't access protected method");
4741     }
4742
4743     // Get the exact view of the signature for an array method
4744     if (sig->retType != CORINFO_TYPE_VOID)
4745     {
4746         eeGetMethodSig(pResolvedToken->hMethod, sig, pResolvedToken->hClass);
4747     }
4748
4749     // "readonly." prefixed calls only allowed for the Address operation on arrays.
4750     // The methods supported by array types are under the control of the EE
4751     // so we can trust that only the Address operation returns a byref.
4752     if (readonlyCall)
4753     {
4754         typeInfo tiCalleeRetType = verMakeTypeInfo(sig->retType, sig->retTypeClass);
4755         VerifyOrReturn((methodClassFlgs & CORINFO_FLG_ARRAY) && tiCalleeRetType.IsByRef(),
4756                        "unexpected use of readonly prefix");
4757     }
4758
4759     // Verify the tailcall
4760     if (tailCall)
4761     {
4762         verCheckTailCallConstraint(opcode, pResolvedToken, pConstrainedResolvedToken, false);
4763     }
4764 }
4765
4766 /*****************************************************************************
4767  *  Checks that a delegate creation is done using the following pattern:
4768  *     dup
4769  *     ldvirtftn targetMemberRef
4770  *  OR
4771  *     ldftn targetMemberRef
4772  *
4773  * 'delegateCreateStart' points at the last dup or ldftn in this basic block (null if
4774  *  not in this basic block)
4775  *
4776  *  targetMemberRef is read from the code sequence.
4777  *  targetMemberRef is validated iff verificationNeeded.
4778  */
4779
4780 BOOL Compiler::verCheckDelegateCreation(const BYTE*  delegateCreateStart,
4781                                         const BYTE*  codeAddr,
4782                                         mdMemberRef& targetMemberRef)
4783 {
4784     if (impIsLDFTN_TOKEN(delegateCreateStart, codeAddr))
4785     {
4786         targetMemberRef = getU4LittleEndian(&delegateCreateStart[2]);
4787         return TRUE;
4788     }
4789     else if (impIsDUP_LDVIRTFTN_TOKEN(delegateCreateStart, codeAddr))
4790     {
4791         targetMemberRef = getU4LittleEndian(&delegateCreateStart[3]);
4792         return TRUE;
4793     }
4794
4795     return FALSE;
4796 }
4797
4798 typeInfo Compiler::verVerifySTIND(const typeInfo& tiTo, const typeInfo& value, const typeInfo& instrType)
4799 {
4800     Verify(!tiTo.IsReadonlyByRef(), "write to readonly byref");
4801     typeInfo ptrVal     = verVerifyLDIND(tiTo, instrType);
4802     typeInfo normPtrVal = typeInfo(ptrVal).NormaliseForStack();
4803     if (!tiCompatibleWith(value, normPtrVal, true))
4804     {
4805         Verify(tiCompatibleWith(value, normPtrVal, true), "type mismatch");
4806         compUnsafeCastUsed = true;
4807     }
4808     return ptrVal;
4809 }
4810
4811 typeInfo Compiler::verVerifyLDIND(const typeInfo& ptr, const typeInfo& instrType)
4812 {
4813     assert(!instrType.IsStruct());
4814
4815     typeInfo ptrVal;
4816     if (ptr.IsByRef())
4817     {
4818         ptrVal = DereferenceByRef(ptr);
4819         if (instrType.IsObjRef() && !ptrVal.IsObjRef())
4820         {
4821             Verify(false, "bad pointer");
4822             compUnsafeCastUsed = true;
4823         }
4824         else if (!instrType.IsObjRef() && !typeInfo::AreEquivalent(instrType, ptrVal))
4825         {
4826             Verify(false, "pointer not consistent with instr");
4827             compUnsafeCastUsed = true;
4828         }
4829     }
4830     else
4831     {
4832         Verify(false, "pointer not byref");
4833         compUnsafeCastUsed = true;
4834     }
4835
4836     return ptrVal;
4837 }
4838
4839 // Verify that the field is used properly.  'tiThis' is NULL for statics,
4840 // 'fieldFlags' is the fields attributes, and mutator is TRUE if it is a
4841 // ld*flda or a st*fld.
4842 // 'enclosingClass' is given if we are accessing a field in some specific type.
4843
4844 void Compiler::verVerifyField(CORINFO_RESOLVED_TOKEN*   pResolvedToken,
4845                               const CORINFO_FIELD_INFO& fieldInfo,
4846                               const typeInfo*           tiThis,
4847                               BOOL                      mutator,
4848                               BOOL                      allowPlainStructAsThis)
4849 {
4850     CORINFO_CLASS_HANDLE enclosingClass = pResolvedToken->hClass;
4851     unsigned             fieldFlags     = fieldInfo.fieldFlags;
4852     CORINFO_CLASS_HANDLE instanceClass =
4853         info.compClassHnd; // for statics, we imagine the instance is the current class.
4854
4855     bool isStaticField = ((fieldFlags & CORINFO_FLG_FIELD_STATIC) != 0);
4856     if (mutator)
4857     {
4858         Verify(!(fieldFlags & CORINFO_FLG_FIELD_UNMANAGED), "mutating an RVA bases static");
4859         if ((fieldFlags & CORINFO_FLG_FIELD_FINAL))
4860         {
4861             Verify((info.compFlags & CORINFO_FLG_CONSTRUCTOR) && enclosingClass == info.compClassHnd &&
4862                        info.compIsStatic == isStaticField,
4863                    "bad use of initonly field (set or address taken)");
4864         }
4865     }
4866
4867     if (tiThis == nullptr)
4868     {
4869         Verify(isStaticField, "used static opcode with non-static field");
4870     }
4871     else
4872     {
4873         typeInfo tThis = *tiThis;
4874
4875         if (allowPlainStructAsThis && tThis.IsValueClass())
4876         {
4877             tThis.MakeByRef();
4878         }
4879
4880         // If it is null, we assume we can access it (since it will AV shortly)
4881         // If it is anything but a refernce class, there is no hierarchy, so
4882         // again, we don't need the precise instance class to compute 'protected' access
4883         if (tiThis->IsType(TI_REF))
4884         {
4885             instanceClass = tiThis->GetClassHandleForObjRef();
4886         }
4887
4888         // Note that even if the field is static, we require that the this pointer
4889         // satisfy the same constraints as a non-static field  This happens to
4890         // be simpler and seems reasonable
4891         typeInfo tiDeclaredThis = verMakeTypeInfo(enclosingClass);
4892         if (tiDeclaredThis.IsValueClass())
4893         {
4894             tiDeclaredThis.MakeByRef();
4895
4896             // we allow read-only tThis, on any field access (even stores!), because if the
4897             // class implementor wants to prohibit stores he should make the field private.
4898             // we do this by setting the read-only bit on the type we compare tThis to.
4899             tiDeclaredThis.SetIsReadonlyByRef();
4900         }
4901         else if (verTrackObjCtorInitState && tThis.IsThisPtr())
4902         {
4903             // Any field access is legal on "uninitialized" this pointers.
4904             // The easiest way to implement this is to simply set the
4905             // initialized bit for the duration of the type check on the
4906             // field access only.  It does not change the state of the "this"
4907             // for the function as a whole. Note that the "tThis" is a copy
4908             // of the original "this" type (*tiThis) passed in.
4909             tThis.SetInitialisedObjRef();
4910         }
4911
4912         Verify(tiCompatibleWith(tThis, tiDeclaredThis, true), "this type mismatch");
4913     }
4914
4915     // Presently the JIT does not check that we don't store or take the address of init-only fields
4916     // since we cannot guarantee their immutability and it is not a security issue.
4917
4918     // check any constraints on the fields's class --- accessing the field might cause a class constructor to run.
4919     VerifyOrReturn(info.compCompHnd->satisfiesClassConstraints(enclosingClass),
4920                    "field has unsatisfied class constraints");
4921     if (fieldFlags & CORINFO_FLG_FIELD_PROTECTED)
4922     {
4923         Verify(info.compCompHnd->canAccessFamily(info.compMethodHnd, instanceClass),
4924                "Accessing protected method through wrong type.");
4925     }
4926 }
4927
4928 void Compiler::verVerifyCond(const typeInfo& tiOp1, const typeInfo& tiOp2, unsigned opcode)
4929 {
4930     if (tiOp1.IsNumberType())
4931     {
4932 #ifdef _TARGET_64BIT_
4933         Verify(tiCompatibleWith(tiOp1, tiOp2, true), "Cond type mismatch");
4934 #else  // _TARGET_64BIT
4935         // [10/17/2013] Consider changing this: to put on my verification lawyer hat,
4936         // this is non-conforming to the ECMA Spec: types don't have to be equivalent,
4937         // but compatible, since we can coalesce native int with int32 (see section III.1.5).
4938         Verify(typeInfo::AreEquivalent(tiOp1, tiOp2), "Cond type mismatch");
4939 #endif // !_TARGET_64BIT_
4940     }
4941     else if (tiOp1.IsObjRef())
4942     {
4943         switch (opcode)
4944         {
4945             case CEE_BEQ_S:
4946             case CEE_BEQ:
4947             case CEE_BNE_UN_S:
4948             case CEE_BNE_UN:
4949             case CEE_CEQ:
4950             case CEE_CGT_UN:
4951                 break;
4952             default:
4953                 Verify(FALSE, "Cond not allowed on object types");
4954         }
4955         Verify(tiOp2.IsObjRef(), "Cond type mismatch");
4956     }
4957     else if (tiOp1.IsByRef())
4958     {
4959         Verify(tiOp2.IsByRef(), "Cond type mismatch");
4960     }
4961     else
4962     {
4963         Verify(tiOp1.IsMethod() && tiOp2.IsMethod(), "Cond type mismatch");
4964     }
4965 }
4966
4967 void Compiler::verVerifyThisPtrInitialised()
4968 {
4969     if (verTrackObjCtorInitState)
4970     {
4971         Verify(verCurrentState.thisInitialized == TIS_Init, "this ptr is not initialized");
4972     }
4973 }
4974
4975 BOOL Compiler::verIsCallToInitThisPtr(CORINFO_CLASS_HANDLE context, CORINFO_CLASS_HANDLE target)
4976 {
4977     // Either target == context, in this case calling an alternate .ctor
4978     // Or target is the immediate parent of context
4979
4980     return ((target == context) || (target == info.compCompHnd->getParentType(context)));
4981 }
4982
4983 GenTreePtr Compiler::impImportLdvirtftn(GenTreePtr              thisPtr,
4984                                         CORINFO_RESOLVED_TOKEN* pResolvedToken,
4985                                         CORINFO_CALL_INFO*      pCallInfo)
4986 {
4987     if ((pCallInfo->methodFlags & CORINFO_FLG_EnC) && !(pCallInfo->classFlags & CORINFO_FLG_INTERFACE))
4988     {
4989         NO_WAY("Virtual call to a function added via EnC is not supported");
4990     }
4991
4992 #ifdef FEATURE_READYTORUN_COMPILER
4993     if (opts.IsReadyToRun())
4994     {
4995         if (!pCallInfo->exactContextNeedsRuntimeLookup)
4996         {
4997             GenTreeCall* call = gtNewHelperCallNode(CORINFO_HELP_READYTORUN_VIRTUAL_FUNC_PTR, TYP_I_IMPL, GTF_EXCEPT,
4998                                                     gtNewArgList(thisPtr));
4999
5000             call->setEntryPoint(pCallInfo->codePointerLookup.constLookup);
5001
5002             return call;
5003         }
5004
5005         // We need a runtime lookup. CoreRT has a ReadyToRun helper for that too.
5006         if (IsTargetAbi(CORINFO_CORERT_ABI))
5007         {
5008             GenTreePtr ctxTree = getRuntimeContextTree(pCallInfo->codePointerLookup.lookupKind.runtimeLookupKind);
5009
5010             return impReadyToRunHelperToTree(pResolvedToken, CORINFO_HELP_READYTORUN_GENERIC_HANDLE, TYP_I_IMPL,
5011                                              gtNewArgList(ctxTree), &pCallInfo->codePointerLookup.lookupKind);
5012         }
5013     }
5014 #endif
5015
5016     // Get the exact descriptor for the static callsite
5017     GenTreePtr exactTypeDesc = impParentClassTokenToHandle(pResolvedToken);
5018     if (exactTypeDesc == nullptr)
5019     { // compDonotInline()
5020         return nullptr;
5021     }
5022
5023     GenTreePtr exactMethodDesc = impTokenToHandle(pResolvedToken);
5024     if (exactMethodDesc == nullptr)
5025     { // compDonotInline()
5026         return nullptr;
5027     }
5028
5029     GenTreeArgList* helpArgs = gtNewArgList(exactMethodDesc);
5030
5031     helpArgs = gtNewListNode(exactTypeDesc, helpArgs);
5032
5033     helpArgs = gtNewListNode(thisPtr, helpArgs);
5034
5035     // Call helper function.  This gets the target address of the final destination callsite.
5036
5037     return gtNewHelperCallNode(CORINFO_HELP_VIRTUAL_FUNC_PTR, TYP_I_IMPL, GTF_EXCEPT, helpArgs);
5038 }
5039
5040 /*****************************************************************************
5041  *
5042  *  Build and import a box node
5043  */
5044
5045 void Compiler::impImportAndPushBox(CORINFO_RESOLVED_TOKEN* pResolvedToken)
5046 {
5047     // Get the tree for the type handle for the boxed object.  In the case
5048     // of shared generic code or ngen'd code this might be an embedded
5049     // computation.
5050     // Note we can only box do it if the class construtor has been called
5051     // We can always do it on primitive types
5052
5053     GenTreePtr op1 = nullptr;
5054     GenTreePtr op2 = nullptr;
5055     var_types  lclTyp;
5056
5057     impSpillSpecialSideEff();
5058
5059     // Now get the expression to box from the stack.
5060     CORINFO_CLASS_HANDLE operCls;
5061     GenTreePtr           exprToBox = impPopStack(operCls).val;
5062
5063     CorInfoHelpFunc boxHelper = info.compCompHnd->getBoxHelper(pResolvedToken->hClass);
5064     if (boxHelper == CORINFO_HELP_BOX)
5065     {
5066         // we are doing 'normal' boxing.  This means that we can inline the box operation
5067         // Box(expr) gets morphed into
5068         // temp = new(clsHnd)
5069         // cpobj(temp+4, expr, clsHnd)
5070         // push temp
5071         // The code paths differ slightly below for structs and primitives because
5072         // "cpobj" differs in these cases.  In one case you get
5073         //    impAssignStructPtr(temp+4, expr, clsHnd)
5074         // and the other you get
5075         //    *(temp+4) = expr
5076
5077         if (impBoxTempInUse || impBoxTemp == BAD_VAR_NUM)
5078         {
5079             impBoxTemp = lvaGrabTemp(true DEBUGARG("Box Helper"));
5080         }
5081
5082         // needs to stay in use until this box expression is appended
5083         // some other node.  We approximate this by keeping it alive until
5084         // the opcode stack becomes empty
5085         impBoxTempInUse = true;
5086
5087 #ifdef FEATURE_READYTORUN_COMPILER
5088         bool usingReadyToRunHelper = false;
5089
5090         if (opts.IsReadyToRun())
5091         {
5092             op1                   = impReadyToRunHelperToTree(pResolvedToken, CORINFO_HELP_READYTORUN_NEW, TYP_REF);
5093             usingReadyToRunHelper = (op1 != nullptr);
5094         }
5095
5096         if (!usingReadyToRunHelper)
5097 #endif
5098         {
5099             // TODO: ReadyToRun: When generic dictionary lookups are necessary, replace the lookup call
5100             // and the newfast call with a single call to a dynamic R2R cell that will:
5101             //      1) Load the context
5102             //      2) Perform the generic dictionary lookup and caching, and generate the appropriate stub
5103             //      3) Allocate and return the new object for boxing
5104             // Reason: performance (today, we'll always use the slow helper for the R2R generics case)
5105
5106             // Ensure that the value class is restored
5107             op2 = impTokenToHandle(pResolvedToken, nullptr, TRUE /* mustRestoreHandle */);
5108             if (op2 == nullptr)
5109             { // compDonotInline()
5110                 return;
5111             }
5112
5113             op1 = gtNewHelperCallNode(info.compCompHnd->getNewHelper(pResolvedToken, info.compMethodHnd), TYP_REF, 0,
5114                                       gtNewArgList(op2));
5115         }
5116
5117         /* Remember that this basic block contains 'new' of an array */
5118         compCurBB->bbFlags |= BBF_HAS_NEWOBJ;
5119
5120         GenTreePtr asg = gtNewTempAssign(impBoxTemp, op1);
5121
5122         GenTreePtr asgStmt = impAppendTree(asg, (unsigned)CHECK_SPILL_NONE, impCurStmtOffs);
5123
5124         op1 = gtNewLclvNode(impBoxTemp, TYP_REF);
5125         op2 = gtNewIconNode(sizeof(void*), TYP_I_IMPL);
5126         op1 = gtNewOperNode(GT_ADD, TYP_BYREF, op1, op2);
5127
5128         if (varTypeIsStruct(exprToBox))
5129         {
5130             assert(info.compCompHnd->getClassSize(pResolvedToken->hClass) == info.compCompHnd->getClassSize(operCls));
5131             op1 = impAssignStructPtr(op1, exprToBox, operCls, (unsigned)CHECK_SPILL_ALL);
5132         }
5133         else
5134         {
5135             lclTyp = exprToBox->TypeGet();
5136             if (lclTyp == TYP_BYREF)
5137             {
5138                 lclTyp = TYP_I_IMPL;
5139             }
5140             CorInfoType jitType = info.compCompHnd->asCorInfoType(pResolvedToken->hClass);
5141             if (impIsPrimitive(jitType))
5142             {
5143                 lclTyp = JITtype2varType(jitType);
5144             }
5145             assert(genActualType(exprToBox->TypeGet()) == genActualType(lclTyp) ||
5146                    varTypeIsFloating(lclTyp) == varTypeIsFloating(exprToBox->TypeGet()));
5147             var_types srcTyp = exprToBox->TypeGet();
5148             var_types dstTyp = lclTyp;
5149
5150             if (srcTyp != dstTyp)
5151             {
5152                 assert((varTypeIsFloating(srcTyp) && varTypeIsFloating(dstTyp)) ||
5153                        (varTypeIsIntegral(srcTyp) && varTypeIsIntegral(dstTyp)));
5154                 exprToBox = gtNewCastNode(dstTyp, exprToBox, dstTyp);
5155             }
5156             op1 = gtNewAssignNode(gtNewOperNode(GT_IND, lclTyp, op1), exprToBox);
5157         }
5158
5159         op2 = gtNewLclvNode(impBoxTemp, TYP_REF);
5160         op1 = gtNewOperNode(GT_COMMA, TYP_REF, op1, op2);
5161
5162         // Record that this is a "box" node.
5163         op1 = new (this, GT_BOX) GenTreeBox(TYP_REF, op1, asgStmt);
5164
5165         // If it is a value class, mark the "box" node.  We can use this information
5166         // to optimise several cases:
5167         //    "box(x) == null" --> false
5168         //    "(box(x)).CallAnInterfaceMethod(...)" --> "(&x).CallAValueTypeMethod"
5169         //    "(box(x)).CallAnObjectMethod(...)" --> "(&x).CallAValueTypeMethod"
5170
5171         op1->gtFlags |= GTF_BOX_VALUE;
5172         assert(op1->IsBoxedValue());
5173         assert(asg->gtOper == GT_ASG);
5174     }
5175     else
5176     {
5177         // Don't optimize, just call the helper and be done with it
5178
5179         // Ensure that the value class is restored
5180         op2 = impTokenToHandle(pResolvedToken, nullptr, TRUE /* mustRestoreHandle */);
5181         if (op2 == nullptr)
5182         { // compDonotInline()
5183             return;
5184         }
5185
5186         GenTreeArgList* args = gtNewArgList(op2, impGetStructAddr(exprToBox, operCls, (unsigned)CHECK_SPILL_ALL, true));
5187         op1                  = gtNewHelperCallNode(boxHelper, TYP_REF, GTF_EXCEPT, args);
5188     }
5189
5190     /* Push the result back on the stack, */
5191     /* even if clsHnd is a value class we want the TI_REF */
5192     typeInfo tiRetVal = typeInfo(TI_REF, info.compCompHnd->getTypeForBox(pResolvedToken->hClass));
5193     impPushOnStack(op1, tiRetVal);
5194 }
5195
5196 //------------------------------------------------------------------------
5197 // impImportNewObjArray: Build and import `new` of multi-dimmensional array
5198 //
5199 // Arguments:
5200 //    pResolvedToken - The CORINFO_RESOLVED_TOKEN that has been initialized
5201 //                     by a call to CEEInfo::resolveToken().
5202 //    pCallInfo - The CORINFO_CALL_INFO that has been initialized
5203 //                by a call to CEEInfo::getCallInfo().
5204 //
5205 // Assumptions:
5206 //    The multi-dimensional array constructor arguments (array dimensions) are
5207 //    pushed on the IL stack on entry to this method.
5208 //
5209 // Notes:
5210 //    Multi-dimensional array constructors are imported as calls to a JIT
5211 //    helper, not as regular calls.
5212
5213 void Compiler::impImportNewObjArray(CORINFO_RESOLVED_TOKEN* pResolvedToken, CORINFO_CALL_INFO* pCallInfo)
5214 {
5215     GenTreePtr classHandle = impParentClassTokenToHandle(pResolvedToken);
5216     if (classHandle == nullptr)
5217     { // compDonotInline()
5218         return;
5219     }
5220
5221     assert(pCallInfo->sig.numArgs);
5222
5223     GenTreePtr      node;
5224     GenTreeArgList* args;
5225
5226     //
5227     // There are two different JIT helpers that can be used to allocate
5228     // multi-dimensional arrays:
5229     //
5230     // - CORINFO_HELP_NEW_MDARR - takes the array dimensions as varargs.
5231     //      This variant is deprecated. It should be eventually removed.
5232     //
5233     // - CORINFO_HELP_NEW_MDARR_NONVARARG - takes the array dimensions as
5234     //      pointer to block of int32s. This variant is more portable.
5235     //
5236     // The non-varargs helper is enabled for CoreRT only for now. Enabling this
5237     // unconditionally would require ReadyToRun version bump.
5238     //
5239     CLANG_FORMAT_COMMENT_ANCHOR;
5240
5241 #if COR_JIT_EE_VERSION > 460
5242     if (!opts.IsReadyToRun() || IsTargetAbi(CORINFO_CORERT_ABI))
5243     {
5244         LclVarDsc* newObjArrayArgsVar;
5245
5246         // Reuse the temp used to pass the array dimensions to avoid bloating
5247         // the stack frame in case there are multiple calls to multi-dim array
5248         // constructors within a single method.
5249         if (lvaNewObjArrayArgs == BAD_VAR_NUM)
5250         {
5251             lvaNewObjArrayArgs                       = lvaGrabTemp(false DEBUGARG("NewObjArrayArgs"));
5252             lvaTable[lvaNewObjArrayArgs].lvType      = TYP_BLK;
5253             lvaTable[lvaNewObjArrayArgs].lvExactSize = 0;
5254         }
5255
5256         // Increase size of lvaNewObjArrayArgs to be the largest size needed to hold 'numArgs' integers
5257         // for our call to CORINFO_HELP_NEW_MDARR_NONVARARG.
5258         lvaTable[lvaNewObjArrayArgs].lvExactSize =
5259             max(lvaTable[lvaNewObjArrayArgs].lvExactSize, pCallInfo->sig.numArgs * sizeof(INT32));
5260
5261         // The side-effects may include allocation of more multi-dimensional arrays. Spill all side-effects
5262         // to ensure that the shared lvaNewObjArrayArgs local variable is only ever used to pass arguments
5263         // to one allocation at a time.
5264         impSpillSideEffects(true, (unsigned)CHECK_SPILL_ALL DEBUGARG("impImportNewObjArray"));
5265
5266         //
5267         // The arguments of the CORINFO_HELP_NEW_MDARR_NONVARARG helper are:
5268         //  - Array class handle
5269         //  - Number of dimension arguments
5270         //  - Pointer to block of int32 dimensions - address  of lvaNewObjArrayArgs temp.
5271         //
5272
5273         node = gtNewLclvNode(lvaNewObjArrayArgs, TYP_BLK);
5274         node = gtNewOperNode(GT_ADDR, TYP_I_IMPL, node);
5275
5276         // Pop dimension arguments from the stack one at a time and store it
5277         // into lvaNewObjArrayArgs temp.
5278         for (int i = pCallInfo->sig.numArgs - 1; i >= 0; i--)
5279         {
5280             GenTreePtr arg = impImplicitIorI4Cast(impPopStack().val, TYP_INT);
5281
5282             GenTreePtr dest = gtNewLclvNode(lvaNewObjArrayArgs, TYP_BLK);
5283             dest            = gtNewOperNode(GT_ADDR, TYP_I_IMPL, dest);
5284             dest            = gtNewOperNode(GT_ADD, TYP_I_IMPL, dest,
5285                                  new (this, GT_CNS_INT) GenTreeIntCon(TYP_I_IMPL, sizeof(INT32) * i));
5286             dest = gtNewOperNode(GT_IND, TYP_INT, dest);
5287
5288             node = gtNewOperNode(GT_COMMA, node->TypeGet(), gtNewAssignNode(dest, arg), node);
5289         }
5290
5291         args = gtNewArgList(node);
5292
5293         // pass number of arguments to the helper
5294         args = gtNewListNode(gtNewIconNode(pCallInfo->sig.numArgs), args);
5295
5296         args = gtNewListNode(classHandle, args);
5297
5298         node = gtNewHelperCallNode(CORINFO_HELP_NEW_MDARR_NONVARARG, TYP_REF, 0, args);
5299     }
5300     else
5301 #endif
5302     {
5303         //
5304         // The varargs helper needs the type and method handles as last
5305         // and  last-1 param (this is a cdecl call, so args will be
5306         // pushed in reverse order on the CPU stack)
5307         //
5308
5309         args = gtNewArgList(classHandle);
5310
5311         // pass number of arguments to the helper
5312         args = gtNewListNode(gtNewIconNode(pCallInfo->sig.numArgs), args);
5313
5314         unsigned argFlags = 0;
5315         args              = impPopList(pCallInfo->sig.numArgs, &argFlags, &pCallInfo->sig, args);
5316
5317         node = gtNewHelperCallNode(CORINFO_HELP_NEW_MDARR, TYP_REF, 0, args);
5318
5319         // varargs, so we pop the arguments
5320         node->gtFlags |= GTF_CALL_POP_ARGS;
5321
5322 #ifdef DEBUG
5323         // At the present time we don't track Caller pop arguments
5324         // that have GC references in them
5325         for (GenTreeArgList* temp = args; temp; temp = temp->Rest())
5326         {
5327             assert(temp->Current()->gtType != TYP_REF);
5328         }
5329 #endif
5330     }
5331
5332     node->gtFlags |= args->gtFlags & GTF_GLOB_EFFECT;
5333     node->gtCall.compileTimeHelperArgumentHandle = (CORINFO_GENERIC_HANDLE)pResolvedToken->hClass;
5334
5335     // Remember that this basic block contains 'new' of a md array
5336     compCurBB->bbFlags |= BBF_HAS_NEWARRAY;
5337
5338     impPushOnStack(node, typeInfo(TI_REF, pResolvedToken->hClass));
5339 }
5340
5341 GenTreePtr Compiler::impTransformThis(GenTreePtr              thisPtr,
5342                                       CORINFO_RESOLVED_TOKEN* pConstrainedResolvedToken,
5343                                       CORINFO_THIS_TRANSFORM  transform)
5344 {
5345     switch (transform)
5346     {
5347         case CORINFO_DEREF_THIS:
5348         {
5349             GenTreePtr obj = thisPtr;
5350
5351             // This does a LDIND on the obj, which should be a byref. pointing to a ref
5352             impBashVarAddrsToI(obj);
5353             assert(genActualType(obj->gtType) == TYP_I_IMPL || obj->gtType == TYP_BYREF);
5354             CorInfoType constraintTyp = info.compCompHnd->asCorInfoType(pConstrainedResolvedToken->hClass);
5355
5356             obj = gtNewOperNode(GT_IND, JITtype2varType(constraintTyp), obj);
5357             // ldind could point anywhere, example a boxed class static int
5358             obj->gtFlags |= (GTF_EXCEPT | GTF_GLOB_REF | GTF_IND_TGTANYWHERE);
5359
5360             return obj;
5361         }
5362
5363         case CORINFO_BOX_THIS:
5364         {
5365             // Constraint calls where there might be no
5366             // unboxed entry point require us to implement the call via helper.
5367             // These only occur when a possible target of the call
5368             // may have inherited an implementation of an interface
5369             // method from System.Object or System.ValueType.  The EE does not provide us with
5370             // "unboxed" versions of these methods.
5371
5372             GenTreePtr obj = thisPtr;
5373
5374             assert(obj->TypeGet() == TYP_BYREF || obj->TypeGet() == TYP_I_IMPL);
5375             obj = gtNewObjNode(pConstrainedResolvedToken->hClass, obj);
5376             obj->gtFlags |= GTF_EXCEPT;
5377
5378             CorInfoType jitTyp  = info.compCompHnd->asCorInfoType(pConstrainedResolvedToken->hClass);
5379             var_types   objType = JITtype2varType(jitTyp);
5380             if (impIsPrimitive(jitTyp))
5381             {
5382                 if (obj->OperIsBlk())
5383                 {
5384                     obj->ChangeOperUnchecked(GT_IND);
5385
5386                     // Obj could point anywhere, example a boxed class static int
5387                     obj->gtFlags |= GTF_IND_TGTANYWHERE;
5388                     obj->gtOp.gtOp2 = nullptr; // must be zero for tree walkers
5389                 }
5390
5391                 obj->gtType = JITtype2varType(jitTyp);
5392                 assert(varTypeIsArithmetic(obj->gtType));
5393             }
5394
5395             // This pushes on the dereferenced byref
5396             // This is then used immediately to box.
5397             impPushOnStack(obj, verMakeTypeInfo(pConstrainedResolvedToken->hClass).NormaliseForStack());
5398
5399             // This pops off the byref-to-a-value-type remaining on the stack and
5400             // replaces it with a boxed object.
5401             // This is then used as the object to the virtual call immediately below.
5402             impImportAndPushBox(pConstrainedResolvedToken);
5403             if (compDonotInline())
5404             {
5405                 return nullptr;
5406             }
5407
5408             obj = impPopStack().val;
5409             return obj;
5410         }
5411         case CORINFO_NO_THIS_TRANSFORM:
5412         default:
5413             return thisPtr;
5414     }
5415 }
5416
5417 //------------------------------------------------------------------------
5418 // impCanPInvokeInline: check whether PInvoke inlining should enabled in current method.
5419 //
5420 // Return Value:
5421 //    true if PInvoke inlining should be enabled in current method, false otherwise
5422 //
5423 // Notes:
5424 //    Checks a number of ambient conditions where we could pinvoke but choose not to
5425
5426 bool Compiler::impCanPInvokeInline()
5427 {
5428     return getInlinePInvokeEnabled() && (!opts.compDbgCode) && (compCodeOpt() != SMALL_CODE) &&
5429            (!opts.compNoPInvokeInlineCB) // profiler is preventing inline pinvoke
5430         ;
5431 }
5432
5433 //------------------------------------------------------------------------
5434 // impCanPInvokeInlineCallSite: basic legality checks using information
5435 // from a call to see if the call qualifies as an inline pinvoke.
5436 //
5437 // Arguments:
5438 //    block      - block contaning the call, or for inlinees, block
5439 //                 containing the call being inlined
5440 //
5441 // Return Value:
5442 //    true if this call can legally qualify as an inline pinvoke, false otherwise
5443 //
5444 // Notes:
5445 //    For runtimes that support exception handling interop there are
5446 //    restrictions on using inline pinvoke in handler regions.
5447 //
5448 //    * We have to disable pinvoke inlining inside of filters because
5449 //    in case the main execution (i.e. in the try block) is inside
5450 //    unmanaged code, we cannot reuse the inlined stub (we still need
5451 //    the original state until we are in the catch handler)
5452 //
5453 //    * We disable pinvoke inlining inside handlers since the GSCookie
5454 //    is in the inlined Frame (see
5455 //    CORINFO_EE_INFO::InlinedCallFrameInfo::offsetOfGSCookie), but
5456 //    this would not protect framelets/return-address of handlers.
5457 //
5458 //    These restrictions are currently also in place for CoreCLR but
5459 //    can be relaxed when coreclr/#8459 is addressed.
5460
5461 bool Compiler::impCanPInvokeInlineCallSite(BasicBlock* block)
5462 {
5463     if (block->hasHndIndex())
5464     {
5465         return false;
5466     }
5467
5468     // The remaining limitations do not apply to CoreRT
5469     if (IsTargetAbi(CORINFO_CORERT_ABI))
5470     {
5471         return true;
5472     }
5473
5474 #ifdef _TARGET_AMD64_
5475     // On x64, we disable pinvoke inlining inside of try regions.
5476     // Here is the comment from JIT64 explaining why:
5477     //
5478     //   [VSWhidbey: 611015] - because the jitted code links in the
5479     //   Frame (instead of the stub) we rely on the Frame not being
5480     //   'active' until inside the stub.  This normally happens by the
5481     //   stub setting the return address pointer in the Frame object
5482     //   inside the stub.  On a normal return, the return address
5483     //   pointer is zeroed out so the Frame can be safely re-used, but
5484     //   if an exception occurs, nobody zeros out the return address
5485     //   pointer.  Thus if we re-used the Frame object, it would go
5486     //   'active' as soon as we link it into the Frame chain.
5487     //
5488     //   Technically we only need to disable PInvoke inlining if we're
5489     //   in a handler or if we're in a try body with a catch or
5490     //   filter/except where other non-handler code in this method
5491     //   might run and try to re-use the dirty Frame object.
5492     //
5493     //   A desktop test case where this seems to matter is
5494     //   jit\jit64\ebvts\mcpp\sources2\ijw\__clrcall\vector_ctor_dtor.02\deldtor_clr.exe
5495     if (block->hasTryIndex())
5496     {
5497         return false;
5498     }
5499 #endif // _TARGET_AMD64_
5500
5501     return true;
5502 }
5503
5504 //------------------------------------------------------------------------
5505 // impCheckForPInvokeCall examine call to see if it is a pinvoke and if so
5506 // if it can be expressed as an inline pinvoke.
5507 //
5508 // Arguments:
5509 //    call       - tree for the call
5510 //    methHnd    - handle for the method being called (may be null)
5511 //    sig        - signature of the method being called
5512 //    mflags     - method flags for the method being called
5513 //    block      - block contaning the call, or for inlinees, block
5514 //                 containing the call being inlined
5515 //
5516 // Notes:
5517 //   Sets GTF_CALL_M_PINVOKE on the call for pinvokes.
5518 //
5519 //   Also sets GTF_CALL_UNMANAGED on call for inline pinvokes if the
5520 //   call passes a combination of legality and profitabilty checks.
5521 //
5522 //   If GTF_CALL_UNMANAGED is set, increments info.compCallUnmanaged
5523
5524 void Compiler::impCheckForPInvokeCall(
5525     GenTreePtr call, CORINFO_METHOD_HANDLE methHnd, CORINFO_SIG_INFO* sig, unsigned mflags, BasicBlock* block)
5526 {
5527     CorInfoUnmanagedCallConv unmanagedCallConv;
5528
5529     // If VM flagged it as Pinvoke, flag the call node accordingly
5530     if ((mflags & CORINFO_FLG_PINVOKE) != 0)
5531     {
5532         call->gtCall.gtCallMoreFlags |= GTF_CALL_M_PINVOKE;
5533     }
5534
5535     if (methHnd)
5536     {
5537         if ((mflags & CORINFO_FLG_PINVOKE) == 0 || (mflags & CORINFO_FLG_NOSECURITYWRAP) == 0)
5538         {
5539             return;
5540         }
5541
5542         unmanagedCallConv = info.compCompHnd->getUnmanagedCallConv(methHnd);
5543     }
5544     else
5545     {
5546         CorInfoCallConv callConv = CorInfoCallConv(sig->callConv & CORINFO_CALLCONV_MASK);
5547         if (callConv == CORINFO_CALLCONV_NATIVEVARARG)
5548         {
5549             // Used by the IL Stubs.
5550             callConv = CORINFO_CALLCONV_C;
5551         }
5552         static_assert_no_msg((unsigned)CORINFO_CALLCONV_C == (unsigned)CORINFO_UNMANAGED_CALLCONV_C);
5553         static_assert_no_msg((unsigned)CORINFO_CALLCONV_STDCALL == (unsigned)CORINFO_UNMANAGED_CALLCONV_STDCALL);
5554         static_assert_no_msg((unsigned)CORINFO_CALLCONV_THISCALL == (unsigned)CORINFO_UNMANAGED_CALLCONV_THISCALL);
5555         unmanagedCallConv = CorInfoUnmanagedCallConv(callConv);
5556
5557         assert(!call->gtCall.gtCallCookie);
5558     }
5559
5560     if (unmanagedCallConv != CORINFO_UNMANAGED_CALLCONV_C && unmanagedCallConv != CORINFO_UNMANAGED_CALLCONV_STDCALL &&
5561         unmanagedCallConv != CORINFO_UNMANAGED_CALLCONV_THISCALL)
5562     {
5563         return;
5564     }
5565     optNativeCallCount++;
5566
5567     if (opts.jitFlags->IsSet(JitFlags::JIT_FLAG_IL_STUB) && methHnd == nullptr)
5568     {
5569         // PInvoke CALLI in IL stubs must be inlined
5570     }
5571     else
5572     {
5573         // Check legality
5574         if (!impCanPInvokeInlineCallSite(block))
5575         {
5576             return;
5577         }
5578
5579         // PInvoke CALL in IL stubs must be inlined on CoreRT. Skip the ambient conditions checks and
5580         // profitability checks
5581         if (!(opts.jitFlags->IsSet(JitFlags::JIT_FLAG_IL_STUB) && IsTargetAbi(CORINFO_CORERT_ABI)))
5582         {
5583             if (!impCanPInvokeInline())
5584             {
5585                 return;
5586             }
5587
5588             // Size-speed tradeoff: don't use inline pinvoke at rarely
5589             // executed call sites.  The non-inline version is more
5590             // compact.
5591             if (block->isRunRarely())
5592             {
5593                 return;
5594             }
5595         }
5596
5597         // The expensive check should be last
5598         if (info.compCompHnd->pInvokeMarshalingRequired(methHnd, sig))
5599         {
5600             return;
5601         }
5602     }
5603
5604     JITLOG((LL_INFO1000000, "\nInline a CALLI PINVOKE call from method %s", info.compFullName));
5605
5606     call->gtFlags |= GTF_CALL_UNMANAGED;
5607     info.compCallUnmanaged++;
5608
5609     // AMD64 convention is same for native and managed
5610     if (unmanagedCallConv == CORINFO_UNMANAGED_CALLCONV_C)
5611     {
5612         call->gtFlags |= GTF_CALL_POP_ARGS;
5613     }
5614
5615     if (unmanagedCallConv == CORINFO_UNMANAGED_CALLCONV_THISCALL)
5616     {
5617         call->gtCall.gtCallMoreFlags |= GTF_CALL_M_UNMGD_THISCALL;
5618     }
5619 }
5620
5621 GenTreePtr Compiler::impImportIndirectCall(CORINFO_SIG_INFO* sig, IL_OFFSETX ilOffset)
5622 {
5623     var_types callRetTyp = JITtype2varType(sig->retType);
5624
5625     /* The function pointer is on top of the stack - It may be a
5626      * complex expression. As it is evaluated after the args,
5627      * it may cause registered args to be spilled. Simply spill it.
5628      */
5629
5630     // Ignore this trivial case.
5631     if (impStackTop().val->gtOper != GT_LCL_VAR)
5632     {
5633         impSpillStackEntry(verCurrentState.esStackDepth - 1,
5634                            BAD_VAR_NUM DEBUGARG(false) DEBUGARG("impImportIndirectCall"));
5635     }
5636
5637     /* Get the function pointer */
5638
5639     GenTreePtr fptr = impPopStack().val;
5640     assert(genActualType(fptr->gtType) == TYP_I_IMPL);
5641
5642 #ifdef DEBUG
5643     // This temporary must never be converted to a double in stress mode,
5644     // because that can introduce a call to the cast helper after the
5645     // arguments have already been evaluated.
5646
5647     if (fptr->OperGet() == GT_LCL_VAR)
5648     {
5649         lvaTable[fptr->gtLclVarCommon.gtLclNum].lvKeepType = 1;
5650     }
5651 #endif
5652
5653     /* Create the call node */
5654
5655     GenTreePtr call = gtNewIndCallNode(fptr, callRetTyp, nullptr, ilOffset);
5656
5657     call->gtFlags |= GTF_EXCEPT | (fptr->gtFlags & GTF_GLOB_EFFECT);
5658
5659     return call;
5660 }
5661
5662 /*****************************************************************************/
5663
5664 void Compiler::impPopArgsForUnmanagedCall(GenTreePtr call, CORINFO_SIG_INFO* sig)
5665 {
5666     assert(call->gtFlags & GTF_CALL_UNMANAGED);
5667
5668     /* Since we push the arguments in reverse order (i.e. right -> left)
5669      * spill any side effects from the stack
5670      *
5671      * OBS: If there is only one side effect we do not need to spill it
5672      *      thus we have to spill all side-effects except last one
5673      */
5674
5675     unsigned lastLevelWithSideEffects = UINT_MAX;
5676
5677     unsigned argsToReverse = sig->numArgs;
5678
5679     // For "thiscall", the first argument goes in a register. Since its
5680     // order does not need to be changed, we do not need to spill it
5681
5682     if (call->gtCall.gtCallMoreFlags & GTF_CALL_M_UNMGD_THISCALL)
5683     {
5684         assert(argsToReverse);
5685         argsToReverse--;
5686     }
5687
5688 #ifndef _TARGET_X86_
5689     // Don't reverse args on ARM or x64 - first four args always placed in regs in order
5690     argsToReverse = 0;
5691 #endif
5692
5693     for (unsigned level = verCurrentState.esStackDepth - argsToReverse; level < verCurrentState.esStackDepth; level++)
5694     {
5695         if (verCurrentState.esStack[level].val->gtFlags & GTF_ORDER_SIDEEFF)
5696         {
5697             assert(lastLevelWithSideEffects == UINT_MAX);
5698
5699             impSpillStackEntry(level,
5700                                BAD_VAR_NUM DEBUGARG(false) DEBUGARG("impPopArgsForUnmanagedCall - other side effect"));
5701         }
5702         else if (verCurrentState.esStack[level].val->gtFlags & GTF_SIDE_EFFECT)
5703         {
5704             if (lastLevelWithSideEffects != UINT_MAX)
5705             {
5706                 /* We had a previous side effect - must spill it */
5707                 impSpillStackEntry(lastLevelWithSideEffects,
5708                                    BAD_VAR_NUM DEBUGARG(false) DEBUGARG("impPopArgsForUnmanagedCall - side effect"));
5709
5710                 /* Record the level for the current side effect in case we will spill it */
5711                 lastLevelWithSideEffects = level;
5712             }
5713             else
5714             {
5715                 /* This is the first side effect encountered - record its level */
5716
5717                 lastLevelWithSideEffects = level;
5718             }
5719         }
5720     }
5721
5722     /* The argument list is now "clean" - no out-of-order side effects
5723      * Pop the argument list in reverse order */
5724
5725     unsigned   argFlags = 0;
5726     GenTreePtr args     = call->gtCall.gtCallArgs =
5727         impPopRevList(sig->numArgs, &argFlags, sig, sig->numArgs - argsToReverse);
5728
5729     if (call->gtCall.gtCallMoreFlags & GTF_CALL_M_UNMGD_THISCALL)
5730     {
5731         GenTreePtr thisPtr = args->Current();
5732         impBashVarAddrsToI(thisPtr);
5733         assert(thisPtr->TypeGet() == TYP_I_IMPL || thisPtr->TypeGet() == TYP_BYREF);
5734     }
5735
5736     if (args)
5737     {
5738         call->gtFlags |= args->gtFlags & GTF_GLOB_EFFECT;
5739     }
5740 }
5741
5742 //------------------------------------------------------------------------
5743 // impInitClass: Build a node to initialize the class before accessing the
5744 //               field if necessary
5745 //
5746 // Arguments:
5747 //    pResolvedToken - The CORINFO_RESOLVED_TOKEN that has been initialized
5748 //                     by a call to CEEInfo::resolveToken().
5749 //
5750 // Return Value: If needed, a pointer to the node that will perform the class
5751 //               initializtion.  Otherwise, nullptr.
5752 //
5753
5754 GenTreePtr Compiler::impInitClass(CORINFO_RESOLVED_TOKEN* pResolvedToken)
5755 {
5756     CorInfoInitClassResult initClassResult =
5757         info.compCompHnd->initClass(pResolvedToken->hField, info.compMethodHnd, impTokenLookupContextHandle);
5758
5759     if ((initClassResult & CORINFO_INITCLASS_USE_HELPER) == 0)
5760     {
5761         return nullptr;
5762     }
5763     BOOL runtimeLookup;
5764
5765     GenTreePtr node = impParentClassTokenToHandle(pResolvedToken, &runtimeLookup);
5766
5767     if (node == nullptr)
5768     {
5769         assert(compDonotInline());
5770         return nullptr;
5771     }
5772
5773     if (runtimeLookup)
5774     {
5775         node = gtNewHelperCallNode(CORINFO_HELP_INITCLASS, TYP_VOID, 0, gtNewArgList(node));
5776     }
5777     else
5778     {
5779         // Call the shared non gc static helper, as its the fastest
5780         node = fgGetSharedCCtor(pResolvedToken->hClass);
5781     }
5782
5783     return node;
5784 }
5785
5786 GenTreePtr Compiler::impImportStaticReadOnlyField(void* fldAddr, var_types lclTyp)
5787 {
5788     GenTreePtr op1 = nullptr;
5789
5790     switch (lclTyp)
5791     {
5792         int     ival;
5793         __int64 lval;
5794         double  dval;
5795
5796         case TYP_BOOL:
5797             ival = *((bool*)fldAddr);
5798             goto IVAL_COMMON;
5799
5800         case TYP_BYTE:
5801             ival = *((signed char*)fldAddr);
5802             goto IVAL_COMMON;
5803
5804         case TYP_UBYTE:
5805             ival = *((unsigned char*)fldAddr);
5806             goto IVAL_COMMON;
5807
5808         case TYP_SHORT:
5809             ival = *((short*)fldAddr);
5810             goto IVAL_COMMON;
5811
5812         case TYP_CHAR:
5813         case TYP_USHORT:
5814             ival = *((unsigned short*)fldAddr);
5815             goto IVAL_COMMON;
5816
5817         case TYP_UINT:
5818         case TYP_INT:
5819             ival = *((int*)fldAddr);
5820         IVAL_COMMON:
5821             op1 = gtNewIconNode(ival);
5822             break;
5823
5824         case TYP_LONG:
5825         case TYP_ULONG:
5826             lval = *((__int64*)fldAddr);
5827             op1  = gtNewLconNode(lval);
5828             break;
5829
5830         case TYP_FLOAT:
5831             dval = *((float*)fldAddr);
5832             op1  = gtNewDconNode(dval);
5833 #if !FEATURE_X87_DOUBLES
5834             // X87 stack doesn't differentiate between float/double
5835             // so R4 is treated as R8, but everybody else does
5836             op1->gtType = TYP_FLOAT;
5837 #endif // FEATURE_X87_DOUBLES
5838             break;
5839
5840         case TYP_DOUBLE:
5841             dval = *((double*)fldAddr);
5842             op1  = gtNewDconNode(dval);
5843             break;
5844
5845         default:
5846             assert(!"Unexpected lclTyp");
5847             break;
5848     }
5849
5850     return op1;
5851 }
5852
5853 GenTreePtr Compiler::impImportStaticFieldAccess(CORINFO_RESOLVED_TOKEN* pResolvedToken,
5854                                                 CORINFO_ACCESS_FLAGS    access,
5855                                                 CORINFO_FIELD_INFO*     pFieldInfo,
5856                                                 var_types               lclTyp)
5857 {
5858     GenTreePtr op1;
5859
5860     switch (pFieldInfo->fieldAccessor)
5861     {
5862         case CORINFO_FIELD_STATIC_GENERICS_STATIC_HELPER:
5863         {
5864             assert(!compIsForInlining());
5865
5866             // We first call a special helper to get the statics base pointer
5867             op1 = impParentClassTokenToHandle(pResolvedToken);
5868
5869             // compIsForInlining() is false so we should not neve get NULL here
5870             assert(op1 != nullptr);
5871
5872             var_types type = TYP_BYREF;
5873
5874             switch (pFieldInfo->helper)
5875             {
5876                 case CORINFO_HELP_GETGENERICS_NONGCTHREADSTATIC_BASE:
5877                     type = TYP_I_IMPL;
5878                     break;
5879                 case CORINFO_HELP_GETGENERICS_GCSTATIC_BASE:
5880                 case CORINFO_HELP_GETGENERICS_NONGCSTATIC_BASE:
5881                 case CORINFO_HELP_GETGENERICS_GCTHREADSTATIC_BASE:
5882                     break;
5883                 default:
5884                     assert(!"unknown generic statics helper");
5885                     break;
5886             }
5887
5888             op1 = gtNewHelperCallNode(pFieldInfo->helper, type, 0, gtNewArgList(op1));
5889
5890             FieldSeqNode* fs = GetFieldSeqStore()->CreateSingleton(pResolvedToken->hField);
5891             op1              = gtNewOperNode(GT_ADD, type, op1,
5892                                 new (this, GT_CNS_INT) GenTreeIntCon(TYP_I_IMPL, pFieldInfo->offset, fs));
5893         }
5894         break;
5895
5896         case CORINFO_FIELD_STATIC_SHARED_STATIC_HELPER:
5897         {
5898 #ifdef FEATURE_READYTORUN_COMPILER
5899             if (opts.IsReadyToRun())
5900             {
5901                 unsigned callFlags = 0;
5902
5903                 if (info.compCompHnd->getClassAttribs(pResolvedToken->hClass) & CORINFO_FLG_BEFOREFIELDINIT)
5904                 {
5905                     callFlags |= GTF_CALL_HOISTABLE;
5906                 }
5907
5908                 op1 = gtNewHelperCallNode(CORINFO_HELP_READYTORUN_STATIC_BASE, TYP_BYREF, callFlags);
5909
5910                 op1->gtCall.setEntryPoint(pFieldInfo->fieldLookup);
5911             }
5912             else
5913 #endif
5914             {
5915                 op1 = fgGetStaticsCCtorHelper(pResolvedToken->hClass, pFieldInfo->helper);
5916             }
5917
5918             {
5919                 FieldSeqNode* fs = GetFieldSeqStore()->CreateSingleton(pResolvedToken->hField);
5920                 op1              = gtNewOperNode(GT_ADD, op1->TypeGet(), op1,
5921                                     new (this, GT_CNS_INT) GenTreeIntCon(TYP_INT, pFieldInfo->offset, fs));
5922             }
5923             break;
5924         }
5925 #if COR_JIT_EE_VERSION > 460
5926         case CORINFO_FIELD_STATIC_READYTORUN_HELPER:
5927         {
5928 #ifdef FEATURE_READYTORUN_COMPILER
5929             noway_assert(opts.IsReadyToRun());
5930             CORINFO_LOOKUP_KIND kind = info.compCompHnd->getLocationOfThisType(info.compMethodHnd);
5931             assert(kind.needsRuntimeLookup);
5932
5933             GenTreePtr      ctxTree = getRuntimeContextTree(kind.runtimeLookupKind);
5934             GenTreeArgList* args    = gtNewArgList(ctxTree);
5935
5936             unsigned callFlags = 0;
5937
5938             if (info.compCompHnd->getClassAttribs(pResolvedToken->hClass) & CORINFO_FLG_BEFOREFIELDINIT)
5939             {
5940                 callFlags |= GTF_CALL_HOISTABLE;
5941             }
5942             var_types type = TYP_BYREF;
5943             op1            = gtNewHelperCallNode(CORINFO_HELP_READYTORUN_GENERIC_STATIC_BASE, type, callFlags, args);
5944
5945             op1->gtCall.setEntryPoint(pFieldInfo->fieldLookup);
5946             FieldSeqNode* fs = GetFieldSeqStore()->CreateSingleton(pResolvedToken->hField);
5947             op1              = gtNewOperNode(GT_ADD, type, op1,
5948                                 new (this, GT_CNS_INT) GenTreeIntCon(TYP_I_IMPL, pFieldInfo->offset, fs));
5949 #else
5950             unreached();
5951 #endif // FEATURE_READYTORUN_COMPILER
5952         }
5953         break;
5954 #endif // COR_JIT_EE_VERSION > 460
5955         default:
5956         {
5957             if (!(access & CORINFO_ACCESS_ADDRESS))
5958             {
5959                 // In future, it may be better to just create the right tree here instead of folding it later.
5960                 op1 = gtNewFieldRef(lclTyp, pResolvedToken->hField);
5961
5962                 if (pFieldInfo->fieldFlags & CORINFO_FLG_FIELD_STATIC_IN_HEAP)
5963                 {
5964                     op1->gtType = TYP_REF; // points at boxed object
5965                     FieldSeqNode* firstElemFldSeq =
5966                         GetFieldSeqStore()->CreateSingleton(FieldSeqStore::FirstElemPseudoField);
5967                     op1 =
5968                         gtNewOperNode(GT_ADD, TYP_BYREF, op1,
5969                                       new (this, GT_CNS_INT) GenTreeIntCon(TYP_I_IMPL, sizeof(void*), firstElemFldSeq));
5970
5971                     if (varTypeIsStruct(lclTyp))
5972                     {
5973                         // Constructor adds GTF_GLOB_REF.  Note that this is *not* GTF_EXCEPT.
5974                         op1 = gtNewObjNode(pFieldInfo->structType, op1);
5975                     }
5976                     else
5977                     {
5978                         op1 = gtNewOperNode(GT_IND, lclTyp, op1);
5979                         op1->gtFlags |= GTF_GLOB_REF | GTF_IND_NONFAULTING;
5980                     }
5981                 }
5982
5983                 return op1;
5984             }
5985             else
5986             {
5987                 void** pFldAddr = nullptr;
5988                 void*  fldAddr  = info.compCompHnd->getFieldAddress(pResolvedToken->hField, (void**)&pFldAddr);
5989
5990                 FieldSeqNode* fldSeq = GetFieldSeqStore()->CreateSingleton(pResolvedToken->hField);
5991
5992                 /* Create the data member node */
5993                 if (pFldAddr == nullptr)
5994                 {
5995                     op1 = gtNewIconHandleNode((size_t)fldAddr, GTF_ICON_STATIC_HDL, fldSeq);
5996                 }
5997                 else
5998                 {
5999                     op1 = gtNewIconHandleNode((size_t)pFldAddr, GTF_ICON_STATIC_HDL, fldSeq);
6000
6001                     // There are two cases here, either the static is RVA based,
6002                     // in which case the type of the FIELD node is not a GC type
6003                     // and the handle to the RVA is a TYP_I_IMPL.  Or the FIELD node is
6004                     // a GC type and the handle to it is a TYP_BYREF in the GC heap
6005                     // because handles to statics now go into the large object heap
6006
6007                     var_types handleTyp = (var_types)(varTypeIsGC(lclTyp) ? TYP_BYREF : TYP_I_IMPL);
6008                     op1                 = gtNewOperNode(GT_IND, handleTyp, op1);
6009                     op1->gtFlags |= GTF_IND_INVARIANT | GTF_IND_NONFAULTING;
6010                 }
6011             }
6012             break;
6013         }
6014     }
6015
6016     if (pFieldInfo->fieldFlags & CORINFO_FLG_FIELD_STATIC_IN_HEAP)
6017     {
6018         op1 = gtNewOperNode(GT_IND, TYP_REF, op1);
6019
6020         FieldSeqNode* fldSeq = GetFieldSeqStore()->CreateSingleton(FieldSeqStore::FirstElemPseudoField);
6021
6022         op1 = gtNewOperNode(GT_ADD, TYP_BYREF, op1,
6023                             new (this, GT_CNS_INT) GenTreeIntCon(TYP_I_IMPL, sizeof(void*), fldSeq));
6024     }
6025
6026     if (!(access & CORINFO_ACCESS_ADDRESS))
6027     {
6028         op1 = gtNewOperNode(GT_IND, lclTyp, op1);
6029         op1->gtFlags |= GTF_GLOB_REF;
6030     }
6031
6032     return op1;
6033 }
6034
6035 // In general try to call this before most of the verification work.  Most people expect the access
6036 // exceptions before the verification exceptions.  If you do this after, that usually doesn't happen.  Turns
6037 // out if you can't access something we also think that you're unverifiable for other reasons.
6038 void Compiler::impHandleAccessAllowed(CorInfoIsAccessAllowedResult result, CORINFO_HELPER_DESC* helperCall)
6039 {
6040     if (result != CORINFO_ACCESS_ALLOWED)
6041     {
6042         impHandleAccessAllowedInternal(result, helperCall);
6043     }
6044 }
6045
6046 void Compiler::impHandleAccessAllowedInternal(CorInfoIsAccessAllowedResult result, CORINFO_HELPER_DESC* helperCall)
6047 {
6048     switch (result)
6049     {
6050         case CORINFO_ACCESS_ALLOWED:
6051             break;
6052         case CORINFO_ACCESS_ILLEGAL:
6053             // if we're verifying, then we need to reject the illegal access to ensure that we don't think the
6054             // method is verifiable.  Otherwise, delay the exception to runtime.
6055             if (compIsForImportOnly())
6056             {
6057                 info.compCompHnd->ThrowExceptionForHelper(helperCall);
6058             }
6059             else
6060             {
6061                 impInsertHelperCall(helperCall);
6062             }
6063             break;
6064         case CORINFO_ACCESS_RUNTIME_CHECK:
6065             impInsertHelperCall(helperCall);
6066             break;
6067     }
6068 }
6069
6070 void Compiler::impInsertHelperCall(CORINFO_HELPER_DESC* helperInfo)
6071 {
6072     // Construct the argument list
6073     GenTreeArgList* args = nullptr;
6074     assert(helperInfo->helperNum != CORINFO_HELP_UNDEF);
6075     for (unsigned i = helperInfo->numArgs; i > 0; --i)
6076     {
6077         const CORINFO_HELPER_ARG& helperArg  = helperInfo->args[i - 1];
6078         GenTreePtr                currentArg = nullptr;
6079         switch (helperArg.argType)
6080         {
6081             case CORINFO_HELPER_ARG_TYPE_Field:
6082                 info.compCompHnd->classMustBeLoadedBeforeCodeIsRun(
6083                     info.compCompHnd->getFieldClass(helperArg.fieldHandle));
6084                 currentArg = gtNewIconEmbFldHndNode(helperArg.fieldHandle);
6085                 break;
6086             case CORINFO_HELPER_ARG_TYPE_Method:
6087                 info.compCompHnd->methodMustBeLoadedBeforeCodeIsRun(helperArg.methodHandle);
6088                 currentArg = gtNewIconEmbMethHndNode(helperArg.methodHandle);
6089                 break;
6090             case CORINFO_HELPER_ARG_TYPE_Class:
6091                 info.compCompHnd->classMustBeLoadedBeforeCodeIsRun(helperArg.classHandle);
6092                 currentArg = gtNewIconEmbClsHndNode(helperArg.classHandle);
6093                 break;
6094             case CORINFO_HELPER_ARG_TYPE_Module:
6095                 currentArg = gtNewIconEmbScpHndNode(helperArg.moduleHandle);
6096                 break;
6097             case CORINFO_HELPER_ARG_TYPE_Const:
6098                 currentArg = gtNewIconNode(helperArg.constant);
6099                 break;
6100             default:
6101                 NO_WAY("Illegal helper arg type");
6102         }
6103         args = (currentArg == nullptr) ? gtNewArgList(currentArg) : gtNewListNode(currentArg, args);
6104     }
6105
6106     /* TODO-Review:
6107      * Mark as CSE'able, and hoistable.  Consider marking hoistable unless you're in the inlinee.
6108      * Also, consider sticking this in the first basic block.
6109      */
6110     GenTreePtr callout = gtNewHelperCallNode(helperInfo->helperNum, TYP_VOID, GTF_EXCEPT, args);
6111     impAppendTree(callout, (unsigned)CHECK_SPILL_NONE, impCurStmtOffs);
6112 }
6113
6114 void Compiler::impInsertCalloutForDelegate(CORINFO_METHOD_HANDLE callerMethodHnd,
6115                                            CORINFO_METHOD_HANDLE calleeMethodHnd,
6116                                            CORINFO_CLASS_HANDLE  delegateTypeHnd)
6117 {
6118 #ifdef FEATURE_CORECLR
6119     if (!info.compCompHnd->isDelegateCreationAllowed(delegateTypeHnd, calleeMethodHnd))
6120     {
6121         // Call the JIT_DelegateSecurityCheck helper before calling the actual function.
6122         // This helper throws an exception if the CLR host disallows the call.
6123
6124         GenTreePtr helper = gtNewHelperCallNode(CORINFO_HELP_DELEGATE_SECURITY_CHECK, TYP_VOID, GTF_EXCEPT,
6125                                                 gtNewArgList(gtNewIconEmbClsHndNode(delegateTypeHnd),
6126                                                              gtNewIconEmbMethHndNode(calleeMethodHnd)));
6127         // Append the callout statement
6128         impAppendTree(helper, (unsigned)CHECK_SPILL_NONE, impCurStmtOffs);
6129     }
6130 #endif // FEATURE_CORECLR
6131 }
6132
6133 // Checks whether the return types of caller and callee are compatible
6134 // so that callee can be tail called. Note that here we don't check
6135 // compatibility in IL Verifier sense, but on the lines of return type
6136 // sizes are equal and get returned in the same return register.
6137 bool Compiler::impTailCallRetTypeCompatible(var_types            callerRetType,
6138                                             CORINFO_CLASS_HANDLE callerRetTypeClass,
6139                                             var_types            calleeRetType,
6140                                             CORINFO_CLASS_HANDLE calleeRetTypeClass)
6141 {
6142     // Note that we can not relax this condition with genActualType() as the
6143     // calling convention dictates that the caller of a function with a small
6144     // typed return value is responsible for normalizing the return val.
6145     if (callerRetType == calleeRetType)
6146     {
6147         return true;
6148     }
6149
6150 #if defined(_TARGET_AMD64_) || defined(_TARGET_ARM64_)
6151     // Jit64 compat:
6152     if (callerRetType == TYP_VOID)
6153     {
6154         // This needs to be allowed to support the following IL pattern that Jit64 allows:
6155         //     tail.call
6156         //     pop
6157         //     ret
6158         //
6159         // Note that the above IL pattern is not valid as per IL verification rules.
6160         // Therefore, only full trust code can take advantage of this pattern.
6161         return true;
6162     }
6163
6164     // These checks return true if the return value type sizes are the same and
6165     // get returned in the same return register i.e. caller doesn't need to normalize
6166     // return value. Some of the tail calls permitted by below checks would have
6167     // been rejected by IL Verifier before we reached here.  Therefore, only full
6168     // trust code can make those tail calls.
6169     unsigned callerRetTypeSize = 0;
6170     unsigned calleeRetTypeSize = 0;
6171     bool     isCallerRetTypMBEnreg =
6172         VarTypeIsMultiByteAndCanEnreg(callerRetType, callerRetTypeClass, &callerRetTypeSize, true);
6173     bool isCalleeRetTypMBEnreg =
6174         VarTypeIsMultiByteAndCanEnreg(calleeRetType, calleeRetTypeClass, &calleeRetTypeSize, true);
6175
6176     if (varTypeIsIntegral(callerRetType) || isCallerRetTypMBEnreg)
6177     {
6178         return (varTypeIsIntegral(calleeRetType) || isCalleeRetTypMBEnreg) && (callerRetTypeSize == calleeRetTypeSize);
6179     }
6180 #endif // _TARGET_AMD64_ || _TARGET_ARM64_
6181
6182     return false;
6183 }
6184
6185 // For prefixFlags
6186 enum
6187 {
6188     PREFIX_TAILCALL_EXPLICIT = 0x00000001, // call has "tail" IL prefix
6189     PREFIX_TAILCALL_IMPLICIT =
6190         0x00000010, // call is treated as having "tail" prefix even though there is no "tail" IL prefix
6191     PREFIX_TAILCALL    = (PREFIX_TAILCALL_EXPLICIT | PREFIX_TAILCALL_IMPLICIT),
6192     PREFIX_VOLATILE    = 0x00000100,
6193     PREFIX_UNALIGNED   = 0x00001000,
6194     PREFIX_CONSTRAINED = 0x00010000,
6195     PREFIX_READONLY    = 0x00100000
6196 };
6197
6198 /********************************************************************************
6199  *
6200  * Returns true if the current opcode and and the opcodes following it correspond
6201  * to a supported tail call IL pattern.
6202  *
6203  */
6204 bool Compiler::impIsTailCallILPattern(bool        tailPrefixed,
6205                                       OPCODE      curOpcode,
6206                                       const BYTE* codeAddrOfNextOpcode,
6207                                       const BYTE* codeEnd,
6208                                       bool        isRecursive,
6209                                       bool*       isCallPopAndRet /* = nullptr */)
6210 {
6211     // Bail out if the current opcode is not a call.
6212     if (!impOpcodeIsCallOpcode(curOpcode))
6213     {
6214         return false;
6215     }
6216
6217 #if !FEATURE_TAILCALL_OPT_SHARED_RETURN
6218     // If shared ret tail opt is not enabled, we will enable
6219     // it for recursive methods.
6220     if (isRecursive)
6221 #endif
6222     {
6223         // we can actually handle if the ret is in a fallthrough block, as long as that is the only part of the
6224         // sequence. Make sure we don't go past the end of the IL however.
6225         codeEnd = min(codeEnd + 1, info.compCode + info.compILCodeSize);
6226     }
6227
6228     // Bail out if there is no next opcode after call
6229     if (codeAddrOfNextOpcode >= codeEnd)
6230     {
6231         return false;
6232     }
6233
6234     // Scan the opcodes to look for the following IL patterns if either
6235     //   i) the call is not tail prefixed (i.e. implicit tail call) or
6236     //  ii) if tail prefixed, IL verification is not needed for the method.
6237     //
6238     // Only in the above two cases we can allow the below tail call patterns
6239     // violating ECMA spec.
6240     //
6241     // Pattern1:
6242     //       call
6243     //       nop*
6244     //       ret
6245     //
6246     // Pattern2:
6247     //       call
6248     //       nop*
6249     //       pop
6250     //       nop*
6251     //       ret
6252     int    cntPop = 0;
6253     OPCODE nextOpcode;
6254
6255 #ifdef _TARGET_AMD64_
6256     do
6257     {
6258         nextOpcode = (OPCODE)getU1LittleEndian(codeAddrOfNextOpcode);
6259         codeAddrOfNextOpcode += sizeof(__int8);
6260     } while ((codeAddrOfNextOpcode < codeEnd) &&         // Haven't reached end of method
6261              (!tailPrefixed || !tiVerificationNeeded) && // Not ".tail" prefixed or method requires no IL verification
6262              ((nextOpcode == CEE_NOP) || ((nextOpcode == CEE_POP) && (++cntPop == 1)))); // Next opcode = nop or exactly
6263                                                                                          // one pop seen so far.
6264 #else
6265     nextOpcode = (OPCODE)getU1LittleEndian(codeAddrOfNextOpcode);
6266 #endif
6267
6268     if (isCallPopAndRet)
6269     {
6270         // Allow call+pop+ret to be tail call optimized if caller ret type is void
6271         *isCallPopAndRet = (nextOpcode == CEE_RET) && (cntPop == 1);
6272     }
6273
6274 #ifdef _TARGET_AMD64_
6275     // Jit64 Compat:
6276     // Tail call IL pattern could be either of the following
6277     // 1) call/callvirt/calli + ret
6278     // 2) call/callvirt/calli + pop + ret in a method returning void.
6279     return (nextOpcode == CEE_RET) && ((cntPop == 0) || ((cntPop == 1) && (info.compRetType == TYP_VOID)));
6280 #else //!_TARGET_AMD64_
6281     return (nextOpcode == CEE_RET) && (cntPop == 0);
6282 #endif
6283 }
6284
6285 /*****************************************************************************
6286  *
6287  * Determine whether the call could be converted to an implicit tail call
6288  *
6289  */
6290 bool Compiler::impIsImplicitTailCallCandidate(
6291     OPCODE opcode, const BYTE* codeAddrOfNextOpcode, const BYTE* codeEnd, int prefixFlags, bool isRecursive)
6292 {
6293
6294 #if FEATURE_TAILCALL_OPT
6295     if (!opts.compTailCallOpt)
6296     {
6297         return false;
6298     }
6299
6300     if (opts.compDbgCode || opts.MinOpts())
6301     {
6302         return false;
6303     }
6304
6305     // must not be tail prefixed
6306     if (prefixFlags & PREFIX_TAILCALL_EXPLICIT)
6307     {
6308         return false;
6309     }
6310
6311 #if !FEATURE_TAILCALL_OPT_SHARED_RETURN
6312     // the block containing call is marked as BBJ_RETURN
6313     // We allow shared ret tail call optimization on recursive calls even under
6314     // !FEATURE_TAILCALL_OPT_SHARED_RETURN.
6315     if (!isRecursive && (compCurBB->bbJumpKind != BBJ_RETURN))
6316         return false;
6317 #endif // !FEATURE_TAILCALL_OPT_SHARED_RETURN
6318
6319     // must be call+ret or call+pop+ret
6320     if (!impIsTailCallILPattern(false, opcode, codeAddrOfNextOpcode, codeEnd, isRecursive))
6321     {
6322         return false;
6323     }
6324
6325     return true;
6326 #else
6327     return false;
6328 #endif // FEATURE_TAILCALL_OPT
6329 }
6330
6331 //------------------------------------------------------------------------
6332 // impImportCall: import a call-inspiring opcode
6333 //
6334 // Arguments:
6335 //    opcode                    - opcode that inspires the call
6336 //    pResolvedToken            - resolved token for the call target
6337 //    pConstrainedResolvedToken - resolved constraint token (or nullptr)
6338 //    newObjThis                - tree for this pointer or uninitalized newobj temp (or nullptr)
6339 //    prefixFlags               - IL prefix flags for the call
6340 //    callInfo                  - EE supplied info for the call
6341 //    rawILOffset               - IL offset of the opcode
6342 //
6343 // Returns:
6344 //    Type of the call's return value.
6345 //
6346 // Notes:
6347 //    opcode can be CEE_CALL, CEE_CALLI, CEE_CALLVIRT, or CEE_NEWOBJ.
6348 //
6349 //    For CEE_NEWOBJ, newobjThis should be the temp grabbed for the allocated
6350 //    uninitalized object.
6351
6352 #ifdef _PREFAST_
6353 #pragma warning(push)
6354 #pragma warning(disable : 21000) // Suppress PREFast warning about overly large function
6355 #endif
6356
6357 var_types Compiler::impImportCall(OPCODE                  opcode,
6358                                   CORINFO_RESOLVED_TOKEN* pResolvedToken,
6359                                   CORINFO_RESOLVED_TOKEN* pConstrainedResolvedToken,
6360                                   GenTreePtr              newobjThis,
6361                                   int                     prefixFlags,
6362                                   CORINFO_CALL_INFO*      callInfo,
6363                                   IL_OFFSET               rawILOffset)
6364 {
6365     assert(opcode == CEE_CALL || opcode == CEE_CALLVIRT || opcode == CEE_NEWOBJ || opcode == CEE_CALLI);
6366
6367     IL_OFFSETX             ilOffset                       = impCurILOffset(rawILOffset, true);
6368     var_types              callRetTyp                     = TYP_COUNT;
6369     CORINFO_SIG_INFO*      sig                            = nullptr;
6370     CORINFO_METHOD_HANDLE  methHnd                        = nullptr;
6371     CORINFO_CLASS_HANDLE   clsHnd                         = nullptr;
6372     unsigned               clsFlags                       = 0;
6373     unsigned               mflags                         = 0;
6374     unsigned               argFlags                       = 0;
6375     GenTreePtr             call                           = nullptr;
6376     GenTreeArgList*        args                           = nullptr;
6377     CORINFO_THIS_TRANSFORM constraintCallThisTransform    = CORINFO_NO_THIS_TRANSFORM;
6378     CORINFO_CONTEXT_HANDLE exactContextHnd                = nullptr;
6379     BOOL                   exactContextNeedsRuntimeLookup = FALSE;
6380     bool                   canTailCall                    = true;
6381     const char*            szCanTailCallFailReason        = nullptr;
6382     int                    tailCall                       = prefixFlags & PREFIX_TAILCALL;
6383     bool                   readonlyCall                   = (prefixFlags & PREFIX_READONLY) != 0;
6384
6385     // Synchronized methods need to call CORINFO_HELP_MON_EXIT at the end. We could
6386     // do that before tailcalls, but that is probably not the intended
6387     // semantic. So just disallow tailcalls from synchronized methods.
6388     // Also, popping arguments in a varargs function is more work and NYI
6389     // If we have a security object, we have to keep our frame around for callers
6390     // to see any imperative security.
6391     if (info.compFlags & CORINFO_FLG_SYNCH)
6392     {
6393         canTailCall             = false;
6394         szCanTailCallFailReason = "Caller is synchronized";
6395     }
6396 #if !FEATURE_FIXED_OUT_ARGS
6397     else if (info.compIsVarArgs)
6398     {
6399         canTailCall             = false;
6400         szCanTailCallFailReason = "Caller is varargs";
6401     }
6402 #endif // FEATURE_FIXED_OUT_ARGS
6403     else if (opts.compNeedSecurityCheck)
6404     {
6405         canTailCall             = false;
6406         szCanTailCallFailReason = "Caller requires a security check.";
6407     }
6408
6409     // We only need to cast the return value of pinvoke inlined calls that return small types
6410
6411     // TODO-AMD64-Cleanup: Remove this when we stop interoperating with JIT64, or if we decide to stop
6412     // widening everything! CoreCLR does not support JIT64 interoperation so no need to widen there.
6413     // The existing x64 JIT doesn't bother widening all types to int, so we have to assume for
6414     // the time being that the callee might be compiled by the other JIT and thus the return
6415     // value will need to be widened by us (or not widened at all...)
6416
6417     // ReadyToRun code sticks with default calling convention that does not widen small return types.
6418
6419     bool checkForSmallType  = opts.IsJit64Compat() || opts.IsReadyToRun();
6420     bool bIntrinsicImported = false;
6421
6422     CORINFO_SIG_INFO calliSig;
6423     GenTreeArgList*  extraArg = nullptr;
6424
6425     /*-------------------------------------------------------------------------
6426      * First create the call node
6427      */
6428
6429     if (opcode == CEE_CALLI)
6430     {
6431         /* Get the call site sig */
6432         eeGetSig(pResolvedToken->token, info.compScopeHnd, impTokenLookupContextHandle, &calliSig);
6433
6434         callRetTyp = JITtype2varType(calliSig.retType);
6435         clsHnd     = calliSig.retTypeClass;
6436
6437         call = impImportIndirectCall(&calliSig, ilOffset);
6438
6439         // We don't know the target method, so we have to infer the flags, or
6440         // assume the worst-case.
6441         mflags = (calliSig.callConv & CORINFO_CALLCONV_HASTHIS) ? 0 : CORINFO_FLG_STATIC;
6442
6443 #ifdef DEBUG
6444         if (verbose)
6445         {
6446             unsigned structSize =
6447                 (callRetTyp == TYP_STRUCT) ? info.compCompHnd->getClassSize(calliSig.retTypeSigClass) : 0;
6448             printf("\nIn Compiler::impImportCall: opcode is %s, kind=%d, callRetType is %s, structSize is %d\n",
6449                    opcodeNames[opcode], callInfo->kind, varTypeName(callRetTyp), structSize);
6450         }
6451 #endif
6452         // This should be checked in impImportBlockCode.
6453         assert(!compIsForInlining() || !(impInlineInfo->inlineCandidateInfo->dwRestrictions & INLINE_RESPECT_BOUNDARY));
6454
6455         sig = &calliSig;
6456
6457 #ifdef DEBUG
6458         // We cannot lazily obtain the signature of a CALLI call because it has no method
6459         // handle that we can use, so we need to save its full call signature here.
6460         assert(call->gtCall.callSig == nullptr);
6461         call->gtCall.callSig  = new (this, CMK_CorSig) CORINFO_SIG_INFO;
6462         *call->gtCall.callSig = calliSig;
6463 #endif // DEBUG
6464
6465         if (IsTargetAbi(CORINFO_CORERT_ABI))
6466         {
6467             bool managedCall = (calliSig.callConv & GTF_CALL_UNMANAGED) == 0;
6468             if (managedCall)
6469             {
6470                 call->AsCall()->SetFatPointerCandidate();
6471                 setMethodHasFatPointer();
6472             }
6473         }
6474     }
6475     else // (opcode != CEE_CALLI)
6476     {
6477         CorInfoIntrinsics intrinsicID = CORINFO_INTRINSIC_Count;
6478
6479         // Passing CORINFO_CALLINFO_ALLOWINSTPARAM indicates that this JIT is prepared to
6480         // supply the instantiation parameters necessary to make direct calls to underlying
6481         // shared generic code, rather than calling through instantiating stubs.  If the
6482         // returned signature has CORINFO_CALLCONV_PARAMTYPE then this indicates that the JIT
6483         // must indeed pass an instantiation parameter.
6484
6485         methHnd = callInfo->hMethod;
6486
6487         sig        = &(callInfo->sig);
6488         callRetTyp = JITtype2varType(sig->retType);
6489
6490         mflags = callInfo->methodFlags;
6491
6492 #ifdef DEBUG
6493         if (verbose)
6494         {
6495             unsigned structSize = (callRetTyp == TYP_STRUCT) ? info.compCompHnd->getClassSize(sig->retTypeSigClass) : 0;
6496             printf("\nIn Compiler::impImportCall: opcode is %s, kind=%d, callRetType is %s, structSize is %d\n",
6497                    opcodeNames[opcode], callInfo->kind, varTypeName(callRetTyp), structSize);
6498         }
6499 #endif
6500         if (compIsForInlining())
6501         {
6502             /* Does this call site have security boundary restrictions? */
6503
6504             if (impInlineInfo->inlineCandidateInfo->dwRestrictions & INLINE_RESPECT_BOUNDARY)
6505             {
6506                 compInlineResult->NoteFatal(InlineObservation::CALLSITE_CROSS_BOUNDARY_SECURITY);
6507                 return callRetTyp;
6508             }
6509
6510             /* Does the inlinee need a security check token on the frame */
6511
6512             if (mflags & CORINFO_FLG_SECURITYCHECK)
6513             {
6514                 compInlineResult->NoteFatal(InlineObservation::CALLEE_NEEDS_SECURITY_CHECK);
6515                 return callRetTyp;
6516             }
6517
6518             /* Does the inlinee use StackCrawlMark */
6519
6520             if (mflags & CORINFO_FLG_DONT_INLINE_CALLER)
6521             {
6522                 compInlineResult->NoteFatal(InlineObservation::CALLEE_STACK_CRAWL_MARK);
6523                 return callRetTyp;
6524             }
6525
6526             /* For now ignore delegate invoke */
6527
6528             if (mflags & CORINFO_FLG_DELEGATE_INVOKE)
6529             {
6530                 compInlineResult->NoteFatal(InlineObservation::CALLEE_HAS_DELEGATE_INVOKE);
6531                 return callRetTyp;
6532             }
6533
6534             /* For now ignore varargs */
6535             if ((sig->callConv & CORINFO_CALLCONV_MASK) == CORINFO_CALLCONV_NATIVEVARARG)
6536             {
6537                 compInlineResult->NoteFatal(InlineObservation::CALLEE_HAS_NATIVE_VARARGS);
6538                 return callRetTyp;
6539             }
6540
6541             if ((sig->callConv & CORINFO_CALLCONV_MASK) == CORINFO_CALLCONV_VARARG)
6542             {
6543                 compInlineResult->NoteFatal(InlineObservation::CALLEE_HAS_MANAGED_VARARGS);
6544                 return callRetTyp;
6545             }
6546
6547             if ((mflags & CORINFO_FLG_VIRTUAL) && (sig->sigInst.methInstCount != 0) && (opcode == CEE_CALLVIRT))
6548             {
6549                 compInlineResult->NoteFatal(InlineObservation::CALLEE_IS_GENERIC_VIRTUAL);
6550                 return callRetTyp;
6551             }
6552         }
6553
6554         clsHnd = pResolvedToken->hClass;
6555
6556         clsFlags = callInfo->classFlags;
6557
6558 #ifdef DEBUG
6559         // If this is a call to JitTestLabel.Mark, do "early inlining", and record the test attribute.
6560
6561         // This recognition should really be done by knowing the methHnd of the relevant Mark method(s).
6562         // These should be in mscorlib.h, and available through a JIT/EE interface call.
6563         const char* modName;
6564         const char* className;
6565         const char* methodName;
6566         if ((className = eeGetClassName(clsHnd)) != nullptr &&
6567             strcmp(className, "System.Runtime.CompilerServices.JitTestLabel") == 0 &&
6568             (methodName = eeGetMethodName(methHnd, &modName)) != nullptr && strcmp(methodName, "Mark") == 0)
6569         {
6570             return impImportJitTestLabelMark(sig->numArgs);
6571         }
6572 #endif // DEBUG
6573
6574         // <NICE> Factor this into getCallInfo </NICE>
6575         if ((mflags & CORINFO_FLG_INTRINSIC) && !pConstrainedResolvedToken)
6576         {
6577             call = impIntrinsic(newobjThis, clsHnd, methHnd, sig, pResolvedToken->token, readonlyCall,
6578                                 (canTailCall && (tailCall != 0)), &intrinsicID);
6579
6580             if (call != nullptr)
6581             {
6582                 assert(!(mflags & CORINFO_FLG_VIRTUAL) || (mflags & CORINFO_FLG_FINAL) ||
6583                        (clsFlags & CORINFO_FLG_FINAL));
6584
6585 #ifdef FEATURE_READYTORUN_COMPILER
6586                 if (call->OperGet() == GT_INTRINSIC)
6587                 {
6588                     if (opts.IsReadyToRun())
6589                     {
6590                         noway_assert(callInfo->kind == CORINFO_CALL);
6591                         call->gtIntrinsic.gtEntryPoint = callInfo->codePointerLookup.constLookup;
6592                     }
6593                     else
6594                     {
6595                         call->gtIntrinsic.gtEntryPoint.addr = nullptr;
6596                     }
6597                 }
6598 #endif
6599
6600                 bIntrinsicImported = true;
6601                 goto DONE_CALL;
6602             }
6603         }
6604
6605 #ifdef FEATURE_SIMD
6606         if (featureSIMD)
6607         {
6608             call = impSIMDIntrinsic(opcode, newobjThis, clsHnd, methHnd, sig, pResolvedToken->token);
6609             if (call != nullptr)
6610             {
6611                 bIntrinsicImported = true;
6612                 goto DONE_CALL;
6613             }
6614         }
6615 #endif // FEATURE_SIMD
6616
6617         if ((mflags & CORINFO_FLG_VIRTUAL) && (mflags & CORINFO_FLG_EnC) && (opcode == CEE_CALLVIRT))
6618         {
6619             NO_WAY("Virtual call to a function added via EnC is not supported");
6620         }
6621
6622         if ((sig->callConv & CORINFO_CALLCONV_MASK) != CORINFO_CALLCONV_DEFAULT &&
6623             (sig->callConv & CORINFO_CALLCONV_MASK) != CORINFO_CALLCONV_VARARG &&
6624             (sig->callConv & CORINFO_CALLCONV_MASK) != CORINFO_CALLCONV_NATIVEVARARG)
6625         {
6626             BADCODE("Bad calling convention");
6627         }
6628
6629         //-------------------------------------------------------------------------
6630         //  Construct the call node
6631         //
6632         // Work out what sort of call we're making.
6633         // Dispense with virtual calls implemented via LDVIRTFTN immediately.
6634
6635         constraintCallThisTransform = callInfo->thisTransform;
6636
6637         exactContextHnd                = callInfo->contextHandle;
6638         exactContextNeedsRuntimeLookup = callInfo->exactContextNeedsRuntimeLookup;
6639
6640         // Recursive call is treaded as a loop to the begining of the method.
6641         if (methHnd == info.compMethodHnd)
6642         {
6643 #ifdef DEBUG
6644             if (verbose)
6645             {
6646                 JITDUMP("\nFound recursive call in the method. Mark BB%02u to BB%02u as having a backward branch.\n",
6647                         fgFirstBB->bbNum, compCurBB->bbNum);
6648             }
6649 #endif
6650             fgMarkBackwardJump(fgFirstBB, compCurBB);
6651         }
6652
6653         switch (callInfo->kind)
6654         {
6655
6656             case CORINFO_VIRTUALCALL_STUB:
6657             {
6658                 assert(!(mflags & CORINFO_FLG_STATIC)); // can't call a static method
6659                 assert(!(clsFlags & CORINFO_FLG_VALUECLASS));
6660                 if (callInfo->stubLookup.lookupKind.needsRuntimeLookup)
6661                 {
6662
6663                     if (compIsForInlining())
6664                     {
6665                         // Don't import runtime lookups when inlining
6666                         // Inlining has to be aborted in such a case
6667                         /* XXX Fri 3/20/2009
6668                          * By the way, this would never succeed.  If the handle lookup is into the generic
6669                          * dictionary for a candidate, you'll generate different dictionary offsets and the
6670                          * inlined code will crash.
6671                          *
6672                          * To anyone code reviewing this, when could this ever succeed in the future?  It'll
6673                          * always have a handle lookup.  These lookups are safe intra-module, but we're just
6674                          * failing here.
6675                          */
6676                         compInlineResult->NoteFatal(InlineObservation::CALLSITE_HAS_COMPLEX_HANDLE);
6677                         return callRetTyp;
6678                     }
6679
6680                     GenTreePtr stubAddr = impRuntimeLookupToTree(pResolvedToken, &callInfo->stubLookup, methHnd);
6681                     assert(!compDonotInline());
6682
6683                     // This is the rough code to set up an indirect stub call
6684                     assert(stubAddr != nullptr);
6685
6686                     // The stubAddr may be a
6687                     // complex expression. As it is evaluated after the args,
6688                     // it may cause registered args to be spilled. Simply spill it.
6689
6690                     unsigned lclNum = lvaGrabTemp(true DEBUGARG("VirtualCall with runtime lookup"));
6691                     impAssignTempGen(lclNum, stubAddr, (unsigned)CHECK_SPILL_ALL);
6692                     stubAddr = gtNewLclvNode(lclNum, TYP_I_IMPL);
6693
6694                     // Create the actual call node
6695
6696                     assert((sig->callConv & CORINFO_CALLCONV_MASK) != CORINFO_CALLCONV_VARARG &&
6697                            (sig->callConv & CORINFO_CALLCONV_MASK) != CORINFO_CALLCONV_NATIVEVARARG);
6698
6699                     call = gtNewIndCallNode(stubAddr, callRetTyp, nullptr);
6700
6701                     call->gtFlags |= GTF_EXCEPT | (stubAddr->gtFlags & GTF_GLOB_EFFECT);
6702                     call->gtFlags |= GTF_CALL_VIRT_STUB;
6703
6704 #ifdef _TARGET_X86_
6705                     // No tailcalls allowed for these yet...
6706                     canTailCall             = false;
6707                     szCanTailCallFailReason = "VirtualCall with runtime lookup";
6708 #endif
6709                 }
6710                 else
6711                 {
6712                     // ok, the stub is available at compile type.
6713
6714                     call = gtNewCallNode(CT_USER_FUNC, callInfo->hMethod, callRetTyp, nullptr, ilOffset);
6715                     call->gtCall.gtStubCallStubAddr = callInfo->stubLookup.constLookup.addr;
6716                     call->gtFlags |= GTF_CALL_VIRT_STUB;
6717                     assert(callInfo->stubLookup.constLookup.accessType != IAT_PPVALUE);
6718                     if (callInfo->stubLookup.constLookup.accessType == IAT_PVALUE)
6719                     {
6720                         call->gtCall.gtCallMoreFlags |= GTF_CALL_M_VIRTSTUB_REL_INDIRECT;
6721                     }
6722                 }
6723
6724 #ifdef FEATURE_READYTORUN_COMPILER
6725                 if (opts.IsReadyToRun())
6726                 {
6727                     // Null check is sometimes needed for ready to run to handle
6728                     // non-virtual <-> virtual changes between versions
6729                     if (callInfo->nullInstanceCheck)
6730                     {
6731                         call->gtFlags |= GTF_CALL_NULLCHECK;
6732                     }
6733                 }
6734 #endif
6735
6736                 break;
6737             }
6738
6739             case CORINFO_VIRTUALCALL_VTABLE:
6740             {
6741                 assert(!(mflags & CORINFO_FLG_STATIC)); // can't call a static method
6742                 assert(!(clsFlags & CORINFO_FLG_VALUECLASS));
6743                 call = gtNewCallNode(CT_USER_FUNC, callInfo->hMethod, callRetTyp, nullptr, ilOffset);
6744                 call->gtFlags |= GTF_CALL_VIRT_VTABLE;
6745                 break;
6746             }
6747
6748             case CORINFO_VIRTUALCALL_LDVIRTFTN:
6749             {
6750                 if (compIsForInlining())
6751                 {
6752                     compInlineResult->NoteFatal(InlineObservation::CALLSITE_HAS_CALL_VIA_LDVIRTFTN);
6753                     return callRetTyp;
6754                 }
6755
6756                 assert(!(mflags & CORINFO_FLG_STATIC)); // can't call a static method
6757                 assert(!(clsFlags & CORINFO_FLG_VALUECLASS));
6758                 // OK, We've been told to call via LDVIRTFTN, so just
6759                 // take the call now....
6760
6761                 args = impPopList(sig->numArgs, &argFlags, sig);
6762
6763                 GenTreePtr thisPtr = impPopStack().val;
6764                 thisPtr            = impTransformThis(thisPtr, pConstrainedResolvedToken, callInfo->thisTransform);
6765                 if (compDonotInline())
6766                 {
6767                     return callRetTyp;
6768                 }
6769
6770                 // Clone the (possibly transformed) "this" pointer
6771                 GenTreePtr thisPtrCopy;
6772                 thisPtr = impCloneExpr(thisPtr, &thisPtrCopy, NO_CLASS_HANDLE, (unsigned)CHECK_SPILL_ALL,
6773                                        nullptr DEBUGARG("LDVIRTFTN this pointer"));
6774
6775                 GenTreePtr fptr = impImportLdvirtftn(thisPtr, pResolvedToken, callInfo);
6776                 if (compDonotInline())
6777                 {
6778                     return callRetTyp;
6779                 }
6780
6781                 thisPtr = nullptr; // can't reuse it
6782
6783                 // Now make an indirect call through the function pointer
6784
6785                 unsigned lclNum = lvaGrabTemp(true DEBUGARG("VirtualCall through function pointer"));
6786                 impAssignTempGen(lclNum, fptr, (unsigned)CHECK_SPILL_ALL);
6787                 fptr = gtNewLclvNode(lclNum, TYP_I_IMPL);
6788
6789                 // Create the actual call node
6790
6791                 call                    = gtNewIndCallNode(fptr, callRetTyp, args, ilOffset);
6792                 call->gtCall.gtCallObjp = thisPtrCopy;
6793                 call->gtFlags |= GTF_EXCEPT | (fptr->gtFlags & GTF_GLOB_EFFECT);
6794
6795 #ifdef FEATURE_READYTORUN_COMPILER
6796                 if (opts.IsReadyToRun())
6797                 {
6798                     // Null check is needed for ready to run to handle
6799                     // non-virtual <-> virtual changes between versions
6800                     call->gtFlags |= GTF_CALL_NULLCHECK;
6801                 }
6802 #endif
6803
6804                 // Sine we are jumping over some code, check that its OK to skip that code
6805                 assert((sig->callConv & CORINFO_CALLCONV_MASK) != CORINFO_CALLCONV_VARARG &&
6806                        (sig->callConv & CORINFO_CALLCONV_MASK) != CORINFO_CALLCONV_NATIVEVARARG);
6807                 goto DONE;
6808             }
6809
6810             case CORINFO_CALL:
6811             {
6812                 // This is for a non-virtual, non-interface etc. call
6813                 call = gtNewCallNode(CT_USER_FUNC, callInfo->hMethod, callRetTyp, nullptr, ilOffset);
6814
6815                 // We remove the nullcheck for the GetType call instrinsic.
6816                 // TODO-CQ: JIT64 does not introduce the null check for many more helper calls
6817                 // and instrinsics.
6818                 if (callInfo->nullInstanceCheck &&
6819                     !((mflags & CORINFO_FLG_INTRINSIC) != 0 && (intrinsicID == CORINFO_INTRINSIC_Object_GetType)))
6820                 {
6821                     call->gtFlags |= GTF_CALL_NULLCHECK;
6822                 }
6823
6824 #ifdef FEATURE_READYTORUN_COMPILER
6825                 if (opts.IsReadyToRun())
6826                 {
6827                     call->gtCall.setEntryPoint(callInfo->codePointerLookup.constLookup);
6828                 }
6829 #endif
6830                 break;
6831             }
6832
6833             case CORINFO_CALL_CODE_POINTER:
6834             {
6835                 // The EE has asked us to call by computing a code pointer and then doing an
6836                 // indirect call.  This is because a runtime lookup is required to get the code entry point.
6837
6838                 // These calls always follow a uniform calling convention, i.e. no extra hidden params
6839                 assert((sig->callConv & CORINFO_CALLCONV_PARAMTYPE) == 0);
6840
6841                 assert((sig->callConv & CORINFO_CALLCONV_MASK) != CORINFO_CALLCONV_VARARG);
6842                 assert((sig->callConv & CORINFO_CALLCONV_MASK) != CORINFO_CALLCONV_NATIVEVARARG);
6843
6844                 GenTreePtr fptr =
6845                     impLookupToTree(pResolvedToken, &callInfo->codePointerLookup, GTF_ICON_FTN_ADDR, callInfo->hMethod);
6846
6847                 if (compDonotInline())
6848                 {
6849                     return callRetTyp;
6850                 }
6851
6852                 // Now make an indirect call through the function pointer
6853
6854                 unsigned lclNum = lvaGrabTemp(true DEBUGARG("Indirect call through function pointer"));
6855                 impAssignTempGen(lclNum, fptr, (unsigned)CHECK_SPILL_ALL);
6856                 fptr = gtNewLclvNode(lclNum, TYP_I_IMPL);
6857
6858                 call = gtNewIndCallNode(fptr, callRetTyp, nullptr, ilOffset);
6859                 call->gtFlags |= GTF_EXCEPT | (fptr->gtFlags & GTF_GLOB_EFFECT);
6860                 if (callInfo->nullInstanceCheck)
6861                 {
6862                     call->gtFlags |= GTF_CALL_NULLCHECK;
6863                 }
6864
6865                 break;
6866             }
6867
6868             default:
6869                 assert(!"unknown call kind");
6870                 break;
6871         }
6872
6873         //-------------------------------------------------------------------------
6874         // Set more flags
6875
6876         PREFIX_ASSUME(call != nullptr);
6877
6878         if (mflags & CORINFO_FLG_NOGCCHECK)
6879         {
6880             call->gtCall.gtCallMoreFlags |= GTF_CALL_M_NOGCCHECK;
6881         }
6882
6883         // Mark call if it's one of the ones we will maybe treat as an intrinsic
6884         if (intrinsicID == CORINFO_INTRINSIC_Object_GetType || intrinsicID == CORINFO_INTRINSIC_TypeEQ ||
6885             intrinsicID == CORINFO_INTRINSIC_TypeNEQ || intrinsicID == CORINFO_INTRINSIC_GetCurrentManagedThread ||
6886             intrinsicID == CORINFO_INTRINSIC_GetManagedThreadId)
6887         {
6888             call->gtCall.gtCallMoreFlags |= GTF_CALL_M_SPECIAL_INTRINSIC;
6889         }
6890     }
6891     assert(sig);
6892     assert(clsHnd || (opcode == CEE_CALLI)); // We're never verifying for CALLI, so this is not set.
6893
6894     /* Some sanity checks */
6895
6896     // CALL_VIRT and NEWOBJ must have a THIS pointer
6897     assert((opcode != CEE_CALLVIRT && opcode != CEE_NEWOBJ) || (sig->callConv & CORINFO_CALLCONV_HASTHIS));
6898     // static bit and hasThis are negations of one another
6899     assert(((mflags & CORINFO_FLG_STATIC) != 0) == ((sig->callConv & CORINFO_CALLCONV_HASTHIS) == 0));
6900     assert(call != nullptr);
6901
6902     /*-------------------------------------------------------------------------
6903      * Check special-cases etc
6904      */
6905
6906     /* Special case - Check if it is a call to Delegate.Invoke(). */
6907
6908     if (mflags & CORINFO_FLG_DELEGATE_INVOKE)
6909     {
6910         assert(!compIsForInlining());
6911         assert(!(mflags & CORINFO_FLG_STATIC)); // can't call a static method
6912         assert(mflags & CORINFO_FLG_FINAL);
6913
6914         /* Set the delegate flag */
6915         call->gtCall.gtCallMoreFlags |= GTF_CALL_M_DELEGATE_INV;
6916
6917         if (callInfo->secureDelegateInvoke)
6918         {
6919             call->gtCall.gtCallMoreFlags |= GTF_CALL_M_SECURE_DELEGATE_INV;
6920         }
6921
6922         if (opcode == CEE_CALLVIRT)
6923         {
6924             assert(mflags & CORINFO_FLG_FINAL);
6925
6926             /* It should have the GTF_CALL_NULLCHECK flag set. Reset it */
6927             assert(call->gtFlags & GTF_CALL_NULLCHECK);
6928             call->gtFlags &= ~GTF_CALL_NULLCHECK;
6929         }
6930     }
6931
6932     CORINFO_CLASS_HANDLE actualMethodRetTypeSigClass;
6933     actualMethodRetTypeSigClass = sig->retTypeSigClass;
6934     if (varTypeIsStruct(callRetTyp))
6935     {
6936         callRetTyp   = impNormStructType(actualMethodRetTypeSigClass);
6937         call->gtType = callRetTyp;
6938     }
6939
6940 #if !FEATURE_VARARG
6941     /* Check for varargs */
6942     if ((sig->callConv & CORINFO_CALLCONV_MASK) == CORINFO_CALLCONV_VARARG ||
6943         (sig->callConv & CORINFO_CALLCONV_MASK) == CORINFO_CALLCONV_NATIVEVARARG)
6944     {
6945         BADCODE("Varargs not supported.");
6946     }
6947 #endif // !FEATURE_VARARG
6948
6949     if ((sig->callConv & CORINFO_CALLCONV_MASK) == CORINFO_CALLCONV_VARARG ||
6950         (sig->callConv & CORINFO_CALLCONV_MASK) == CORINFO_CALLCONV_NATIVEVARARG)
6951     {
6952         assert(!compIsForInlining());
6953
6954         /* Set the right flags */
6955
6956         call->gtFlags |= GTF_CALL_POP_ARGS;
6957         call->gtCall.gtCallMoreFlags |= GTF_CALL_M_VARARGS;
6958
6959         /* Can't allow tailcall for varargs as it is caller-pop. The caller
6960            will be expecting to pop a certain number of arguments, but if we
6961            tailcall to a function with a different number of arguments, we
6962            are hosed. There are ways around this (caller remembers esp value,
6963            varargs is not caller-pop, etc), but not worth it. */
6964         CLANG_FORMAT_COMMENT_ANCHOR;
6965
6966 #ifdef _TARGET_X86_
6967         if (canTailCall)
6968         {
6969             canTailCall             = false;
6970             szCanTailCallFailReason = "Callee is varargs";
6971         }
6972 #endif
6973
6974         /* Get the total number of arguments - this is already correct
6975          * for CALLI - for methods we have to get it from the call site */
6976
6977         if (opcode != CEE_CALLI)
6978         {
6979 #ifdef DEBUG
6980             unsigned numArgsDef = sig->numArgs;
6981 #endif
6982             eeGetCallSiteSig(pResolvedToken->token, info.compScopeHnd, impTokenLookupContextHandle, sig);
6983
6984 #ifdef DEBUG
6985             // We cannot lazily obtain the signature of a vararg call because using its method
6986             // handle will give us only the declared argument list, not the full argument list.
6987             assert(call->gtCall.callSig == nullptr);
6988             call->gtCall.callSig  = new (this, CMK_CorSig) CORINFO_SIG_INFO;
6989             *call->gtCall.callSig = *sig;
6990 #endif
6991
6992             // For vararg calls we must be sure to load the return type of the
6993             // method actually being called, as well as the return types of the
6994             // specified in the vararg signature. With type equivalency, these types
6995             // may not be the same.
6996             if (sig->retTypeSigClass != actualMethodRetTypeSigClass)
6997             {
6998                 if (actualMethodRetTypeSigClass != nullptr && sig->retType != CORINFO_TYPE_CLASS &&
6999                     sig->retType != CORINFO_TYPE_BYREF && sig->retType != CORINFO_TYPE_PTR &&
7000                     sig->retType != CORINFO_TYPE_VAR)
7001                 {
7002                     // Make sure that all valuetypes (including enums) that we push are loaded.
7003                     // This is to guarantee that if a GC is triggerred from the prestub of this methods,
7004                     // all valuetypes in the method signature are already loaded.
7005                     // We need to be able to find the size of the valuetypes, but we cannot
7006                     // do a class-load from within GC.
7007                     info.compCompHnd->classMustBeLoadedBeforeCodeIsRun(actualMethodRetTypeSigClass);
7008                 }
7009             }
7010
7011             assert(numArgsDef <= sig->numArgs);
7012         }
7013
7014         /* We will have "cookie" as the last argument but we cannot push
7015          * it on the operand stack because we may overflow, so we append it
7016          * to the arg list next after we pop them */
7017     }
7018
7019     if (mflags & CORINFO_FLG_SECURITYCHECK)
7020     {
7021         assert(!compIsForInlining());
7022
7023         // Need security prolog/epilog callouts when there is
7024         // imperative security in the method. This is to give security a
7025         // chance to do any setup in the prolog and cleanup in the epilog if needed.
7026
7027         if (compIsForInlining())
7028         {
7029             // Cannot handle this if the method being imported is an inlinee by itself.
7030             // Because inlinee method does not have its own frame.
7031
7032             compInlineResult->NoteFatal(InlineObservation::CALLEE_NEEDS_SECURITY_CHECK);
7033             return callRetTyp;
7034         }
7035         else
7036         {
7037             tiSecurityCalloutNeeded = true;
7038
7039             // If the current method calls a method which needs a security check,
7040             // (i.e. the method being compiled has imperative security)
7041             // we need to reserve a slot for the security object in
7042             // the current method's stack frame
7043             opts.compNeedSecurityCheck = true;
7044         }
7045     }
7046
7047     //--------------------------- Inline NDirect ------------------------------
7048
7049     // For inline cases we technically should look at both the current
7050     // block and the call site block (or just the latter if we've
7051     // fused the EH trees). However the block-related checks pertain to
7052     // EH and we currently won't inline a method with EH. So for
7053     // inlinees, just checking the call site block is sufficient.
7054     {
7055         // New lexical block here to avoid compilation errors because of GOTOs.
7056         BasicBlock* block = compIsForInlining() ? impInlineInfo->iciBlock : compCurBB;
7057         impCheckForPInvokeCall(call, methHnd, sig, mflags, block);
7058     }
7059
7060     if (call->gtFlags & GTF_CALL_UNMANAGED)
7061     {
7062         // We set up the unmanaged call by linking the frame, disabling GC, etc
7063         // This needs to be cleaned up on return
7064         if (canTailCall)
7065         {
7066             canTailCall             = false;
7067             szCanTailCallFailReason = "Callee is native";
7068         }
7069
7070         checkForSmallType = true;
7071
7072         impPopArgsForUnmanagedCall(call, sig);
7073
7074         goto DONE;
7075     }
7076     else if ((opcode == CEE_CALLI) && (((sig->callConv & CORINFO_CALLCONV_MASK) == CORINFO_CALLCONV_STDCALL) ||
7077                                        ((sig->callConv & CORINFO_CALLCONV_MASK) == CORINFO_CALLCONV_C) ||
7078                                        ((sig->callConv & CORINFO_CALLCONV_MASK) == CORINFO_CALLCONV_THISCALL) ||
7079                                        ((sig->callConv & CORINFO_CALLCONV_MASK) == CORINFO_CALLCONV_FASTCALL)))
7080     {
7081         if (!info.compCompHnd->canGetCookieForPInvokeCalliSig(sig))
7082         {
7083             // Normally this only happens with inlining.
7084             // However, a generic method (or type) being NGENd into another module
7085             // can run into this issue as well.  There's not an easy fall-back for NGEN
7086             // so instead we fallback to JIT.
7087             if (compIsForInlining())
7088             {
7089                 compInlineResult->NoteFatal(InlineObservation::CALLSITE_CANT_EMBED_PINVOKE_COOKIE);
7090             }
7091             else
7092             {
7093                 IMPL_LIMITATION("Can't get PInvoke cookie (cross module generics)");
7094             }
7095
7096             return callRetTyp;
7097         }
7098
7099         GenTreePtr cookie = eeGetPInvokeCookie(sig);
7100
7101         // This cookie is required to be either a simple GT_CNS_INT or
7102         // an indirection of a GT_CNS_INT
7103         //
7104         GenTreePtr cookieConst = cookie;
7105         if (cookie->gtOper == GT_IND)
7106         {
7107             cookieConst = cookie->gtOp.gtOp1;
7108         }
7109         assert(cookieConst->gtOper == GT_CNS_INT);
7110
7111         // Setting GTF_DONT_CSE on the GT_CNS_INT as well as on the GT_IND (if it exists) will ensure that
7112         // we won't allow this tree to participate in any CSE logic
7113         //
7114         cookie->gtFlags |= GTF_DONT_CSE;
7115         cookieConst->gtFlags |= GTF_DONT_CSE;
7116
7117         call->gtCall.gtCallCookie = cookie;
7118
7119         if (canTailCall)
7120         {
7121             canTailCall             = false;
7122             szCanTailCallFailReason = "PInvoke calli";
7123         }
7124     }
7125
7126     /*-------------------------------------------------------------------------
7127      * Create the argument list
7128      */
7129
7130     //-------------------------------------------------------------------------
7131     // Special case - for varargs we have an implicit last argument
7132
7133     if ((sig->callConv & CORINFO_CALLCONV_MASK) == CORINFO_CALLCONV_VARARG)
7134     {
7135         assert(!compIsForInlining());
7136
7137         void *varCookie, *pVarCookie;
7138         if (!info.compCompHnd->canGetVarArgsHandle(sig))
7139         {
7140             compInlineResult->NoteFatal(InlineObservation::CALLSITE_CANT_EMBED_VARARGS_COOKIE);
7141             return callRetTyp;
7142         }
7143
7144         varCookie = info.compCompHnd->getVarArgsHandle(sig, &pVarCookie);
7145         assert((!varCookie) != (!pVarCookie));
7146         GenTreePtr cookie = gtNewIconEmbHndNode(varCookie, pVarCookie, GTF_ICON_VARG_HDL);
7147
7148         assert(extraArg == nullptr);
7149         extraArg = gtNewArgList(cookie);
7150     }
7151
7152     //-------------------------------------------------------------------------
7153     // Extra arg for shared generic code and array methods
7154     //
7155     // Extra argument containing instantiation information is passed in the
7156     // following circumstances:
7157     // (a) To the "Address" method on array classes; the extra parameter is
7158     //     the array's type handle (a TypeDesc)
7159     // (b) To shared-code instance methods in generic structs; the extra parameter
7160     //     is the struct's type handle (a vtable ptr)
7161     // (c) To shared-code per-instantiation non-generic static methods in generic
7162     //     classes and structs; the extra parameter is the type handle
7163     // (d) To shared-code generic methods; the extra parameter is an
7164     //     exact-instantiation MethodDesc
7165     //
7166     // We also set the exact type context associated with the call so we can
7167     // inline the call correctly later on.
7168
7169     if (sig->callConv & CORINFO_CALLCONV_PARAMTYPE)
7170     {
7171         assert(call->gtCall.gtCallType == CT_USER_FUNC);
7172         if (clsHnd == nullptr)
7173         {
7174             NO_WAY("CALLI on parameterized type");
7175         }
7176
7177         assert(opcode != CEE_CALLI);
7178
7179         GenTreePtr instParam;
7180         BOOL       runtimeLookup;
7181
7182         // Instantiated generic method
7183         if (((SIZE_T)exactContextHnd & CORINFO_CONTEXTFLAGS_MASK) == CORINFO_CONTEXTFLAGS_METHOD)
7184         {
7185             CORINFO_METHOD_HANDLE exactMethodHandle =
7186                 (CORINFO_METHOD_HANDLE)((SIZE_T)exactContextHnd & ~CORINFO_CONTEXTFLAGS_MASK);
7187
7188             if (!exactContextNeedsRuntimeLookup)
7189             {
7190 #ifdef FEATURE_READYTORUN_COMPILER
7191                 if (opts.IsReadyToRun())
7192                 {
7193                     instParam =
7194                         impReadyToRunLookupToTree(&callInfo->instParamLookup, GTF_ICON_METHOD_HDL, exactMethodHandle);
7195                     if (instParam == nullptr)
7196                     {
7197                         return callRetTyp;
7198                     }
7199                 }
7200                 else
7201 #endif
7202                 {
7203                     instParam = gtNewIconEmbMethHndNode(exactMethodHandle);
7204                     info.compCompHnd->methodMustBeLoadedBeforeCodeIsRun(exactMethodHandle);
7205                 }
7206             }
7207             else
7208             {
7209                 instParam = impTokenToHandle(pResolvedToken, &runtimeLookup, TRUE /*mustRestoreHandle*/);
7210                 if (instParam == nullptr)
7211                 {
7212                     return callRetTyp;
7213                 }
7214             }
7215         }
7216
7217         // otherwise must be an instance method in a generic struct,
7218         // a static method in a generic type, or a runtime-generated array method
7219         else
7220         {
7221             assert(((SIZE_T)exactContextHnd & CORINFO_CONTEXTFLAGS_MASK) == CORINFO_CONTEXTFLAGS_CLASS);
7222             CORINFO_CLASS_HANDLE exactClassHandle =
7223                 (CORINFO_CLASS_HANDLE)((SIZE_T)exactContextHnd & ~CORINFO_CONTEXTFLAGS_MASK);
7224
7225             if (compIsForInlining() && (clsFlags & CORINFO_FLG_ARRAY) != 0)
7226             {
7227                 compInlineResult->NoteFatal(InlineObservation::CALLEE_IS_ARRAY_METHOD);
7228                 return callRetTyp;
7229             }
7230
7231             if ((clsFlags & CORINFO_FLG_ARRAY) && readonlyCall)
7232             {
7233                 // We indicate "readonly" to the Address operation by using a null
7234                 // instParam.
7235                 instParam = gtNewIconNode(0, TYP_REF);
7236             }
7237
7238             if (!exactContextNeedsRuntimeLookup)
7239             {
7240 #ifdef FEATURE_READYTORUN_COMPILER
7241                 if (opts.IsReadyToRun())
7242                 {
7243                     instParam =
7244                         impReadyToRunLookupToTree(&callInfo->instParamLookup, GTF_ICON_CLASS_HDL, exactClassHandle);
7245                     if (instParam == nullptr)
7246                     {
7247                         return callRetTyp;
7248                     }
7249                 }
7250                 else
7251 #endif
7252                 {
7253                     instParam = gtNewIconEmbClsHndNode(exactClassHandle);
7254                     info.compCompHnd->classMustBeLoadedBeforeCodeIsRun(exactClassHandle);
7255                 }
7256             }
7257             else
7258             {
7259                 instParam = impParentClassTokenToHandle(pResolvedToken, &runtimeLookup, TRUE /*mustRestoreHandle*/);
7260                 if (instParam == nullptr)
7261                 {
7262                     return callRetTyp;
7263                 }
7264             }
7265         }
7266
7267         assert(extraArg == nullptr);
7268         extraArg = gtNewArgList(instParam);
7269     }
7270
7271     // Inlining may need the exact type context (exactContextHnd) if we're inlining shared generic code, in particular
7272     // to inline 'polytypic' operations such as static field accesses, type tests and method calls which
7273     // rely on the exact context. The exactContextHnd is passed back to the JitInterface at appropriate points.
7274     // exactContextHnd is not currently required when inlining shared generic code into shared
7275     // generic code, since the inliner aborts whenever shared code polytypic operations are encountered
7276     // (e.g. anything marked needsRuntimeLookup)
7277     if (exactContextNeedsRuntimeLookup)
7278     {
7279         exactContextHnd = nullptr;
7280     }
7281
7282     //-------------------------------------------------------------------------
7283     // The main group of arguments
7284
7285     args = call->gtCall.gtCallArgs = impPopList(sig->numArgs, &argFlags, sig, extraArg);
7286
7287     if (args)
7288     {
7289         call->gtFlags |= args->gtFlags & GTF_GLOB_EFFECT;
7290     }
7291
7292     //-------------------------------------------------------------------------
7293     // The "this" pointer
7294
7295     if (!(mflags & CORINFO_FLG_STATIC) && !((opcode == CEE_NEWOBJ) && (newobjThis == nullptr)))
7296     {
7297         GenTreePtr obj;
7298
7299         if (opcode == CEE_NEWOBJ)
7300         {
7301             obj = newobjThis;
7302         }
7303         else
7304         {
7305             obj = impPopStack().val;
7306             obj = impTransformThis(obj, pConstrainedResolvedToken, constraintCallThisTransform);
7307             if (compDonotInline())
7308             {
7309                 return callRetTyp;
7310             }
7311         }
7312
7313         /* Is this a virtual or interface call? */
7314
7315         if ((call->gtFlags & GTF_CALL_VIRT_KIND_MASK) != GTF_CALL_NONVIRT)
7316         {
7317             /* only true object pointers can be virtual */
7318
7319             assert(obj->gtType == TYP_REF);
7320         }
7321         else
7322         {
7323             if (impIsThis(obj))
7324             {
7325                 call->gtCall.gtCallMoreFlags |= GTF_CALL_M_NONVIRT_SAME_THIS;
7326             }
7327         }
7328
7329         /* Store the "this" value in the call */
7330
7331         call->gtFlags |= obj->gtFlags & GTF_GLOB_EFFECT;
7332         call->gtCall.gtCallObjp = obj;
7333     }
7334
7335     //-------------------------------------------------------------------------
7336     // The "this" pointer for "newobj"
7337
7338     if (opcode == CEE_NEWOBJ)
7339     {
7340         if (clsFlags & CORINFO_FLG_VAROBJSIZE)
7341         {
7342             assert(!(clsFlags & CORINFO_FLG_ARRAY)); // arrays handled separately
7343             // This is a 'new' of a variable sized object, wher
7344             // the constructor is to return the object.  In this case
7345             // the constructor claims to return VOID but we know it
7346             // actually returns the new object
7347             assert(callRetTyp == TYP_VOID);
7348             callRetTyp   = TYP_REF;
7349             call->gtType = TYP_REF;
7350             impSpillSpecialSideEff();
7351
7352             impPushOnStack(call, typeInfo(TI_REF, clsHnd));
7353         }
7354         else
7355         {
7356             if (clsFlags & CORINFO_FLG_DELEGATE)
7357             {
7358                 // New inliner morph it in impImportCall.
7359                 // This will allow us to inline the call to the delegate constructor.
7360                 call = fgOptimizeDelegateConstructor(call, &exactContextHnd);
7361             }
7362
7363             if (!bIntrinsicImported)
7364             {
7365
7366 #if defined(DEBUG) || defined(INLINE_DATA)
7367
7368                 // Keep track of the raw IL offset of the call
7369                 call->gtCall.gtRawILOffset = rawILOffset;
7370
7371 #endif // defined(DEBUG) || defined(INLINE_DATA)
7372
7373                 // Is it an inline candidate?
7374                 impMarkInlineCandidate(call, exactContextHnd, callInfo);
7375             }
7376
7377             // append the call node.
7378             impAppendTree(call, (unsigned)CHECK_SPILL_ALL, impCurStmtOffs);
7379
7380             // Now push the value of the 'new onto the stack
7381
7382             // This is a 'new' of a non-variable sized object.
7383             // Append the new node (op1) to the statement list,
7384             // and then push the local holding the value of this
7385             // new instruction on the stack.
7386
7387             if (clsFlags & CORINFO_FLG_VALUECLASS)
7388             {
7389                 assert(newobjThis->gtOper == GT_ADDR && newobjThis->gtOp.gtOp1->gtOper == GT_LCL_VAR);
7390
7391                 unsigned tmp = newobjThis->gtOp.gtOp1->gtLclVarCommon.gtLclNum;
7392                 impPushOnStack(gtNewLclvNode(tmp, lvaGetRealType(tmp)), verMakeTypeInfo(clsHnd).NormaliseForStack());
7393             }
7394             else
7395             {
7396                 if (newobjThis->gtOper == GT_COMMA)
7397                 {
7398                     // In coreclr the callout can be inserted even if verification is disabled
7399                     // so we cannot rely on tiVerificationNeeded alone
7400
7401                     // We must have inserted the callout. Get the real newobj.
7402                     newobjThis = newobjThis->gtOp.gtOp2;
7403                 }
7404
7405                 assert(newobjThis->gtOper == GT_LCL_VAR);
7406                 impPushOnStack(gtNewLclvNode(newobjThis->gtLclVarCommon.gtLclNum, TYP_REF), typeInfo(TI_REF, clsHnd));
7407             }
7408         }
7409         return callRetTyp;
7410     }
7411
7412 DONE:
7413
7414     if (tailCall)
7415     {
7416         // This check cannot be performed for implicit tail calls for the reason
7417         // that impIsImplicitTailCallCandidate() is not checking whether return
7418         // types are compatible before marking a call node with PREFIX_TAILCALL_IMPLICIT.
7419         // As a result it is possible that in the following case, we find that
7420         // the type stack is non-empty if Callee() is considered for implicit
7421         // tail calling.
7422         //      int Caller(..) { .... void Callee(); ret val; ... }
7423         //
7424         // Note that we cannot check return type compatibility before ImpImportCall()
7425         // as we don't have required info or need to duplicate some of the logic of
7426         // ImpImportCall().
7427         //
7428         // For implicit tail calls, we perform this check after return types are
7429         // known to be compatible.
7430         if ((tailCall & PREFIX_TAILCALL_EXPLICIT) && (verCurrentState.esStackDepth != 0))
7431         {
7432             BADCODE("Stack should be empty after tailcall");
7433         }
7434
7435         // Note that we can not relax this condition with genActualType() as
7436         // the calling convention dictates that the caller of a function with
7437         // a small-typed return value is responsible for normalizing the return val
7438
7439         if (canTailCall &&
7440             !impTailCallRetTypeCompatible(info.compRetType, info.compMethodInfo->args.retTypeClass, callRetTyp,
7441                                           callInfo->sig.retTypeClass))
7442         {
7443             canTailCall             = false;
7444             szCanTailCallFailReason = "Return types are not tail call compatible";
7445         }
7446
7447         // Stack empty check for implicit tail calls.
7448         if (canTailCall && (tailCall & PREFIX_TAILCALL_IMPLICIT) && (verCurrentState.esStackDepth != 0))
7449         {
7450 #ifdef _TARGET_AMD64_
7451             // JIT64 Compatibility:  Opportunistic tail call stack mismatch throws a VerificationException
7452             // in JIT64, not an InvalidProgramException.
7453             Verify(false, "Stack should be empty after tailcall");
7454 #else  // _TARGET_64BIT_
7455             BADCODE("Stack should be empty after tailcall");
7456 #endif //!_TARGET_64BIT_
7457         }
7458
7459         // assert(compCurBB is not a catch, finally or filter block);
7460         // assert(compCurBB is not a try block protected by a finally block);
7461
7462         // Check for permission to tailcall
7463         bool explicitTailCall = (tailCall & PREFIX_TAILCALL_EXPLICIT) != 0;
7464
7465         assert(!explicitTailCall || compCurBB->bbJumpKind == BBJ_RETURN);
7466
7467         if (canTailCall)
7468         {
7469             // True virtual or indirect calls, shouldn't pass in a callee handle.
7470             CORINFO_METHOD_HANDLE exactCalleeHnd = ((call->gtCall.gtCallType != CT_USER_FUNC) ||
7471                                                     ((call->gtFlags & GTF_CALL_VIRT_KIND_MASK) != GTF_CALL_NONVIRT))
7472                                                        ? nullptr
7473                                                        : methHnd;
7474             GenTreePtr thisArg = call->gtCall.gtCallObjp;
7475
7476             if (info.compCompHnd->canTailCall(info.compMethodHnd, methHnd, exactCalleeHnd, explicitTailCall))
7477             {
7478                 canTailCall = true;
7479                 if (explicitTailCall)
7480                 {
7481                     // In case of explicit tail calls, mark it so that it is not considered
7482                     // for in-lining.
7483                     call->gtCall.gtCallMoreFlags |= GTF_CALL_M_EXPLICIT_TAILCALL;
7484 #ifdef DEBUG
7485                     if (verbose)
7486                     {
7487                         printf("\nGTF_CALL_M_EXPLICIT_TAILCALL bit set for call ");
7488                         printTreeID(call);
7489                         printf("\n");
7490                     }
7491 #endif
7492                 }
7493                 else
7494                 {
7495 #if FEATURE_TAILCALL_OPT
7496                     // Must be an implicit tail call.
7497                     assert((tailCall & PREFIX_TAILCALL_IMPLICIT) != 0);
7498
7499                     // It is possible that a call node is both an inline candidate and marked
7500                     // for opportunistic tail calling.  In-lining happens before morhphing of
7501                     // trees.  If in-lining of an in-line candidate gets aborted for whatever
7502                     // reason, it will survive to the morphing stage at which point it will be
7503                     // transformed into a tail call after performing additional checks.
7504
7505                     call->gtCall.gtCallMoreFlags |= GTF_CALL_M_IMPLICIT_TAILCALL;
7506 #ifdef DEBUG
7507                     if (verbose)
7508                     {
7509                         printf("\nGTF_CALL_M_IMPLICIT_TAILCALL bit set for call ");
7510                         printTreeID(call);
7511                         printf("\n");
7512                     }
7513 #endif
7514
7515 #else //! FEATURE_TAILCALL_OPT
7516                     NYI("Implicit tail call prefix on a target which doesn't support opportunistic tail calls");
7517
7518 #endif // FEATURE_TAILCALL_OPT
7519                 }
7520
7521                 // we can't report success just yet...
7522             }
7523             else
7524             {
7525                 canTailCall = false;
7526 // canTailCall reported its reasons already
7527 #ifdef DEBUG
7528                 if (verbose)
7529                 {
7530                     printf("\ninfo.compCompHnd->canTailCall returned false for call ");
7531                     printTreeID(call);
7532                     printf("\n");
7533                 }
7534 #endif
7535             }
7536         }
7537         else
7538         {
7539             // If this assert fires it means that canTailCall was set to false without setting a reason!
7540             assert(szCanTailCallFailReason != nullptr);
7541
7542 #ifdef DEBUG
7543             if (verbose)
7544             {
7545                 printf("\nRejecting %splicit tail call for call ", explicitTailCall ? "ex" : "im");
7546                 printTreeID(call);
7547                 printf(": %s\n", szCanTailCallFailReason);
7548             }
7549 #endif
7550             info.compCompHnd->reportTailCallDecision(info.compMethodHnd, methHnd, explicitTailCall, TAILCALL_FAIL,
7551                                                      szCanTailCallFailReason);
7552         }
7553     }
7554
7555     // Note: we assume that small return types are already normalized by the managed callee
7556     // or by the pinvoke stub for calls to unmanaged code.
7557
7558     if (!bIntrinsicImported)
7559     {
7560         //
7561         // Things needed to be checked when bIntrinsicImported is false.
7562         //
7563
7564         assert(call->gtOper == GT_CALL);
7565         assert(sig != nullptr);
7566
7567         // Tail calls require us to save the call site's sig info so we can obtain an argument
7568         // copying thunk from the EE later on.
7569         if (call->gtCall.callSig == nullptr)
7570         {
7571             call->gtCall.callSig  = new (this, CMK_CorSig) CORINFO_SIG_INFO;
7572             *call->gtCall.callSig = *sig;
7573         }
7574
7575         if (compIsForInlining() && opcode == CEE_CALLVIRT)
7576         {
7577             GenTreePtr callObj = call->gtCall.gtCallObjp;
7578             assert(callObj != nullptr);
7579
7580             unsigned callKind = call->gtFlags & GTF_CALL_VIRT_KIND_MASK;
7581
7582             if (((callKind != GTF_CALL_NONVIRT) || (call->gtFlags & GTF_CALL_NULLCHECK)) &&
7583                 impInlineIsGuaranteedThisDerefBeforeAnySideEffects(call->gtCall.gtCallArgs, callObj,
7584                                                                    impInlineInfo->inlArgInfo))
7585             {
7586                 impInlineInfo->thisDereferencedFirst = true;
7587             }
7588         }
7589
7590 #if defined(DEBUG) || defined(INLINE_DATA)
7591
7592         // Keep track of the raw IL offset of the call
7593         call->gtCall.gtRawILOffset = rawILOffset;
7594
7595 #endif // defined(DEBUG) || defined(INLINE_DATA)
7596
7597         // Is it an inline candidate?
7598         impMarkInlineCandidate(call, exactContextHnd, callInfo);
7599     }
7600
7601 DONE_CALL:
7602     // Push or append the result of the call
7603     if (callRetTyp == TYP_VOID)
7604     {
7605         if (opcode == CEE_NEWOBJ)
7606         {
7607             // we actually did push something, so don't spill the thing we just pushed.
7608             assert(verCurrentState.esStackDepth > 0);
7609             impAppendTree(call, verCurrentState.esStackDepth - 1, impCurStmtOffs);
7610         }
7611         else
7612         {
7613             impAppendTree(call, (unsigned)CHECK_SPILL_ALL, impCurStmtOffs);
7614         }
7615     }
7616     else
7617     {
7618         impSpillSpecialSideEff();
7619
7620         if (clsFlags & CORINFO_FLG_ARRAY)
7621         {
7622             eeGetCallSiteSig(pResolvedToken->token, pResolvedToken->tokenScope, pResolvedToken->tokenContext, sig);
7623         }
7624
7625         // Find the return type used for verification by interpreting the method signature.
7626         // NB: we are clobbering the already established sig.
7627         if (tiVerificationNeeded)
7628         {
7629             // Actually, we never get the sig for the original method.
7630             sig = &(callInfo->verSig);
7631         }
7632
7633         typeInfo tiRetVal = verMakeTypeInfo(sig->retType, sig->retTypeClass);
7634         tiRetVal.NormaliseForStack();
7635
7636         // The CEE_READONLY prefix modifies the verification semantics of an Address
7637         // operation on an array type.
7638         if ((clsFlags & CORINFO_FLG_ARRAY) && readonlyCall && tiRetVal.IsByRef())
7639         {
7640             tiRetVal.SetIsReadonlyByRef();
7641         }
7642
7643         if (tiVerificationNeeded)
7644         {
7645             // We assume all calls return permanent home byrefs. If they
7646             // didn't they wouldn't be verifiable. This is also covering
7647             // the Address() helper for multidimensional arrays.
7648             if (tiRetVal.IsByRef())
7649             {
7650                 tiRetVal.SetIsPermanentHomeByRef();
7651             }
7652         }
7653
7654         if (call->IsCall())
7655         {
7656             // Sometimes "call" is not a GT_CALL (if we imported an intrinsic that didn't turn into a call)
7657
7658             bool fatPointerCandidate = call->AsCall()->IsFatPointerCandidate();
7659             if (varTypeIsStruct(callRetTyp))
7660             {
7661                 call = impFixupCallStructReturn(call, sig->retTypeClass);
7662             }
7663
7664             if ((call->gtFlags & GTF_CALL_INLINE_CANDIDATE) != 0)
7665             {
7666                 assert(opts.OptEnabled(CLFLG_INLINING));
7667                 assert(!fatPointerCandidate); // We should not try to inline calli.
7668
7669                 // Make the call its own tree (spill the stack if needed).
7670                 impAppendTree(call, (unsigned)CHECK_SPILL_ALL, impCurStmtOffs);
7671
7672                 // TODO: Still using the widened type.
7673                 call = gtNewInlineCandidateReturnExpr(call, genActualType(callRetTyp));
7674             }
7675             else
7676             {
7677                 if (fatPointerCandidate)
7678                 {
7679                     // fatPointer candidates should be in statements of the form call() or var = call().
7680                     // Such form allows to find statements with fat calls without walking through whole trees
7681                     // and removes problems with cutting trees.
7682                     assert(!bIntrinsicImported);
7683                     assert(IsTargetAbi(CORINFO_CORERT_ABI));
7684                     if (call->OperGet() != GT_LCL_VAR) // can be already converted by impFixupCallStructReturn.
7685                     {
7686                         unsigned   calliSlot  = lvaGrabTemp(true DEBUGARG("calli"));
7687                         LclVarDsc* varDsc     = &lvaTable[calliSlot];
7688                         varDsc->lvVerTypeInfo = tiRetVal;
7689                         impAssignTempGen(calliSlot, call, clsHnd, (unsigned)CHECK_SPILL_NONE);
7690                         // impAssignTempGen can change src arg list and return type for call that returns struct.
7691                         var_types type = genActualType(lvaTable[calliSlot].TypeGet());
7692                         call           = gtNewLclvNode(calliSlot, type);
7693                     }
7694                 }
7695
7696                 // For non-candidates we must also spill, since we
7697                 // might have locals live on the eval stack that this
7698                 // call can modify.
7699                 //
7700                 // Suppress this for certain well-known call targets
7701                 // that we know won't modify locals, eg calls that are
7702                 // recognized in gtCanOptimizeTypeEquality. Otherwise
7703                 // we may break key fragile pattern matches later on.
7704                 bool spillStack = true;
7705                 if (call->IsCall())
7706                 {
7707                     GenTreeCall* callNode = call->AsCall();
7708                     if ((callNode->gtCallType == CT_HELPER) && gtIsTypeHandleToRuntimeTypeHelper(callNode))
7709                     {
7710                         spillStack = false;
7711                     }
7712                     else if ((callNode->gtCallMoreFlags & GTF_CALL_M_SPECIAL_INTRINSIC) != 0)
7713                     {
7714                         spillStack = false;
7715                     }
7716                 }
7717
7718                 if (spillStack)
7719                 {
7720                     impSpillSideEffects(true, CHECK_SPILL_ALL DEBUGARG("non-inline candidate call"));
7721                 }
7722             }
7723         }
7724
7725         if (!bIntrinsicImported)
7726         {
7727             //-------------------------------------------------------------------------
7728             //
7729             /* If the call is of a small type and the callee is managed, the callee will normalize the result
7730                 before returning.
7731                 However, we need to normalize small type values returned by unmanaged
7732                 functions (pinvoke). The pinvoke stub does the normalization, but we need to do it here
7733                 if we use the shorter inlined pinvoke stub. */
7734
7735             if (checkForSmallType && varTypeIsIntegral(callRetTyp) && genTypeSize(callRetTyp) < genTypeSize(TYP_INT))
7736             {
7737                 call = gtNewCastNode(genActualType(callRetTyp), call, callRetTyp);
7738             }
7739         }
7740
7741         impPushOnStack(call, tiRetVal);
7742     }
7743
7744     // VSD functions get a new call target each time we getCallInfo, so clear the cache.
7745     // Also, the call info cache for CALLI instructions is largely incomplete, so clear it out.
7746     // if ( (opcode == CEE_CALLI) || (callInfoCache.fetchCallInfo().kind == CORINFO_VIRTUALCALL_STUB))
7747     //  callInfoCache.uncacheCallInfo();
7748
7749     return callRetTyp;
7750 }
7751 #ifdef _PREFAST_
7752 #pragma warning(pop)
7753 #endif
7754
7755 bool Compiler::impMethodInfo_hasRetBuffArg(CORINFO_METHOD_INFO* methInfo)
7756 {
7757     CorInfoType corType = methInfo->args.retType;
7758
7759     if ((corType == CORINFO_TYPE_VALUECLASS) || (corType == CORINFO_TYPE_REFANY))
7760     {
7761         // We have some kind of STRUCT being returned
7762
7763         structPassingKind howToReturnStruct = SPK_Unknown;
7764
7765         var_types returnType = getReturnTypeForStruct(methInfo->args.retTypeClass, &howToReturnStruct);
7766
7767         if (howToReturnStruct == SPK_ByReference)
7768         {
7769             return true;
7770         }
7771     }
7772
7773     return false;
7774 }
7775
7776 #ifdef DEBUG
7777 //
7778 var_types Compiler::impImportJitTestLabelMark(int numArgs)
7779 {
7780     TestLabelAndNum tlAndN;
7781     if (numArgs == 2)
7782     {
7783         tlAndN.m_num  = 0;
7784         StackEntry se = impPopStack();
7785         assert(se.seTypeInfo.GetType() == TI_INT);
7786         GenTreePtr val = se.val;
7787         assert(val->IsCnsIntOrI());
7788         tlAndN.m_tl = (TestLabel)val->AsIntConCommon()->IconValue();
7789     }
7790     else if (numArgs == 3)
7791     {
7792         StackEntry se = impPopStack();
7793         assert(se.seTypeInfo.GetType() == TI_INT);
7794         GenTreePtr val = se.val;
7795         assert(val->IsCnsIntOrI());
7796         tlAndN.m_num = val->AsIntConCommon()->IconValue();
7797         se           = impPopStack();
7798         assert(se.seTypeInfo.GetType() == TI_INT);
7799         val = se.val;
7800         assert(val->IsCnsIntOrI());
7801         tlAndN.m_tl = (TestLabel)val->AsIntConCommon()->IconValue();
7802     }
7803     else
7804     {
7805         assert(false);
7806     }
7807
7808     StackEntry expSe = impPopStack();
7809     GenTreePtr node  = expSe.val;
7810
7811     // There are a small number of special cases, where we actually put the annotation on a subnode.
7812     if (tlAndN.m_tl == TL_LoopHoist && tlAndN.m_num >= 100)
7813     {
7814         // A loop hoist annotation with value >= 100 means that the expression should be a static field access,
7815         // a GT_IND of a static field address, which should be the sum of a (hoistable) helper call and possibly some
7816         // offset within the the static field block whose address is returned by the helper call.
7817         // The annotation is saying that this address calculation, but not the entire access, should be hoisted.
7818         GenTreePtr helperCall = nullptr;
7819         assert(node->OperGet() == GT_IND);
7820         tlAndN.m_num -= 100;
7821         GetNodeTestData()->Set(node->gtOp.gtOp1, tlAndN);
7822         GetNodeTestData()->Remove(node);
7823     }
7824     else
7825     {
7826         GetNodeTestData()->Set(node, tlAndN);
7827     }
7828
7829     impPushOnStack(node, expSe.seTypeInfo);
7830     return node->TypeGet();
7831 }
7832 #endif // DEBUG
7833
7834 //-----------------------------------------------------------------------------------
7835 //  impFixupCallStructReturn: For a call node that returns a struct type either
7836 //  adjust the return type to an enregisterable type, or set the flag to indicate
7837 //  struct return via retbuf arg.
7838 //
7839 //  Arguments:
7840 //    call       -  GT_CALL GenTree node
7841 //    retClsHnd  -  Class handle of return type of the call
7842 //
7843 //  Return Value:
7844 //    Returns new GenTree node after fixing struct return of call node
7845 //
7846 GenTreePtr Compiler::impFixupCallStructReturn(GenTreePtr call, CORINFO_CLASS_HANDLE retClsHnd)
7847 {
7848     assert(call->gtOper == GT_CALL);
7849
7850     if (!varTypeIsStruct(call))
7851     {
7852         return call;
7853     }
7854
7855     call->gtCall.gtRetClsHnd = retClsHnd;
7856
7857     GenTreeCall* callNode = call->AsCall();
7858
7859 #if FEATURE_MULTIREG_RET
7860     // Initialize Return type descriptor of call node
7861     ReturnTypeDesc* retTypeDesc = callNode->GetReturnTypeDesc();
7862     retTypeDesc->InitializeStructReturnType(this, retClsHnd);
7863 #endif // FEATURE_MULTIREG_RET
7864
7865 #ifdef FEATURE_UNIX_AMD64_STRUCT_PASSING
7866
7867     // Not allowed for FEATURE_CORCLR which is the only SKU available for System V OSs.
7868     assert(!callNode->IsVarargs() && "varargs not allowed for System V OSs.");
7869
7870     // The return type will remain as the incoming struct type unless normalized to a
7871     // single eightbyte return type below.
7872     callNode->gtReturnType = call->gtType;
7873
7874     unsigned retRegCount = retTypeDesc->GetReturnRegCount();
7875     if (retRegCount != 0)
7876     {
7877         if (retRegCount == 1)
7878         {
7879             // struct returned in a single register
7880             callNode->gtReturnType = retTypeDesc->GetReturnRegType(0);
7881         }
7882         else
7883         {
7884             // must be a struct returned in two registers
7885             assert(retRegCount == 2);
7886
7887             if ((!callNode->CanTailCall()) && (!callNode->IsInlineCandidate()))
7888             {
7889                 // Force a call returning multi-reg struct to be always of the IR form
7890                 //   tmp = call
7891                 //
7892                 // No need to assign a multi-reg struct to a local var if:
7893                 //  - It is a tail call or
7894                 //  - The call is marked for in-lining later
7895                 return impAssignMultiRegTypeToVar(call, retClsHnd);
7896             }
7897         }
7898     }
7899     else
7900     {
7901         // struct not returned in registers i.e returned via hiddden retbuf arg.
7902         callNode->gtCallMoreFlags |= GTF_CALL_M_RETBUFFARG;
7903     }
7904
7905 #else // not FEATURE_UNIX_AMD64_STRUCT_PASSING
7906
7907 #if FEATURE_MULTIREG_RET && defined(_TARGET_ARM_)
7908     // There is no fixup necessary if the return type is a HFA struct.
7909     // HFA structs are returned in registers for ARM32 and ARM64
7910     //
7911     if (!call->gtCall.IsVarargs() && IsHfa(retClsHnd))
7912     {
7913         if (call->gtCall.CanTailCall())
7914         {
7915             if (info.compIsVarArgs)
7916             {
7917                 // We cannot tail call because control needs to return to fixup the calling
7918                 // convention for result return.
7919                 call->gtCall.gtCallMoreFlags &= ~GTF_CALL_M_EXPLICIT_TAILCALL;
7920             }
7921             else
7922             {
7923                 // If we can tail call returning HFA, then don't assign it to
7924                 // a variable back and forth.
7925                 return call;
7926             }
7927         }
7928
7929         if (call->gtFlags & GTF_CALL_INLINE_CANDIDATE)
7930         {
7931             return call;
7932         }
7933
7934         unsigned retRegCount = retTypeDesc->GetReturnRegCount();
7935         if (retRegCount >= 2)
7936         {
7937             return impAssignMultiRegTypeToVar(call, retClsHnd);
7938         }
7939     }
7940 #endif // _TARGET_ARM_
7941
7942     // Check for TYP_STRUCT type that wraps a primitive type
7943     // Such structs are returned using a single register
7944     // and we change the return type on those calls here.
7945     //
7946     structPassingKind howToReturnStruct;
7947     var_types         returnType = getReturnTypeForStruct(retClsHnd, &howToReturnStruct);
7948
7949     if (howToReturnStruct == SPK_ByReference)
7950     {
7951         assert(returnType == TYP_UNKNOWN);
7952         call->gtCall.gtCallMoreFlags |= GTF_CALL_M_RETBUFFARG;
7953     }
7954     else
7955     {
7956         assert(returnType != TYP_UNKNOWN);
7957         call->gtCall.gtReturnType = returnType;
7958
7959         // ToDo: Refactor this common code sequence into its own method as it is used 4+ times
7960         if ((returnType == TYP_LONG) && (compLongUsed == false))
7961         {
7962             compLongUsed = true;
7963         }
7964         else if (((returnType == TYP_FLOAT) || (returnType == TYP_DOUBLE)) && (compFloatingPointUsed == false))
7965         {
7966             compFloatingPointUsed = true;
7967         }
7968
7969 #if FEATURE_MULTIREG_RET
7970         unsigned retRegCount = retTypeDesc->GetReturnRegCount();
7971         assert(retRegCount != 0);
7972
7973         if (retRegCount >= 2)
7974         {
7975             if ((!callNode->CanTailCall()) && (!callNode->IsInlineCandidate()))
7976             {
7977                 // Force a call returning multi-reg struct to be always of the IR form
7978                 //   tmp = call
7979                 //
7980                 // No need to assign a multi-reg struct to a local var if:
7981                 //  - It is a tail call or
7982                 //  - The call is marked for in-lining later
7983                 return impAssignMultiRegTypeToVar(call, retClsHnd);
7984             }
7985         }
7986 #endif // FEATURE_MULTIREG_RET
7987     }
7988
7989 #endif // not FEATURE_UNIX_AMD64_STRUCT_PASSING
7990
7991     return call;
7992 }
7993
7994 /*****************************************************************************
7995    For struct return values, re-type the operand in the case where the ABI
7996    does not use a struct return buffer
7997    Note that this method is only call for !_TARGET_X86_
7998  */
7999
8000 GenTreePtr Compiler::impFixupStructReturnType(GenTreePtr op, CORINFO_CLASS_HANDLE retClsHnd)
8001 {
8002     assert(varTypeIsStruct(info.compRetType));
8003     assert(info.compRetBuffArg == BAD_VAR_NUM);
8004
8005 #if defined(_TARGET_XARCH_)
8006
8007 #ifdef FEATURE_UNIX_AMD64_STRUCT_PASSING
8008     // No VarArgs for CoreCLR on x64 Unix
8009     assert(!info.compIsVarArgs);
8010
8011     // Is method returning a multi-reg struct?
8012     if (varTypeIsStruct(info.compRetNativeType) && IsMultiRegReturnedType(retClsHnd))
8013     {
8014         // In case of multi-reg struct return, we force IR to be one of the following:
8015         // GT_RETURN(lclvar) or GT_RETURN(call).  If op is anything other than a
8016         // lclvar or call, it is assigned to a temp to create: temp = op and GT_RETURN(tmp).
8017
8018         if (op->gtOper == GT_LCL_VAR)
8019         {
8020             // Make sure that this struct stays in memory and doesn't get promoted.
8021             unsigned lclNum                  = op->gtLclVarCommon.gtLclNum;
8022             lvaTable[lclNum].lvIsMultiRegRet = true;
8023
8024             // TODO-1stClassStructs: Handle constant propagation and CSE-ing of multireg returns.
8025             op->gtFlags |= GTF_DONT_CSE;
8026
8027             return op;
8028         }
8029
8030         if (op->gtOper == GT_CALL)
8031         {
8032             return op;
8033         }
8034
8035         return impAssignMultiRegTypeToVar(op, retClsHnd);
8036     }
8037 #else  // !FEATURE_UNIX_AMD64_STRUCT_PASSING
8038     assert(info.compRetNativeType != TYP_STRUCT);
8039 #endif // !FEATURE_UNIX_AMD64_STRUCT_PASSING
8040
8041 #elif FEATURE_MULTIREG_RET && defined(_TARGET_ARM_)
8042
8043     if (varTypeIsStruct(info.compRetNativeType) && !info.compIsVarArgs && IsHfa(retClsHnd))
8044     {
8045         if (op->gtOper == GT_LCL_VAR)
8046         {
8047             // This LCL_VAR is an HFA return value, it stays as a TYP_STRUCT
8048             unsigned lclNum = op->gtLclVarCommon.gtLclNum;
8049             // Make sure this struct type stays as struct so that we can return it as an HFA
8050             lvaTable[lclNum].lvIsMultiRegRet = true;
8051
8052             // TODO-1stClassStructs: Handle constant propagation and CSE-ing of multireg returns.
8053             op->gtFlags |= GTF_DONT_CSE;
8054
8055             return op;
8056         }
8057
8058         if (op->gtOper == GT_CALL)
8059         {
8060             if (op->gtCall.IsVarargs())
8061             {
8062                 // We cannot tail call because control needs to return to fixup the calling
8063                 // convention for result return.
8064                 op->gtCall.gtCallMoreFlags &= ~GTF_CALL_M_TAILCALL;
8065                 op->gtCall.gtCallMoreFlags &= ~GTF_CALL_M_EXPLICIT_TAILCALL;
8066             }
8067             else
8068             {
8069                 return op;
8070             }
8071         }
8072         return impAssignMultiRegTypeToVar(op, retClsHnd);
8073     }
8074
8075 #elif FEATURE_MULTIREG_RET && defined(_TARGET_ARM64_)
8076
8077     // Is method returning a multi-reg struct?
8078     if (IsMultiRegReturnedType(retClsHnd))
8079     {
8080         if (op->gtOper == GT_LCL_VAR)
8081         {
8082             // This LCL_VAR stays as a TYP_STRUCT
8083             unsigned lclNum = op->gtLclVarCommon.gtLclNum;
8084
8085             // Make sure this struct type is not struct promoted
8086             lvaTable[lclNum].lvIsMultiRegRet = true;
8087
8088             // TODO-1stClassStructs: Handle constant propagation and CSE-ing of multireg returns.
8089             op->gtFlags |= GTF_DONT_CSE;
8090
8091             return op;
8092         }
8093
8094         if (op->gtOper == GT_CALL)
8095         {
8096             if (op->gtCall.IsVarargs())
8097             {
8098                 // We cannot tail call because control needs to return to fixup the calling
8099                 // convention for result return.
8100                 op->gtCall.gtCallMoreFlags &= ~GTF_CALL_M_TAILCALL;
8101                 op->gtCall.gtCallMoreFlags &= ~GTF_CALL_M_EXPLICIT_TAILCALL;
8102             }
8103             else
8104             {
8105                 return op;
8106             }
8107         }
8108         return impAssignMultiRegTypeToVar(op, retClsHnd);
8109     }
8110
8111 #endif //  FEATURE_MULTIREG_RET && FEATURE_HFA
8112
8113 REDO_RETURN_NODE:
8114     // adjust the type away from struct to integral
8115     // and no normalizing
8116     if (op->gtOper == GT_LCL_VAR)
8117     {
8118         op->ChangeOper(GT_LCL_FLD);
8119     }
8120     else if (op->gtOper == GT_OBJ)
8121     {
8122         GenTreePtr op1 = op->AsObj()->Addr();
8123
8124         // We will fold away OBJ/ADDR
8125         // except for OBJ/ADDR/INDEX
8126         //     as the array type influences the array element's offset
8127         //     Later in this method we change op->gtType to info.compRetNativeType
8128         //     This is not correct when op is a GT_INDEX as the starting offset
8129         //     for the array elements 'elemOffs' is different for an array of
8130         //     TYP_REF than an array of TYP_STRUCT (which simply wraps a TYP_REF)
8131         //     Also refer to the GTF_INX_REFARR_LAYOUT flag
8132         //
8133         if ((op1->gtOper == GT_ADDR) && (op1->gtOp.gtOp1->gtOper != GT_INDEX))
8134         {
8135             // Change '*(&X)' to 'X' and see if we can do better
8136             op = op1->gtOp.gtOp1;
8137             goto REDO_RETURN_NODE;
8138         }
8139         op->gtObj.gtClass = NO_CLASS_HANDLE;
8140         op->ChangeOperUnchecked(GT_IND);
8141         op->gtFlags |= GTF_IND_TGTANYWHERE;
8142     }
8143     else if (op->gtOper == GT_CALL)
8144     {
8145         if (op->AsCall()->TreatAsHasRetBufArg(this))
8146         {
8147             // This must be one of those 'special' helpers that don't
8148             // really have a return buffer, but instead use it as a way
8149             // to keep the trees cleaner with fewer address-taken temps.
8150             //
8151             // Well now we have to materialize the the return buffer as
8152             // an address-taken temp. Then we can return the temp.
8153             //
8154             // NOTE: this code assumes that since the call directly
8155             // feeds the return, then the call must be returning the
8156             // same structure/class/type.
8157             //
8158             unsigned tmpNum = lvaGrabTemp(true DEBUGARG("pseudo return buffer"));
8159
8160             // No need to spill anything as we're about to return.
8161             impAssignTempGen(tmpNum, op, info.compMethodInfo->args.retTypeClass, (unsigned)CHECK_SPILL_NONE);
8162
8163             // Don't create both a GT_ADDR & GT_OBJ just to undo all of that; instead,
8164             // jump directly to a GT_LCL_FLD.
8165             op = gtNewLclvNode(tmpNum, info.compRetNativeType);
8166             op->ChangeOper(GT_LCL_FLD);
8167         }
8168         else
8169         {
8170             assert(info.compRetNativeType == op->gtCall.gtReturnType);
8171
8172             // Don't change the gtType of the node just yet, it will get changed later.
8173             return op;
8174         }
8175     }
8176     else if (op->gtOper == GT_COMMA)
8177     {
8178         op->gtOp.gtOp2 = impFixupStructReturnType(op->gtOp.gtOp2, retClsHnd);
8179     }
8180
8181     op->gtType = info.compRetNativeType;
8182
8183     return op;
8184 }
8185
8186 /*****************************************************************************
8187    CEE_LEAVE may be jumping out of a protected block, viz, a catch or a
8188    finally-protected try. We find the finally blocks protecting the current
8189    offset (in order) by walking over the complete exception table and
8190    finding enclosing clauses. This assumes that the table is sorted.
8191    This will create a series of BBJ_CALLFINALLY -> BBJ_CALLFINALLY ... -> BBJ_ALWAYS.
8192
8193    If we are leaving a catch handler, we need to attach the
8194    CPX_ENDCATCHes to the correct BBJ_CALLFINALLY blocks.
8195
8196    After this function, the BBJ_LEAVE block has been converted to a different type.
8197  */
8198
8199 #if !FEATURE_EH_FUNCLETS
8200
8201 void Compiler::impImportLeave(BasicBlock* block)
8202 {
8203 #ifdef DEBUG
8204     if (verbose)
8205     {
8206         printf("\nBefore import CEE_LEAVE:\n");
8207         fgDispBasicBlocks();
8208         fgDispHandlerTab();
8209     }
8210 #endif // DEBUG
8211
8212     bool        invalidatePreds = false; // If we create new blocks, invalidate the predecessor lists (if created)
8213     unsigned    blkAddr         = block->bbCodeOffs;
8214     BasicBlock* leaveTarget     = block->bbJumpDest;
8215     unsigned    jmpAddr         = leaveTarget->bbCodeOffs;
8216
8217     // LEAVE clears the stack, spill side effects, and set stack to 0
8218
8219     impSpillSideEffects(true, (unsigned)CHECK_SPILL_ALL DEBUGARG("impImportLeave"));
8220     verCurrentState.esStackDepth = 0;
8221
8222     assert(block->bbJumpKind == BBJ_LEAVE);
8223     assert(fgBBs == (BasicBlock**)0xCDCD || fgLookupBB(jmpAddr) != NULL); // should be a BB boundary
8224
8225     BasicBlock* step         = DUMMY_INIT(NULL);
8226     unsigned    encFinallies = 0; // Number of enclosing finallies.
8227     GenTreePtr  endCatches   = NULL;
8228     GenTreePtr  endLFin      = NULL; // The statement tree to indicate the end of locally-invoked finally.
8229
8230     unsigned  XTnum;
8231     EHblkDsc* HBtab;
8232
8233     for (XTnum = 0, HBtab = compHndBBtab; XTnum < compHndBBtabCount; XTnum++, HBtab++)
8234     {
8235         // Grab the handler offsets
8236
8237         IL_OFFSET tryBeg = HBtab->ebdTryBegOffs();
8238         IL_OFFSET tryEnd = HBtab->ebdTryEndOffs();
8239         IL_OFFSET hndBeg = HBtab->ebdHndBegOffs();
8240         IL_OFFSET hndEnd = HBtab->ebdHndEndOffs();
8241
8242         /* Is this a catch-handler we are CEE_LEAVEing out of?
8243          * If so, we need to call CORINFO_HELP_ENDCATCH.
8244          */
8245
8246         if (jitIsBetween(blkAddr, hndBeg, hndEnd) && !jitIsBetween(jmpAddr, hndBeg, hndEnd))
8247         {
8248             // Can't CEE_LEAVE out of a finally/fault handler
8249             if (HBtab->HasFinallyOrFaultHandler())
8250                 BADCODE("leave out of fault/finally block");
8251
8252             // Create the call to CORINFO_HELP_ENDCATCH
8253             GenTreePtr endCatch = gtNewHelperCallNode(CORINFO_HELP_ENDCATCH, TYP_VOID);
8254
8255             // Make a list of all the currently pending endCatches
8256             if (endCatches)
8257                 endCatches = gtNewOperNode(GT_COMMA, TYP_VOID, endCatches, endCatch);
8258             else
8259                 endCatches = endCatch;
8260
8261 #ifdef DEBUG
8262             if (verbose)
8263             {
8264                 printf("impImportLeave - BB%02u jumping out of catch handler EH#%u, adding call to "
8265                        "CORINFO_HELP_ENDCATCH\n",
8266                        block->bbNum, XTnum);
8267             }
8268 #endif
8269         }
8270         else if (HBtab->HasFinallyHandler() && jitIsBetween(blkAddr, tryBeg, tryEnd) &&
8271                  !jitIsBetween(jmpAddr, tryBeg, tryEnd))
8272         {
8273             /* This is a finally-protected try we are jumping out of */
8274
8275             /* If there are any pending endCatches, and we have already
8276                jumped out of a finally-protected try, then the endCatches
8277                have to be put in a block in an outer try for async
8278                exceptions to work correctly.
8279                Else, just use append to the original block */
8280
8281             BasicBlock* callBlock;
8282
8283             assert(!encFinallies == !endLFin); // if we have finallies, we better have an endLFin tree, and vice-versa
8284
8285             if (encFinallies == 0)
8286             {
8287                 assert(step == DUMMY_INIT(NULL));
8288                 callBlock             = block;
8289                 callBlock->bbJumpKind = BBJ_CALLFINALLY; // convert the BBJ_LEAVE to BBJ_CALLFINALLY
8290
8291                 if (endCatches)
8292                     impAppendTree(endCatches, (unsigned)CHECK_SPILL_NONE, impCurStmtOffs);
8293
8294 #ifdef DEBUG
8295                 if (verbose)
8296                 {
8297                     printf("impImportLeave - jumping out of a finally-protected try, convert block to BBJ_CALLFINALLY "
8298                            "block BB%02u [%08p]\n",
8299                            callBlock->bbNum, dspPtr(callBlock));
8300                 }
8301 #endif
8302             }
8303             else
8304             {
8305                 assert(step != DUMMY_INIT(NULL));
8306
8307                 /* Calling the finally block */
8308                 callBlock = fgNewBBinRegion(BBJ_CALLFINALLY, XTnum + 1, 0, step);
8309                 assert(step->bbJumpKind == BBJ_ALWAYS);
8310                 step->bbJumpDest = callBlock; // the previous call to a finally returns to this call (to the next
8311                                               // finally in the chain)
8312                 step->bbJumpDest->bbRefs++;
8313
8314                 /* The new block will inherit this block's weight */
8315                 callBlock->setBBWeight(block->bbWeight);
8316                 callBlock->bbFlags |= block->bbFlags & BBF_RUN_RARELY;
8317
8318 #ifdef DEBUG
8319                 if (verbose)
8320                 {
8321                     printf("impImportLeave - jumping out of a finally-protected try, new BBJ_CALLFINALLY block BB%02u "
8322                            "[%08p]\n",
8323                            callBlock->bbNum, dspPtr(callBlock));
8324                 }
8325 #endif
8326
8327                 GenTreePtr lastStmt;
8328
8329                 if (endCatches)
8330                 {
8331                     lastStmt         = gtNewStmt(endCatches);
8332                     endLFin->gtNext  = lastStmt;
8333                     lastStmt->gtPrev = endLFin;
8334                 }
8335                 else
8336                 {
8337                     lastStmt = endLFin;
8338                 }
8339
8340                 // note that this sets BBF_IMPORTED on the block
8341                 impEndTreeList(callBlock, endLFin, lastStmt);
8342             }
8343
8344             step = fgNewBBafter(BBJ_ALWAYS, callBlock, true);
8345             /* The new block will inherit this block's weight */
8346             step->setBBWeight(block->bbWeight);
8347             step->bbFlags |= (block->bbFlags & BBF_RUN_RARELY) | BBF_IMPORTED | BBF_KEEP_BBJ_ALWAYS;
8348
8349 #ifdef DEBUG
8350             if (verbose)
8351             {
8352                 printf("impImportLeave - jumping out of a finally-protected try, created step (BBJ_ALWAYS) block "
8353                        "BB%02u [%08p]\n",
8354                        step->bbNum, dspPtr(step));
8355             }
8356 #endif
8357
8358             unsigned finallyNesting = compHndBBtab[XTnum].ebdHandlerNestingLevel;
8359             assert(finallyNesting <= compHndBBtabCount);
8360
8361             callBlock->bbJumpDest = HBtab->ebdHndBeg; // This callBlock will call the "finally" handler.
8362             endLFin               = new (this, GT_END_LFIN) GenTreeVal(GT_END_LFIN, TYP_VOID, finallyNesting);
8363             endLFin               = gtNewStmt(endLFin);
8364             endCatches            = NULL;
8365
8366             encFinallies++;
8367
8368             invalidatePreds = true;
8369         }
8370     }
8371
8372     /* Append any remaining endCatches, if any */
8373
8374     assert(!encFinallies == !endLFin);
8375
8376     if (encFinallies == 0)
8377     {
8378         assert(step == DUMMY_INIT(NULL));
8379         block->bbJumpKind = BBJ_ALWAYS; // convert the BBJ_LEAVE to a BBJ_ALWAYS
8380
8381         if (endCatches)
8382             impAppendTree(endCatches, (unsigned)CHECK_SPILL_NONE, impCurStmtOffs);
8383
8384 #ifdef DEBUG
8385         if (verbose)
8386         {
8387             printf("impImportLeave - no enclosing finally-protected try blocks; convert CEE_LEAVE block to BBJ_ALWAYS "
8388                    "block BB%02u [%08p]\n",
8389                    block->bbNum, dspPtr(block));
8390         }
8391 #endif
8392     }
8393     else
8394     {
8395         // If leaveTarget is the start of another try block, we want to make sure that
8396         // we do not insert finalStep into that try block. Hence, we find the enclosing
8397         // try block.
8398         unsigned tryIndex = bbFindInnermostCommonTryRegion(step, leaveTarget);
8399
8400         // Insert a new BB either in the try region indicated by tryIndex or
8401         // the handler region indicated by leaveTarget->bbHndIndex,
8402         // depending on which is the inner region.
8403         BasicBlock* finalStep = fgNewBBinRegion(BBJ_ALWAYS, tryIndex, leaveTarget->bbHndIndex, step);
8404         finalStep->bbFlags |= BBF_KEEP_BBJ_ALWAYS;
8405         step->bbJumpDest = finalStep;
8406
8407         /* The new block will inherit this block's weight */
8408         finalStep->setBBWeight(block->bbWeight);
8409         finalStep->bbFlags |= block->bbFlags & BBF_RUN_RARELY;
8410
8411 #ifdef DEBUG
8412         if (verbose)
8413         {
8414             printf("impImportLeave - finalStep block required (encFinallies(%d) > 0), new block BB%02u [%08p]\n",
8415                    encFinallies, finalStep->bbNum, dspPtr(finalStep));
8416         }
8417 #endif
8418
8419         GenTreePtr lastStmt;
8420
8421         if (endCatches)
8422         {
8423             lastStmt         = gtNewStmt(endCatches);
8424             endLFin->gtNext  = lastStmt;
8425             lastStmt->gtPrev = endLFin;
8426         }
8427         else
8428         {
8429             lastStmt = endLFin;
8430         }
8431
8432         impEndTreeList(finalStep, endLFin, lastStmt);
8433
8434         finalStep->bbJumpDest = leaveTarget; // this is the ultimate destination of the LEAVE
8435
8436         // Queue up the jump target for importing
8437
8438         impImportBlockPending(leaveTarget);
8439
8440         invalidatePreds = true;
8441     }
8442
8443     if (invalidatePreds && fgComputePredsDone)
8444     {
8445         JITDUMP("\n**** impImportLeave - Removing preds after creating new blocks\n");
8446         fgRemovePreds();
8447     }
8448
8449 #ifdef DEBUG
8450     fgVerifyHandlerTab();
8451
8452     if (verbose)
8453     {
8454         printf("\nAfter import CEE_LEAVE:\n");
8455         fgDispBasicBlocks();
8456         fgDispHandlerTab();
8457     }
8458 #endif // DEBUG
8459 }
8460
8461 #else // FEATURE_EH_FUNCLETS
8462
8463 void Compiler::impImportLeave(BasicBlock* block)
8464 {
8465 #ifdef DEBUG
8466     if (verbose)
8467     {
8468         printf("\nBefore import CEE_LEAVE in BB%02u (targetting BB%02u):\n", block->bbNum, block->bbJumpDest->bbNum);
8469         fgDispBasicBlocks();
8470         fgDispHandlerTab();
8471     }
8472 #endif // DEBUG
8473
8474     bool        invalidatePreds = false; // If we create new blocks, invalidate the predecessor lists (if created)
8475     unsigned    blkAddr         = block->bbCodeOffs;
8476     BasicBlock* leaveTarget     = block->bbJumpDest;
8477     unsigned    jmpAddr         = leaveTarget->bbCodeOffs;
8478
8479     // LEAVE clears the stack, spill side effects, and set stack to 0
8480
8481     impSpillSideEffects(true, (unsigned)CHECK_SPILL_ALL DEBUGARG("impImportLeave"));
8482     verCurrentState.esStackDepth = 0;
8483
8484     assert(block->bbJumpKind == BBJ_LEAVE);
8485     assert(fgBBs == (BasicBlock**)0xCDCD || fgLookupBB(jmpAddr) != nullptr); // should be a BB boundary
8486
8487     BasicBlock* step = nullptr;
8488
8489     enum StepType
8490     {
8491         // No step type; step == NULL.
8492         ST_None,
8493
8494         // Is the step block the BBJ_ALWAYS block of a BBJ_CALLFINALLY/BBJ_ALWAYS pair?
8495         // That is, is step->bbJumpDest where a finally will return to?
8496         ST_FinallyReturn,
8497
8498         // The step block is a catch return.
8499         ST_Catch,
8500
8501         // The step block is in a "try", created as the target for a finally return or the target for a catch return.
8502         ST_Try
8503     };
8504     StepType stepType = ST_None;
8505
8506     unsigned  XTnum;
8507     EHblkDsc* HBtab;
8508
8509     for (XTnum = 0, HBtab = compHndBBtab; XTnum < compHndBBtabCount; XTnum++, HBtab++)
8510     {
8511         // Grab the handler offsets
8512
8513         IL_OFFSET tryBeg = HBtab->ebdTryBegOffs();
8514         IL_OFFSET tryEnd = HBtab->ebdTryEndOffs();
8515         IL_OFFSET hndBeg = HBtab->ebdHndBegOffs();
8516         IL_OFFSET hndEnd = HBtab->ebdHndEndOffs();
8517
8518         /* Is this a catch-handler we are CEE_LEAVEing out of?
8519          */
8520
8521         if (jitIsBetween(blkAddr, hndBeg, hndEnd) && !jitIsBetween(jmpAddr, hndBeg, hndEnd))
8522         {
8523             // Can't CEE_LEAVE out of a finally/fault handler
8524             if (HBtab->HasFinallyOrFaultHandler())
8525             {
8526                 BADCODE("leave out of fault/finally block");
8527             }
8528
8529             /* We are jumping out of a catch */
8530
8531             if (step == nullptr)
8532             {
8533                 step             = block;
8534                 step->bbJumpKind = BBJ_EHCATCHRET; // convert the BBJ_LEAVE to BBJ_EHCATCHRET
8535                 stepType         = ST_Catch;
8536
8537 #ifdef DEBUG
8538                 if (verbose)
8539                 {
8540                     printf("impImportLeave - jumping out of a catch (EH#%u), convert block BB%02u to BBJ_EHCATCHRET "
8541                            "block\n",
8542                            XTnum, step->bbNum);
8543                 }
8544 #endif
8545             }
8546             else
8547             {
8548                 BasicBlock* exitBlock;
8549
8550                 /* Create a new catch exit block in the catch region for the existing step block to jump to in this
8551                  * scope */
8552                 exitBlock = fgNewBBinRegion(BBJ_EHCATCHRET, 0, XTnum + 1, step);
8553
8554                 assert(step->bbJumpKind == BBJ_ALWAYS || step->bbJumpKind == BBJ_EHCATCHRET);
8555                 step->bbJumpDest = exitBlock; // the previous step (maybe a call to a nested finally, or a nested catch
8556                                               // exit) returns to this block
8557                 step->bbJumpDest->bbRefs++;
8558
8559 #if defined(_TARGET_ARM_)
8560                 if (stepType == ST_FinallyReturn)
8561                 {
8562                     assert(step->bbJumpKind == BBJ_ALWAYS);
8563                     // Mark the target of a finally return
8564                     step->bbJumpDest->bbFlags |= BBF_FINALLY_TARGET;
8565                 }
8566 #endif // defined(_TARGET_ARM_)
8567
8568                 /* The new block will inherit this block's weight */
8569                 exitBlock->setBBWeight(block->bbWeight);
8570                 exitBlock->bbFlags |= (block->bbFlags & BBF_RUN_RARELY) | BBF_IMPORTED;
8571
8572                 /* This exit block is the new step */
8573                 step     = exitBlock;
8574                 stepType = ST_Catch;
8575
8576                 invalidatePreds = true;
8577
8578 #ifdef DEBUG
8579                 if (verbose)
8580                 {
8581                     printf("impImportLeave - jumping out of a catch (EH#%u), new BBJ_EHCATCHRET block BB%02u\n", XTnum,
8582                            exitBlock->bbNum);
8583                 }
8584 #endif
8585             }
8586         }
8587         else if (HBtab->HasFinallyHandler() && jitIsBetween(blkAddr, tryBeg, tryEnd) &&
8588                  !jitIsBetween(jmpAddr, tryBeg, tryEnd))
8589         {
8590             /* We are jumping out of a finally-protected try */
8591
8592             BasicBlock* callBlock;
8593
8594             if (step == nullptr)
8595             {
8596 #if FEATURE_EH_CALLFINALLY_THUNKS
8597
8598                 // Put the call to the finally in the enclosing region.
8599                 unsigned callFinallyTryIndex =
8600                     (HBtab->ebdEnclosingTryIndex == EHblkDsc::NO_ENCLOSING_INDEX) ? 0 : HBtab->ebdEnclosingTryIndex + 1;
8601                 unsigned callFinallyHndIndex =
8602                     (HBtab->ebdEnclosingHndIndex == EHblkDsc::NO_ENCLOSING_INDEX) ? 0 : HBtab->ebdEnclosingHndIndex + 1;
8603                 callBlock = fgNewBBinRegion(BBJ_CALLFINALLY, callFinallyTryIndex, callFinallyHndIndex, block);
8604
8605                 // Convert the BBJ_LEAVE to BBJ_ALWAYS, jumping to the new BBJ_CALLFINALLY. This is because
8606                 // the new BBJ_CALLFINALLY is in a different EH region, thus it can't just replace the BBJ_LEAVE,
8607                 // which might be in the middle of the "try". In most cases, the BBJ_ALWAYS will jump to the
8608                 // next block, and flow optimizations will remove it.
8609                 block->bbJumpKind = BBJ_ALWAYS;
8610                 block->bbJumpDest = callBlock;
8611                 block->bbJumpDest->bbRefs++;
8612
8613                 /* The new block will inherit this block's weight */
8614                 callBlock->setBBWeight(block->bbWeight);
8615                 callBlock->bbFlags |= (block->bbFlags & BBF_RUN_RARELY) | BBF_IMPORTED;
8616
8617 #ifdef DEBUG
8618                 if (verbose)
8619                 {
8620                     printf("impImportLeave - jumping out of a finally-protected try (EH#%u), convert block BB%02u to "
8621                            "BBJ_ALWAYS, add BBJ_CALLFINALLY block BB%02u\n",
8622                            XTnum, block->bbNum, callBlock->bbNum);
8623                 }
8624 #endif
8625
8626 #else // !FEATURE_EH_CALLFINALLY_THUNKS
8627
8628                 callBlock             = block;
8629                 callBlock->bbJumpKind = BBJ_CALLFINALLY; // convert the BBJ_LEAVE to BBJ_CALLFINALLY
8630
8631 #ifdef DEBUG
8632                 if (verbose)
8633                 {
8634                     printf("impImportLeave - jumping out of a finally-protected try (EH#%u), convert block BB%02u to "
8635                            "BBJ_CALLFINALLY block\n",
8636                            XTnum, callBlock->bbNum);
8637                 }
8638 #endif
8639
8640 #endif // !FEATURE_EH_CALLFINALLY_THUNKS
8641             }
8642             else
8643             {
8644                 // Calling the finally block. We already have a step block that is either the call-to-finally from a
8645                 // more nested try/finally (thus we are jumping out of multiple nested 'try' blocks, each protected by
8646                 // a 'finally'), or the step block is the return from a catch.
8647                 //
8648                 // Due to ThreadAbortException, we can't have the catch return target the call-to-finally block
8649                 // directly. Note that if a 'catch' ends without resetting the ThreadAbortException, the VM will
8650                 // automatically re-raise the exception, using the return address of the catch (that is, the target
8651                 // block of the BBJ_EHCATCHRET) as the re-raise address. If this address is in a finally, the VM will
8652                 // refuse to do the re-raise, and the ThreadAbortException will get eaten (and lost). On AMD64/ARM64,
8653                 // we put the call-to-finally thunk in a special "cloned finally" EH region that does look like a
8654                 // finally clause to the VM. Thus, on these platforms, we can't have BBJ_EHCATCHRET target a
8655                 // BBJ_CALLFINALLY directly. (Note that on ARM32, we don't mark the thunk specially -- it lives directly
8656                 // within the 'try' region protected by the finally, since we generate code in such a way that execution
8657                 // never returns to the call-to-finally call, and the finally-protected 'try' region doesn't appear on
8658                 // stack walks.)
8659
8660                 assert(step->bbJumpKind == BBJ_ALWAYS || step->bbJumpKind == BBJ_EHCATCHRET);
8661
8662 #if FEATURE_EH_CALLFINALLY_THUNKS
8663                 if (step->bbJumpKind == BBJ_EHCATCHRET)
8664                 {
8665                     // Need to create another step block in the 'try' region that will actually branch to the
8666                     // call-to-finally thunk.
8667                     BasicBlock* step2 = fgNewBBinRegion(BBJ_ALWAYS, XTnum + 1, 0, step);
8668                     step->bbJumpDest  = step2;
8669                     step->bbJumpDest->bbRefs++;
8670                     step2->setBBWeight(block->bbWeight);
8671                     step2->bbFlags |= (block->bbFlags & BBF_RUN_RARELY) | BBF_IMPORTED;
8672
8673 #ifdef DEBUG
8674                     if (verbose)
8675                     {
8676                         printf("impImportLeave - jumping out of a finally-protected try (EH#%u), step block is "
8677                                "BBJ_EHCATCHRET (BB%02u), new BBJ_ALWAYS step-step block BB%02u\n",
8678                                XTnum, step->bbNum, step2->bbNum);
8679                     }
8680 #endif
8681
8682                     step = step2;
8683                     assert(stepType == ST_Catch); // Leave it as catch type for now.
8684                 }
8685 #endif // FEATURE_EH_CALLFINALLY_THUNKS
8686
8687 #if FEATURE_EH_CALLFINALLY_THUNKS
8688                 unsigned callFinallyTryIndex =
8689                     (HBtab->ebdEnclosingTryIndex == EHblkDsc::NO_ENCLOSING_INDEX) ? 0 : HBtab->ebdEnclosingTryIndex + 1;
8690                 unsigned callFinallyHndIndex =
8691                     (HBtab->ebdEnclosingHndIndex == EHblkDsc::NO_ENCLOSING_INDEX) ? 0 : HBtab->ebdEnclosingHndIndex + 1;
8692 #else  // !FEATURE_EH_CALLFINALLY_THUNKS
8693                 unsigned callFinallyTryIndex = XTnum + 1;
8694                 unsigned callFinallyHndIndex = 0; // don't care
8695 #endif // !FEATURE_EH_CALLFINALLY_THUNKS
8696
8697                 callBlock        = fgNewBBinRegion(BBJ_CALLFINALLY, callFinallyTryIndex, callFinallyHndIndex, step);
8698                 step->bbJumpDest = callBlock; // the previous call to a finally returns to this call (to the next
8699                                               // finally in the chain)
8700                 step->bbJumpDest->bbRefs++;
8701
8702 #if defined(_TARGET_ARM_)
8703                 if (stepType == ST_FinallyReturn)
8704                 {
8705                     assert(step->bbJumpKind == BBJ_ALWAYS);
8706                     // Mark the target of a finally return
8707                     step->bbJumpDest->bbFlags |= BBF_FINALLY_TARGET;
8708                 }
8709 #endif // defined(_TARGET_ARM_)
8710
8711                 /* The new block will inherit this block's weight */
8712                 callBlock->setBBWeight(block->bbWeight);
8713                 callBlock->bbFlags |= (block->bbFlags & BBF_RUN_RARELY) | BBF_IMPORTED;
8714
8715 #ifdef DEBUG
8716                 if (verbose)
8717                 {
8718                     printf("impImportLeave - jumping out of a finally-protected try (EH#%u), new BBJ_CALLFINALLY block "
8719                            "BB%02u\n",
8720                            XTnum, callBlock->bbNum);
8721                 }
8722 #endif
8723             }
8724
8725             step     = fgNewBBafter(BBJ_ALWAYS, callBlock, true);
8726             stepType = ST_FinallyReturn;
8727
8728             /* The new block will inherit this block's weight */
8729             step->setBBWeight(block->bbWeight);
8730             step->bbFlags |= (block->bbFlags & BBF_RUN_RARELY) | BBF_IMPORTED | BBF_KEEP_BBJ_ALWAYS;
8731
8732 #ifdef DEBUG
8733             if (verbose)
8734             {
8735                 printf("impImportLeave - jumping out of a finally-protected try (EH#%u), created step (BBJ_ALWAYS) "
8736                        "block BB%02u\n",
8737                        XTnum, step->bbNum);
8738             }
8739 #endif
8740
8741             callBlock->bbJumpDest = HBtab->ebdHndBeg; // This callBlock will call the "finally" handler.
8742
8743             invalidatePreds = true;
8744         }
8745         else if (HBtab->HasCatchHandler() && jitIsBetween(blkAddr, tryBeg, tryEnd) &&
8746                  !jitIsBetween(jmpAddr, tryBeg, tryEnd))
8747         {
8748             // We are jumping out of a catch-protected try.
8749             //
8750             // If we are returning from a call to a finally, then we must have a step block within a try
8751             // that is protected by a catch. This is so when unwinding from that finally (e.g., if code within the
8752             // finally raises an exception), the VM will find this step block, notice that it is in a protected region,
8753             // and invoke the appropriate catch.
8754             //
8755             // We also need to handle a special case with the handling of ThreadAbortException. If a try/catch
8756             // catches a ThreadAbortException (which might be because it catches a parent, e.g. System.Exception),
8757             // and the catch doesn't call System.Threading.Thread::ResetAbort(), then when the catch returns to the VM,
8758             // the VM will automatically re-raise the ThreadAbortException. When it does this, it uses the target
8759             // address of the catch return as the new exception address. That is, the re-raised exception appears to
8760             // occur at the catch return address. If this exception return address skips an enclosing try/catch that
8761             // catches ThreadAbortException, then the enclosing try/catch will not catch the exception, as it should.
8762             // For example:
8763             //
8764             // try {
8765             //    try {
8766             //       // something here raises ThreadAbortException
8767             //       LEAVE LABEL_1; // no need to stop at LABEL_2
8768             //    } catch (Exception) {
8769             //       // This catches ThreadAbortException, but doesn't call System.Threading.Thread::ResetAbort(), so
8770             //       // ThreadAbortException is re-raised by the VM at the address specified by the LEAVE opcode.
8771             //       // This is bad, since it means the outer try/catch won't get a chance to catch the re-raised
8772             //       // ThreadAbortException. So, instead, create step block LABEL_2 and LEAVE to that. We only
8773             //       // need to do this transformation if the current EH block is a try/catch that catches
8774             //       // ThreadAbortException (or one of its parents), however we might not be able to find that
8775             //       // information, so currently we do it for all catch types.
8776             //       LEAVE LABEL_1; // Convert this to LEAVE LABEL2;
8777             //    }
8778             //    LABEL_2: LEAVE LABEL_1; // inserted by this step creation code
8779             // } catch (ThreadAbortException) {
8780             // }
8781             // LABEL_1:
8782             //
8783             // Note that this pattern isn't theoretical: it occurs in ASP.NET, in IL code generated by the Roslyn C#
8784             // compiler.
8785
8786             if ((stepType == ST_FinallyReturn) || (stepType == ST_Catch))
8787             {
8788                 BasicBlock* catchStep;
8789
8790                 assert(step);
8791
8792                 if (stepType == ST_FinallyReturn)
8793                 {
8794                     assert(step->bbJumpKind == BBJ_ALWAYS);
8795                 }
8796                 else
8797                 {
8798                     assert(stepType == ST_Catch);
8799                     assert(step->bbJumpKind == BBJ_EHCATCHRET);
8800                 }
8801
8802                 /* Create a new exit block in the try region for the existing step block to jump to in this scope */
8803                 catchStep        = fgNewBBinRegion(BBJ_ALWAYS, XTnum + 1, 0, step);
8804                 step->bbJumpDest = catchStep;
8805                 step->bbJumpDest->bbRefs++;
8806
8807 #if defined(_TARGET_ARM_)
8808                 if (stepType == ST_FinallyReturn)
8809                 {
8810                     // Mark the target of a finally return
8811                     step->bbJumpDest->bbFlags |= BBF_FINALLY_TARGET;
8812                 }
8813 #endif // defined(_TARGET_ARM_)
8814
8815                 /* The new block will inherit this block's weight */
8816                 catchStep->setBBWeight(block->bbWeight);
8817                 catchStep->bbFlags |= (block->bbFlags & BBF_RUN_RARELY) | BBF_IMPORTED;
8818
8819 #ifdef DEBUG
8820                 if (verbose)
8821                 {
8822                     if (stepType == ST_FinallyReturn)
8823                     {
8824                         printf("impImportLeave - return from finally jumping out of a catch-protected try (EH#%u), new "
8825                                "BBJ_ALWAYS block BB%02u\n",
8826                                XTnum, catchStep->bbNum);
8827                     }
8828                     else
8829                     {
8830                         assert(stepType == ST_Catch);
8831                         printf("impImportLeave - return from catch jumping out of a catch-protected try (EH#%u), new "
8832                                "BBJ_ALWAYS block BB%02u\n",
8833                                XTnum, catchStep->bbNum);
8834                     }
8835                 }
8836 #endif // DEBUG
8837
8838                 /* This block is the new step */
8839                 step     = catchStep;
8840                 stepType = ST_Try;
8841
8842                 invalidatePreds = true;
8843             }
8844         }
8845     }
8846
8847     if (step == nullptr)
8848     {
8849         block->bbJumpKind = BBJ_ALWAYS; // convert the BBJ_LEAVE to a BBJ_ALWAYS
8850
8851 #ifdef DEBUG
8852         if (verbose)
8853         {
8854             printf("impImportLeave - no enclosing finally-protected try blocks or catch handlers; convert CEE_LEAVE "
8855                    "block BB%02u to BBJ_ALWAYS\n",
8856                    block->bbNum);
8857         }
8858 #endif
8859     }
8860     else
8861     {
8862         step->bbJumpDest = leaveTarget; // this is the ultimate destination of the LEAVE
8863
8864 #if defined(_TARGET_ARM_)
8865         if (stepType == ST_FinallyReturn)
8866         {
8867             assert(step->bbJumpKind == BBJ_ALWAYS);
8868             // Mark the target of a finally return
8869             step->bbJumpDest->bbFlags |= BBF_FINALLY_TARGET;
8870         }
8871 #endif // defined(_TARGET_ARM_)
8872
8873 #ifdef DEBUG
8874         if (verbose)
8875         {
8876             printf("impImportLeave - final destination of step blocks set to BB%02u\n", leaveTarget->bbNum);
8877         }
8878 #endif
8879
8880         // Queue up the jump target for importing
8881
8882         impImportBlockPending(leaveTarget);
8883     }
8884
8885     if (invalidatePreds && fgComputePredsDone)
8886     {
8887         JITDUMP("\n**** impImportLeave - Removing preds after creating new blocks\n");
8888         fgRemovePreds();
8889     }
8890
8891 #ifdef DEBUG
8892     fgVerifyHandlerTab();
8893
8894     if (verbose)
8895     {
8896         printf("\nAfter import CEE_LEAVE:\n");
8897         fgDispBasicBlocks();
8898         fgDispHandlerTab();
8899     }
8900 #endif // DEBUG
8901 }
8902
8903 #endif // FEATURE_EH_FUNCLETS
8904
8905 /*****************************************************************************/
8906 // This is called when reimporting a leave block. It resets the JumpKind,
8907 // JumpDest, and bbNext to the original values
8908
8909 void Compiler::impResetLeaveBlock(BasicBlock* block, unsigned jmpAddr)
8910 {
8911 #if FEATURE_EH_FUNCLETS
8912     // With EH Funclets, while importing leave opcode we create another block ending with BBJ_ALWAYS (call it B1)
8913     // and the block containing leave (say B0) is marked as BBJ_CALLFINALLY.   Say for some reason we reimport B0,
8914     // it is reset (in this routine) by marking as ending with BBJ_LEAVE and further down when B0 is reimported, we
8915     // create another BBJ_ALWAYS (call it B2). In this process B1 gets orphaned and any blocks to which B1 is the
8916     // only predecessor are also considered orphans and attempted to be deleted.
8917     //
8918     //  try  {
8919     //     ....
8920     //     try
8921     //     {
8922     //         ....
8923     //         leave OUTSIDE;  // B0 is the block containing this leave, following this would be B1
8924     //     } finally { }
8925     //  } finally { }
8926     //  OUTSIDE:
8927     //
8928     // In the above nested try-finally example, we create a step block (call it Bstep) which in branches to a block
8929     // where a finally would branch to (and such block is marked as finally target).  Block B1 branches to step block.
8930     // Because of re-import of B0, Bstep is also orphaned. Since Bstep is a finally target it cannot be removed.  To
8931     // work around this we will duplicate B0 (call it B0Dup) before reseting. B0Dup is marked as BBJ_CALLFINALLY and
8932     // only serves to pair up with B1 (BBJ_ALWAYS) that got orphaned. Now during orphan block deletion B0Dup and B1
8933     // will be treated as pair and handled correctly.
8934     if (block->bbJumpKind == BBJ_CALLFINALLY)
8935     {
8936         BasicBlock* dupBlock = bbNewBasicBlock(block->bbJumpKind);
8937         dupBlock->bbFlags    = block->bbFlags;
8938         dupBlock->bbJumpDest = block->bbJumpDest;
8939         dupBlock->copyEHRegion(block);
8940         dupBlock->bbCatchTyp = block->bbCatchTyp;
8941
8942         // Mark this block as
8943         //  a) not referenced by any other block to make sure that it gets deleted
8944         //  b) weight zero
8945         //  c) prevent from being imported
8946         //  d) as internal
8947         //  e) as rarely run
8948         dupBlock->bbRefs   = 0;
8949         dupBlock->bbWeight = 0;
8950         dupBlock->bbFlags |= BBF_IMPORTED | BBF_INTERNAL | BBF_RUN_RARELY;
8951
8952         // Insert the block right after the block which is getting reset so that BBJ_CALLFINALLY and BBJ_ALWAYS
8953         // will be next to each other.
8954         fgInsertBBafter(block, dupBlock);
8955
8956 #ifdef DEBUG
8957         if (verbose)
8958         {
8959             printf("New Basic Block BB%02u duplicate of BB%02u created.\n", dupBlock->bbNum, block->bbNum);
8960         }
8961 #endif
8962     }
8963 #endif // FEATURE_EH_FUNCLETS
8964
8965     block->bbJumpKind = BBJ_LEAVE;
8966     fgInitBBLookup();
8967     block->bbJumpDest = fgLookupBB(jmpAddr);
8968
8969     // We will leave the BBJ_ALWAYS block we introduced. When it's reimported
8970     // the BBJ_ALWAYS block will be unreachable, and will be removed after. The
8971     // reason we don't want to remove the block at this point is that if we call
8972     // fgInitBBLookup() again we will do it wrong as the BBJ_ALWAYS block won't be
8973     // added and the linked list length will be different than fgBBcount.
8974 }
8975
8976 /*****************************************************************************/
8977 // Get the first non-prefix opcode. Used for verification of valid combinations
8978 // of prefixes and actual opcodes.
8979
8980 static OPCODE impGetNonPrefixOpcode(const BYTE* codeAddr, const BYTE* codeEndp)
8981 {
8982     while (codeAddr < codeEndp)
8983     {
8984         OPCODE opcode = (OPCODE)getU1LittleEndian(codeAddr);
8985         codeAddr += sizeof(__int8);
8986
8987         if (opcode == CEE_PREFIX1)
8988         {
8989             if (codeAddr >= codeEndp)
8990             {
8991                 break;
8992             }
8993             opcode = (OPCODE)(getU1LittleEndian(codeAddr) + 256);
8994             codeAddr += sizeof(__int8);
8995         }
8996
8997         switch (opcode)
8998         {
8999             case CEE_UNALIGNED:
9000             case CEE_VOLATILE:
9001             case CEE_TAILCALL:
9002             case CEE_CONSTRAINED:
9003             case CEE_READONLY:
9004                 break;
9005             default:
9006                 return opcode;
9007         }
9008
9009         codeAddr += opcodeSizes[opcode];
9010     }
9011
9012     return CEE_ILLEGAL;
9013 }
9014
9015 /*****************************************************************************/
9016 // Checks whether the opcode is a valid opcode for volatile. and unaligned. prefixes
9017
9018 static void impValidateMemoryAccessOpcode(const BYTE* codeAddr, const BYTE* codeEndp, bool volatilePrefix)
9019 {
9020     OPCODE opcode = impGetNonPrefixOpcode(codeAddr, codeEndp);
9021
9022     if (!(
9023             // Opcode of all ldind and stdind happen to be in continuous, except stind.i.
9024             ((CEE_LDIND_I1 <= opcode) && (opcode <= CEE_STIND_R8)) || (opcode == CEE_STIND_I) ||
9025             (opcode == CEE_LDFLD) || (opcode == CEE_STFLD) || (opcode == CEE_LDOBJ) || (opcode == CEE_STOBJ) ||
9026             (opcode == CEE_INITBLK) || (opcode == CEE_CPBLK) ||
9027             // volatile. prefix is allowed with the ldsfld and stsfld
9028             (volatilePrefix && ((opcode == CEE_LDSFLD) || (opcode == CEE_STSFLD)))))
9029     {
9030         BADCODE("Invalid opcode for unaligned. or volatile. prefix");
9031     }
9032 }
9033
9034 /*****************************************************************************/
9035
9036 #ifdef DEBUG
9037
9038 #undef RETURN // undef contracts RETURN macro
9039
9040 enum controlFlow_t
9041 {
9042     NEXT,
9043     CALL,
9044     RETURN,
9045     THROW,
9046     BRANCH,
9047     COND_BRANCH,
9048     BREAK,
9049     PHI,
9050     META,
9051 };
9052
9053 const static controlFlow_t controlFlow[] = {
9054 #define OPDEF(c, s, pop, push, args, type, l, s1, s2, flow) flow,
9055 #include "opcode.def"
9056 #undef OPDEF
9057 };
9058
9059 #endif // DEBUG
9060
9061 /*****************************************************************************
9062  *  Determine the result type of an arithemetic operation
9063  *  On 64-bit inserts upcasts when native int is mixed with int32
9064  */
9065 var_types Compiler::impGetByRefResultType(genTreeOps oper, bool fUnsigned, GenTreePtr* pOp1, GenTreePtr* pOp2)
9066 {
9067     var_types  type = TYP_UNDEF;
9068     GenTreePtr op1 = *pOp1, op2 = *pOp2;
9069
9070     // Arithemetic operations are generally only allowed with
9071     // primitive types, but certain operations are allowed
9072     // with byrefs
9073
9074     if ((oper == GT_SUB) && (genActualType(op1->TypeGet()) == TYP_BYREF || genActualType(op2->TypeGet()) == TYP_BYREF))
9075     {
9076         if ((genActualType(op1->TypeGet()) == TYP_BYREF) && (genActualType(op2->TypeGet()) == TYP_BYREF))
9077         {
9078             // byref1-byref2 => gives a native int
9079             type = TYP_I_IMPL;
9080         }
9081         else if (genActualTypeIsIntOrI(op1->TypeGet()) && (genActualType(op2->TypeGet()) == TYP_BYREF))
9082         {
9083             // [native] int - byref => gives a native int
9084
9085             //
9086             // The reason is that it is possible, in managed C++,
9087             // to have a tree like this:
9088             //
9089             //              -
9090             //             / \
9091             //            /   \
9092             //           /     \
9093             //          /       \
9094             // const(h) int     addr byref
9095             //
9096             // <BUGNUM> VSW 318822 </BUGNUM>
9097             //
9098             // So here we decide to make the resulting type to be a native int.
9099             CLANG_FORMAT_COMMENT_ANCHOR;
9100
9101 #ifdef _TARGET_64BIT_
9102             if (genActualType(op1->TypeGet()) != TYP_I_IMPL)
9103             {
9104                 // insert an explicit upcast
9105                 op1 = *pOp1 = gtNewCastNode(TYP_I_IMPL, op1, (var_types)(fUnsigned ? TYP_U_IMPL : TYP_I_IMPL));
9106             }
9107 #endif // _TARGET_64BIT_
9108
9109             type = TYP_I_IMPL;
9110         }
9111         else
9112         {
9113             // byref - [native] int => gives a byref
9114             assert(genActualType(op1->TypeGet()) == TYP_BYREF && genActualTypeIsIntOrI(op2->TypeGet()));
9115
9116 #ifdef _TARGET_64BIT_
9117             if ((genActualType(op2->TypeGet()) != TYP_I_IMPL))
9118             {
9119                 // insert an explicit upcast
9120                 op2 = *pOp2 = gtNewCastNode(TYP_I_IMPL, op2, (var_types)(fUnsigned ? TYP_U_IMPL : TYP_I_IMPL));
9121             }
9122 #endif // _TARGET_64BIT_
9123
9124             type = TYP_BYREF;
9125         }
9126     }
9127     else if ((oper == GT_ADD) &&
9128              (genActualType(op1->TypeGet()) == TYP_BYREF || genActualType(op2->TypeGet()) == TYP_BYREF))
9129     {
9130         // byref + [native] int => gives a byref
9131         // (or)
9132         // [native] int + byref => gives a byref
9133
9134         // only one can be a byref : byref op byref not allowed
9135         assert(genActualType(op1->TypeGet()) != TYP_BYREF || genActualType(op2->TypeGet()) != TYP_BYREF);
9136         assert(genActualTypeIsIntOrI(op1->TypeGet()) || genActualTypeIsIntOrI(op2->TypeGet()));
9137
9138 #ifdef _TARGET_64BIT_
9139         if (genActualType(op2->TypeGet()) == TYP_BYREF)
9140         {
9141             if (genActualType(op1->TypeGet()) != TYP_I_IMPL)
9142             {
9143                 // insert an explicit upcast
9144                 op1 = *pOp1 = gtNewCastNode(TYP_I_IMPL, op1, (var_types)(fUnsigned ? TYP_U_IMPL : TYP_I_IMPL));
9145             }
9146         }
9147         else if (genActualType(op2->TypeGet()) != TYP_I_IMPL)
9148         {
9149             // insert an explicit upcast
9150             op2 = *pOp2 = gtNewCastNode(TYP_I_IMPL, op2, (var_types)(fUnsigned ? TYP_U_IMPL : TYP_I_IMPL));
9151         }
9152 #endif // _TARGET_64BIT_
9153
9154         type = TYP_BYREF;
9155     }
9156 #ifdef _TARGET_64BIT_
9157     else if (genActualType(op1->TypeGet()) == TYP_I_IMPL || genActualType(op2->TypeGet()) == TYP_I_IMPL)
9158     {
9159         assert(!varTypeIsFloating(op1->gtType) && !varTypeIsFloating(op2->gtType));
9160
9161         // int + long => gives long
9162         // long + int => gives long
9163         // we get this because in the IL the long isn't Int64, it's just IntPtr
9164
9165         if (genActualType(op1->TypeGet()) != TYP_I_IMPL)
9166         {
9167             // insert an explicit upcast
9168             op1 = *pOp1 = gtNewCastNode(TYP_I_IMPL, op1, (var_types)(fUnsigned ? TYP_U_IMPL : TYP_I_IMPL));
9169         }
9170         else if (genActualType(op2->TypeGet()) != TYP_I_IMPL)
9171         {
9172             // insert an explicit upcast
9173             op2 = *pOp2 = gtNewCastNode(TYP_I_IMPL, op2, (var_types)(fUnsigned ? TYP_U_IMPL : TYP_I_IMPL));
9174         }
9175
9176         type = TYP_I_IMPL;
9177     }
9178 #else  // 32-bit TARGET
9179     else if (genActualType(op1->TypeGet()) == TYP_LONG || genActualType(op2->TypeGet()) == TYP_LONG)
9180     {
9181         assert(!varTypeIsFloating(op1->gtType) && !varTypeIsFloating(op2->gtType));
9182
9183         // int + long => gives long
9184         // long + int => gives long
9185
9186         type = TYP_LONG;
9187     }
9188 #endif // _TARGET_64BIT_
9189     else
9190     {
9191         // int + int => gives an int
9192         assert(genActualType(op1->TypeGet()) != TYP_BYREF && genActualType(op2->TypeGet()) != TYP_BYREF);
9193
9194         assert(genActualType(op1->TypeGet()) == genActualType(op2->TypeGet()) ||
9195                varTypeIsFloating(op1->gtType) && varTypeIsFloating(op2->gtType));
9196
9197         type = genActualType(op1->gtType);
9198
9199 #if FEATURE_X87_DOUBLES
9200
9201         // For x87, since we only have 1 size of registers, prefer double
9202         // For everybody else, be more precise
9203         if (type == TYP_FLOAT)
9204             type = TYP_DOUBLE;
9205
9206 #else // !FEATURE_X87_DOUBLES
9207
9208         // If both operands are TYP_FLOAT, then leave it as TYP_FLOAT.
9209         // Otherwise, turn floats into doubles
9210         if ((type == TYP_FLOAT) && (genActualType(op2->gtType) != TYP_FLOAT))
9211         {
9212             assert(genActualType(op2->gtType) == TYP_DOUBLE);
9213             type = TYP_DOUBLE;
9214         }
9215
9216 #endif // FEATURE_X87_DOUBLES
9217     }
9218
9219 #if FEATURE_X87_DOUBLES
9220     assert(type == TYP_BYREF || type == TYP_DOUBLE || type == TYP_LONG || type == TYP_INT);
9221 #else  // FEATURE_X87_DOUBLES
9222     assert(type == TYP_BYREF || type == TYP_DOUBLE || type == TYP_FLOAT || type == TYP_LONG || type == TYP_INT);
9223 #endif // FEATURE_X87_DOUBLES
9224
9225     return type;
9226 }
9227
9228 /*****************************************************************************
9229  * Casting Helper Function to service both CEE_CASTCLASS and CEE_ISINST
9230  *
9231  * typeRef contains the token, op1 to contain the value being cast,
9232  * and op2 to contain code that creates the type handle corresponding to typeRef
9233  * isCastClass = true means CEE_CASTCLASS, false means CEE_ISINST
9234  */
9235 GenTreePtr Compiler::impCastClassOrIsInstToTree(GenTreePtr              op1,
9236                                                 GenTreePtr              op2,
9237                                                 CORINFO_RESOLVED_TOKEN* pResolvedToken,
9238                                                 bool                    isCastClass)
9239 {
9240     bool expandInline;
9241
9242     assert(op1->TypeGet() == TYP_REF);
9243
9244     CorInfoHelpFunc helper = info.compCompHnd->getCastingHelper(pResolvedToken, isCastClass);
9245
9246     if (isCastClass)
9247     {
9248         // We only want to expand inline the normal CHKCASTCLASS helper;
9249         expandInline = (helper == CORINFO_HELP_CHKCASTCLASS);
9250     }
9251     else
9252     {
9253         if (helper == CORINFO_HELP_ISINSTANCEOFCLASS)
9254         {
9255             // Get the Class Handle abd class attributes for the type we are casting to
9256             //
9257             DWORD flags = info.compCompHnd->getClassAttribs(pResolvedToken->hClass);
9258
9259             //
9260             // If the class handle is marked as final we can also expand the IsInst check inline
9261             //
9262             expandInline = ((flags & CORINFO_FLG_FINAL) != 0);
9263
9264             //
9265             // But don't expand inline these two cases
9266             //
9267             if (flags & CORINFO_FLG_MARSHAL_BYREF)
9268             {
9269                 expandInline = false;
9270             }
9271             else if (flags & CORINFO_FLG_CONTEXTFUL)
9272             {
9273                 expandInline = false;
9274             }
9275         }
9276         else
9277         {
9278             //
9279             // We can't expand inline any other helpers
9280             //
9281             expandInline = false;
9282         }
9283     }
9284
9285     if (expandInline)
9286     {
9287         if (compCurBB->isRunRarely())
9288         {
9289             expandInline = false; // not worth the code expansion in a rarely run block
9290         }
9291
9292         if ((op1->gtFlags & GTF_GLOB_EFFECT) && lvaHaveManyLocals())
9293         {
9294             expandInline = false; // not worth creating an untracked local variable
9295         }
9296     }
9297
9298     if (!expandInline)
9299     {
9300         // If we CSE this class handle we prevent assertionProp from making SubType assertions
9301         // so instead we force the CSE logic to not consider CSE-ing this class handle.
9302         //
9303         op2->gtFlags |= GTF_DONT_CSE;
9304
9305         return gtNewHelperCallNode(helper, TYP_REF, 0, gtNewArgList(op2, op1));
9306     }
9307
9308     impSpillSideEffects(true, CHECK_SPILL_ALL DEBUGARG("bubbling QMark2"));
9309
9310     GenTreePtr temp;
9311     GenTreePtr condMT;
9312     //
9313     // expand the methodtable match:
9314     //
9315     //  condMT ==>   GT_NE
9316     //               /    \
9317     //           GT_IND   op2 (typically CNS_INT)
9318     //              |
9319     //           op1Copy
9320     //
9321
9322     // This can replace op1 with a GT_COMMA that evaluates op1 into a local
9323     //
9324     op1 = impCloneExpr(op1, &temp, NO_CLASS_HANDLE, (unsigned)CHECK_SPILL_ALL, nullptr DEBUGARG("CASTCLASS eval op1"));
9325     //
9326     // op1 is now known to be a non-complex tree
9327     // thus we can use gtClone(op1) from now on
9328     //
9329
9330     GenTreePtr op2Var = op2;
9331     if (isCastClass)
9332     {
9333         op2Var                                                  = fgInsertCommaFormTemp(&op2);
9334         lvaTable[op2Var->AsLclVarCommon()->GetLclNum()].lvIsCSE = true;
9335     }
9336     temp = gtNewOperNode(GT_IND, TYP_I_IMPL, temp);
9337     temp->gtFlags |= GTF_EXCEPT;
9338     condMT = gtNewOperNode(GT_NE, TYP_INT, temp, op2);
9339
9340     GenTreePtr condNull;
9341     //
9342     // expand the null check:
9343     //
9344     //  condNull ==>   GT_EQ
9345     //                 /    \
9346     //             op1Copy CNS_INT
9347     //                      null
9348     //
9349     condNull = gtNewOperNode(GT_EQ, TYP_INT, gtClone(op1), gtNewIconNode(0, TYP_REF));
9350
9351     //
9352     // expand the true and false trees for the condMT
9353     //
9354     GenTreePtr condFalse = gtClone(op1);
9355     GenTreePtr condTrue;
9356     if (isCastClass)
9357     {
9358         //
9359         // use the special helper that skips the cases checked by our inlined cast
9360         //
9361         helper = CORINFO_HELP_CHKCASTCLASS_SPECIAL;
9362
9363         condTrue = gtNewHelperCallNode(helper, TYP_REF, 0, gtNewArgList(op2Var, gtClone(op1)));
9364     }
9365     else
9366     {
9367         condTrue = gtNewIconNode(0, TYP_REF);
9368     }
9369
9370 #define USE_QMARK_TREES
9371
9372 #ifdef USE_QMARK_TREES
9373     GenTreePtr qmarkMT;
9374     //
9375     // Generate first QMARK - COLON tree
9376     //
9377     //  qmarkMT ==>   GT_QMARK
9378     //                 /     \
9379     //            condMT   GT_COLON
9380     //                      /     \
9381     //                condFalse  condTrue
9382     //
9383     temp    = new (this, GT_COLON) GenTreeColon(TYP_REF, condTrue, condFalse);
9384     qmarkMT = gtNewQmarkNode(TYP_REF, condMT, temp);
9385     condMT->gtFlags |= GTF_RELOP_QMARK;
9386
9387     GenTreePtr qmarkNull;
9388     //
9389     // Generate second QMARK - COLON tree
9390     //
9391     //  qmarkNull ==>  GT_QMARK
9392     //                 /     \
9393     //           condNull  GT_COLON
9394     //                      /     \
9395     //                qmarkMT   op1Copy
9396     //
9397     temp      = new (this, GT_COLON) GenTreeColon(TYP_REF, gtClone(op1), qmarkMT);
9398     qmarkNull = gtNewQmarkNode(TYP_REF, condNull, temp);
9399     qmarkNull->gtFlags |= GTF_QMARK_CAST_INSTOF;
9400     condNull->gtFlags |= GTF_RELOP_QMARK;
9401
9402     // Make QMark node a top level node by spilling it.
9403     unsigned tmp = lvaGrabTemp(true DEBUGARG("spilling QMark2"));
9404     impAssignTempGen(tmp, qmarkNull, (unsigned)CHECK_SPILL_NONE);
9405     return gtNewLclvNode(tmp, TYP_REF);
9406 #endif
9407 }
9408
9409 #ifndef DEBUG
9410 #define assertImp(cond) ((void)0)
9411 #else
9412 #define assertImp(cond)                                                                                                \
9413     do                                                                                                                 \
9414     {                                                                                                                  \
9415         if (!(cond))                                                                                                   \
9416         {                                                                                                              \
9417             const int cchAssertImpBuf = 600;                                                                           \
9418             char*     assertImpBuf    = (char*)alloca(cchAssertImpBuf);                                                \
9419             _snprintf_s(assertImpBuf, cchAssertImpBuf, cchAssertImpBuf - 1,                                            \
9420                         "%s : Possibly bad IL with CEE_%s at offset %04Xh (op1=%s op2=%s stkDepth=%d)", #cond,         \
9421                         impCurOpcName, impCurOpcOffs, op1 ? varTypeName(op1->TypeGet()) : "NULL",                      \
9422                         op2 ? varTypeName(op2->TypeGet()) : "NULL", verCurrentState.esStackDepth);                     \
9423             assertAbort(assertImpBuf, __FILE__, __LINE__);                                                             \
9424         }                                                                                                              \
9425     } while (0)
9426 #endif // DEBUG
9427
9428 #ifdef _PREFAST_
9429 #pragma warning(push)
9430 #pragma warning(disable : 21000) // Suppress PREFast warning about overly large function
9431 #endif
9432 /*****************************************************************************
9433  *  Import the instr for the given basic block
9434  */
9435 void Compiler::impImportBlockCode(BasicBlock* block)
9436 {
9437 #define _impResolveToken(kind) impResolveToken(codeAddr, &resolvedToken, kind)
9438
9439 #ifdef DEBUG
9440
9441     if (verbose)
9442     {
9443         printf("\nImporting BB%02u (PC=%03u) of '%s'", block->bbNum, block->bbCodeOffs, info.compFullName);
9444     }
9445 #endif
9446
9447     unsigned  nxtStmtIndex = impInitBlockLineInfo();
9448     IL_OFFSET nxtStmtOffs;
9449
9450     GenTreePtr                   arrayNodeFrom, arrayNodeTo, arrayNodeToIndex;
9451     bool                         expandInline;
9452     CorInfoHelpFunc              helper;
9453     CorInfoIsAccessAllowedResult accessAllowedResult;
9454     CORINFO_HELPER_DESC          calloutHelper;
9455     const BYTE*                  lastLoadToken = nullptr;
9456
9457     // reject cyclic constraints
9458     if (tiVerificationNeeded)
9459     {
9460         Verify(!info.hasCircularClassConstraints, "Method parent has circular class type parameter constraints.");
9461         Verify(!info.hasCircularMethodConstraints, "Method has circular method type parameter constraints.");
9462     }
9463
9464     /* Get the tree list started */
9465
9466     impBeginTreeList();
9467
9468     /* Walk the opcodes that comprise the basic block */
9469
9470     const BYTE* codeAddr = info.compCode + block->bbCodeOffs;
9471     const BYTE* codeEndp = info.compCode + block->bbCodeOffsEnd;
9472
9473     IL_OFFSET opcodeOffs    = block->bbCodeOffs;
9474     IL_OFFSET lastSpillOffs = opcodeOffs;
9475
9476     signed jmpDist;
9477
9478     /* remember the start of the delegate creation sequence (used for verification) */
9479     const BYTE* delegateCreateStart = nullptr;
9480
9481     int  prefixFlags = 0;
9482     bool explicitTailCall, constraintCall, readonlyCall;
9483
9484     bool     insertLdloc = false; // set by CEE_DUP and cleared by following store
9485     typeInfo tiRetVal;
9486
9487     unsigned numArgs = info.compArgsCount;
9488
9489     /* Now process all the opcodes in the block */
9490
9491     var_types callTyp    = TYP_COUNT;
9492     OPCODE    prevOpcode = CEE_ILLEGAL;
9493
9494     if (block->bbCatchTyp)
9495     {
9496         if (info.compStmtOffsetsImplicit & ICorDebugInfo::CALL_SITE_BOUNDARIES)
9497         {
9498             impCurStmtOffsSet(block->bbCodeOffs);
9499         }
9500
9501         // We will spill the GT_CATCH_ARG and the input of the BB_QMARK block
9502         // to a temp. This is a trade off for code simplicity
9503         impSpillSpecialSideEff();
9504     }
9505
9506     while (codeAddr < codeEndp)
9507     {
9508         bool                   usingReadyToRunHelper = false;
9509         CORINFO_RESOLVED_TOKEN resolvedToken;
9510         CORINFO_RESOLVED_TOKEN constrainedResolvedToken;
9511         CORINFO_CALL_INFO      callInfo;
9512         CORINFO_FIELD_INFO     fieldInfo;
9513
9514         tiRetVal = typeInfo(); // Default type info
9515
9516         //---------------------------------------------------------------------
9517
9518         /* We need to restrict the max tree depth as many of the Compiler
9519            functions are recursive. We do this by spilling the stack */
9520
9521         if (verCurrentState.esStackDepth)
9522         {
9523             /* Has it been a while since we last saw a non-empty stack (which
9524                guarantees that the tree depth isnt accumulating. */
9525
9526             if ((opcodeOffs - lastSpillOffs) > 200)
9527             {
9528                 impSpillStackEnsure();
9529                 lastSpillOffs = opcodeOffs;
9530             }
9531         }
9532         else
9533         {
9534             lastSpillOffs   = opcodeOffs;
9535             impBoxTempInUse = false; // nothing on the stack, box temp OK to use again
9536         }
9537
9538         /* Compute the current instr offset */
9539
9540         opcodeOffs = (IL_OFFSET)(codeAddr - info.compCode);
9541
9542 #ifndef DEBUG
9543         if (opts.compDbgInfo)
9544 #endif
9545         {
9546             if (!compIsForInlining())
9547             {
9548                 nxtStmtOffs =
9549                     (nxtStmtIndex < info.compStmtOffsetsCount) ? info.compStmtOffsets[nxtStmtIndex] : BAD_IL_OFFSET;
9550
9551                 /* Have we reached the next stmt boundary ? */
9552
9553                 if (nxtStmtOffs != BAD_IL_OFFSET && opcodeOffs >= nxtStmtOffs)
9554                 {
9555                     assert(nxtStmtOffs == info.compStmtOffsets[nxtStmtIndex]);
9556
9557                     if (verCurrentState.esStackDepth != 0 && opts.compDbgCode)
9558                     {
9559                         /* We need to provide accurate IP-mapping at this point.
9560                            So spill anything on the stack so that it will form
9561                            gtStmts with the correct stmt offset noted */
9562
9563                         impSpillStackEnsure(true);
9564                     }
9565
9566                     // Has impCurStmtOffs been reported in any tree?
9567
9568                     if (impCurStmtOffs != BAD_IL_OFFSET && opts.compDbgCode)
9569                     {
9570                         GenTreePtr placeHolder = new (this, GT_NO_OP) GenTree(GT_NO_OP, TYP_VOID);
9571                         impAppendTree(placeHolder, (unsigned)CHECK_SPILL_NONE, impCurStmtOffs);
9572
9573                         assert(impCurStmtOffs == BAD_IL_OFFSET);
9574                     }
9575
9576                     if (impCurStmtOffs == BAD_IL_OFFSET)
9577                     {
9578                         /* Make sure that nxtStmtIndex is in sync with opcodeOffs.
9579                            If opcodeOffs has gone past nxtStmtIndex, catch up */
9580
9581                         while ((nxtStmtIndex + 1) < info.compStmtOffsetsCount &&
9582                                info.compStmtOffsets[nxtStmtIndex + 1] <= opcodeOffs)
9583                         {
9584                             nxtStmtIndex++;
9585                         }
9586
9587                         /* Go to the new stmt */
9588
9589                         impCurStmtOffsSet(info.compStmtOffsets[nxtStmtIndex]);
9590
9591                         /* Update the stmt boundary index */
9592
9593                         nxtStmtIndex++;
9594                         assert(nxtStmtIndex <= info.compStmtOffsetsCount);
9595
9596                         /* Are there any more line# entries after this one? */
9597
9598                         if (nxtStmtIndex < info.compStmtOffsetsCount)
9599                         {
9600                             /* Remember where the next line# starts */
9601
9602                             nxtStmtOffs = info.compStmtOffsets[nxtStmtIndex];
9603                         }
9604                         else
9605                         {
9606                             /* No more line# entries */
9607
9608                             nxtStmtOffs = BAD_IL_OFFSET;
9609                         }
9610                     }
9611                 }
9612                 else if ((info.compStmtOffsetsImplicit & ICorDebugInfo::STACK_EMPTY_BOUNDARIES) &&
9613                          (verCurrentState.esStackDepth == 0))
9614                 {
9615                     /* At stack-empty locations, we have already added the tree to
9616                        the stmt list with the last offset. We just need to update
9617                        impCurStmtOffs
9618                      */
9619
9620                     impCurStmtOffsSet(opcodeOffs);
9621                 }
9622                 else if ((info.compStmtOffsetsImplicit & ICorDebugInfo::CALL_SITE_BOUNDARIES) &&
9623                          impOpcodeIsCallSiteBoundary(prevOpcode))
9624                 {
9625                     /* Make sure we have a type cached */
9626                     assert(callTyp != TYP_COUNT);
9627
9628                     if (callTyp == TYP_VOID)
9629                     {
9630                         impCurStmtOffsSet(opcodeOffs);
9631                     }
9632                     else if (opts.compDbgCode)
9633                     {
9634                         impSpillStackEnsure(true);
9635                         impCurStmtOffsSet(opcodeOffs);
9636                     }
9637                 }
9638                 else if ((info.compStmtOffsetsImplicit & ICorDebugInfo::NOP_BOUNDARIES) && (prevOpcode == CEE_NOP))
9639                 {
9640                     if (opts.compDbgCode)
9641                     {
9642                         impSpillStackEnsure(true);
9643                     }
9644
9645                     impCurStmtOffsSet(opcodeOffs);
9646                 }
9647
9648                 assert(impCurStmtOffs == BAD_IL_OFFSET || nxtStmtOffs == BAD_IL_OFFSET ||
9649                        jitGetILoffs(impCurStmtOffs) <= nxtStmtOffs);
9650             }
9651         }
9652
9653         CORINFO_CLASS_HANDLE clsHnd       = DUMMY_INIT(NULL);
9654         CORINFO_CLASS_HANDLE ldelemClsHnd = DUMMY_INIT(NULL);
9655         CORINFO_CLASS_HANDLE stelemClsHnd = DUMMY_INIT(NULL);
9656
9657         var_types       lclTyp, ovflType = TYP_UNKNOWN;
9658         GenTreePtr      op1           = DUMMY_INIT(NULL);
9659         GenTreePtr      op2           = DUMMY_INIT(NULL);
9660         GenTreeArgList* args          = nullptr; // What good do these "DUMMY_INIT"s do?
9661         GenTreePtr      newObjThisPtr = DUMMY_INIT(NULL);
9662         bool            uns           = DUMMY_INIT(false);
9663
9664         /* Get the next opcode and the size of its parameters */
9665
9666         OPCODE opcode = (OPCODE)getU1LittleEndian(codeAddr);
9667         codeAddr += sizeof(__int8);
9668
9669 #ifdef DEBUG
9670         impCurOpcOffs = (IL_OFFSET)(codeAddr - info.compCode - 1);
9671         JITDUMP("\n    [%2u] %3u (0x%03x) ", verCurrentState.esStackDepth, impCurOpcOffs, impCurOpcOffs);
9672 #endif
9673
9674     DECODE_OPCODE:
9675
9676         // Return if any previous code has caused inline to fail.
9677         if (compDonotInline())
9678         {
9679             return;
9680         }
9681
9682         /* Get the size of additional parameters */
9683
9684         signed int sz = opcodeSizes[opcode];
9685
9686 #ifdef DEBUG
9687         clsHnd  = NO_CLASS_HANDLE;
9688         lclTyp  = TYP_COUNT;
9689         callTyp = TYP_COUNT;
9690
9691         impCurOpcOffs = (IL_OFFSET)(codeAddr - info.compCode - 1);
9692         impCurOpcName = opcodeNames[opcode];
9693
9694         if (verbose && (opcode != CEE_PREFIX1))
9695         {
9696             printf("%s", impCurOpcName);
9697         }
9698
9699         /* Use assertImp() to display the opcode */
9700
9701         op1 = op2 = nullptr;
9702 #endif
9703
9704         /* See what kind of an opcode we have, then */
9705
9706         unsigned mflags   = 0;
9707         unsigned clsFlags = 0;
9708
9709         switch (opcode)
9710         {
9711             unsigned  lclNum;
9712             var_types type;
9713
9714             GenTreePtr op3;
9715             genTreeOps oper;
9716             unsigned   size;
9717
9718             int val;
9719
9720             CORINFO_SIG_INFO     sig;
9721             unsigned             flags;
9722             IL_OFFSET            jmpAddr;
9723             bool                 ovfl, unordered, callNode;
9724             bool                 ldstruct;
9725             CORINFO_CLASS_HANDLE tokenType;
9726
9727             union {
9728                 int     intVal;
9729                 float   fltVal;
9730                 __int64 lngVal;
9731                 double  dblVal;
9732             } cval;
9733
9734             case CEE_PREFIX1:
9735                 opcode = (OPCODE)(getU1LittleEndian(codeAddr) + 256);
9736                 codeAddr += sizeof(__int8);
9737                 opcodeOffs = (IL_OFFSET)(codeAddr - info.compCode);
9738                 goto DECODE_OPCODE;
9739
9740             SPILL_APPEND:
9741
9742                 // We need to call impSpillLclRefs() for a struct type lclVar.
9743                 // This is done for non-block assignments in the handling of stloc.
9744                 if ((op1->OperGet() == GT_ASG) && varTypeIsStruct(op1->gtOp.gtOp1) &&
9745                     (op1->gtOp.gtOp1->gtOper == GT_LCL_VAR))
9746                 {
9747                     impSpillLclRefs(op1->gtOp.gtOp1->AsLclVarCommon()->gtLclNum);
9748                 }
9749
9750                 /* Append 'op1' to the list of statements */
9751                 impAppendTree(op1, (unsigned)CHECK_SPILL_ALL, impCurStmtOffs);
9752                 goto DONE_APPEND;
9753
9754             APPEND:
9755
9756                 /* Append 'op1' to the list of statements */
9757
9758                 impAppendTree(op1, (unsigned)CHECK_SPILL_NONE, impCurStmtOffs);
9759                 goto DONE_APPEND;
9760
9761             DONE_APPEND:
9762
9763 #ifdef DEBUG
9764                 // Remember at which BC offset the tree was finished
9765                 impNoteLastILoffs();
9766 #endif
9767                 break;
9768
9769             case CEE_LDNULL:
9770                 impPushNullObjRefOnStack();
9771                 break;
9772
9773             case CEE_LDC_I4_M1:
9774             case CEE_LDC_I4_0:
9775             case CEE_LDC_I4_1:
9776             case CEE_LDC_I4_2:
9777             case CEE_LDC_I4_3:
9778             case CEE_LDC_I4_4:
9779             case CEE_LDC_I4_5:
9780             case CEE_LDC_I4_6:
9781             case CEE_LDC_I4_7:
9782             case CEE_LDC_I4_8:
9783                 cval.intVal = (opcode - CEE_LDC_I4_0);
9784                 assert(-1 <= cval.intVal && cval.intVal <= 8);
9785                 goto PUSH_I4CON;
9786
9787             case CEE_LDC_I4_S:
9788                 cval.intVal = getI1LittleEndian(codeAddr);
9789                 goto PUSH_I4CON;
9790             case CEE_LDC_I4:
9791                 cval.intVal = getI4LittleEndian(codeAddr);
9792                 goto PUSH_I4CON;
9793             PUSH_I4CON:
9794                 JITDUMP(" %d", cval.intVal);
9795                 impPushOnStack(gtNewIconNode(cval.intVal), typeInfo(TI_INT));
9796                 break;
9797
9798             case CEE_LDC_I8:
9799                 cval.lngVal = getI8LittleEndian(codeAddr);
9800                 JITDUMP(" 0x%016llx", cval.lngVal);
9801                 impPushOnStack(gtNewLconNode(cval.lngVal), typeInfo(TI_LONG));
9802                 break;
9803
9804             case CEE_LDC_R8:
9805                 cval.dblVal = getR8LittleEndian(codeAddr);
9806                 JITDUMP(" %#.17g", cval.dblVal);
9807                 impPushOnStack(gtNewDconNode(cval.dblVal), typeInfo(TI_DOUBLE));
9808                 break;
9809
9810             case CEE_LDC_R4:
9811                 cval.dblVal = getR4LittleEndian(codeAddr);
9812                 JITDUMP(" %#.17g", cval.dblVal);
9813                 {
9814                     GenTreePtr cnsOp = gtNewDconNode(cval.dblVal);
9815 #if !FEATURE_X87_DOUBLES
9816                     // X87 stack doesn't differentiate between float/double
9817                     // so R4 is treated as R8, but everybody else does
9818                     cnsOp->gtType = TYP_FLOAT;
9819 #endif // FEATURE_X87_DOUBLES
9820                     impPushOnStack(cnsOp, typeInfo(TI_DOUBLE));
9821                 }
9822                 break;
9823
9824             case CEE_LDSTR:
9825
9826                 if (compIsForInlining())
9827                 {
9828                     if (impInlineInfo->inlineCandidateInfo->dwRestrictions & INLINE_NO_CALLEE_LDSTR)
9829                     {
9830                         compInlineResult->NoteFatal(InlineObservation::CALLSITE_HAS_LDSTR_RESTRICTION);
9831                         return;
9832                     }
9833                 }
9834
9835                 val = getU4LittleEndian(codeAddr);
9836                 JITDUMP(" %08X", val);
9837                 if (tiVerificationNeeded)
9838                 {
9839                     Verify(info.compCompHnd->isValidStringRef(info.compScopeHnd, val), "bad string");
9840                     tiRetVal = typeInfo(TI_REF, impGetStringClass());
9841                 }
9842                 impPushOnStack(gtNewSconNode(val, info.compScopeHnd), tiRetVal);
9843
9844                 break;
9845
9846             case CEE_LDARG:
9847                 lclNum = getU2LittleEndian(codeAddr);
9848                 JITDUMP(" %u", lclNum);
9849                 impLoadArg(lclNum, opcodeOffs + sz + 1);
9850                 break;
9851
9852             case CEE_LDARG_S:
9853                 lclNum = getU1LittleEndian(codeAddr);
9854                 JITDUMP(" %u", lclNum);
9855                 impLoadArg(lclNum, opcodeOffs + sz + 1);
9856                 break;
9857
9858             case CEE_LDARG_0:
9859             case CEE_LDARG_1:
9860             case CEE_LDARG_2:
9861             case CEE_LDARG_3:
9862                 lclNum = (opcode - CEE_LDARG_0);
9863                 assert(lclNum >= 0 && lclNum < 4);
9864                 impLoadArg(lclNum, opcodeOffs + sz + 1);
9865                 break;
9866
9867             case CEE_LDLOC:
9868                 lclNum = getU2LittleEndian(codeAddr);
9869                 JITDUMP(" %u", lclNum);
9870                 impLoadLoc(lclNum, opcodeOffs + sz + 1);
9871                 break;
9872
9873             case CEE_LDLOC_S:
9874                 lclNum = getU1LittleEndian(codeAddr);
9875                 JITDUMP(" %u", lclNum);
9876                 impLoadLoc(lclNum, opcodeOffs + sz + 1);
9877                 break;
9878
9879             case CEE_LDLOC_0:
9880             case CEE_LDLOC_1:
9881             case CEE_LDLOC_2:
9882             case CEE_LDLOC_3:
9883                 lclNum = (opcode - CEE_LDLOC_0);
9884                 assert(lclNum >= 0 && lclNum < 4);
9885                 impLoadLoc(lclNum, opcodeOffs + sz + 1);
9886                 break;
9887
9888             case CEE_STARG:
9889                 lclNum = getU2LittleEndian(codeAddr);
9890                 goto STARG;
9891
9892             case CEE_STARG_S:
9893                 lclNum = getU1LittleEndian(codeAddr);
9894             STARG:
9895                 JITDUMP(" %u", lclNum);
9896
9897                 if (tiVerificationNeeded)
9898                 {
9899                     Verify(lclNum < info.compILargsCount, "bad arg num");
9900                 }
9901
9902                 if (compIsForInlining())
9903                 {
9904                     op1 = impInlineFetchArg(lclNum, impInlineInfo->inlArgInfo, impInlineInfo->lclVarInfo);
9905                     noway_assert(op1->gtOper == GT_LCL_VAR);
9906                     lclNum = op1->AsLclVar()->gtLclNum;
9907
9908                     goto VAR_ST_VALID;
9909                 }
9910
9911                 lclNum = compMapILargNum(lclNum); // account for possible hidden param
9912                 assertImp(lclNum < numArgs);
9913
9914                 if (lclNum == info.compThisArg)
9915                 {
9916                     lclNum = lvaArg0Var;
9917                 }
9918                 lvaTable[lclNum].lvArgWrite = 1;
9919
9920                 if (tiVerificationNeeded)
9921                 {
9922                     typeInfo& tiLclVar = lvaTable[lclNum].lvVerTypeInfo;
9923                     Verify(tiCompatibleWith(impStackTop().seTypeInfo, NormaliseForStack(tiLclVar), true),
9924                            "type mismatch");
9925
9926                     if (verTrackObjCtorInitState && (verCurrentState.thisInitialized != TIS_Init))
9927                     {
9928                         Verify(!tiLclVar.IsThisPtr(), "storing to uninit this ptr");
9929                     }
9930                 }
9931
9932                 goto VAR_ST;
9933
9934             case CEE_STLOC:
9935                 lclNum = getU2LittleEndian(codeAddr);
9936                 JITDUMP(" %u", lclNum);
9937                 goto LOC_ST;
9938
9939             case CEE_STLOC_S:
9940                 lclNum = getU1LittleEndian(codeAddr);
9941                 JITDUMP(" %u", lclNum);
9942                 goto LOC_ST;
9943
9944             case CEE_STLOC_0:
9945             case CEE_STLOC_1:
9946             case CEE_STLOC_2:
9947             case CEE_STLOC_3:
9948                 lclNum = (opcode - CEE_STLOC_0);
9949                 assert(lclNum >= 0 && lclNum < 4);
9950
9951             LOC_ST:
9952                 if (tiVerificationNeeded)
9953                 {
9954                     Verify(lclNum < info.compMethodInfo->locals.numArgs, "bad local num");
9955                     Verify(tiCompatibleWith(impStackTop().seTypeInfo,
9956                                             NormaliseForStack(lvaTable[lclNum + numArgs].lvVerTypeInfo), true),
9957                            "type mismatch");
9958                 }
9959
9960                 if (compIsForInlining())
9961                 {
9962                     lclTyp = impInlineInfo->lclVarInfo[lclNum + impInlineInfo->argCnt].lclTypeInfo;
9963
9964                     /* Have we allocated a temp for this local? */
9965
9966                     lclNum = impInlineFetchLocal(lclNum DEBUGARG("Inline stloc first use temp"));
9967
9968                     goto _PopValue;
9969                 }
9970
9971                 lclNum += numArgs;
9972
9973             VAR_ST:
9974
9975                 if (lclNum >= info.compLocalsCount && lclNum != lvaArg0Var)
9976                 {
9977                     assert(!tiVerificationNeeded); // We should have thrown the VerificationException before.
9978                     BADCODE("Bad IL");
9979                 }
9980
9981             VAR_ST_VALID:
9982
9983                 /* if it is a struct assignment, make certain we don't overflow the buffer */
9984                 assert(lclTyp != TYP_STRUCT || lvaLclSize(lclNum) >= info.compCompHnd->getClassSize(clsHnd));
9985
9986                 if (lvaTable[lclNum].lvNormalizeOnLoad())
9987                 {
9988                     lclTyp = lvaGetRealType(lclNum);
9989                 }
9990                 else
9991                 {
9992                     lclTyp = lvaGetActualType(lclNum);
9993                 }
9994
9995             _PopValue:
9996                 /* Pop the value being assigned */
9997
9998                 {
9999                     StackEntry se = impPopStack(clsHnd);
10000                     op1           = se.val;
10001                     tiRetVal      = se.seTypeInfo;
10002                 }
10003
10004 #ifdef FEATURE_SIMD
10005                 if (varTypeIsSIMD(lclTyp) && (lclTyp != op1->TypeGet()))
10006                 {
10007                     assert(op1->TypeGet() == TYP_STRUCT);
10008                     op1->gtType = lclTyp;
10009                 }
10010 #endif // FEATURE_SIMD
10011
10012                 op1 = impImplicitIorI4Cast(op1, lclTyp);
10013
10014 #ifdef _TARGET_64BIT_
10015                 // Downcast the TYP_I_IMPL into a 32-bit Int for x86 JIT compatiblity
10016                 if (varTypeIsI(op1->TypeGet()) && (genActualType(lclTyp) == TYP_INT))
10017                 {
10018                     assert(!tiVerificationNeeded); // We should have thrown the VerificationException before.
10019                     op1 = gtNewCastNode(TYP_INT, op1, TYP_INT);
10020                 }
10021 #endif // _TARGET_64BIT_
10022
10023                 // We had better assign it a value of the correct type
10024                 assertImp(
10025                     genActualType(lclTyp) == genActualType(op1->gtType) ||
10026                     genActualType(lclTyp) == TYP_I_IMPL && op1->IsVarAddr() ||
10027                     (genActualType(lclTyp) == TYP_I_IMPL && (op1->gtType == TYP_BYREF || op1->gtType == TYP_REF)) ||
10028                     (genActualType(op1->gtType) == TYP_I_IMPL && lclTyp == TYP_BYREF) ||
10029                     (varTypeIsFloating(lclTyp) && varTypeIsFloating(op1->TypeGet())) ||
10030                     ((genActualType(lclTyp) == TYP_BYREF) && genActualType(op1->TypeGet()) == TYP_REF));
10031
10032                 /* If op1 is "&var" then its type is the transient "*" and it can
10033                    be used either as TYP_BYREF or TYP_I_IMPL */
10034
10035                 if (op1->IsVarAddr())
10036                 {
10037                     assertImp(genActualType(lclTyp) == TYP_I_IMPL || lclTyp == TYP_BYREF);
10038
10039                     /* When "&var" is created, we assume it is a byref. If it is
10040                        being assigned to a TYP_I_IMPL var, change the type to
10041                        prevent unnecessary GC info */
10042
10043                     if (genActualType(lclTyp) == TYP_I_IMPL)
10044                     {
10045                         op1->gtType = TYP_I_IMPL;
10046                     }
10047                 }
10048
10049                 /* Filter out simple assignments to itself */
10050
10051                 if (op1->gtOper == GT_LCL_VAR && lclNum == op1->gtLclVarCommon.gtLclNum)
10052                 {
10053                     if (insertLdloc)
10054                     {
10055                         // This is a sequence of (ldloc, dup, stloc).  Can simplify
10056                         // to (ldloc, stloc).  Goto LDVAR to reconstruct the ldloc node.
10057                         CLANG_FORMAT_COMMENT_ANCHOR;
10058
10059 #ifdef DEBUG
10060                         if (tiVerificationNeeded)
10061                         {
10062                             assert(
10063                                 typeInfo::AreEquivalent(tiRetVal, NormaliseForStack(lvaTable[lclNum].lvVerTypeInfo)));
10064                         }
10065 #endif
10066
10067                         op1         = nullptr;
10068                         insertLdloc = false;
10069
10070                         impLoadVar(lclNum, opcodeOffs + sz + 1);
10071                         break;
10072                     }
10073                     else if (opts.compDbgCode)
10074                     {
10075                         op1 = gtNewNothingNode();
10076                         goto SPILL_APPEND;
10077                     }
10078                     else
10079                     {
10080                         break;
10081                     }
10082                 }
10083
10084                 /* Create the assignment node */
10085
10086                 op2 = gtNewLclvNode(lclNum, lclTyp, opcodeOffs + sz + 1);
10087
10088                 /* If the local is aliased, we need to spill calls and
10089                    indirections from the stack. */
10090
10091                 if ((lvaTable[lclNum].lvAddrExposed || lvaTable[lclNum].lvHasLdAddrOp) &&
10092                     verCurrentState.esStackDepth > 0)
10093                 {
10094                     impSpillSideEffects(false, (unsigned)CHECK_SPILL_ALL DEBUGARG("Local could be aliased"));
10095                 }
10096
10097                 /* Spill any refs to the local from the stack */
10098
10099                 impSpillLclRefs(lclNum);
10100
10101 #if !FEATURE_X87_DOUBLES
10102                 // We can generate an assignment to a TYP_FLOAT from a TYP_DOUBLE
10103                 // We insert a cast to the dest 'op2' type
10104                 //
10105                 if ((op1->TypeGet() != op2->TypeGet()) && varTypeIsFloating(op1->gtType) &&
10106                     varTypeIsFloating(op2->gtType))
10107                 {
10108                     op1 = gtNewCastNode(op2->TypeGet(), op1, op2->TypeGet());
10109                 }
10110 #endif // !FEATURE_X87_DOUBLES
10111
10112                 if (varTypeIsStruct(lclTyp))
10113                 {
10114                     op1 = impAssignStruct(op2, op1, clsHnd, (unsigned)CHECK_SPILL_ALL);
10115                 }
10116                 else
10117                 {
10118                     // The code generator generates GC tracking information
10119                     // based on the RHS of the assignment.  Later the LHS (which is
10120                     // is a BYREF) gets used and the emitter checks that that variable
10121                     // is being tracked.  It is not (since the RHS was an int and did
10122                     // not need tracking).  To keep this assert happy, we change the RHS
10123                     if (lclTyp == TYP_BYREF && !varTypeIsGC(op1->gtType))
10124                     {
10125                         op1->gtType = TYP_BYREF;
10126                     }
10127                     op1 = gtNewAssignNode(op2, op1);
10128                 }
10129
10130                 /* If insertLdloc is true, then we need to insert a ldloc following the
10131                    stloc.  This is done when converting a (dup, stloc) sequence into
10132                    a (stloc, ldloc) sequence. */
10133
10134                 if (insertLdloc)
10135                 {
10136                     // From SPILL_APPEND
10137                     impAppendTree(op1, (unsigned)CHECK_SPILL_ALL, impCurStmtOffs);
10138
10139 #ifdef DEBUG
10140                     // From DONE_APPEND
10141                     impNoteLastILoffs();
10142 #endif
10143                     op1         = nullptr;
10144                     insertLdloc = false;
10145
10146                     impLoadVar(lclNum, opcodeOffs + sz + 1, tiRetVal);
10147                     break;
10148                 }
10149
10150                 goto SPILL_APPEND;
10151
10152             case CEE_LDLOCA:
10153                 lclNum = getU2LittleEndian(codeAddr);
10154                 goto LDLOCA;
10155
10156             case CEE_LDLOCA_S:
10157                 lclNum = getU1LittleEndian(codeAddr);
10158             LDLOCA:
10159                 JITDUMP(" %u", lclNum);
10160                 if (tiVerificationNeeded)
10161                 {
10162                     Verify(lclNum < info.compMethodInfo->locals.numArgs, "bad local num");
10163                     Verify(info.compInitMem, "initLocals not set");
10164                 }
10165
10166                 if (compIsForInlining())
10167                 {
10168                     // Get the local type
10169                     lclTyp = impInlineInfo->lclVarInfo[lclNum + impInlineInfo->argCnt].lclTypeInfo;
10170
10171                     /* Have we allocated a temp for this local? */
10172
10173                     lclNum = impInlineFetchLocal(lclNum DEBUGARG("Inline ldloca(s) first use temp"));
10174
10175                     op1 = gtNewLclvNode(lclNum, lvaGetActualType(lclNum));
10176
10177                     goto _PUSH_ADRVAR;
10178                 }
10179
10180                 lclNum += numArgs;
10181                 assertImp(lclNum < info.compLocalsCount);
10182                 goto ADRVAR;
10183
10184             case CEE_LDARGA:
10185                 lclNum = getU2LittleEndian(codeAddr);
10186                 goto LDARGA;
10187
10188             case CEE_LDARGA_S:
10189                 lclNum = getU1LittleEndian(codeAddr);
10190             LDARGA:
10191                 JITDUMP(" %u", lclNum);
10192                 Verify(lclNum < info.compILargsCount, "bad arg num");
10193
10194                 if (compIsForInlining())
10195                 {
10196                     // In IL, LDARGA(_S) is used to load the byref managed pointer of struct argument,
10197                     // followed by a ldfld to load the field.
10198
10199                     op1 = impInlineFetchArg(lclNum, impInlineInfo->inlArgInfo, impInlineInfo->lclVarInfo);
10200                     if (op1->gtOper != GT_LCL_VAR)
10201                     {
10202                         compInlineResult->NoteFatal(InlineObservation::CALLSITE_LDARGA_NOT_LOCAL_VAR);
10203                         return;
10204                     }
10205
10206                     assert(op1->gtOper == GT_LCL_VAR);
10207
10208                     goto _PUSH_ADRVAR;
10209                 }
10210
10211                 lclNum = compMapILargNum(lclNum); // account for possible hidden param
10212                 assertImp(lclNum < numArgs);
10213
10214                 if (lclNum == info.compThisArg)
10215                 {
10216                     lclNum = lvaArg0Var;
10217                 }
10218
10219                 goto ADRVAR;
10220
10221             ADRVAR:
10222
10223                 op1 = gtNewLclvNode(lclNum, lvaGetActualType(lclNum), opcodeOffs + sz + 1);
10224
10225             _PUSH_ADRVAR:
10226                 assert(op1->gtOper == GT_LCL_VAR);
10227
10228                 /* Note that this is supposed to create the transient type "*"
10229                    which may be used as a TYP_I_IMPL. However we catch places
10230                    where it is used as a TYP_I_IMPL and change the node if needed.
10231                    Thus we are pessimistic and may report byrefs in the GC info
10232                    where it was not absolutely needed, but it is safer this way.
10233                  */
10234                 op1 = gtNewOperNode(GT_ADDR, TYP_BYREF, op1);
10235
10236                 // &aliasedVar doesnt need GTF_GLOB_REF, though alisasedVar does
10237                 assert((op1->gtFlags & GTF_GLOB_REF) == 0);
10238
10239                 tiRetVal = lvaTable[lclNum].lvVerTypeInfo;
10240                 if (tiVerificationNeeded)
10241                 {
10242                     // Don't allow taking address of uninit this ptr.
10243                     if (verTrackObjCtorInitState && (verCurrentState.thisInitialized != TIS_Init))
10244                     {
10245                         Verify(!tiRetVal.IsThisPtr(), "address of uninit this ptr");
10246                     }
10247
10248                     if (!tiRetVal.IsByRef())
10249                     {
10250                         tiRetVal.MakeByRef();
10251                     }
10252                     else
10253                     {
10254                         Verify(false, "byref to byref");
10255                     }
10256                 }
10257
10258                 impPushOnStack(op1, tiRetVal);
10259                 break;
10260
10261             case CEE_ARGLIST:
10262
10263                 if (!info.compIsVarArgs)
10264                 {
10265                     BADCODE("arglist in non-vararg method");
10266                 }
10267
10268                 if (tiVerificationNeeded)
10269                 {
10270                     tiRetVal = typeInfo(TI_STRUCT, impGetRuntimeArgumentHandle());
10271                 }
10272                 assertImp((info.compMethodInfo->args.callConv & CORINFO_CALLCONV_MASK) == CORINFO_CALLCONV_VARARG);
10273
10274                 /* The ARGLIST cookie is a hidden 'last' parameter, we have already
10275                    adjusted the arg count cos this is like fetching the last param */
10276                 assertImp(0 < numArgs);
10277                 assert(lvaTable[lvaVarargsHandleArg].lvAddrExposed);
10278                 lclNum = lvaVarargsHandleArg;
10279                 op1    = gtNewLclvNode(lclNum, TYP_I_IMPL, opcodeOffs + sz + 1);
10280                 op1    = gtNewOperNode(GT_ADDR, TYP_BYREF, op1);
10281                 impPushOnStack(op1, tiRetVal);
10282                 break;
10283
10284             case CEE_ENDFINALLY:
10285
10286                 if (compIsForInlining())
10287                 {
10288                     assert(!"Shouldn't have exception handlers in the inliner!");
10289                     compInlineResult->NoteFatal(InlineObservation::CALLEE_HAS_ENDFINALLY);
10290                     return;
10291                 }
10292
10293                 if (verCurrentState.esStackDepth > 0)
10294                 {
10295                     impEvalSideEffects();
10296                 }
10297
10298                 if (info.compXcptnsCount == 0)
10299                 {
10300                     BADCODE("endfinally outside finally");
10301                 }
10302
10303                 assert(verCurrentState.esStackDepth == 0);
10304
10305                 op1 = gtNewOperNode(GT_RETFILT, TYP_VOID, nullptr);
10306                 goto APPEND;
10307
10308             case CEE_ENDFILTER:
10309
10310                 if (compIsForInlining())
10311                 {
10312                     assert(!"Shouldn't have exception handlers in the inliner!");
10313                     compInlineResult->NoteFatal(InlineObservation::CALLEE_HAS_ENDFILTER);
10314                     return;
10315                 }
10316
10317                 block->bbSetRunRarely(); // filters are rare
10318
10319                 if (info.compXcptnsCount == 0)
10320                 {
10321                     BADCODE("endfilter outside filter");
10322                 }
10323
10324                 if (tiVerificationNeeded)
10325                 {
10326                     Verify(impStackTop().seTypeInfo.IsType(TI_INT), "bad endfilt arg");
10327                 }
10328
10329                 op1 = impPopStack().val;
10330                 assertImp(op1->gtType == TYP_INT);
10331                 if (!bbInFilterILRange(block))
10332                 {
10333                     BADCODE("EndFilter outside a filter handler");
10334                 }
10335
10336                 /* Mark current bb as end of filter */
10337
10338                 assert(compCurBB->bbFlags & BBF_DONT_REMOVE);
10339                 assert(compCurBB->bbJumpKind == BBJ_EHFILTERRET);
10340
10341                 /* Mark catch handler as successor */
10342
10343                 op1 = gtNewOperNode(GT_RETFILT, op1->TypeGet(), op1);
10344                 if (verCurrentState.esStackDepth != 0)
10345                 {
10346                     verRaiseVerifyException(INDEBUG("stack must be 1 on end of filter") DEBUGARG(__FILE__)
10347                                                 DEBUGARG(__LINE__));
10348                 }
10349                 goto APPEND;
10350
10351             case CEE_RET:
10352                 prefixFlags &= ~PREFIX_TAILCALL; // ret without call before it
10353             RET:
10354                 if (!impReturnInstruction(block, prefixFlags, opcode))
10355                 {
10356                     return; // abort
10357                 }
10358                 else
10359                 {
10360                     break;
10361                 }
10362
10363             case CEE_JMP:
10364
10365                 assert(!compIsForInlining());
10366
10367                 if (tiVerificationNeeded)
10368                 {
10369                     Verify(false, "Invalid opcode: CEE_JMP");
10370                 }
10371
10372                 if ((info.compFlags & CORINFO_FLG_SYNCH) || block->hasTryIndex() || block->hasHndIndex())
10373                 {
10374                     /* CEE_JMP does not make sense in some "protected" regions. */
10375
10376                     BADCODE("Jmp not allowed in protected region");
10377                 }
10378
10379                 if (verCurrentState.esStackDepth != 0)
10380                 {
10381                     BADCODE("Stack must be empty after CEE_JMPs");
10382                 }
10383
10384                 _impResolveToken(CORINFO_TOKENKIND_Method);
10385
10386                 JITDUMP(" %08X", resolvedToken.token);
10387
10388                 /* The signature of the target has to be identical to ours.
10389                    At least check that argCnt and returnType match */
10390
10391                 eeGetMethodSig(resolvedToken.hMethod, &sig);
10392                 if (sig.numArgs != info.compMethodInfo->args.numArgs ||
10393                     sig.retType != info.compMethodInfo->args.retType ||
10394                     sig.callConv != info.compMethodInfo->args.callConv)
10395                 {
10396                     BADCODE("Incompatible target for CEE_JMPs");
10397                 }
10398
10399 #if defined(_TARGET_XARCH_) || defined(_TARGET_ARMARCH_)
10400
10401                 op1 = new (this, GT_JMP) GenTreeVal(GT_JMP, TYP_VOID, (size_t)resolvedToken.hMethod);
10402
10403                 /* Mark the basic block as being a JUMP instead of RETURN */
10404
10405                 block->bbFlags |= BBF_HAS_JMP;
10406
10407                 /* Set this flag to make sure register arguments have a location assigned
10408                  * even if we don't use them inside the method */
10409
10410                 compJmpOpUsed = true;
10411
10412                 fgNoStructPromotion = true;
10413
10414                 goto APPEND;
10415
10416 #else // !_TARGET_XARCH_ && !_TARGET_ARMARCH_
10417
10418                 // Import this just like a series of LDARGs + tail. + call + ret
10419
10420                 if (info.compIsVarArgs)
10421                 {
10422                     // For now we don't implement true tail calls, so this breaks varargs.
10423                     // So warn the user instead of generating bad code.
10424                     // This is a semi-temporary workaround for DevDiv 173860, until we can properly
10425                     // implement true tail calls.
10426                     IMPL_LIMITATION("varags + CEE_JMP doesn't work yet");
10427                 }
10428
10429                 // First load up the arguments (0 - N)
10430                 for (unsigned argNum = 0; argNum < info.compILargsCount; argNum++)
10431                 {
10432                     impLoadArg(argNum, opcodeOffs + sz + 1);
10433                 }
10434
10435                 // Now generate the tail call
10436                 noway_assert(prefixFlags == 0);
10437                 prefixFlags = PREFIX_TAILCALL_EXPLICIT;
10438                 opcode      = CEE_CALL;
10439
10440                 eeGetCallInfo(&resolvedToken, NULL,
10441                               combine(CORINFO_CALLINFO_ALLOWINSTPARAM, CORINFO_CALLINFO_SECURITYCHECKS), &callInfo);
10442
10443                 // All calls and delegates need a security callout.
10444                 impHandleAccessAllowed(callInfo.accessAllowed, &callInfo.callsiteCalloutHelper);
10445
10446                 callTyp = impImportCall(CEE_CALL, &resolvedToken, NULL, NULL, PREFIX_TAILCALL_EXPLICIT, &callInfo,
10447                                         opcodeOffs);
10448
10449                 // And finish with the ret
10450                 goto RET;
10451
10452 #endif // _TARGET_XARCH_ || _TARGET_ARMARCH_
10453
10454             case CEE_LDELEMA:
10455                 assertImp(sz == sizeof(unsigned));
10456
10457                 _impResolveToken(CORINFO_TOKENKIND_Class);
10458
10459                 JITDUMP(" %08X", resolvedToken.token);
10460
10461                 ldelemClsHnd = resolvedToken.hClass;
10462
10463                 if (tiVerificationNeeded)
10464                 {
10465                     typeInfo tiArray = impStackTop(1).seTypeInfo;
10466                     typeInfo tiIndex = impStackTop().seTypeInfo;
10467
10468                     // As per ECMA 'index' specified can be either int32 or native int.
10469                     Verify(tiIndex.IsIntOrNativeIntType(), "bad index");
10470
10471                     typeInfo arrayElemType = verMakeTypeInfo(ldelemClsHnd);
10472                     Verify(tiArray.IsNullObjRef() ||
10473                                typeInfo::AreEquivalent(verGetArrayElemType(tiArray), arrayElemType),
10474                            "bad array");
10475
10476                     tiRetVal = arrayElemType;
10477                     tiRetVal.MakeByRef();
10478                     if (prefixFlags & PREFIX_READONLY)
10479                     {
10480                         tiRetVal.SetIsReadonlyByRef();
10481                     }
10482
10483                     // an array interior pointer is always in the heap
10484                     tiRetVal.SetIsPermanentHomeByRef();
10485                 }
10486
10487                 // If it's a value class array we just do a simple address-of
10488                 if (eeIsValueClass(ldelemClsHnd))
10489                 {
10490                     CorInfoType cit = info.compCompHnd->getTypeForPrimitiveValueClass(ldelemClsHnd);
10491                     if (cit == CORINFO_TYPE_UNDEF)
10492                     {
10493                         lclTyp = TYP_STRUCT;
10494                     }
10495                     else
10496                     {
10497                         lclTyp = JITtype2varType(cit);
10498                     }
10499                     goto ARR_LD_POST_VERIFY;
10500                 }
10501
10502                 // Similarly, if its a readonly access, we can do a simple address-of
10503                 // without doing a runtime type-check
10504                 if (prefixFlags & PREFIX_READONLY)
10505                 {
10506                     lclTyp = TYP_REF;
10507                     goto ARR_LD_POST_VERIFY;
10508                 }
10509
10510                 // Otherwise we need the full helper function with run-time type check
10511                 op1 = impTokenToHandle(&resolvedToken);
10512                 if (op1 == nullptr)
10513                 { // compDonotInline()
10514                     return;
10515                 }
10516
10517                 args = gtNewArgList(op1);                      // Type
10518                 args = gtNewListNode(impPopStack().val, args); // index
10519                 args = gtNewListNode(impPopStack().val, args); // array
10520                 op1  = gtNewHelperCallNode(CORINFO_HELP_LDELEMA_REF, TYP_BYREF, GTF_EXCEPT, args);
10521
10522                 impPushOnStack(op1, tiRetVal);
10523                 break;
10524
10525             // ldelem for reference and value types
10526             case CEE_LDELEM:
10527                 assertImp(sz == sizeof(unsigned));
10528
10529                 _impResolveToken(CORINFO_TOKENKIND_Class);
10530
10531                 JITDUMP(" %08X", resolvedToken.token);
10532
10533                 ldelemClsHnd = resolvedToken.hClass;
10534
10535                 if (tiVerificationNeeded)
10536                 {
10537                     typeInfo tiArray = impStackTop(1).seTypeInfo;
10538                     typeInfo tiIndex = impStackTop().seTypeInfo;
10539
10540                     // As per ECMA 'index' specified can be either int32 or native int.
10541                     Verify(tiIndex.IsIntOrNativeIntType(), "bad index");
10542                     tiRetVal = verMakeTypeInfo(ldelemClsHnd);
10543
10544                     Verify(tiArray.IsNullObjRef() || tiCompatibleWith(verGetArrayElemType(tiArray), tiRetVal, false),
10545                            "type of array incompatible with type operand");
10546                     tiRetVal.NormaliseForStack();
10547                 }
10548
10549                 // If it's a reference type or generic variable type
10550                 // then just generate code as though it's a ldelem.ref instruction
10551                 if (!eeIsValueClass(ldelemClsHnd))
10552                 {
10553                     lclTyp = TYP_REF;
10554                     opcode = CEE_LDELEM_REF;
10555                 }
10556                 else
10557                 {
10558                     CorInfoType jitTyp = info.compCompHnd->asCorInfoType(ldelemClsHnd);
10559                     lclTyp             = JITtype2varType(jitTyp);
10560                     tiRetVal           = verMakeTypeInfo(ldelemClsHnd); // precise type always needed for struct
10561                     tiRetVal.NormaliseForStack();
10562                 }
10563                 goto ARR_LD_POST_VERIFY;
10564
10565             case CEE_LDELEM_I1:
10566                 lclTyp = TYP_BYTE;
10567                 goto ARR_LD;
10568             case CEE_LDELEM_I2:
10569                 lclTyp = TYP_SHORT;
10570                 goto ARR_LD;
10571             case CEE_LDELEM_I:
10572                 lclTyp = TYP_I_IMPL;
10573                 goto ARR_LD;
10574
10575             // Should be UINT, but since no platform widens 4->8 bytes it doesn't matter
10576             // and treating it as TYP_INT avoids other asserts.
10577             case CEE_LDELEM_U4:
10578                 lclTyp = TYP_INT;
10579                 goto ARR_LD;
10580
10581             case CEE_LDELEM_I4:
10582                 lclTyp = TYP_INT;
10583                 goto ARR_LD;
10584             case CEE_LDELEM_I8:
10585                 lclTyp = TYP_LONG;
10586                 goto ARR_LD;
10587             case CEE_LDELEM_REF:
10588                 lclTyp = TYP_REF;
10589                 goto ARR_LD;
10590             case CEE_LDELEM_R4:
10591                 lclTyp = TYP_FLOAT;
10592                 goto ARR_LD;
10593             case CEE_LDELEM_R8:
10594                 lclTyp = TYP_DOUBLE;
10595                 goto ARR_LD;
10596             case CEE_LDELEM_U1:
10597                 lclTyp = TYP_UBYTE;
10598                 goto ARR_LD;
10599             case CEE_LDELEM_U2:
10600                 lclTyp = TYP_CHAR;
10601                 goto ARR_LD;
10602
10603             ARR_LD:
10604
10605                 if (tiVerificationNeeded)
10606                 {
10607                     typeInfo tiArray = impStackTop(1).seTypeInfo;
10608                     typeInfo tiIndex = impStackTop().seTypeInfo;
10609
10610                     // As per ECMA 'index' specified can be either int32 or native int.
10611                     Verify(tiIndex.IsIntOrNativeIntType(), "bad index");
10612                     if (tiArray.IsNullObjRef())
10613                     {
10614                         if (lclTyp == TYP_REF)
10615                         { // we will say a deref of a null array yields a null ref
10616                             tiRetVal = typeInfo(TI_NULL);
10617                         }
10618                         else
10619                         {
10620                             tiRetVal = typeInfo(lclTyp);
10621                         }
10622                     }
10623                     else
10624                     {
10625                         tiRetVal             = verGetArrayElemType(tiArray);
10626                         typeInfo arrayElemTi = typeInfo(lclTyp);
10627 #ifdef _TARGET_64BIT_
10628                         if (opcode == CEE_LDELEM_I)
10629                         {
10630                             arrayElemTi = typeInfo::nativeInt();
10631                         }
10632
10633                         if (lclTyp != TYP_REF && lclTyp != TYP_STRUCT)
10634                         {
10635                             Verify(typeInfo::AreEquivalent(tiRetVal, arrayElemTi), "bad array");
10636                         }
10637                         else
10638 #endif // _TARGET_64BIT_
10639                         {
10640                             Verify(tiRetVal.IsType(arrayElemTi.GetType()), "bad array");
10641                         }
10642                     }
10643                     tiRetVal.NormaliseForStack();
10644                 }
10645             ARR_LD_POST_VERIFY:
10646
10647                 /* Pull the index value and array address */
10648                 op2 = impPopStack().val;
10649                 op1 = impPopStack().val;
10650                 assertImp(op1->gtType == TYP_REF);
10651
10652                 /* Check for null pointer - in the inliner case we simply abort */
10653
10654                 if (compIsForInlining())
10655                 {
10656                     if (op1->gtOper == GT_CNS_INT)
10657                     {
10658                         compInlineResult->NoteFatal(InlineObservation::CALLEE_HAS_NULL_FOR_LDELEM);
10659                         return;
10660                     }
10661                 }
10662
10663                 op1 = impCheckForNullPointer(op1);
10664
10665                 /* Mark the block as containing an index expression */
10666
10667                 if (op1->gtOper == GT_LCL_VAR)
10668                 {
10669                     if (op2->gtOper == GT_LCL_VAR || op2->gtOper == GT_CNS_INT || op2->gtOper == GT_ADD)
10670                     {
10671                         block->bbFlags |= BBF_HAS_IDX_LEN;
10672                         optMethodFlags |= OMF_HAS_ARRAYREF;
10673                     }
10674                 }
10675
10676                 /* Create the index node and push it on the stack */
10677
10678                 op1 = gtNewIndexRef(lclTyp, op1, op2);
10679
10680                 ldstruct = (opcode == CEE_LDELEM && lclTyp == TYP_STRUCT);
10681
10682                 if ((opcode == CEE_LDELEMA) || ldstruct ||
10683                     (ldelemClsHnd != DUMMY_INIT(NULL) && eeIsValueClass(ldelemClsHnd)))
10684                 {
10685                     assert(ldelemClsHnd != DUMMY_INIT(NULL));
10686
10687                     // remember the element size
10688                     if (lclTyp == TYP_REF)
10689                     {
10690                         op1->gtIndex.gtIndElemSize = sizeof(void*);
10691                     }
10692                     else
10693                     {
10694                         // If ldElemClass is precisely a primitive type, use that, otherwise, preserve the struct type.
10695                         if (info.compCompHnd->getTypeForPrimitiveValueClass(ldelemClsHnd) == CORINFO_TYPE_UNDEF)
10696                         {
10697                             op1->gtIndex.gtStructElemClass = ldelemClsHnd;
10698                         }
10699                         assert(lclTyp != TYP_STRUCT || op1->gtIndex.gtStructElemClass != nullptr);
10700                         if (lclTyp == TYP_STRUCT)
10701                         {
10702                             size                       = info.compCompHnd->getClassSize(ldelemClsHnd);
10703                             op1->gtIndex.gtIndElemSize = size;
10704                             op1->gtType                = lclTyp;
10705                         }
10706                     }
10707
10708                     if ((opcode == CEE_LDELEMA) || ldstruct)
10709                     {
10710                         // wrap it in a &
10711                         lclTyp = TYP_BYREF;
10712
10713                         op1 = gtNewOperNode(GT_ADDR, lclTyp, op1);
10714                     }
10715                     else
10716                     {
10717                         assert(lclTyp != TYP_STRUCT);
10718                     }
10719                 }
10720
10721                 if (ldstruct)
10722                 {
10723                     // Create an OBJ for the result
10724                     op1 = gtNewObjNode(ldelemClsHnd, op1);
10725                     op1->gtFlags |= GTF_EXCEPT;
10726                 }
10727                 impPushOnStack(op1, tiRetVal);
10728                 break;
10729
10730             // stelem for reference and value types
10731             case CEE_STELEM:
10732
10733                 assertImp(sz == sizeof(unsigned));
10734
10735                 _impResolveToken(CORINFO_TOKENKIND_Class);
10736
10737                 JITDUMP(" %08X", resolvedToken.token);
10738
10739                 stelemClsHnd = resolvedToken.hClass;
10740
10741                 if (tiVerificationNeeded)
10742                 {
10743                     typeInfo tiArray = impStackTop(2).seTypeInfo;
10744                     typeInfo tiIndex = impStackTop(1).seTypeInfo;
10745                     typeInfo tiValue = impStackTop().seTypeInfo;
10746
10747                     // As per ECMA 'index' specified can be either int32 or native int.
10748                     Verify(tiIndex.IsIntOrNativeIntType(), "bad index");
10749                     typeInfo arrayElem = verMakeTypeInfo(stelemClsHnd);
10750
10751                     Verify(tiArray.IsNullObjRef() || tiCompatibleWith(arrayElem, verGetArrayElemType(tiArray), false),
10752                            "type operand incompatible with array element type");
10753                     arrayElem.NormaliseForStack();
10754                     Verify(tiCompatibleWith(tiValue, arrayElem, true), "value incompatible with type operand");
10755                 }
10756
10757                 // If it's a reference type just behave as though it's a stelem.ref instruction
10758                 if (!eeIsValueClass(stelemClsHnd))
10759                 {
10760                     goto STELEM_REF_POST_VERIFY;
10761                 }
10762
10763                 // Otherwise extract the type
10764                 {
10765                     CorInfoType jitTyp = info.compCompHnd->asCorInfoType(stelemClsHnd);
10766                     lclTyp             = JITtype2varType(jitTyp);
10767                     goto ARR_ST_POST_VERIFY;
10768                 }
10769
10770             case CEE_STELEM_REF:
10771
10772                 if (tiVerificationNeeded)
10773                 {
10774                     typeInfo tiArray = impStackTop(2).seTypeInfo;
10775                     typeInfo tiIndex = impStackTop(1).seTypeInfo;
10776                     typeInfo tiValue = impStackTop().seTypeInfo;
10777
10778                     // As per ECMA 'index' specified can be either int32 or native int.
10779                     Verify(tiIndex.IsIntOrNativeIntType(), "bad index");
10780                     Verify(tiValue.IsObjRef(), "bad value");
10781
10782                     // we only check that it is an object referece, The helper does additional checks
10783                     Verify(tiArray.IsNullObjRef() || verGetArrayElemType(tiArray).IsType(TI_REF), "bad array");
10784                 }
10785
10786                 arrayNodeTo      = impStackTop(2).val;
10787                 arrayNodeToIndex = impStackTop(1).val;
10788                 arrayNodeFrom    = impStackTop().val;
10789
10790                 //
10791                 // Note that it is not legal to optimize away CORINFO_HELP_ARRADDR_ST in a
10792                 // lot of cases because of covariance. ie. foo[] can be cast to object[].
10793                 //
10794
10795                 // Check for assignment to same array, ie. arrLcl[i] = arrLcl[j]
10796                 // This does not need CORINFO_HELP_ARRADDR_ST
10797
10798                 if (arrayNodeFrom->OperGet() == GT_INDEX && arrayNodeFrom->gtOp.gtOp1->gtOper == GT_LCL_VAR &&
10799                     arrayNodeTo->gtOper == GT_LCL_VAR &&
10800                     arrayNodeTo->gtLclVarCommon.gtLclNum == arrayNodeFrom->gtOp.gtOp1->gtLclVarCommon.gtLclNum &&
10801                     !lvaTable[arrayNodeTo->gtLclVarCommon.gtLclNum].lvAddrExposed)
10802                 {
10803                     lclTyp = TYP_REF;
10804                     goto ARR_ST_POST_VERIFY;
10805                 }
10806
10807                 // Check for assignment of NULL. This does not need CORINFO_HELP_ARRADDR_ST
10808
10809                 if (arrayNodeFrom->OperGet() == GT_CNS_INT)
10810                 {
10811                     assert(arrayNodeFrom->gtType == TYP_REF && arrayNodeFrom->gtIntCon.gtIconVal == 0);
10812
10813                     lclTyp = TYP_REF;
10814                     goto ARR_ST_POST_VERIFY;
10815                 }
10816
10817             STELEM_REF_POST_VERIFY:
10818
10819                 /* Call a helper function to do the assignment */
10820                 op1 = gtNewHelperCallNode(CORINFO_HELP_ARRADDR_ST, TYP_VOID, 0, impPopList(3, &flags, nullptr));
10821
10822                 goto SPILL_APPEND;
10823
10824             case CEE_STELEM_I1:
10825                 lclTyp = TYP_BYTE;
10826                 goto ARR_ST;
10827             case CEE_STELEM_I2:
10828                 lclTyp = TYP_SHORT;
10829                 goto ARR_ST;
10830             case CEE_STELEM_I:
10831                 lclTyp = TYP_I_IMPL;
10832                 goto ARR_ST;
10833             case CEE_STELEM_I4:
10834                 lclTyp = TYP_INT;
10835                 goto ARR_ST;
10836             case CEE_STELEM_I8:
10837                 lclTyp = TYP_LONG;
10838                 goto ARR_ST;
10839             case CEE_STELEM_R4:
10840                 lclTyp = TYP_FLOAT;
10841                 goto ARR_ST;
10842             case CEE_STELEM_R8:
10843                 lclTyp = TYP_DOUBLE;
10844                 goto ARR_ST;
10845
10846             ARR_ST:
10847
10848                 if (tiVerificationNeeded)
10849                 {
10850                     typeInfo tiArray = impStackTop(2).seTypeInfo;
10851                     typeInfo tiIndex = impStackTop(1).seTypeInfo;
10852                     typeInfo tiValue = impStackTop().seTypeInfo;
10853
10854                     // As per ECMA 'index' specified can be either int32 or native int.
10855                     Verify(tiIndex.IsIntOrNativeIntType(), "bad index");
10856                     typeInfo arrayElem = typeInfo(lclTyp);
10857 #ifdef _TARGET_64BIT_
10858                     if (opcode == CEE_STELEM_I)
10859                     {
10860                         arrayElem = typeInfo::nativeInt();
10861                     }
10862 #endif // _TARGET_64BIT_
10863                     Verify(tiArray.IsNullObjRef() || typeInfo::AreEquivalent(verGetArrayElemType(tiArray), arrayElem),
10864                            "bad array");
10865
10866                     Verify(tiCompatibleWith(NormaliseForStack(tiValue), arrayElem.NormaliseForStack(), true),
10867                            "bad value");
10868                 }
10869
10870             ARR_ST_POST_VERIFY:
10871                 /* The strict order of evaluation is LHS-operands, RHS-operands,
10872                    range-check, and then assignment. However, codegen currently
10873                    does the range-check before evaluation the RHS-operands. So to
10874                    maintain strict ordering, we spill the stack. */
10875
10876                 if (impStackTop().val->gtFlags & GTF_SIDE_EFFECT)
10877                 {
10878                     impSpillSideEffects(false, (unsigned)CHECK_SPILL_ALL DEBUGARG(
10879                                                    "Strict ordering of exceptions for Array store"));
10880                 }
10881
10882                 /* Pull the new value from the stack */
10883                 op2 = impPopStack().val;
10884
10885                 /* Pull the index value */
10886                 op1 = impPopStack().val;
10887
10888                 /* Pull the array address */
10889                 op3 = impPopStack().val;
10890
10891                 assertImp(op3->gtType == TYP_REF);
10892                 if (op2->IsVarAddr())
10893                 {
10894                     op2->gtType = TYP_I_IMPL;
10895                 }
10896
10897                 op3 = impCheckForNullPointer(op3);
10898
10899                 // Mark the block as containing an index expression
10900
10901                 if (op3->gtOper == GT_LCL_VAR)
10902                 {
10903                     if (op1->gtOper == GT_LCL_VAR || op1->gtOper == GT_CNS_INT || op1->gtOper == GT_ADD)
10904                     {
10905                         block->bbFlags |= BBF_HAS_IDX_LEN;
10906                         optMethodFlags |= OMF_HAS_ARRAYREF;
10907                     }
10908                 }
10909
10910                 /* Create the index node */
10911
10912                 op1 = gtNewIndexRef(lclTyp, op3, op1);
10913
10914                 /* Create the assignment node and append it */
10915
10916                 if (lclTyp == TYP_STRUCT)
10917                 {
10918                     assert(stelemClsHnd != DUMMY_INIT(NULL));
10919
10920                     op1->gtIndex.gtStructElemClass = stelemClsHnd;
10921                     op1->gtIndex.gtIndElemSize     = info.compCompHnd->getClassSize(stelemClsHnd);
10922                 }
10923                 if (varTypeIsStruct(op1))
10924                 {
10925                     op1 = impAssignStruct(op1, op2, stelemClsHnd, (unsigned)CHECK_SPILL_ALL);
10926                 }
10927                 else
10928                 {
10929                     op2 = impImplicitR4orR8Cast(op2, op1->TypeGet());
10930                     op1 = gtNewAssignNode(op1, op2);
10931                 }
10932
10933                 /* Mark the expression as containing an assignment */
10934
10935                 op1->gtFlags |= GTF_ASG;
10936
10937                 goto SPILL_APPEND;
10938
10939             case CEE_ADD:
10940                 oper = GT_ADD;
10941                 goto MATH_OP2;
10942
10943             case CEE_ADD_OVF:
10944                 uns = false;
10945                 goto ADD_OVF;
10946             case CEE_ADD_OVF_UN:
10947                 uns = true;
10948                 goto ADD_OVF;
10949
10950             ADD_OVF:
10951                 ovfl     = true;
10952                 callNode = false;
10953                 oper     = GT_ADD;
10954                 goto MATH_OP2_FLAGS;
10955
10956             case CEE_SUB:
10957                 oper = GT_SUB;
10958                 goto MATH_OP2;
10959
10960             case CEE_SUB_OVF:
10961                 uns = false;
10962                 goto SUB_OVF;
10963             case CEE_SUB_OVF_UN:
10964                 uns = true;
10965                 goto SUB_OVF;
10966
10967             SUB_OVF:
10968                 ovfl     = true;
10969                 callNode = false;
10970                 oper     = GT_SUB;
10971                 goto MATH_OP2_FLAGS;
10972
10973             case CEE_MUL:
10974                 oper = GT_MUL;
10975                 goto MATH_MAYBE_CALL_NO_OVF;
10976
10977             case CEE_MUL_OVF:
10978                 uns = false;
10979                 goto MUL_OVF;
10980             case CEE_MUL_OVF_UN:
10981                 uns = true;
10982                 goto MUL_OVF;
10983
10984             MUL_OVF:
10985                 ovfl = true;
10986                 oper = GT_MUL;
10987                 goto MATH_MAYBE_CALL_OVF;
10988
10989             // Other binary math operations
10990
10991             case CEE_DIV:
10992                 oper = GT_DIV;
10993                 goto MATH_MAYBE_CALL_NO_OVF;
10994
10995             case CEE_DIV_UN:
10996                 oper = GT_UDIV;
10997                 goto MATH_MAYBE_CALL_NO_OVF;
10998
10999             case CEE_REM:
11000                 oper = GT_MOD;
11001                 goto MATH_MAYBE_CALL_NO_OVF;
11002
11003             case CEE_REM_UN:
11004                 oper = GT_UMOD;
11005                 goto MATH_MAYBE_CALL_NO_OVF;
11006
11007             MATH_MAYBE_CALL_NO_OVF:
11008                 ovfl = false;
11009             MATH_MAYBE_CALL_OVF:
11010                 // Morpher has some complex logic about when to turn different
11011                 // typed nodes on different platforms into helper calls. We
11012                 // need to either duplicate that logic here, or just
11013                 // pessimistically make all the nodes large enough to become
11014                 // call nodes.  Since call nodes aren't that much larger and
11015                 // these opcodes are infrequent enough I chose the latter.
11016                 callNode = true;
11017                 goto MATH_OP2_FLAGS;
11018
11019             case CEE_AND:
11020                 oper = GT_AND;
11021                 goto MATH_OP2;
11022             case CEE_OR:
11023                 oper = GT_OR;
11024                 goto MATH_OP2;
11025             case CEE_XOR:
11026                 oper = GT_XOR;
11027                 goto MATH_OP2;
11028
11029             MATH_OP2: // For default values of 'ovfl' and 'callNode'
11030
11031                 ovfl     = false;
11032                 callNode = false;
11033
11034             MATH_OP2_FLAGS: // If 'ovfl' and 'callNode' have already been set
11035
11036                 /* Pull two values and push back the result */
11037
11038                 if (tiVerificationNeeded)
11039                 {
11040                     const typeInfo& tiOp1 = impStackTop(1).seTypeInfo;
11041                     const typeInfo& tiOp2 = impStackTop().seTypeInfo;
11042
11043                     Verify(tiCompatibleWith(tiOp1, tiOp2, true), "different arg type");
11044                     if (oper == GT_ADD || oper == GT_DIV || oper == GT_SUB || oper == GT_MUL || oper == GT_MOD)
11045                     {
11046                         Verify(tiOp1.IsNumberType(), "not number");
11047                     }
11048                     else
11049                     {
11050                         Verify(tiOp1.IsIntegerType(), "not integer");
11051                     }
11052
11053                     Verify(!ovfl || tiOp1.IsIntegerType(), "not integer");
11054
11055                     tiRetVal = tiOp1;
11056
11057 #ifdef _TARGET_64BIT_
11058                     if (tiOp2.IsNativeIntType())
11059                     {
11060                         tiRetVal = tiOp2;
11061                     }
11062 #endif // _TARGET_64BIT_
11063                 }
11064
11065                 op2 = impPopStack().val;
11066                 op1 = impPopStack().val;
11067
11068 #if !CPU_HAS_FP_SUPPORT
11069                 if (varTypeIsFloating(op1->gtType))
11070                 {
11071                     callNode = true;
11072                 }
11073 #endif
11074                 /* Can't do arithmetic with references */
11075                 assertImp(genActualType(op1->TypeGet()) != TYP_REF && genActualType(op2->TypeGet()) != TYP_REF);
11076
11077                 // Change both to TYP_I_IMPL (impBashVarAddrsToI won't change if its a true byref, only
11078                 // if it is in the stack)
11079                 impBashVarAddrsToI(op1, op2);
11080
11081                 type = impGetByRefResultType(oper, uns, &op1, &op2);
11082
11083                 assert(!ovfl || !varTypeIsFloating(op1->gtType));
11084
11085                 /* Special case: "int+0", "int-0", "int*1", "int/1" */
11086
11087                 if (op2->gtOper == GT_CNS_INT)
11088                 {
11089                     if ((op2->IsIntegralConst(0) && (oper == GT_ADD || oper == GT_SUB)) ||
11090                         (op2->IsIntegralConst(1) && (oper == GT_MUL || oper == GT_DIV)))
11091
11092                     {
11093                         impPushOnStack(op1, tiRetVal);
11094                         break;
11095                     }
11096                 }
11097
11098 #if !FEATURE_X87_DOUBLES
11099                 // We can generate a TYP_FLOAT operation that has a TYP_DOUBLE operand
11100                 //
11101                 if (varTypeIsFloating(type) && varTypeIsFloating(op1->gtType) && varTypeIsFloating(op2->gtType))
11102                 {
11103                     if (op1->TypeGet() != type)
11104                     {
11105                         // We insert a cast of op1 to 'type'
11106                         op1 = gtNewCastNode(type, op1, type);
11107                     }
11108                     if (op2->TypeGet() != type)
11109                     {
11110                         // We insert a cast of op2 to 'type'
11111                         op2 = gtNewCastNode(type, op2, type);
11112                     }
11113                 }
11114 #endif // !FEATURE_X87_DOUBLES
11115
11116 #if SMALL_TREE_NODES
11117                 if (callNode)
11118                 {
11119                     /* These operators can later be transformed into 'GT_CALL' */
11120
11121                     assert(GenTree::s_gtNodeSizes[GT_CALL] > GenTree::s_gtNodeSizes[GT_MUL]);
11122 #ifndef _TARGET_ARM_
11123                     assert(GenTree::s_gtNodeSizes[GT_CALL] > GenTree::s_gtNodeSizes[GT_DIV]);
11124                     assert(GenTree::s_gtNodeSizes[GT_CALL] > GenTree::s_gtNodeSizes[GT_UDIV]);
11125                     assert(GenTree::s_gtNodeSizes[GT_CALL] > GenTree::s_gtNodeSizes[GT_MOD]);
11126                     assert(GenTree::s_gtNodeSizes[GT_CALL] > GenTree::s_gtNodeSizes[GT_UMOD]);
11127 #endif
11128                     // It's tempting to use LargeOpOpcode() here, but this logic is *not* saying
11129                     // that we'll need to transform into a general large node, but rather specifically
11130                     // to a call: by doing it this way, things keep working if there are multiple sizes,
11131                     // and a CALL is no longer the largest.
11132                     // That said, as of now it *is* a large node, so we'll do this with an assert rather
11133                     // than an "if".
11134                     assert(GenTree::s_gtNodeSizes[GT_CALL] == TREE_NODE_SZ_LARGE);
11135                     op1 = new (this, GT_CALL) GenTreeOp(oper, type, op1, op2 DEBUGARG(/*largeNode*/ true));
11136                 }
11137                 else
11138 #endif // SMALL_TREE_NODES
11139                 {
11140                     op1 = gtNewOperNode(oper, type, op1, op2);
11141                 }
11142
11143                 /* Special case: integer/long division may throw an exception */
11144
11145                 if (varTypeIsIntegral(op1->TypeGet()) && op1->OperMayThrow())
11146                 {
11147                     op1->gtFlags |= GTF_EXCEPT;
11148                 }
11149
11150                 if (ovfl)
11151                 {
11152                     assert(oper == GT_ADD || oper == GT_SUB || oper == GT_MUL);
11153                     if (ovflType != TYP_UNKNOWN)
11154                     {
11155                         op1->gtType = ovflType;
11156                     }
11157                     op1->gtFlags |= (GTF_EXCEPT | GTF_OVERFLOW);
11158                     if (uns)
11159                     {
11160                         op1->gtFlags |= GTF_UNSIGNED;
11161                     }
11162                 }
11163
11164                 impPushOnStack(op1, tiRetVal);
11165                 break;
11166
11167             case CEE_SHL:
11168                 oper = GT_LSH;
11169                 goto CEE_SH_OP2;
11170
11171             case CEE_SHR:
11172                 oper = GT_RSH;
11173                 goto CEE_SH_OP2;
11174             case CEE_SHR_UN:
11175                 oper = GT_RSZ;
11176                 goto CEE_SH_OP2;
11177
11178             CEE_SH_OP2:
11179                 if (tiVerificationNeeded)
11180                 {
11181                     const typeInfo& tiVal   = impStackTop(1).seTypeInfo;
11182                     const typeInfo& tiShift = impStackTop(0).seTypeInfo;
11183                     Verify(tiVal.IsIntegerType() && tiShift.IsType(TI_INT), "Bad shift args");
11184                     tiRetVal = tiVal;
11185                 }
11186                 op2 = impPopStack().val;
11187                 op1 = impPopStack().val; // operand to be shifted
11188                 impBashVarAddrsToI(op1, op2);
11189
11190                 type = genActualType(op1->TypeGet());
11191                 op1  = gtNewOperNode(oper, type, op1, op2);
11192
11193                 impPushOnStack(op1, tiRetVal);
11194                 break;
11195
11196             case CEE_NOT:
11197                 if (tiVerificationNeeded)
11198                 {
11199                     tiRetVal = impStackTop().seTypeInfo;
11200                     Verify(tiRetVal.IsIntegerType(), "bad int value");
11201                 }
11202
11203                 op1 = impPopStack().val;
11204                 impBashVarAddrsToI(op1, nullptr);
11205                 type = genActualType(op1->TypeGet());
11206                 impPushOnStack(gtNewOperNode(GT_NOT, type, op1), tiRetVal);
11207                 break;
11208
11209             case CEE_CKFINITE:
11210                 if (tiVerificationNeeded)
11211                 {
11212                     tiRetVal = impStackTop().seTypeInfo;
11213                     Verify(tiRetVal.IsType(TI_DOUBLE), "bad R value");
11214                 }
11215                 op1  = impPopStack().val;
11216                 type = op1->TypeGet();
11217                 op1  = gtNewOperNode(GT_CKFINITE, type, op1);
11218                 op1->gtFlags |= GTF_EXCEPT;
11219
11220                 impPushOnStack(op1, tiRetVal);
11221                 break;
11222
11223             case CEE_LEAVE:
11224
11225                 val     = getI4LittleEndian(codeAddr); // jump distance
11226                 jmpAddr = (IL_OFFSET)((codeAddr - info.compCode + sizeof(__int32)) + val);
11227                 goto LEAVE;
11228
11229             case CEE_LEAVE_S:
11230                 val     = getI1LittleEndian(codeAddr); // jump distance
11231                 jmpAddr = (IL_OFFSET)((codeAddr - info.compCode + sizeof(__int8)) + val);
11232
11233             LEAVE:
11234
11235                 if (compIsForInlining())
11236                 {
11237                     compInlineResult->NoteFatal(InlineObservation::CALLEE_HAS_LEAVE);
11238                     return;
11239                 }
11240
11241                 JITDUMP(" %04X", jmpAddr);
11242                 if (block->bbJumpKind != BBJ_LEAVE)
11243                 {
11244                     impResetLeaveBlock(block, jmpAddr);
11245                 }
11246
11247                 assert(jmpAddr == block->bbJumpDest->bbCodeOffs);
11248                 impImportLeave(block);
11249                 impNoteBranchOffs();
11250
11251                 break;
11252
11253             case CEE_BR:
11254             case CEE_BR_S:
11255                 jmpDist = (sz == 1) ? getI1LittleEndian(codeAddr) : getI4LittleEndian(codeAddr);
11256
11257                 if (compIsForInlining() && jmpDist == 0)
11258                 {
11259                     break; /* NOP */
11260                 }
11261
11262                 impNoteBranchOffs();
11263                 break;
11264
11265             case CEE_BRTRUE:
11266             case CEE_BRTRUE_S:
11267             case CEE_BRFALSE:
11268             case CEE_BRFALSE_S:
11269
11270                 /* Pop the comparand (now there's a neat term) from the stack */
11271                 if (tiVerificationNeeded)
11272                 {
11273                     typeInfo& tiVal = impStackTop().seTypeInfo;
11274                     Verify(tiVal.IsObjRef() || tiVal.IsByRef() || tiVal.IsIntegerType() || tiVal.IsMethod(),
11275                            "bad value");
11276                 }
11277
11278                 op1  = impPopStack().val;
11279                 type = op1->TypeGet();
11280
11281                 // brfalse and brtrue is only allowed on I4, refs, and byrefs.
11282                 if (!opts.MinOpts() && !opts.compDbgCode && block->bbJumpDest == block->bbNext)
11283                 {
11284                     block->bbJumpKind = BBJ_NONE;
11285
11286                     if (op1->gtFlags & GTF_GLOB_EFFECT)
11287                     {
11288                         op1 = gtUnusedValNode(op1);
11289                         goto SPILL_APPEND;
11290                     }
11291                     else
11292                     {
11293                         break;
11294                     }
11295                 }
11296
11297                 if (op1->OperIsCompare())
11298                 {
11299                     if (opcode == CEE_BRFALSE || opcode == CEE_BRFALSE_S)
11300                     {
11301                         // Flip the sense of the compare
11302
11303                         op1 = gtReverseCond(op1);
11304                     }
11305                 }
11306                 else
11307                 {
11308                     /* We'll compare against an equally-sized integer 0 */
11309                     /* For small types, we always compare against int   */
11310                     op2 = gtNewZeroConNode(genActualType(op1->gtType));
11311
11312                     /* Create the comparison operator and try to fold it */
11313
11314                     oper = (opcode == CEE_BRTRUE || opcode == CEE_BRTRUE_S) ? GT_NE : GT_EQ;
11315                     op1  = gtNewOperNode(oper, TYP_INT, op1, op2);
11316                 }
11317
11318             // fall through
11319
11320             COND_JUMP:
11321
11322                 /* Fold comparison if we can */
11323
11324                 op1 = gtFoldExpr(op1);
11325
11326                 /* Try to fold the really simple cases like 'iconst *, ifne/ifeq'*/
11327                 /* Don't make any blocks unreachable in import only mode */
11328
11329                 if ((op1->gtOper == GT_CNS_INT) && !compIsForImportOnly())
11330                 {
11331                     /* gtFoldExpr() should prevent this as we don't want to make any blocks
11332                        unreachable under compDbgCode */
11333                     assert(!opts.compDbgCode);
11334
11335                     BBjumpKinds foldedJumpKind = (BBjumpKinds)(op1->gtIntCon.gtIconVal ? BBJ_ALWAYS : BBJ_NONE);
11336                     assertImp((block->bbJumpKind == BBJ_COND)            // normal case
11337                               || (block->bbJumpKind == foldedJumpKind)); // this can happen if we are reimporting the
11338                                                                          // block for the second time
11339
11340                     block->bbJumpKind = foldedJumpKind;
11341 #ifdef DEBUG
11342                     if (verbose)
11343                     {
11344                         if (op1->gtIntCon.gtIconVal)
11345                         {
11346                             printf("\nThe conditional jump becomes an unconditional jump to BB%02u\n",
11347                                    block->bbJumpDest->bbNum);
11348                         }
11349                         else
11350                         {
11351                             printf("\nThe block falls through into the next BB%02u\n", block->bbNext->bbNum);
11352                         }
11353                     }
11354 #endif
11355                     break;
11356                 }
11357
11358                 op1 = gtNewOperNode(GT_JTRUE, TYP_VOID, op1);
11359
11360                 /* GT_JTRUE is handled specially for non-empty stacks. See 'addStmt'
11361                    in impImportBlock(block). For correct line numbers, spill stack. */
11362
11363                 if (opts.compDbgCode && impCurStmtOffs != BAD_IL_OFFSET)
11364                 {
11365                     impSpillStackEnsure(true);
11366                 }
11367
11368                 goto SPILL_APPEND;
11369
11370             case CEE_CEQ:
11371                 oper = GT_EQ;
11372                 uns  = false;
11373                 goto CMP_2_OPs;
11374             case CEE_CGT_UN:
11375                 oper = GT_GT;
11376                 uns  = true;
11377                 goto CMP_2_OPs;
11378             case CEE_CGT:
11379                 oper = GT_GT;
11380                 uns  = false;
11381                 goto CMP_2_OPs;
11382             case CEE_CLT_UN:
11383                 oper = GT_LT;
11384                 uns  = true;
11385                 goto CMP_2_OPs;
11386             case CEE_CLT:
11387                 oper = GT_LT;
11388                 uns  = false;
11389                 goto CMP_2_OPs;
11390
11391             CMP_2_OPs:
11392                 if (tiVerificationNeeded)
11393                 {
11394                     verVerifyCond(impStackTop(1).seTypeInfo, impStackTop().seTypeInfo, opcode);
11395                     tiRetVal = typeInfo(TI_INT);
11396                 }
11397
11398                 op2 = impPopStack().val;
11399                 op1 = impPopStack().val;
11400
11401 #ifdef _TARGET_64BIT_
11402                 if (varTypeIsI(op1->TypeGet()) && (genActualType(op2->TypeGet()) == TYP_INT))
11403                 {
11404                     op2 = gtNewCastNode(TYP_I_IMPL, op2, (var_types)(uns ? TYP_U_IMPL : TYP_I_IMPL));
11405                 }
11406                 else if (varTypeIsI(op2->TypeGet()) && (genActualType(op1->TypeGet()) == TYP_INT))
11407                 {
11408                     op1 = gtNewCastNode(TYP_I_IMPL, op1, (var_types)(uns ? TYP_U_IMPL : TYP_I_IMPL));
11409                 }
11410 #endif // _TARGET_64BIT_
11411
11412                 assertImp(genActualType(op1->TypeGet()) == genActualType(op2->TypeGet()) ||
11413                           varTypeIsI(op1->TypeGet()) && varTypeIsI(op2->TypeGet()) ||
11414                           varTypeIsFloating(op1->gtType) && varTypeIsFloating(op2->gtType));
11415
11416                 /* Create the comparison node */
11417
11418                 op1 = gtNewOperNode(oper, TYP_INT, op1, op2);
11419
11420                 /* TODO: setting both flags when only one is appropriate */
11421                 if (opcode == CEE_CGT_UN || opcode == CEE_CLT_UN)
11422                 {
11423                     op1->gtFlags |= GTF_RELOP_NAN_UN | GTF_UNSIGNED;
11424                 }
11425
11426                 impPushOnStack(op1, tiRetVal);
11427                 break;
11428
11429             case CEE_BEQ_S:
11430             case CEE_BEQ:
11431                 oper = GT_EQ;
11432                 goto CMP_2_OPs_AND_BR;
11433
11434             case CEE_BGE_S:
11435             case CEE_BGE:
11436                 oper = GT_GE;
11437                 goto CMP_2_OPs_AND_BR;
11438
11439             case CEE_BGE_UN_S:
11440             case CEE_BGE_UN:
11441                 oper = GT_GE;
11442                 goto CMP_2_OPs_AND_BR_UN;
11443
11444             case CEE_BGT_S:
11445             case CEE_BGT:
11446                 oper = GT_GT;
11447                 goto CMP_2_OPs_AND_BR;
11448
11449             case CEE_BGT_UN_S:
11450             case CEE_BGT_UN:
11451                 oper = GT_GT;
11452                 goto CMP_2_OPs_AND_BR_UN;
11453
11454             case CEE_BLE_S:
11455             case CEE_BLE:
11456                 oper = GT_LE;
11457                 goto CMP_2_OPs_AND_BR;
11458
11459             case CEE_BLE_UN_S:
11460             case CEE_BLE_UN:
11461                 oper = GT_LE;
11462                 goto CMP_2_OPs_AND_BR_UN;
11463
11464             case CEE_BLT_S:
11465             case CEE_BLT:
11466                 oper = GT_LT;
11467                 goto CMP_2_OPs_AND_BR;
11468
11469             case CEE_BLT_UN_S:
11470             case CEE_BLT_UN:
11471                 oper = GT_LT;
11472                 goto CMP_2_OPs_AND_BR_UN;
11473
11474             case CEE_BNE_UN_S:
11475             case CEE_BNE_UN:
11476                 oper = GT_NE;
11477                 goto CMP_2_OPs_AND_BR_UN;
11478
11479             CMP_2_OPs_AND_BR_UN:
11480                 uns       = true;
11481                 unordered = true;
11482                 goto CMP_2_OPs_AND_BR_ALL;
11483             CMP_2_OPs_AND_BR:
11484                 uns       = false;
11485                 unordered = false;
11486                 goto CMP_2_OPs_AND_BR_ALL;
11487             CMP_2_OPs_AND_BR_ALL:
11488
11489                 if (tiVerificationNeeded)
11490                 {
11491                     verVerifyCond(impStackTop(1).seTypeInfo, impStackTop().seTypeInfo, opcode);
11492                 }
11493
11494                 /* Pull two values */
11495                 op2 = impPopStack().val;
11496                 op1 = impPopStack().val;
11497
11498 #ifdef _TARGET_64BIT_
11499                 if ((op1->TypeGet() == TYP_I_IMPL) && (genActualType(op2->TypeGet()) == TYP_INT))
11500                 {
11501                     op2 = gtNewCastNode(TYP_I_IMPL, op2, (var_types)(uns ? TYP_U_IMPL : TYP_I_IMPL));
11502                 }
11503                 else if ((op2->TypeGet() == TYP_I_IMPL) && (genActualType(op1->TypeGet()) == TYP_INT))
11504                 {
11505                     op1 = gtNewCastNode(TYP_I_IMPL, op1, (var_types)(uns ? TYP_U_IMPL : TYP_I_IMPL));
11506                 }
11507 #endif // _TARGET_64BIT_
11508
11509                 assertImp(genActualType(op1->TypeGet()) == genActualType(op2->TypeGet()) ||
11510                           varTypeIsI(op1->TypeGet()) && varTypeIsI(op2->TypeGet()) ||
11511                           varTypeIsFloating(op1->gtType) && varTypeIsFloating(op2->gtType));
11512
11513                 if (!opts.MinOpts() && !opts.compDbgCode && block->bbJumpDest == block->bbNext)
11514                 {
11515                     block->bbJumpKind = BBJ_NONE;
11516
11517                     if (op1->gtFlags & GTF_GLOB_EFFECT)
11518                     {
11519                         impSpillSideEffects(false, (unsigned)CHECK_SPILL_ALL DEBUGARG(
11520                                                        "Branch to next Optimization, op1 side effect"));
11521                         impAppendTree(gtUnusedValNode(op1), (unsigned)CHECK_SPILL_NONE, impCurStmtOffs);
11522                     }
11523                     if (op2->gtFlags & GTF_GLOB_EFFECT)
11524                     {
11525                         impSpillSideEffects(false, (unsigned)CHECK_SPILL_ALL DEBUGARG(
11526                                                        "Branch to next Optimization, op2 side effect"));
11527                         impAppendTree(gtUnusedValNode(op2), (unsigned)CHECK_SPILL_NONE, impCurStmtOffs);
11528                     }
11529
11530 #ifdef DEBUG
11531                     if ((op1->gtFlags | op2->gtFlags) & GTF_GLOB_EFFECT)
11532                     {
11533                         impNoteLastILoffs();
11534                     }
11535 #endif
11536                     break;
11537                 }
11538 #if !FEATURE_X87_DOUBLES
11539                 // We can generate an compare of different sized floating point op1 and op2
11540                 // We insert a cast
11541                 //
11542                 if (varTypeIsFloating(op1->TypeGet()))
11543                 {
11544                     if (op1->TypeGet() != op2->TypeGet())
11545                     {
11546                         assert(varTypeIsFloating(op2->TypeGet()));
11547
11548                         // say op1=double, op2=float. To avoid loss of precision
11549                         // while comparing, op2 is converted to double and double
11550                         // comparison is done.
11551                         if (op1->TypeGet() == TYP_DOUBLE)
11552                         {
11553                             // We insert a cast of op2 to TYP_DOUBLE
11554                             op2 = gtNewCastNode(TYP_DOUBLE, op2, TYP_DOUBLE);
11555                         }
11556                         else if (op2->TypeGet() == TYP_DOUBLE)
11557                         {
11558                             // We insert a cast of op1 to TYP_DOUBLE
11559                             op1 = gtNewCastNode(TYP_DOUBLE, op1, TYP_DOUBLE);
11560                         }
11561                     }
11562                 }
11563 #endif // !FEATURE_X87_DOUBLES
11564
11565                 /* Create and append the operator */
11566
11567                 op1 = gtNewOperNode(oper, TYP_INT, op1, op2);
11568
11569                 if (uns)
11570                 {
11571                     op1->gtFlags |= GTF_UNSIGNED;
11572                 }
11573
11574                 if (unordered)
11575                 {
11576                     op1->gtFlags |= GTF_RELOP_NAN_UN;
11577                 }
11578
11579                 goto COND_JUMP;
11580
11581             case CEE_SWITCH:
11582                 assert(!compIsForInlining());
11583
11584                 if (tiVerificationNeeded)
11585                 {
11586                     Verify(impStackTop().seTypeInfo.IsType(TI_INT), "Bad switch val");
11587                 }
11588                 /* Pop the switch value off the stack */
11589                 op1 = impPopStack().val;
11590                 assertImp(genActualTypeIsIntOrI(op1->TypeGet()));
11591
11592 #ifdef _TARGET_64BIT_
11593                 // Widen 'op1' on 64-bit targets
11594                 if (op1->TypeGet() != TYP_I_IMPL)
11595                 {
11596                     if (op1->OperGet() == GT_CNS_INT)
11597                     {
11598                         op1->gtType = TYP_I_IMPL;
11599                     }
11600                     else
11601                     {
11602                         op1 = gtNewCastNode(TYP_I_IMPL, op1, TYP_I_IMPL);
11603                     }
11604                 }
11605 #endif // _TARGET_64BIT_
11606                 assert(genActualType(op1->TypeGet()) == TYP_I_IMPL);
11607
11608                 /* We can create a switch node */
11609
11610                 op1 = gtNewOperNode(GT_SWITCH, TYP_VOID, op1);
11611
11612                 val = (int)getU4LittleEndian(codeAddr);
11613                 codeAddr += 4 + val * 4; // skip over the switch-table
11614
11615                 goto SPILL_APPEND;
11616
11617             /************************** Casting OPCODES ***************************/
11618
11619             case CEE_CONV_OVF_I1:
11620                 lclTyp = TYP_BYTE;
11621                 goto CONV_OVF;
11622             case CEE_CONV_OVF_I2:
11623                 lclTyp = TYP_SHORT;
11624                 goto CONV_OVF;
11625             case CEE_CONV_OVF_I:
11626                 lclTyp = TYP_I_IMPL;
11627                 goto CONV_OVF;
11628             case CEE_CONV_OVF_I4:
11629                 lclTyp = TYP_INT;
11630                 goto CONV_OVF;
11631             case CEE_CONV_OVF_I8:
11632                 lclTyp = TYP_LONG;
11633                 goto CONV_OVF;
11634
11635             case CEE_CONV_OVF_U1:
11636                 lclTyp = TYP_UBYTE;
11637                 goto CONV_OVF;
11638             case CEE_CONV_OVF_U2:
11639                 lclTyp = TYP_CHAR;
11640                 goto CONV_OVF;
11641             case CEE_CONV_OVF_U:
11642                 lclTyp = TYP_U_IMPL;
11643                 goto CONV_OVF;
11644             case CEE_CONV_OVF_U4:
11645                 lclTyp = TYP_UINT;
11646                 goto CONV_OVF;
11647             case CEE_CONV_OVF_U8:
11648                 lclTyp = TYP_ULONG;
11649                 goto CONV_OVF;
11650
11651             case CEE_CONV_OVF_I1_UN:
11652                 lclTyp = TYP_BYTE;
11653                 goto CONV_OVF_UN;
11654             case CEE_CONV_OVF_I2_UN:
11655                 lclTyp = TYP_SHORT;
11656                 goto CONV_OVF_UN;
11657             case CEE_CONV_OVF_I_UN:
11658                 lclTyp = TYP_I_IMPL;
11659                 goto CONV_OVF_UN;
11660             case CEE_CONV_OVF_I4_UN:
11661                 lclTyp = TYP_INT;
11662                 goto CONV_OVF_UN;
11663             case CEE_CONV_OVF_I8_UN:
11664                 lclTyp = TYP_LONG;
11665                 goto CONV_OVF_UN;
11666
11667             case CEE_CONV_OVF_U1_UN:
11668                 lclTyp = TYP_UBYTE;
11669                 goto CONV_OVF_UN;
11670             case CEE_CONV_OVF_U2_UN:
11671                 lclTyp = TYP_CHAR;
11672                 goto CONV_OVF_UN;
11673             case CEE_CONV_OVF_U_UN:
11674                 lclTyp = TYP_U_IMPL;
11675                 goto CONV_OVF_UN;
11676             case CEE_CONV_OVF_U4_UN:
11677                 lclTyp = TYP_UINT;
11678                 goto CONV_OVF_UN;
11679             case CEE_CONV_OVF_U8_UN:
11680                 lclTyp = TYP_ULONG;
11681                 goto CONV_OVF_UN;
11682
11683             CONV_OVF_UN:
11684                 uns = true;
11685                 goto CONV_OVF_COMMON;
11686             CONV_OVF:
11687                 uns = false;
11688                 goto CONV_OVF_COMMON;
11689
11690             CONV_OVF_COMMON:
11691                 ovfl = true;
11692                 goto _CONV;
11693
11694             case CEE_CONV_I1:
11695                 lclTyp = TYP_BYTE;
11696                 goto CONV;
11697             case CEE_CONV_I2:
11698                 lclTyp = TYP_SHORT;
11699                 goto CONV;
11700             case CEE_CONV_I:
11701                 lclTyp = TYP_I_IMPL;
11702                 goto CONV;
11703             case CEE_CONV_I4:
11704                 lclTyp = TYP_INT;
11705                 goto CONV;
11706             case CEE_CONV_I8:
11707                 lclTyp = TYP_LONG;
11708                 goto CONV;
11709
11710             case CEE_CONV_U1:
11711                 lclTyp = TYP_UBYTE;
11712                 goto CONV;
11713             case CEE_CONV_U2:
11714                 lclTyp = TYP_CHAR;
11715                 goto CONV;
11716 #if (REGSIZE_BYTES == 8)
11717             case CEE_CONV_U:
11718                 lclTyp = TYP_U_IMPL;
11719                 goto CONV_UN;
11720 #else
11721             case CEE_CONV_U:
11722                 lclTyp = TYP_U_IMPL;
11723                 goto CONV;
11724 #endif
11725             case CEE_CONV_U4:
11726                 lclTyp = TYP_UINT;
11727                 goto CONV;
11728             case CEE_CONV_U8:
11729                 lclTyp = TYP_ULONG;
11730                 goto CONV_UN;
11731
11732             case CEE_CONV_R4:
11733                 lclTyp = TYP_FLOAT;
11734                 goto CONV;
11735             case CEE_CONV_R8:
11736                 lclTyp = TYP_DOUBLE;
11737                 goto CONV;
11738
11739             case CEE_CONV_R_UN:
11740                 lclTyp = TYP_DOUBLE;
11741                 goto CONV_UN;
11742
11743             CONV_UN:
11744                 uns  = true;
11745                 ovfl = false;
11746                 goto _CONV;
11747
11748             CONV:
11749                 uns  = false;
11750                 ovfl = false;
11751                 goto _CONV;
11752
11753             _CONV:
11754                 // just check that we have a number on the stack
11755                 if (tiVerificationNeeded)
11756                 {
11757                     const typeInfo& tiVal = impStackTop().seTypeInfo;
11758                     Verify(tiVal.IsNumberType(), "bad arg");
11759
11760 #ifdef _TARGET_64BIT_
11761                     bool isNative = false;
11762
11763                     switch (opcode)
11764                     {
11765                         case CEE_CONV_OVF_I:
11766                         case CEE_CONV_OVF_I_UN:
11767                         case CEE_CONV_I:
11768                         case CEE_CONV_OVF_U:
11769                         case CEE_CONV_OVF_U_UN:
11770                         case CEE_CONV_U:
11771                             isNative = true;
11772                         default:
11773                             // leave 'isNative' = false;
11774                             break;
11775                     }
11776                     if (isNative)
11777                     {
11778                         tiRetVal = typeInfo::nativeInt();
11779                     }
11780                     else
11781 #endif // _TARGET_64BIT_
11782                     {
11783                         tiRetVal = typeInfo(lclTyp).NormaliseForStack();
11784                     }
11785                 }
11786
11787                 // only converts from FLOAT or DOUBLE to an integer type
11788                 // and converts from  ULONG (or LONG on ARM) to DOUBLE are morphed to calls
11789
11790                 if (varTypeIsFloating(lclTyp))
11791                 {
11792                     callNode = varTypeIsLong(impStackTop().val) || uns // uint->dbl gets turned into uint->long->dbl
11793 #ifdef _TARGET_64BIT_
11794                                // TODO-ARM64-Bug?: This was AMD64; I enabled it for ARM64 also. OK?
11795                                // TYP_BYREF could be used as TYP_I_IMPL which is long.
11796                                // TODO-CQ: remove this when we lower casts long/ulong --> float/double
11797                                // and generate SSE2 code instead of going through helper calls.
11798                                || (impStackTop().val->TypeGet() == TYP_BYREF)
11799 #endif
11800                         ;
11801                 }
11802                 else
11803                 {
11804                     callNode = varTypeIsFloating(impStackTop().val->TypeGet());
11805                 }
11806
11807                 // At this point uns, ovf, callNode all set
11808
11809                 op1 = impPopStack().val;
11810                 impBashVarAddrsToI(op1);
11811
11812                 if (varTypeIsSmall(lclTyp) && !ovfl && op1->gtType == TYP_INT && op1->gtOper == GT_AND)
11813                 {
11814                     op2 = op1->gtOp.gtOp2;
11815
11816                     if (op2->gtOper == GT_CNS_INT)
11817                     {
11818                         ssize_t ival = op2->gtIntCon.gtIconVal;
11819                         ssize_t mask, umask;
11820
11821                         switch (lclTyp)
11822                         {
11823                             case TYP_BYTE:
11824                             case TYP_UBYTE:
11825                                 mask  = 0x00FF;
11826                                 umask = 0x007F;
11827                                 break;
11828                             case TYP_CHAR:
11829                             case TYP_SHORT:
11830                                 mask  = 0xFFFF;
11831                                 umask = 0x7FFF;
11832                                 break;
11833
11834                             default:
11835                                 assert(!"unexpected type");
11836                                 return;
11837                         }
11838
11839                         if (((ival & umask) == ival) || ((ival & mask) == ival && uns))
11840                         {
11841                             /* Toss the cast, it's a waste of time */
11842
11843                             impPushOnStack(op1, tiRetVal);
11844                             break;
11845                         }
11846                         else if (ival == mask)
11847                         {
11848                             /* Toss the masking, it's a waste of time, since
11849                                we sign-extend from the small value anyways */
11850
11851                             op1 = op1->gtOp.gtOp1;
11852                         }
11853                     }
11854                 }
11855
11856                 /*  The 'op2' sub-operand of a cast is the 'real' type number,
11857                     since the result of a cast to one of the 'small' integer
11858                     types is an integer.
11859                  */
11860
11861                 type = genActualType(lclTyp);
11862
11863 #if SMALL_TREE_NODES
11864                 if (callNode)
11865                 {
11866                     op1 = gtNewCastNodeL(type, op1, lclTyp);
11867                 }
11868                 else
11869 #endif // SMALL_TREE_NODES
11870                 {
11871                     op1 = gtNewCastNode(type, op1, lclTyp);
11872                 }
11873
11874                 if (ovfl)
11875                 {
11876                     op1->gtFlags |= (GTF_OVERFLOW | GTF_EXCEPT);
11877                 }
11878                 if (uns)
11879                 {
11880                     op1->gtFlags |= GTF_UNSIGNED;
11881                 }
11882                 impPushOnStack(op1, tiRetVal);
11883                 break;
11884
11885             case CEE_NEG:
11886                 if (tiVerificationNeeded)
11887                 {
11888                     tiRetVal = impStackTop().seTypeInfo;
11889                     Verify(tiRetVal.IsNumberType(), "Bad arg");
11890                 }
11891
11892                 op1 = impPopStack().val;
11893                 impBashVarAddrsToI(op1, nullptr);
11894                 impPushOnStack(gtNewOperNode(GT_NEG, genActualType(op1->gtType), op1), tiRetVal);
11895                 break;
11896
11897             case CEE_POP:
11898                 if (tiVerificationNeeded)
11899                 {
11900                     impStackTop(0);
11901                 }
11902
11903                 /* Pull the top value from the stack */
11904
11905                 op1 = impPopStack(clsHnd).val;
11906
11907                 /* Get hold of the type of the value being duplicated */
11908
11909                 lclTyp = genActualType(op1->gtType);
11910
11911                 /* Does the value have any side effects? */
11912
11913                 if ((op1->gtFlags & GTF_SIDE_EFFECT) || opts.compDbgCode)
11914                 {
11915                     // Since we are throwing away the value, just normalize
11916                     // it to its address.  This is more efficient.
11917
11918                     if (varTypeIsStruct(op1))
11919                     {
11920 #ifdef FEATURE_UNIX_AMD64_STRUCT_PASSING
11921                         // Non-calls, such as obj or ret_expr, have to go through this.
11922                         // Calls with large struct return value have to go through this.
11923                         // Helper calls with small struct return value also have to go
11924                         // through this since they do not follow Unix calling convention.
11925                         if (op1->gtOper != GT_CALL || !IsMultiRegReturnedType(clsHnd) ||
11926                             op1->AsCall()->gtCallType == CT_HELPER)
11927 #endif // FEATURE_UNIX_AMD64_STRUCT_PASSING
11928                         {
11929                             op1 = impGetStructAddr(op1, clsHnd, (unsigned)CHECK_SPILL_ALL, false);
11930                         }
11931                     }
11932
11933                     // If op1 is non-overflow cast, throw it away since it is useless.
11934                     // Another reason for throwing away the useless cast is in the context of
11935                     // implicit tail calls when the operand of pop is GT_CAST(GT_CALL(..)).
11936                     // The cast gets added as part of importing GT_CALL, which gets in the way
11937                     // of fgMorphCall() on the forms of tail call nodes that we assert.
11938                     if ((op1->gtOper == GT_CAST) && !op1->gtOverflow())
11939                     {
11940                         op1 = op1->gtOp.gtOp1;
11941                     }
11942
11943                     // If 'op1' is an expression, create an assignment node.
11944                     // Helps analyses (like CSE) to work fine.
11945
11946                     if (op1->gtOper != GT_CALL)
11947                     {
11948                         op1 = gtUnusedValNode(op1);
11949                     }
11950
11951                     /* Append the value to the tree list */
11952                     goto SPILL_APPEND;
11953                 }
11954
11955                 /* No side effects - just throw the <BEEP> thing away */
11956                 break;
11957
11958             case CEE_DUP:
11959
11960                 if (tiVerificationNeeded)
11961                 {
11962                     // Dup could start the begining of delegate creation sequence, remember that
11963                     delegateCreateStart = codeAddr - 1;
11964                     impStackTop(0);
11965                 }
11966
11967                 // Convert a (dup, stloc) sequence into a (stloc, ldloc) sequence in the following cases:
11968                 // - If this is non-debug code - so that CSE will recognize the two as equal.
11969                 //   This helps eliminate a redundant bounds check in cases such as:
11970                 //       ariba[i+3] += some_value;
11971                 // - If the top of the stack is a non-leaf that may be expensive to clone.
11972
11973                 if (codeAddr < codeEndp)
11974                 {
11975                     OPCODE nextOpcode = (OPCODE)getU1LittleEndian(codeAddr);
11976                     if (impIsAnySTLOC(nextOpcode))
11977                     {
11978                         if (!opts.compDbgCode)
11979                         {
11980                             insertLdloc = true;
11981                             break;
11982                         }
11983                         GenTree* stackTop = impStackTop().val;
11984                         if (!stackTop->IsIntegralConst(0) && !stackTop->IsFPZero() && !stackTop->IsLocal())
11985                         {
11986                             insertLdloc = true;
11987                             break;
11988                         }
11989                     }
11990                 }
11991
11992                 /* Pull the top value from the stack */
11993                 op1 = impPopStack(tiRetVal);
11994
11995                 /* Clone the value */
11996                 op1 = impCloneExpr(op1, &op2, tiRetVal.GetClassHandle(), (unsigned)CHECK_SPILL_ALL,
11997                                    nullptr DEBUGARG("DUP instruction"));
11998
11999                 /* Either the tree started with no global effects, or impCloneExpr
12000                    evaluated the tree to a temp and returned two copies of that
12001                    temp. Either way, neither op1 nor op2 should have side effects.
12002                 */
12003                 assert(!(op1->gtFlags & GTF_GLOB_EFFECT) && !(op2->gtFlags & GTF_GLOB_EFFECT));
12004
12005                 /* Push the tree/temp back on the stack */
12006                 impPushOnStack(op1, tiRetVal);
12007
12008                 /* Push the copy on the stack */
12009                 impPushOnStack(op2, tiRetVal);
12010
12011                 break;
12012
12013             case CEE_STIND_I1:
12014                 lclTyp = TYP_BYTE;
12015                 goto STIND;
12016             case CEE_STIND_I2:
12017                 lclTyp = TYP_SHORT;
12018                 goto STIND;
12019             case CEE_STIND_I4:
12020                 lclTyp = TYP_INT;
12021                 goto STIND;
12022             case CEE_STIND_I8:
12023                 lclTyp = TYP_LONG;
12024                 goto STIND;
12025             case CEE_STIND_I:
12026                 lclTyp = TYP_I_IMPL;
12027                 goto STIND;
12028             case CEE_STIND_REF:
12029                 lclTyp = TYP_REF;
12030                 goto STIND;
12031             case CEE_STIND_R4:
12032                 lclTyp = TYP_FLOAT;
12033                 goto STIND;
12034             case CEE_STIND_R8:
12035                 lclTyp = TYP_DOUBLE;
12036                 goto STIND;
12037             STIND:
12038
12039                 if (tiVerificationNeeded)
12040                 {
12041                     typeInfo instrType(lclTyp);
12042 #ifdef _TARGET_64BIT_
12043                     if (opcode == CEE_STIND_I)
12044                     {
12045                         instrType = typeInfo::nativeInt();
12046                     }
12047 #endif // _TARGET_64BIT_
12048                     verVerifySTIND(impStackTop(1).seTypeInfo, impStackTop(0).seTypeInfo, instrType);
12049                 }
12050                 else
12051                 {
12052                     compUnsafeCastUsed = true; // Have to go conservative
12053                 }
12054
12055             STIND_POST_VERIFY:
12056
12057                 op2 = impPopStack().val; // value to store
12058                 op1 = impPopStack().val; // address to store to
12059
12060                 // you can indirect off of a TYP_I_IMPL (if we are in C) or a BYREF
12061                 assertImp(genActualType(op1->gtType) == TYP_I_IMPL || op1->gtType == TYP_BYREF);
12062
12063                 impBashVarAddrsToI(op1, op2);
12064
12065                 op2 = impImplicitR4orR8Cast(op2, lclTyp);
12066
12067 #ifdef _TARGET_64BIT_
12068                 // Automatic upcast for a GT_CNS_INT into TYP_I_IMPL
12069                 if ((op2->OperGet() == GT_CNS_INT) && varTypeIsI(lclTyp) && !varTypeIsI(op2->gtType))
12070                 {
12071                     op2->gtType = TYP_I_IMPL;
12072                 }
12073                 else
12074                 {
12075                     // Allow a downcast of op2 from TYP_I_IMPL into a 32-bit Int for x86 JIT compatiblity
12076                     //
12077                     if (varTypeIsI(op2->gtType) && (genActualType(lclTyp) == TYP_INT))
12078                     {
12079                         assert(!tiVerificationNeeded); // We should have thrown the VerificationException before.
12080                         op2 = gtNewCastNode(TYP_INT, op2, TYP_INT);
12081                     }
12082                     // Allow an upcast of op2 from a 32-bit Int into TYP_I_IMPL for x86 JIT compatiblity
12083                     //
12084                     if (varTypeIsI(lclTyp) && (genActualType(op2->gtType) == TYP_INT))
12085                     {
12086                         assert(!tiVerificationNeeded); // We should have thrown the VerificationException before.
12087                         op2 = gtNewCastNode(TYP_I_IMPL, op2, TYP_I_IMPL);
12088                     }
12089                 }
12090 #endif // _TARGET_64BIT_
12091
12092                 if (opcode == CEE_STIND_REF)
12093                 {
12094                     // STIND_REF can be used to store TYP_INT, TYP_I_IMPL, TYP_REF, or TYP_BYREF
12095                     assertImp(varTypeIsIntOrI(op2->gtType) || varTypeIsGC(op2->gtType));
12096                     lclTyp = genActualType(op2->TypeGet());
12097                 }
12098
12099 // Check target type.
12100 #ifdef DEBUG
12101                 if (op2->gtType == TYP_BYREF || lclTyp == TYP_BYREF)
12102                 {
12103                     if (op2->gtType == TYP_BYREF)
12104                     {
12105                         assertImp(lclTyp == TYP_BYREF || lclTyp == TYP_I_IMPL);
12106                     }
12107                     else if (lclTyp == TYP_BYREF)
12108                     {
12109                         assertImp(op2->gtType == TYP_BYREF || varTypeIsIntOrI(op2->gtType));
12110                     }
12111                 }
12112                 else
12113                 {
12114                     assertImp(genActualType(op2->gtType) == genActualType(lclTyp) ||
12115                               ((lclTyp == TYP_I_IMPL) && (genActualType(op2->gtType) == TYP_INT)) ||
12116                               (varTypeIsFloating(op2->gtType) && varTypeIsFloating(lclTyp)));
12117                 }
12118 #endif
12119
12120                 op1 = gtNewOperNode(GT_IND, lclTyp, op1);
12121
12122                 // stind could point anywhere, example a boxed class static int
12123                 op1->gtFlags |= GTF_IND_TGTANYWHERE;
12124
12125                 if (prefixFlags & PREFIX_VOLATILE)
12126                 {
12127                     assert(op1->OperGet() == GT_IND);
12128                     op1->gtFlags |= GTF_DONT_CSE;      // Can't CSE a volatile
12129                     op1->gtFlags |= GTF_ORDER_SIDEEFF; // Prevent this from being reordered
12130                     op1->gtFlags |= GTF_IND_VOLATILE;
12131                 }
12132
12133                 if (prefixFlags & PREFIX_UNALIGNED)
12134                 {
12135                     assert(op1->OperGet() == GT_IND);
12136                     op1->gtFlags |= GTF_IND_UNALIGNED;
12137                 }
12138
12139                 op1 = gtNewAssignNode(op1, op2);
12140                 op1->gtFlags |= GTF_EXCEPT | GTF_GLOB_REF;
12141
12142                 // Spill side-effects AND global-data-accesses
12143                 if (verCurrentState.esStackDepth > 0)
12144                 {
12145                     impSpillSideEffects(true, (unsigned)CHECK_SPILL_ALL DEBUGARG("spill side effects before STIND"));
12146                 }
12147
12148                 goto APPEND;
12149
12150             case CEE_LDIND_I1:
12151                 lclTyp = TYP_BYTE;
12152                 goto LDIND;
12153             case CEE_LDIND_I2:
12154                 lclTyp = TYP_SHORT;
12155                 goto LDIND;
12156             case CEE_LDIND_U4:
12157             case CEE_LDIND_I4:
12158                 lclTyp = TYP_INT;
12159                 goto LDIND;
12160             case CEE_LDIND_I8:
12161                 lclTyp = TYP_LONG;
12162                 goto LDIND;
12163             case CEE_LDIND_REF:
12164                 lclTyp = TYP_REF;
12165                 goto LDIND;
12166             case CEE_LDIND_I:
12167                 lclTyp = TYP_I_IMPL;
12168                 goto LDIND;
12169             case CEE_LDIND_R4:
12170                 lclTyp = TYP_FLOAT;
12171                 goto LDIND;
12172             case CEE_LDIND_R8:
12173                 lclTyp = TYP_DOUBLE;
12174                 goto LDIND;
12175             case CEE_LDIND_U1:
12176                 lclTyp = TYP_UBYTE;
12177                 goto LDIND;
12178             case CEE_LDIND_U2:
12179                 lclTyp = TYP_CHAR;
12180                 goto LDIND;
12181             LDIND:
12182
12183                 if (tiVerificationNeeded)
12184                 {
12185                     typeInfo lclTiType(lclTyp);
12186 #ifdef _TARGET_64BIT_
12187                     if (opcode == CEE_LDIND_I)
12188                     {
12189                         lclTiType = typeInfo::nativeInt();
12190                     }
12191 #endif // _TARGET_64BIT_
12192                     tiRetVal = verVerifyLDIND(impStackTop().seTypeInfo, lclTiType);
12193                     tiRetVal.NormaliseForStack();
12194                 }
12195                 else
12196                 {
12197                     compUnsafeCastUsed = true; // Have to go conservative
12198                 }
12199
12200             LDIND_POST_VERIFY:
12201
12202                 op1 = impPopStack().val; // address to load from
12203                 impBashVarAddrsToI(op1);
12204
12205 #ifdef _TARGET_64BIT_
12206                 // Allow an upcast of op1 from a 32-bit Int into TYP_I_IMPL for x86 JIT compatiblity
12207                 //
12208                 if (genActualType(op1->gtType) == TYP_INT)
12209                 {
12210                     assert(!tiVerificationNeeded); // We should have thrown the VerificationException before.
12211                     op1 = gtNewCastNode(TYP_I_IMPL, op1, TYP_I_IMPL);
12212                 }
12213 #endif
12214
12215                 assertImp(genActualType(op1->gtType) == TYP_I_IMPL || op1->gtType == TYP_BYREF);
12216
12217                 op1 = gtNewOperNode(GT_IND, lclTyp, op1);
12218
12219                 // ldind could point anywhere, example a boxed class static int
12220                 op1->gtFlags |= (GTF_EXCEPT | GTF_GLOB_REF | GTF_IND_TGTANYWHERE);
12221
12222                 if (prefixFlags & PREFIX_VOLATILE)
12223                 {
12224                     assert(op1->OperGet() == GT_IND);
12225                     op1->gtFlags |= GTF_DONT_CSE;      // Can't CSE a volatile
12226                     op1->gtFlags |= GTF_ORDER_SIDEEFF; // Prevent this from being reordered
12227                     op1->gtFlags |= GTF_IND_VOLATILE;
12228                 }
12229
12230                 if (prefixFlags & PREFIX_UNALIGNED)
12231                 {
12232                     assert(op1->OperGet() == GT_IND);
12233                     op1->gtFlags |= GTF_IND_UNALIGNED;
12234                 }
12235
12236                 impPushOnStack(op1, tiRetVal);
12237
12238                 break;
12239
12240             case CEE_UNALIGNED:
12241
12242                 assert(sz == 1);
12243                 val = getU1LittleEndian(codeAddr);
12244                 ++codeAddr;
12245                 JITDUMP(" %u", val);
12246                 if ((val != 1) && (val != 2) && (val != 4))
12247                 {
12248                     BADCODE("Alignment unaligned. must be 1, 2, or 4");
12249                 }
12250
12251                 Verify(!(prefixFlags & PREFIX_UNALIGNED), "Multiple unaligned. prefixes");
12252                 prefixFlags |= PREFIX_UNALIGNED;
12253
12254                 impValidateMemoryAccessOpcode(codeAddr, codeEndp, false);
12255
12256             PREFIX:
12257                 opcode = (OPCODE)getU1LittleEndian(codeAddr);
12258                 codeAddr += sizeof(__int8);
12259                 opcodeOffs = (IL_OFFSET)(codeAddr - info.compCode);
12260                 goto DECODE_OPCODE;
12261
12262             case CEE_VOLATILE:
12263
12264                 Verify(!(prefixFlags & PREFIX_VOLATILE), "Multiple volatile. prefixes");
12265                 prefixFlags |= PREFIX_VOLATILE;
12266
12267                 impValidateMemoryAccessOpcode(codeAddr, codeEndp, true);
12268
12269                 assert(sz == 0);
12270                 goto PREFIX;
12271
12272             case CEE_LDFTN:
12273             {
12274                 // Need to do a lookup here so that we perform an access check
12275                 // and do a NOWAY if protections are violated
12276                 _impResolveToken(CORINFO_TOKENKIND_Method);
12277
12278                 JITDUMP(" %08X", resolvedToken.token);
12279
12280                 eeGetCallInfo(&resolvedToken, nullptr /* constraint typeRef*/,
12281                               addVerifyFlag(combine(CORINFO_CALLINFO_SECURITYCHECKS, CORINFO_CALLINFO_LDFTN)),
12282                               &callInfo);
12283
12284                 // This check really only applies to intrinsic Array.Address methods
12285                 if (callInfo.sig.callConv & CORINFO_CALLCONV_PARAMTYPE)
12286                 {
12287                     NO_WAY("Currently do not support LDFTN of Parameterized functions");
12288                 }
12289
12290                 // Do this before DO_LDFTN since CEE_LDVIRTFN does it on its own.
12291                 impHandleAccessAllowed(callInfo.accessAllowed, &callInfo.callsiteCalloutHelper);
12292
12293                 if (tiVerificationNeeded)
12294                 {
12295                     // LDFTN could start the begining of delegate creation sequence, remember that
12296                     delegateCreateStart = codeAddr - 2;
12297
12298                     // check any constraints on the callee's class and type parameters
12299                     VerifyOrReturn(info.compCompHnd->satisfiesClassConstraints(resolvedToken.hClass),
12300                                    "method has unsatisfied class constraints");
12301                     VerifyOrReturn(info.compCompHnd->satisfiesMethodConstraints(resolvedToken.hClass,
12302                                                                                 resolvedToken.hMethod),
12303                                    "method has unsatisfied method constraints");
12304
12305                     mflags = callInfo.verMethodFlags;
12306                     Verify(!(mflags & CORINFO_FLG_CONSTRUCTOR), "LDFTN on a constructor");
12307                 }
12308
12309             DO_LDFTN:
12310                 op1 = impMethodPointer(&resolvedToken, &callInfo);
12311                 if (compDonotInline())
12312                 {
12313                     return;
12314                 }
12315
12316                 impPushOnStack(op1, typeInfo(resolvedToken.hMethod));
12317
12318                 break;
12319             }
12320
12321             case CEE_LDVIRTFTN:
12322             {
12323                 /* Get the method token */
12324
12325                 _impResolveToken(CORINFO_TOKENKIND_Method);
12326
12327                 JITDUMP(" %08X", resolvedToken.token);
12328
12329                 eeGetCallInfo(&resolvedToken, nullptr /* constraint typeRef */,
12330                               addVerifyFlag(combine(combine(CORINFO_CALLINFO_SECURITYCHECKS, CORINFO_CALLINFO_LDFTN),
12331                                                     CORINFO_CALLINFO_CALLVIRT)),
12332                               &callInfo);
12333
12334                 // This check really only applies to intrinsic Array.Address methods
12335                 if (callInfo.sig.callConv & CORINFO_CALLCONV_PARAMTYPE)
12336                 {
12337                     NO_WAY("Currently do not support LDFTN of Parameterized functions");
12338                 }
12339
12340                 mflags = callInfo.methodFlags;
12341
12342                 impHandleAccessAllowed(callInfo.accessAllowed, &callInfo.callsiteCalloutHelper);
12343
12344                 if (compIsForInlining())
12345                 {
12346                     if (mflags & (CORINFO_FLG_FINAL | CORINFO_FLG_STATIC) || !(mflags & CORINFO_FLG_VIRTUAL))
12347                     {
12348                         compInlineResult->NoteFatal(InlineObservation::CALLSITE_LDVIRTFN_ON_NON_VIRTUAL);
12349                         return;
12350                     }
12351                 }
12352
12353                 CORINFO_SIG_INFO& ftnSig = callInfo.sig;
12354
12355                 if (tiVerificationNeeded)
12356                 {
12357
12358                     Verify(ftnSig.hasThis(), "ldvirtftn on a static method");
12359                     Verify(!(mflags & CORINFO_FLG_CONSTRUCTOR), "LDVIRTFTN on a constructor");
12360
12361                     // JIT32 verifier rejects verifiable ldvirtftn pattern
12362                     typeInfo declType =
12363                         verMakeTypeInfo(resolvedToken.hClass, true); // Change TI_STRUCT to TI_REF when necessary
12364
12365                     typeInfo arg = impStackTop().seTypeInfo;
12366                     Verify((arg.IsType(TI_REF) || arg.IsType(TI_NULL)) && tiCompatibleWith(arg, declType, true),
12367                            "bad ldvirtftn");
12368
12369                     CORINFO_CLASS_HANDLE instanceClassHnd = info.compClassHnd;
12370                     if (!(arg.IsType(TI_NULL) || (mflags & CORINFO_FLG_STATIC)))
12371                     {
12372                         instanceClassHnd = arg.GetClassHandleForObjRef();
12373                     }
12374
12375                     // check any constraints on the method's class and type parameters
12376                     VerifyOrReturn(info.compCompHnd->satisfiesClassConstraints(resolvedToken.hClass),
12377                                    "method has unsatisfied class constraints");
12378                     VerifyOrReturn(info.compCompHnd->satisfiesMethodConstraints(resolvedToken.hClass,
12379                                                                                 resolvedToken.hMethod),
12380                                    "method has unsatisfied method constraints");
12381
12382                     if (mflags & CORINFO_FLG_PROTECTED)
12383                     {
12384                         Verify(info.compCompHnd->canAccessFamily(info.compMethodHnd, instanceClassHnd),
12385                                "Accessing protected method through wrong type.");
12386                     }
12387                 }
12388
12389                 /* Get the object-ref */
12390                 op1 = impPopStack().val;
12391                 assertImp(op1->gtType == TYP_REF);
12392
12393                 if (opts.IsReadyToRun())
12394                 {
12395                     if (callInfo.kind != CORINFO_VIRTUALCALL_LDVIRTFTN)
12396                     {
12397                         if (op1->gtFlags & GTF_SIDE_EFFECT)
12398                         {
12399                             op1 = gtUnusedValNode(op1);
12400                             impAppendTree(op1, (unsigned)CHECK_SPILL_ALL, impCurStmtOffs);
12401                         }
12402                         goto DO_LDFTN;
12403                     }
12404                 }
12405                 else if (mflags & (CORINFO_FLG_FINAL | CORINFO_FLG_STATIC) || !(mflags & CORINFO_FLG_VIRTUAL))
12406                 {
12407                     if (op1->gtFlags & GTF_SIDE_EFFECT)
12408                     {
12409                         op1 = gtUnusedValNode(op1);
12410                         impAppendTree(op1, (unsigned)CHECK_SPILL_ALL, impCurStmtOffs);
12411                     }
12412                     goto DO_LDFTN;
12413                 }
12414
12415                 GenTreePtr fptr = impImportLdvirtftn(op1, &resolvedToken, &callInfo);
12416                 if (compDonotInline())
12417                 {
12418                     return;
12419                 }
12420
12421                 impPushOnStack(fptr, typeInfo(resolvedToken.hMethod));
12422
12423                 break;
12424             }
12425
12426             case CEE_CONSTRAINED:
12427
12428                 assertImp(sz == sizeof(unsigned));
12429                 impResolveToken(codeAddr, &constrainedResolvedToken, CORINFO_TOKENKIND_Constrained);
12430                 codeAddr += sizeof(unsigned); // prefix instructions must increment codeAddr manually
12431                 JITDUMP(" (%08X) ", constrainedResolvedToken.token);
12432
12433                 Verify(!(prefixFlags & PREFIX_CONSTRAINED), "Multiple constrained. prefixes");
12434                 prefixFlags |= PREFIX_CONSTRAINED;
12435
12436                 {
12437                     OPCODE actualOpcode = impGetNonPrefixOpcode(codeAddr, codeEndp);
12438                     if (actualOpcode != CEE_CALLVIRT)
12439                     {
12440                         BADCODE("constrained. has to be followed by callvirt");
12441                     }
12442                 }
12443
12444                 goto PREFIX;
12445
12446             case CEE_READONLY:
12447                 JITDUMP(" readonly.");
12448
12449                 Verify(!(prefixFlags & PREFIX_READONLY), "Multiple readonly. prefixes");
12450                 prefixFlags |= PREFIX_READONLY;
12451
12452                 {
12453                     OPCODE actualOpcode = impGetNonPrefixOpcode(codeAddr, codeEndp);
12454                     if (actualOpcode != CEE_LDELEMA && !impOpcodeIsCallOpcode(actualOpcode))
12455                     {
12456                         BADCODE("readonly. has to be followed by ldelema or call");
12457                     }
12458                 }
12459
12460                 assert(sz == 0);
12461                 goto PREFIX;
12462
12463             case CEE_TAILCALL:
12464                 JITDUMP(" tail.");
12465
12466                 Verify(!(prefixFlags & PREFIX_TAILCALL_EXPLICIT), "Multiple tailcall. prefixes");
12467                 prefixFlags |= PREFIX_TAILCALL_EXPLICIT;
12468
12469                 {
12470                     OPCODE actualOpcode = impGetNonPrefixOpcode(codeAddr, codeEndp);
12471                     if (!impOpcodeIsCallOpcode(actualOpcode))
12472                     {
12473                         BADCODE("tailcall. has to be followed by call, callvirt or calli");
12474                     }
12475                 }
12476                 assert(sz == 0);
12477                 goto PREFIX;
12478
12479             case CEE_NEWOBJ:
12480
12481                 /* Since we will implicitly insert newObjThisPtr at the start of the
12482                    argument list, spill any GTF_ORDER_SIDEEFF */
12483                 impSpillSpecialSideEff();
12484
12485                 /* NEWOBJ does not respond to TAIL */
12486                 prefixFlags &= ~PREFIX_TAILCALL_EXPLICIT;
12487
12488                 /* NEWOBJ does not respond to CONSTRAINED */
12489                 prefixFlags &= ~PREFIX_CONSTRAINED;
12490
12491 #if COR_JIT_EE_VERSION > 460
12492                 _impResolveToken(CORINFO_TOKENKIND_NewObj);
12493 #else
12494                 _impResolveToken(CORINFO_TOKENKIND_Method);
12495 #endif
12496
12497                 eeGetCallInfo(&resolvedToken, nullptr /* constraint typeRef*/,
12498                               addVerifyFlag(combine(CORINFO_CALLINFO_SECURITYCHECKS, CORINFO_CALLINFO_ALLOWINSTPARAM)),
12499                               &callInfo);
12500
12501                 if (compIsForInlining())
12502                 {
12503                     if (impInlineInfo->inlineCandidateInfo->dwRestrictions & INLINE_RESPECT_BOUNDARY)
12504                     {
12505                         // Check to see if this call violates the boundary.
12506                         compInlineResult->NoteFatal(InlineObservation::CALLSITE_CROSS_BOUNDARY_SECURITY);
12507                         return;
12508                     }
12509                 }
12510
12511                 mflags = callInfo.methodFlags;
12512
12513                 if ((mflags & (CORINFO_FLG_STATIC | CORINFO_FLG_ABSTRACT)) != 0)
12514                 {
12515                     BADCODE("newobj on static or abstract method");
12516                 }
12517
12518                 // Insert the security callout before any actual code is generated
12519                 impHandleAccessAllowed(callInfo.accessAllowed, &callInfo.callsiteCalloutHelper);
12520
12521                 // There are three different cases for new
12522                 // Object size is variable (depends on arguments)
12523                 //      1) Object is an array (arrays treated specially by the EE)
12524                 //      2) Object is some other variable sized object (e.g. String)
12525                 //      3) Class Size can be determined beforehand (normal case)
12526                 // In the first case, we need to call a NEWOBJ helper (multinewarray)
12527                 // in the second case we call the constructor with a '0' this pointer
12528                 // In the third case we alloc the memory, then call the constuctor
12529
12530                 clsFlags = callInfo.classFlags;
12531                 if (clsFlags & CORINFO_FLG_ARRAY)
12532                 {
12533                     if (tiVerificationNeeded)
12534                     {
12535                         CORINFO_CLASS_HANDLE elemTypeHnd;
12536                         INDEBUG(CorInfoType corType =)
12537                         info.compCompHnd->getChildType(resolvedToken.hClass, &elemTypeHnd);
12538                         assert(!(elemTypeHnd == nullptr && corType == CORINFO_TYPE_VALUECLASS));
12539                         Verify(elemTypeHnd == nullptr ||
12540                                    !(info.compCompHnd->getClassAttribs(elemTypeHnd) & CORINFO_FLG_CONTAINS_STACK_PTR),
12541                                "newarr of byref-like objects");
12542                         verVerifyCall(opcode, &resolvedToken, nullptr, ((prefixFlags & PREFIX_TAILCALL_EXPLICIT) != 0),
12543                                       ((prefixFlags & PREFIX_READONLY) != 0), delegateCreateStart, codeAddr - 1,
12544                                       &callInfo DEBUGARG(info.compFullName));
12545                     }
12546                     // Arrays need to call the NEWOBJ helper.
12547                     assertImp(clsFlags & CORINFO_FLG_VAROBJSIZE);
12548
12549                     impImportNewObjArray(&resolvedToken, &callInfo);
12550                     if (compDonotInline())
12551                     {
12552                         return;
12553                     }
12554
12555                     callTyp = TYP_REF;
12556                     break;
12557                 }
12558                 // At present this can only be String
12559                 else if (clsFlags & CORINFO_FLG_VAROBJSIZE)
12560                 {
12561                     if (IsTargetAbi(CORINFO_CORERT_ABI))
12562                     {
12563                         // The dummy argument does not exist in CoreRT
12564                         newObjThisPtr = nullptr;
12565                     }
12566                     else
12567                     {
12568                         // This is the case for variable-sized objects that are not
12569                         // arrays.  In this case, call the constructor with a null 'this'
12570                         // pointer
12571                         newObjThisPtr = gtNewIconNode(0, TYP_REF);
12572                     }
12573
12574                     /* Remember that this basic block contains 'new' of an object */
12575                     block->bbFlags |= BBF_HAS_NEWOBJ;
12576                     optMethodFlags |= OMF_HAS_NEWOBJ;
12577                 }
12578                 else
12579                 {
12580                     // This is the normal case where the size of the object is
12581                     // fixed.  Allocate the memory and call the constructor.
12582
12583                     // Note: We cannot add a peep to avoid use of temp here
12584                     // becase we don't have enough interference info to detect when
12585                     // sources and destination interfere, example: s = new S(ref);
12586
12587                     // TODO: We find the correct place to introduce a general
12588                     // reverse copy prop for struct return values from newobj or
12589                     // any function returning structs.
12590
12591                     /* get a temporary for the new object */
12592                     lclNum = lvaGrabTemp(true DEBUGARG("NewObj constructor temp"));
12593
12594                     // In the value class case we only need clsHnd for size calcs.
12595                     //
12596                     // The lookup of the code pointer will be handled by CALL in this case
12597                     if (clsFlags & CORINFO_FLG_VALUECLASS)
12598                     {
12599                         if (compIsForInlining())
12600                         {
12601                             // If value class has GC fields, inform the inliner. It may choose to
12602                             // bail out on the inline.
12603                             DWORD typeFlags = info.compCompHnd->getClassAttribs(resolvedToken.hClass);
12604                             if ((typeFlags & CORINFO_FLG_CONTAINS_GC_PTR) != 0)
12605                             {
12606                                 compInlineResult->Note(InlineObservation::CALLEE_HAS_GC_STRUCT);
12607                                 if (compInlineResult->IsFailure())
12608                                 {
12609                                     return;
12610                                 }
12611
12612                                 // Do further notification in the case where the call site is rare;
12613                                 // some policies do not track the relative hotness of call sites for
12614                                 // "always" inline cases.
12615                                 if (impInlineInfo->iciBlock->isRunRarely())
12616                                 {
12617                                     compInlineResult->Note(InlineObservation::CALLSITE_RARE_GC_STRUCT);
12618                                     if (compInlineResult->IsFailure())
12619                                     {
12620                                         return;
12621                                     }
12622                                 }
12623                             }
12624                         }
12625
12626                         CorInfoType jitTyp = info.compCompHnd->asCorInfoType(resolvedToken.hClass);
12627                         unsigned    size   = info.compCompHnd->getClassSize(resolvedToken.hClass);
12628
12629                         if (impIsPrimitive(jitTyp))
12630                         {
12631                             lvaTable[lclNum].lvType = JITtype2varType(jitTyp);
12632                         }
12633                         else
12634                         {
12635                             // The local variable itself is the allocated space.
12636                             // Here we need unsafe value cls check, since the address of struct is taken for further use
12637                             // and potentially exploitable.
12638                             lvaSetStruct(lclNum, resolvedToken.hClass, true /* unsafe value cls check */);
12639                         }
12640
12641                         // Append a tree to zero-out the temp
12642                         newObjThisPtr = gtNewLclvNode(lclNum, lvaTable[lclNum].TypeGet());
12643
12644                         newObjThisPtr = gtNewBlkOpNode(newObjThisPtr,    // Dest
12645                                                        gtNewIconNode(0), // Value
12646                                                        size,             // Size
12647                                                        false,            // isVolatile
12648                                                        false);           // not copyBlock
12649                         impAppendTree(newObjThisPtr, (unsigned)CHECK_SPILL_NONE, impCurStmtOffs);
12650
12651                         // Obtain the address of the temp
12652                         newObjThisPtr =
12653                             gtNewOperNode(GT_ADDR, TYP_BYREF, gtNewLclvNode(lclNum, lvaTable[lclNum].TypeGet()));
12654                     }
12655                     else
12656                     {
12657 #ifdef FEATURE_READYTORUN_COMPILER
12658                         if (opts.IsReadyToRun())
12659                         {
12660                             op1 = impReadyToRunHelperToTree(&resolvedToken, CORINFO_HELP_READYTORUN_NEW, TYP_REF);
12661                             usingReadyToRunHelper = (op1 != nullptr);
12662                         }
12663
12664                         if (!usingReadyToRunHelper)
12665 #endif
12666                         {
12667                             op1 = impParentClassTokenToHandle(&resolvedToken, nullptr, TRUE);
12668                             if (op1 == nullptr)
12669                             { // compDonotInline()
12670                                 return;
12671                             }
12672
12673                             // TODO: ReadyToRun: When generic dictionary lookups are necessary, replace the lookup call
12674                             // and the newfast call with a single call to a dynamic R2R cell that will:
12675                             //      1) Load the context
12676                             //      2) Perform the generic dictionary lookup and caching, and generate the appropriate
12677                             //      stub
12678                             //      3) Allocate and return the new object
12679                             // Reason: performance (today, we'll always use the slow helper for the R2R generics case)
12680
12681                             op1 = gtNewAllocObjNode(info.compCompHnd->getNewHelper(&resolvedToken, info.compMethodHnd),
12682                                                     resolvedToken.hClass, TYP_REF, op1);
12683                         }
12684
12685                         // Remember that this basic block contains 'new' of an object
12686                         block->bbFlags |= BBF_HAS_NEWOBJ;
12687                         optMethodFlags |= OMF_HAS_NEWOBJ;
12688
12689                         // Append the assignment to the temp/local. Dont need to spill
12690                         // at all as we are just calling an EE-Jit helper which can only
12691                         // cause an (async) OutOfMemoryException.
12692
12693                         // We assign the newly allocated object (by a GT_ALLOCOBJ node)
12694                         // to a temp. Note that the pattern "temp = allocObj" is required
12695                         // by ObjectAllocator phase to be able to determine GT_ALLOCOBJ nodes
12696                         // without exhaustive walk over all expressions.
12697
12698                         impAssignTempGen(lclNum, op1, (unsigned)CHECK_SPILL_NONE);
12699
12700                         newObjThisPtr = gtNewLclvNode(lclNum, TYP_REF);
12701                     }
12702                 }
12703                 goto CALL;
12704
12705             case CEE_CALLI:
12706
12707                 /* CALLI does not respond to CONSTRAINED */
12708                 prefixFlags &= ~PREFIX_CONSTRAINED;
12709
12710                 if (compIsForInlining())
12711                 {
12712                     // CALLI doesn't have a method handle, so assume the worst.
12713                     if (impInlineInfo->inlineCandidateInfo->dwRestrictions & INLINE_RESPECT_BOUNDARY)
12714                     {
12715                         compInlineResult->NoteFatal(InlineObservation::CALLSITE_CROSS_BOUNDARY_CALLI);
12716                         return;
12717                     }
12718                 }
12719
12720             // fall through
12721
12722             case CEE_CALLVIRT:
12723             case CEE_CALL:
12724
12725                 // We can't call getCallInfo on the token from a CALLI, but we need it in
12726                 // many other places.  We unfortunately embed that knowledge here.
12727                 if (opcode != CEE_CALLI)
12728                 {
12729                     _impResolveToken(CORINFO_TOKENKIND_Method);
12730
12731                     eeGetCallInfo(&resolvedToken,
12732                                   (prefixFlags & PREFIX_CONSTRAINED) ? &constrainedResolvedToken : nullptr,
12733                                   // this is how impImportCall invokes getCallInfo
12734                                   addVerifyFlag(
12735                                       combine(combine(CORINFO_CALLINFO_ALLOWINSTPARAM, CORINFO_CALLINFO_SECURITYCHECKS),
12736                                               (opcode == CEE_CALLVIRT) ? CORINFO_CALLINFO_CALLVIRT
12737                                                                        : CORINFO_CALLINFO_NONE)),
12738                                   &callInfo);
12739                 }
12740                 else
12741                 {
12742                     // Suppress uninitialized use warning.
12743                     memset(&resolvedToken, 0, sizeof(resolvedToken));
12744                     memset(&callInfo, 0, sizeof(callInfo));
12745
12746                     resolvedToken.token = getU4LittleEndian(codeAddr);
12747                 }
12748
12749             CALL: // memberRef should be set.
12750                 // newObjThisPtr should be set for CEE_NEWOBJ
12751
12752                 JITDUMP(" %08X", resolvedToken.token);
12753                 constraintCall = (prefixFlags & PREFIX_CONSTRAINED) != 0;
12754
12755                 bool newBBcreatedForTailcallStress;
12756
12757                 newBBcreatedForTailcallStress = false;
12758
12759                 if (compIsForInlining())
12760                 {
12761                     if (compDonotInline())
12762                     {
12763                         return;
12764                     }
12765                     // We rule out inlinees with explicit tail calls in fgMakeBasicBlocks.
12766                     assert((prefixFlags & PREFIX_TAILCALL_EXPLICIT) == 0);
12767                 }
12768                 else
12769                 {
12770                     if (compTailCallStress())
12771                     {
12772                         // Have we created a new BB after the "call" instruction in fgMakeBasicBlocks()?
12773                         // Tail call stress only recognizes call+ret patterns and forces them to be
12774                         // explicit tail prefixed calls.  Also fgMakeBasicBlocks() under tail call stress
12775                         // doesn't import 'ret' opcode following the call into the basic block containing
12776                         // the call instead imports it to a new basic block.  Note that fgMakeBasicBlocks()
12777                         // is already checking that there is an opcode following call and hence it is
12778                         // safe here to read next opcode without bounds check.
12779                         newBBcreatedForTailcallStress =
12780                             impOpcodeIsCallOpcode(opcode) && // Current opcode is a CALL, (not a CEE_NEWOBJ). So, don't
12781                                                              // make it jump to RET.
12782                             (OPCODE)getU1LittleEndian(codeAddr + sz) == CEE_RET; // Next opcode is a CEE_RET
12783
12784                         if (newBBcreatedForTailcallStress &&
12785                             !(prefixFlags & PREFIX_TAILCALL_EXPLICIT) && // User hasn't set "tail." prefix yet.
12786                             verCheckTailCallConstraint(opcode, &resolvedToken,
12787                                                        constraintCall ? &constrainedResolvedToken : nullptr,
12788                                                        true) // Is it legal to do talcall?
12789                             )
12790                         {
12791                             // Stress the tailcall.
12792                             JITDUMP(" (Tailcall stress: prefixFlags |= PREFIX_TAILCALL_EXPLICIT)");
12793                             prefixFlags |= PREFIX_TAILCALL_EXPLICIT;
12794                         }
12795                     }
12796                 }
12797
12798                 // This is split up to avoid goto flow warnings.
12799                 bool isRecursive;
12800                 isRecursive = !compIsForInlining() && (callInfo.hMethod == info.compMethodHnd);
12801
12802                 // Note that when running under tail call stress, a call will be marked as explicit tail prefixed
12803                 // hence will not be considered for implicit tail calling.
12804                 if (impIsImplicitTailCallCandidate(opcode, codeAddr + sz, codeEndp, prefixFlags, isRecursive))
12805                 {
12806                     if (compIsForInlining())
12807                     {
12808 #if FEATURE_TAILCALL_OPT_SHARED_RETURN
12809                         // Are we inlining at an implicit tail call site? If so the we can flag
12810                         // implicit tail call sites in the inline body. These call sites
12811                         // often end up in non BBJ_RETURN blocks, so only flag them when
12812                         // we're able to handle shared returns.
12813                         if (impInlineInfo->iciCall->IsImplicitTailCall())
12814                         {
12815                             JITDUMP(" (Inline Implicit Tail call: prefixFlags |= PREFIX_TAILCALL_IMPLICIT)");
12816                             prefixFlags |= PREFIX_TAILCALL_IMPLICIT;
12817                         }
12818 #endif // FEATURE_TAILCALL_OPT_SHARED_RETURN
12819                     }
12820                     else
12821                     {
12822                         JITDUMP(" (Implicit Tail call: prefixFlags |= PREFIX_TAILCALL_IMPLICIT)");
12823                         prefixFlags |= PREFIX_TAILCALL_IMPLICIT;
12824                     }
12825                 }
12826
12827                 // Treat this call as tail call for verification only if "tail" prefixed (i.e. explicit tail call).
12828                 explicitTailCall = (prefixFlags & PREFIX_TAILCALL_EXPLICIT) != 0;
12829                 readonlyCall     = (prefixFlags & PREFIX_READONLY) != 0;
12830
12831                 if (opcode != CEE_CALLI && opcode != CEE_NEWOBJ)
12832                 {
12833                     // All calls and delegates need a security callout.
12834                     // For delegates, this is the call to the delegate constructor, not the access check on the
12835                     // LD(virt)FTN.
12836                     impHandleAccessAllowed(callInfo.accessAllowed, &callInfo.callsiteCalloutHelper);
12837
12838 #if 0 // DevDiv 410397 - This breaks too many obfuscated apps to do this in an in-place release
12839
12840                 // DevDiv 291703 - we need to check for accessibility between the caller of InitializeArray
12841                 // and the field it is reading, thus it is now unverifiable to not immediately precede with
12842                 // ldtoken <filed token>, and we now check accessibility
12843                 if ((callInfo.methodFlags & CORINFO_FLG_INTRINSIC) &&
12844                     (info.compCompHnd->getIntrinsicID(callInfo.hMethod) == CORINFO_INTRINSIC_InitializeArray))
12845                 {
12846                     if (prevOpcode != CEE_LDTOKEN)
12847                     {
12848                         Verify(prevOpcode == CEE_LDTOKEN, "Need ldtoken for InitializeArray");
12849                     }
12850                     else
12851                     {
12852                         assert(lastLoadToken != NULL);
12853                         // Now that we know we have a token, verify that it is accessible for loading
12854                         CORINFO_RESOLVED_TOKEN resolvedLoadField;
12855                         impResolveToken(lastLoadToken, &resolvedLoadField, CORINFO_TOKENKIND_Field);
12856                         eeGetFieldInfo(&resolvedLoadField, CORINFO_ACCESS_INIT_ARRAY, &fieldInfo);
12857                         impHandleAccessAllowed(fieldInfo.accessAllowed, &fieldInfo.accessCalloutHelper);
12858                     }
12859                 }
12860
12861 #endif // DevDiv 410397
12862                 }
12863
12864                 if (tiVerificationNeeded)
12865                 {
12866                     verVerifyCall(opcode, &resolvedToken, constraintCall ? &constrainedResolvedToken : nullptr,
12867                                   explicitTailCall, readonlyCall, delegateCreateStart, codeAddr - 1,
12868                                   &callInfo DEBUGARG(info.compFullName));
12869                 }
12870
12871                 // Insert delegate callout here.
12872                 if (opcode == CEE_NEWOBJ && (mflags & CORINFO_FLG_CONSTRUCTOR) && (clsFlags & CORINFO_FLG_DELEGATE))
12873                 {
12874 #ifdef DEBUG
12875                     // We should do this only if verification is enabled
12876                     // If verification is disabled, delegateCreateStart will not be initialized correctly
12877                     if (tiVerificationNeeded)
12878                     {
12879                         mdMemberRef delegateMethodRef = mdMemberRefNil;
12880                         // We should get here only for well formed delegate creation.
12881                         assert(verCheckDelegateCreation(delegateCreateStart, codeAddr - 1, delegateMethodRef));
12882                     }
12883 #endif
12884
12885 #ifdef FEATURE_CORECLR
12886                     // In coreclr the delegate transparency rule needs to be enforced even if verification is disabled
12887                     typeInfo              tiActualFtn          = impStackTop(0).seTypeInfo;
12888                     CORINFO_METHOD_HANDLE delegateMethodHandle = tiActualFtn.GetMethod2();
12889
12890                     impInsertCalloutForDelegate(info.compMethodHnd, delegateMethodHandle, resolvedToken.hClass);
12891 #endif // FEATURE_CORECLR
12892                 }
12893
12894                 callTyp = impImportCall(opcode, &resolvedToken, constraintCall ? &constrainedResolvedToken : nullptr,
12895                                         newObjThisPtr, prefixFlags, &callInfo, opcodeOffs);
12896                 if (compDonotInline())
12897                 {
12898                     return;
12899                 }
12900
12901                 if (explicitTailCall || newBBcreatedForTailcallStress) // If newBBcreatedForTailcallStress is true, we
12902                                                                        // have created a new BB after the "call"
12903                 // instruction in fgMakeBasicBlocks(). So we need to jump to RET regardless.
12904                 {
12905                     assert(!compIsForInlining());
12906                     goto RET;
12907                 }
12908
12909                 break;
12910
12911             case CEE_LDFLD:
12912             case CEE_LDSFLD:
12913             case CEE_LDFLDA:
12914             case CEE_LDSFLDA:
12915             {
12916
12917                 BOOL isLoadAddress = (opcode == CEE_LDFLDA || opcode == CEE_LDSFLDA);
12918                 BOOL isLoadStatic  = (opcode == CEE_LDSFLD || opcode == CEE_LDSFLDA);
12919
12920                 /* Get the CP_Fieldref index */
12921                 assertImp(sz == sizeof(unsigned));
12922
12923                 _impResolveToken(CORINFO_TOKENKIND_Field);
12924
12925                 JITDUMP(" %08X", resolvedToken.token);
12926
12927                 int aflags = isLoadAddress ? CORINFO_ACCESS_ADDRESS : CORINFO_ACCESS_GET;
12928
12929                 GenTreePtr           obj     = nullptr;
12930                 typeInfo*            tiObj   = nullptr;
12931                 CORINFO_CLASS_HANDLE objType = nullptr; // used for fields
12932
12933                 if (opcode == CEE_LDFLD || opcode == CEE_LDFLDA)
12934                 {
12935                     tiObj = &impStackTop().seTypeInfo;
12936                     obj   = impPopStack(objType).val;
12937
12938                     if (impIsThis(obj))
12939                     {
12940                         aflags |= CORINFO_ACCESS_THIS;
12941
12942                         // An optimization for Contextful classes:
12943                         // we unwrap the proxy when we have a 'this reference'
12944
12945                         if (info.compUnwrapContextful)
12946                         {
12947                             aflags |= CORINFO_ACCESS_UNWRAP;
12948                         }
12949                     }
12950                 }
12951
12952                 eeGetFieldInfo(&resolvedToken, (CORINFO_ACCESS_FLAGS)aflags, &fieldInfo);
12953
12954                 // Figure out the type of the member.  We always call canAccessField, so you always need this
12955                 // handle
12956                 CorInfoType ciType = fieldInfo.fieldType;
12957                 clsHnd             = fieldInfo.structType;
12958
12959                 lclTyp = JITtype2varType(ciType);
12960
12961 #ifdef _TARGET_AMD64
12962                 noway_assert(varTypeIsIntegralOrI(lclTyp) || varTypeIsFloating(lclTyp) || lclTyp == TYP_STRUCT);
12963 #endif // _TARGET_AMD64
12964
12965                 if (compIsForInlining())
12966                 {
12967                     switch (fieldInfo.fieldAccessor)
12968                     {
12969                         case CORINFO_FIELD_INSTANCE_HELPER:
12970                         case CORINFO_FIELD_INSTANCE_ADDR_HELPER:
12971                         case CORINFO_FIELD_STATIC_ADDR_HELPER:
12972                         case CORINFO_FIELD_STATIC_TLS:
12973
12974                             compInlineResult->NoteFatal(InlineObservation::CALLEE_LDFLD_NEEDS_HELPER);
12975                             return;
12976
12977                         case CORINFO_FIELD_STATIC_GENERICS_STATIC_HELPER:
12978 #if COR_JIT_EE_VERSION > 460
12979                         case CORINFO_FIELD_STATIC_READYTORUN_HELPER:
12980 #endif
12981                             /* We may be able to inline the field accessors in specific instantiations of generic
12982                              * methods */
12983                             compInlineResult->NoteFatal(InlineObservation::CALLSITE_LDFLD_NEEDS_HELPER);
12984                             return;
12985
12986                         default:
12987                             break;
12988                     }
12989
12990                     if (!isLoadAddress && (fieldInfo.fieldFlags & CORINFO_FLG_FIELD_STATIC) && lclTyp == TYP_STRUCT &&
12991                         clsHnd)
12992                     {
12993                         if ((info.compCompHnd->getTypeForPrimitiveValueClass(clsHnd) == CORINFO_TYPE_UNDEF) &&
12994                             !(info.compFlags & CORINFO_FLG_FORCEINLINE))
12995                         {
12996                             // Loading a static valuetype field usually will cause a JitHelper to be called
12997                             // for the static base. This will bloat the code.
12998                             compInlineResult->Note(InlineObservation::CALLEE_LDFLD_STATIC_VALUECLASS);
12999
13000                             if (compInlineResult->IsFailure())
13001                             {
13002                                 return;
13003                             }
13004                         }
13005                     }
13006                 }
13007
13008                 tiRetVal = verMakeTypeInfo(ciType, clsHnd);
13009                 if (isLoadAddress)
13010                 {
13011                     tiRetVal.MakeByRef();
13012                 }
13013                 else
13014                 {
13015                     tiRetVal.NormaliseForStack();
13016                 }
13017
13018                 // Perform this check always to ensure that we get field access exceptions even with
13019                 // SkipVerification.
13020                 impHandleAccessAllowed(fieldInfo.accessAllowed, &fieldInfo.accessCalloutHelper);
13021
13022                 if (tiVerificationNeeded)
13023                 {
13024                     // You can also pass the unboxed struct to  LDFLD
13025                     BOOL bAllowPlainValueTypeAsThis = FALSE;
13026                     if (opcode == CEE_LDFLD && impIsValueType(tiObj))
13027                     {
13028                         bAllowPlainValueTypeAsThis = TRUE;
13029                     }
13030
13031                     verVerifyField(&resolvedToken, fieldInfo, tiObj, isLoadAddress, bAllowPlainValueTypeAsThis);
13032
13033                     // If we're doing this on a heap object or from a 'safe' byref
13034                     // then the result is a safe byref too
13035                     if (isLoadAddress) // load address
13036                     {
13037                         if (fieldInfo.fieldFlags &
13038                             CORINFO_FLG_FIELD_STATIC) // statics marked as safe will have permanent home
13039                         {
13040                             if (fieldInfo.fieldFlags & CORINFO_FLG_FIELD_SAFESTATIC_BYREF_RETURN)
13041                             {
13042                                 tiRetVal.SetIsPermanentHomeByRef();
13043                             }
13044                         }
13045                         else if (tiObj->IsObjRef() || tiObj->IsPermanentHomeByRef())
13046                         {
13047                             // ldflda of byref is safe if done on a gc object or on  a
13048                             // safe byref
13049                             tiRetVal.SetIsPermanentHomeByRef();
13050                         }
13051                     }
13052                 }
13053                 else
13054                 {
13055                     // tiVerificationNeeded is false.
13056                     // Raise InvalidProgramException if static load accesses non-static field
13057                     if (isLoadStatic && ((fieldInfo.fieldFlags & CORINFO_FLG_FIELD_STATIC) == 0))
13058                     {
13059                         BADCODE("static access on an instance field");
13060                     }
13061                 }
13062
13063                 // We are using ldfld/a on a static field. We allow it, but need to get side-effect from obj.
13064                 if ((fieldInfo.fieldFlags & CORINFO_FLG_FIELD_STATIC) && obj != nullptr)
13065                 {
13066                     if (obj->gtFlags & GTF_SIDE_EFFECT)
13067                     {
13068                         obj = gtUnusedValNode(obj);
13069                         impAppendTree(obj, (unsigned)CHECK_SPILL_ALL, impCurStmtOffs);
13070                     }
13071                     obj = nullptr;
13072                 }
13073
13074                 /* Preserve 'small' int types */
13075                 if (lclTyp > TYP_INT)
13076                 {
13077                     lclTyp = genActualType(lclTyp);
13078                 }
13079
13080                 bool usesHelper = false;
13081
13082                 switch (fieldInfo.fieldAccessor)
13083                 {
13084                     case CORINFO_FIELD_INSTANCE:
13085 #ifdef FEATURE_READYTORUN_COMPILER
13086                     case CORINFO_FIELD_INSTANCE_WITH_BASE:
13087 #endif
13088                     {
13089                         bool nullcheckNeeded = false;
13090
13091                         obj = impCheckForNullPointer(obj);
13092
13093                         if (isLoadAddress && (obj->gtType == TYP_BYREF) && fgAddrCouldBeNull(obj))
13094                         {
13095                             nullcheckNeeded = true;
13096                         }
13097
13098                         // If the object is a struct, what we really want is
13099                         // for the field to operate on the address of the struct.
13100                         if (!varTypeGCtype(obj->TypeGet()) && impIsValueType(tiObj))
13101                         {
13102                             assert(opcode == CEE_LDFLD && objType != nullptr);
13103
13104                             obj = impGetStructAddr(obj, objType, (unsigned)CHECK_SPILL_ALL, true);
13105                         }
13106
13107                         /* Create the data member node */
13108                         op1 = gtNewFieldRef(lclTyp, resolvedToken.hField, obj, fieldInfo.offset, nullcheckNeeded);
13109
13110 #ifdef FEATURE_READYTORUN_COMPILER
13111                         if (fieldInfo.fieldAccessor == CORINFO_FIELD_INSTANCE_WITH_BASE)
13112                         {
13113                             op1->gtField.gtFieldLookup = fieldInfo.fieldLookup;
13114                         }
13115 #endif
13116
13117                         op1->gtFlags |= (obj->gtFlags & GTF_GLOB_EFFECT);
13118
13119                         if (fgAddrCouldBeNull(obj))
13120                         {
13121                             op1->gtFlags |= GTF_EXCEPT;
13122                         }
13123
13124                         // If gtFldObj is a BYREF then our target is a value class and
13125                         // it could point anywhere, example a boxed class static int
13126                         if (obj->gtType == TYP_BYREF)
13127                         {
13128                             op1->gtFlags |= GTF_IND_TGTANYWHERE;
13129                         }
13130
13131                         DWORD typeFlags = info.compCompHnd->getClassAttribs(resolvedToken.hClass);
13132                         if (StructHasOverlappingFields(typeFlags))
13133                         {
13134                             op1->gtField.gtFldMayOverlap = true;
13135                         }
13136
13137                         // wrap it in a address of operator if necessary
13138                         if (isLoadAddress)
13139                         {
13140                             op1 = gtNewOperNode(GT_ADDR,
13141                                                 (var_types)(varTypeIsGC(obj->TypeGet()) ? TYP_BYREF : TYP_I_IMPL), op1);
13142                         }
13143                         else
13144                         {
13145                             if (compIsForInlining() &&
13146                                 impInlineIsGuaranteedThisDerefBeforeAnySideEffects(nullptr, obj,
13147                                                                                    impInlineInfo->inlArgInfo))
13148                             {
13149                                 impInlineInfo->thisDereferencedFirst = true;
13150                             }
13151                         }
13152                     }
13153                     break;
13154
13155                     case CORINFO_FIELD_STATIC_TLS:
13156 #ifdef _TARGET_X86_
13157                         // Legacy TLS access is implemented as intrinsic on x86 only
13158
13159                         /* Create the data member node */
13160                         op1 = gtNewFieldRef(lclTyp, resolvedToken.hField, NULL, fieldInfo.offset);
13161                         op1->gtFlags |= GTF_IND_TLS_REF; // fgMorphField will handle the transformation
13162
13163                         if (isLoadAddress)
13164                         {
13165                             op1 = gtNewOperNode(GT_ADDR, (var_types)TYP_I_IMPL, op1);
13166                         }
13167                         break;
13168 #else
13169                         fieldInfo.fieldAccessor = CORINFO_FIELD_STATIC_ADDR_HELPER;
13170
13171                         __fallthrough;
13172 #endif
13173
13174                     case CORINFO_FIELD_STATIC_ADDR_HELPER:
13175                     case CORINFO_FIELD_INSTANCE_HELPER:
13176                     case CORINFO_FIELD_INSTANCE_ADDR_HELPER:
13177                         op1 = gtNewRefCOMfield(obj, &resolvedToken, (CORINFO_ACCESS_FLAGS)aflags, &fieldInfo, lclTyp,
13178                                                clsHnd, nullptr);
13179                         usesHelper = true;
13180                         break;
13181
13182                     case CORINFO_FIELD_STATIC_ADDRESS:
13183                         // Replace static read-only fields with constant if possible
13184                         if ((aflags & CORINFO_ACCESS_GET) && (fieldInfo.fieldFlags & CORINFO_FLG_FIELD_FINAL) &&
13185                             !(fieldInfo.fieldFlags & CORINFO_FLG_FIELD_STATIC_IN_HEAP) &&
13186                             (varTypeIsIntegral(lclTyp) || varTypeIsFloating(lclTyp)))
13187                         {
13188                             CorInfoInitClassResult initClassResult =
13189                                 info.compCompHnd->initClass(resolvedToken.hField, info.compMethodHnd,
13190                                                             impTokenLookupContextHandle);
13191
13192                             if (initClassResult & CORINFO_INITCLASS_INITIALIZED)
13193                             {
13194                                 void** pFldAddr = nullptr;
13195                                 void*  fldAddr =
13196                                     info.compCompHnd->getFieldAddress(resolvedToken.hField, (void**)&pFldAddr);
13197
13198                                 // We should always be able to access this static's address directly
13199                                 assert(pFldAddr == nullptr);
13200
13201                                 op1 = impImportStaticReadOnlyField(fldAddr, lclTyp);
13202                                 goto FIELD_DONE;
13203                             }
13204                         }
13205
13206                         __fallthrough;
13207
13208                     case CORINFO_FIELD_STATIC_RVA_ADDRESS:
13209                     case CORINFO_FIELD_STATIC_SHARED_STATIC_HELPER:
13210                     case CORINFO_FIELD_STATIC_GENERICS_STATIC_HELPER:
13211 #if COR_JIT_EE_VERSION > 460
13212                     case CORINFO_FIELD_STATIC_READYTORUN_HELPER:
13213 #endif
13214                         op1 = impImportStaticFieldAccess(&resolvedToken, (CORINFO_ACCESS_FLAGS)aflags, &fieldInfo,
13215                                                          lclTyp);
13216                         break;
13217
13218                     case CORINFO_FIELD_INTRINSIC_ZERO:
13219                     {
13220                         assert(aflags & CORINFO_ACCESS_GET);
13221                         op1 = gtNewIconNode(0, lclTyp);
13222                         goto FIELD_DONE;
13223                     }
13224                     break;
13225
13226                     case CORINFO_FIELD_INTRINSIC_EMPTY_STRING:
13227                     {
13228                         assert(aflags & CORINFO_ACCESS_GET);
13229
13230                         LPVOID         pValue;
13231                         InfoAccessType iat = info.compCompHnd->emptyStringLiteral(&pValue);
13232                         op1                = gtNewStringLiteralNode(iat, pValue);
13233                         goto FIELD_DONE;
13234                     }
13235                     break;
13236
13237                     default:
13238                         assert(!"Unexpected fieldAccessor");
13239                 }
13240
13241                 if (!isLoadAddress)
13242                 {
13243
13244                     if (prefixFlags & PREFIX_VOLATILE)
13245                     {
13246                         op1->gtFlags |= GTF_DONT_CSE;      // Can't CSE a volatile
13247                         op1->gtFlags |= GTF_ORDER_SIDEEFF; // Prevent this from being reordered
13248
13249                         if (!usesHelper)
13250                         {
13251                             assert((op1->OperGet() == GT_FIELD) || (op1->OperGet() == GT_IND) ||
13252                                    (op1->OperGet() == GT_OBJ));
13253                             op1->gtFlags |= GTF_IND_VOLATILE;
13254                         }
13255                     }
13256
13257                     if (prefixFlags & PREFIX_UNALIGNED)
13258                     {
13259                         if (!usesHelper)
13260                         {
13261                             assert((op1->OperGet() == GT_FIELD) || (op1->OperGet() == GT_IND) ||
13262                                    (op1->OperGet() == GT_OBJ));
13263                             op1->gtFlags |= GTF_IND_UNALIGNED;
13264                         }
13265                     }
13266                 }
13267
13268                 /* Check if the class needs explicit initialization */
13269
13270                 if (fieldInfo.fieldFlags & CORINFO_FLG_FIELD_INITCLASS)
13271                 {
13272                     GenTreePtr helperNode = impInitClass(&resolvedToken);
13273                     if (compDonotInline())
13274                     {
13275                         return;
13276                     }
13277                     if (helperNode != nullptr)
13278                     {
13279                         op1 = gtNewOperNode(GT_COMMA, op1->TypeGet(), helperNode, op1);
13280                     }
13281                 }
13282
13283             FIELD_DONE:
13284                 impPushOnStack(op1, tiRetVal);
13285             }
13286             break;
13287
13288             case CEE_STFLD:
13289             case CEE_STSFLD:
13290             {
13291
13292                 BOOL isStoreStatic = (opcode == CEE_STSFLD);
13293
13294                 CORINFO_CLASS_HANDLE fieldClsHnd; // class of the field (if it's a ref type)
13295
13296                 /* Get the CP_Fieldref index */
13297
13298                 assertImp(sz == sizeof(unsigned));
13299
13300                 _impResolveToken(CORINFO_TOKENKIND_Field);
13301
13302                 JITDUMP(" %08X", resolvedToken.token);
13303
13304                 int        aflags = CORINFO_ACCESS_SET;
13305                 GenTreePtr obj    = nullptr;
13306                 typeInfo*  tiObj  = nullptr;
13307                 typeInfo   tiVal;
13308
13309                 /* Pull the value from the stack */
13310                 op2    = impPopStack(tiVal);
13311                 clsHnd = tiVal.GetClassHandle();
13312
13313                 if (opcode == CEE_STFLD)
13314                 {
13315                     tiObj = &impStackTop().seTypeInfo;
13316                     obj   = impPopStack().val;
13317
13318                     if (impIsThis(obj))
13319                     {
13320                         aflags |= CORINFO_ACCESS_THIS;
13321
13322                         // An optimization for Contextful classes:
13323                         // we unwrap the proxy when we have a 'this reference'
13324
13325                         if (info.compUnwrapContextful)
13326                         {
13327                             aflags |= CORINFO_ACCESS_UNWRAP;
13328                         }
13329                     }
13330                 }
13331
13332                 eeGetFieldInfo(&resolvedToken, (CORINFO_ACCESS_FLAGS)aflags, &fieldInfo);
13333
13334                 // Figure out the type of the member.  We always call canAccessField, so you always need this
13335                 // handle
13336                 CorInfoType ciType = fieldInfo.fieldType;
13337                 fieldClsHnd        = fieldInfo.structType;
13338
13339                 lclTyp = JITtype2varType(ciType);
13340
13341                 if (compIsForInlining())
13342                 {
13343                     /* Is this a 'special' (COM) field? or a TLS ref static field?, field stored int GC heap? or
13344                      * per-inst static? */
13345
13346                     switch (fieldInfo.fieldAccessor)
13347                     {
13348                         case CORINFO_FIELD_INSTANCE_HELPER:
13349                         case CORINFO_FIELD_INSTANCE_ADDR_HELPER:
13350                         case CORINFO_FIELD_STATIC_ADDR_HELPER:
13351                         case CORINFO_FIELD_STATIC_TLS:
13352
13353                             compInlineResult->NoteFatal(InlineObservation::CALLEE_STFLD_NEEDS_HELPER);
13354                             return;
13355
13356                         case CORINFO_FIELD_STATIC_GENERICS_STATIC_HELPER:
13357 #if COR_JIT_EE_VERSION > 460
13358                         case CORINFO_FIELD_STATIC_READYTORUN_HELPER:
13359 #endif
13360
13361                             /* We may be able to inline the field accessors in specific instantiations of generic
13362                              * methods */
13363                             compInlineResult->NoteFatal(InlineObservation::CALLSITE_STFLD_NEEDS_HELPER);
13364                             return;
13365
13366                         default:
13367                             break;
13368                     }
13369                 }
13370
13371                 impHandleAccessAllowed(fieldInfo.accessAllowed, &fieldInfo.accessCalloutHelper);
13372
13373                 if (tiVerificationNeeded)
13374                 {
13375                     verVerifyField(&resolvedToken, fieldInfo, tiObj, TRUE);
13376                     typeInfo fieldType = verMakeTypeInfo(ciType, fieldClsHnd);
13377                     Verify(tiCompatibleWith(tiVal, fieldType.NormaliseForStack(), true), "type mismatch");
13378                 }
13379                 else
13380                 {
13381                     // tiVerificationNeed is false.
13382                     // Raise InvalidProgramException if static store accesses non-static field
13383                     if (isStoreStatic && ((fieldInfo.fieldFlags & CORINFO_FLG_FIELD_STATIC) == 0))
13384                     {
13385                         BADCODE("static access on an instance field");
13386                     }
13387                 }
13388
13389                 // We are using stfld on a static field.
13390                 // We allow it, but need to eval any side-effects for obj
13391                 if ((fieldInfo.fieldFlags & CORINFO_FLG_FIELD_STATIC) && obj != nullptr)
13392                 {
13393                     if (obj->gtFlags & GTF_SIDE_EFFECT)
13394                     {
13395                         obj = gtUnusedValNode(obj);
13396                         impAppendTree(obj, (unsigned)CHECK_SPILL_ALL, impCurStmtOffs);
13397                     }
13398                     obj = nullptr;
13399                 }
13400
13401                 /* Preserve 'small' int types */
13402                 if (lclTyp > TYP_INT)
13403                 {
13404                     lclTyp = genActualType(lclTyp);
13405                 }
13406
13407                 switch (fieldInfo.fieldAccessor)
13408                 {
13409                     case CORINFO_FIELD_INSTANCE:
13410 #ifdef FEATURE_READYTORUN_COMPILER
13411                     case CORINFO_FIELD_INSTANCE_WITH_BASE:
13412 #endif
13413                     {
13414                         obj = impCheckForNullPointer(obj);
13415
13416                         /* Create the data member node */
13417                         op1             = gtNewFieldRef(lclTyp, resolvedToken.hField, obj, fieldInfo.offset);
13418                         DWORD typeFlags = info.compCompHnd->getClassAttribs(resolvedToken.hClass);
13419                         if (StructHasOverlappingFields(typeFlags))
13420                         {
13421                             op1->gtField.gtFldMayOverlap = true;
13422                         }
13423
13424 #ifdef FEATURE_READYTORUN_COMPILER
13425                         if (fieldInfo.fieldAccessor == CORINFO_FIELD_INSTANCE_WITH_BASE)
13426                         {
13427                             op1->gtField.gtFieldLookup = fieldInfo.fieldLookup;
13428                         }
13429 #endif
13430
13431                         op1->gtFlags |= (obj->gtFlags & GTF_GLOB_EFFECT);
13432
13433                         if (fgAddrCouldBeNull(obj))
13434                         {
13435                             op1->gtFlags |= GTF_EXCEPT;
13436                         }
13437
13438                         // If gtFldObj is a BYREF then our target is a value class and
13439                         // it could point anywhere, example a boxed class static int
13440                         if (obj->gtType == TYP_BYREF)
13441                         {
13442                             op1->gtFlags |= GTF_IND_TGTANYWHERE;
13443                         }
13444
13445                         if (compIsForInlining() &&
13446                             impInlineIsGuaranteedThisDerefBeforeAnySideEffects(op2, obj, impInlineInfo->inlArgInfo))
13447                         {
13448                             impInlineInfo->thisDereferencedFirst = true;
13449                         }
13450                     }
13451                     break;
13452
13453                     case CORINFO_FIELD_STATIC_TLS:
13454 #ifdef _TARGET_X86_
13455                         // Legacy TLS access is implemented as intrinsic on x86 only
13456
13457                         /* Create the data member node */
13458                         op1 = gtNewFieldRef(lclTyp, resolvedToken.hField, NULL, fieldInfo.offset);
13459                         op1->gtFlags |= GTF_IND_TLS_REF; // fgMorphField will handle the transformation
13460
13461                         break;
13462 #else
13463                         fieldInfo.fieldAccessor = CORINFO_FIELD_STATIC_ADDR_HELPER;
13464
13465                         __fallthrough;
13466 #endif
13467
13468                     case CORINFO_FIELD_STATIC_ADDR_HELPER:
13469                     case CORINFO_FIELD_INSTANCE_HELPER:
13470                     case CORINFO_FIELD_INSTANCE_ADDR_HELPER:
13471                         op1 = gtNewRefCOMfield(obj, &resolvedToken, (CORINFO_ACCESS_FLAGS)aflags, &fieldInfo, lclTyp,
13472                                                clsHnd, op2);
13473                         goto SPILL_APPEND;
13474
13475                     case CORINFO_FIELD_STATIC_ADDRESS:
13476                     case CORINFO_FIELD_STATIC_RVA_ADDRESS:
13477                     case CORINFO_FIELD_STATIC_SHARED_STATIC_HELPER:
13478                     case CORINFO_FIELD_STATIC_GENERICS_STATIC_HELPER:
13479 #if COR_JIT_EE_VERSION > 460
13480                     case CORINFO_FIELD_STATIC_READYTORUN_HELPER:
13481 #endif
13482                         op1 = impImportStaticFieldAccess(&resolvedToken, (CORINFO_ACCESS_FLAGS)aflags, &fieldInfo,
13483                                                          lclTyp);
13484                         break;
13485
13486                     default:
13487                         assert(!"Unexpected fieldAccessor");
13488                 }
13489
13490                 // Create the member assignment, unless we have a struct.
13491                 // TODO-1stClassStructs: This could be limited to TYP_STRUCT, to avoid extra copies.
13492                 bool deferStructAssign = varTypeIsStruct(lclTyp);
13493
13494                 if (!deferStructAssign)
13495                 {
13496                     if (prefixFlags & PREFIX_VOLATILE)
13497                     {
13498                         assert((op1->OperGet() == GT_FIELD) || (op1->OperGet() == GT_IND));
13499                         op1->gtFlags |= GTF_DONT_CSE;      // Can't CSE a volatile
13500                         op1->gtFlags |= GTF_ORDER_SIDEEFF; // Prevent this from being reordered
13501                         op1->gtFlags |= GTF_IND_VOLATILE;
13502                     }
13503                     if (prefixFlags & PREFIX_UNALIGNED)
13504                     {
13505                         assert((op1->OperGet() == GT_FIELD) || (op1->OperGet() == GT_IND));
13506                         op1->gtFlags |= GTF_IND_UNALIGNED;
13507                     }
13508
13509                     /* V4.0 allows assignment of i4 constant values to i8 type vars when IL verifier is bypassed (full
13510                        trust
13511                        apps).  The reason this works is that JIT stores an i4 constant in Gentree union during
13512                        importation
13513                        and reads from the union as if it were a long during code generation. Though this can potentially
13514                        read garbage, one can get lucky to have this working correctly.
13515
13516                        This code pattern is generated by Dev10 MC++ compiler while storing to fields when compiled with
13517                        /O2
13518                        switch (default when compiling retail configs in Dev10) and a customer app has taken a dependency
13519                        on
13520                        it.  To be backward compatible, we will explicitly add an upward cast here so that it works
13521                        correctly
13522                        always.
13523
13524                        Note that this is limited to x86 alone as thereis no back compat to be addressed for Arm JIT for
13525                        V4.0.
13526                     */
13527                     CLANG_FORMAT_COMMENT_ANCHOR;
13528
13529 #ifdef _TARGET_X86_
13530                     if (op1->TypeGet() != op2->TypeGet() && op2->OperIsConst() && varTypeIsIntOrI(op2->TypeGet()) &&
13531                         varTypeIsLong(op1->TypeGet()))
13532                     {
13533                         op2 = gtNewCastNode(op1->TypeGet(), op2, op1->TypeGet());
13534                     }
13535 #endif
13536
13537 #ifdef _TARGET_64BIT_
13538                     // Automatic upcast for a GT_CNS_INT into TYP_I_IMPL
13539                     if ((op2->OperGet() == GT_CNS_INT) && varTypeIsI(lclTyp) && !varTypeIsI(op2->gtType))
13540                     {
13541                         op2->gtType = TYP_I_IMPL;
13542                     }
13543                     else
13544                     {
13545                         // Allow a downcast of op2 from TYP_I_IMPL into a 32-bit Int for x86 JIT compatiblity
13546                         //
13547                         if (varTypeIsI(op2->gtType) && (genActualType(lclTyp) == TYP_INT))
13548                         {
13549                             op2 = gtNewCastNode(TYP_INT, op2, TYP_INT);
13550                         }
13551                         // Allow an upcast of op2 from a 32-bit Int into TYP_I_IMPL for x86 JIT compatiblity
13552                         //
13553                         if (varTypeIsI(lclTyp) && (genActualType(op2->gtType) == TYP_INT))
13554                         {
13555                             op2 = gtNewCastNode(TYP_I_IMPL, op2, TYP_I_IMPL);
13556                         }
13557                     }
13558 #endif
13559
13560 #if !FEATURE_X87_DOUBLES
13561                     // We can generate an assignment to a TYP_FLOAT from a TYP_DOUBLE
13562                     // We insert a cast to the dest 'op1' type
13563                     //
13564                     if ((op1->TypeGet() != op2->TypeGet()) && varTypeIsFloating(op1->gtType) &&
13565                         varTypeIsFloating(op2->gtType))
13566                     {
13567                         op2 = gtNewCastNode(op1->TypeGet(), op2, op1->TypeGet());
13568                     }
13569 #endif // !FEATURE_X87_DOUBLES
13570
13571                     op1 = gtNewAssignNode(op1, op2);
13572
13573                     /* Mark the expression as containing an assignment */
13574
13575                     op1->gtFlags |= GTF_ASG;
13576                 }
13577
13578                 /* Check if the class needs explicit initialization */
13579
13580                 if (fieldInfo.fieldFlags & CORINFO_FLG_FIELD_INITCLASS)
13581                 {
13582                     GenTreePtr helperNode = impInitClass(&resolvedToken);
13583                     if (compDonotInline())
13584                     {
13585                         return;
13586                     }
13587                     if (helperNode != nullptr)
13588                     {
13589                         op1 = gtNewOperNode(GT_COMMA, op1->TypeGet(), helperNode, op1);
13590                     }
13591                 }
13592
13593                 /* stfld can interfere with value classes (consider the sequence
13594                    ldloc, ldloca, ..., stfld, stloc).  We will be conservative and
13595                    spill all value class references from the stack. */
13596
13597                 if (obj && ((obj->gtType == TYP_BYREF) || (obj->gtType == TYP_I_IMPL)))
13598                 {
13599                     assert(tiObj);
13600
13601                     if (impIsValueType(tiObj))
13602                     {
13603                         impSpillEvalStack();
13604                     }
13605                     else
13606                     {
13607                         impSpillValueClasses();
13608                     }
13609                 }
13610
13611                 /* Spill any refs to the same member from the stack */
13612
13613                 impSpillLclRefs((ssize_t)resolvedToken.hField);
13614
13615                 /* stsfld also interferes with indirect accesses (for aliased
13616                    statics) and calls. But don't need to spill other statics
13617                    as we have explicitly spilled this particular static field. */
13618
13619                 impSpillSideEffects(false, (unsigned)CHECK_SPILL_ALL DEBUGARG("spill side effects before STFLD"));
13620
13621                 if (deferStructAssign)
13622                 {
13623                     op1 = impAssignStruct(op1, op2, clsHnd, (unsigned)CHECK_SPILL_ALL);
13624                 }
13625             }
13626                 goto APPEND;
13627
13628             case CEE_NEWARR:
13629             {
13630
13631                 /* Get the class type index operand */
13632
13633                 _impResolveToken(CORINFO_TOKENKIND_Newarr);
13634
13635                 JITDUMP(" %08X", resolvedToken.token);
13636
13637                 if (!opts.IsReadyToRun())
13638                 {
13639                     // Need to restore array classes before creating array objects on the heap
13640                     op1 = impTokenToHandle(&resolvedToken, nullptr, TRUE /*mustRestoreHandle*/);
13641                     if (op1 == nullptr)
13642                     { // compDonotInline()
13643                         return;
13644                     }
13645                 }
13646
13647                 if (tiVerificationNeeded)
13648                 {
13649                     // As per ECMA 'numElems' specified can be either int32 or native int.
13650                     Verify(impStackTop().seTypeInfo.IsIntOrNativeIntType(), "bad bound");
13651
13652                     CORINFO_CLASS_HANDLE elemTypeHnd;
13653                     info.compCompHnd->getChildType(resolvedToken.hClass, &elemTypeHnd);
13654                     Verify(elemTypeHnd == nullptr ||
13655                                !(info.compCompHnd->getClassAttribs(elemTypeHnd) & CORINFO_FLG_CONTAINS_STACK_PTR),
13656                            "array of byref-like type");
13657                     tiRetVal = verMakeTypeInfo(resolvedToken.hClass);
13658                 }
13659
13660                 accessAllowedResult =
13661                     info.compCompHnd->canAccessClass(&resolvedToken, info.compMethodHnd, &calloutHelper);
13662                 impHandleAccessAllowed(accessAllowedResult, &calloutHelper);
13663
13664                 /* Form the arglist: array class handle, size */
13665                 op2 = impPopStack().val;
13666                 assertImp(genActualTypeIsIntOrI(op2->gtType));
13667
13668 #ifdef FEATURE_READYTORUN_COMPILER
13669                 if (opts.IsReadyToRun())
13670                 {
13671                     op1 = impReadyToRunHelperToTree(&resolvedToken, CORINFO_HELP_READYTORUN_NEWARR_1, TYP_REF,
13672                                                     gtNewArgList(op2));
13673                     usingReadyToRunHelper = (op1 != nullptr);
13674
13675                     if (!usingReadyToRunHelper)
13676                     {
13677                         // TODO: ReadyToRun: When generic dictionary lookups are necessary, replace the lookup call
13678                         // and the newarr call with a single call to a dynamic R2R cell that will:
13679                         //      1) Load the context
13680                         //      2) Perform the generic dictionary lookup and caching, and generate the appropriate stub
13681                         //      3) Allocate the new array
13682                         // Reason: performance (today, we'll always use the slow helper for the R2R generics case)
13683
13684                         // Need to restore array classes before creating array objects on the heap
13685                         op1 = impTokenToHandle(&resolvedToken, nullptr, TRUE /*mustRestoreHandle*/);
13686                         if (op1 == nullptr)
13687                         { // compDonotInline()
13688                             return;
13689                         }
13690                     }
13691                 }
13692
13693                 if (!usingReadyToRunHelper)
13694 #endif
13695                 {
13696                     args = gtNewArgList(op1, op2);
13697
13698                     /* Create a call to 'new' */
13699
13700                     // Note that this only works for shared generic code because the same helper is used for all
13701                     // reference array types
13702                     op1 =
13703                         gtNewHelperCallNode(info.compCompHnd->getNewArrHelper(resolvedToken.hClass), TYP_REF, 0, args);
13704                 }
13705
13706                 op1->gtCall.compileTimeHelperArgumentHandle = (CORINFO_GENERIC_HANDLE)resolvedToken.hClass;
13707
13708                 /* Remember that this basic block contains 'new' of an sd array */
13709
13710                 block->bbFlags |= BBF_HAS_NEWARRAY;
13711                 optMethodFlags |= OMF_HAS_NEWARRAY;
13712
13713                 /* Push the result of the call on the stack */
13714
13715                 impPushOnStack(op1, tiRetVal);
13716
13717                 callTyp = TYP_REF;
13718             }
13719             break;
13720
13721             case CEE_LOCALLOC:
13722                 assert(!compIsForInlining());
13723
13724                 if (tiVerificationNeeded)
13725                 {
13726                     Verify(false, "bad opcode");
13727                 }
13728
13729                 // We don't allow locallocs inside handlers
13730                 if (block->hasHndIndex())
13731                 {
13732                     BADCODE("Localloc can't be inside handler");
13733                 }
13734
13735                 /* The FP register may not be back to the original value at the end
13736                    of the method, even if the frame size is 0, as localloc may
13737                    have modified it. So we will HAVE to reset it */
13738
13739                 compLocallocUsed = true;
13740                 setNeedsGSSecurityCookie();
13741
13742                 // Get the size to allocate
13743
13744                 op2 = impPopStack().val;
13745                 assertImp(genActualTypeIsIntOrI(op2->gtType));
13746
13747                 if (verCurrentState.esStackDepth != 0)
13748                 {
13749                     BADCODE("Localloc can only be used when the stack is empty");
13750                 }
13751
13752                 op1 = gtNewOperNode(GT_LCLHEAP, TYP_I_IMPL, op2);
13753
13754                 // May throw a stack overflow exception. Obviously, we don't want locallocs to be CSE'd.
13755
13756                 op1->gtFlags |= (GTF_EXCEPT | GTF_DONT_CSE);
13757
13758                 impPushOnStack(op1, tiRetVal);
13759                 break;
13760
13761             case CEE_ISINST:
13762
13763                 /* Get the type token */
13764                 assertImp(sz == sizeof(unsigned));
13765
13766                 _impResolveToken(CORINFO_TOKENKIND_Casting);
13767
13768                 JITDUMP(" %08X", resolvedToken.token);
13769
13770                 if (!opts.IsReadyToRun())
13771                 {
13772                     op2 = impTokenToHandle(&resolvedToken, nullptr, FALSE);
13773                     if (op2 == nullptr)
13774                     { // compDonotInline()
13775                         return;
13776                     }
13777                 }
13778
13779                 if (tiVerificationNeeded)
13780                 {
13781                     Verify(impStackTop().seTypeInfo.IsObjRef(), "obj reference needed");
13782                     // Even if this is a value class, we know it is boxed.
13783                     tiRetVal = typeInfo(TI_REF, resolvedToken.hClass);
13784                 }
13785                 accessAllowedResult =
13786                     info.compCompHnd->canAccessClass(&resolvedToken, info.compMethodHnd, &calloutHelper);
13787                 impHandleAccessAllowed(accessAllowedResult, &calloutHelper);
13788
13789                 op1 = impPopStack().val;
13790
13791 #ifdef FEATURE_READYTORUN_COMPILER
13792                 if (opts.IsReadyToRun())
13793                 {
13794                     GenTreePtr opLookup =
13795                         impReadyToRunHelperToTree(&resolvedToken, CORINFO_HELP_READYTORUN_ISINSTANCEOF, TYP_REF,
13796                                                   gtNewArgList(op1));
13797                     usingReadyToRunHelper = (opLookup != nullptr);
13798                     op1                   = (usingReadyToRunHelper ? opLookup : op1);
13799
13800                     if (!usingReadyToRunHelper)
13801                     {
13802                         // TODO: ReadyToRun: When generic dictionary lookups are necessary, replace the lookup call
13803                         // and the isinstanceof_any call with a single call to a dynamic R2R cell that will:
13804                         //      1) Load the context
13805                         //      2) Perform the generic dictionary lookup and caching, and generate the appropriate stub
13806                         //      3) Perform the 'is instance' check on the input object
13807                         // Reason: performance (today, we'll always use the slow helper for the R2R generics case)
13808
13809                         op2 = impTokenToHandle(&resolvedToken, nullptr, FALSE);
13810                         if (op2 == nullptr)
13811                         { // compDonotInline()
13812                             return;
13813                         }
13814                     }
13815                 }
13816
13817                 if (!usingReadyToRunHelper)
13818 #endif
13819                 {
13820                     op1 = impCastClassOrIsInstToTree(op1, op2, &resolvedToken, false);
13821                 }
13822                 if (compDonotInline())
13823                 {
13824                     return;
13825                 }
13826
13827                 impPushOnStack(op1, tiRetVal);
13828
13829                 break;
13830
13831             case CEE_REFANYVAL:
13832
13833                 // get the class handle and make a ICON node out of it
13834
13835                 _impResolveToken(CORINFO_TOKENKIND_Class);
13836
13837                 JITDUMP(" %08X", resolvedToken.token);
13838
13839                 op2 = impTokenToHandle(&resolvedToken);
13840                 if (op2 == nullptr)
13841                 { // compDonotInline()
13842                     return;
13843                 }
13844
13845                 if (tiVerificationNeeded)
13846                 {
13847                     Verify(typeInfo::AreEquivalent(impStackTop().seTypeInfo, verMakeTypeInfo(impGetRefAnyClass())),
13848                            "need refany");
13849                     tiRetVal = verMakeTypeInfo(resolvedToken.hClass).MakeByRef();
13850                 }
13851
13852                 op1 = impPopStack().val;
13853                 // make certain it is normalized;
13854                 op1 = impNormStructVal(op1, impGetRefAnyClass(), (unsigned)CHECK_SPILL_ALL);
13855
13856                 // Call helper GETREFANY(classHandle, op1);
13857                 args = gtNewArgList(op2, op1);
13858                 op1  = gtNewHelperCallNode(CORINFO_HELP_GETREFANY, TYP_BYREF, 0, args);
13859
13860                 impPushOnStack(op1, tiRetVal);
13861                 break;
13862
13863             case CEE_REFANYTYPE:
13864
13865                 if (tiVerificationNeeded)
13866                 {
13867                     Verify(typeInfo::AreEquivalent(impStackTop().seTypeInfo, verMakeTypeInfo(impGetRefAnyClass())),
13868                            "need refany");
13869                 }
13870
13871                 op1 = impPopStack().val;
13872
13873                 // make certain it is normalized;
13874                 op1 = impNormStructVal(op1, impGetRefAnyClass(), (unsigned)CHECK_SPILL_ALL);
13875
13876                 if (op1->gtOper == GT_OBJ)
13877                 {
13878                     // Get the address of the refany
13879                     op1 = op1->gtOp.gtOp1;
13880
13881                     // Fetch the type from the correct slot
13882                     op1 = gtNewOperNode(GT_ADD, TYP_BYREF, op1,
13883                                         gtNewIconNode(offsetof(CORINFO_RefAny, type), TYP_I_IMPL));
13884                     op1 = gtNewOperNode(GT_IND, TYP_BYREF, op1);
13885                 }
13886                 else
13887                 {
13888                     assertImp(op1->gtOper == GT_MKREFANY);
13889
13890                     // The pointer may have side-effects
13891                     if (op1->gtOp.gtOp1->gtFlags & GTF_SIDE_EFFECT)
13892                     {
13893                         impAppendTree(op1->gtOp.gtOp1, (unsigned)CHECK_SPILL_ALL, impCurStmtOffs);
13894 #ifdef DEBUG
13895                         impNoteLastILoffs();
13896 #endif
13897                     }
13898
13899                     // We already have the class handle
13900                     op1 = op1->gtOp.gtOp2;
13901                 }
13902
13903                 // convert native TypeHandle to RuntimeTypeHandle
13904                 {
13905                     GenTreeArgList* helperArgs = gtNewArgList(op1);
13906
13907                     op1 = gtNewHelperCallNode(CORINFO_HELP_TYPEHANDLE_TO_RUNTIMETYPE_MAYBENULL, TYP_STRUCT, GTF_EXCEPT,
13908                                               helperArgs);
13909
13910                     // The handle struct is returned in register
13911                     op1->gtCall.gtReturnType = TYP_REF;
13912
13913                     tiRetVal = typeInfo(TI_STRUCT, impGetTypeHandleClass());
13914                 }
13915
13916                 impPushOnStack(op1, tiRetVal);
13917                 break;
13918
13919             case CEE_LDTOKEN:
13920             {
13921                 /* Get the Class index */
13922                 assertImp(sz == sizeof(unsigned));
13923                 lastLoadToken = codeAddr;
13924                 _impResolveToken(CORINFO_TOKENKIND_Ldtoken);
13925
13926                 tokenType = info.compCompHnd->getTokenTypeAsHandle(&resolvedToken);
13927
13928                 op1 = impTokenToHandle(&resolvedToken, nullptr, TRUE);
13929                 if (op1 == nullptr)
13930                 { // compDonotInline()
13931                     return;
13932                 }
13933
13934                 helper = CORINFO_HELP_TYPEHANDLE_TO_RUNTIMETYPE;
13935                 assert(resolvedToken.hClass != nullptr);
13936
13937                 if (resolvedToken.hMethod != nullptr)
13938                 {
13939                     helper = CORINFO_HELP_METHODDESC_TO_STUBRUNTIMEMETHOD;
13940                 }
13941                 else if (resolvedToken.hField != nullptr)
13942                 {
13943                     helper = CORINFO_HELP_FIELDDESC_TO_STUBRUNTIMEFIELD;
13944                 }
13945
13946                 GenTreeArgList* helperArgs = gtNewArgList(op1);
13947
13948                 op1 = gtNewHelperCallNode(helper, TYP_STRUCT, GTF_EXCEPT, helperArgs);
13949
13950                 // The handle struct is returned in register
13951                 op1->gtCall.gtReturnType = TYP_REF;
13952
13953                 tiRetVal = verMakeTypeInfo(tokenType);
13954                 impPushOnStack(op1, tiRetVal);
13955             }
13956             break;
13957
13958             case CEE_UNBOX:
13959             case CEE_UNBOX_ANY:
13960             {
13961                 /* Get the Class index */
13962                 assertImp(sz == sizeof(unsigned));
13963
13964                 _impResolveToken(CORINFO_TOKENKIND_Class);
13965
13966                 JITDUMP(" %08X", resolvedToken.token);
13967
13968                 BOOL runtimeLookup;
13969                 op2 = impTokenToHandle(&resolvedToken, &runtimeLookup);
13970                 if (op2 == nullptr)
13971                 { // compDonotInline()
13972                     return;
13973                 }
13974
13975                 // Run this always so we can get access exceptions even with SkipVerification.
13976                 accessAllowedResult =
13977                     info.compCompHnd->canAccessClass(&resolvedToken, info.compMethodHnd, &calloutHelper);
13978                 impHandleAccessAllowed(accessAllowedResult, &calloutHelper);
13979
13980                 if (opcode == CEE_UNBOX_ANY && !eeIsValueClass(resolvedToken.hClass))
13981                 {
13982                     if (tiVerificationNeeded)
13983                     {
13984                         typeInfo tiUnbox = impStackTop().seTypeInfo;
13985                         Verify(tiUnbox.IsObjRef(), "bad unbox.any arg");
13986                         tiRetVal = verMakeTypeInfo(resolvedToken.hClass);
13987                         tiRetVal.NormaliseForStack();
13988                     }
13989                     op1 = impPopStack().val;
13990                     goto CASTCLASS;
13991                 }
13992
13993                 /* Pop the object and create the unbox helper call */
13994                 /* You might think that for UNBOX_ANY we need to push a different */
13995                 /* (non-byref) type, but here we're making the tiRetVal that is used */
13996                 /* for the intermediate pointer which we then transfer onto the OBJ */
13997                 /* instruction.  OBJ then creates the appropriate tiRetVal. */
13998                 if (tiVerificationNeeded)
13999                 {
14000                     typeInfo tiUnbox = impStackTop().seTypeInfo;
14001                     Verify(tiUnbox.IsObjRef(), "Bad unbox arg");
14002
14003                     tiRetVal = verMakeTypeInfo(resolvedToken.hClass);
14004                     Verify(tiRetVal.IsValueClass(), "not value class");
14005                     tiRetVal.MakeByRef();
14006
14007                     // We always come from an objref, so this is safe byref
14008                     tiRetVal.SetIsPermanentHomeByRef();
14009                     tiRetVal.SetIsReadonlyByRef();
14010                 }
14011
14012                 op1 = impPopStack().val;
14013                 assertImp(op1->gtType == TYP_REF);
14014
14015                 helper = info.compCompHnd->getUnBoxHelper(resolvedToken.hClass);
14016                 assert(helper == CORINFO_HELP_UNBOX || helper == CORINFO_HELP_UNBOX_NULLABLE);
14017
14018                 // We only want to expand inline the normal UNBOX helper;
14019                 expandInline = (helper == CORINFO_HELP_UNBOX);
14020
14021                 if (expandInline)
14022                 {
14023                     if (compCurBB->isRunRarely())
14024                     {
14025                         expandInline = false; // not worth the code expansion
14026                     }
14027                 }
14028
14029                 if (expandInline)
14030                 {
14031                     // we are doing normal unboxing
14032                     // inline the common case of the unbox helper
14033                     // UNBOX(exp) morphs into
14034                     // clone = pop(exp);
14035                     // ((*clone == typeToken) ? nop : helper(clone, typeToken));
14036                     // push(clone + sizeof(void*))
14037                     //
14038                     GenTreePtr cloneOperand;
14039                     op1 = impCloneExpr(op1, &cloneOperand, NO_CLASS_HANDLE, (unsigned)CHECK_SPILL_ALL,
14040                                        nullptr DEBUGARG("inline UNBOX clone1"));
14041                     op1 = gtNewOperNode(GT_IND, TYP_I_IMPL, op1);
14042
14043                     GenTreePtr condBox = gtNewOperNode(GT_EQ, TYP_INT, op1, op2);
14044
14045                     op1 = impCloneExpr(cloneOperand, &cloneOperand, NO_CLASS_HANDLE, (unsigned)CHECK_SPILL_ALL,
14046                                        nullptr DEBUGARG("inline UNBOX clone2"));
14047                     op2 = impTokenToHandle(&resolvedToken);
14048                     if (op2 == nullptr)
14049                     { // compDonotInline()
14050                         return;
14051                     }
14052                     args = gtNewArgList(op2, op1);
14053                     op1  = gtNewHelperCallNode(helper, TYP_VOID, 0, args);
14054
14055                     op1 = new (this, GT_COLON) GenTreeColon(TYP_VOID, gtNewNothingNode(), op1);
14056                     op1 = gtNewQmarkNode(TYP_VOID, condBox, op1);
14057                     condBox->gtFlags |= GTF_RELOP_QMARK;
14058
14059                     // QMARK nodes cannot reside on the evaluation stack. Because there
14060                     // may be other trees on the evaluation stack that side-effect the
14061                     // sources of the UNBOX operation we must spill the stack.
14062
14063                     impAppendTree(op1, (unsigned)CHECK_SPILL_ALL, impCurStmtOffs);
14064
14065                     // Create the address-expression to reference past the object header
14066                     // to the beginning of the value-type. Today this means adjusting
14067                     // past the base of the objects vtable field which is pointer sized.
14068
14069                     op2 = gtNewIconNode(sizeof(void*), TYP_I_IMPL);
14070                     op1 = gtNewOperNode(GT_ADD, TYP_BYREF, cloneOperand, op2);
14071                 }
14072                 else
14073                 {
14074                     unsigned callFlags = (helper == CORINFO_HELP_UNBOX) ? 0 : GTF_EXCEPT;
14075
14076                     // Don't optimize, just call the helper and be done with it
14077                     args = gtNewArgList(op2, op1);
14078                     op1  = gtNewHelperCallNode(helper,
14079                                               (var_types)((helper == CORINFO_HELP_UNBOX) ? TYP_BYREF : TYP_STRUCT),
14080                                               callFlags, args);
14081                 }
14082
14083                 assert(helper == CORINFO_HELP_UNBOX && op1->gtType == TYP_BYREF || // Unbox helper returns a byref.
14084                        helper == CORINFO_HELP_UNBOX_NULLABLE &&
14085                            varTypeIsStruct(op1) // UnboxNullable helper returns a struct.
14086                        );
14087
14088                 /*
14089                   ----------------------------------------------------------------------
14090                   | \ helper  |                         |                              |
14091                   |   \       |                         |                              |
14092                   |     \     | CORINFO_HELP_UNBOX      | CORINFO_HELP_UNBOX_NULLABLE  |
14093                   |       \   | (which returns a BYREF) | (which returns a STRUCT)     |                              |
14094                   | opcode  \ |                         |                              |
14095                   |---------------------------------------------------------------------
14096                   | UNBOX     | push the BYREF          | spill the STRUCT to a local, |
14097                   |           |                         | push the BYREF to this local |
14098                   |---------------------------------------------------------------------
14099                   | UNBOX_ANY | push a GT_OBJ of        | push the STRUCT              |
14100                   |           | the BYREF               | For Linux when the           |
14101                   |           |                         |  struct is returned in two   |
14102                   |           |                         |  registers create a temp     |
14103                   |           |                         |  which address is passed to  |
14104                   |           |                         |  the unbox_nullable helper.  |
14105                   |---------------------------------------------------------------------
14106                 */
14107
14108                 if (opcode == CEE_UNBOX)
14109                 {
14110                     if (helper == CORINFO_HELP_UNBOX_NULLABLE)
14111                     {
14112                         // Unbox nullable helper returns a struct type.
14113                         // We need to spill it to a temp so than can take the address of it.
14114                         // Here we need unsafe value cls check, since the address of struct is taken to be used
14115                         // further along and potetially be exploitable.
14116
14117                         unsigned tmp = lvaGrabTemp(true DEBUGARG("UNBOXing a nullable"));
14118                         lvaSetStruct(tmp, resolvedToken.hClass, true /* unsafe value cls check */);
14119
14120                         op2 = gtNewLclvNode(tmp, TYP_STRUCT);
14121                         op1 = impAssignStruct(op2, op1, resolvedToken.hClass, (unsigned)CHECK_SPILL_ALL);
14122                         assert(op1->gtType == TYP_VOID); // We must be assigning the return struct to the temp.
14123
14124                         op2 = gtNewLclvNode(tmp, TYP_STRUCT);
14125                         op2 = gtNewOperNode(GT_ADDR, TYP_BYREF, op2);
14126                         op1 = gtNewOperNode(GT_COMMA, TYP_BYREF, op1, op2);
14127                     }
14128
14129                     assert(op1->gtType == TYP_BYREF);
14130                     assert(!tiVerificationNeeded || tiRetVal.IsByRef());
14131                 }
14132                 else
14133                 {
14134                     assert(opcode == CEE_UNBOX_ANY);
14135
14136                     if (helper == CORINFO_HELP_UNBOX)
14137                     {
14138                         // Normal unbox helper returns a TYP_BYREF.
14139                         impPushOnStack(op1, tiRetVal);
14140                         oper = GT_OBJ;
14141                         goto OBJ;
14142                     }
14143
14144                     assert(helper == CORINFO_HELP_UNBOX_NULLABLE && "Make sure the helper is nullable!");
14145
14146 #if FEATURE_MULTIREG_RET
14147
14148                     if (varTypeIsStruct(op1) && IsMultiRegReturnedType(resolvedToken.hClass))
14149                     {
14150                         // Unbox nullable helper returns a TYP_STRUCT.
14151                         // For the multi-reg case we need to spill it to a temp so that
14152                         // we can pass the address to the unbox_nullable jit helper.
14153
14154                         unsigned tmp = lvaGrabTemp(true DEBUGARG("UNBOXing a register returnable nullable"));
14155                         lvaTable[tmp].lvIsMultiRegArg = true;
14156                         lvaSetStruct(tmp, resolvedToken.hClass, true /* unsafe value cls check */);
14157
14158                         op2 = gtNewLclvNode(tmp, TYP_STRUCT);
14159                         op1 = impAssignStruct(op2, op1, resolvedToken.hClass, (unsigned)CHECK_SPILL_ALL);
14160                         assert(op1->gtType == TYP_VOID); // We must be assigning the return struct to the temp.
14161
14162                         op2 = gtNewLclvNode(tmp, TYP_STRUCT);
14163                         op2 = gtNewOperNode(GT_ADDR, TYP_BYREF, op2);
14164                         op1 = gtNewOperNode(GT_COMMA, TYP_BYREF, op1, op2);
14165
14166                         // In this case the return value of the unbox helper is TYP_BYREF.
14167                         // Make sure the right type is placed on the operand type stack.
14168                         impPushOnStack(op1, tiRetVal);
14169
14170                         // Load the struct.
14171                         oper = GT_OBJ;
14172
14173                         assert(op1->gtType == TYP_BYREF);
14174                         assert(!tiVerificationNeeded || tiRetVal.IsByRef());
14175
14176                         goto OBJ;
14177                     }
14178                     else
14179
14180 #endif // !FEATURE_MULTIREG_RET
14181
14182                     {
14183                         // If non register passable struct we have it materialized in the RetBuf.
14184                         assert(op1->gtType == TYP_STRUCT);
14185                         tiRetVal = verMakeTypeInfo(resolvedToken.hClass);
14186                         assert(tiRetVal.IsValueClass());
14187                     }
14188                 }
14189
14190                 impPushOnStack(op1, tiRetVal);
14191             }
14192             break;
14193
14194             case CEE_BOX:
14195             {
14196                 /* Get the Class index */
14197                 assertImp(sz == sizeof(unsigned));
14198
14199                 _impResolveToken(CORINFO_TOKENKIND_Box);
14200
14201                 JITDUMP(" %08X", resolvedToken.token);
14202
14203                 if (tiVerificationNeeded)
14204                 {
14205                     typeInfo tiActual = impStackTop().seTypeInfo;
14206                     typeInfo tiBox    = verMakeTypeInfo(resolvedToken.hClass);
14207
14208                     Verify(verIsBoxable(tiBox), "boxable type expected");
14209
14210                     // check the class constraints of the boxed type in case we are boxing an uninitialized value
14211                     Verify(info.compCompHnd->satisfiesClassConstraints(resolvedToken.hClass),
14212                            "boxed type has unsatisfied class constraints");
14213
14214                     Verify(tiCompatibleWith(tiActual, tiBox.NormaliseForStack(), true), "type mismatch");
14215
14216                     // Observation: the following code introduces a boxed value class on the stack, but,
14217                     // according to the ECMA spec, one would simply expect: tiRetVal =
14218                     // typeInfo(TI_REF,impGetObjectClass());
14219
14220                     // Push the result back on the stack,
14221                     // even if clsHnd is a value class we want the TI_REF
14222                     // we call back to the EE to get find out what hte type we should push (for nullable<T> we push T)
14223                     tiRetVal = typeInfo(TI_REF, info.compCompHnd->getTypeForBox(resolvedToken.hClass));
14224                 }
14225
14226                 accessAllowedResult =
14227                     info.compCompHnd->canAccessClass(&resolvedToken, info.compMethodHnd, &calloutHelper);
14228                 impHandleAccessAllowed(accessAllowedResult, &calloutHelper);
14229
14230                 // Note BOX can be used on things that are not value classes, in which
14231                 // case we get a NOP.  However the verifier's view of the type on the
14232                 // stack changes (in generic code a 'T' becomes a 'boxed T')
14233                 if (!eeIsValueClass(resolvedToken.hClass))
14234                 {
14235                     verCurrentState.esStack[verCurrentState.esStackDepth - 1].seTypeInfo = tiRetVal;
14236                     break;
14237                 }
14238
14239                 // Look ahead for unbox.any
14240                 if (codeAddr + (sz + 1 + sizeof(mdToken)) <= codeEndp && codeAddr[sz] == CEE_UNBOX_ANY)
14241                 {
14242                     DWORD classAttribs = info.compCompHnd->getClassAttribs(resolvedToken.hClass);
14243                     if (!(classAttribs & CORINFO_FLG_SHAREDINST))
14244                     {
14245                         CORINFO_RESOLVED_TOKEN unboxResolvedToken;
14246
14247                         impResolveToken(codeAddr + (sz + 1), &unboxResolvedToken, CORINFO_TOKENKIND_Class);
14248
14249                         if (unboxResolvedToken.hClass == resolvedToken.hClass)
14250                         {
14251                             // Skip the next unbox.any instruction
14252                             sz += sizeof(mdToken) + 1;
14253                             break;
14254                         }
14255                     }
14256                 }
14257
14258                 impImportAndPushBox(&resolvedToken);
14259                 if (compDonotInline())
14260                 {
14261                     return;
14262                 }
14263             }
14264             break;
14265
14266             case CEE_SIZEOF:
14267
14268                 /* Get the Class index */
14269                 assertImp(sz == sizeof(unsigned));
14270
14271                 _impResolveToken(CORINFO_TOKENKIND_Class);
14272
14273                 JITDUMP(" %08X", resolvedToken.token);
14274
14275                 if (tiVerificationNeeded)
14276                 {
14277                     tiRetVal = typeInfo(TI_INT);
14278                 }
14279
14280                 op1 = gtNewIconNode(info.compCompHnd->getClassSize(resolvedToken.hClass));
14281                 impPushOnStack(op1, tiRetVal);
14282                 break;
14283
14284             case CEE_CASTCLASS:
14285
14286                 /* Get the Class index */
14287
14288                 assertImp(sz == sizeof(unsigned));
14289
14290                 _impResolveToken(CORINFO_TOKENKIND_Casting);
14291
14292                 JITDUMP(" %08X", resolvedToken.token);
14293
14294                 if (!opts.IsReadyToRun())
14295                 {
14296                     op2 = impTokenToHandle(&resolvedToken, nullptr, FALSE);
14297                     if (op2 == nullptr)
14298                     { // compDonotInline()
14299                         return;
14300                     }
14301                 }
14302
14303                 if (tiVerificationNeeded)
14304                 {
14305                     Verify(impStackTop().seTypeInfo.IsObjRef(), "object ref expected");
14306                     // box it
14307                     tiRetVal = typeInfo(TI_REF, resolvedToken.hClass);
14308                 }
14309
14310                 accessAllowedResult =
14311                     info.compCompHnd->canAccessClass(&resolvedToken, info.compMethodHnd, &calloutHelper);
14312                 impHandleAccessAllowed(accessAllowedResult, &calloutHelper);
14313
14314                 op1 = impPopStack().val;
14315
14316             /* Pop the address and create the 'checked cast' helper call */
14317
14318             // At this point we expect typeRef to contain the token, op1 to contain the value being cast,
14319             // and op2 to contain code that creates the type handle corresponding to typeRef
14320             CASTCLASS:
14321
14322 #ifdef FEATURE_READYTORUN_COMPILER
14323                 if (opts.IsReadyToRun())
14324                 {
14325                     GenTreePtr opLookup = impReadyToRunHelperToTree(&resolvedToken, CORINFO_HELP_READYTORUN_CHKCAST,
14326                                                                     TYP_REF, gtNewArgList(op1));
14327                     usingReadyToRunHelper = (opLookup != nullptr);
14328                     op1                   = (usingReadyToRunHelper ? opLookup : op1);
14329
14330                     if (!usingReadyToRunHelper)
14331                     {
14332                         // TODO: ReadyToRun: When generic dictionary lookups are necessary, replace the lookup call
14333                         // and the chkcastany call with a single call to a dynamic R2R cell that will:
14334                         //      1) Load the context
14335                         //      2) Perform the generic dictionary lookup and caching, and generate the appropriate stub
14336                         //      3) Check the object on the stack for the type-cast
14337                         // Reason: performance (today, we'll always use the slow helper for the R2R generics case)
14338
14339                         op2 = impTokenToHandle(&resolvedToken, nullptr, FALSE);
14340                         if (op2 == nullptr)
14341                         { // compDonotInline()
14342                             return;
14343                         }
14344                     }
14345                 }
14346
14347                 if (!usingReadyToRunHelper)
14348 #endif
14349                 {
14350                     op1 = impCastClassOrIsInstToTree(op1, op2, &resolvedToken, true);
14351                 }
14352                 if (compDonotInline())
14353                 {
14354                     return;
14355                 }
14356
14357                 /* Push the result back on the stack */
14358                 impPushOnStack(op1, tiRetVal);
14359                 break;
14360
14361             case CEE_THROW:
14362
14363                 if (compIsForInlining())
14364                 {
14365                     // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
14366                     // TODO: Will this be too strict, given that we will inline many basic blocks?
14367                     // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
14368
14369                     /* Do we have just the exception on the stack ?*/
14370
14371                     if (verCurrentState.esStackDepth != 1)
14372                     {
14373                         /* if not, just don't inline the method */
14374
14375                         compInlineResult->NoteFatal(InlineObservation::CALLEE_THROW_WITH_INVALID_STACK);
14376                         return;
14377                     }
14378                 }
14379
14380                 if (tiVerificationNeeded)
14381                 {
14382                     tiRetVal = impStackTop().seTypeInfo;
14383                     Verify(tiRetVal.IsObjRef(), "object ref expected");
14384                     if (verTrackObjCtorInitState && (verCurrentState.thisInitialized != TIS_Init))
14385                     {
14386                         Verify(!tiRetVal.IsThisPtr(), "throw uninitialized this");
14387                     }
14388                 }
14389
14390                 block->bbSetRunRarely(); // any block with a throw is rare
14391                 /* Pop the exception object and create the 'throw' helper call */
14392
14393                 op1 = gtNewHelperCallNode(CORINFO_HELP_THROW, TYP_VOID, GTF_EXCEPT, gtNewArgList(impPopStack().val));
14394
14395             EVAL_APPEND:
14396                 if (verCurrentState.esStackDepth > 0)
14397                 {
14398                     impEvalSideEffects();
14399                 }
14400
14401                 assert(verCurrentState.esStackDepth == 0);
14402
14403                 goto APPEND;
14404
14405             case CEE_RETHROW:
14406
14407                 assert(!compIsForInlining());
14408
14409                 if (info.compXcptnsCount == 0)
14410                 {
14411                     BADCODE("rethrow outside catch");
14412                 }
14413
14414                 if (tiVerificationNeeded)
14415                 {
14416                     Verify(block->hasHndIndex(), "rethrow outside catch");
14417                     if (block->hasHndIndex())
14418                     {
14419                         EHblkDsc* HBtab = ehGetDsc(block->getHndIndex());
14420                         Verify(!HBtab->HasFinallyOrFaultHandler(), "rethrow in finally or fault");
14421                         if (HBtab->HasFilter())
14422                         {
14423                             // we better be in the handler clause part, not the filter part
14424                             Verify(jitIsBetween(compCurBB->bbCodeOffs, HBtab->ebdHndBegOffs(), HBtab->ebdHndEndOffs()),
14425                                    "rethrow in filter");
14426                         }
14427                     }
14428                 }
14429
14430                 /* Create the 'rethrow' helper call */
14431
14432                 op1 = gtNewHelperCallNode(CORINFO_HELP_RETHROW, TYP_VOID, GTF_EXCEPT);
14433
14434                 goto EVAL_APPEND;
14435
14436             case CEE_INITOBJ:
14437
14438                 assertImp(sz == sizeof(unsigned));
14439
14440                 _impResolveToken(CORINFO_TOKENKIND_Class);
14441
14442                 JITDUMP(" %08X", resolvedToken.token);
14443
14444                 if (tiVerificationNeeded)
14445                 {
14446                     typeInfo tiTo    = impStackTop().seTypeInfo;
14447                     typeInfo tiInstr = verMakeTypeInfo(resolvedToken.hClass);
14448
14449                     Verify(tiTo.IsByRef(), "byref expected");
14450                     Verify(!tiTo.IsReadonlyByRef(), "write to readonly byref");
14451
14452                     Verify(tiCompatibleWith(tiInstr, tiTo.DereferenceByRef(), false),
14453                            "type operand incompatible with type of address");
14454                 }
14455
14456                 size = info.compCompHnd->getClassSize(resolvedToken.hClass); // Size
14457                 op2  = gtNewIconNode(0);                                     // Value
14458                 op1  = impPopStack().val;                                    // Dest
14459                 op1  = gtNewBlockVal(op1, size);
14460                 op1  = gtNewBlkOpNode(op1, op2, size, (prefixFlags & PREFIX_VOLATILE) != 0, false);
14461                 goto SPILL_APPEND;
14462
14463             case CEE_INITBLK:
14464
14465                 if (tiVerificationNeeded)
14466                 {
14467                     Verify(false, "bad opcode");
14468                 }
14469
14470                 op3 = impPopStack().val; // Size
14471                 op2 = impPopStack().val; // Value
14472                 op1 = impPopStack().val; // Dest
14473
14474                 if (op3->IsCnsIntOrI())
14475                 {
14476                     size = (unsigned)op3->AsIntConCommon()->IconValue();
14477                     op1  = new (this, GT_BLK) GenTreeBlk(GT_BLK, TYP_STRUCT, op1, size);
14478                 }
14479                 else
14480                 {
14481                     op1  = new (this, GT_DYN_BLK) GenTreeDynBlk(op1, op3);
14482                     size = 0;
14483                 }
14484                 op1 = gtNewBlkOpNode(op1, op2, size, (prefixFlags & PREFIX_VOLATILE) != 0, false);
14485
14486                 goto SPILL_APPEND;
14487
14488             case CEE_CPBLK:
14489
14490                 if (tiVerificationNeeded)
14491                 {
14492                     Verify(false, "bad opcode");
14493                 }
14494                 op3 = impPopStack().val; // Size
14495                 op2 = impPopStack().val; // Src
14496                 op1 = impPopStack().val; // Dest
14497
14498                 if (op3->IsCnsIntOrI())
14499                 {
14500                     size = (unsigned)op3->AsIntConCommon()->IconValue();
14501                     op1  = new (this, GT_BLK) GenTreeBlk(GT_BLK, TYP_STRUCT, op1, size);
14502                 }
14503                 else
14504                 {
14505                     op1  = new (this, GT_DYN_BLK) GenTreeDynBlk(op1, op3);
14506                     size = 0;
14507                 }
14508                 if (op2->OperGet() == GT_ADDR)
14509                 {
14510                     op2 = op2->gtOp.gtOp1;
14511                 }
14512                 else
14513                 {
14514                     op2 = gtNewOperNode(GT_IND, TYP_STRUCT, op2);
14515                 }
14516
14517                 op1 = gtNewBlkOpNode(op1, op2, size, (prefixFlags & PREFIX_VOLATILE) != 0, true);
14518                 goto SPILL_APPEND;
14519
14520             case CEE_CPOBJ:
14521
14522                 assertImp(sz == sizeof(unsigned));
14523
14524                 _impResolveToken(CORINFO_TOKENKIND_Class);
14525
14526                 JITDUMP(" %08X", resolvedToken.token);
14527
14528                 if (tiVerificationNeeded)
14529                 {
14530                     typeInfo tiFrom  = impStackTop().seTypeInfo;
14531                     typeInfo tiTo    = impStackTop(1).seTypeInfo;
14532                     typeInfo tiInstr = verMakeTypeInfo(resolvedToken.hClass);
14533
14534                     Verify(tiFrom.IsByRef(), "expected byref source");
14535                     Verify(tiTo.IsByRef(), "expected byref destination");
14536
14537                     Verify(tiCompatibleWith(tiFrom.DereferenceByRef(), tiInstr, false),
14538                            "type of source address incompatible with type operand");
14539                     Verify(!tiTo.IsReadonlyByRef(), "write to readonly byref");
14540                     Verify(tiCompatibleWith(tiInstr, tiTo.DereferenceByRef(), false),
14541                            "type operand incompatible with type of destination address");
14542                 }
14543
14544                 if (!eeIsValueClass(resolvedToken.hClass))
14545                 {
14546                     op1 = impPopStack().val; // address to load from
14547
14548                     impBashVarAddrsToI(op1);
14549
14550                     assertImp(genActualType(op1->gtType) == TYP_I_IMPL || op1->gtType == TYP_BYREF);
14551
14552                     op1 = gtNewOperNode(GT_IND, TYP_REF, op1);
14553                     op1->gtFlags |= GTF_EXCEPT | GTF_GLOB_REF;
14554
14555                     impPushOnStackNoType(op1);
14556                     opcode = CEE_STIND_REF;
14557                     lclTyp = TYP_REF;
14558                     goto STIND_POST_VERIFY;
14559                 }
14560
14561                 op2 = impPopStack().val; // Src
14562                 op1 = impPopStack().val; // Dest
14563                 op1 = gtNewCpObjNode(op1, op2, resolvedToken.hClass, ((prefixFlags & PREFIX_VOLATILE) != 0));
14564                 goto SPILL_APPEND;
14565
14566             case CEE_STOBJ:
14567             {
14568                 assertImp(sz == sizeof(unsigned));
14569
14570                 _impResolveToken(CORINFO_TOKENKIND_Class);
14571
14572                 JITDUMP(" %08X", resolvedToken.token);
14573
14574                 if (eeIsValueClass(resolvedToken.hClass))
14575                 {
14576                     lclTyp = TYP_STRUCT;
14577                 }
14578                 else
14579                 {
14580                     lclTyp = TYP_REF;
14581                 }
14582
14583                 if (tiVerificationNeeded)
14584                 {
14585
14586                     typeInfo tiPtr = impStackTop(1).seTypeInfo;
14587
14588                     // Make sure we have a good looking byref
14589                     Verify(tiPtr.IsByRef(), "pointer not byref");
14590                     Verify(!tiPtr.IsReadonlyByRef(), "write to readonly byref");
14591                     if (!tiPtr.IsByRef() || tiPtr.IsReadonlyByRef())
14592                     {
14593                         compUnsafeCastUsed = true;
14594                     }
14595
14596                     typeInfo ptrVal = DereferenceByRef(tiPtr);
14597                     typeInfo argVal = verMakeTypeInfo(resolvedToken.hClass);
14598
14599                     if (!tiCompatibleWith(impStackTop(0).seTypeInfo, NormaliseForStack(argVal), true))
14600                     {
14601                         Verify(false, "type of value incompatible with type operand");
14602                         compUnsafeCastUsed = true;
14603                     }
14604
14605                     if (!tiCompatibleWith(argVal, ptrVal, false))
14606                     {
14607                         Verify(false, "type operand incompatible with type of address");
14608                         compUnsafeCastUsed = true;
14609                     }
14610                 }
14611                 else
14612                 {
14613                     compUnsafeCastUsed = true;
14614                 }
14615
14616                 if (lclTyp == TYP_REF)
14617                 {
14618                     opcode = CEE_STIND_REF;
14619                     goto STIND_POST_VERIFY;
14620                 }
14621
14622                 CorInfoType jitTyp = info.compCompHnd->asCorInfoType(resolvedToken.hClass);
14623                 if (impIsPrimitive(jitTyp))
14624                 {
14625                     lclTyp = JITtype2varType(jitTyp);
14626                     goto STIND_POST_VERIFY;
14627                 }
14628
14629                 op2 = impPopStack().val; // Value
14630                 op1 = impPopStack().val; // Ptr
14631
14632                 assertImp(varTypeIsStruct(op2));
14633
14634                 op1 = impAssignStructPtr(op1, op2, resolvedToken.hClass, (unsigned)CHECK_SPILL_ALL);
14635                 goto SPILL_APPEND;
14636             }
14637
14638             case CEE_MKREFANY:
14639
14640                 assert(!compIsForInlining());
14641
14642                 // Being lazy here. Refanys are tricky in terms of gc tracking.
14643                 // Since it is uncommon, just don't perform struct promotion in any method that contains mkrefany.
14644
14645                 JITDUMP("disabling struct promotion because of mkrefany\n");
14646                 fgNoStructPromotion = true;
14647
14648                 oper = GT_MKREFANY;
14649                 assertImp(sz == sizeof(unsigned));
14650
14651                 _impResolveToken(CORINFO_TOKENKIND_Class);
14652
14653                 JITDUMP(" %08X", resolvedToken.token);
14654
14655                 op2 = impTokenToHandle(&resolvedToken, nullptr, TRUE);
14656                 if (op2 == nullptr)
14657                 { // compDonotInline()
14658                     return;
14659                 }
14660
14661                 if (tiVerificationNeeded)
14662                 {
14663                     typeInfo tiPtr   = impStackTop().seTypeInfo;
14664                     typeInfo tiInstr = verMakeTypeInfo(resolvedToken.hClass);
14665
14666                     Verify(!verIsByRefLike(tiInstr), "mkrefany of byref-like class");
14667                     Verify(!tiPtr.IsReadonlyByRef(), "readonly byref used with mkrefany");
14668                     Verify(typeInfo::AreEquivalent(tiPtr.DereferenceByRef(), tiInstr), "type mismatch");
14669                 }
14670
14671                 accessAllowedResult =
14672                     info.compCompHnd->canAccessClass(&resolvedToken, info.compMethodHnd, &calloutHelper);
14673                 impHandleAccessAllowed(accessAllowedResult, &calloutHelper);
14674
14675                 op1 = impPopStack().val;
14676
14677                 // @SPECVIOLATION: TYP_INT should not be allowed here by a strict reading of the spec.
14678                 // But JIT32 allowed it, so we continue to allow it.
14679                 assertImp(op1->TypeGet() == TYP_BYREF || op1->TypeGet() == TYP_I_IMPL || op1->TypeGet() == TYP_INT);
14680
14681                 // MKREFANY returns a struct.  op2 is the class token.
14682                 op1 = gtNewOperNode(oper, TYP_STRUCT, op1, op2);
14683
14684                 impPushOnStack(op1, verMakeTypeInfo(impGetRefAnyClass()));
14685                 break;
14686
14687             case CEE_LDOBJ:
14688             {
14689                 oper = GT_OBJ;
14690                 assertImp(sz == sizeof(unsigned));
14691
14692                 _impResolveToken(CORINFO_TOKENKIND_Class);
14693
14694                 JITDUMP(" %08X", resolvedToken.token);
14695
14696             OBJ:
14697
14698                 tiRetVal = verMakeTypeInfo(resolvedToken.hClass);
14699
14700                 if (tiVerificationNeeded)
14701                 {
14702                     typeInfo tiPtr = impStackTop().seTypeInfo;
14703
14704                     // Make sure we have a byref
14705                     if (!tiPtr.IsByRef())
14706                     {
14707                         Verify(false, "pointer not byref");
14708                         compUnsafeCastUsed = true;
14709                     }
14710                     typeInfo tiPtrVal = DereferenceByRef(tiPtr);
14711
14712                     if (!tiCompatibleWith(tiPtrVal, tiRetVal, false))
14713                     {
14714                         Verify(false, "type of address incompatible with type operand");
14715                         compUnsafeCastUsed = true;
14716                     }
14717                     tiRetVal.NormaliseForStack();
14718                 }
14719                 else
14720                 {
14721                     compUnsafeCastUsed = true;
14722                 }
14723
14724                 if (eeIsValueClass(resolvedToken.hClass))
14725                 {
14726                     lclTyp = TYP_STRUCT;
14727                 }
14728                 else
14729                 {
14730                     lclTyp = TYP_REF;
14731                     opcode = CEE_LDIND_REF;
14732                     goto LDIND_POST_VERIFY;
14733                 }
14734
14735                 op1 = impPopStack().val;
14736
14737                 assertImp(op1->TypeGet() == TYP_BYREF || op1->TypeGet() == TYP_I_IMPL);
14738
14739                 CorInfoType jitTyp = info.compCompHnd->asCorInfoType(resolvedToken.hClass);
14740                 if (impIsPrimitive(jitTyp))
14741                 {
14742                     op1 = gtNewOperNode(GT_IND, JITtype2varType(jitTyp), op1);
14743
14744                     // Could point anywhere, example a boxed class static int
14745                     op1->gtFlags |= GTF_IND_TGTANYWHERE | GTF_GLOB_REF;
14746                     assertImp(varTypeIsArithmetic(op1->gtType));
14747                 }
14748                 else
14749                 {
14750                     // OBJ returns a struct
14751                     // and an inline argument which is the class token of the loaded obj
14752                     op1 = gtNewObjNode(resolvedToken.hClass, op1);
14753                 }
14754                 op1->gtFlags |= GTF_EXCEPT;
14755
14756                 impPushOnStack(op1, tiRetVal);
14757                 break;
14758             }
14759
14760             case CEE_LDLEN:
14761                 if (tiVerificationNeeded)
14762                 {
14763                     typeInfo tiArray = impStackTop().seTypeInfo;
14764                     Verify(verIsSDArray(tiArray), "bad array");
14765                     tiRetVal = typeInfo(TI_INT);
14766                 }
14767
14768                 op1 = impPopStack().val;
14769                 if (!opts.MinOpts() && !opts.compDbgCode)
14770                 {
14771                     /* Use GT_ARR_LENGTH operator so rng check opts see this */
14772                     GenTreeArrLen* arrLen =
14773                         new (this, GT_ARR_LENGTH) GenTreeArrLen(TYP_INT, op1, offsetof(CORINFO_Array, length));
14774
14775                     /* Mark the block as containing a length expression */
14776
14777                     if (op1->gtOper == GT_LCL_VAR)
14778                     {
14779                         block->bbFlags |= BBF_HAS_IDX_LEN;
14780                     }
14781
14782                     op1 = arrLen;
14783                 }
14784                 else
14785                 {
14786                     /* Create the expression "*(array_addr + ArrLenOffs)" */
14787                     op1 = gtNewOperNode(GT_ADD, TYP_BYREF, op1,
14788                                         gtNewIconNode(offsetof(CORINFO_Array, length), TYP_I_IMPL));
14789                     op1 = gtNewOperNode(GT_IND, TYP_INT, op1);
14790                     op1->gtFlags |= GTF_IND_ARR_LEN;
14791                 }
14792
14793                 /* An indirection will cause a GPF if the address is null */
14794                 op1->gtFlags |= GTF_EXCEPT;
14795
14796                 /* Push the result back on the stack */
14797                 impPushOnStack(op1, tiRetVal);
14798                 break;
14799
14800             case CEE_BREAK:
14801                 op1 = gtNewHelperCallNode(CORINFO_HELP_USER_BREAKPOINT, TYP_VOID);
14802                 goto SPILL_APPEND;
14803
14804             case CEE_NOP:
14805                 if (opts.compDbgCode)
14806                 {
14807                     op1 = new (this, GT_NO_OP) GenTree(GT_NO_OP, TYP_VOID);
14808                     goto SPILL_APPEND;
14809                 }
14810                 break;
14811
14812             /******************************** NYI *******************************/
14813
14814             case 0xCC:
14815                 OutputDebugStringA("CLR: Invalid x86 breakpoint in IL stream\n");
14816
14817             case CEE_ILLEGAL:
14818             case CEE_MACRO_END:
14819
14820             default:
14821                 BADCODE3("unknown opcode", ": %02X", (int)opcode);
14822         }
14823
14824         codeAddr += sz;
14825         prevOpcode = opcode;
14826
14827         prefixFlags = 0;
14828         assert(!insertLdloc || opcode == CEE_DUP);
14829     }
14830
14831     assert(!insertLdloc);
14832
14833     return;
14834 #undef _impResolveToken
14835 }
14836 #ifdef _PREFAST_
14837 #pragma warning(pop)
14838 #endif
14839
14840 // Push a local/argument treeon the operand stack
14841 void Compiler::impPushVar(GenTree* op, typeInfo tiRetVal)
14842 {
14843     tiRetVal.NormaliseForStack();
14844
14845     if (verTrackObjCtorInitState && (verCurrentState.thisInitialized != TIS_Init) && tiRetVal.IsThisPtr())
14846     {
14847         tiRetVal.SetUninitialisedObjRef();
14848     }
14849
14850     impPushOnStack(op, tiRetVal);
14851 }
14852
14853 // Load a local/argument on the operand stack
14854 // lclNum is an index into lvaTable *NOT* the arg/lcl index in the IL
14855 void Compiler::impLoadVar(unsigned lclNum, IL_OFFSET offset, typeInfo tiRetVal)
14856 {
14857     var_types lclTyp;
14858
14859     if (lvaTable[lclNum].lvNormalizeOnLoad())
14860     {
14861         lclTyp = lvaGetRealType(lclNum);
14862     }
14863     else
14864     {
14865         lclTyp = lvaGetActualType(lclNum);
14866     }
14867
14868     impPushVar(gtNewLclvNode(lclNum, lclTyp, offset), tiRetVal);
14869 }
14870
14871 // Load an argument on the operand stack
14872 // Shared by the various CEE_LDARG opcodes
14873 // ilArgNum is the argument index as specified in IL.
14874 // It will be mapped to the correct lvaTable index
14875 void Compiler::impLoadArg(unsigned ilArgNum, IL_OFFSET offset)
14876 {
14877     Verify(ilArgNum < info.compILargsCount, "bad arg num");
14878
14879     if (compIsForInlining())
14880     {
14881         if (ilArgNum >= info.compArgsCount)
14882         {
14883             compInlineResult->NoteFatal(InlineObservation::CALLEE_BAD_ARGUMENT_NUMBER);
14884             return;
14885         }
14886
14887         impPushVar(impInlineFetchArg(ilArgNum, impInlineInfo->inlArgInfo, impInlineInfo->lclVarInfo),
14888                    impInlineInfo->lclVarInfo[ilArgNum].lclVerTypeInfo);
14889     }
14890     else
14891     {
14892         if (ilArgNum >= info.compArgsCount)
14893         {
14894             BADCODE("Bad IL");
14895         }
14896
14897         unsigned lclNum = compMapILargNum(ilArgNum); // account for possible hidden param
14898
14899         if (lclNum == info.compThisArg)
14900         {
14901             lclNum = lvaArg0Var;
14902         }
14903
14904         impLoadVar(lclNum, offset);
14905     }
14906 }
14907
14908 // Load a local on the operand stack
14909 // Shared by the various CEE_LDLOC opcodes
14910 // ilLclNum is the local index as specified in IL.
14911 // It will be mapped to the correct lvaTable index
14912 void Compiler::impLoadLoc(unsigned ilLclNum, IL_OFFSET offset)
14913 {
14914     if (tiVerificationNeeded)
14915     {
14916         Verify(ilLclNum < info.compMethodInfo->locals.numArgs, "bad loc num");
14917         Verify(info.compInitMem, "initLocals not set");
14918     }
14919
14920     if (compIsForInlining())
14921     {
14922         if (ilLclNum >= info.compMethodInfo->locals.numArgs)
14923         {
14924             compInlineResult->NoteFatal(InlineObservation::CALLEE_BAD_LOCAL_NUMBER);
14925             return;
14926         }
14927
14928         // Get the local type
14929         var_types lclTyp = impInlineInfo->lclVarInfo[ilLclNum + impInlineInfo->argCnt].lclTypeInfo;
14930
14931         typeInfo tiRetVal = impInlineInfo->lclVarInfo[ilLclNum + impInlineInfo->argCnt].lclVerTypeInfo;
14932
14933         /* Have we allocated a temp for this local? */
14934
14935         unsigned lclNum = impInlineFetchLocal(ilLclNum DEBUGARG("Inline ldloc first use temp"));
14936
14937         // All vars of inlined methods should be !lvNormalizeOnLoad()
14938
14939         assert(!lvaTable[lclNum].lvNormalizeOnLoad());
14940         lclTyp = genActualType(lclTyp);
14941
14942         impPushVar(gtNewLclvNode(lclNum, lclTyp), tiRetVal);
14943     }
14944     else
14945     {
14946         if (ilLclNum >= info.compMethodInfo->locals.numArgs)
14947         {
14948             BADCODE("Bad IL");
14949         }
14950
14951         unsigned lclNum = info.compArgsCount + ilLclNum;
14952
14953         impLoadVar(lclNum, offset);
14954     }
14955 }
14956
14957 #ifdef _TARGET_ARM_
14958 /**************************************************************************************
14959  *
14960  *  When assigning a vararg call src to a HFA lcl dest, mark that we cannot promote the
14961  *  dst struct, because struct promotion will turn it into a float/double variable while
14962  *  the rhs will be an int/long variable. We don't code generate assignment of int into
14963  *  a float, but there is nothing that might prevent us from doing so. The tree however
14964  *  would like: (=, (typ_float, typ_int)) or (GT_TRANSFER, (typ_float, typ_int))
14965  *
14966  *  tmpNum - the lcl dst variable num that is a struct.
14967  *  src    - the src tree assigned to the dest that is a struct/int (when varargs call.)
14968  *  hClass - the type handle for the struct variable.
14969  *
14970  *  TODO-ARM-CQ: [301608] This is a rare scenario with varargs and struct promotion coming into play,
14971  *        however, we could do a codegen of transferring from int to float registers
14972  *        (transfer, not a cast.)
14973  *
14974  */
14975 void Compiler::impMarkLclDstNotPromotable(unsigned tmpNum, GenTreePtr src, CORINFO_CLASS_HANDLE hClass)
14976 {
14977     if (src->gtOper == GT_CALL && src->gtCall.IsVarargs() && IsHfa(hClass))
14978     {
14979         int       hfaSlots = GetHfaCount(hClass);
14980         var_types hfaType  = GetHfaType(hClass);
14981
14982         // If we have varargs we morph the method's return type to be "int" irrespective of its original
14983         // type: struct/float at importer because the ABI calls out return in integer registers.
14984         // We don't want struct promotion to replace an expression like this:
14985         //   lclFld_int = callvar_int() into lclFld_float = callvar_int();
14986         // This means an int is getting assigned to a float without a cast. Prevent the promotion.
14987         if ((hfaType == TYP_DOUBLE && hfaSlots == sizeof(double) / REGSIZE_BYTES) ||
14988             (hfaType == TYP_FLOAT && hfaSlots == sizeof(float) / REGSIZE_BYTES))
14989         {
14990             // Make sure this struct type stays as struct so we can receive the call in a struct.
14991             lvaTable[tmpNum].lvIsMultiRegRet = true;
14992         }
14993     }
14994 }
14995 #endif // _TARGET_ARM_
14996
14997 #if FEATURE_MULTIREG_RET
14998 GenTreePtr Compiler::impAssignMultiRegTypeToVar(GenTreePtr op, CORINFO_CLASS_HANDLE hClass)
14999 {
15000     unsigned tmpNum = lvaGrabTemp(true DEBUGARG("Return value temp for multireg return."));
15001     impAssignTempGen(tmpNum, op, hClass, (unsigned)CHECK_SPILL_NONE);
15002     GenTreePtr ret = gtNewLclvNode(tmpNum, op->gtType);
15003
15004     // TODO-1stClassStructs: Handle constant propagation and CSE-ing of multireg returns.
15005     ret->gtFlags |= GTF_DONT_CSE;
15006
15007     assert(IsMultiRegReturnedType(hClass));
15008
15009     // Mark the var so that fields are not promoted and stay together.
15010     lvaTable[tmpNum].lvIsMultiRegRet = true;
15011
15012     return ret;
15013 }
15014 #endif // FEATURE_MULTIREG_RET
15015
15016 // do import for a return
15017 // returns false if inlining was aborted
15018 // opcode can be ret or call in the case of a tail.call
15019 bool Compiler::impReturnInstruction(BasicBlock* block, int prefixFlags, OPCODE& opcode)
15020 {
15021     if (tiVerificationNeeded)
15022     {
15023         verVerifyThisPtrInitialised();
15024
15025         unsigned expectedStack = 0;
15026         if (info.compRetType != TYP_VOID)
15027         {
15028             typeInfo tiVal = impStackTop().seTypeInfo;
15029             typeInfo tiDeclared =
15030                 verMakeTypeInfo(info.compMethodInfo->args.retType, info.compMethodInfo->args.retTypeClass);
15031
15032             Verify(!verIsByRefLike(tiDeclared) || verIsSafeToReturnByRef(tiVal), "byref return");
15033
15034             Verify(tiCompatibleWith(tiVal, tiDeclared.NormaliseForStack(), true), "type mismatch");
15035             expectedStack = 1;
15036         }
15037         Verify(verCurrentState.esStackDepth == expectedStack, "stack non-empty on return");
15038     }
15039
15040     GenTree*             op2       = nullptr;
15041     GenTree*             op1       = nullptr;
15042     CORINFO_CLASS_HANDLE retClsHnd = nullptr;
15043
15044     if (info.compRetType != TYP_VOID)
15045     {
15046         StackEntry se = impPopStack(retClsHnd);
15047         op2           = se.val;
15048
15049         if (!compIsForInlining())
15050         {
15051             impBashVarAddrsToI(op2);
15052             op2 = impImplicitIorI4Cast(op2, info.compRetType);
15053             op2 = impImplicitR4orR8Cast(op2, info.compRetType);
15054             assertImp((genActualType(op2->TypeGet()) == genActualType(info.compRetType)) ||
15055                       ((op2->TypeGet() == TYP_I_IMPL) && (info.compRetType == TYP_BYREF)) ||
15056                       ((op2->TypeGet() == TYP_BYREF) && (info.compRetType == TYP_I_IMPL)) ||
15057                       (varTypeIsFloating(op2->gtType) && varTypeIsFloating(info.compRetType)) ||
15058                       (varTypeIsStruct(op2) && varTypeIsStruct(info.compRetType)));
15059
15060 #ifdef DEBUG
15061             if (opts.compGcChecks && info.compRetType == TYP_REF)
15062             {
15063                 // DDB 3483  : JIT Stress: early termination of GC ref's life time in exception code path
15064                 // VSW 440513: Incorrect gcinfo on the return value under COMPlus_JitGCChecks=1 for methods with
15065                 // one-return BB.
15066
15067                 assert(op2->gtType == TYP_REF);
15068
15069                 // confirm that the argument is a GC pointer (for debugging (GC stress))
15070                 GenTreeArgList* args = gtNewArgList(op2);
15071                 op2                  = gtNewHelperCallNode(CORINFO_HELP_CHECK_OBJ, TYP_REF, 0, args);
15072
15073                 if (verbose)
15074                 {
15075                     printf("\ncompGcChecks tree:\n");
15076                     gtDispTree(op2);
15077                 }
15078             }
15079 #endif
15080         }
15081         else
15082         {
15083             // inlinee's stack should be empty now.
15084             assert(verCurrentState.esStackDepth == 0);
15085
15086 #ifdef DEBUG
15087             if (verbose)
15088             {
15089                 printf("\n\n    Inlinee Return expression (before normalization)  =>\n");
15090                 gtDispTree(op2);
15091             }
15092 #endif
15093
15094             // Make sure the type matches the original call.
15095
15096             var_types returnType       = genActualType(op2->gtType);
15097             var_types originalCallType = impInlineInfo->inlineCandidateInfo->fncRetType;
15098             if ((returnType != originalCallType) && (originalCallType == TYP_STRUCT))
15099             {
15100                 originalCallType = impNormStructType(impInlineInfo->inlineCandidateInfo->methInfo.args.retTypeClass);
15101             }
15102
15103             if (returnType != originalCallType)
15104             {
15105                 compInlineResult->NoteFatal(InlineObservation::CALLSITE_RETURN_TYPE_MISMATCH);
15106                 return false;
15107             }
15108
15109             // Below, we are going to set impInlineInfo->retExpr to the tree with the return
15110             // expression. At this point, retExpr could already be set if there are multiple
15111             // return blocks (meaning lvaInlineeReturnSpillTemp != BAD_VAR_NUM) and one of
15112             // the other blocks already set it. If there is only a single return block,
15113             // retExpr shouldn't be set. However, this is not true if we reimport a block
15114             // with a return. In that case, retExpr will be set, then the block will be
15115             // reimported, but retExpr won't get cleared as part of setting the block to
15116             // be reimported. The reimported retExpr value should be the same, so even if
15117             // we don't unconditionally overwrite it, it shouldn't matter.
15118             if (info.compRetNativeType != TYP_STRUCT)
15119             {
15120                 // compRetNativeType is not TYP_STRUCT.
15121                 // This implies it could be either a scalar type or SIMD vector type or
15122                 // a struct type that can be normalized to a scalar type.
15123
15124                 if (varTypeIsStruct(info.compRetType))
15125                 {
15126                     noway_assert(info.compRetBuffArg == BAD_VAR_NUM);
15127                     // adjust the type away from struct to integral
15128                     // and no normalizing
15129                     op2 = impFixupStructReturnType(op2, retClsHnd);
15130                 }
15131                 else
15132                 {
15133                     // Do we have to normalize?
15134                     var_types fncRealRetType = JITtype2varType(info.compMethodInfo->args.retType);
15135                     if ((varTypeIsSmall(op2->TypeGet()) || varTypeIsSmall(fncRealRetType)) &&
15136                         fgCastNeeded(op2, fncRealRetType))
15137                     {
15138                         // Small-typed return values are normalized by the callee
15139                         op2 = gtNewCastNode(TYP_INT, op2, fncRealRetType);
15140                     }
15141                 }
15142
15143                 if (lvaInlineeReturnSpillTemp != BAD_VAR_NUM)
15144                 {
15145                     assert(info.compRetNativeType != TYP_VOID &&
15146                            (fgMoreThanOneReturnBlock() || impInlineInfo->hasPinnedLocals));
15147
15148                     // This is a bit of a workaround...
15149                     // If we are inlining a call that returns a struct, where the actual "native" return type is
15150                     // not a struct (for example, the struct is composed of exactly one int, and the native
15151                     // return type is thus an int), and the inlinee has multiple return blocks (thus,
15152                     // lvaInlineeReturnSpillTemp is != BAD_VAR_NUM, and is the index of a local var that is set
15153                     // to the *native* return type), and at least one of the return blocks is the result of
15154                     // a call, then we have a problem. The situation is like this (from a failed test case):
15155                     //
15156                     // inliner:
15157                     //      // Note: valuetype plinq_devtests.LazyTests/LIX is a struct with only a single int
15158                     //      call !!0 [mscorlib]System.Threading.LazyInitializer::EnsureInitialized<valuetype
15159                     //      plinq_devtests.LazyTests/LIX>(!!0&, bool&, object&, class [mscorlib]System.Func`1<!!0>)
15160                     //
15161                     // inlinee:
15162                     //      ...
15163                     //      ldobj      !!T                 // this gets bashed to a GT_LCL_FLD, type TYP_INT
15164                     //      ret
15165                     //      ...
15166                     //      call       !!0 System.Threading.LazyInitializer::EnsureInitializedCore<!!0>(!!0&, bool&,
15167                     //      object&, class System.Func`1<!!0>)
15168                     //      ret
15169                     //
15170                     // In the code above, when we call impFixupStructReturnType(), we will change the op2 return type
15171                     // of the inlinee return node, but we don't do that for GT_CALL nodes, which we delay until
15172                     // morphing when we call fgFixupStructReturn(). We do this, apparently, to handle nested
15173                     // inlining properly by leaving the correct type on the GT_CALL node through importing.
15174                     //
15175                     // To fix this, for this case, we temporarily change the GT_CALL node type to the
15176                     // native return type, which is what it will be set to eventually. We generate the
15177                     // assignment to the return temp, using the correct type, and then restore the GT_CALL
15178                     // node type. During morphing, the GT_CALL will get the correct, final, native return type.
15179
15180                     bool restoreType = false;
15181                     if ((op2->OperGet() == GT_CALL) && (info.compRetType == TYP_STRUCT))
15182                     {
15183                         noway_assert(op2->TypeGet() == TYP_STRUCT);
15184                         op2->gtType = info.compRetNativeType;
15185                         restoreType = true;
15186                     }
15187
15188                     impAssignTempGen(lvaInlineeReturnSpillTemp, op2, se.seTypeInfo.GetClassHandle(),
15189                                      (unsigned)CHECK_SPILL_ALL);
15190
15191                     GenTreePtr tmpOp2 = gtNewLclvNode(lvaInlineeReturnSpillTemp, op2->TypeGet());
15192
15193                     if (restoreType)
15194                     {
15195                         op2->gtType = TYP_STRUCT; // restore it to what it was
15196                     }
15197
15198                     op2 = tmpOp2;
15199
15200 #ifdef DEBUG
15201                     if (impInlineInfo->retExpr)
15202                     {
15203                         // Some other block(s) have seen the CEE_RET first.
15204                         // Better they spilled to the same temp.
15205                         assert(impInlineInfo->retExpr->gtOper == GT_LCL_VAR);
15206                         assert(impInlineInfo->retExpr->gtLclVarCommon.gtLclNum == op2->gtLclVarCommon.gtLclNum);
15207                     }
15208 #endif
15209                 }
15210
15211 #ifdef DEBUG
15212                 if (verbose)
15213                 {
15214                     printf("\n\n    Inlinee Return expression (after normalization) =>\n");
15215                     gtDispTree(op2);
15216                 }
15217 #endif
15218
15219                 // Report the return expression
15220                 impInlineInfo->retExpr = op2;
15221             }
15222             else
15223             {
15224                 // compRetNativeType is TYP_STRUCT.
15225                 // This implies that struct return via RetBuf arg or multi-reg struct return
15226
15227                 GenTreePtr iciCall = impInlineInfo->iciCall;
15228                 assert(iciCall->gtOper == GT_CALL);
15229
15230                 // Assign the inlinee return into a spill temp.
15231                 // spill temp only exists if there are multiple return points
15232                 if (lvaInlineeReturnSpillTemp != BAD_VAR_NUM)
15233                 {
15234                     // in this case we have to insert multiple struct copies to the temp
15235                     // and the retexpr is just the temp.
15236                     assert(info.compRetNativeType != TYP_VOID);
15237                     assert(fgMoreThanOneReturnBlock() || impInlineInfo->hasPinnedLocals);
15238
15239                     impAssignTempGen(lvaInlineeReturnSpillTemp, op2, se.seTypeInfo.GetClassHandle(),
15240                                      (unsigned)CHECK_SPILL_ALL);
15241                 }
15242
15243 #if defined(_TARGET_ARM_) || defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)
15244 #if defined(_TARGET_ARM_)
15245                 // TODO-ARM64-NYI: HFA
15246                 // TODO-AMD64-Unix and TODO-ARM once the ARM64 functionality is implemented the
15247                 // next ifdefs could be refactored in a single method with the ifdef inside.
15248                 if (IsHfa(retClsHnd))
15249                 {
15250 // Same as !IsHfa but just don't bother with impAssignStructPtr.
15251 #else  // defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)
15252                 ReturnTypeDesc retTypeDesc;
15253                 retTypeDesc.InitializeStructReturnType(this, retClsHnd);
15254                 unsigned retRegCount = retTypeDesc.GetReturnRegCount();
15255
15256                 if (retRegCount != 0)
15257                 {
15258                     // If single eightbyte, the return type would have been normalized and there won't be a temp var.
15259                     // This code will be called only if the struct return has not been normalized (i.e. 2 eightbytes -
15260                     // max allowed.)
15261                     assert(retRegCount == MAX_RET_REG_COUNT);
15262                     // Same as !structDesc.passedInRegisters but just don't bother with impAssignStructPtr.
15263                     CLANG_FORMAT_COMMENT_ANCHOR;
15264 #endif // defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)
15265
15266                     if (lvaInlineeReturnSpillTemp != BAD_VAR_NUM)
15267                     {
15268                         if (!impInlineInfo->retExpr)
15269                         {
15270 #if defined(_TARGET_ARM_)
15271                             impInlineInfo->retExpr = gtNewLclvNode(lvaInlineeReturnSpillTemp, info.compRetType);
15272 #else  // defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)
15273                             // The inlinee compiler has figured out the type of the temp already. Use it here.
15274                             impInlineInfo->retExpr =
15275                                 gtNewLclvNode(lvaInlineeReturnSpillTemp, lvaTable[lvaInlineeReturnSpillTemp].lvType);
15276 #endif // defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)
15277                         }
15278                     }
15279                     else
15280                     {
15281                         impInlineInfo->retExpr = op2;
15282                     }
15283                 }
15284                 else
15285 #elif defined(_TARGET_ARM64_)
15286                 ReturnTypeDesc retTypeDesc;
15287                 retTypeDesc.InitializeStructReturnType(this, retClsHnd);
15288                 unsigned retRegCount = retTypeDesc.GetReturnRegCount();
15289
15290                 if (retRegCount != 0)
15291                 {
15292                     assert(!iciCall->AsCall()->HasRetBufArg());
15293                     assert(retRegCount >= 2);
15294                     if (lvaInlineeReturnSpillTemp != BAD_VAR_NUM)
15295                     {
15296                         if (!impInlineInfo->retExpr)
15297                         {
15298                             // The inlinee compiler has figured out the type of the temp already. Use it here.
15299                             impInlineInfo->retExpr =
15300                                 gtNewLclvNode(lvaInlineeReturnSpillTemp, lvaTable[lvaInlineeReturnSpillTemp].lvType);
15301                         }
15302                     }
15303                     else
15304                     {
15305                         impInlineInfo->retExpr = op2;
15306                     }
15307                 }
15308                 else
15309 #endif // defined(_TARGET_ARM64_)
15310                 {
15311                     assert(iciCall->AsCall()->HasRetBufArg());
15312                     GenTreePtr dest = gtCloneExpr(iciCall->gtCall.gtCallArgs->gtOp.gtOp1);
15313                     // spill temp only exists if there are multiple return points
15314                     if (lvaInlineeReturnSpillTemp != BAD_VAR_NUM)
15315                     {
15316                         // if this is the first return we have seen set the retExpr
15317                         if (!impInlineInfo->retExpr)
15318                         {
15319                             impInlineInfo->retExpr =
15320                                 impAssignStructPtr(dest, gtNewLclvNode(lvaInlineeReturnSpillTemp, info.compRetType),
15321                                                    retClsHnd, (unsigned)CHECK_SPILL_ALL);
15322                         }
15323                     }
15324                     else
15325                     {
15326                         impInlineInfo->retExpr = impAssignStructPtr(dest, op2, retClsHnd, (unsigned)CHECK_SPILL_ALL);
15327                     }
15328                 }
15329             }
15330         }
15331     }
15332
15333     if (compIsForInlining())
15334     {
15335         return true;
15336     }
15337
15338     if (info.compRetType == TYP_VOID)
15339     {
15340         // return void
15341         op1 = new (this, GT_RETURN) GenTreeOp(GT_RETURN, TYP_VOID);
15342     }
15343     else if (info.compRetBuffArg != BAD_VAR_NUM)
15344     {
15345         // Assign value to return buff (first param)
15346         GenTreePtr retBuffAddr = gtNewLclvNode(info.compRetBuffArg, TYP_BYREF, impCurStmtOffs);
15347
15348         op2 = impAssignStructPtr(retBuffAddr, op2, retClsHnd, (unsigned)CHECK_SPILL_ALL);
15349         impAppendTree(op2, (unsigned)CHECK_SPILL_NONE, impCurStmtOffs);
15350
15351         // There are cases where the address of the implicit RetBuf should be returned explicitly (in RAX).
15352         CLANG_FORMAT_COMMENT_ANCHOR;
15353
15354 #if defined(_TARGET_AMD64_)
15355
15356         // x64 (System V and Win64) calling convention requires to
15357         // return the implicit return buffer explicitly (in RAX).
15358         // Change the return type to be BYREF.
15359         op1 = gtNewOperNode(GT_RETURN, TYP_BYREF, gtNewLclvNode(info.compRetBuffArg, TYP_BYREF));
15360 #else  // !defined(_TARGET_AMD64_)
15361         // In case of non-AMD64 targets the profiler hook requires to return the implicit RetBuf explicitly (in RAX).
15362         // In such case the return value of the function is changed to BYREF.
15363         // If profiler hook is not needed the return type of the function is TYP_VOID.
15364         if (compIsProfilerHookNeeded())
15365         {
15366             op1 = gtNewOperNode(GT_RETURN, TYP_BYREF, gtNewLclvNode(info.compRetBuffArg, TYP_BYREF));
15367         }
15368         else
15369         {
15370             // return void
15371             op1 = new (this, GT_RETURN) GenTreeOp(GT_RETURN, TYP_VOID);
15372         }
15373 #endif // !defined(_TARGET_AMD64_)
15374     }
15375     else if (varTypeIsStruct(info.compRetType))
15376     {
15377 #if !FEATURE_MULTIREG_RET
15378         // For both ARM architectures the HFA native types are maintained as structs.
15379         // Also on System V AMD64 the multireg structs returns are also left as structs.
15380         noway_assert(info.compRetNativeType != TYP_STRUCT);
15381 #endif
15382         op2 = impFixupStructReturnType(op2, retClsHnd);
15383         // return op2
15384         op1 = gtNewOperNode(GT_RETURN, genActualType(info.compRetNativeType), op2);
15385     }
15386     else
15387     {
15388         // return op2
15389         op1 = gtNewOperNode(GT_RETURN, genActualType(info.compRetType), op2);
15390     }
15391
15392     // We must have imported a tailcall and jumped to RET
15393     if (prefixFlags & PREFIX_TAILCALL)
15394     {
15395 #ifndef _TARGET_AMD64_
15396         // Jit64 compat:
15397         // This cannot be asserted on Amd64 since we permit the following IL pattern:
15398         //      tail.call
15399         //      pop
15400         //      ret
15401         assert(verCurrentState.esStackDepth == 0 && impOpcodeIsCallOpcode(opcode));
15402 #endif
15403
15404         opcode = CEE_RET; // To prevent trying to spill if CALL_SITE_BOUNDARIES
15405
15406         // impImportCall() would have already appended TYP_VOID calls
15407         if (info.compRetType == TYP_VOID)
15408         {
15409             return true;
15410         }
15411     }
15412
15413     impAppendTree(op1, (unsigned)CHECK_SPILL_NONE, impCurStmtOffs);
15414 #ifdef DEBUG
15415     // Remember at which BC offset the tree was finished
15416     impNoteLastILoffs();
15417 #endif
15418     return true;
15419 }
15420
15421 /*****************************************************************************
15422  *  Mark the block as unimported.
15423  *  Note that the caller is responsible for calling impImportBlockPending(),
15424  *  with the appropriate stack-state
15425  */
15426
15427 inline void Compiler::impReimportMarkBlock(BasicBlock* block)
15428 {
15429 #ifdef DEBUG
15430     if (verbose && (block->bbFlags & BBF_IMPORTED))
15431     {
15432         printf("\nBB%02u will be reimported\n", block->bbNum);
15433     }
15434 #endif
15435
15436     block->bbFlags &= ~BBF_IMPORTED;
15437 }
15438
15439 /*****************************************************************************
15440  *  Mark the successors of the given block as unimported.
15441  *  Note that the caller is responsible for calling impImportBlockPending()
15442  *  for all the successors, with the appropriate stack-state.
15443  */
15444
15445 void Compiler::impReimportMarkSuccessors(BasicBlock* block)
15446 {
15447     for (unsigned i = 0; i < block->NumSucc(); i++)
15448     {
15449         impReimportMarkBlock(block->GetSucc(i));
15450     }
15451 }
15452
15453 /*****************************************************************************
15454  *
15455  *  Filter wrapper to handle only passed in exception code
15456  *  from it).
15457  */
15458
15459 LONG FilterVerificationExceptions(PEXCEPTION_POINTERS pExceptionPointers, LPVOID lpvParam)
15460 {
15461     if (pExceptionPointers->ExceptionRecord->ExceptionCode == SEH_VERIFICATION_EXCEPTION)
15462     {
15463         return EXCEPTION_EXECUTE_HANDLER;
15464     }
15465
15466     return EXCEPTION_CONTINUE_SEARCH;
15467 }
15468
15469 void Compiler::impVerifyEHBlock(BasicBlock* block, bool isTryStart)
15470 {
15471     assert(block->hasTryIndex());
15472     assert(!compIsForInlining());
15473
15474     unsigned  tryIndex = block->getTryIndex();
15475     EHblkDsc* HBtab    = ehGetDsc(tryIndex);
15476
15477     if (isTryStart)
15478     {
15479         assert(block->bbFlags & BBF_TRY_BEG);
15480
15481         // The Stack must be empty
15482         //
15483         if (block->bbStkDepth != 0)
15484         {
15485             BADCODE("Evaluation stack must be empty on entry into a try block");
15486         }
15487     }
15488
15489     // Save the stack contents, we'll need to restore it later
15490     //
15491     SavedStack blockState;
15492     impSaveStackState(&blockState, false);
15493
15494     while (HBtab != nullptr)
15495     {
15496         if (isTryStart)
15497         {
15498             // Are we verifying that an instance constructor properly initializes it's 'this' pointer once?
15499             //  We do not allow the 'this' pointer to be uninitialized when entering most kinds try regions
15500             //
15501             if (verTrackObjCtorInitState && (verCurrentState.thisInitialized != TIS_Init))
15502             {
15503                 // We  trigger an invalid program exception here unless we have a try/fault region.
15504                 //
15505                 if (HBtab->HasCatchHandler() || HBtab->HasFinallyHandler() || HBtab->HasFilter())
15506                 {
15507                     BADCODE(
15508                         "The 'this' pointer of an instance constructor is not intialized upon entry to a try region");
15509                 }
15510                 else
15511                 {
15512                     // Allow a try/fault region to proceed.
15513                     assert(HBtab->HasFaultHandler());
15514                 }
15515             }
15516
15517             /* Recursively process the handler block */
15518             BasicBlock* hndBegBB = HBtab->ebdHndBeg;
15519
15520             //  Construct the proper verification stack state
15521             //   either empty or one that contains just
15522             //   the Exception Object that we are dealing with
15523             //
15524             verCurrentState.esStackDepth = 0;
15525
15526             if (handlerGetsXcptnObj(hndBegBB->bbCatchTyp))
15527             {
15528                 CORINFO_CLASS_HANDLE clsHnd;
15529
15530                 if (HBtab->HasFilter())
15531                 {
15532                     clsHnd = impGetObjectClass();
15533                 }
15534                 else
15535                 {
15536                     CORINFO_RESOLVED_TOKEN resolvedToken;
15537
15538                     resolvedToken.tokenContext = impTokenLookupContextHandle;
15539                     resolvedToken.tokenScope   = info.compScopeHnd;
15540                     resolvedToken.token        = HBtab->ebdTyp;
15541                     resolvedToken.tokenType    = CORINFO_TOKENKIND_Class;
15542                     info.compCompHnd->resolveToken(&resolvedToken);
15543
15544                     clsHnd = resolvedToken.hClass;
15545                 }
15546
15547                 // push catch arg the stack, spill to a temp if necessary
15548                 // Note: can update HBtab->ebdHndBeg!
15549                 hndBegBB = impPushCatchArgOnStack(hndBegBB, clsHnd);
15550             }
15551
15552             // Queue up the handler for importing
15553             //
15554             impImportBlockPending(hndBegBB);
15555
15556             if (HBtab->HasFilter())
15557             {
15558                 /* @VERIFICATION : Ideally the end of filter state should get
15559                    propagated to the catch handler, this is an incompleteness,
15560                    but is not a security/compliance issue, since the only
15561                    interesting state is the 'thisInit' state.
15562                    */
15563
15564                 verCurrentState.esStackDepth = 0;
15565
15566                 BasicBlock* filterBB = HBtab->ebdFilter;
15567
15568                 // push catch arg the stack, spill to a temp if necessary
15569                 // Note: can update HBtab->ebdFilter!
15570                 filterBB = impPushCatchArgOnStack(filterBB, impGetObjectClass());
15571
15572                 impImportBlockPending(filterBB);
15573             }
15574         }
15575         else if (verTrackObjCtorInitState && HBtab->HasFaultHandler())
15576         {
15577             /* Recursively process the handler block */
15578
15579             verCurrentState.esStackDepth = 0;
15580
15581             // Queue up the fault handler for importing
15582             //
15583             impImportBlockPending(HBtab->ebdHndBeg);
15584         }
15585
15586         // Now process our enclosing try index (if any)
15587         //
15588         tryIndex = HBtab->ebdEnclosingTryIndex;
15589         if (tryIndex == EHblkDsc::NO_ENCLOSING_INDEX)
15590         {
15591             HBtab = nullptr;
15592         }
15593         else
15594         {
15595             HBtab = ehGetDsc(tryIndex);
15596         }
15597     }
15598
15599     // Restore the stack contents
15600     impRestoreStackState(&blockState);
15601 }
15602
15603 //***************************************************************
15604 // Import the instructions for the given basic block.  Perform
15605 // verification, throwing an exception on failure.  Push any successor blocks that are enabled for the first
15606 // time, or whose verification pre-state is changed.
15607
15608 #ifdef _PREFAST_
15609 #pragma warning(push)
15610 #pragma warning(disable : 21000) // Suppress PREFast warning about overly large function
15611 #endif
15612 void Compiler::impImportBlock(BasicBlock* block)
15613 {
15614     // BBF_INTERNAL blocks only exist during importation due to EH canonicalization. We need to
15615     // handle them specially. In particular, there is no IL to import for them, but we do need
15616     // to mark them as imported and put their successors on the pending import list.
15617     if (block->bbFlags & BBF_INTERNAL)
15618     {
15619         JITDUMP("Marking BBF_INTERNAL block BB%02u as BBF_IMPORTED\n", block->bbNum);
15620         block->bbFlags |= BBF_IMPORTED;
15621
15622         for (unsigned i = 0; i < block->NumSucc(); i++)
15623         {
15624             impImportBlockPending(block->GetSucc(i));
15625         }
15626
15627         return;
15628     }
15629
15630     bool markImport;
15631
15632     assert(block);
15633
15634     /* Make the block globaly available */
15635
15636     compCurBB = block;
15637
15638 #ifdef DEBUG
15639     /* Initialize the debug variables */
15640     impCurOpcName = "unknown";
15641     impCurOpcOffs = block->bbCodeOffs;
15642 #endif
15643
15644     /* Set the current stack state to the merged result */
15645     verResetCurrentState(block, &verCurrentState);
15646
15647     /* Now walk the code and import the IL into GenTrees */
15648
15649     struct FilterVerificationExceptionsParam
15650     {
15651         Compiler*   pThis;
15652         BasicBlock* block;
15653     };
15654     FilterVerificationExceptionsParam param;
15655
15656     param.pThis = this;
15657     param.block = block;
15658
15659     PAL_TRY(FilterVerificationExceptionsParam*, pParam, &param)
15660     {
15661         /* @VERIFICATION : For now, the only state propagation from try
15662            to it's handler is "thisInit" state (stack is empty at start of try).
15663            In general, for state that we track in verification, we need to
15664            model the possibility that an exception might happen at any IL
15665            instruction, so we really need to merge all states that obtain
15666            between IL instructions in a try block into the start states of
15667            all handlers.
15668
15669            However we do not allow the 'this' pointer to be uninitialized when
15670            entering most kinds try regions (only try/fault are allowed to have
15671            an uninitialized this pointer on entry to the try)
15672
15673            Fortunately, the stack is thrown away when an exception
15674            leads to a handler, so we don't have to worry about that.
15675            We DO, however, have to worry about the "thisInit" state.
15676            But only for the try/fault case.
15677
15678            The only allowed transition is from TIS_Uninit to TIS_Init.
15679
15680            So for a try/fault region for the fault handler block
15681            we will merge the start state of the try begin
15682            and the post-state of each block that is part of this try region
15683         */
15684
15685         // merge the start state of the try begin
15686         //
15687         if (pParam->block->bbFlags & BBF_TRY_BEG)
15688         {
15689             pParam->pThis->impVerifyEHBlock(pParam->block, true);
15690         }
15691
15692         pParam->pThis->impImportBlockCode(pParam->block);
15693
15694         // As discussed above:
15695         // merge the post-state of each block that is part of this try region
15696         //
15697         if (pParam->block->hasTryIndex())
15698         {
15699             pParam->pThis->impVerifyEHBlock(pParam->block, false);
15700         }
15701     }
15702     PAL_EXCEPT_FILTER(FilterVerificationExceptions)
15703     {
15704         verHandleVerificationFailure(block DEBUGARG(false));
15705     }
15706     PAL_ENDTRY
15707
15708     if (compDonotInline())
15709     {
15710         return;
15711     }
15712
15713     assert(!compDonotInline());
15714
15715     markImport = false;
15716
15717 SPILLSTACK:
15718
15719     unsigned    baseTmp             = NO_BASE_TMP; // input temps assigned to successor blocks
15720     bool        reimportSpillClique = false;
15721     BasicBlock* tgtBlock            = nullptr;
15722
15723     /* If the stack is non-empty, we might have to spill its contents */
15724
15725     if (verCurrentState.esStackDepth != 0)
15726     {
15727         impBoxTemp = BAD_VAR_NUM; // if a box temp is used in a block that leaves something
15728                                   // on the stack, its lifetime is hard to determine, simply
15729                                   // don't reuse such temps.
15730
15731         GenTreePtr addStmt = nullptr;
15732
15733         /* Do the successors of 'block' have any other predecessors ?
15734            We do not want to do some of the optimizations related to multiRef
15735            if we can reimport blocks */
15736
15737         unsigned multRef = impCanReimport ? unsigned(~0) : 0;
15738
15739         switch (block->bbJumpKind)
15740         {
15741             case BBJ_COND:
15742
15743                 /* Temporarily remove the 'jtrue' from the end of the tree list */
15744
15745                 assert(impTreeLast);
15746                 assert(impTreeLast->gtOper == GT_STMT);
15747                 assert(impTreeLast->gtStmt.gtStmtExpr->gtOper == GT_JTRUE);
15748
15749                 addStmt     = impTreeLast;
15750                 impTreeLast = impTreeLast->gtPrev;
15751
15752                 /* Note if the next block has more than one ancestor */
15753
15754                 multRef |= block->bbNext->bbRefs;
15755
15756                 /* Does the next block have temps assigned? */
15757
15758                 baseTmp  = block->bbNext->bbStkTempsIn;
15759                 tgtBlock = block->bbNext;
15760
15761                 if (baseTmp != NO_BASE_TMP)
15762                 {
15763                     break;
15764                 }
15765
15766                 /* Try the target of the jump then */
15767
15768                 multRef |= block->bbJumpDest->bbRefs;
15769                 baseTmp  = block->bbJumpDest->bbStkTempsIn;
15770                 tgtBlock = block->bbJumpDest;
15771                 break;
15772
15773             case BBJ_ALWAYS:
15774                 multRef |= block->bbJumpDest->bbRefs;
15775                 baseTmp  = block->bbJumpDest->bbStkTempsIn;
15776                 tgtBlock = block->bbJumpDest;
15777                 break;
15778
15779             case BBJ_NONE:
15780                 multRef |= block->bbNext->bbRefs;
15781                 baseTmp  = block->bbNext->bbStkTempsIn;
15782                 tgtBlock = block->bbNext;
15783                 break;
15784
15785             case BBJ_SWITCH:
15786
15787                 BasicBlock** jmpTab;
15788                 unsigned     jmpCnt;
15789
15790                 /* Temporarily remove the GT_SWITCH from the end of the tree list */
15791
15792                 assert(impTreeLast);
15793                 assert(impTreeLast->gtOper == GT_STMT);
15794                 assert(impTreeLast->gtStmt.gtStmtExpr->gtOper == GT_SWITCH);
15795
15796                 addStmt     = impTreeLast;
15797                 impTreeLast = impTreeLast->gtPrev;
15798
15799                 jmpCnt = block->bbJumpSwt->bbsCount;
15800                 jmpTab = block->bbJumpSwt->bbsDstTab;
15801
15802                 do
15803                 {
15804                     tgtBlock = (*jmpTab);
15805
15806                     multRef |= tgtBlock->bbRefs;
15807
15808                     // Thanks to spill cliques, we should have assigned all or none
15809                     assert((baseTmp == NO_BASE_TMP) || (baseTmp == tgtBlock->bbStkTempsIn));
15810                     baseTmp = tgtBlock->bbStkTempsIn;
15811                     if (multRef > 1)
15812                     {
15813                         break;
15814                     }
15815                 } while (++jmpTab, --jmpCnt);
15816
15817                 break;
15818
15819             case BBJ_CALLFINALLY:
15820             case BBJ_EHCATCHRET:
15821             case BBJ_RETURN:
15822             case BBJ_EHFINALLYRET:
15823             case BBJ_EHFILTERRET:
15824             case BBJ_THROW:
15825                 NO_WAY("can't have 'unreached' end of BB with non-empty stack");
15826                 break;
15827
15828             default:
15829                 noway_assert(!"Unexpected bbJumpKind");
15830                 break;
15831         }
15832
15833         assert(multRef >= 1);
15834
15835         /* Do we have a base temp number? */
15836
15837         bool newTemps = (baseTmp == NO_BASE_TMP);
15838
15839         if (newTemps)
15840         {
15841             /* Grab enough temps for the whole stack */
15842             baseTmp = impGetSpillTmpBase(block);
15843         }
15844
15845         /* Spill all stack entries into temps */
15846         unsigned level, tempNum;
15847
15848         JITDUMP("\nSpilling stack entries into temps\n");
15849         for (level = 0, tempNum = baseTmp; level < verCurrentState.esStackDepth; level++, tempNum++)
15850         {
15851             GenTreePtr tree = verCurrentState.esStack[level].val;
15852
15853             /* VC generates code where it pushes a byref from one branch, and an int (ldc.i4 0) from
15854                the other. This should merge to a byref in unverifiable code.
15855                However, if the branch which leaves the TYP_I_IMPL on the stack is imported first, the
15856                successor would be imported assuming there was a TYP_I_IMPL on
15857                the stack. Thus the value would not get GC-tracked. Hence,
15858                change the temp to TYP_BYREF and reimport the successors.
15859                Note: We should only allow this in unverifiable code.
15860             */
15861             if (tree->gtType == TYP_BYREF && lvaTable[tempNum].lvType == TYP_I_IMPL && !verNeedsVerification())
15862             {
15863                 lvaTable[tempNum].lvType = TYP_BYREF;
15864                 impReimportMarkSuccessors(block);
15865                 markImport = true;
15866             }
15867
15868 #ifdef _TARGET_64BIT_
15869             if (genActualType(tree->gtType) == TYP_I_IMPL && lvaTable[tempNum].lvType == TYP_INT)
15870             {
15871                 if (tiVerificationNeeded && tgtBlock->bbEntryState != nullptr &&
15872                     (tgtBlock->bbFlags & BBF_FAILED_VERIFICATION) == 0)
15873                 {
15874                     // Merge the current state into the entry state of block;
15875                     // the call to verMergeEntryStates must have changed
15876                     // the entry state of the block by merging the int local var
15877                     // and the native-int stack entry.
15878                     bool changed = false;
15879                     if (verMergeEntryStates(tgtBlock, &changed))
15880                     {
15881                         impRetypeEntryStateTemps(tgtBlock);
15882                         impReimportBlockPending(tgtBlock);
15883                         assert(changed);
15884                     }
15885                     else
15886                     {
15887                         tgtBlock->bbFlags |= BBF_FAILED_VERIFICATION;
15888                         break;
15889                     }
15890                 }
15891
15892                 // Some other block in the spill clique set this to "int", but now we have "native int".
15893                 // Change the type and go back to re-import any blocks that used the wrong type.
15894                 lvaTable[tempNum].lvType = TYP_I_IMPL;
15895                 reimportSpillClique      = true;
15896             }
15897             else if (genActualType(tree->gtType) == TYP_INT && lvaTable[tempNum].lvType == TYP_I_IMPL)
15898             {
15899                 // Spill clique has decided this should be "native int", but this block only pushes an "int".
15900                 // Insert a sign-extension to "native int" so we match the clique.
15901                 verCurrentState.esStack[level].val = gtNewCastNode(TYP_I_IMPL, tree, TYP_I_IMPL);
15902             }
15903
15904             // Consider the case where one branch left a 'byref' on the stack and the other leaves
15905             // an 'int'. On 32-bit, this is allowed (in non-verifiable code) since they are the same
15906             // size. JIT64 managed to make this work on 64-bit. For compatibility, we support JIT64
15907             // behavior instead of asserting and then generating bad code (where we save/restore the
15908             // low 32 bits of a byref pointer to an 'int' sized local). If the 'int' side has been
15909             // imported already, we need to change the type of the local and reimport the spill clique.
15910             // If the 'byref' side has imported, we insert a cast from int to 'native int' to match
15911             // the 'byref' size.
15912             if (!tiVerificationNeeded)
15913             {
15914                 if (genActualType(tree->gtType) == TYP_BYREF && lvaTable[tempNum].lvType == TYP_INT)
15915                 {
15916                     // Some other block in the spill clique set this to "int", but now we have "byref".
15917                     // Change the type and go back to re-import any blocks that used the wrong type.
15918                     lvaTable[tempNum].lvType = TYP_BYREF;
15919                     reimportSpillClique      = true;
15920                 }
15921                 else if (genActualType(tree->gtType) == TYP_INT && lvaTable[tempNum].lvType == TYP_BYREF)
15922                 {
15923                     // Spill clique has decided this should be "byref", but this block only pushes an "int".
15924                     // Insert a sign-extension to "native int" so we match the clique size.
15925                     verCurrentState.esStack[level].val = gtNewCastNode(TYP_I_IMPL, tree, TYP_I_IMPL);
15926                 }
15927             }
15928 #endif // _TARGET_64BIT_
15929
15930 #if FEATURE_X87_DOUBLES
15931             // X87 stack doesn't differentiate between float/double
15932             // so promoting is no big deal.
15933             // For everybody else keep it as float until we have a collision and then promote
15934             // Just like for x64's TYP_INT<->TYP_I_IMPL
15935
15936             if (multRef > 1 && tree->gtType == TYP_FLOAT)
15937             {
15938                 verCurrentState.esStack[level].val = gtNewCastNode(TYP_DOUBLE, tree, TYP_DOUBLE);
15939             }
15940
15941 #else // !FEATURE_X87_DOUBLES
15942
15943             if (tree->gtType == TYP_DOUBLE && lvaTable[tempNum].lvType == TYP_FLOAT)
15944             {
15945                 // Some other block in the spill clique set this to "float", but now we have "double".
15946                 // Change the type and go back to re-import any blocks that used the wrong type.
15947                 lvaTable[tempNum].lvType = TYP_DOUBLE;
15948                 reimportSpillClique      = true;
15949             }
15950             else if (tree->gtType == TYP_FLOAT && lvaTable[tempNum].lvType == TYP_DOUBLE)
15951             {
15952                 // Spill clique has decided this should be "double", but this block only pushes a "float".
15953                 // Insert a cast to "double" so we match the clique.
15954                 verCurrentState.esStack[level].val = gtNewCastNode(TYP_DOUBLE, tree, TYP_DOUBLE);
15955             }
15956
15957 #endif // FEATURE_X87_DOUBLES
15958
15959             /* If addStmt has a reference to tempNum (can only happen if we
15960                are spilling to the temps already used by a previous block),
15961                we need to spill addStmt */
15962
15963             if (addStmt && !newTemps && gtHasRef(addStmt->gtStmt.gtStmtExpr, tempNum, false))
15964             {
15965                 GenTreePtr addTree = addStmt->gtStmt.gtStmtExpr;
15966
15967                 if (addTree->gtOper == GT_JTRUE)
15968                 {
15969                     GenTreePtr relOp = addTree->gtOp.gtOp1;
15970                     assert(relOp->OperIsCompare());
15971
15972                     var_types type = genActualType(relOp->gtOp.gtOp1->TypeGet());
15973
15974                     if (gtHasRef(relOp->gtOp.gtOp1, tempNum, false))
15975                     {
15976                         unsigned temp = lvaGrabTemp(true DEBUGARG("spill addStmt JTRUE ref Op1"));
15977                         impAssignTempGen(temp, relOp->gtOp.gtOp1, level);
15978                         type              = genActualType(lvaTable[temp].TypeGet());
15979                         relOp->gtOp.gtOp1 = gtNewLclvNode(temp, type);
15980                     }
15981
15982                     if (gtHasRef(relOp->gtOp.gtOp2, tempNum, false))
15983                     {
15984                         unsigned temp = lvaGrabTemp(true DEBUGARG("spill addStmt JTRUE ref Op2"));
15985                         impAssignTempGen(temp, relOp->gtOp.gtOp2, level);
15986                         type              = genActualType(lvaTable[temp].TypeGet());
15987                         relOp->gtOp.gtOp2 = gtNewLclvNode(temp, type);
15988                     }
15989                 }
15990                 else
15991                 {
15992                     assert(addTree->gtOper == GT_SWITCH && genActualType(addTree->gtOp.gtOp1->gtType) == TYP_I_IMPL);
15993
15994                     unsigned temp = lvaGrabTemp(true DEBUGARG("spill addStmt SWITCH"));
15995                     impAssignTempGen(temp, addTree->gtOp.gtOp1, level);
15996                     addTree->gtOp.gtOp1 = gtNewLclvNode(temp, TYP_I_IMPL);
15997                 }
15998             }
15999
16000             /* Spill the stack entry, and replace with the temp */
16001
16002             if (!impSpillStackEntry(level, tempNum
16003 #ifdef DEBUG
16004                                     ,
16005                                     true, "Spill Stack Entry"
16006 #endif
16007                                     ))
16008             {
16009                 if (markImport)
16010                 {
16011                     BADCODE("bad stack state");
16012                 }
16013
16014                 // Oops. Something went wrong when spilling. Bad code.
16015                 verHandleVerificationFailure(block DEBUGARG(true));
16016
16017                 goto SPILLSTACK;
16018             }
16019         }
16020
16021         /* Put back the 'jtrue'/'switch' if we removed it earlier */
16022
16023         if (addStmt)
16024         {
16025             impAppendStmt(addStmt, (unsigned)CHECK_SPILL_NONE);
16026         }
16027     }
16028
16029     // Some of the append/spill logic works on compCurBB
16030
16031     assert(compCurBB == block);
16032
16033     /* Save the tree list in the block */
16034     impEndTreeList(block);
16035
16036     // impEndTreeList sets BBF_IMPORTED on the block
16037     // We do *NOT* want to set it later than this because
16038     // impReimportSpillClique might clear it if this block is both a
16039     // predecessor and successor in the current spill clique
16040     assert(block->bbFlags & BBF_IMPORTED);
16041
16042     // If we had a int/native int, or float/double collision, we need to re-import
16043     if (reimportSpillClique)
16044     {
16045         // This will re-import all the successors of block (as well as each of their predecessors)
16046         impReimportSpillClique(block);
16047
16048         // For blocks that haven't been imported yet, we still need to mark them as pending import.
16049         for (unsigned i = 0; i < block->NumSucc(); i++)
16050         {
16051             BasicBlock* succ = block->GetSucc(i);
16052             if ((succ->bbFlags & BBF_IMPORTED) == 0)
16053             {
16054                 impImportBlockPending(succ);
16055             }
16056         }
16057     }
16058     else // the normal case
16059     {
16060         // otherwise just import the successors of block
16061
16062         /* Does this block jump to any other blocks? */
16063         for (unsigned i = 0; i < block->NumSucc(); i++)
16064         {
16065             impImportBlockPending(block->GetSucc(i));
16066         }
16067     }
16068 }
16069 #ifdef _PREFAST_
16070 #pragma warning(pop)
16071 #endif
16072
16073 /*****************************************************************************/
16074 //
16075 // Ensures that "block" is a member of the list of BBs waiting to be imported, pushing it on the list if
16076 // necessary (and ensures that it is a member of the set of BB's on the list, by setting its byte in
16077 // impPendingBlockMembers).  Merges the current verification state into the verification state of "block"
16078 // (its "pre-state").
16079
16080 void Compiler::impImportBlockPending(BasicBlock* block)
16081 {
16082 #ifdef DEBUG
16083     if (verbose)
16084     {
16085         printf("\nimpImportBlockPending for BB%02u\n", block->bbNum);
16086     }
16087 #endif
16088
16089     // We will add a block to the pending set if it has not already been imported (or needs to be re-imported),
16090     // or if it has, but merging in a predecessor's post-state changes the block's pre-state.
16091     // (When we're doing verification, we always attempt the merge to detect verification errors.)
16092
16093     // If the block has not been imported, add to pending set.
16094     bool addToPending = ((block->bbFlags & BBF_IMPORTED) == 0);
16095
16096     // Initialize bbEntryState just the first time we try to add this block to the pending list
16097     // Just because bbEntryState is NULL, doesn't mean the pre-state wasn't previously set
16098     // We use NULL to indicate the 'common' state to avoid memory allocation
16099     if ((block->bbEntryState == nullptr) && ((block->bbFlags & (BBF_IMPORTED | BBF_FAILED_VERIFICATION)) == 0) &&
16100         (impGetPendingBlockMember(block) == 0))
16101     {
16102         verInitBBEntryState(block, &verCurrentState);
16103         assert(block->bbStkDepth == 0);
16104         block->bbStkDepth = static_cast<unsigned short>(verCurrentState.esStackDepth);
16105         assert(addToPending);
16106         assert(impGetPendingBlockMember(block) == 0);
16107     }
16108     else
16109     {
16110         // The stack should have the same height on entry to the block from all its predecessors.
16111         if (block->bbStkDepth != verCurrentState.esStackDepth)
16112         {
16113 #ifdef DEBUG
16114             char buffer[400];
16115             sprintf_s(buffer, sizeof(buffer),
16116                       "Block at offset %4.4x to %4.4x in %s entered with different stack depths.\n"
16117                       "Previous depth was %d, current depth is %d",
16118                       block->bbCodeOffs, block->bbCodeOffsEnd, info.compFullName, block->bbStkDepth,
16119                       verCurrentState.esStackDepth);
16120             buffer[400 - 1] = 0;
16121             NO_WAY(buffer);
16122 #else
16123             NO_WAY("Block entered with different stack depths");
16124 #endif
16125         }
16126
16127         // Additionally, if we need to verify, merge the verification state.
16128         if (tiVerificationNeeded)
16129         {
16130             // Merge the current state into the entry state of block; if this does not change the entry state
16131             // by merging, do not add the block to the pending-list.
16132             bool changed = false;
16133             if (!verMergeEntryStates(block, &changed))
16134             {
16135                 block->bbFlags |= BBF_FAILED_VERIFICATION;
16136                 addToPending = true; // We will pop it off, and check the flag set above.
16137             }
16138             else if (changed)
16139             {
16140                 addToPending = true;
16141
16142                 JITDUMP("Adding BB%02u to pending set due to new merge result\n", block->bbNum);
16143             }
16144         }
16145
16146         if (!addToPending)
16147         {
16148             return;
16149         }
16150
16151         if (block->bbStkDepth > 0)
16152         {
16153             // We need to fix the types of any spill temps that might have changed:
16154             //   int->native int, float->double, int->byref, etc.
16155             impRetypeEntryStateTemps(block);
16156         }
16157
16158         // OK, we must add to the pending list, if it's not already in it.
16159         if (impGetPendingBlockMember(block) != 0)
16160         {
16161             return;
16162         }
16163     }
16164
16165     // Get an entry to add to the pending list
16166
16167     PendingDsc* dsc;
16168
16169     if (impPendingFree)
16170     {
16171         // We can reuse one of the freed up dscs.
16172         dsc            = impPendingFree;
16173         impPendingFree = dsc->pdNext;
16174     }
16175     else
16176     {
16177         // We have to create a new dsc
16178         dsc = new (this, CMK_Unknown) PendingDsc;
16179     }
16180
16181     dsc->pdBB                 = block;
16182     dsc->pdSavedStack.ssDepth = verCurrentState.esStackDepth;
16183     dsc->pdThisPtrInit        = verCurrentState.thisInitialized;
16184
16185     // Save the stack trees for later
16186
16187     if (verCurrentState.esStackDepth)
16188     {
16189         impSaveStackState(&dsc->pdSavedStack, false);
16190     }
16191
16192     // Add the entry to the pending list
16193
16194     dsc->pdNext    = impPendingList;
16195     impPendingList = dsc;
16196     impSetPendingBlockMember(block, 1); // And indicate that it's now a member of the set.
16197
16198     // Various assertions require us to now to consider the block as not imported (at least for
16199     // the final time...)
16200     block->bbFlags &= ~BBF_IMPORTED;
16201
16202 #ifdef DEBUG
16203     if (verbose && 0)
16204     {
16205         printf("Added PendingDsc - %08p for BB%02u\n", dspPtr(dsc), block->bbNum);
16206     }
16207 #endif
16208 }
16209
16210 /*****************************************************************************/
16211 //
16212 // Ensures that "block" is a member of the list of BBs waiting to be imported, pushing it on the list if
16213 // necessary (and ensures that it is a member of the set of BB's on the list, by setting its byte in
16214 // impPendingBlockMembers).  Does *NOT* change the existing "pre-state" of the block.
16215
16216 void Compiler::impReimportBlockPending(BasicBlock* block)
16217 {
16218     JITDUMP("\nimpReimportBlockPending for BB%02u", block->bbNum);
16219
16220     assert(block->bbFlags & BBF_IMPORTED);
16221
16222     // OK, we must add to the pending list, if it's not already in it.
16223     if (impGetPendingBlockMember(block) != 0)
16224     {
16225         return;
16226     }
16227
16228     // Get an entry to add to the pending list
16229
16230     PendingDsc* dsc;
16231
16232     if (impPendingFree)
16233     {
16234         // We can reuse one of the freed up dscs.
16235         dsc            = impPendingFree;
16236         impPendingFree = dsc->pdNext;
16237     }
16238     else
16239     {
16240         // We have to create a new dsc
16241         dsc = new (this, CMK_ImpStack) PendingDsc;
16242     }
16243
16244     dsc->pdBB = block;
16245
16246     if (block->bbEntryState)
16247     {
16248         dsc->pdThisPtrInit        = block->bbEntryState->thisInitialized;
16249         dsc->pdSavedStack.ssDepth = block->bbEntryState->esStackDepth;
16250         dsc->pdSavedStack.ssTrees = block->bbEntryState->esStack;
16251     }
16252     else
16253     {
16254         dsc->pdThisPtrInit        = TIS_Bottom;
16255         dsc->pdSavedStack.ssDepth = 0;
16256         dsc->pdSavedStack.ssTrees = nullptr;
16257     }
16258
16259     // Add the entry to the pending list
16260
16261     dsc->pdNext    = impPendingList;
16262     impPendingList = dsc;
16263     impSetPendingBlockMember(block, 1); // And indicate that it's now a member of the set.
16264
16265     // Various assertions require us to now to consider the block as not imported (at least for
16266     // the final time...)
16267     block->bbFlags &= ~BBF_IMPORTED;
16268
16269 #ifdef DEBUG
16270     if (verbose && 0)
16271     {
16272         printf("Added PendingDsc - %08p for BB%02u\n", dspPtr(dsc), block->bbNum);
16273     }
16274 #endif
16275 }
16276
16277 void* Compiler::BlockListNode::operator new(size_t sz, Compiler* comp)
16278 {
16279     if (comp->impBlockListNodeFreeList == nullptr)
16280     {
16281         return (BlockListNode*)comp->compGetMem(sizeof(BlockListNode), CMK_BasicBlock);
16282     }
16283     else
16284     {
16285         BlockListNode* res             = comp->impBlockListNodeFreeList;
16286         comp->impBlockListNodeFreeList = res->m_next;
16287         return res;
16288     }
16289 }
16290
16291 void Compiler::FreeBlockListNode(Compiler::BlockListNode* node)
16292 {
16293     node->m_next             = impBlockListNodeFreeList;
16294     impBlockListNodeFreeList = node;
16295 }
16296
16297 void Compiler::impWalkSpillCliqueFromPred(BasicBlock* block, SpillCliqueWalker* callback)
16298 {
16299     bool toDo = true;
16300
16301     noway_assert(!fgComputePredsDone);
16302     if (!fgCheapPredsValid)
16303     {
16304         fgComputeCheapPreds();
16305     }
16306
16307     BlockListNode* succCliqueToDo = nullptr;
16308     BlockListNode* predCliqueToDo = new (this) BlockListNode(block);
16309     while (toDo)
16310     {
16311         toDo = false;
16312         // Look at the successors of every member of the predecessor to-do list.
16313         while (predCliqueToDo != nullptr)
16314         {
16315             BlockListNode* node = predCliqueToDo;
16316             predCliqueToDo      = node->m_next;
16317             BasicBlock* blk     = node->m_blk;
16318             FreeBlockListNode(node);
16319
16320             for (unsigned succNum = 0; succNum < blk->NumSucc(); succNum++)
16321             {
16322                 BasicBlock* succ = blk->GetSucc(succNum);
16323                 // If it's not already in the clique, add it, and also add it
16324                 // as a member of the successor "toDo" set.
16325                 if (impSpillCliqueGetMember(SpillCliqueSucc, succ) == 0)
16326                 {
16327                     callback->Visit(SpillCliqueSucc, succ);
16328                     impSpillCliqueSetMember(SpillCliqueSucc, succ, 1);
16329                     succCliqueToDo = new (this) BlockListNode(succ, succCliqueToDo);
16330                     toDo           = true;
16331                 }
16332             }
16333         }
16334         // Look at the predecessors of every member of the successor to-do list.
16335         while (succCliqueToDo != nullptr)
16336         {
16337             BlockListNode* node = succCliqueToDo;
16338             succCliqueToDo      = node->m_next;
16339             BasicBlock* blk     = node->m_blk;
16340             FreeBlockListNode(node);
16341
16342             for (BasicBlockList* pred = blk->bbCheapPreds; pred != nullptr; pred = pred->next)
16343             {
16344                 BasicBlock* predBlock = pred->block;
16345                 // If it's not already in the clique, add it, and also add it
16346                 // as a member of the predecessor "toDo" set.
16347                 if (impSpillCliqueGetMember(SpillCliquePred, predBlock) == 0)
16348                 {
16349                     callback->Visit(SpillCliquePred, predBlock);
16350                     impSpillCliqueSetMember(SpillCliquePred, predBlock, 1);
16351                     predCliqueToDo = new (this) BlockListNode(predBlock, predCliqueToDo);
16352                     toDo           = true;
16353                 }
16354             }
16355         }
16356     }
16357
16358     // If this fails, it means we didn't walk the spill clique properly and somehow managed
16359     // miss walking back to include the predecessor we started from.
16360     // This most likely cause: missing or out of date bbPreds
16361     assert(impSpillCliqueGetMember(SpillCliquePred, block) != 0);
16362 }
16363
16364 void Compiler::SetSpillTempsBase::Visit(SpillCliqueDir predOrSucc, BasicBlock* blk)
16365 {
16366     if (predOrSucc == SpillCliqueSucc)
16367     {
16368         assert(blk->bbStkTempsIn == NO_BASE_TMP); // Should not already be a member of a clique as a successor.
16369         blk->bbStkTempsIn = m_baseTmp;
16370     }
16371     else
16372     {
16373         assert(predOrSucc == SpillCliquePred);
16374         assert(blk->bbStkTempsOut == NO_BASE_TMP); // Should not already be a member of a clique as a predecessor.
16375         blk->bbStkTempsOut = m_baseTmp;
16376     }
16377 }
16378
16379 void Compiler::ReimportSpillClique::Visit(SpillCliqueDir predOrSucc, BasicBlock* blk)
16380 {
16381     // For Preds we could be a little smarter and just find the existing store
16382     // and re-type it/add a cast, but that is complicated and hopefully very rare, so
16383     // just re-import the whole block (just like we do for successors)
16384
16385     if (((blk->bbFlags & BBF_IMPORTED) == 0) && (m_pComp->impGetPendingBlockMember(blk) == 0))
16386     {
16387         // If we haven't imported this block and we're not going to (because it isn't on
16388         // the pending list) then just ignore it for now.
16389
16390         // This block has either never been imported (EntryState == NULL) or it failed
16391         // verification. Neither state requires us to force it to be imported now.
16392         assert((blk->bbEntryState == nullptr) || (blk->bbFlags & BBF_FAILED_VERIFICATION));
16393         return;
16394     }
16395
16396     // For successors we have a valid verCurrentState, so just mark them for reimport
16397     // the 'normal' way
16398     // Unlike predecessors, we *DO* need to reimport the current block because the
16399     // initial import had the wrong entry state types.
16400     // Similarly, blocks that are currently on the pending list, still need to call
16401     // impImportBlockPending to fixup their entry state.
16402     if (predOrSucc == SpillCliqueSucc)
16403     {
16404         m_pComp->impReimportMarkBlock(blk);
16405
16406         // Set the current stack state to that of the blk->bbEntryState
16407         m_pComp->verResetCurrentState(blk, &m_pComp->verCurrentState);
16408         assert(m_pComp->verCurrentState.thisInitialized == blk->bbThisOnEntry());
16409
16410         m_pComp->impImportBlockPending(blk);
16411     }
16412     else if ((blk != m_pComp->compCurBB) && ((blk->bbFlags & BBF_IMPORTED) != 0))
16413     {
16414         // As described above, we are only visiting predecessors so they can
16415         // add the appropriate casts, since we have already done that for the current
16416         // block, it does not need to be reimported.
16417         // Nor do we need to reimport blocks that are still pending, but not yet
16418         // imported.
16419         //
16420         // For predecessors, we have no state to seed the EntryState, so we just have
16421         // to assume the existing one is correct.
16422         // If the block is also a successor, it will get the EntryState properly
16423         // updated when it is visited as a successor in the above "if" block.
16424         assert(predOrSucc == SpillCliquePred);
16425         m_pComp->impReimportBlockPending(blk);
16426     }
16427 }
16428
16429 // Re-type the incoming lclVar nodes to match the varDsc.
16430 void Compiler::impRetypeEntryStateTemps(BasicBlock* blk)
16431 {
16432     if (blk->bbEntryState != nullptr)
16433     {
16434         EntryState* es = blk->bbEntryState;
16435         for (unsigned level = 0; level < es->esStackDepth; level++)
16436         {
16437             GenTreePtr tree = es->esStack[level].val;
16438             if ((tree->gtOper == GT_LCL_VAR) || (tree->gtOper == GT_LCL_FLD))
16439             {
16440                 unsigned lclNum = tree->gtLclVarCommon.gtLclNum;
16441                 noway_assert(lclNum < lvaCount);
16442                 LclVarDsc* varDsc              = lvaTable + lclNum;
16443                 es->esStack[level].val->gtType = varDsc->TypeGet();
16444             }
16445         }
16446     }
16447 }
16448
16449 unsigned Compiler::impGetSpillTmpBase(BasicBlock* block)
16450 {
16451     if (block->bbStkTempsOut != NO_BASE_TMP)
16452     {
16453         return block->bbStkTempsOut;
16454     }
16455
16456 #ifdef DEBUG
16457     if (verbose)
16458     {
16459         printf("\n*************** In impGetSpillTmpBase(BB%02u)\n", block->bbNum);
16460     }
16461 #endif // DEBUG
16462
16463     // Otherwise, choose one, and propagate to all members of the spill clique.
16464     // Grab enough temps for the whole stack.
16465     unsigned baseTmp = lvaGrabTemps(verCurrentState.esStackDepth DEBUGARG("IL Stack Entries"));
16466     SetSpillTempsBase callback(baseTmp);
16467
16468     // We do *NOT* need to reset the SpillClique*Members because a block can only be the predecessor
16469     // to one spill clique, and similarly can only be the sucessor to one spill clique
16470     impWalkSpillCliqueFromPred(block, &callback);
16471
16472     return baseTmp;
16473 }
16474
16475 void Compiler::impReimportSpillClique(BasicBlock* block)
16476 {
16477 #ifdef DEBUG
16478     if (verbose)
16479     {
16480         printf("\n*************** In impReimportSpillClique(BB%02u)\n", block->bbNum);
16481     }
16482 #endif // DEBUG
16483
16484     // If we get here, it is because this block is already part of a spill clique
16485     // and one predecessor had an outgoing live stack slot of type int, and this
16486     // block has an outgoing live stack slot of type native int.
16487     // We need to reset these before traversal because they have already been set
16488     // by the previous walk to determine all the members of the spill clique.
16489     impInlineRoot()->impSpillCliquePredMembers.Reset();
16490     impInlineRoot()->impSpillCliqueSuccMembers.Reset();
16491
16492     ReimportSpillClique callback(this);
16493
16494     impWalkSpillCliqueFromPred(block, &callback);
16495 }
16496
16497 // Set the pre-state of "block" (which should not have a pre-state allocated) to
16498 // a copy of "srcState", cloning tree pointers as required.
16499 void Compiler::verInitBBEntryState(BasicBlock* block, EntryState* srcState)
16500 {
16501     if (srcState->esStackDepth == 0 && srcState->thisInitialized == TIS_Bottom)
16502     {
16503         block->bbEntryState = nullptr;
16504         return;
16505     }
16506
16507     block->bbEntryState = (EntryState*)compGetMemA(sizeof(EntryState));
16508
16509     // block->bbEntryState.esRefcount = 1;
16510
16511     block->bbEntryState->esStackDepth    = srcState->esStackDepth;
16512     block->bbEntryState->thisInitialized = TIS_Bottom;
16513
16514     if (srcState->esStackDepth > 0)
16515     {
16516         block->bbSetStack(new (this, CMK_Unknown) StackEntry[srcState->esStackDepth]);
16517         unsigned stackSize = srcState->esStackDepth * sizeof(StackEntry);
16518
16519         memcpy(block->bbEntryState->esStack, srcState->esStack, stackSize);
16520         for (unsigned level = 0; level < srcState->esStackDepth; level++)
16521         {
16522             GenTreePtr tree                         = srcState->esStack[level].val;
16523             block->bbEntryState->esStack[level].val = gtCloneExpr(tree);
16524         }
16525     }
16526
16527     if (verTrackObjCtorInitState)
16528     {
16529         verSetThisInit(block, srcState->thisInitialized);
16530     }
16531
16532     return;
16533 }
16534
16535 void Compiler::verSetThisInit(BasicBlock* block, ThisInitState tis)
16536 {
16537     assert(tis != TIS_Bottom); // Precondition.
16538     if (block->bbEntryState == nullptr)
16539     {
16540         block->bbEntryState = new (this, CMK_Unknown) EntryState();
16541     }
16542
16543     block->bbEntryState->thisInitialized = tis;
16544 }
16545
16546 /*
16547  * Resets the current state to the state at the start of the basic block
16548  */
16549 void Compiler::verResetCurrentState(BasicBlock* block, EntryState* destState)
16550 {
16551
16552     if (block->bbEntryState == nullptr)
16553     {
16554         destState->esStackDepth    = 0;
16555         destState->thisInitialized = TIS_Bottom;
16556         return;
16557     }
16558
16559     destState->esStackDepth = block->bbEntryState->esStackDepth;
16560
16561     if (destState->esStackDepth > 0)
16562     {
16563         unsigned stackSize = destState->esStackDepth * sizeof(StackEntry);
16564
16565         memcpy(destState->esStack, block->bbStackOnEntry(), stackSize);
16566     }
16567
16568     destState->thisInitialized = block->bbThisOnEntry();
16569
16570     return;
16571 }
16572
16573 ThisInitState BasicBlock::bbThisOnEntry()
16574 {
16575     return bbEntryState ? bbEntryState->thisInitialized : TIS_Bottom;
16576 }
16577
16578 unsigned BasicBlock::bbStackDepthOnEntry()
16579 {
16580     return (bbEntryState ? bbEntryState->esStackDepth : 0);
16581 }
16582
16583 void BasicBlock::bbSetStack(void* stackBuffer)
16584 {
16585     assert(bbEntryState);
16586     assert(stackBuffer);
16587     bbEntryState->esStack = (StackEntry*)stackBuffer;
16588 }
16589
16590 StackEntry* BasicBlock::bbStackOnEntry()
16591 {
16592     assert(bbEntryState);
16593     return bbEntryState->esStack;
16594 }
16595
16596 void Compiler::verInitCurrentState()
16597 {
16598     verTrackObjCtorInitState        = FALSE;
16599     verCurrentState.thisInitialized = TIS_Bottom;
16600
16601     if (tiVerificationNeeded)
16602     {
16603         // Track this ptr initialization
16604         if (!info.compIsStatic && (info.compFlags & CORINFO_FLG_CONSTRUCTOR) && lvaTable[0].lvVerTypeInfo.IsObjRef())
16605         {
16606             verTrackObjCtorInitState        = TRUE;
16607             verCurrentState.thisInitialized = TIS_Uninit;
16608         }
16609     }
16610
16611     // initialize stack info
16612
16613     verCurrentState.esStackDepth = 0;
16614     assert(verCurrentState.esStack != nullptr);
16615
16616     // copy current state to entry state of first BB
16617     verInitBBEntryState(fgFirstBB, &verCurrentState);
16618 }
16619
16620 Compiler* Compiler::impInlineRoot()
16621 {
16622     if (impInlineInfo == nullptr)
16623     {
16624         return this;
16625     }
16626     else
16627     {
16628         return impInlineInfo->InlineRoot;
16629     }
16630 }
16631
16632 BYTE Compiler::impSpillCliqueGetMember(SpillCliqueDir predOrSucc, BasicBlock* blk)
16633 {
16634     if (predOrSucc == SpillCliquePred)
16635     {
16636         return impInlineRoot()->impSpillCliquePredMembers.Get(blk->bbInd());
16637     }
16638     else
16639     {
16640         assert(predOrSucc == SpillCliqueSucc);
16641         return impInlineRoot()->impSpillCliqueSuccMembers.Get(blk->bbInd());
16642     }
16643 }
16644
16645 void Compiler::impSpillCliqueSetMember(SpillCliqueDir predOrSucc, BasicBlock* blk, BYTE val)
16646 {
16647     if (predOrSucc == SpillCliquePred)
16648     {
16649         impInlineRoot()->impSpillCliquePredMembers.Set(blk->bbInd(), val);
16650     }
16651     else
16652     {
16653         assert(predOrSucc == SpillCliqueSucc);
16654         impInlineRoot()->impSpillCliqueSuccMembers.Set(blk->bbInd(), val);
16655     }
16656 }
16657
16658 /*****************************************************************************
16659  *
16660  *  Convert the instrs ("import") into our internal format (trees). The
16661  *  basic flowgraph has already been constructed and is passed in.
16662  */
16663
16664 void Compiler::impImport(BasicBlock* method)
16665 {
16666 #ifdef DEBUG
16667     if (verbose)
16668     {
16669         printf("*************** In impImport() for %s\n", info.compFullName);
16670     }
16671 #endif
16672
16673     /* Allocate the stack contents */
16674
16675     if (info.compMaxStack <= sizeof(impSmallStack) / sizeof(impSmallStack[0]))
16676     {
16677         /* Use local variable, don't waste time allocating on the heap */
16678
16679         impStkSize              = sizeof(impSmallStack) / sizeof(impSmallStack[0]);
16680         verCurrentState.esStack = impSmallStack;
16681     }
16682     else
16683     {
16684         impStkSize              = info.compMaxStack;
16685         verCurrentState.esStack = new (this, CMK_ImpStack) StackEntry[impStkSize];
16686     }
16687
16688     // initialize the entry state at start of method
16689     verInitCurrentState();
16690
16691     // Initialize stuff related to figuring "spill cliques" (see spec comment for impGetSpillTmpBase).
16692     Compiler* inlineRoot = impInlineRoot();
16693     if (this == inlineRoot) // These are only used on the root of the inlining tree.
16694     {
16695         // We have initialized these previously, but to size 0.  Make them larger.
16696         impPendingBlockMembers.Init(getAllocator(), fgBBNumMax * 2);
16697         impSpillCliquePredMembers.Init(getAllocator(), fgBBNumMax * 2);
16698         impSpillCliqueSuccMembers.Init(getAllocator(), fgBBNumMax * 2);
16699     }
16700     inlineRoot->impPendingBlockMembers.Reset(fgBBNumMax * 2);
16701     inlineRoot->impSpillCliquePredMembers.Reset(fgBBNumMax * 2);
16702     inlineRoot->impSpillCliqueSuccMembers.Reset(fgBBNumMax * 2);
16703     impBlockListNodeFreeList = nullptr;
16704
16705 #ifdef DEBUG
16706     impLastILoffsStmt   = nullptr;
16707     impNestedStackSpill = false;
16708 #endif
16709     impBoxTemp = BAD_VAR_NUM;
16710
16711     impPendingList = impPendingFree = nullptr;
16712
16713     /* Add the entry-point to the worker-list */
16714
16715     // Skip leading internal blocks. There can be one as a leading scratch BB, and more
16716     // from EH normalization.
16717     // NOTE: It might be possible to always just put fgFirstBB on the pending list, and let everything else just fall
16718     // out.
16719     for (; method->bbFlags & BBF_INTERNAL; method = method->bbNext)
16720     {
16721         // Treat these as imported.
16722         assert(method->bbJumpKind == BBJ_NONE); // We assume all the leading ones are fallthrough.
16723         JITDUMP("Marking leading BBF_INTERNAL block BB%02u as BBF_IMPORTED\n", method->bbNum);
16724         method->bbFlags |= BBF_IMPORTED;
16725     }
16726
16727     impImportBlockPending(method);
16728
16729     /* Import blocks in the worker-list until there are no more */
16730
16731     while (impPendingList)
16732     {
16733         /* Remove the entry at the front of the list */
16734
16735         PendingDsc* dsc = impPendingList;
16736         impPendingList  = impPendingList->pdNext;
16737         impSetPendingBlockMember(dsc->pdBB, 0);
16738
16739         /* Restore the stack state */
16740
16741         verCurrentState.thisInitialized = dsc->pdThisPtrInit;
16742         verCurrentState.esStackDepth    = dsc->pdSavedStack.ssDepth;
16743         if (verCurrentState.esStackDepth)
16744         {
16745             impRestoreStackState(&dsc->pdSavedStack);
16746         }
16747
16748         /* Add the entry to the free list for reuse */
16749
16750         dsc->pdNext    = impPendingFree;
16751         impPendingFree = dsc;
16752
16753         /* Now import the block */
16754
16755         if (dsc->pdBB->bbFlags & BBF_FAILED_VERIFICATION)
16756         {
16757
16758 #ifdef _TARGET_64BIT_
16759             // On AMD64, during verification we have to match JIT64 behavior since the VM is very tighly
16760             // coupled with the JIT64 IL Verification logic.  Look inside verHandleVerificationFailure
16761             // method for further explanation on why we raise this exception instead of making the jitted
16762             // code throw the verification exception during execution.
16763             if (tiVerificationNeeded && opts.jitFlags->IsSet(JitFlags::JIT_FLAG_IMPORT_ONLY))
16764             {
16765                 BADCODE("Basic block marked as not verifiable");
16766             }
16767             else
16768 #endif // _TARGET_64BIT_
16769             {
16770                 verConvertBBToThrowVerificationException(dsc->pdBB DEBUGARG(true));
16771                 impEndTreeList(dsc->pdBB);
16772             }
16773         }
16774         else
16775         {
16776             impImportBlock(dsc->pdBB);
16777
16778             if (compDonotInline())
16779             {
16780                 return;
16781             }
16782             if (compIsForImportOnly() && !tiVerificationNeeded)
16783             {
16784                 return;
16785             }
16786         }
16787     }
16788
16789 #ifdef DEBUG
16790     if (verbose && info.compXcptnsCount)
16791     {
16792         printf("\nAfter impImport() added block for try,catch,finally");
16793         fgDispBasicBlocks();
16794         printf("\n");
16795     }
16796
16797     // Used in impImportBlockPending() for STRESS_CHK_REIMPORT
16798     for (BasicBlock* block = fgFirstBB; block; block = block->bbNext)
16799     {
16800         block->bbFlags &= ~BBF_VISITED;
16801     }
16802 #endif
16803
16804     assert(!compIsForInlining() || !tiVerificationNeeded);
16805 }
16806
16807 // Checks if a typeinfo (usually stored in the type stack) is a struct.
16808 // The invariant here is that if it's not a ref or a method and has a class handle
16809 // it's a valuetype
16810 bool Compiler::impIsValueType(typeInfo* pTypeInfo)
16811 {
16812     if (pTypeInfo && pTypeInfo->IsValueClassWithClsHnd())
16813     {
16814         return true;
16815     }
16816     else
16817     {
16818         return false;
16819     }
16820 }
16821
16822 /*****************************************************************************
16823  *  Check to see if the tree is the address of a local or
16824     the address of a field in a local.
16825
16826     *lclVarTreeOut will contain the GT_LCL_VAR tree when it returns TRUE.
16827
16828  */
16829
16830 BOOL Compiler::impIsAddressInLocal(GenTreePtr tree, GenTreePtr* lclVarTreeOut)
16831 {
16832     if (tree->gtOper != GT_ADDR)
16833     {
16834         return FALSE;
16835     }
16836
16837     GenTreePtr op = tree->gtOp.gtOp1;
16838     while (op->gtOper == GT_FIELD)
16839     {
16840         op = op->gtField.gtFldObj;
16841         if (op && op->gtOper == GT_ADDR) // Skip static fields where op will be NULL.
16842         {
16843             op = op->gtOp.gtOp1;
16844         }
16845         else
16846         {
16847             return false;
16848         }
16849     }
16850
16851     if (op->gtOper == GT_LCL_VAR)
16852     {
16853         *lclVarTreeOut = op;
16854         return TRUE;
16855     }
16856     else
16857     {
16858         return FALSE;
16859     }
16860 }
16861
16862 //------------------------------------------------------------------------
16863 // impMakeDiscretionaryInlineObservations: make observations that help
16864 // determine the profitability of a discretionary inline
16865 //
16866 // Arguments:
16867 //    pInlineInfo -- InlineInfo for the inline, or null for the prejit root
16868 //    inlineResult -- InlineResult accumulating information about this inline
16869 //
16870 // Notes:
16871 //    If inlining or prejitting the root, this method also makes
16872 //    various observations about the method that factor into inline
16873 //    decisions. It sets `compNativeSizeEstimate` as a side effect.
16874
16875 void Compiler::impMakeDiscretionaryInlineObservations(InlineInfo* pInlineInfo, InlineResult* inlineResult)
16876 {
16877     assert(pInlineInfo != nullptr && compIsForInlining() || // Perform the actual inlining.
16878            pInlineInfo == nullptr && !compIsForInlining()   // Calculate the static inlining hint for ngen.
16879            );
16880
16881     // If we're really inlining, we should just have one result in play.
16882     assert((pInlineInfo == nullptr) || (inlineResult == pInlineInfo->inlineResult));
16883
16884     // If this is a "forceinline" method, the JIT probably shouldn't have gone
16885     // to the trouble of estimating the native code size. Even if it did, it
16886     // shouldn't be relying on the result of this method.
16887     assert(inlineResult->GetObservation() == InlineObservation::CALLEE_IS_DISCRETIONARY_INLINE);
16888
16889     // Note if the caller contains NEWOBJ or NEWARR.
16890     Compiler* rootCompiler = impInlineRoot();
16891
16892     if ((rootCompiler->optMethodFlags & OMF_HAS_NEWARRAY) != 0)
16893     {
16894         inlineResult->Note(InlineObservation::CALLER_HAS_NEWARRAY);
16895     }
16896
16897     if ((rootCompiler->optMethodFlags & OMF_HAS_NEWOBJ) != 0)
16898     {
16899         inlineResult->Note(InlineObservation::CALLER_HAS_NEWOBJ);
16900     }
16901
16902     bool calleeIsStatic  = (info.compFlags & CORINFO_FLG_STATIC) != 0;
16903     bool isSpecialMethod = (info.compFlags & CORINFO_FLG_CONSTRUCTOR) != 0;
16904
16905     if (isSpecialMethod)
16906     {
16907         if (calleeIsStatic)
16908         {
16909             inlineResult->Note(InlineObservation::CALLEE_IS_CLASS_CTOR);
16910         }
16911         else
16912         {
16913             inlineResult->Note(InlineObservation::CALLEE_IS_INSTANCE_CTOR);
16914         }
16915     }
16916     else if (!calleeIsStatic)
16917     {
16918         // Callee is an instance method.
16919         //
16920         // Check if the callee has the same 'this' as the root.
16921         if (pInlineInfo != nullptr)
16922         {
16923             GenTreePtr thisArg = pInlineInfo->iciCall->gtCall.gtCallObjp;
16924             assert(thisArg);
16925             bool isSameThis = impIsThis(thisArg);
16926             inlineResult->NoteBool(InlineObservation::CALLSITE_IS_SAME_THIS, isSameThis);
16927         }
16928     }
16929
16930     // Note if the callee's class is a promotable struct
16931     if ((info.compClassAttr & CORINFO_FLG_VALUECLASS) != 0)
16932     {
16933         lvaStructPromotionInfo structPromotionInfo;
16934         lvaCanPromoteStructType(info.compClassHnd, &structPromotionInfo, false);
16935         if (structPromotionInfo.canPromote)
16936         {
16937             inlineResult->Note(InlineObservation::CALLEE_CLASS_PROMOTABLE);
16938         }
16939     }
16940
16941 #ifdef FEATURE_SIMD
16942
16943     // Note if this method is has SIMD args or return value
16944     if (pInlineInfo != nullptr && pInlineInfo->hasSIMDTypeArgLocalOrReturn)
16945     {
16946         inlineResult->Note(InlineObservation::CALLEE_HAS_SIMD);
16947     }
16948
16949 #endif // FEATURE_SIMD
16950
16951     // Roughly classify callsite frequency.
16952     InlineCallsiteFrequency frequency = InlineCallsiteFrequency::UNUSED;
16953
16954     // If this is a prejit root, or a maximally hot block...
16955     if ((pInlineInfo == nullptr) || (pInlineInfo->iciBlock->bbWeight >= BB_MAX_WEIGHT))
16956     {
16957         frequency = InlineCallsiteFrequency::HOT;
16958     }
16959     // No training data.  Look for loop-like things.
16960     // We consider a recursive call loop-like.  Do not give the inlining boost to the method itself.
16961     // However, give it to things nearby.
16962     else if ((pInlineInfo->iciBlock->bbFlags & BBF_BACKWARD_JUMP) &&
16963              (pInlineInfo->fncHandle != pInlineInfo->inlineCandidateInfo->ilCallerHandle))
16964     {
16965         frequency = InlineCallsiteFrequency::LOOP;
16966     }
16967     else if ((pInlineInfo->iciBlock->bbFlags & BBF_PROF_WEIGHT) && (pInlineInfo->iciBlock->bbWeight > BB_ZERO_WEIGHT))
16968     {
16969         frequency = InlineCallsiteFrequency::WARM;
16970     }
16971     // Now modify the multiplier based on where we're called from.
16972     else if (pInlineInfo->iciBlock->isRunRarely() || ((info.compFlags & FLG_CCTOR) == FLG_CCTOR))
16973     {
16974         frequency = InlineCallsiteFrequency::RARE;
16975     }
16976     else
16977     {
16978         frequency = InlineCallsiteFrequency::BORING;
16979     }
16980
16981     // Also capture the block weight of the call site.  In the prejit
16982     // root case, assume there's some hot call site for this method.
16983     unsigned weight = 0;
16984
16985     if (pInlineInfo != nullptr)
16986     {
16987         weight = pInlineInfo->iciBlock->bbWeight;
16988     }
16989     else
16990     {
16991         weight = BB_MAX_WEIGHT;
16992     }
16993
16994     inlineResult->NoteInt(InlineObservation::CALLSITE_FREQUENCY, static_cast<int>(frequency));
16995     inlineResult->NoteInt(InlineObservation::CALLSITE_WEIGHT, static_cast<int>(weight));
16996 }
16997
16998 /*****************************************************************************
16999  This method makes STATIC inlining decision based on the IL code.
17000  It should not make any inlining decision based on the context.
17001  If forceInline is true, then the inlining decision should not depend on
17002  performance heuristics (code size, etc.).
17003  */
17004
17005 void Compiler::impCanInlineIL(CORINFO_METHOD_HANDLE fncHandle,
17006                               CORINFO_METHOD_INFO*  methInfo,
17007                               bool                  forceInline,
17008                               InlineResult*         inlineResult)
17009 {
17010     unsigned codeSize = methInfo->ILCodeSize;
17011
17012     // We shouldn't have made up our minds yet...
17013     assert(!inlineResult->IsDecided());
17014
17015     if (methInfo->EHcount)
17016     {
17017         inlineResult->NoteFatal(InlineObservation::CALLEE_HAS_EH);
17018         return;
17019     }
17020
17021     if ((methInfo->ILCode == nullptr) || (codeSize == 0))
17022     {
17023         inlineResult->NoteFatal(InlineObservation::CALLEE_HAS_NO_BODY);
17024         return;
17025     }
17026
17027     // For now we don't inline varargs (import code can't handle it)
17028
17029     if (methInfo->args.isVarArg())
17030     {
17031         inlineResult->NoteFatal(InlineObservation::CALLEE_HAS_MANAGED_VARARGS);
17032         return;
17033     }
17034
17035     // Reject if it has too many locals.
17036     // This is currently an implementation limit due to fixed-size arrays in the
17037     // inline info, rather than a performance heuristic.
17038
17039     inlineResult->NoteInt(InlineObservation::CALLEE_NUMBER_OF_LOCALS, methInfo->locals.numArgs);
17040
17041     if (methInfo->locals.numArgs > MAX_INL_LCLS)
17042     {
17043         inlineResult->NoteFatal(InlineObservation::CALLEE_TOO_MANY_LOCALS);
17044         return;
17045     }
17046
17047     // Make sure there aren't too many arguments.
17048     // This is currently an implementation limit due to fixed-size arrays in the
17049     // inline info, rather than a performance heuristic.
17050
17051     inlineResult->NoteInt(InlineObservation::CALLEE_NUMBER_OF_ARGUMENTS, methInfo->args.numArgs);
17052
17053     if (methInfo->args.numArgs > MAX_INL_ARGS)
17054     {
17055         inlineResult->NoteFatal(InlineObservation::CALLEE_TOO_MANY_ARGUMENTS);
17056         return;
17057     }
17058
17059     // Note force inline state
17060
17061     inlineResult->NoteBool(InlineObservation::CALLEE_IS_FORCE_INLINE, forceInline);
17062
17063     // Note IL code size
17064
17065     inlineResult->NoteInt(InlineObservation::CALLEE_IL_CODE_SIZE, codeSize);
17066
17067     if (inlineResult->IsFailure())
17068     {
17069         return;
17070     }
17071
17072     // Make sure maxstack is not too big
17073
17074     inlineResult->NoteInt(InlineObservation::CALLEE_MAXSTACK, methInfo->maxStack);
17075
17076     if (inlineResult->IsFailure())
17077     {
17078         return;
17079     }
17080 }
17081
17082 /*****************************************************************************
17083  */
17084
17085 void Compiler::impCheckCanInline(GenTreePtr             call,
17086                                  CORINFO_METHOD_HANDLE  fncHandle,
17087                                  unsigned               methAttr,
17088                                  CORINFO_CONTEXT_HANDLE exactContextHnd,
17089                                  InlineCandidateInfo**  ppInlineCandidateInfo,
17090                                  InlineResult*          inlineResult)
17091 {
17092     // Either EE or JIT might throw exceptions below.
17093     // If that happens, just don't inline the method.
17094
17095     struct Param
17096     {
17097         Compiler*              pThis;
17098         GenTreePtr             call;
17099         CORINFO_METHOD_HANDLE  fncHandle;
17100         unsigned               methAttr;
17101         CORINFO_CONTEXT_HANDLE exactContextHnd;
17102         InlineResult*          result;
17103         InlineCandidateInfo**  ppInlineCandidateInfo;
17104     } param = {nullptr};
17105
17106     param.pThis                 = this;
17107     param.call                  = call;
17108     param.fncHandle             = fncHandle;
17109     param.methAttr              = methAttr;
17110     param.exactContextHnd       = (exactContextHnd != nullptr) ? exactContextHnd : MAKE_METHODCONTEXT(fncHandle);
17111     param.result                = inlineResult;
17112     param.ppInlineCandidateInfo = ppInlineCandidateInfo;
17113
17114     bool success = eeRunWithErrorTrap<Param>(
17115         [](Param* pParam) {
17116             DWORD                  dwRestrictions = 0;
17117             CorInfoInitClassResult initClassResult;
17118
17119 #ifdef DEBUG
17120             const char* methodName;
17121             const char* className;
17122             methodName = pParam->pThis->eeGetMethodName(pParam->fncHandle, &className);
17123
17124             if (JitConfig.JitNoInline())
17125             {
17126                 pParam->result->NoteFatal(InlineObservation::CALLEE_IS_JIT_NOINLINE);
17127                 goto _exit;
17128             }
17129 #endif
17130
17131             /* Try to get the code address/size for the method */
17132
17133             CORINFO_METHOD_INFO methInfo;
17134             if (!pParam->pThis->info.compCompHnd->getMethodInfo(pParam->fncHandle, &methInfo))
17135             {
17136                 pParam->result->NoteFatal(InlineObservation::CALLEE_NO_METHOD_INFO);
17137                 goto _exit;
17138             }
17139
17140             bool forceInline;
17141             forceInline = !!(pParam->methAttr & CORINFO_FLG_FORCEINLINE);
17142
17143             pParam->pThis->impCanInlineIL(pParam->fncHandle, &methInfo, forceInline, pParam->result);
17144
17145             if (pParam->result->IsFailure())
17146             {
17147                 assert(pParam->result->IsNever());
17148                 goto _exit;
17149             }
17150
17151             // Speculatively check if initClass() can be done.
17152             // If it can be done, we will try to inline the method. If inlining
17153             // succeeds, then we will do the non-speculative initClass() and commit it.
17154             // If this speculative call to initClass() fails, there is no point
17155             // trying to inline this method.
17156             initClassResult =
17157                 pParam->pThis->info.compCompHnd->initClass(nullptr /* field */, pParam->fncHandle /* method */,
17158                                                            pParam->exactContextHnd /* context */,
17159                                                            TRUE /* speculative */);
17160
17161             if (initClassResult & CORINFO_INITCLASS_DONT_INLINE)
17162             {
17163                 pParam->result->NoteFatal(InlineObservation::CALLSITE_CLASS_INIT_FAILURE_SPEC);
17164                 goto _exit;
17165             }
17166
17167             // Given the EE the final say in whether to inline or not.
17168             // This should be last since for verifiable code, this can be expensive
17169
17170             /* VM Inline check also ensures that the method is verifiable if needed */
17171             CorInfoInline vmResult;
17172             vmResult = pParam->pThis->info.compCompHnd->canInline(pParam->pThis->info.compMethodHnd, pParam->fncHandle,
17173                                                                   &dwRestrictions);
17174
17175             if (vmResult == INLINE_FAIL)
17176             {
17177                 pParam->result->NoteFatal(InlineObservation::CALLSITE_IS_VM_NOINLINE);
17178             }
17179             else if (vmResult == INLINE_NEVER)
17180             {
17181                 pParam->result->NoteFatal(InlineObservation::CALLEE_IS_VM_NOINLINE);
17182             }
17183
17184             if (pParam->result->IsFailure())
17185             {
17186                 // Make sure not to report this one.  It was already reported by the VM.
17187                 pParam->result->SetReported();
17188                 goto _exit;
17189             }
17190
17191             // check for unsupported inlining restrictions
17192             assert((dwRestrictions & ~(INLINE_RESPECT_BOUNDARY | INLINE_NO_CALLEE_LDSTR | INLINE_SAME_THIS)) == 0);
17193
17194             if (dwRestrictions & INLINE_SAME_THIS)
17195             {
17196                 GenTreePtr thisArg = pParam->call->gtCall.gtCallObjp;
17197                 assert(thisArg);
17198
17199                 if (!pParam->pThis->impIsThis(thisArg))
17200                 {
17201                     pParam->result->NoteFatal(InlineObservation::CALLSITE_REQUIRES_SAME_THIS);
17202                     goto _exit;
17203                 }
17204             }
17205
17206             /* Get the method properties */
17207
17208             CORINFO_CLASS_HANDLE clsHandle;
17209             clsHandle = pParam->pThis->info.compCompHnd->getMethodClass(pParam->fncHandle);
17210             unsigned clsAttr;
17211             clsAttr = pParam->pThis->info.compCompHnd->getClassAttribs(clsHandle);
17212
17213             /* Get the return type */
17214
17215             var_types fncRetType;
17216             fncRetType = pParam->call->TypeGet();
17217
17218 #ifdef DEBUG
17219             var_types fncRealRetType;
17220             fncRealRetType = JITtype2varType(methInfo.args.retType);
17221
17222             assert((genActualType(fncRealRetType) == genActualType(fncRetType)) ||
17223                    // <BUGNUM> VSW 288602 </BUGNUM>
17224                    // In case of IJW, we allow to assign a native pointer to a BYREF.
17225                    (fncRetType == TYP_BYREF && methInfo.args.retType == CORINFO_TYPE_PTR) ||
17226                    (varTypeIsStruct(fncRetType) && (fncRealRetType == TYP_STRUCT)));
17227 #endif
17228
17229             //
17230             // Allocate an InlineCandidateInfo structure
17231             //
17232             InlineCandidateInfo* pInfo;
17233             pInfo = new (pParam->pThis, CMK_Inlining) InlineCandidateInfo;
17234
17235             pInfo->dwRestrictions  = dwRestrictions;
17236             pInfo->methInfo        = methInfo;
17237             pInfo->methAttr        = pParam->methAttr;
17238             pInfo->clsHandle       = clsHandle;
17239             pInfo->clsAttr         = clsAttr;
17240             pInfo->fncRetType      = fncRetType;
17241             pInfo->exactContextHnd = pParam->exactContextHnd;
17242             pInfo->ilCallerHandle  = pParam->pThis->info.compMethodHnd;
17243             pInfo->initClassResult = initClassResult;
17244
17245             *(pParam->ppInlineCandidateInfo) = pInfo;
17246
17247         _exit:;
17248         },
17249         &param);
17250     if (!success)
17251     {
17252         param.result->NoteFatal(InlineObservation::CALLSITE_COMPILATION_ERROR);
17253     }
17254 }
17255
17256 void Compiler::impInlineRecordArgInfo(InlineInfo*   pInlineInfo,
17257                                       GenTreePtr    curArgVal,
17258                                       unsigned      argNum,
17259                                       InlineResult* inlineResult)
17260 {
17261     InlArgInfo* inlCurArgInfo = &pInlineInfo->inlArgInfo[argNum];
17262
17263     if (curArgVal->gtOper == GT_MKREFANY)
17264     {
17265         inlineResult->NoteFatal(InlineObservation::CALLSITE_ARG_IS_MKREFANY);
17266         return;
17267     }
17268
17269     inlCurArgInfo->argNode = curArgVal;
17270
17271     GenTreePtr lclVarTree;
17272     if (impIsAddressInLocal(curArgVal, &lclVarTree) && varTypeIsStruct(lclVarTree))
17273     {
17274         inlCurArgInfo->argIsByRefToStructLocal = true;
17275 #ifdef FEATURE_SIMD
17276         if (lvaTable[lclVarTree->AsLclVarCommon()->gtLclNum].lvSIMDType)
17277         {
17278             pInlineInfo->hasSIMDTypeArgLocalOrReturn = true;
17279         }
17280 #endif // FEATURE_SIMD
17281     }
17282
17283     if (curArgVal->gtFlags & GTF_ALL_EFFECT)
17284     {
17285         inlCurArgInfo->argHasGlobRef = (curArgVal->gtFlags & GTF_GLOB_REF) != 0;
17286         inlCurArgInfo->argHasSideEff = (curArgVal->gtFlags & (GTF_ALL_EFFECT & ~GTF_GLOB_REF)) != 0;
17287     }
17288
17289     if (curArgVal->gtOper == GT_LCL_VAR)
17290     {
17291         inlCurArgInfo->argIsLclVar = true;
17292
17293         /* Remember the "original" argument number */
17294         curArgVal->gtLclVar.gtLclILoffs = argNum;
17295     }
17296
17297     if ((curArgVal->OperKind() & GTK_CONST) ||
17298         ((curArgVal->gtOper == GT_ADDR) && (curArgVal->gtOp.gtOp1->gtOper == GT_LCL_VAR)))
17299     {
17300         inlCurArgInfo->argIsInvariant = true;
17301         if (inlCurArgInfo->argIsThis && (curArgVal->gtOper == GT_CNS_INT) && (curArgVal->gtIntCon.gtIconVal == 0))
17302         {
17303             /* Abort, but do not mark as not inlinable */
17304             inlineResult->NoteFatal(InlineObservation::CALLSITE_ARG_HAS_NULL_THIS);
17305             return;
17306         }
17307     }
17308
17309     if (!inlCurArgInfo->argIsInvariant && gtHasLocalsWithAddrOp(curArgVal))
17310     {
17311         inlCurArgInfo->argHasLdargaOp = true;
17312     }
17313
17314 #ifdef DEBUG
17315     if (verbose)
17316     {
17317         if (inlCurArgInfo->argIsThis)
17318         {
17319             printf("thisArg:");
17320         }
17321         else
17322         {
17323             printf("\nArgument #%u:", argNum);
17324         }
17325         if (inlCurArgInfo->argIsLclVar)
17326         {
17327             printf(" is a local var");
17328         }
17329         if (inlCurArgInfo->argIsInvariant)
17330         {
17331             printf(" is a constant");
17332         }
17333         if (inlCurArgInfo->argHasGlobRef)
17334         {
17335             printf(" has global refs");
17336         }
17337         if (inlCurArgInfo->argHasSideEff)
17338         {
17339             printf(" has side effects");
17340         }
17341         if (inlCurArgInfo->argHasLdargaOp)
17342         {
17343             printf(" has ldarga effect");
17344         }
17345         if (inlCurArgInfo->argHasStargOp)
17346         {
17347             printf(" has starg effect");
17348         }
17349         if (inlCurArgInfo->argIsByRefToStructLocal)
17350         {
17351             printf(" is byref to a struct local");
17352         }
17353
17354         printf("\n");
17355         gtDispTree(curArgVal);
17356         printf("\n");
17357     }
17358 #endif
17359 }
17360
17361 /*****************************************************************************
17362  *
17363  */
17364
17365 void Compiler::impInlineInitVars(InlineInfo* pInlineInfo)
17366 {
17367     assert(!compIsForInlining());
17368
17369     GenTreePtr           call         = pInlineInfo->iciCall;
17370     CORINFO_METHOD_INFO* methInfo     = &pInlineInfo->inlineCandidateInfo->methInfo;
17371     unsigned             clsAttr      = pInlineInfo->inlineCandidateInfo->clsAttr;
17372     InlArgInfo*          inlArgInfo   = pInlineInfo->inlArgInfo;
17373     InlLclVarInfo*       lclVarInfo   = pInlineInfo->lclVarInfo;
17374     InlineResult*        inlineResult = pInlineInfo->inlineResult;
17375
17376     const bool hasRetBuffArg = impMethodInfo_hasRetBuffArg(methInfo);
17377
17378     /* init the argument stuct */
17379
17380     memset(inlArgInfo, 0, (MAX_INL_ARGS + 1) * sizeof(inlArgInfo[0]));
17381
17382     /* Get hold of the 'this' pointer and the argument list proper */
17383
17384     GenTreePtr thisArg = call->gtCall.gtCallObjp;
17385     GenTreePtr argList = call->gtCall.gtCallArgs;
17386     unsigned   argCnt  = 0; // Count of the arguments
17387
17388     assert((methInfo->args.hasThis()) == (thisArg != nullptr));
17389
17390     if (thisArg)
17391     {
17392         inlArgInfo[0].argIsThis = true;
17393
17394         impInlineRecordArgInfo(pInlineInfo, thisArg, argCnt, inlineResult);
17395
17396         if (inlineResult->IsFailure())
17397         {
17398             return;
17399         }
17400
17401         /* Increment the argument count */
17402         argCnt++;
17403     }
17404
17405     /* Record some information about each of the arguments */
17406     bool hasTypeCtxtArg = (methInfo->args.callConv & CORINFO_CALLCONV_PARAMTYPE) != 0;
17407
17408 #if USER_ARGS_COME_LAST
17409     unsigned typeCtxtArg = thisArg ? 1 : 0;
17410 #else  // USER_ARGS_COME_LAST
17411     unsigned typeCtxtArg = methInfo->args.totalILArgs();
17412 #endif // USER_ARGS_COME_LAST
17413
17414     for (GenTreePtr argTmp = argList; argTmp; argTmp = argTmp->gtOp.gtOp2)
17415     {
17416         if (argTmp == argList && hasRetBuffArg)
17417         {
17418             continue;
17419         }
17420
17421         // Ignore the type context argument
17422         if (hasTypeCtxtArg && (argCnt == typeCtxtArg))
17423         {
17424             typeCtxtArg = 0xFFFFFFFF;
17425             continue;
17426         }
17427
17428         assert(argTmp->gtOper == GT_LIST);
17429         GenTreePtr argVal = argTmp->gtOp.gtOp1;
17430
17431         impInlineRecordArgInfo(pInlineInfo, argVal, argCnt, inlineResult);
17432
17433         if (inlineResult->IsFailure())
17434         {
17435             return;
17436         }
17437
17438         /* Increment the argument count */
17439         argCnt++;
17440     }
17441
17442     /* Make sure we got the arg number right */
17443     assert(argCnt == methInfo->args.totalILArgs());
17444
17445 #ifdef FEATURE_SIMD
17446     bool foundSIMDType = pInlineInfo->hasSIMDTypeArgLocalOrReturn;
17447 #endif // FEATURE_SIMD
17448
17449     /* We have typeless opcodes, get type information from the signature */
17450
17451     if (thisArg)
17452     {
17453         var_types sigType;
17454
17455         if (clsAttr & CORINFO_FLG_VALUECLASS)
17456         {
17457             sigType = TYP_BYREF;
17458         }
17459         else
17460         {
17461             sigType = TYP_REF;
17462         }
17463
17464         lclVarInfo[0].lclVerTypeInfo = verMakeTypeInfo(pInlineInfo->inlineCandidateInfo->clsHandle);
17465         lclVarInfo[0].lclHasLdlocaOp = false;
17466
17467 #ifdef FEATURE_SIMD
17468         // We always want to check isSIMDClass, since we want to set foundSIMDType (to increase
17469         // the inlining multiplier) for anything in that assembly.
17470         // But we only need to normalize it if it is a TYP_STRUCT
17471         // (which we need to do even if we have already set foundSIMDType).
17472         if ((!foundSIMDType || (sigType == TYP_STRUCT)) && isSIMDClass(&(lclVarInfo[0].lclVerTypeInfo)))
17473         {
17474             if (sigType == TYP_STRUCT)
17475             {
17476                 sigType = impNormStructType(lclVarInfo[0].lclVerTypeInfo.GetClassHandle());
17477             }
17478             foundSIMDType = true;
17479         }
17480 #endif // FEATURE_SIMD
17481         lclVarInfo[0].lclTypeInfo = sigType;
17482
17483         assert(varTypeIsGC(thisArg->gtType) ||   // "this" is managed
17484                (thisArg->gtType == TYP_I_IMPL && // "this" is unmgd but the method's class doesnt care
17485                 (clsAttr & CORINFO_FLG_VALUECLASS)));
17486
17487         if (genActualType(thisArg->gtType) != genActualType(sigType))
17488         {
17489             if (sigType == TYP_REF)
17490             {
17491                 /* The argument cannot be bashed into a ref (see bug 750871) */
17492                 inlineResult->NoteFatal(InlineObservation::CALLSITE_ARG_NO_BASH_TO_REF);
17493                 return;
17494             }
17495
17496             /* This can only happen with byrefs <-> ints/shorts */
17497
17498             assert(genActualType(sigType) == TYP_I_IMPL || sigType == TYP_BYREF);
17499             assert(genActualType(thisArg->gtType) == TYP_I_IMPL || thisArg->gtType == TYP_BYREF);
17500
17501             if (sigType == TYP_BYREF)
17502             {
17503                 lclVarInfo[0].lclVerTypeInfo = typeInfo(varType2tiType(TYP_I_IMPL));
17504             }
17505             else if (thisArg->gtType == TYP_BYREF)
17506             {
17507                 assert(sigType == TYP_I_IMPL);
17508
17509                 /* If possible change the BYREF to an int */
17510                 if (thisArg->IsVarAddr())
17511                 {
17512                     thisArg->gtType              = TYP_I_IMPL;
17513                     lclVarInfo[0].lclVerTypeInfo = typeInfo(varType2tiType(TYP_I_IMPL));
17514                 }
17515                 else
17516                 {
17517                     /* Arguments 'int <- byref' cannot be bashed */
17518                     inlineResult->NoteFatal(InlineObservation::CALLSITE_ARG_NO_BASH_TO_INT);
17519                     return;
17520                 }
17521             }
17522         }
17523     }
17524
17525     /* Init the types of the arguments and make sure the types
17526      * from the trees match the types in the signature */
17527
17528     CORINFO_ARG_LIST_HANDLE argLst;
17529     argLst = methInfo->args.args;
17530
17531     unsigned i;
17532     for (i = (thisArg ? 1 : 0); i < argCnt; i++, argLst = info.compCompHnd->getArgNext(argLst))
17533     {
17534         var_types sigType = (var_types)eeGetArgType(argLst, &methInfo->args);
17535
17536         lclVarInfo[i].lclVerTypeInfo = verParseArgSigToTypeInfo(&methInfo->args, argLst);
17537
17538 #ifdef FEATURE_SIMD
17539         if ((!foundSIMDType || (sigType == TYP_STRUCT)) && isSIMDClass(&(lclVarInfo[i].lclVerTypeInfo)))
17540         {
17541             // If this is a SIMD class (i.e. in the SIMD assembly), then we will consider that we've
17542             // found a SIMD type, even if this may not be a type we recognize (the assumption is that
17543             // it is likely to use a SIMD type, and therefore we want to increase the inlining multiplier).
17544             foundSIMDType = true;
17545             if (sigType == TYP_STRUCT)
17546             {
17547                 var_types structType = impNormStructType(lclVarInfo[i].lclVerTypeInfo.GetClassHandle());
17548                 sigType              = structType;
17549             }
17550         }
17551 #endif // FEATURE_SIMD
17552
17553         lclVarInfo[i].lclTypeInfo    = sigType;
17554         lclVarInfo[i].lclHasLdlocaOp = false;
17555
17556         /* Does the tree type match the signature type? */
17557
17558         GenTreePtr inlArgNode = inlArgInfo[i].argNode;
17559
17560         if (sigType != inlArgNode->gtType)
17561         {
17562             /* In valid IL, this can only happen for short integer types or byrefs <-> [native] ints,
17563                but in bad IL cases with caller-callee signature mismatches we can see other types.
17564                Intentionally reject cases with mismatches so the jit is more flexible when
17565                encountering bad IL. */
17566
17567             bool isPlausibleTypeMatch = (genActualType(sigType) == genActualType(inlArgNode->gtType)) ||
17568                                         (genActualTypeIsIntOrI(sigType) && inlArgNode->gtType == TYP_BYREF) ||
17569                                         (sigType == TYP_BYREF && genActualTypeIsIntOrI(inlArgNode->gtType));
17570
17571             if (!isPlausibleTypeMatch)
17572             {
17573                 inlineResult->NoteFatal(InlineObservation::CALLSITE_ARG_TYPES_INCOMPATIBLE);
17574                 return;
17575             }
17576
17577             /* Is it a narrowing or widening cast?
17578              * Widening casts are ok since the value computed is already
17579              * normalized to an int (on the IL stack) */
17580
17581             if (genTypeSize(inlArgNode->gtType) >= genTypeSize(sigType))
17582             {
17583                 if (sigType == TYP_BYREF)
17584                 {
17585                     lclVarInfo[i].lclVerTypeInfo = typeInfo(varType2tiType(TYP_I_IMPL));
17586                 }
17587                 else if (inlArgNode->gtType == TYP_BYREF)
17588                 {
17589                     assert(varTypeIsIntOrI(sigType));
17590
17591                     /* If possible bash the BYREF to an int */
17592                     if (inlArgNode->IsVarAddr())
17593                     {
17594                         inlArgNode->gtType           = TYP_I_IMPL;
17595                         lclVarInfo[i].lclVerTypeInfo = typeInfo(varType2tiType(TYP_I_IMPL));
17596                     }
17597                     else
17598                     {
17599                         /* Arguments 'int <- byref' cannot be changed */
17600                         inlineResult->NoteFatal(InlineObservation::CALLSITE_ARG_NO_BASH_TO_INT);
17601                         return;
17602                     }
17603                 }
17604                 else if (genTypeSize(sigType) < EA_PTRSIZE)
17605                 {
17606                     /* Narrowing cast */
17607
17608                     if (inlArgNode->gtOper == GT_LCL_VAR &&
17609                         !lvaTable[inlArgNode->gtLclVarCommon.gtLclNum].lvNormalizeOnLoad() &&
17610                         sigType == lvaGetRealType(inlArgNode->gtLclVarCommon.gtLclNum))
17611                     {
17612                         /* We don't need to insert a cast here as the variable
17613                            was assigned a normalized value of the right type */
17614
17615                         continue;
17616                     }
17617
17618                     inlArgNode = inlArgInfo[i].argNode = gtNewCastNode(TYP_INT, inlArgNode, sigType);
17619
17620                     inlArgInfo[i].argIsLclVar = false;
17621
17622                     /* Try to fold the node in case we have constant arguments */
17623
17624                     if (inlArgInfo[i].argIsInvariant)
17625                     {
17626                         inlArgNode            = gtFoldExprConst(inlArgNode);
17627                         inlArgInfo[i].argNode = inlArgNode;
17628                         assert(inlArgNode->OperIsConst());
17629                     }
17630                 }
17631 #ifdef _TARGET_64BIT_
17632                 else if (genTypeSize(genActualType(inlArgNode->gtType)) < genTypeSize(sigType))
17633                 {
17634                     // This should only happen for int -> native int widening
17635                     inlArgNode = inlArgInfo[i].argNode = gtNewCastNode(genActualType(sigType), inlArgNode, sigType);
17636
17637                     inlArgInfo[i].argIsLclVar = false;
17638
17639                     /* Try to fold the node in case we have constant arguments */
17640
17641                     if (inlArgInfo[i].argIsInvariant)
17642                     {
17643                         inlArgNode            = gtFoldExprConst(inlArgNode);
17644                         inlArgInfo[i].argNode = inlArgNode;
17645                         assert(inlArgNode->OperIsConst());
17646                     }
17647                 }
17648 #endif // _TARGET_64BIT_
17649             }
17650         }
17651     }
17652
17653     /* Init the types of the local variables */
17654
17655     CORINFO_ARG_LIST_HANDLE localsSig;
17656     localsSig = methInfo->locals.args;
17657
17658     for (i = 0; i < methInfo->locals.numArgs; i++)
17659     {
17660         bool      isPinned;
17661         var_types type = (var_types)eeGetArgType(localsSig, &methInfo->locals, &isPinned);
17662
17663         lclVarInfo[i + argCnt].lclHasLdlocaOp = false;
17664         lclVarInfo[i + argCnt].lclIsPinned    = isPinned;
17665         lclVarInfo[i + argCnt].lclTypeInfo    = type;
17666
17667         if (isPinned)
17668         {
17669             // Pinned locals may cause inlines to fail.
17670             inlineResult->Note(InlineObservation::CALLEE_HAS_PINNED_LOCALS);
17671             if (inlineResult->IsFailure())
17672             {
17673                 return;
17674             }
17675         }
17676
17677         lclVarInfo[i + argCnt].lclVerTypeInfo = verParseArgSigToTypeInfo(&methInfo->locals, localsSig);
17678
17679         // If this local is a struct type with GC fields, inform the inliner. It may choose to bail
17680         // out on the inline.
17681         if (type == TYP_STRUCT)
17682         {
17683             CORINFO_CLASS_HANDLE lclHandle = lclVarInfo[i + argCnt].lclVerTypeInfo.GetClassHandle();
17684             DWORD                typeFlags = info.compCompHnd->getClassAttribs(lclHandle);
17685             if ((typeFlags & CORINFO_FLG_CONTAINS_GC_PTR) != 0)
17686             {
17687                 inlineResult->Note(InlineObservation::CALLEE_HAS_GC_STRUCT);
17688                 if (inlineResult->IsFailure())
17689                 {
17690                     return;
17691                 }
17692
17693                 // Do further notification in the case where the call site is rare; some policies do
17694                 // not track the relative hotness of call sites for "always" inline cases.
17695                 if (pInlineInfo->iciBlock->isRunRarely())
17696                 {
17697                     inlineResult->Note(InlineObservation::CALLSITE_RARE_GC_STRUCT);
17698                     if (inlineResult->IsFailure())
17699                     {
17700
17701                         return;
17702                     }
17703                 }
17704             }
17705         }
17706
17707         localsSig = info.compCompHnd->getArgNext(localsSig);
17708
17709 #ifdef FEATURE_SIMD
17710         if ((!foundSIMDType || (type == TYP_STRUCT)) && isSIMDClass(&(lclVarInfo[i + argCnt].lclVerTypeInfo)))
17711         {
17712             foundSIMDType = true;
17713             if (featureSIMD && type == TYP_STRUCT)
17714             {
17715                 var_types structType = impNormStructType(lclVarInfo[i + argCnt].lclVerTypeInfo.GetClassHandle());
17716                 lclVarInfo[i + argCnt].lclTypeInfo = structType;
17717             }
17718         }
17719 #endif // FEATURE_SIMD
17720     }
17721
17722 #ifdef FEATURE_SIMD
17723     if (!foundSIMDType && (call->AsCall()->gtRetClsHnd != nullptr) && isSIMDClass(call->AsCall()->gtRetClsHnd))
17724     {
17725         foundSIMDType = true;
17726     }
17727     pInlineInfo->hasSIMDTypeArgLocalOrReturn = foundSIMDType;
17728 #endif // FEATURE_SIMD
17729 }
17730
17731 unsigned Compiler::impInlineFetchLocal(unsigned lclNum DEBUGARG(const char* reason))
17732 {
17733     assert(compIsForInlining());
17734
17735     unsigned tmpNum = impInlineInfo->lclTmpNum[lclNum];
17736
17737     if (tmpNum == BAD_VAR_NUM)
17738     {
17739         var_types lclTyp = impInlineInfo->lclVarInfo[lclNum + impInlineInfo->argCnt].lclTypeInfo;
17740
17741         // The lifetime of this local might span multiple BBs.
17742         // So it is a long lifetime local.
17743         impInlineInfo->lclTmpNum[lclNum] = tmpNum = lvaGrabTemp(false DEBUGARG(reason));
17744
17745         lvaTable[tmpNum].lvType = lclTyp;
17746         if (impInlineInfo->lclVarInfo[lclNum + impInlineInfo->argCnt].lclHasLdlocaOp)
17747         {
17748             lvaTable[tmpNum].lvHasLdAddrOp = 1;
17749         }
17750
17751         if (impInlineInfo->lclVarInfo[lclNum + impInlineInfo->argCnt].lclIsPinned)
17752         {
17753             lvaTable[tmpNum].lvPinned = 1;
17754
17755             if (!impInlineInfo->hasPinnedLocals)
17756             {
17757                 // If the inlinee returns a value, use a spill temp
17758                 // for the return value to ensure that even in case
17759                 // where the return expression refers to one of the
17760                 // pinned locals, we can unpin the local right after
17761                 // the inlined method body.
17762                 if ((info.compRetNativeType != TYP_VOID) && (lvaInlineeReturnSpillTemp == BAD_VAR_NUM))
17763                 {
17764                     lvaInlineeReturnSpillTemp =
17765                         lvaGrabTemp(false DEBUGARG("Inline candidate pinned local return spill temp"));
17766                     lvaTable[lvaInlineeReturnSpillTemp].lvType = info.compRetNativeType;
17767                 }
17768             }
17769
17770             impInlineInfo->hasPinnedLocals = true;
17771         }
17772
17773         if (impInlineInfo->lclVarInfo[lclNum + impInlineInfo->argCnt].lclVerTypeInfo.IsStruct())
17774         {
17775             if (varTypeIsStruct(lclTyp))
17776             {
17777                 lvaSetStruct(tmpNum,
17778                              impInlineInfo->lclVarInfo[lclNum + impInlineInfo->argCnt].lclVerTypeInfo.GetClassHandle(),
17779                              true /* unsafe value cls check */);
17780             }
17781             else
17782             {
17783                 // This is a wrapped primitive.  Make sure the verstate knows that
17784                 lvaTable[tmpNum].lvVerTypeInfo =
17785                     impInlineInfo->lclVarInfo[lclNum + impInlineInfo->argCnt].lclVerTypeInfo;
17786             }
17787         }
17788     }
17789
17790     return tmpNum;
17791 }
17792
17793 // A method used to return the GenTree (usually a GT_LCL_VAR) representing the arguments of the inlined method.
17794 // Only use this method for the arguments of the inlinee method.
17795 // !!! Do not use it for the locals of the inlinee method. !!!!
17796
17797 GenTreePtr Compiler::impInlineFetchArg(unsigned lclNum, InlArgInfo* inlArgInfo, InlLclVarInfo* lclVarInfo)
17798 {
17799     /* Get the argument type */
17800     var_types lclTyp = lclVarInfo[lclNum].lclTypeInfo;
17801
17802     GenTreePtr op1 = nullptr;
17803
17804     // constant or address of local
17805     if (inlArgInfo[lclNum].argIsInvariant && !inlArgInfo[lclNum].argHasLdargaOp && !inlArgInfo[lclNum].argHasStargOp)
17806     {
17807         /* Clone the constant. Note that we cannot directly use argNode
17808         in the trees even if inlArgInfo[lclNum].argIsUsed==false as this
17809         would introduce aliasing between inlArgInfo[].argNode and
17810         impInlineExpr. Then gtFoldExpr() could change it, causing further
17811         references to the argument working off of the bashed copy. */
17812
17813         op1 = gtCloneExpr(inlArgInfo[lclNum].argNode);
17814         PREFIX_ASSUME(op1 != nullptr);
17815         inlArgInfo[lclNum].argTmpNum = (unsigned)-1; // illegal temp
17816     }
17817     else if (inlArgInfo[lclNum].argIsLclVar && !inlArgInfo[lclNum].argHasLdargaOp && !inlArgInfo[lclNum].argHasStargOp)
17818     {
17819         /* Argument is a local variable (of the caller)
17820          * Can we re-use the passed argument node? */
17821
17822         op1                          = inlArgInfo[lclNum].argNode;
17823         inlArgInfo[lclNum].argTmpNum = op1->gtLclVarCommon.gtLclNum;
17824
17825         if (inlArgInfo[lclNum].argIsUsed)
17826         {
17827             assert(op1->gtOper == GT_LCL_VAR);
17828             assert(lclNum == op1->gtLclVar.gtLclILoffs);
17829
17830             if (!lvaTable[op1->gtLclVarCommon.gtLclNum].lvNormalizeOnLoad())
17831             {
17832                 lclTyp = genActualType(lclTyp);
17833             }
17834
17835             /* Create a new lcl var node - remember the argument lclNum */
17836             op1 = gtNewLclvNode(op1->gtLclVarCommon.gtLclNum, lclTyp, op1->gtLclVar.gtLclILoffs);
17837         }
17838     }
17839     else if (inlArgInfo[lclNum].argIsByRefToStructLocal && !inlArgInfo[lclNum].argHasStargOp)
17840     {
17841         /* Argument is a by-ref address to a struct, a normed struct, or its field.
17842            In these cases, don't spill the byref to a local, simply clone the tree and use it.
17843            This way we will increase the chance for this byref to be optimized away by
17844            a subsequent "dereference" operation.
17845
17846            From Dev11 bug #139955: Argument node can also be TYP_I_IMPL if we've bashed the tree
17847            (in impInlineInitVars()), if the arg has argHasLdargaOp as well as argIsByRefToStructLocal.
17848            For example, if the caller is:
17849                 ldloca.s   V_1  // V_1 is a local struct
17850                 call       void Test.ILPart::RunLdargaOnPointerArg(int32*)
17851            and the callee being inlined has:
17852                 .method public static void  RunLdargaOnPointerArg(int32* ptrToInts) cil managed
17853                     ldarga.s   ptrToInts
17854                     call       void Test.FourInts::NotInlined_SetExpectedValuesThroughPointerToPointer(int32**)
17855            then we change the argument tree (of "ldloca.s V_1") to TYP_I_IMPL to match the callee signature. We'll
17856            soon afterwards reject the inlining anyway, since the tree we return isn't a GT_LCL_VAR.
17857         */
17858         assert(inlArgInfo[lclNum].argNode->TypeGet() == TYP_BYREF ||
17859                inlArgInfo[lclNum].argNode->TypeGet() == TYP_I_IMPL);
17860         op1 = gtCloneExpr(inlArgInfo[lclNum].argNode);
17861     }
17862     else
17863     {
17864         /* Argument is a complex expression - it must be evaluated into a temp */
17865
17866         if (inlArgInfo[lclNum].argHasTmp)
17867         {
17868             assert(inlArgInfo[lclNum].argIsUsed);
17869             assert(inlArgInfo[lclNum].argTmpNum < lvaCount);
17870
17871             /* Create a new lcl var node - remember the argument lclNum */
17872             op1 = gtNewLclvNode(inlArgInfo[lclNum].argTmpNum, genActualType(lclTyp));
17873
17874             /* This is the second or later use of the this argument,
17875             so we have to use the temp (instead of the actual arg) */
17876             inlArgInfo[lclNum].argBashTmpNode = nullptr;
17877         }
17878         else
17879         {
17880             /* First time use */
17881             assert(inlArgInfo[lclNum].argIsUsed == false);
17882
17883             /* Reserve a temp for the expression.
17884             * Use a large size node as we may change it later */
17885
17886             unsigned tmpNum = lvaGrabTemp(true DEBUGARG("Inlining Arg"));
17887
17888             lvaTable[tmpNum].lvType = lclTyp;
17889             assert(lvaTable[tmpNum].lvAddrExposed == 0);
17890             if (inlArgInfo[lclNum].argHasLdargaOp)
17891             {
17892                 lvaTable[tmpNum].lvHasLdAddrOp = 1;
17893             }
17894
17895             if (lclVarInfo[lclNum].lclVerTypeInfo.IsStruct())
17896             {
17897                 if (varTypeIsStruct(lclTyp))
17898                 {
17899                     lvaSetStruct(tmpNum, impInlineInfo->lclVarInfo[lclNum].lclVerTypeInfo.GetClassHandle(),
17900                                  true /* unsafe value cls check */);
17901                 }
17902                 else
17903                 {
17904                     // This is a wrapped primitive.  Make sure the verstate knows that
17905                     lvaTable[tmpNum].lvVerTypeInfo = impInlineInfo->lclVarInfo[lclNum].lclVerTypeInfo;
17906                 }
17907             }
17908
17909             inlArgInfo[lclNum].argHasTmp = true;
17910             inlArgInfo[lclNum].argTmpNum = tmpNum;
17911
17912             // If we require strict exception order, then arguments must
17913             // be evaluated in sequence before the body of the inlined method.
17914             // So we need to evaluate them to a temp.
17915             // Also, if arguments have global references, we need to
17916             // evaluate them to a temp before the inlined body as the
17917             // inlined body may be modifying the global ref.
17918             // TODO-1stClassStructs: We currently do not reuse an existing lclVar
17919             // if it is a struct, because it requires some additional handling.
17920
17921             if (!varTypeIsStruct(lclTyp) && (!inlArgInfo[lclNum].argHasSideEff) && (!inlArgInfo[lclNum].argHasGlobRef))
17922             {
17923                 /* Get a *LARGE* LCL_VAR node */
17924                 op1 = gtNewLclLNode(tmpNum, genActualType(lclTyp), lclNum);
17925
17926                 /* Record op1 as the very first use of this argument.
17927                 If there are no further uses of the arg, we may be
17928                 able to use the actual arg node instead of the temp.
17929                 If we do see any further uses, we will clear this. */
17930                 inlArgInfo[lclNum].argBashTmpNode = op1;
17931             }
17932             else
17933             {
17934                 /* Get a small LCL_VAR node */
17935                 op1 = gtNewLclvNode(tmpNum, genActualType(lclTyp));
17936                 /* No bashing of this argument */
17937                 inlArgInfo[lclNum].argBashTmpNode = nullptr;
17938             }
17939         }
17940     }
17941
17942     /* Mark the argument as used */
17943
17944     inlArgInfo[lclNum].argIsUsed = true;
17945
17946     return op1;
17947 }
17948
17949 /******************************************************************************
17950  Is this the original "this" argument to the call being inlined?
17951
17952  Note that we do not inline methods with "starg 0", and so we do not need to
17953  worry about it.
17954 */
17955
17956 BOOL Compiler::impInlineIsThis(GenTreePtr tree, InlArgInfo* inlArgInfo)
17957 {
17958     assert(compIsForInlining());
17959     return (tree->gtOper == GT_LCL_VAR && tree->gtLclVarCommon.gtLclNum == inlArgInfo[0].argTmpNum);
17960 }
17961
17962 //-----------------------------------------------------------------------------
17963 // This function checks if a dereference in the inlinee can guarantee that
17964 // the "this" is non-NULL.
17965 // If we haven't hit a branch or a side effect, and we are dereferencing
17966 // from 'this' to access a field or make GTF_CALL_NULLCHECK call,
17967 // then we can avoid a separate null pointer check.
17968 //
17969 // "additionalTreesToBeEvaluatedBefore"
17970 // is the set of pending trees that have not yet been added to the statement list,
17971 // and which have been removed from verCurrentState.esStack[]
17972
17973 BOOL Compiler::impInlineIsGuaranteedThisDerefBeforeAnySideEffects(GenTreePtr  additionalTreesToBeEvaluatedBefore,
17974                                                                   GenTreePtr  variableBeingDereferenced,
17975                                                                   InlArgInfo* inlArgInfo)
17976 {
17977     assert(compIsForInlining());
17978     assert(opts.OptEnabled(CLFLG_INLINING));
17979
17980     BasicBlock* block = compCurBB;
17981
17982     GenTreePtr stmt;
17983     GenTreePtr expr;
17984
17985     if (block != fgFirstBB)
17986     {
17987         return FALSE;
17988     }
17989
17990     if (!impInlineIsThis(variableBeingDereferenced, inlArgInfo))
17991     {
17992         return FALSE;
17993     }
17994
17995     if (additionalTreesToBeEvaluatedBefore &&
17996         GTF_GLOBALLY_VISIBLE_SIDE_EFFECTS(additionalTreesToBeEvaluatedBefore->gtFlags))
17997     {
17998         return FALSE;
17999     }
18000
18001     for (stmt = impTreeList->gtNext; stmt; stmt = stmt->gtNext)
18002     {
18003         expr = stmt->gtStmt.gtStmtExpr;
18004
18005         if (GTF_GLOBALLY_VISIBLE_SIDE_EFFECTS(expr->gtFlags))
18006         {
18007             return FALSE;
18008         }
18009     }
18010
18011     for (unsigned level = 0; level < verCurrentState.esStackDepth; level++)
18012     {
18013         unsigned stackTreeFlags = verCurrentState.esStack[level].val->gtFlags;
18014         if (GTF_GLOBALLY_VISIBLE_SIDE_EFFECTS(stackTreeFlags))
18015         {
18016             return FALSE;
18017         }
18018     }
18019
18020     return TRUE;
18021 }
18022
18023 /******************************************************************************/
18024 // Check the inlining eligibility of this GT_CALL node.
18025 // Mark GTF_CALL_INLINE_CANDIDATE on the GT_CALL node
18026
18027 // Todo: find a way to record the failure reasons in the IR (or
18028 // otherwise build tree context) so when we do the inlining pass we
18029 // can capture these reasons
18030
18031 void Compiler::impMarkInlineCandidate(GenTreePtr             callNode,
18032                                       CORINFO_CONTEXT_HANDLE exactContextHnd,
18033                                       CORINFO_CALL_INFO*     callInfo)
18034 {
18035     // Let the strategy know there's another call
18036     impInlineRoot()->m_inlineStrategy->NoteCall();
18037
18038     if (!opts.OptEnabled(CLFLG_INLINING))
18039     {
18040         /* XXX Mon 8/18/2008
18041          * This assert is misleading.  The caller does not ensure that we have CLFLG_INLINING set before
18042          * calling impMarkInlineCandidate.  However, if this assert trips it means that we're an inlinee and
18043          * CLFLG_MINOPT is set.  That doesn't make a lot of sense.  If you hit this assert, work back and
18044          * figure out why we did not set MAXOPT for this compile.
18045          */
18046         assert(!compIsForInlining());
18047         return;
18048     }
18049
18050     if (compIsForImportOnly())
18051     {
18052         // Don't bother creating the inline candidate during verification.
18053         // Otherwise the call to info.compCompHnd->canInline will trigger a recursive verification
18054         // that leads to the creation of multiple instances of Compiler.
18055         return;
18056     }
18057
18058     GenTreeCall* call = callNode->AsCall();
18059     InlineResult inlineResult(this, call, nullptr, "impMarkInlineCandidate");
18060
18061     // Don't inline if not optimizing root method
18062     if (opts.compDbgCode)
18063     {
18064         inlineResult.NoteFatal(InlineObservation::CALLER_DEBUG_CODEGEN);
18065         return;
18066     }
18067
18068     // Don't inline if inlining into root method is disabled.
18069     if (InlineStrategy::IsNoInline(info.compCompHnd, info.compMethodHnd))
18070     {
18071         inlineResult.NoteFatal(InlineObservation::CALLER_IS_JIT_NOINLINE);
18072         return;
18073     }
18074
18075     // Inlining candidate determination needs to honor only IL tail prefix.
18076     // Inlining takes precedence over implicit tail call optimization (if the call is not directly recursive).
18077     if (call->IsTailPrefixedCall())
18078     {
18079         inlineResult.NoteFatal(InlineObservation::CALLSITE_EXPLICIT_TAIL_PREFIX);
18080         return;
18081     }
18082
18083     // Tail recursion elimination takes precedence over inlining.
18084     // TODO: We may want to do some of the additional checks from fgMorphCall
18085     // here to reduce the chance we don't inline a call that won't be optimized
18086     // as a fast tail call or turned into a loop.
18087     if (gtIsRecursiveCall(call) && call->IsImplicitTailCall())
18088     {
18089         inlineResult.NoteFatal(InlineObservation::CALLSITE_IMPLICIT_REC_TAIL_CALL);
18090         return;
18091     }
18092
18093     if ((call->gtFlags & GTF_CALL_VIRT_KIND_MASK) != GTF_CALL_NONVIRT)
18094     {
18095         inlineResult.NoteFatal(InlineObservation::CALLSITE_IS_NOT_DIRECT);
18096         return;
18097     }
18098
18099     /* Ignore helper calls */
18100
18101     if (call->gtCallType == CT_HELPER)
18102     {
18103         inlineResult.NoteFatal(InlineObservation::CALLSITE_IS_CALL_TO_HELPER);
18104         return;
18105     }
18106
18107     /* Ignore indirect calls */
18108     if (call->gtCallType == CT_INDIRECT)
18109     {
18110         inlineResult.NoteFatal(InlineObservation::CALLSITE_IS_NOT_DIRECT_MANAGED);
18111         return;
18112     }
18113
18114     /* I removed the check for BBJ_THROW.  BBJ_THROW is usually marked as rarely run.  This more or less
18115      * restricts the inliner to non-expanding inlines.  I removed the check to allow for non-expanding
18116      * inlining in throw blocks.  I should consider the same thing for catch and filter regions. */
18117
18118     CORINFO_METHOD_HANDLE fncHandle = call->gtCallMethHnd;
18119     unsigned              methAttr;
18120
18121     // Reuse method flags from the original callInfo if possible
18122     if (fncHandle == callInfo->hMethod)
18123     {
18124         methAttr = callInfo->methodFlags;
18125     }
18126     else
18127     {
18128         methAttr = info.compCompHnd->getMethodAttribs(fncHandle);
18129     }
18130
18131 #ifdef DEBUG
18132     if (compStressCompile(STRESS_FORCE_INLINE, 0))
18133     {
18134         methAttr |= CORINFO_FLG_FORCEINLINE;
18135     }
18136 #endif
18137
18138     // Check for COMPlus_AggressiveInlining
18139     if (compDoAggressiveInlining)
18140     {
18141         methAttr |= CORINFO_FLG_FORCEINLINE;
18142     }
18143
18144     if (!(methAttr & CORINFO_FLG_FORCEINLINE))
18145     {
18146         /* Don't bother inline blocks that are in the filter region */
18147         if (bbInCatchHandlerILRange(compCurBB))
18148         {
18149 #ifdef DEBUG
18150             if (verbose)
18151             {
18152                 printf("\nWill not inline blocks that are in the catch handler region\n");
18153             }
18154
18155 #endif
18156
18157             inlineResult.NoteFatal(InlineObservation::CALLSITE_IS_WITHIN_CATCH);
18158             return;
18159         }
18160
18161         if (bbInFilterILRange(compCurBB))
18162         {
18163 #ifdef DEBUG
18164             if (verbose)
18165             {
18166                 printf("\nWill not inline blocks that are in the filter region\n");
18167             }
18168 #endif
18169
18170             inlineResult.NoteFatal(InlineObservation::CALLSITE_IS_WITHIN_FILTER);
18171             return;
18172         }
18173     }
18174
18175     /* If the caller's stack frame is marked, then we can't do any inlining. Period. */
18176
18177     if (opts.compNeedSecurityCheck)
18178     {
18179         inlineResult.NoteFatal(InlineObservation::CALLER_NEEDS_SECURITY_CHECK);
18180         return;
18181     }
18182
18183     /* Check if we tried to inline this method before */
18184
18185     if (methAttr & CORINFO_FLG_DONT_INLINE)
18186     {
18187         inlineResult.NoteFatal(InlineObservation::CALLEE_IS_NOINLINE);
18188         return;
18189     }
18190
18191     /* Cannot inline synchronized methods */
18192
18193     if (methAttr & CORINFO_FLG_SYNCH)
18194     {
18195         inlineResult.NoteFatal(InlineObservation::CALLEE_IS_SYNCHRONIZED);
18196         return;
18197     }
18198
18199     /* Do not inline if callee needs security checks (since they would then mark the wrong frame) */
18200
18201     if (methAttr & CORINFO_FLG_SECURITYCHECK)
18202     {
18203         inlineResult.NoteFatal(InlineObservation::CALLEE_NEEDS_SECURITY_CHECK);
18204         return;
18205     }
18206
18207     InlineCandidateInfo* inlineCandidateInfo = nullptr;
18208     impCheckCanInline(call, fncHandle, methAttr, exactContextHnd, &inlineCandidateInfo, &inlineResult);
18209
18210     if (inlineResult.IsFailure())
18211     {
18212         return;
18213     }
18214
18215     // The old value should be NULL
18216     assert(call->gtInlineCandidateInfo == nullptr);
18217
18218     call->gtInlineCandidateInfo = inlineCandidateInfo;
18219
18220     // Mark the call node as inline candidate.
18221     call->gtFlags |= GTF_CALL_INLINE_CANDIDATE;
18222
18223     // Let the strategy know there's another candidate.
18224     impInlineRoot()->m_inlineStrategy->NoteCandidate();
18225
18226     // Since we're not actually inlining yet, and this call site is
18227     // still just an inline candidate, there's nothing to report.
18228     inlineResult.SetReported();
18229 }
18230
18231 /******************************************************************************/
18232 // Returns true if the given intrinsic will be implemented by target-specific
18233 // instructions
18234
18235 bool Compiler::IsTargetIntrinsic(CorInfoIntrinsics intrinsicId)
18236 {
18237 #if defined(_TARGET_AMD64_) || (defined(_TARGET_X86_) && !defined(LEGACY_BACKEND))
18238     switch (intrinsicId)
18239     {
18240         // Amd64 only has SSE2 instruction to directly compute sqrt/abs.
18241         //
18242         // TODO: Because the x86 backend only targets SSE for floating-point code,
18243         //       it does not treat Sine, Cosine, or Round as intrinsics (JIT32
18244         //       implemented those intrinsics as x87 instructions). If this poses
18245         //       a CQ problem, it may be necessary to change the implementation of
18246         //       the helper calls to decrease call overhead or switch back to the
18247         //       x87 instructions. This is tracked by #7097.
18248         case CORINFO_INTRINSIC_Sqrt:
18249         case CORINFO_INTRINSIC_Abs:
18250             return true;
18251
18252         default:
18253             return false;
18254     }
18255 #elif defined(_TARGET_ARM64_)
18256     switch (intrinsicId)
18257     {
18258         case CORINFO_INTRINSIC_Sqrt:
18259         case CORINFO_INTRINSIC_Abs:
18260         case CORINFO_INTRINSIC_Round:
18261             return true;
18262
18263         default:
18264             return false;
18265     }
18266 #elif defined(_TARGET_ARM_)
18267     switch (intrinsicId)
18268     {
18269         case CORINFO_INTRINSIC_Sqrt:
18270         case CORINFO_INTRINSIC_Abs:
18271         case CORINFO_INTRINSIC_Round:
18272             return true;
18273
18274         default:
18275             return false;
18276     }
18277 #elif defined(_TARGET_X86_)
18278     switch (intrinsicId)
18279     {
18280         case CORINFO_INTRINSIC_Sin:
18281         case CORINFO_INTRINSIC_Cos:
18282         case CORINFO_INTRINSIC_Sqrt:
18283         case CORINFO_INTRINSIC_Abs:
18284         case CORINFO_INTRINSIC_Round:
18285             return true;
18286
18287         default:
18288             return false;
18289     }
18290 #else
18291     // TODO: This portion of logic is not implemented for other arch.
18292     // The reason for returning true is that on all other arch the only intrinsic
18293     // enabled are target intrinsics.
18294     return true;
18295 #endif //_TARGET_AMD64_
18296 }
18297
18298 /******************************************************************************/
18299 // Returns true if the given intrinsic will be implemented by calling System.Math
18300 // methods.
18301
18302 bool Compiler::IsIntrinsicImplementedByUserCall(CorInfoIntrinsics intrinsicId)
18303 {
18304     // Currently, if an math intrisic is not implemented by target-specific
18305     // intructions, it will be implemented by a System.Math call. In the
18306     // future, if we turn to implementing some of them with helper callers,
18307     // this predicate needs to be revisited.
18308     return !IsTargetIntrinsic(intrinsicId);
18309 }
18310
18311 bool Compiler::IsMathIntrinsic(CorInfoIntrinsics intrinsicId)
18312 {
18313     switch (intrinsicId)
18314     {
18315         case CORINFO_INTRINSIC_Sin:
18316         case CORINFO_INTRINSIC_Sqrt:
18317         case CORINFO_INTRINSIC_Abs:
18318         case CORINFO_INTRINSIC_Cos:
18319         case CORINFO_INTRINSIC_Round:
18320         case CORINFO_INTRINSIC_Cosh:
18321         case CORINFO_INTRINSIC_Sinh:
18322         case CORINFO_INTRINSIC_Tan:
18323         case CORINFO_INTRINSIC_Tanh:
18324         case CORINFO_INTRINSIC_Asin:
18325         case CORINFO_INTRINSIC_Acos:
18326         case CORINFO_INTRINSIC_Atan:
18327         case CORINFO_INTRINSIC_Atan2:
18328         case CORINFO_INTRINSIC_Log10:
18329         case CORINFO_INTRINSIC_Pow:
18330         case CORINFO_INTRINSIC_Exp:
18331         case CORINFO_INTRINSIC_Ceiling:
18332         case CORINFO_INTRINSIC_Floor:
18333             return true;
18334         default:
18335             return false;
18336     }
18337 }
18338
18339 bool Compiler::IsMathIntrinsic(GenTreePtr tree)
18340 {
18341     return (tree->OperGet() == GT_INTRINSIC) && IsMathIntrinsic(tree->gtIntrinsic.gtIntrinsicId);
18342 }
18343 /*****************************************************************************/