Generic Virtual calls for CoreRT
[platform/upstream/coreclr.git] / src / jit / importer.cpp
1 // Licensed to the .NET Foundation under one or more agreements.
2 // The .NET Foundation licenses this file to you under the MIT license.
3 // See the LICENSE file in the project root for more information.
4
5 /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
6 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
7 XX                                                                           XX
8 XX                           Importer                                        XX
9 XX                                                                           XX
10 XX   Imports the given method and converts it to semantic trees              XX
11 XX                                                                           XX
12 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
13 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
14 */
15
16 #include "jitpch.h"
17 #ifdef _MSC_VER
18 #pragma hdrstop
19 #endif
20
21 #include "corexcep.h"
22
23 #define Verify(cond, msg)                                                                                              \
24     do                                                                                                                 \
25     {                                                                                                                  \
26         if (!(cond))                                                                                                   \
27         {                                                                                                              \
28             verRaiseVerifyExceptionIfNeeded(INDEBUG(msg) DEBUGARG(__FILE__) DEBUGARG(__LINE__));                       \
29         }                                                                                                              \
30     } while (0)
31
32 #define VerifyOrReturn(cond, msg)                                                                                      \
33     do                                                                                                                 \
34     {                                                                                                                  \
35         if (!(cond))                                                                                                   \
36         {                                                                                                              \
37             verRaiseVerifyExceptionIfNeeded(INDEBUG(msg) DEBUGARG(__FILE__) DEBUGARG(__LINE__));                       \
38             return;                                                                                                    \
39         }                                                                                                              \
40     } while (0)
41
42 #define VerifyOrReturnSpeculative(cond, msg, speculative)                                                              \
43     do                                                                                                                 \
44     {                                                                                                                  \
45         if (speculative)                                                                                               \
46         {                                                                                                              \
47             if (!(cond))                                                                                               \
48             {                                                                                                          \
49                 return false;                                                                                          \
50             }                                                                                                          \
51         }                                                                                                              \
52         else                                                                                                           \
53         {                                                                                                              \
54             if (!(cond))                                                                                               \
55             {                                                                                                          \
56                 verRaiseVerifyExceptionIfNeeded(INDEBUG(msg) DEBUGARG(__FILE__) DEBUGARG(__LINE__));                   \
57                 return false;                                                                                          \
58             }                                                                                                          \
59         }                                                                                                              \
60     } while (0)
61
62 /*****************************************************************************/
63
64 void Compiler::impInit()
65 {
66
67 #ifdef DEBUG
68     impTreeList        = nullptr;
69     impTreeLast        = nullptr;
70     impInlinedCodeSize = 0;
71 #endif
72 }
73
74 /*****************************************************************************
75  *
76  *  Pushes the given tree on the stack.
77  */
78
79 void Compiler::impPushOnStack(GenTreePtr tree, typeInfo ti)
80 {
81     /* Check for overflow. If inlining, we may be using a bigger stack */
82
83     if ((verCurrentState.esStackDepth >= info.compMaxStack) &&
84         (verCurrentState.esStackDepth >= impStkSize || ((compCurBB->bbFlags & BBF_IMPORTED) == 0)))
85     {
86         BADCODE("stack overflow");
87     }
88
89 #ifdef DEBUG
90     // If we are pushing a struct, make certain we know the precise type!
91     if (tree->TypeGet() == TYP_STRUCT)
92     {
93         assert(ti.IsType(TI_STRUCT));
94         CORINFO_CLASS_HANDLE clsHnd = ti.GetClassHandle();
95         assert(clsHnd != NO_CLASS_HANDLE);
96     }
97
98     if (tiVerificationNeeded && !ti.IsDead())
99     {
100         assert(typeInfo::AreEquivalent(NormaliseForStack(ti), ti)); // types are normalized
101
102         // The ti type is consistent with the tree type.
103         //
104
105         // On 64-bit systems, nodes whose "proper" type is "native int" get labeled TYP_LONG.
106         // In the verification type system, we always transform "native int" to "TI_INT".
107         // Ideally, we would keep track of which nodes labeled "TYP_LONG" are really "native int", but
108         // attempts to do that have proved too difficult.  Instead, we'll assume that in checks like this,
109         // when there's a mismatch, it's because of this reason -- the typeInfo::AreEquivalentModuloNativeInt
110         // method used in the last disjunct allows exactly this mismatch.
111         assert(ti.IsDead() || ti.IsByRef() && (tree->TypeGet() == TYP_I_IMPL || tree->TypeGet() == TYP_BYREF) ||
112                ti.IsUnboxedGenericTypeVar() && tree->TypeGet() == TYP_REF ||
113                ti.IsObjRef() && tree->TypeGet() == TYP_REF || ti.IsMethod() && tree->TypeGet() == TYP_I_IMPL ||
114                ti.IsType(TI_STRUCT) && tree->TypeGet() != TYP_REF ||
115                typeInfo::AreEquivalentModuloNativeInt(NormaliseForStack(ti),
116                                                       NormaliseForStack(typeInfo(tree->TypeGet()))));
117
118         // If it is a struct type, make certain we normalized the primitive types
119         assert(!ti.IsType(TI_STRUCT) ||
120                info.compCompHnd->getTypeForPrimitiveValueClass(ti.GetClassHandle()) == CORINFO_TYPE_UNDEF);
121     }
122
123 #if VERBOSE_VERIFY
124     if (VERBOSE && tiVerificationNeeded)
125     {
126         printf("\n");
127         printf(TI_DUMP_PADDING);
128         printf("About to push to stack: ");
129         ti.Dump();
130     }
131 #endif // VERBOSE_VERIFY
132
133 #endif // DEBUG
134
135     verCurrentState.esStack[verCurrentState.esStackDepth].seTypeInfo = ti;
136     verCurrentState.esStack[verCurrentState.esStackDepth++].val      = tree;
137
138     if ((tree->gtType == TYP_LONG) && (compLongUsed == false))
139     {
140         compLongUsed = true;
141     }
142     else if (((tree->gtType == TYP_FLOAT) || (tree->gtType == TYP_DOUBLE)) && (compFloatingPointUsed == false))
143     {
144         compFloatingPointUsed = true;
145     }
146 }
147
148 /******************************************************************************/
149 // used in the inliner, where we can assume typesafe code. please don't use in the importer!!
150 inline void Compiler::impPushOnStackNoType(GenTreePtr tree)
151 {
152     assert(verCurrentState.esStackDepth < impStkSize);
153     INDEBUG(verCurrentState.esStack[verCurrentState.esStackDepth].seTypeInfo = typeInfo());
154     verCurrentState.esStack[verCurrentState.esStackDepth++].val              = tree;
155
156     if ((tree->gtType == TYP_LONG) && (compLongUsed == false))
157     {
158         compLongUsed = true;
159     }
160     else if (((tree->gtType == TYP_FLOAT) || (tree->gtType == TYP_DOUBLE)) && (compFloatingPointUsed == false))
161     {
162         compFloatingPointUsed = true;
163     }
164 }
165
166 inline void Compiler::impPushNullObjRefOnStack()
167 {
168     impPushOnStack(gtNewIconNode(0, TYP_REF), typeInfo(TI_NULL));
169 }
170
171 // This method gets called when we run into unverifiable code
172 // (and we are verifying the method)
173
174 inline void Compiler::verRaiseVerifyExceptionIfNeeded(INDEBUG(const char* msg) DEBUGARG(const char* file)
175                                                           DEBUGARG(unsigned line))
176 {
177     // Remember that the code is not verifiable
178     // Note that the method may yet pass canSkipMethodVerification(),
179     // and so the presence of unverifiable code may not be an issue.
180     tiIsVerifiableCode = FALSE;
181
182 #ifdef DEBUG
183     const char* tail = strrchr(file, '\\');
184     if (tail)
185     {
186         file = tail + 1;
187     }
188
189     if (JitConfig.JitBreakOnUnsafeCode())
190     {
191         assert(!"Unsafe code detected");
192     }
193 #endif
194
195     JITLOG((LL_INFO10000, "Detected unsafe code: %s:%d : %s, while compiling %s opcode %s, IL offset %x\n", file, line,
196             msg, info.compFullName, impCurOpcName, impCurOpcOffs));
197
198     if (verNeedsVerification() || compIsForImportOnly())
199     {
200         JITLOG((LL_ERROR, "Verification failure:  %s:%d : %s, while compiling %s opcode %s, IL offset %x\n", file, line,
201                 msg, info.compFullName, impCurOpcName, impCurOpcOffs));
202         verRaiseVerifyException(INDEBUG(msg) DEBUGARG(file) DEBUGARG(line));
203     }
204 }
205
206 inline void DECLSPEC_NORETURN Compiler::verRaiseVerifyException(INDEBUG(const char* msg) DEBUGARG(const char* file)
207                                                                     DEBUGARG(unsigned line))
208 {
209     JITLOG((LL_ERROR, "Verification failure:  %s:%d : %s, while compiling %s opcode %s, IL offset %x\n", file, line,
210             msg, info.compFullName, impCurOpcName, impCurOpcOffs));
211
212 #ifdef DEBUG
213     //    BreakIfDebuggerPresent();
214     if (getBreakOnBadCode())
215     {
216         assert(!"Typechecking error");
217     }
218 #endif
219
220     RaiseException(SEH_VERIFICATION_EXCEPTION, EXCEPTION_NONCONTINUABLE, 0, nullptr);
221     UNREACHABLE();
222 }
223
224 // helper function that will tell us if the IL instruction at the addr passed
225 // by param consumes an address at the top of the stack. We use it to save
226 // us lvAddrTaken
227 bool Compiler::impILConsumesAddr(const BYTE* codeAddr, CORINFO_METHOD_HANDLE fncHandle, CORINFO_MODULE_HANDLE scpHandle)
228 {
229     assert(!compIsForInlining());
230
231     OPCODE opcode;
232
233     opcode = (OPCODE)getU1LittleEndian(codeAddr);
234
235     switch (opcode)
236     {
237         // case CEE_LDFLDA: We're taking this one out as if you have a sequence
238         // like
239         //
240         //          ldloca.0
241         //          ldflda whatever
242         //
243         // of a primitivelike struct, you end up after morphing with addr of a local
244         // that's not marked as addrtaken, which is wrong. Also ldflda is usually used
245         // for structs that contain other structs, which isnt a case we handle very
246         // well now for other reasons.
247
248         case CEE_LDFLD:
249         {
250             // We won't collapse small fields. This is probably not the right place to have this
251             // check, but we're only using the function for this purpose, and is easy to factor
252             // out if we need to do so.
253
254             CORINFO_RESOLVED_TOKEN resolvedToken;
255             impResolveToken(codeAddr + sizeof(__int8), &resolvedToken, CORINFO_TOKENKIND_Field);
256
257             CORINFO_CLASS_HANDLE clsHnd;
258             var_types lclTyp = JITtype2varType(info.compCompHnd->getFieldType(resolvedToken.hField, &clsHnd));
259
260             // Preserve 'small' int types
261             if (lclTyp > TYP_INT)
262             {
263                 lclTyp = genActualType(lclTyp);
264             }
265
266             if (varTypeIsSmall(lclTyp))
267             {
268                 return false;
269             }
270
271             return true;
272         }
273         default:
274             break;
275     }
276
277     return false;
278 }
279
280 void Compiler::impResolveToken(const BYTE* addr, CORINFO_RESOLVED_TOKEN* pResolvedToken, CorInfoTokenKind kind)
281 {
282     pResolvedToken->tokenContext = impTokenLookupContextHandle;
283     pResolvedToken->tokenScope   = info.compScopeHnd;
284     pResolvedToken->token        = getU4LittleEndian(addr);
285     pResolvedToken->tokenType    = kind;
286
287     if (!tiVerificationNeeded)
288     {
289         info.compCompHnd->resolveToken(pResolvedToken);
290     }
291     else
292     {
293         Verify(eeTryResolveToken(pResolvedToken), "Token resolution failed");
294     }
295 }
296
297 /*****************************************************************************
298  *
299  *  Pop one tree from the stack.
300  */
301
302 StackEntry Compiler::impPopStack()
303 {
304     if (verCurrentState.esStackDepth == 0)
305     {
306         BADCODE("stack underflow");
307     }
308
309 #ifdef DEBUG
310 #if VERBOSE_VERIFY
311     if (VERBOSE && tiVerificationNeeded)
312     {
313         JITDUMP("\n");
314         printf(TI_DUMP_PADDING);
315         printf("About to pop from the stack: ");
316         const typeInfo& ti = verCurrentState.esStack[verCurrentState.esStackDepth - 1].seTypeInfo;
317         ti.Dump();
318     }
319 #endif // VERBOSE_VERIFY
320 #endif // DEBUG
321
322     return verCurrentState.esStack[--verCurrentState.esStackDepth];
323 }
324
325 StackEntry Compiler::impPopStack(CORINFO_CLASS_HANDLE& structType)
326 {
327     StackEntry ret = impPopStack();
328     structType     = verCurrentState.esStack[verCurrentState.esStackDepth].seTypeInfo.GetClassHandle();
329     return (ret);
330 }
331
332 GenTreePtr Compiler::impPopStack(typeInfo& ti)
333 {
334     StackEntry ret = impPopStack();
335     ti             = ret.seTypeInfo;
336     return (ret.val);
337 }
338
339 /*****************************************************************************
340  *
341  *  Peep at n'th (0-based) tree on the top of the stack.
342  */
343
344 StackEntry& Compiler::impStackTop(unsigned n)
345 {
346     if (verCurrentState.esStackDepth <= n)
347     {
348         BADCODE("stack underflow");
349     }
350
351     return verCurrentState.esStack[verCurrentState.esStackDepth - n - 1];
352 }
353 /*****************************************************************************
354  *  Some of the trees are spilled specially. While unspilling them, or
355  *  making a copy, these need to be handled specially. The function
356  *  enumerates the operators possible after spilling.
357  */
358
359 #ifdef DEBUG // only used in asserts
360 static bool impValidSpilledStackEntry(GenTreePtr tree)
361 {
362     if (tree->gtOper == GT_LCL_VAR)
363     {
364         return true;
365     }
366
367     if (tree->OperIsConst())
368     {
369         return true;
370     }
371
372     return false;
373 }
374 #endif
375
376 /*****************************************************************************
377  *
378  *  The following logic is used to save/restore stack contents.
379  *  If 'copy' is true, then we make a copy of the trees on the stack. These
380  *  have to all be cloneable/spilled values.
381  */
382
383 void Compiler::impSaveStackState(SavedStack* savePtr, bool copy)
384 {
385     savePtr->ssDepth = verCurrentState.esStackDepth;
386
387     if (verCurrentState.esStackDepth)
388     {
389         savePtr->ssTrees = new (this, CMK_ImpStack) StackEntry[verCurrentState.esStackDepth];
390         size_t saveSize  = verCurrentState.esStackDepth * sizeof(*savePtr->ssTrees);
391
392         if (copy)
393         {
394             StackEntry* table = savePtr->ssTrees;
395
396             /* Make a fresh copy of all the stack entries */
397
398             for (unsigned level = 0; level < verCurrentState.esStackDepth; level++, table++)
399             {
400                 table->seTypeInfo = verCurrentState.esStack[level].seTypeInfo;
401                 GenTreePtr tree   = verCurrentState.esStack[level].val;
402
403                 assert(impValidSpilledStackEntry(tree));
404
405                 switch (tree->gtOper)
406                 {
407                     case GT_CNS_INT:
408                     case GT_CNS_LNG:
409                     case GT_CNS_DBL:
410                     case GT_CNS_STR:
411                     case GT_LCL_VAR:
412                         table->val = gtCloneExpr(tree);
413                         break;
414
415                     default:
416                         assert(!"Bad oper - Not covered by impValidSpilledStackEntry()");
417                         break;
418                 }
419             }
420         }
421         else
422         {
423             memcpy(savePtr->ssTrees, verCurrentState.esStack, saveSize);
424         }
425     }
426 }
427
428 void Compiler::impRestoreStackState(SavedStack* savePtr)
429 {
430     verCurrentState.esStackDepth = savePtr->ssDepth;
431
432     if (verCurrentState.esStackDepth)
433     {
434         memcpy(verCurrentState.esStack, savePtr->ssTrees,
435                verCurrentState.esStackDepth * sizeof(*verCurrentState.esStack));
436     }
437 }
438
439 /*****************************************************************************
440  *
441  *  Get the tree list started for a new basic block.
442  */
443 inline void Compiler::impBeginTreeList()
444 {
445     assert(impTreeList == nullptr && impTreeLast == nullptr);
446
447     impTreeList = impTreeLast = new (this, GT_BEG_STMTS) GenTree(GT_BEG_STMTS, TYP_VOID);
448 }
449
450 /*****************************************************************************
451  *
452  *  Store the given start and end stmt in the given basic block. This is
453  *  mostly called by impEndTreeList(BasicBlock *block). It is called
454  *  directly only for handling CEE_LEAVEs out of finally-protected try's.
455  */
456
457 inline void Compiler::impEndTreeList(BasicBlock* block, GenTreePtr firstStmt, GenTreePtr lastStmt)
458 {
459     assert(firstStmt->gtOper == GT_STMT);
460     assert(lastStmt->gtOper == GT_STMT);
461
462     /* Make the list circular, so that we can easily walk it backwards */
463
464     firstStmt->gtPrev = lastStmt;
465
466     /* Store the tree list in the basic block */
467
468     block->bbTreeList = firstStmt;
469
470     /* The block should not already be marked as imported */
471     assert((block->bbFlags & BBF_IMPORTED) == 0);
472
473     block->bbFlags |= BBF_IMPORTED;
474 }
475
476 /*****************************************************************************
477  *
478  *  Store the current tree list in the given basic block.
479  */
480
481 inline void Compiler::impEndTreeList(BasicBlock* block)
482 {
483     assert(impTreeList->gtOper == GT_BEG_STMTS);
484
485     GenTreePtr firstTree = impTreeList->gtNext;
486
487     if (!firstTree)
488     {
489         /* The block should not already be marked as imported */
490         assert((block->bbFlags & BBF_IMPORTED) == 0);
491
492         // Empty block. Just mark it as imported
493         block->bbFlags |= BBF_IMPORTED;
494     }
495     else
496     {
497         // Ignore the GT_BEG_STMTS
498         assert(firstTree->gtPrev == impTreeList);
499
500         impEndTreeList(block, firstTree, impTreeLast);
501     }
502
503 #ifdef DEBUG
504     if (impLastILoffsStmt != nullptr)
505     {
506         impLastILoffsStmt->gtStmt.gtStmtLastILoffs = compIsForInlining() ? BAD_IL_OFFSET : impCurOpcOffs;
507         impLastILoffsStmt                          = nullptr;
508     }
509
510     impTreeList = impTreeLast = nullptr;
511 #endif
512 }
513
514 /*****************************************************************************
515  *
516  *  Check that storing the given tree doesnt mess up the semantic order. Note
517  *  that this has only limited value as we can only check [0..chkLevel).
518  */
519
520 inline void Compiler::impAppendStmtCheck(GenTreePtr stmt, unsigned chkLevel)
521 {
522 #ifndef DEBUG
523     return;
524 #else
525     assert(stmt->gtOper == GT_STMT);
526
527     if (chkLevel == (unsigned)CHECK_SPILL_ALL)
528     {
529         chkLevel = verCurrentState.esStackDepth;
530     }
531
532     if (verCurrentState.esStackDepth == 0 || chkLevel == 0 || chkLevel == (unsigned)CHECK_SPILL_NONE)
533     {
534         return;
535     }
536
537     GenTreePtr tree = stmt->gtStmt.gtStmtExpr;
538
539     // Calls can only be appended if there are no GTF_GLOB_EFFECT on the stack
540
541     if (tree->gtFlags & GTF_CALL)
542     {
543         for (unsigned level = 0; level < chkLevel; level++)
544         {
545             assert((verCurrentState.esStack[level].val->gtFlags & GTF_GLOB_EFFECT) == 0);
546         }
547     }
548
549     if (tree->gtOper == GT_ASG)
550     {
551         // For an assignment to a local variable, all references of that
552         // variable have to be spilled. If it is aliased, all calls and
553         // indirect accesses have to be spilled
554
555         if (tree->gtOp.gtOp1->gtOper == GT_LCL_VAR)
556         {
557             unsigned lclNum = tree->gtOp.gtOp1->gtLclVarCommon.gtLclNum;
558             for (unsigned level = 0; level < chkLevel; level++)
559             {
560                 assert(!gtHasRef(verCurrentState.esStack[level].val, lclNum, false));
561                 assert(!lvaTable[lclNum].lvAddrExposed ||
562                        (verCurrentState.esStack[level].val->gtFlags & GTF_SIDE_EFFECT) == 0);
563             }
564         }
565
566         // If the access may be to global memory, all side effects have to be spilled.
567
568         else if (tree->gtOp.gtOp1->gtFlags & GTF_GLOB_REF)
569         {
570             for (unsigned level = 0; level < chkLevel; level++)
571             {
572                 assert((verCurrentState.esStack[level].val->gtFlags & GTF_GLOB_REF) == 0);
573             }
574         }
575     }
576 #endif
577 }
578
579 /*****************************************************************************
580  *
581  *  Append the given GT_STMT node to the current block's tree list.
582  *  [0..chkLevel) is the portion of the stack which we will check for
583  *    interference with stmt and spill if needed.
584  */
585
586 inline void Compiler::impAppendStmt(GenTreePtr stmt, unsigned chkLevel)
587 {
588     assert(stmt->gtOper == GT_STMT);
589     noway_assert(impTreeLast != nullptr);
590
591     /* If the statement being appended has any side-effects, check the stack
592        to see if anything needs to be spilled to preserve correct ordering. */
593
594     GenTreePtr expr  = stmt->gtStmt.gtStmtExpr;
595     unsigned   flags = expr->gtFlags & GTF_GLOB_EFFECT;
596
597     // Assignment to (unaliased) locals don't count as a side-effect as
598     // we handle them specially using impSpillLclRefs(). Temp locals should
599     // be fine too.
600
601     if ((expr->gtOper == GT_ASG) && (expr->gtOp.gtOp1->gtOper == GT_LCL_VAR) &&
602         !(expr->gtOp.gtOp1->gtFlags & GTF_GLOB_REF) && !gtHasLocalsWithAddrOp(expr->gtOp.gtOp2))
603     {
604         unsigned op2Flags = expr->gtOp.gtOp2->gtFlags & GTF_GLOB_EFFECT;
605         assert(flags == (op2Flags | GTF_ASG));
606         flags = op2Flags;
607     }
608
609     if (chkLevel == (unsigned)CHECK_SPILL_ALL)
610     {
611         chkLevel = verCurrentState.esStackDepth;
612     }
613
614     if (chkLevel && chkLevel != (unsigned)CHECK_SPILL_NONE)
615     {
616         assert(chkLevel <= verCurrentState.esStackDepth);
617
618         if (flags)
619         {
620             // If there is a call, we have to spill global refs
621             bool spillGlobEffects = (flags & GTF_CALL) ? true : false;
622
623             if (expr->gtOper == GT_ASG)
624             {
625                 GenTree* lhs = expr->gtGetOp1();
626                 // If we are assigning to a global ref, we have to spill global refs on stack.
627                 // TODO-1stClassStructs: Previously, spillGlobEffects was set to true for
628                 // GT_INITBLK and GT_COPYBLK, but this is overly conservative, and should be
629                 // revisited. (Note that it was NOT set to true for GT_COPYOBJ.)
630                 if (!expr->OperIsBlkOp())
631                 {
632                     // If we are assigning to a global ref, we have to spill global refs on stack
633                     if ((lhs->gtFlags & GTF_GLOB_REF) != 0)
634                     {
635                         spillGlobEffects = true;
636                     }
637                 }
638                 else if ((lhs->OperIsBlk() && !lhs->AsBlk()->HasGCPtr()) ||
639                          ((lhs->OperGet() == GT_LCL_VAR) &&
640                           (lvaTable[lhs->AsLclVarCommon()->gtLclNum].lvStructGcCount == 0)))
641                 {
642                     spillGlobEffects = true;
643                 }
644             }
645
646             impSpillSideEffects(spillGlobEffects, chkLevel DEBUGARG("impAppendStmt"));
647         }
648         else
649         {
650             impSpillSpecialSideEff();
651         }
652     }
653
654     impAppendStmtCheck(stmt, chkLevel);
655
656     /* Point 'prev' at the previous node, so that we can walk backwards */
657
658     stmt->gtPrev = impTreeLast;
659
660     /* Append the expression statement to the list */
661
662     impTreeLast->gtNext = stmt;
663     impTreeLast         = stmt;
664
665 #ifdef FEATURE_SIMD
666     impMarkContiguousSIMDFieldAssignments(stmt);
667 #endif
668
669     /* Once we set impCurStmtOffs in an appended tree, we are ready to
670        report the following offsets. So reset impCurStmtOffs */
671
672     if (impTreeLast->gtStmt.gtStmtILoffsx == impCurStmtOffs)
673     {
674         impCurStmtOffsSet(BAD_IL_OFFSET);
675     }
676
677 #ifdef DEBUG
678     if (impLastILoffsStmt == nullptr)
679     {
680         impLastILoffsStmt = stmt;
681     }
682
683     if (verbose)
684     {
685         printf("\n\n");
686         gtDispTree(stmt);
687     }
688 #endif
689 }
690
691 /*****************************************************************************
692  *
693  *  Insert the given GT_STMT "stmt" before GT_STMT "stmtBefore"
694  */
695
696 inline void Compiler::impInsertStmtBefore(GenTreePtr stmt, GenTreePtr stmtBefore)
697 {
698     assert(stmt->gtOper == GT_STMT);
699     assert(stmtBefore->gtOper == GT_STMT);
700
701     GenTreePtr stmtPrev = stmtBefore->gtPrev;
702     stmt->gtPrev        = stmtPrev;
703     stmt->gtNext        = stmtBefore;
704     stmtPrev->gtNext    = stmt;
705     stmtBefore->gtPrev  = stmt;
706 }
707
708 /*****************************************************************************
709  *
710  *  Append the given expression tree to the current block's tree list.
711  *  Return the newly created statement.
712  */
713
714 GenTreePtr Compiler::impAppendTree(GenTreePtr tree, unsigned chkLevel, IL_OFFSETX offset)
715 {
716     assert(tree);
717
718     /* Allocate an 'expression statement' node */
719
720     GenTreePtr expr = gtNewStmt(tree, offset);
721
722     /* Append the statement to the current block's stmt list */
723
724     impAppendStmt(expr, chkLevel);
725
726     return expr;
727 }
728
729 /*****************************************************************************
730  *
731  *  Insert the given exression tree before GT_STMT "stmtBefore"
732  */
733
734 void Compiler::impInsertTreeBefore(GenTreePtr tree, IL_OFFSETX offset, GenTreePtr stmtBefore)
735 {
736     assert(stmtBefore->gtOper == GT_STMT);
737
738     /* Allocate an 'expression statement' node */
739
740     GenTreePtr expr = gtNewStmt(tree, offset);
741
742     /* Append the statement to the current block's stmt list */
743
744     impInsertStmtBefore(expr, stmtBefore);
745 }
746
747 /*****************************************************************************
748  *
749  *  Append an assignment of the given value to a temp to the current tree list.
750  *  curLevel is the stack level for which the spill to the temp is being done.
751  */
752
753 void Compiler::impAssignTempGen(unsigned    tmp,
754                                 GenTreePtr  val,
755                                 unsigned    curLevel,
756                                 GenTreePtr* pAfterStmt, /* = NULL */
757                                 IL_OFFSETX  ilOffset,   /* = BAD_IL_OFFSET */
758                                 BasicBlock* block       /* = NULL */
759                                 )
760 {
761     GenTreePtr asg = gtNewTempAssign(tmp, val);
762
763     if (!asg->IsNothingNode())
764     {
765         if (pAfterStmt)
766         {
767             GenTreePtr asgStmt = gtNewStmt(asg, ilOffset);
768             *pAfterStmt        = fgInsertStmtAfter(block, *pAfterStmt, asgStmt);
769         }
770         else
771         {
772             impAppendTree(asg, curLevel, impCurStmtOffs);
773         }
774     }
775 }
776
777 /*****************************************************************************
778  * same as above, but handle the valueclass case too
779  */
780
781 void Compiler::impAssignTempGen(unsigned             tmpNum,
782                                 GenTreePtr           val,
783                                 CORINFO_CLASS_HANDLE structType,
784                                 unsigned             curLevel,
785                                 GenTreePtr*          pAfterStmt, /* = NULL */
786                                 IL_OFFSETX           ilOffset,   /* = BAD_IL_OFFSET */
787                                 BasicBlock*          block       /* = NULL */
788                                 )
789 {
790     GenTreePtr asg;
791
792     if (varTypeIsStruct(val))
793     {
794         assert(tmpNum < lvaCount);
795         assert(structType != NO_CLASS_HANDLE);
796
797         // if the method is non-verifiable the assert is not true
798         // so at least ignore it in the case when verification is turned on
799         // since any block that tries to use the temp would have failed verification.
800         var_types varType = lvaTable[tmpNum].lvType;
801         assert(tiVerificationNeeded || varType == TYP_UNDEF || varTypeIsStruct(varType));
802         lvaSetStruct(tmpNum, structType, false);
803
804         // Now, set the type of the struct value. Note that lvaSetStruct may modify the type
805         // of the lclVar to a specialized type (e.g. TYP_SIMD), based on the handle (structType)
806         // that has been passed in for the value being assigned to the temp, in which case we
807         // need to set 'val' to that same type.
808         // Note also that if we always normalized the types of any node that might be a struct
809         // type, this would not be necessary - but that requires additional JIT/EE interface
810         // calls that may not actually be required - e.g. if we only access a field of a struct.
811
812         val->gtType = lvaTable[tmpNum].lvType;
813
814         GenTreePtr dst = gtNewLclvNode(tmpNum, val->gtType);
815         asg            = impAssignStruct(dst, val, structType, curLevel, pAfterStmt, block);
816     }
817     else
818     {
819         asg = gtNewTempAssign(tmpNum, val);
820     }
821
822     if (!asg->IsNothingNode())
823     {
824         if (pAfterStmt)
825         {
826             GenTreePtr asgStmt = gtNewStmt(asg, ilOffset);
827             *pAfterStmt        = fgInsertStmtAfter(block, *pAfterStmt, asgStmt);
828         }
829         else
830         {
831             impAppendTree(asg, curLevel, impCurStmtOffs);
832         }
833     }
834 }
835
836 /*****************************************************************************
837  *
838  *  Pop the given number of values from the stack and return a list node with
839  *  their values.
840  *  The 'prefixTree' argument may optionally contain an argument
841  *  list that is prepended to the list returned from this function.
842  *
843  *  The notion of prepended is a bit misleading in that the list is backwards
844  *  from the way I would expect: The first element popped is at the end of
845  *  the returned list, and prefixTree is 'before' that, meaning closer to
846  *  the end of the list.  To get to prefixTree, you have to walk to the
847  *  end of the list.
848  *
849  *  For ARG_ORDER_R2L prefixTree is only used to insert extra arguments, as
850  *  such we reverse its meaning such that returnValue has a reversed
851  *  prefixTree at the head of the list.
852  */
853
854 GenTreeArgList* Compiler::impPopList(unsigned          count,
855                                      unsigned*         flagsPtr,
856                                      CORINFO_SIG_INFO* sig,
857                                      GenTreeArgList*   prefixTree)
858 {
859     assert(sig == nullptr || count == sig->numArgs);
860
861     unsigned             flags = 0;
862     CORINFO_CLASS_HANDLE structType;
863     GenTreeArgList*      treeList;
864
865     if (Target::g_tgtArgOrder == Target::ARG_ORDER_R2L)
866     {
867         treeList = nullptr;
868     }
869     else
870     { // ARG_ORDER_L2R
871         treeList = prefixTree;
872     }
873
874     while (count--)
875     {
876         StackEntry se   = impPopStack();
877         typeInfo   ti   = se.seTypeInfo;
878         GenTreePtr temp = se.val;
879
880         if (varTypeIsStruct(temp))
881         {
882             // Morph trees that aren't already OBJs or MKREFANY to be OBJs
883             assert(ti.IsType(TI_STRUCT));
884             structType = ti.GetClassHandleForValueClass();
885             temp       = impNormStructVal(temp, structType, (unsigned)CHECK_SPILL_ALL);
886         }
887
888         /* NOTE: we defer bashing the type for I_IMPL to fgMorphArgs */
889         flags |= temp->gtFlags;
890         treeList = gtNewListNode(temp, treeList);
891     }
892
893     *flagsPtr = flags;
894
895     if (sig != nullptr)
896     {
897         if (sig->retTypeSigClass != nullptr && sig->retType != CORINFO_TYPE_CLASS &&
898             sig->retType != CORINFO_TYPE_BYREF && sig->retType != CORINFO_TYPE_PTR && sig->retType != CORINFO_TYPE_VAR)
899         {
900             // Make sure that all valuetypes (including enums) that we push are loaded.
901             // This is to guarantee that if a GC is triggerred from the prestub of this methods,
902             // all valuetypes in the method signature are already loaded.
903             // We need to be able to find the size of the valuetypes, but we cannot
904             // do a class-load from within GC.
905             info.compCompHnd->classMustBeLoadedBeforeCodeIsRun(sig->retTypeSigClass);
906         }
907
908         CORINFO_ARG_LIST_HANDLE argLst = sig->args;
909         CORINFO_CLASS_HANDLE    argClass;
910         CORINFO_CLASS_HANDLE    argRealClass;
911         GenTreeArgList*         args;
912         unsigned                sigSize;
913
914         for (args = treeList, count = sig->numArgs; count > 0; args = args->Rest(), count--)
915         {
916             PREFIX_ASSUME(args != nullptr);
917
918             CorInfoType corType = strip(info.compCompHnd->getArgType(sig, argLst, &argClass));
919
920             // insert implied casts (from float to double or double to float)
921
922             if (corType == CORINFO_TYPE_DOUBLE && args->Current()->TypeGet() == TYP_FLOAT)
923             {
924                 args->Current() = gtNewCastNode(TYP_DOUBLE, args->Current(), TYP_DOUBLE);
925             }
926             else if (corType == CORINFO_TYPE_FLOAT && args->Current()->TypeGet() == TYP_DOUBLE)
927             {
928                 args->Current() = gtNewCastNode(TYP_FLOAT, args->Current(), TYP_FLOAT);
929             }
930
931             // insert any widening or narrowing casts for backwards compatibility
932
933             args->Current() = impImplicitIorI4Cast(args->Current(), JITtype2varType(corType));
934
935             if (corType != CORINFO_TYPE_CLASS && corType != CORINFO_TYPE_BYREF && corType != CORINFO_TYPE_PTR &&
936                 corType != CORINFO_TYPE_VAR && (argRealClass = info.compCompHnd->getArgClass(sig, argLst)) != nullptr)
937             {
938                 // Everett MC++ could generate IL with a mismatched valuetypes. It used to work with Everett JIT,
939                 // but it stopped working in Whidbey when we have started passing simple valuetypes as underlying
940                 // primitive types.
941                 // We will try to adjust for this case here to avoid breaking customers code (see VSW 485789 for
942                 // details).
943                 if (corType == CORINFO_TYPE_VALUECLASS && !varTypeIsStruct(args->Current()))
944                 {
945                     args->Current() = impNormStructVal(args->Current(), argRealClass, (unsigned)CHECK_SPILL_ALL, true);
946                 }
947
948                 // Make sure that all valuetypes (including enums) that we push are loaded.
949                 // This is to guarantee that if a GC is triggered from the prestub of this methods,
950                 // all valuetypes in the method signature are already loaded.
951                 // We need to be able to find the size of the valuetypes, but we cannot
952                 // do a class-load from within GC.
953                 info.compCompHnd->classMustBeLoadedBeforeCodeIsRun(argRealClass);
954             }
955
956             argLst = info.compCompHnd->getArgNext(argLst);
957         }
958     }
959
960     if (Target::g_tgtArgOrder == Target::ARG_ORDER_R2L)
961     {
962         // Prepend the prefixTree
963
964         // Simple in-place reversal to place treeList
965         // at the end of a reversed prefixTree
966         while (prefixTree != nullptr)
967         {
968             GenTreeArgList* next = prefixTree->Rest();
969             prefixTree->Rest()   = treeList;
970             treeList             = prefixTree;
971             prefixTree           = next;
972         }
973     }
974     return treeList;
975 }
976
977 /*****************************************************************************
978  *
979  *  Pop the given number of values from the stack in reverse order (STDCALL/CDECL etc.)
980  *  The first "skipReverseCount" items are not reversed.
981  */
982
983 GenTreeArgList* Compiler::impPopRevList(unsigned          count,
984                                         unsigned*         flagsPtr,
985                                         CORINFO_SIG_INFO* sig,
986                                         unsigned          skipReverseCount)
987
988 {
989     assert(skipReverseCount <= count);
990
991     GenTreeArgList* list = impPopList(count, flagsPtr, sig);
992
993     // reverse the list
994     if (list == nullptr || skipReverseCount == count)
995     {
996         return list;
997     }
998
999     GenTreeArgList* ptr          = nullptr; // Initialized to the first node that needs to be reversed
1000     GenTreeArgList* lastSkipNode = nullptr; // Will be set to the last node that does not need to be reversed
1001
1002     if (skipReverseCount == 0)
1003     {
1004         ptr = list;
1005     }
1006     else
1007     {
1008         lastSkipNode = list;
1009         // Get to the first node that needs to be reversed
1010         for (unsigned i = 0; i < skipReverseCount - 1; i++)
1011         {
1012             lastSkipNode = lastSkipNode->Rest();
1013         }
1014
1015         PREFIX_ASSUME(lastSkipNode != nullptr);
1016         ptr = lastSkipNode->Rest();
1017     }
1018
1019     GenTreeArgList* reversedList = nullptr;
1020
1021     do
1022     {
1023         GenTreeArgList* tmp = ptr->Rest();
1024         ptr->Rest()         = reversedList;
1025         reversedList        = ptr;
1026         ptr                 = tmp;
1027     } while (ptr != nullptr);
1028
1029     if (skipReverseCount)
1030     {
1031         lastSkipNode->Rest() = reversedList;
1032         return list;
1033     }
1034     else
1035     {
1036         return reversedList;
1037     }
1038 }
1039
1040 /*****************************************************************************
1041    Assign (copy) the structure from 'src' to 'dest'.  The structure is a value
1042    class of type 'clsHnd'.  It returns the tree that should be appended to the
1043    statement list that represents the assignment.
1044    Temp assignments may be appended to impTreeList if spilling is necessary.
1045    curLevel is the stack level for which a spill may be being done.
1046  */
1047
1048 GenTreePtr Compiler::impAssignStruct(GenTreePtr           dest,
1049                                      GenTreePtr           src,
1050                                      CORINFO_CLASS_HANDLE structHnd,
1051                                      unsigned             curLevel,
1052                                      GenTreePtr*          pAfterStmt, /* = NULL */
1053                                      BasicBlock*          block       /* = NULL */
1054                                      )
1055 {
1056     assert(varTypeIsStruct(dest));
1057
1058     while (dest->gtOper == GT_COMMA)
1059     {
1060         assert(varTypeIsStruct(dest->gtOp.gtOp2)); // Second thing is the struct
1061
1062         // Append all the op1 of GT_COMMA trees before we evaluate op2 of the GT_COMMA tree.
1063         if (pAfterStmt)
1064         {
1065             *pAfterStmt = fgInsertStmtAfter(block, *pAfterStmt, gtNewStmt(dest->gtOp.gtOp1, impCurStmtOffs));
1066         }
1067         else
1068         {
1069             impAppendTree(dest->gtOp.gtOp1, curLevel, impCurStmtOffs); // do the side effect
1070         }
1071
1072         // set dest to the second thing
1073         dest = dest->gtOp.gtOp2;
1074     }
1075
1076     assert(dest->gtOper == GT_LCL_VAR || dest->gtOper == GT_RETURN || dest->gtOper == GT_FIELD ||
1077            dest->gtOper == GT_IND || dest->gtOper == GT_OBJ || dest->gtOper == GT_INDEX);
1078
1079     if (dest->OperGet() == GT_LCL_VAR && src->OperGet() == GT_LCL_VAR &&
1080         src->gtLclVarCommon.gtLclNum == dest->gtLclVarCommon.gtLclNum)
1081     {
1082         // Make this a NOP
1083         return gtNewNothingNode();
1084     }
1085
1086     // TODO-1stClassStructs: Avoid creating an address if it is not needed,
1087     // or re-creating a Blk node if it is.
1088     GenTreePtr destAddr;
1089
1090     if (dest->gtOper == GT_IND || dest->OperIsBlk())
1091     {
1092         destAddr = dest->gtOp.gtOp1;
1093     }
1094     else
1095     {
1096         destAddr = gtNewOperNode(GT_ADDR, TYP_BYREF, dest);
1097     }
1098
1099     return (impAssignStructPtr(destAddr, src, structHnd, curLevel, pAfterStmt, block));
1100 }
1101
1102 /*****************************************************************************/
1103
1104 GenTreePtr Compiler::impAssignStructPtr(GenTreePtr           destAddr,
1105                                         GenTreePtr           src,
1106                                         CORINFO_CLASS_HANDLE structHnd,
1107                                         unsigned             curLevel,
1108                                         GenTreePtr*          pAfterStmt, /* = NULL */
1109                                         BasicBlock*          block       /* = NULL */
1110                                         )
1111 {
1112     var_types  destType;
1113     GenTreePtr dest      = nullptr;
1114     unsigned   destFlags = 0;
1115
1116 #if defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)
1117     assert(varTypeIsStruct(src) || (src->gtOper == GT_ADDR && src->TypeGet() == TYP_BYREF));
1118     // TODO-ARM-BUG: Does ARM need this?
1119     // TODO-ARM64-BUG: Does ARM64 need this?
1120     assert(src->gtOper == GT_LCL_VAR || src->gtOper == GT_FIELD || src->gtOper == GT_IND || src->gtOper == GT_OBJ ||
1121            src->gtOper == GT_CALL || src->gtOper == GT_MKREFANY || src->gtOper == GT_RET_EXPR ||
1122            src->gtOper == GT_COMMA || src->gtOper == GT_ADDR ||
1123            (src->TypeGet() != TYP_STRUCT && (GenTree::OperIsSIMD(src->gtOper) || src->gtOper == GT_LCL_FLD)));
1124 #else  // !defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)
1125     assert(varTypeIsStruct(src));
1126
1127     assert(src->gtOper == GT_LCL_VAR || src->gtOper == GT_FIELD || src->gtOper == GT_IND || src->gtOper == GT_OBJ ||
1128            src->gtOper == GT_CALL || src->gtOper == GT_MKREFANY || src->gtOper == GT_RET_EXPR ||
1129            src->gtOper == GT_COMMA ||
1130            (src->TypeGet() != TYP_STRUCT && (GenTree::OperIsSIMD(src->gtOper) || src->gtOper == GT_LCL_FLD)));
1131 #endif // !defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)
1132     if (destAddr->OperGet() == GT_ADDR)
1133     {
1134         GenTree* destNode = destAddr->gtGetOp1();
1135         // If the actual destination is a local (for non-LEGACY_BACKEND), or already a block node, or is a node that
1136         // will be morphed, don't insert an OBJ(ADDR).
1137         if (destNode->gtOper == GT_INDEX || destNode->OperIsBlk()
1138 #ifndef LEGACY_BACKEND
1139             || ((destNode->OperGet() == GT_LCL_VAR) && (destNode->TypeGet() == src->TypeGet()))
1140 #endif // !LEGACY_BACKEND
1141                 )
1142         {
1143             dest = destNode;
1144         }
1145         destType = destNode->TypeGet();
1146     }
1147     else
1148     {
1149         destType = src->TypeGet();
1150     }
1151
1152     var_types asgType = src->TypeGet();
1153
1154     if (src->gtOper == GT_CALL)
1155     {
1156         if (src->AsCall()->TreatAsHasRetBufArg(this))
1157         {
1158             // Case of call returning a struct via hidden retbuf arg
1159
1160             // insert the return value buffer into the argument list as first byref parameter
1161             src->gtCall.gtCallArgs = gtNewListNode(destAddr, src->gtCall.gtCallArgs);
1162
1163             // now returns void, not a struct
1164             src->gtType = TYP_VOID;
1165
1166             // return the morphed call node
1167             return src;
1168         }
1169         else
1170         {
1171             // Case of call returning a struct in one or more registers.
1172
1173             var_types returnType = (var_types)src->gtCall.gtReturnType;
1174
1175             // We won't use a return buffer, so change the type of src->gtType to 'returnType'
1176             src->gtType = genActualType(returnType);
1177
1178             // First we try to change this to "LclVar/LclFld = call"
1179             //
1180             if ((destAddr->gtOper == GT_ADDR) && (destAddr->gtOp.gtOp1->gtOper == GT_LCL_VAR))
1181             {
1182                 // If it is a multi-reg struct return, don't change the oper to GT_LCL_FLD.
1183                 // That is, the IR will be of the form lclVar = call for multi-reg return
1184                 //
1185                 GenTreePtr lcl = destAddr->gtOp.gtOp1;
1186                 if (src->AsCall()->HasMultiRegRetVal())
1187                 {
1188                     // Mark the struct LclVar as used in a MultiReg return context
1189                     //  which currently makes it non promotable.
1190                     // TODO-1stClassStructs: Eliminate this pessimization when we can more generally
1191                     // handle multireg returns.
1192                     lcl->gtFlags |= GTF_DONT_CSE;
1193                     lvaTable[lcl->gtLclVarCommon.gtLclNum].lvIsMultiRegRet = true;
1194                 }
1195                 else // The call result is not a multireg return
1196                 {
1197                     // We change this to a GT_LCL_FLD (from a GT_ADDR of a GT_LCL_VAR)
1198                     lcl->ChangeOper(GT_LCL_FLD);
1199                     fgLclFldAssign(lcl->gtLclVarCommon.gtLclNum);
1200                 }
1201
1202                 lcl->gtType = src->gtType;
1203                 asgType     = src->gtType;
1204                 dest        = lcl;
1205
1206 #if defined(_TARGET_ARM_)
1207                 // TODO-Cleanup: This should have been taken care of in the above HasMultiRegRetVal() case,
1208                 // but that method has not been updadted to include ARM.
1209                 impMarkLclDstNotPromotable(lcl->gtLclVarCommon.gtLclNum, src, structHnd);
1210                 lcl->gtFlags |= GTF_DONT_CSE;
1211 #elif defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)
1212                 // Not allowed for FEATURE_CORCLR which is the only SKU available for System V OSs.
1213                 assert(!src->gtCall.IsVarargs() && "varargs not allowed for System V OSs.");
1214
1215                 // Make the struct non promotable. The eightbytes could contain multiple fields.
1216                 // TODO-1stClassStructs: Eliminate this pessimization when we can more generally
1217                 // handle multireg returns.
1218                 // TODO-Cleanup: Why is this needed here? This seems that it will set this even for
1219                 // non-multireg returns.
1220                 lcl->gtFlags |= GTF_DONT_CSE;
1221                 lvaTable[lcl->gtLclVarCommon.gtLclNum].lvIsMultiRegRet = true;
1222 #endif
1223             }
1224             else // we don't have a GT_ADDR of a GT_LCL_VAR
1225             {
1226                 // !!! The destination could be on stack. !!!
1227                 // This flag will let us choose the correct write barrier.
1228                 asgType   = returnType;
1229                 destFlags = GTF_IND_TGTANYWHERE;
1230             }
1231         }
1232     }
1233     else if (src->gtOper == GT_RET_EXPR)
1234     {
1235         GenTreePtr call = src->gtRetExpr.gtInlineCandidate;
1236         noway_assert(call->gtOper == GT_CALL);
1237
1238         if (call->AsCall()->HasRetBufArg())
1239         {
1240             // insert the return value buffer into the argument list as first byref parameter
1241             call->gtCall.gtCallArgs = gtNewListNode(destAddr, call->gtCall.gtCallArgs);
1242
1243             // now returns void, not a struct
1244             src->gtType  = TYP_VOID;
1245             call->gtType = TYP_VOID;
1246
1247             // We already have appended the write to 'dest' GT_CALL's args
1248             // So now we just return an empty node (pruning the GT_RET_EXPR)
1249             return src;
1250         }
1251         else
1252         {
1253             // Case of inline method returning a struct in one or more registers.
1254             //
1255             var_types returnType = (var_types)call->gtCall.gtReturnType;
1256
1257             // We won't need a return buffer
1258             asgType      = returnType;
1259             src->gtType  = genActualType(returnType);
1260             call->gtType = src->gtType;
1261
1262             // If we've changed the type, and it no longer matches a local destination,
1263             // we must use an indirection.
1264             if ((dest != nullptr) && (dest->OperGet() == GT_LCL_VAR) && (dest->TypeGet() != asgType))
1265             {
1266                 dest = nullptr;
1267             }
1268
1269             // !!! The destination could be on stack. !!!
1270             // This flag will let us choose the correct write barrier.
1271             destFlags = GTF_IND_TGTANYWHERE;
1272         }
1273     }
1274     else if (src->OperIsBlk())
1275     {
1276         asgType = impNormStructType(structHnd);
1277         if (src->gtOper == GT_OBJ)
1278         {
1279             assert(src->gtObj.gtClass == structHnd);
1280         }
1281     }
1282     else if (src->gtOper == GT_INDEX)
1283     {
1284         asgType = impNormStructType(structHnd);
1285         assert(src->gtIndex.gtStructElemClass == structHnd);
1286     }
1287     else if (src->gtOper == GT_MKREFANY)
1288     {
1289         // Since we are assigning the result of a GT_MKREFANY,
1290         // "destAddr" must point to a refany.
1291
1292         GenTreePtr destAddrClone;
1293         destAddr =
1294             impCloneExpr(destAddr, &destAddrClone, structHnd, curLevel, pAfterStmt DEBUGARG("MKREFANY assignment"));
1295
1296         assert(offsetof(CORINFO_RefAny, dataPtr) == 0);
1297         assert(destAddr->gtType == TYP_I_IMPL || destAddr->gtType == TYP_BYREF);
1298         GetZeroOffsetFieldMap()->Set(destAddr, GetFieldSeqStore()->CreateSingleton(GetRefanyDataField()));
1299         GenTreePtr     ptrSlot         = gtNewOperNode(GT_IND, TYP_I_IMPL, destAddr);
1300         GenTreeIntCon* typeFieldOffset = gtNewIconNode(offsetof(CORINFO_RefAny, type), TYP_I_IMPL);
1301         typeFieldOffset->gtFieldSeq    = GetFieldSeqStore()->CreateSingleton(GetRefanyTypeField());
1302         GenTreePtr typeSlot =
1303             gtNewOperNode(GT_IND, TYP_I_IMPL, gtNewOperNode(GT_ADD, destAddr->gtType, destAddrClone, typeFieldOffset));
1304
1305         // append the assign of the pointer value
1306         GenTreePtr asg = gtNewAssignNode(ptrSlot, src->gtOp.gtOp1);
1307         if (pAfterStmt)
1308         {
1309             *pAfterStmt = fgInsertStmtAfter(block, *pAfterStmt, gtNewStmt(asg, impCurStmtOffs));
1310         }
1311         else
1312         {
1313             impAppendTree(asg, curLevel, impCurStmtOffs);
1314         }
1315
1316         // return the assign of the type value, to be appended
1317         return gtNewAssignNode(typeSlot, src->gtOp.gtOp2);
1318     }
1319     else if (src->gtOper == GT_COMMA)
1320     {
1321         // The second thing is the struct or its address.
1322         assert(varTypeIsStruct(src->gtOp.gtOp2) || src->gtOp.gtOp2->gtType == TYP_BYREF);
1323         if (pAfterStmt)
1324         {
1325             *pAfterStmt = fgInsertStmtAfter(block, *pAfterStmt, gtNewStmt(src->gtOp.gtOp1, impCurStmtOffs));
1326         }
1327         else
1328         {
1329             impAppendTree(src->gtOp.gtOp1, curLevel, impCurStmtOffs); // do the side effect
1330         }
1331
1332         // Evaluate the second thing using recursion.
1333         return impAssignStructPtr(destAddr, src->gtOp.gtOp2, structHnd, curLevel, pAfterStmt, block);
1334     }
1335     else if (src->IsLocal())
1336     {
1337         asgType = src->TypeGet();
1338     }
1339     else if (asgType == TYP_STRUCT)
1340     {
1341         asgType     = impNormStructType(structHnd);
1342         src->gtType = asgType;
1343 #ifdef LEGACY_BACKEND
1344         if (asgType == TYP_STRUCT)
1345         {
1346             GenTree* srcAddr = gtNewOperNode(GT_ADDR, TYP_BYREF, src);
1347             src              = gtNewOperNode(GT_IND, TYP_STRUCT, srcAddr);
1348         }
1349 #endif
1350     }
1351     if (dest == nullptr)
1352     {
1353         // TODO-1stClassStructs: We shouldn't really need a block node as the destination
1354         // if this is a known struct type.
1355         if (asgType == TYP_STRUCT)
1356         {
1357             dest = gtNewObjNode(structHnd, destAddr);
1358             gtSetObjGcInfo(dest->AsObj());
1359             // Although an obj as a call argument was always assumed to be a globRef
1360             // (which is itself overly conservative), that is not true of the operands
1361             // of a block assignment.
1362             dest->gtFlags &= ~GTF_GLOB_REF;
1363             dest->gtFlags |= (destAddr->gtFlags & GTF_GLOB_REF);
1364         }
1365         else if (varTypeIsStruct(asgType))
1366         {
1367             dest = new (this, GT_BLK) GenTreeBlk(GT_BLK, asgType, destAddr, genTypeSize(asgType));
1368         }
1369         else
1370         {
1371             dest = gtNewOperNode(GT_IND, asgType, destAddr);
1372         }
1373     }
1374     else
1375     {
1376         dest->gtType = asgType;
1377     }
1378
1379     dest->gtFlags |= destFlags;
1380     destFlags = dest->gtFlags;
1381
1382     // return an assignment node, to be appended
1383     GenTree* asgNode = gtNewAssignNode(dest, src);
1384     gtBlockOpInit(asgNode, dest, src, false);
1385
1386     // TODO-1stClassStructs: Clean up the settings of GTF_DONT_CSE on the lhs
1387     // of assignments.
1388     if ((destFlags & GTF_DONT_CSE) == 0)
1389     {
1390         dest->gtFlags &= ~(GTF_DONT_CSE);
1391     }
1392     return asgNode;
1393 }
1394
1395 /*****************************************************************************
1396    Given a struct value, and the class handle for that structure, return
1397    the expression for the address for that structure value.
1398
1399    willDeref - does the caller guarantee to dereference the pointer.
1400 */
1401
1402 GenTreePtr Compiler::impGetStructAddr(GenTreePtr           structVal,
1403                                       CORINFO_CLASS_HANDLE structHnd,
1404                                       unsigned             curLevel,
1405                                       bool                 willDeref)
1406 {
1407     assert(varTypeIsStruct(structVal) || eeIsValueClass(structHnd));
1408
1409     var_types type = structVal->TypeGet();
1410
1411     genTreeOps oper = structVal->gtOper;
1412
1413     if (oper == GT_OBJ && willDeref)
1414     {
1415         assert(structVal->gtObj.gtClass == structHnd);
1416         return (structVal->gtObj.Addr());
1417     }
1418     else if (oper == GT_CALL || oper == GT_RET_EXPR || oper == GT_OBJ || oper == GT_MKREFANY)
1419     {
1420         unsigned tmpNum = lvaGrabTemp(true DEBUGARG("struct address for call/obj"));
1421
1422         impAssignTempGen(tmpNum, structVal, structHnd, curLevel);
1423
1424         // The 'return value' is now the temp itself
1425
1426         type            = genActualType(lvaTable[tmpNum].TypeGet());
1427         GenTreePtr temp = gtNewLclvNode(tmpNum, type);
1428         temp            = gtNewOperNode(GT_ADDR, TYP_BYREF, temp);
1429         return temp;
1430     }
1431     else if (oper == GT_COMMA)
1432     {
1433         assert(structVal->gtOp.gtOp2->gtType == type); // Second thing is the struct
1434
1435         GenTreePtr oldTreeLast = impTreeLast;
1436         structVal->gtOp.gtOp2  = impGetStructAddr(structVal->gtOp.gtOp2, structHnd, curLevel, willDeref);
1437         structVal->gtType      = TYP_BYREF;
1438
1439         if (oldTreeLast != impTreeLast)
1440         {
1441             // Some temp assignment statement was placed on the statement list
1442             // for Op2, but that would be out of order with op1, so we need to
1443             // spill op1 onto the statement list after whatever was last
1444             // before we recursed on Op2 (i.e. before whatever Op2 appended).
1445             impInsertTreeBefore(structVal->gtOp.gtOp1, impCurStmtOffs, oldTreeLast->gtNext);
1446             structVal->gtOp.gtOp1 = gtNewNothingNode();
1447         }
1448
1449         return (structVal);
1450     }
1451
1452     return (gtNewOperNode(GT_ADDR, TYP_BYREF, structVal));
1453 }
1454
1455 //------------------------------------------------------------------------
1456 // impNormStructType: Given a (known to be) struct class handle structHnd, normalize its type,
1457 //                    and optionally determine the GC layout of the struct.
1458 //
1459 // Arguments:
1460 //    structHnd       - The class handle for the struct type of interest.
1461 //    gcLayout        - (optional, default nullptr) - a BYTE pointer, allocated by the caller,
1462 //                      into which the gcLayout will be written.
1463 //    pNumGCVars      - (optional, default nullptr) - if non-null, a pointer to an unsigned,
1464 //                      which will be set to the number of GC fields in the struct.
1465 //    pSimdBaseType   - (optional, default nullptr) - if non-null, and the struct is a SIMD
1466 //                      type, set to the SIMD base type
1467 //
1468 // Return Value:
1469 //    The JIT type for the struct (e.g. TYP_STRUCT, or TYP_SIMD*).
1470 //    The gcLayout will be returned using the pointers provided by the caller, if non-null.
1471 //    It may also modify the compFloatingPointUsed flag if the type is a SIMD type.
1472 //
1473 // Assumptions:
1474 //    The caller must set gcLayout to nullptr OR ensure that it is large enough
1475 //    (see ICorStaticInfo::getClassGClayout in corinfo.h).
1476 //
1477 // Notes:
1478 //    Normalizing the type involves examining the struct type to determine if it should
1479 //    be modified to one that is handled specially by the JIT, possibly being a candidate
1480 //    for full enregistration, e.g. TYP_SIMD16.
1481
1482 var_types Compiler::impNormStructType(CORINFO_CLASS_HANDLE structHnd,
1483                                       BYTE*                gcLayout,
1484                                       unsigned*            pNumGCVars,
1485                                       var_types*           pSimdBaseType)
1486 {
1487     assert(structHnd != NO_CLASS_HANDLE);
1488
1489     const DWORD structFlags = info.compCompHnd->getClassAttribs(structHnd);
1490     var_types   structType  = TYP_STRUCT;
1491
1492     // On coreclr the check for GC includes a "may" to account for the special
1493     // ByRef like span structs.  The added check for "CONTAINS_STACK_PTR" is the particular bit.
1494     // When this is set the struct will contain a ByRef that could be a GC pointer or a native
1495     // pointer.
1496     const bool mayContainGCPtrs =
1497         ((structFlags & CORINFO_FLG_CONTAINS_STACK_PTR) != 0 || ((structFlags & CORINFO_FLG_CONTAINS_GC_PTR) != 0));
1498
1499 #ifdef FEATURE_SIMD
1500     // Check to see if this is a SIMD type.
1501     if (featureSIMD && !mayContainGCPtrs)
1502     {
1503         unsigned originalSize = info.compCompHnd->getClassSize(structHnd);
1504
1505         if ((originalSize >= minSIMDStructBytes()) && (originalSize <= maxSIMDStructBytes()))
1506         {
1507             unsigned int sizeBytes;
1508             var_types    simdBaseType = getBaseTypeAndSizeOfSIMDType(structHnd, &sizeBytes);
1509             if (simdBaseType != TYP_UNKNOWN)
1510             {
1511                 assert(sizeBytes == originalSize);
1512                 structType = getSIMDTypeForSize(sizeBytes);
1513                 if (pSimdBaseType != nullptr)
1514                 {
1515                     *pSimdBaseType = simdBaseType;
1516                 }
1517                 // Also indicate that we use floating point registers.
1518                 compFloatingPointUsed = true;
1519             }
1520         }
1521     }
1522 #endif // FEATURE_SIMD
1523
1524     // Fetch GC layout info if requested
1525     if (gcLayout != nullptr)
1526     {
1527         unsigned numGCVars = info.compCompHnd->getClassGClayout(structHnd, gcLayout);
1528
1529         // Verify that the quick test up above via the class attributes gave a
1530         // safe view of the type's GCness.
1531         //
1532         // Note there are cases where mayContainGCPtrs is true but getClassGClayout
1533         // does not report any gc fields.
1534
1535         assert(mayContainGCPtrs || (numGCVars == 0));
1536
1537         if (pNumGCVars != nullptr)
1538         {
1539             *pNumGCVars = numGCVars;
1540         }
1541     }
1542     else
1543     {
1544         // Can't safely ask for number of GC pointers without also
1545         // asking for layout.
1546         assert(pNumGCVars == nullptr);
1547     }
1548
1549     return structType;
1550 }
1551
1552 //****************************************************************************
1553 //  Given TYP_STRUCT value 'structVal', make sure it is 'canonical', that is
1554 //  it is either an OBJ or a MKREFANY node, or a node (e.g. GT_INDEX) that will be morphed.
1555 //
1556 GenTreePtr Compiler::impNormStructVal(GenTreePtr           structVal,
1557                                       CORINFO_CLASS_HANDLE structHnd,
1558                                       unsigned             curLevel,
1559                                       bool                 forceNormalization /*=false*/)
1560 {
1561     assert(forceNormalization || varTypeIsStruct(structVal));
1562     assert(structHnd != NO_CLASS_HANDLE);
1563     var_types structType = structVal->TypeGet();
1564     bool      makeTemp   = false;
1565     if (structType == TYP_STRUCT)
1566     {
1567         structType = impNormStructType(structHnd);
1568     }
1569     bool                 alreadyNormalized = false;
1570     GenTreeLclVarCommon* structLcl         = nullptr;
1571
1572     genTreeOps oper = structVal->OperGet();
1573     switch (oper)
1574     {
1575         // GT_RETURN and GT_MKREFANY don't capture the handle.
1576         case GT_RETURN:
1577             break;
1578         case GT_MKREFANY:
1579             alreadyNormalized = true;
1580             break;
1581
1582         case GT_CALL:
1583             structVal->gtCall.gtRetClsHnd = structHnd;
1584             makeTemp                      = true;
1585             break;
1586
1587         case GT_RET_EXPR:
1588             structVal->gtRetExpr.gtRetClsHnd = structHnd;
1589             makeTemp                         = true;
1590             break;
1591
1592         case GT_ARGPLACE:
1593             structVal->gtArgPlace.gtArgPlaceClsHnd = structHnd;
1594             break;
1595
1596         case GT_INDEX:
1597             // This will be transformed to an OBJ later.
1598             alreadyNormalized                    = true;
1599             structVal->gtIndex.gtStructElemClass = structHnd;
1600             structVal->gtIndex.gtIndElemSize     = info.compCompHnd->getClassSize(structHnd);
1601             break;
1602
1603         case GT_FIELD:
1604             // Wrap it in a GT_OBJ.
1605             structVal->gtType = structType;
1606             structVal         = gtNewObjNode(structHnd, gtNewOperNode(GT_ADDR, TYP_BYREF, structVal));
1607             break;
1608
1609         case GT_LCL_VAR:
1610         case GT_LCL_FLD:
1611             structLcl = structVal->AsLclVarCommon();
1612             // Wrap it in a GT_OBJ.
1613             structVal = gtNewObjNode(structHnd, gtNewOperNode(GT_ADDR, TYP_BYREF, structVal));
1614             __fallthrough;
1615
1616         case GT_OBJ:
1617         case GT_BLK:
1618         case GT_DYN_BLK:
1619         case GT_ASG:
1620             // These should already have the appropriate type.
1621             assert(structVal->gtType == structType);
1622             alreadyNormalized = true;
1623             break;
1624
1625         case GT_IND:
1626             assert(structVal->gtType == structType);
1627             structVal         = gtNewObjNode(structHnd, structVal->gtGetOp1());
1628             alreadyNormalized = true;
1629             break;
1630
1631 #ifdef FEATURE_SIMD
1632         case GT_SIMD:
1633             assert(varTypeIsSIMD(structVal) && (structVal->gtType == structType));
1634             break;
1635 #endif // FEATURE_SIMD
1636
1637         case GT_COMMA:
1638         {
1639             // The second thing could either be a block node or a GT_SIMD or a GT_COMMA node.
1640             GenTree* blockNode = structVal->gtOp.gtOp2;
1641             assert(blockNode->gtType == structType);
1642
1643             // Is this GT_COMMA(op1, GT_COMMA())?
1644             GenTree* parent = structVal;
1645             if (blockNode->OperGet() == GT_COMMA)
1646             {
1647                 // Find the last node in the comma chain.
1648                 do
1649                 {
1650                     assert(blockNode->gtType == structType);
1651                     parent    = blockNode;
1652                     blockNode = blockNode->gtOp.gtOp2;
1653                 } while (blockNode->OperGet() == GT_COMMA);
1654             }
1655
1656 #ifdef FEATURE_SIMD
1657             if (blockNode->OperGet() == GT_SIMD)
1658             {
1659                 parent->gtOp.gtOp2 = impNormStructVal(blockNode, structHnd, curLevel, forceNormalization);
1660                 alreadyNormalized  = true;
1661             }
1662             else
1663 #endif
1664             {
1665                 assert(blockNode->OperIsBlk());
1666
1667                 // Sink the GT_COMMA below the blockNode addr.
1668                 // That is GT_COMMA(op1, op2=blockNode) is tranformed into
1669                 // blockNode(GT_COMMA(TYP_BYREF, op1, op2's op1)).
1670                 //
1671                 // In case of a chained GT_COMMA case, we sink the last
1672                 // GT_COMMA below the blockNode addr.
1673                 GenTree* blockNodeAddr = blockNode->gtOp.gtOp1;
1674                 assert(blockNodeAddr->gtType == TYP_BYREF);
1675                 GenTree* commaNode    = parent;
1676                 commaNode->gtType     = TYP_BYREF;
1677                 commaNode->gtOp.gtOp2 = blockNodeAddr;
1678                 blockNode->gtOp.gtOp1 = commaNode;
1679                 if (parent == structVal)
1680                 {
1681                     structVal = blockNode;
1682                 }
1683                 alreadyNormalized = true;
1684             }
1685         }
1686         break;
1687
1688         default:
1689             assert(!"Unexpected node in impNormStructVal()");
1690             break;
1691     }
1692     structVal->gtType  = structType;
1693     GenTree* structObj = structVal;
1694
1695     if (!alreadyNormalized || forceNormalization)
1696     {
1697         if (makeTemp)
1698         {
1699             unsigned tmpNum = lvaGrabTemp(true DEBUGARG("struct address for call/obj"));
1700
1701             impAssignTempGen(tmpNum, structVal, structHnd, curLevel);
1702
1703             // The structVal is now the temp itself
1704
1705             structLcl = gtNewLclvNode(tmpNum, structType)->AsLclVarCommon();
1706             // TODO-1stClassStructs: Avoid always wrapping in GT_OBJ.
1707             structObj = gtNewObjNode(structHnd, gtNewOperNode(GT_ADDR, TYP_BYREF, structLcl));
1708         }
1709         else if (varTypeIsStruct(structType) && !structVal->OperIsBlk())
1710         {
1711             // Wrap it in a GT_OBJ
1712             structObj = gtNewObjNode(structHnd, gtNewOperNode(GT_ADDR, TYP_BYREF, structVal));
1713         }
1714     }
1715
1716     if (structLcl != nullptr)
1717     {
1718         // A OBJ on a ADDR(LCL_VAR) can never raise an exception
1719         // so we don't set GTF_EXCEPT here.
1720         if (!lvaIsImplicitByRefLocal(structLcl->gtLclNum))
1721         {
1722             structObj->gtFlags &= ~GTF_GLOB_REF;
1723         }
1724     }
1725     else
1726     {
1727         // In general a OBJ is an indirection and could raise an exception.
1728         structObj->gtFlags |= GTF_EXCEPT;
1729     }
1730     return (structObj);
1731 }
1732
1733 /******************************************************************************/
1734 // Given a type token, generate code that will evaluate to the correct
1735 // handle representation of that token (type handle, field handle, or method handle)
1736 //
1737 // For most cases, the handle is determined at compile-time, and the code
1738 // generated is simply an embedded handle.
1739 //
1740 // Run-time lookup is required if the enclosing method is shared between instantiations
1741 // and the token refers to formal type parameters whose instantiation is not known
1742 // at compile-time.
1743 //
1744 GenTreePtr Compiler::impTokenToHandle(CORINFO_RESOLVED_TOKEN* pResolvedToken,
1745                                       BOOL*                   pRuntimeLookup /* = NULL */,
1746                                       BOOL                    mustRestoreHandle /* = FALSE */,
1747                                       BOOL                    importParent /* = FALSE */)
1748 {
1749     assert(!fgGlobalMorph);
1750
1751     CORINFO_GENERICHANDLE_RESULT embedInfo;
1752     info.compCompHnd->embedGenericHandle(pResolvedToken, importParent, &embedInfo);
1753
1754     if (pRuntimeLookup)
1755     {
1756         *pRuntimeLookup = embedInfo.lookup.lookupKind.needsRuntimeLookup;
1757     }
1758
1759     if (mustRestoreHandle && !embedInfo.lookup.lookupKind.needsRuntimeLookup)
1760     {
1761         switch (embedInfo.handleType)
1762         {
1763             case CORINFO_HANDLETYPE_CLASS:
1764                 info.compCompHnd->classMustBeLoadedBeforeCodeIsRun((CORINFO_CLASS_HANDLE)embedInfo.compileTimeHandle);
1765                 break;
1766
1767             case CORINFO_HANDLETYPE_METHOD:
1768                 info.compCompHnd->methodMustBeLoadedBeforeCodeIsRun((CORINFO_METHOD_HANDLE)embedInfo.compileTimeHandle);
1769                 break;
1770
1771             case CORINFO_HANDLETYPE_FIELD:
1772                 info.compCompHnd->classMustBeLoadedBeforeCodeIsRun(
1773                     info.compCompHnd->getFieldClass((CORINFO_FIELD_HANDLE)embedInfo.compileTimeHandle));
1774                 break;
1775
1776             default:
1777                 break;
1778         }
1779     }
1780
1781     return impLookupToTree(pResolvedToken, &embedInfo.lookup, gtTokenToIconFlags(pResolvedToken->token),
1782                            embedInfo.compileTimeHandle);
1783 }
1784
1785 GenTreePtr Compiler::impLookupToTree(CORINFO_RESOLVED_TOKEN* pResolvedToken,
1786                                      CORINFO_LOOKUP*         pLookup,
1787                                      unsigned                handleFlags,
1788                                      void*                   compileTimeHandle)
1789 {
1790     if (!pLookup->lookupKind.needsRuntimeLookup)
1791     {
1792         // No runtime lookup is required.
1793         // Access is direct or memory-indirect (of a fixed address) reference
1794
1795         CORINFO_GENERIC_HANDLE handle       = nullptr;
1796         void*                  pIndirection = nullptr;
1797         assert(pLookup->constLookup.accessType != IAT_PPVALUE);
1798
1799         if (pLookup->constLookup.accessType == IAT_VALUE)
1800         {
1801             handle = pLookup->constLookup.handle;
1802         }
1803         else if (pLookup->constLookup.accessType == IAT_PVALUE)
1804         {
1805             pIndirection = pLookup->constLookup.addr;
1806         }
1807         return gtNewIconEmbHndNode(handle, pIndirection, handleFlags, 0, nullptr, compileTimeHandle);
1808     }
1809     else if (compIsForInlining())
1810     {
1811         // Don't import runtime lookups when inlining
1812         // Inlining has to be aborted in such a case
1813         compInlineResult->NoteFatal(InlineObservation::CALLSITE_GENERIC_DICTIONARY_LOOKUP);
1814         return nullptr;
1815     }
1816     else
1817     {
1818         // Need to use dictionary-based access which depends on the typeContext
1819         // which is only available at runtime, not at compile-time.
1820
1821         return impRuntimeLookupToTree(pResolvedToken, pLookup, compileTimeHandle);
1822     }
1823 }
1824
1825 #ifdef FEATURE_READYTORUN_COMPILER
1826 GenTreePtr Compiler::impReadyToRunLookupToTree(CORINFO_CONST_LOOKUP* pLookup,
1827                                                unsigned              handleFlags,
1828                                                void*                 compileTimeHandle)
1829 {
1830     CORINFO_GENERIC_HANDLE handle       = nullptr;
1831     void*                  pIndirection = nullptr;
1832     assert(pLookup->accessType != IAT_PPVALUE);
1833
1834     if (pLookup->accessType == IAT_VALUE)
1835     {
1836         handle = pLookup->handle;
1837     }
1838     else if (pLookup->accessType == IAT_PVALUE)
1839     {
1840         pIndirection = pLookup->addr;
1841     }
1842     return gtNewIconEmbHndNode(handle, pIndirection, handleFlags, 0, nullptr, compileTimeHandle);
1843 }
1844
1845 GenTreePtr Compiler::impReadyToRunHelperToTree(
1846     CORINFO_RESOLVED_TOKEN* pResolvedToken,
1847     CorInfoHelpFunc         helper,
1848     var_types               type,
1849     GenTreeArgList*         args /* =NULL*/,
1850     CORINFO_LOOKUP_KIND*    pGenericLookupKind /* =NULL. Only used with generics */)
1851 {
1852     CORINFO_CONST_LOOKUP lookup;
1853 #if COR_JIT_EE_VERSION > 460
1854     if (!info.compCompHnd->getReadyToRunHelper(pResolvedToken, pGenericLookupKind, helper, &lookup))
1855     {
1856         return nullptr;
1857     }
1858 #else
1859     info.compCompHnd->getReadyToRunHelper(pResolvedToken, helper, &lookup);
1860 #endif
1861
1862     GenTreePtr op1 = gtNewHelperCallNode(helper, type, GTF_EXCEPT, args);
1863
1864     op1->gtCall.setEntryPoint(lookup);
1865
1866     return op1;
1867 }
1868 #endif
1869
1870 GenTreePtr Compiler::impMethodPointer(CORINFO_RESOLVED_TOKEN* pResolvedToken, CORINFO_CALL_INFO* pCallInfo)
1871 {
1872     GenTreePtr op1 = nullptr;
1873
1874     switch (pCallInfo->kind)
1875     {
1876         case CORINFO_CALL:
1877             op1 = new (this, GT_FTN_ADDR) GenTreeFptrVal(TYP_I_IMPL, pCallInfo->hMethod);
1878
1879 #ifdef FEATURE_READYTORUN_COMPILER
1880             if (opts.IsReadyToRun())
1881             {
1882                 op1->gtFptrVal.gtEntryPoint          = pCallInfo->codePointerLookup.constLookup;
1883                 op1->gtFptrVal.gtLdftnResolvedToken  = new (this, CMK_Unknown) CORINFO_RESOLVED_TOKEN;
1884                 *op1->gtFptrVal.gtLdftnResolvedToken = *pResolvedToken;
1885             }
1886             else
1887             {
1888                 op1->gtFptrVal.gtEntryPoint.addr = nullptr;
1889             }
1890 #endif
1891             break;
1892
1893         case CORINFO_CALL_CODE_POINTER:
1894             if (compIsForInlining())
1895             {
1896                 // Don't import runtime lookups when inlining
1897                 // Inlining has to be aborted in such a case
1898                 compInlineResult->NoteFatal(InlineObservation::CALLSITE_GENERIC_DICTIONARY_LOOKUP);
1899                 return nullptr;
1900             }
1901
1902             op1 = impLookupToTree(pResolvedToken, &pCallInfo->codePointerLookup, GTF_ICON_FTN_ADDR, pCallInfo->hMethod);
1903             break;
1904
1905         default:
1906             noway_assert(!"unknown call kind");
1907             break;
1908     }
1909
1910     return op1;
1911 }
1912
1913 //------------------------------------------------------------------------
1914 // getRuntimeContextTree: find pointer to context for runtime lookup.
1915 //
1916 // Arguments:
1917 //    kind - lookup kind.
1918 //
1919 // Return Value:
1920 //    Return GenTree pointer to generic shared context.
1921 //
1922 // Notes:
1923 //    Reports about generic context using.
1924
1925 GenTreePtr Compiler::getRuntimeContextTree(CORINFO_RUNTIME_LOOKUP_KIND kind)
1926 {
1927     GenTreePtr ctxTree = nullptr;
1928
1929     // Collectible types requires that for shared generic code, if we use the generic context parameter
1930     // that we report it. (This is a conservative approach, we could detect some cases particularly when the
1931     // context parameter is this that we don't need the eager reporting logic.)
1932     lvaGenericsContextUsed = true;
1933
1934     if (kind == CORINFO_LOOKUP_THISOBJ)
1935     {
1936         // this Object
1937         ctxTree = gtNewLclvNode(info.compThisArg, TYP_REF);
1938
1939         // Vtable pointer of this object
1940         ctxTree = gtNewOperNode(GT_IND, TYP_I_IMPL, ctxTree);
1941         ctxTree->gtFlags |= GTF_EXCEPT; // Null-pointer exception
1942         ctxTree->gtFlags |= GTF_IND_INVARIANT;
1943     }
1944     else
1945     {
1946         assert(kind == CORINFO_LOOKUP_METHODPARAM || kind == CORINFO_LOOKUP_CLASSPARAM);
1947
1948         ctxTree = gtNewLclvNode(info.compTypeCtxtArg, TYP_I_IMPL); // Exact method descriptor as passed in as last arg
1949     }
1950     return ctxTree;
1951 }
1952
1953 /*****************************************************************************/
1954 /* Import a dictionary lookup to access a handle in code shared between
1955    generic instantiations.
1956    The lookup depends on the typeContext which is only available at
1957    runtime, and not at compile-time.
1958    pLookup->token1 and pLookup->token2 specify the handle that is needed.
1959    The cases are:
1960
1961    1. pLookup->indirections == CORINFO_USEHELPER : Call a helper passing it the
1962       instantiation-specific handle, and the tokens to lookup the handle.
1963    2. pLookup->indirections != CORINFO_USEHELPER :
1964       2a. pLookup->testForNull == false : Dereference the instantiation-specific handle
1965           to get the handle.
1966       2b. pLookup->testForNull == true : Dereference the instantiation-specific handle.
1967           If it is non-NULL, it is the handle required. Else, call a helper
1968           to lookup the handle.
1969  */
1970
1971 GenTreePtr Compiler::impRuntimeLookupToTree(CORINFO_RESOLVED_TOKEN* pResolvedToken,
1972                                             CORINFO_LOOKUP*         pLookup,
1973                                             void*                   compileTimeHandle)
1974 {
1975
1976     // This method can only be called from the importer instance of the Compiler.
1977     // In other word, it cannot be called by the instance of the Compiler for the inlinee.
1978     assert(!compIsForInlining());
1979
1980     GenTreePtr ctxTree = getRuntimeContextTree(pLookup->lookupKind.runtimeLookupKind);
1981
1982 #ifdef FEATURE_READYTORUN_COMPILER
1983     if (opts.IsReadyToRun())
1984     {
1985         return impReadyToRunHelperToTree(pResolvedToken, CORINFO_HELP_READYTORUN_GENERIC_HANDLE, TYP_I_IMPL,
1986                                          gtNewArgList(ctxTree), &pLookup->lookupKind);
1987     }
1988 #endif
1989
1990     CORINFO_RUNTIME_LOOKUP* pRuntimeLookup = &pLookup->runtimeLookup;
1991     // It's available only via the run-time helper function
1992     if (pRuntimeLookup->indirections == CORINFO_USEHELPER)
1993     {
1994         GenTreeArgList* helperArgs =
1995             gtNewArgList(ctxTree, gtNewIconEmbHndNode(pRuntimeLookup->signature, nullptr, GTF_ICON_TOKEN_HDL, 0,
1996                                                       nullptr, compileTimeHandle));
1997
1998         return gtNewHelperCallNode(pRuntimeLookup->helper, TYP_I_IMPL, GTF_EXCEPT, helperArgs);
1999     }
2000
2001     // Slot pointer
2002     GenTreePtr slotPtrTree = ctxTree;
2003
2004     if (pRuntimeLookup->testForNull)
2005     {
2006         slotPtrTree = impCloneExpr(ctxTree, &ctxTree, NO_CLASS_HANDLE, (unsigned)CHECK_SPILL_ALL,
2007                                    nullptr DEBUGARG("impRuntimeLookup slot"));
2008     }
2009
2010     // Applied repeated indirections
2011     for (WORD i = 0; i < pRuntimeLookup->indirections; i++)
2012     {
2013         if (i != 0)
2014         {
2015             slotPtrTree = gtNewOperNode(GT_IND, TYP_I_IMPL, slotPtrTree);
2016             slotPtrTree->gtFlags |= GTF_IND_NONFAULTING;
2017             slotPtrTree->gtFlags |= GTF_IND_INVARIANT;
2018         }
2019         if (pRuntimeLookup->offsets[i] != 0)
2020         {
2021             slotPtrTree =
2022                 gtNewOperNode(GT_ADD, TYP_I_IMPL, slotPtrTree, gtNewIconNode(pRuntimeLookup->offsets[i], TYP_I_IMPL));
2023         }
2024     }
2025
2026     // No null test required
2027     if (!pRuntimeLookup->testForNull)
2028     {
2029         if (pRuntimeLookup->indirections == 0)
2030         {
2031             return slotPtrTree;
2032         }
2033
2034         slotPtrTree = gtNewOperNode(GT_IND, TYP_I_IMPL, slotPtrTree);
2035         slotPtrTree->gtFlags |= GTF_IND_NONFAULTING;
2036
2037         if (!pRuntimeLookup->testForFixup)
2038         {
2039             return slotPtrTree;
2040         }
2041
2042         impSpillSideEffects(true, CHECK_SPILL_ALL DEBUGARG("bubbling QMark0"));
2043
2044         GenTreePtr op1 = impCloneExpr(slotPtrTree, &slotPtrTree, NO_CLASS_HANDLE, (unsigned)CHECK_SPILL_ALL,
2045                                       nullptr DEBUGARG("impRuntimeLookup test"));
2046         op1 = impImplicitIorI4Cast(op1, TYP_INT); // downcast the pointer to a TYP_INT on 64-bit targets
2047
2048         // Use a GT_AND to check for the lowest bit and indirect if it is set
2049         GenTreePtr testTree = gtNewOperNode(GT_AND, TYP_INT, op1, gtNewIconNode(1));
2050         GenTreePtr relop    = gtNewOperNode(GT_EQ, TYP_INT, testTree, gtNewIconNode(0));
2051         relop->gtFlags |= GTF_RELOP_QMARK;
2052
2053         op1 = impCloneExpr(slotPtrTree, &slotPtrTree, NO_CLASS_HANDLE, (unsigned)CHECK_SPILL_ALL,
2054                            nullptr DEBUGARG("impRuntimeLookup indir"));
2055         op1 = gtNewOperNode(GT_ADD, TYP_I_IMPL, op1, gtNewIconNode(-1, TYP_I_IMPL)); // subtract 1 from the pointer
2056         GenTreePtr indirTree = gtNewOperNode(GT_IND, TYP_I_IMPL, op1);
2057         GenTreePtr colon     = new (this, GT_COLON) GenTreeColon(TYP_I_IMPL, slotPtrTree, indirTree);
2058
2059         GenTreePtr qmark = gtNewQmarkNode(TYP_I_IMPL, relop, colon);
2060
2061         unsigned tmp = lvaGrabTemp(true DEBUGARG("spilling QMark0"));
2062         impAssignTempGen(tmp, qmark, (unsigned)CHECK_SPILL_NONE);
2063         return gtNewLclvNode(tmp, TYP_I_IMPL);
2064     }
2065
2066     assert(pRuntimeLookup->indirections != 0);
2067
2068     impSpillSideEffects(true, CHECK_SPILL_ALL DEBUGARG("bubbling QMark1"));
2069
2070     // Extract the handle
2071     GenTreePtr handle = gtNewOperNode(GT_IND, TYP_I_IMPL, slotPtrTree);
2072     handle->gtFlags |= GTF_IND_NONFAULTING;
2073
2074     GenTreePtr handleCopy = impCloneExpr(handle, &handle, NO_CLASS_HANDLE, (unsigned)CHECK_SPILL_ALL,
2075                                          nullptr DEBUGARG("impRuntimeLookup typehandle"));
2076
2077     // Call to helper
2078     GenTreeArgList* helperArgs =
2079         gtNewArgList(ctxTree, gtNewIconEmbHndNode(pRuntimeLookup->signature, nullptr, GTF_ICON_TOKEN_HDL, 0, nullptr,
2080                                                   compileTimeHandle));
2081     GenTreePtr helperCall = gtNewHelperCallNode(pRuntimeLookup->helper, TYP_I_IMPL, GTF_EXCEPT, helperArgs);
2082
2083     // Check for null and possibly call helper
2084     GenTreePtr relop = gtNewOperNode(GT_NE, TYP_INT, handle, gtNewIconNode(0, TYP_I_IMPL));
2085     relop->gtFlags |= GTF_RELOP_QMARK;
2086
2087     GenTreePtr colon = new (this, GT_COLON) GenTreeColon(TYP_I_IMPL,
2088                                                          gtNewNothingNode(), // do nothing if nonnull
2089                                                          helperCall);
2090
2091     GenTreePtr qmark = gtNewQmarkNode(TYP_I_IMPL, relop, colon);
2092
2093     unsigned tmp;
2094     if (handleCopy->IsLocal())
2095     {
2096         tmp = handleCopy->gtLclVarCommon.gtLclNum;
2097     }
2098     else
2099     {
2100         tmp = lvaGrabTemp(true DEBUGARG("spilling QMark1"));
2101     }
2102
2103     impAssignTempGen(tmp, qmark, (unsigned)CHECK_SPILL_NONE);
2104     return gtNewLclvNode(tmp, TYP_I_IMPL);
2105 }
2106
2107 /******************************************************************************
2108  *  Spills the stack at verCurrentState.esStack[level] and replaces it with a temp.
2109  *  If tnum!=BAD_VAR_NUM, the temp var used to replace the tree is tnum,
2110  *     else, grab a new temp.
2111  *  For structs (which can be pushed on the stack using obj, etc),
2112  *  special handling is needed
2113  */
2114
2115 struct RecursiveGuard
2116 {
2117 public:
2118     RecursiveGuard()
2119     {
2120         m_pAddress = nullptr;
2121     }
2122
2123     ~RecursiveGuard()
2124     {
2125         if (m_pAddress)
2126         {
2127             *m_pAddress = false;
2128         }
2129     }
2130
2131     void Init(bool* pAddress, bool bInitialize)
2132     {
2133         assert(pAddress && *pAddress == false && "Recursive guard violation");
2134         m_pAddress = pAddress;
2135
2136         if (bInitialize)
2137         {
2138             *m_pAddress = true;
2139         }
2140     }
2141
2142 protected:
2143     bool* m_pAddress;
2144 };
2145
2146 bool Compiler::impSpillStackEntry(unsigned level,
2147                                   unsigned tnum
2148 #ifdef DEBUG
2149                                   ,
2150                                   bool        bAssertOnRecursion,
2151                                   const char* reason
2152 #endif
2153                                   )
2154 {
2155
2156 #ifdef DEBUG
2157     RecursiveGuard guard;
2158     guard.Init(&impNestedStackSpill, bAssertOnRecursion);
2159 #endif
2160
2161     GenTreePtr tree = verCurrentState.esStack[level].val;
2162
2163     /* Allocate a temp if we haven't been asked to use a particular one */
2164
2165     if (tiVerificationNeeded)
2166     {
2167         // Ignore bad temp requests (they will happen with bad code and will be
2168         // catched when importing the destblock)
2169         if ((tnum != BAD_VAR_NUM && tnum >= lvaCount) && verNeedsVerification())
2170         {
2171             return false;
2172         }
2173     }
2174     else
2175     {
2176         if (tnum != BAD_VAR_NUM && (tnum >= lvaCount))
2177         {
2178             return false;
2179         }
2180     }
2181
2182     if (tnum == BAD_VAR_NUM)
2183     {
2184         tnum = lvaGrabTemp(true DEBUGARG(reason));
2185     }
2186     else if (tiVerificationNeeded && lvaTable[tnum].TypeGet() != TYP_UNDEF)
2187     {
2188         // if verification is needed and tnum's type is incompatible with
2189         // type on that stack, we grab a new temp. This is safe since
2190         // we will throw a verification exception in the dest block.
2191
2192         var_types valTyp = tree->TypeGet();
2193         var_types dstTyp = lvaTable[tnum].TypeGet();
2194
2195         // if the two types are different, we return. This will only happen with bad code and will
2196         // be catched when importing the destblock. We still allow int/byrefs and float/double differences.
2197         if ((genActualType(valTyp) != genActualType(dstTyp)) &&
2198             !(
2199 #ifndef _TARGET_64BIT_
2200                 (valTyp == TYP_I_IMPL && dstTyp == TYP_BYREF) || (valTyp == TYP_BYREF && dstTyp == TYP_I_IMPL) ||
2201 #endif // !_TARGET_64BIT_
2202                 (varTypeIsFloating(dstTyp) && varTypeIsFloating(valTyp))))
2203         {
2204             if (verNeedsVerification())
2205             {
2206                 return false;
2207             }
2208         }
2209     }
2210
2211     /* Assign the spilled entry to the temp */
2212     impAssignTempGen(tnum, tree, verCurrentState.esStack[level].seTypeInfo.GetClassHandle(), level);
2213
2214     // The tree type may be modified by impAssignTempGen, so use the type of the lclVar.
2215     var_types  type                    = genActualType(lvaTable[tnum].TypeGet());
2216     GenTreePtr temp                    = gtNewLclvNode(tnum, type);
2217     verCurrentState.esStack[level].val = temp;
2218
2219     return true;
2220 }
2221
2222 /*****************************************************************************
2223  *
2224  *  Ensure that the stack has only spilled values
2225  */
2226
2227 void Compiler::impSpillStackEnsure(bool spillLeaves)
2228 {
2229     assert(!spillLeaves || opts.compDbgCode);
2230
2231     for (unsigned level = 0; level < verCurrentState.esStackDepth; level++)
2232     {
2233         GenTreePtr tree = verCurrentState.esStack[level].val;
2234
2235         if (!spillLeaves && tree->OperIsLeaf())
2236         {
2237             continue;
2238         }
2239
2240         // Temps introduced by the importer itself don't need to be spilled
2241
2242         bool isTempLcl = (tree->OperGet() == GT_LCL_VAR) && (tree->gtLclVarCommon.gtLclNum >= info.compLocalsCount);
2243
2244         if (isTempLcl)
2245         {
2246             continue;
2247         }
2248
2249         impSpillStackEntry(level, BAD_VAR_NUM DEBUGARG(false) DEBUGARG("impSpillStackEnsure"));
2250     }
2251 }
2252
2253 void Compiler::impSpillEvalStack()
2254 {
2255     for (unsigned level = 0; level < verCurrentState.esStackDepth; level++)
2256     {
2257         impSpillStackEntry(level, BAD_VAR_NUM DEBUGARG(false) DEBUGARG("impSpillEvalStack"));
2258     }
2259 }
2260
2261 /*****************************************************************************
2262  *
2263  *  If the stack contains any trees with side effects in them, assign those
2264  *  trees to temps and append the assignments to the statement list.
2265  *  On return the stack is guaranteed to be empty.
2266  */
2267
2268 inline void Compiler::impEvalSideEffects()
2269 {
2270     impSpillSideEffects(false, (unsigned)CHECK_SPILL_ALL DEBUGARG("impEvalSideEffects"));
2271     verCurrentState.esStackDepth = 0;
2272 }
2273
2274 /*****************************************************************************
2275  *
2276  *  If the stack contains any trees with side effects in them, assign those
2277  *  trees to temps and replace them on the stack with refs to their temps.
2278  *  [0..chkLevel) is the portion of the stack which will be checked and spilled.
2279  */
2280
2281 inline void Compiler::impSpillSideEffects(bool spillGlobEffects, unsigned chkLevel DEBUGARG(const char* reason))
2282 {
2283     assert(chkLevel != (unsigned)CHECK_SPILL_NONE);
2284
2285     /* Before we make any appends to the tree list we must spill the
2286      * "special" side effects (GTF_ORDER_SIDEEFF on a GT_CATCH_ARG) */
2287
2288     impSpillSpecialSideEff();
2289
2290     if (chkLevel == (unsigned)CHECK_SPILL_ALL)
2291     {
2292         chkLevel = verCurrentState.esStackDepth;
2293     }
2294
2295     assert(chkLevel <= verCurrentState.esStackDepth);
2296
2297     unsigned spillFlags = spillGlobEffects ? GTF_GLOB_EFFECT : GTF_SIDE_EFFECT;
2298
2299     for (unsigned i = 0; i < chkLevel; i++)
2300     {
2301         GenTreePtr tree = verCurrentState.esStack[i].val;
2302
2303         GenTreePtr lclVarTree;
2304
2305         if ((tree->gtFlags & spillFlags) != 0 ||
2306             (spillGlobEffects &&                        // Only consider the following when  spillGlobEffects == TRUE
2307              !impIsAddressInLocal(tree, &lclVarTree) && // No need to spill the GT_ADDR node on a local.
2308              gtHasLocalsWithAddrOp(tree))) // Spill if we still see GT_LCL_VAR that contains lvHasLdAddrOp or
2309                                            // lvAddrTaken flag.
2310         {
2311             impSpillStackEntry(i, BAD_VAR_NUM DEBUGARG(false) DEBUGARG(reason));
2312         }
2313     }
2314 }
2315
2316 /*****************************************************************************
2317  *
2318  *  If the stack contains any trees with special side effects in them, assign
2319  *  those trees to temps and replace them on the stack with refs to their temps.
2320  */
2321
2322 inline void Compiler::impSpillSpecialSideEff()
2323 {
2324     // Only exception objects need to be carefully handled
2325
2326     if (!compCurBB->bbCatchTyp)
2327     {
2328         return;
2329     }
2330
2331     for (unsigned level = 0; level < verCurrentState.esStackDepth; level++)
2332     {
2333         GenTreePtr tree = verCurrentState.esStack[level].val;
2334         // Make sure if we have an exception object in the sub tree we spill ourselves.
2335         if (gtHasCatchArg(tree))
2336         {
2337             impSpillStackEntry(level, BAD_VAR_NUM DEBUGARG(false) DEBUGARG("impSpillSpecialSideEff"));
2338         }
2339     }
2340 }
2341
2342 /*****************************************************************************
2343  *
2344  *  Spill all stack references to value classes (TYP_STRUCT nodes)
2345  */
2346
2347 void Compiler::impSpillValueClasses()
2348 {
2349     for (unsigned level = 0; level < verCurrentState.esStackDepth; level++)
2350     {
2351         GenTreePtr tree = verCurrentState.esStack[level].val;
2352
2353         if (fgWalkTreePre(&tree, impFindValueClasses) == WALK_ABORT)
2354         {
2355             // Tree walk was aborted, which means that we found a
2356             // value class on the stack.  Need to spill that
2357             // stack entry.
2358
2359             impSpillStackEntry(level, BAD_VAR_NUM DEBUGARG(false) DEBUGARG("impSpillValueClasses"));
2360         }
2361     }
2362 }
2363
2364 /*****************************************************************************
2365  *
2366  *  Callback that checks if a tree node is TYP_STRUCT
2367  */
2368
2369 Compiler::fgWalkResult Compiler::impFindValueClasses(GenTreePtr* pTree, fgWalkData* data)
2370 {
2371     fgWalkResult walkResult = WALK_CONTINUE;
2372
2373     if ((*pTree)->gtType == TYP_STRUCT)
2374     {
2375         // Abort the walk and indicate that we found a value class
2376
2377         walkResult = WALK_ABORT;
2378     }
2379
2380     return walkResult;
2381 }
2382
2383 /*****************************************************************************
2384  *
2385  *  If the stack contains any trees with references to local #lclNum, assign
2386  *  those trees to temps and replace their place on the stack with refs to
2387  *  their temps.
2388  */
2389
2390 void Compiler::impSpillLclRefs(ssize_t lclNum)
2391 {
2392     /* Before we make any appends to the tree list we must spill the
2393      * "special" side effects (GTF_ORDER_SIDEEFF) - GT_CATCH_ARG */
2394
2395     impSpillSpecialSideEff();
2396
2397     for (unsigned level = 0; level < verCurrentState.esStackDepth; level++)
2398     {
2399         GenTreePtr tree = verCurrentState.esStack[level].val;
2400
2401         /* If the tree may throw an exception, and the block has a handler,
2402            then we need to spill assignments to the local if the local is
2403            live on entry to the handler.
2404            Just spill 'em all without considering the liveness */
2405
2406         bool xcptnCaught = ehBlockHasExnFlowDsc(compCurBB) && (tree->gtFlags & (GTF_CALL | GTF_EXCEPT));
2407
2408         /* Skip the tree if it doesn't have an affected reference,
2409            unless xcptnCaught */
2410
2411         if (xcptnCaught || gtHasRef(tree, lclNum, false))
2412         {
2413             impSpillStackEntry(level, BAD_VAR_NUM DEBUGARG(false) DEBUGARG("impSpillLclRefs"));
2414         }
2415     }
2416 }
2417
2418 /*****************************************************************************
2419  *
2420  *  Push catch arg onto the stack.
2421  *  If there are jumps to the beginning of the handler, insert basic block
2422  *  and spill catch arg to a temp. Update the handler block if necessary.
2423  *
2424  *  Returns the basic block of the actual handler.
2425  */
2426
2427 BasicBlock* Compiler::impPushCatchArgOnStack(BasicBlock* hndBlk, CORINFO_CLASS_HANDLE clsHnd)
2428 {
2429     // Do not inject the basic block twice on reimport. This should be
2430     // hit only under JIT stress. See if the block is the one we injected.
2431     // Note that EH canonicalization can inject internal blocks here. We might
2432     // be able to re-use such a block (but we don't, right now).
2433     if ((hndBlk->bbFlags & (BBF_IMPORTED | BBF_INTERNAL | BBF_DONT_REMOVE | BBF_HAS_LABEL | BBF_JMP_TARGET)) ==
2434         (BBF_IMPORTED | BBF_INTERNAL | BBF_DONT_REMOVE | BBF_HAS_LABEL | BBF_JMP_TARGET))
2435     {
2436         GenTreePtr tree = hndBlk->bbTreeList;
2437
2438         if (tree != nullptr && tree->gtOper == GT_STMT)
2439         {
2440             tree = tree->gtStmt.gtStmtExpr;
2441             assert(tree != nullptr);
2442
2443             if ((tree->gtOper == GT_ASG) && (tree->gtOp.gtOp1->gtOper == GT_LCL_VAR) &&
2444                 (tree->gtOp.gtOp2->gtOper == GT_CATCH_ARG))
2445             {
2446                 tree = gtNewLclvNode(tree->gtOp.gtOp1->gtLclVarCommon.gtLclNum, TYP_REF);
2447
2448                 impPushOnStack(tree, typeInfo(TI_REF, clsHnd));
2449
2450                 return hndBlk->bbNext;
2451             }
2452         }
2453
2454         // If we get here, it must have been some other kind of internal block. It's possible that
2455         // someone prepended something to our injected block, but that's unlikely.
2456     }
2457
2458     /* Push the exception address value on the stack */
2459     GenTreePtr arg = new (this, GT_CATCH_ARG) GenTree(GT_CATCH_ARG, TYP_REF);
2460
2461     /* Mark the node as having a side-effect - i.e. cannot be
2462      * moved around since it is tied to a fixed location (EAX) */
2463     arg->gtFlags |= GTF_ORDER_SIDEEFF;
2464
2465     /* Spill GT_CATCH_ARG to a temp if there are jumps to the beginning of the handler */
2466     if (hndBlk->bbRefs > 1 || compStressCompile(STRESS_CATCH_ARG, 5))
2467     {
2468         if (hndBlk->bbRefs == 1)
2469         {
2470             hndBlk->bbRefs++;
2471         }
2472
2473         /* Create extra basic block for the spill */
2474         BasicBlock* newBlk = fgNewBBbefore(BBJ_NONE, hndBlk, /* extendRegion */ true);
2475         newBlk->bbFlags |= BBF_IMPORTED | BBF_DONT_REMOVE | BBF_HAS_LABEL | BBF_JMP_TARGET;
2476         newBlk->setBBWeight(hndBlk->bbWeight);
2477         newBlk->bbCodeOffs = hndBlk->bbCodeOffs;
2478
2479         /* Account for the new link we are about to create */
2480         hndBlk->bbRefs++;
2481
2482         /* Spill into a temp */
2483         unsigned tempNum         = lvaGrabTemp(false DEBUGARG("SpillCatchArg"));
2484         lvaTable[tempNum].lvType = TYP_REF;
2485         arg                      = gtNewTempAssign(tempNum, arg);
2486
2487         hndBlk->bbStkTempsIn = tempNum;
2488
2489         /* Report the debug info. impImportBlockCode won't treat
2490          * the actual handler as exception block and thus won't do it for us. */
2491         if (info.compStmtOffsetsImplicit & ICorDebugInfo::CALL_SITE_BOUNDARIES)
2492         {
2493             impCurStmtOffs = newBlk->bbCodeOffs | IL_OFFSETX_STKBIT;
2494             arg            = gtNewStmt(arg, impCurStmtOffs);
2495         }
2496
2497         fgInsertStmtAtEnd(newBlk, arg);
2498
2499         arg = gtNewLclvNode(tempNum, TYP_REF);
2500     }
2501
2502     impPushOnStack(arg, typeInfo(TI_REF, clsHnd));
2503
2504     return hndBlk;
2505 }
2506
2507 /*****************************************************************************
2508  *
2509  *  Given a tree, clone it. *pClone is set to the cloned tree.
2510  *  Returns the original tree if the cloning was easy,
2511  *   else returns the temp to which the tree had to be spilled to.
2512  *  If the tree has side-effects, it will be spilled to a temp.
2513  */
2514
2515 GenTreePtr Compiler::impCloneExpr(GenTreePtr           tree,
2516                                   GenTreePtr*          pClone,
2517                                   CORINFO_CLASS_HANDLE structHnd,
2518                                   unsigned             curLevel,
2519                                   GenTreePtr* pAfterStmt DEBUGARG(const char* reason))
2520 {
2521     if (!(tree->gtFlags & GTF_GLOB_EFFECT))
2522     {
2523         GenTreePtr clone = gtClone(tree, true);
2524
2525         if (clone)
2526         {
2527             *pClone = clone;
2528             return tree;
2529         }
2530     }
2531
2532     /* Store the operand in a temp and return the temp */
2533
2534     unsigned temp = lvaGrabTemp(true DEBUGARG(reason));
2535
2536     // impAssignTempGen() may change tree->gtType to TYP_VOID for calls which
2537     // return a struct type. It also may modify the struct type to a more
2538     // specialized type (e.g. a SIMD type).  So we will get the type from
2539     // the lclVar AFTER calling impAssignTempGen().
2540
2541     impAssignTempGen(temp, tree, structHnd, curLevel, pAfterStmt, impCurStmtOffs);
2542     var_types type = genActualType(lvaTable[temp].TypeGet());
2543
2544     *pClone = gtNewLclvNode(temp, type);
2545     return gtNewLclvNode(temp, type);
2546 }
2547
2548 /*****************************************************************************
2549  * Remember the IL offset (including stack-empty info) for the trees we will
2550  * generate now.
2551  */
2552
2553 inline void Compiler::impCurStmtOffsSet(IL_OFFSET offs)
2554 {
2555     if (compIsForInlining())
2556     {
2557         GenTreePtr callStmt = impInlineInfo->iciStmt;
2558         assert(callStmt->gtOper == GT_STMT);
2559         impCurStmtOffs = callStmt->gtStmt.gtStmtILoffsx;
2560     }
2561     else
2562     {
2563         assert(offs == BAD_IL_OFFSET || (offs & IL_OFFSETX_BITS) == 0);
2564         IL_OFFSETX stkBit = (verCurrentState.esStackDepth > 0) ? IL_OFFSETX_STKBIT : 0;
2565         impCurStmtOffs    = offs | stkBit;
2566     }
2567 }
2568
2569 /*****************************************************************************
2570  * Returns current IL offset with stack-empty and call-instruction info incorporated
2571  */
2572 inline IL_OFFSETX Compiler::impCurILOffset(IL_OFFSET offs, bool callInstruction)
2573 {
2574     if (compIsForInlining())
2575     {
2576         return BAD_IL_OFFSET;
2577     }
2578     else
2579     {
2580         assert(offs == BAD_IL_OFFSET || (offs & IL_OFFSETX_BITS) == 0);
2581         IL_OFFSETX stkBit             = (verCurrentState.esStackDepth > 0) ? IL_OFFSETX_STKBIT : 0;
2582         IL_OFFSETX callInstructionBit = callInstruction ? IL_OFFSETX_CALLINSTRUCTIONBIT : 0;
2583         return offs | stkBit | callInstructionBit;
2584     }
2585 }
2586
2587 /*****************************************************************************
2588  *
2589  *  Remember the instr offset for the statements
2590  *
2591  *  When we do impAppendTree(tree), we can't set tree->gtStmtLastILoffs to
2592  *  impCurOpcOffs, if the append was done because of a partial stack spill,
2593  *  as some of the trees corresponding to code up to impCurOpcOffs might
2594  *  still be sitting on the stack.
2595  *  So we delay marking of gtStmtLastILoffs until impNoteLastILoffs().
2596  *  This should be called when an opcode finally/explicitly causes
2597  *  impAppendTree(tree) to be called (as opposed to being called because of
2598  *  a spill caused by the opcode)
2599  */
2600
2601 #ifdef DEBUG
2602
2603 void Compiler::impNoteLastILoffs()
2604 {
2605     if (impLastILoffsStmt == nullptr)
2606     {
2607         // We should have added a statement for the current basic block
2608         // Is this assert correct ?
2609
2610         assert(impTreeLast);
2611         assert(impTreeLast->gtOper == GT_STMT);
2612
2613         impTreeLast->gtStmt.gtStmtLastILoffs = compIsForInlining() ? BAD_IL_OFFSET : impCurOpcOffs;
2614     }
2615     else
2616     {
2617         impLastILoffsStmt->gtStmt.gtStmtLastILoffs = compIsForInlining() ? BAD_IL_OFFSET : impCurOpcOffs;
2618         impLastILoffsStmt                          = nullptr;
2619     }
2620 }
2621
2622 #endif // DEBUG
2623
2624 /*****************************************************************************
2625  * We don't create any GenTree (excluding spills) for a branch.
2626  * For debugging info, we need a placeholder so that we can note
2627  * the IL offset in gtStmt.gtStmtOffs. So append an empty statement.
2628  */
2629
2630 void Compiler::impNoteBranchOffs()
2631 {
2632     if (opts.compDbgCode)
2633     {
2634         impAppendTree(gtNewNothingNode(), (unsigned)CHECK_SPILL_NONE, impCurStmtOffs);
2635     }
2636 }
2637
2638 /*****************************************************************************
2639  * Locate the next stmt boundary for which we need to record info.
2640  * We will have to spill the stack at such boundaries if it is not
2641  * already empty.
2642  * Returns the next stmt boundary (after the start of the block)
2643  */
2644
2645 unsigned Compiler::impInitBlockLineInfo()
2646 {
2647     /* Assume the block does not correspond with any IL offset. This prevents
2648        us from reporting extra offsets. Extra mappings can cause confusing
2649        stepping, especially if the extra mapping is a jump-target, and the
2650        debugger does not ignore extra mappings, but instead rewinds to the
2651        nearest known offset */
2652
2653     impCurStmtOffsSet(BAD_IL_OFFSET);
2654
2655     if (compIsForInlining())
2656     {
2657         return ~0;
2658     }
2659
2660     IL_OFFSET blockOffs = compCurBB->bbCodeOffs;
2661
2662     if ((verCurrentState.esStackDepth == 0) && (info.compStmtOffsetsImplicit & ICorDebugInfo::STACK_EMPTY_BOUNDARIES))
2663     {
2664         impCurStmtOffsSet(blockOffs);
2665     }
2666
2667     if (false && (info.compStmtOffsetsImplicit & ICorDebugInfo::CALL_SITE_BOUNDARIES))
2668     {
2669         impCurStmtOffsSet(blockOffs);
2670     }
2671
2672     /* Always report IL offset 0 or some tests get confused.
2673        Probably a good idea anyways */
2674
2675     if (blockOffs == 0)
2676     {
2677         impCurStmtOffsSet(blockOffs);
2678     }
2679
2680     if (!info.compStmtOffsetsCount)
2681     {
2682         return ~0;
2683     }
2684
2685     /* Find the lowest explicit stmt boundary within the block */
2686
2687     /* Start looking at an entry that is based on our instr offset */
2688
2689     unsigned index = (info.compStmtOffsetsCount * blockOffs) / info.compILCodeSize;
2690
2691     if (index >= info.compStmtOffsetsCount)
2692     {
2693         index = info.compStmtOffsetsCount - 1;
2694     }
2695
2696     /* If we've guessed too far, back up */
2697
2698     while (index > 0 && info.compStmtOffsets[index - 1] >= blockOffs)
2699     {
2700         index--;
2701     }
2702
2703     /* If we guessed short, advance ahead */
2704
2705     while (info.compStmtOffsets[index] < blockOffs)
2706     {
2707         index++;
2708
2709         if (index == info.compStmtOffsetsCount)
2710         {
2711             return info.compStmtOffsetsCount;
2712         }
2713     }
2714
2715     assert(index < info.compStmtOffsetsCount);
2716
2717     if (info.compStmtOffsets[index] == blockOffs)
2718     {
2719         /* There is an explicit boundary for the start of this basic block.
2720            So we will start with bbCodeOffs. Else we will wait until we
2721            get to the next explicit boundary */
2722
2723         impCurStmtOffsSet(blockOffs);
2724
2725         index++;
2726     }
2727
2728     return index;
2729 }
2730
2731 /*****************************************************************************/
2732
2733 static inline bool impOpcodeIsCallOpcode(OPCODE opcode)
2734 {
2735     switch (opcode)
2736     {
2737         case CEE_CALL:
2738         case CEE_CALLI:
2739         case CEE_CALLVIRT:
2740             return true;
2741
2742         default:
2743             return false;
2744     }
2745 }
2746
2747 /*****************************************************************************/
2748
2749 static inline bool impOpcodeIsCallSiteBoundary(OPCODE opcode)
2750 {
2751     switch (opcode)
2752     {
2753         case CEE_CALL:
2754         case CEE_CALLI:
2755         case CEE_CALLVIRT:
2756         case CEE_JMP:
2757         case CEE_NEWOBJ:
2758         case CEE_NEWARR:
2759             return true;
2760
2761         default:
2762             return false;
2763     }
2764 }
2765
2766 /*****************************************************************************/
2767
2768 // One might think it is worth caching these values, but results indicate
2769 // that it isn't.
2770 // In addition, caching them causes SuperPMI to be unable to completely
2771 // encapsulate an individual method context.
2772 CORINFO_CLASS_HANDLE Compiler::impGetRefAnyClass()
2773 {
2774     CORINFO_CLASS_HANDLE refAnyClass = info.compCompHnd->getBuiltinClass(CLASSID_TYPED_BYREF);
2775     assert(refAnyClass != (CORINFO_CLASS_HANDLE) nullptr);
2776     return refAnyClass;
2777 }
2778
2779 CORINFO_CLASS_HANDLE Compiler::impGetTypeHandleClass()
2780 {
2781     CORINFO_CLASS_HANDLE typeHandleClass = info.compCompHnd->getBuiltinClass(CLASSID_TYPE_HANDLE);
2782     assert(typeHandleClass != (CORINFO_CLASS_HANDLE) nullptr);
2783     return typeHandleClass;
2784 }
2785
2786 CORINFO_CLASS_HANDLE Compiler::impGetRuntimeArgumentHandle()
2787 {
2788     CORINFO_CLASS_HANDLE argIteratorClass = info.compCompHnd->getBuiltinClass(CLASSID_ARGUMENT_HANDLE);
2789     assert(argIteratorClass != (CORINFO_CLASS_HANDLE) nullptr);
2790     return argIteratorClass;
2791 }
2792
2793 CORINFO_CLASS_HANDLE Compiler::impGetStringClass()
2794 {
2795     CORINFO_CLASS_HANDLE stringClass = info.compCompHnd->getBuiltinClass(CLASSID_STRING);
2796     assert(stringClass != (CORINFO_CLASS_HANDLE) nullptr);
2797     return stringClass;
2798 }
2799
2800 CORINFO_CLASS_HANDLE Compiler::impGetObjectClass()
2801 {
2802     CORINFO_CLASS_HANDLE objectClass = info.compCompHnd->getBuiltinClass(CLASSID_SYSTEM_OBJECT);
2803     assert(objectClass != (CORINFO_CLASS_HANDLE) nullptr);
2804     return objectClass;
2805 }
2806
2807 /*****************************************************************************
2808  *  "&var" can be used either as TYP_BYREF or TYP_I_IMPL, but we
2809  *  set its type to TYP_BYREF when we create it. We know if it can be
2810  *  changed to TYP_I_IMPL only at the point where we use it
2811  */
2812
2813 /* static */
2814 void Compiler::impBashVarAddrsToI(GenTreePtr tree1, GenTreePtr tree2)
2815 {
2816     if (tree1->IsVarAddr())
2817     {
2818         tree1->gtType = TYP_I_IMPL;
2819     }
2820
2821     if (tree2 && tree2->IsVarAddr())
2822     {
2823         tree2->gtType = TYP_I_IMPL;
2824     }
2825 }
2826
2827 /*****************************************************************************
2828  *  TYP_INT and TYP_I_IMPL can be used almost interchangeably, but we want
2829  *  to make that an explicit cast in our trees, so any implicit casts that
2830  *  exist in the IL (at least on 64-bit where TYP_I_IMPL != TYP_INT) are
2831  *  turned into explicit casts here.
2832  *  We also allow an implicit conversion of a ldnull into a TYP_I_IMPL(0)
2833  */
2834
2835 GenTreePtr Compiler::impImplicitIorI4Cast(GenTreePtr tree, var_types dstTyp)
2836 {
2837     var_types currType   = genActualType(tree->gtType);
2838     var_types wantedType = genActualType(dstTyp);
2839
2840     if (wantedType != currType)
2841     {
2842         // Automatic upcast for a GT_CNS_INT into TYP_I_IMPL
2843         if ((tree->OperGet() == GT_CNS_INT) && varTypeIsI(dstTyp))
2844         {
2845             if (!varTypeIsI(tree->gtType) || ((tree->gtType == TYP_REF) && (tree->gtIntCon.gtIconVal == 0)))
2846             {
2847                 tree->gtType = TYP_I_IMPL;
2848             }
2849         }
2850 #ifdef _TARGET_64BIT_
2851         else if (varTypeIsI(wantedType) && (currType == TYP_INT))
2852         {
2853             // Note that this allows TYP_INT to be cast to a TYP_I_IMPL when wantedType is a TYP_BYREF or TYP_REF
2854             tree = gtNewCastNode(TYP_I_IMPL, tree, TYP_I_IMPL);
2855         }
2856         else if ((wantedType == TYP_INT) && varTypeIsI(currType))
2857         {
2858             // Note that this allows TYP_BYREF or TYP_REF to be cast to a TYP_INT
2859             tree = gtNewCastNode(TYP_INT, tree, TYP_INT);
2860         }
2861 #endif // _TARGET_64BIT_
2862     }
2863
2864     return tree;
2865 }
2866
2867 /*****************************************************************************
2868  *  TYP_FLOAT and TYP_DOUBLE can be used almost interchangeably in some cases,
2869  *  but we want to make that an explicit cast in our trees, so any implicit casts
2870  *  that exist in the IL are turned into explicit casts here.
2871  */
2872
2873 GenTreePtr Compiler::impImplicitR4orR8Cast(GenTreePtr tree, var_types dstTyp)
2874 {
2875 #ifndef LEGACY_BACKEND
2876     if (varTypeIsFloating(tree) && varTypeIsFloating(dstTyp) && (dstTyp != tree->gtType))
2877     {
2878         tree = gtNewCastNode(dstTyp, tree, dstTyp);
2879     }
2880 #endif // !LEGACY_BACKEND
2881
2882     return tree;
2883 }
2884
2885 //------------------------------------------------------------------------
2886 // impInitializeArrayIntrinsic: Attempts to replace a call to InitializeArray
2887 //    with a GT_COPYBLK node.
2888 //
2889 // Arguments:
2890 //    sig - The InitializeArray signature.
2891 //
2892 // Return Value:
2893 //    A pointer to the newly created GT_COPYBLK node if the replacement succeeds or
2894 //    nullptr otherwise.
2895 //
2896 // Notes:
2897 //    The function recognizes the following IL pattern:
2898 //      ldc <length> or a list of ldc <lower bound>/<length>
2899 //      newarr or newobj
2900 //      dup
2901 //      ldtoken <field handle>
2902 //      call InitializeArray
2903 //    The lower bounds need not be constant except when the array rank is 1.
2904 //    The function recognizes all kinds of arrays thus enabling a small runtime
2905 //    such as CoreRT to skip providing an implementation for InitializeArray.
2906
2907 GenTreePtr Compiler::impInitializeArrayIntrinsic(CORINFO_SIG_INFO* sig)
2908 {
2909     assert(sig->numArgs == 2);
2910
2911     GenTreePtr fieldTokenNode = impStackTop(0).val;
2912     GenTreePtr arrayLocalNode = impStackTop(1).val;
2913
2914     //
2915     // Verify that the field token is known and valid.  Note that It's also
2916     // possible for the token to come from reflection, in which case we cannot do
2917     // the optimization and must therefore revert to calling the helper.  You can
2918     // see an example of this in bvt\DynIL\initarray2.exe (in Main).
2919     //
2920
2921     // Check to see if the ldtoken helper call is what we see here.
2922     if (fieldTokenNode->gtOper != GT_CALL || (fieldTokenNode->gtCall.gtCallType != CT_HELPER) ||
2923         (fieldTokenNode->gtCall.gtCallMethHnd != eeFindHelper(CORINFO_HELP_FIELDDESC_TO_STUBRUNTIMEFIELD)))
2924     {
2925         return nullptr;
2926     }
2927
2928     // Strip helper call away
2929     fieldTokenNode = fieldTokenNode->gtCall.gtCallArgs->Current();
2930
2931     if (fieldTokenNode->gtOper == GT_IND)
2932     {
2933         fieldTokenNode = fieldTokenNode->gtOp.gtOp1;
2934     }
2935
2936     // Check for constant
2937     if (fieldTokenNode->gtOper != GT_CNS_INT)
2938     {
2939         return nullptr;
2940     }
2941
2942     CORINFO_FIELD_HANDLE fieldToken = (CORINFO_FIELD_HANDLE)fieldTokenNode->gtIntCon.gtCompileTimeHandle;
2943     if (!fieldTokenNode->IsIconHandle(GTF_ICON_FIELD_HDL) || (fieldToken == nullptr))
2944     {
2945         return nullptr;
2946     }
2947
2948     //
2949     // We need to get the number of elements in the array and the size of each element.
2950     // We verify that the newarr statement is exactly what we expect it to be.
2951     // If it's not then we just return NULL and we don't optimize this call
2952     //
2953
2954     //
2955     // It is possible the we don't have any statements in the block yet
2956     //
2957     if (impTreeLast->gtOper != GT_STMT)
2958     {
2959         assert(impTreeLast->gtOper == GT_BEG_STMTS);
2960         return nullptr;
2961     }
2962
2963     //
2964     // We start by looking at the last statement, making sure it's an assignment, and
2965     // that the target of the assignment is the array passed to InitializeArray.
2966     //
2967     GenTreePtr arrayAssignment = impTreeLast->gtStmt.gtStmtExpr;
2968     if ((arrayAssignment->gtOper != GT_ASG) || (arrayAssignment->gtOp.gtOp1->gtOper != GT_LCL_VAR) ||
2969         (arrayLocalNode->gtOper != GT_LCL_VAR) ||
2970         (arrayAssignment->gtOp.gtOp1->gtLclVarCommon.gtLclNum != arrayLocalNode->gtLclVarCommon.gtLclNum))
2971     {
2972         return nullptr;
2973     }
2974
2975     //
2976     // Make sure that the object being assigned is a helper call.
2977     //
2978
2979     GenTreePtr newArrayCall = arrayAssignment->gtOp.gtOp2;
2980     if ((newArrayCall->gtOper != GT_CALL) || (newArrayCall->gtCall.gtCallType != CT_HELPER))
2981     {
2982         return nullptr;
2983     }
2984
2985     //
2986     // Verify that it is one of the new array helpers.
2987     //
2988
2989     bool isMDArray = false;
2990
2991     if (newArrayCall->gtCall.gtCallMethHnd != eeFindHelper(CORINFO_HELP_NEWARR_1_DIRECT) &&
2992         newArrayCall->gtCall.gtCallMethHnd != eeFindHelper(CORINFO_HELP_NEWARR_1_OBJ) &&
2993         newArrayCall->gtCall.gtCallMethHnd != eeFindHelper(CORINFO_HELP_NEWARR_1_VC) &&
2994         newArrayCall->gtCall.gtCallMethHnd != eeFindHelper(CORINFO_HELP_NEWARR_1_ALIGN8)
2995 #ifdef FEATURE_READYTORUN_COMPILER
2996         && newArrayCall->gtCall.gtCallMethHnd != eeFindHelper(CORINFO_HELP_READYTORUN_NEWARR_1)
2997 #endif
2998             )
2999     {
3000 #if COR_JIT_EE_VERSION > 460
3001         if (newArrayCall->gtCall.gtCallMethHnd != eeFindHelper(CORINFO_HELP_NEW_MDARR_NONVARARG))
3002         {
3003             return nullptr;
3004         }
3005
3006         isMDArray = true;
3007 #endif
3008     }
3009
3010     CORINFO_CLASS_HANDLE arrayClsHnd = (CORINFO_CLASS_HANDLE)newArrayCall->gtCall.compileTimeHelperArgumentHandle;
3011
3012     //
3013     // Make sure we found a compile time handle to the array
3014     //
3015
3016     if (!arrayClsHnd)
3017     {
3018         return nullptr;
3019     }
3020
3021     unsigned rank = 0;
3022     S_UINT32 numElements;
3023
3024     if (isMDArray)
3025     {
3026         rank = info.compCompHnd->getArrayRank(arrayClsHnd);
3027
3028         if (rank == 0)
3029         {
3030             return nullptr;
3031         }
3032
3033         GenTreeArgList* tokenArg = newArrayCall->gtCall.gtCallArgs;
3034         assert(tokenArg != nullptr);
3035         GenTreeArgList* numArgsArg = tokenArg->Rest();
3036         assert(numArgsArg != nullptr);
3037         GenTreeArgList* argsArg = numArgsArg->Rest();
3038         assert(argsArg != nullptr);
3039
3040         //
3041         // The number of arguments should be a constant between 1 and 64. The rank can't be 0
3042         // so at least one length must be present and the rank can't exceed 32 so there can
3043         // be at most 64 arguments - 32 lengths and 32 lower bounds.
3044         //
3045
3046         if ((!numArgsArg->Current()->IsCnsIntOrI()) || (numArgsArg->Current()->AsIntCon()->IconValue() < 1) ||
3047             (numArgsArg->Current()->AsIntCon()->IconValue() > 64))
3048         {
3049             return nullptr;
3050         }
3051
3052         unsigned numArgs = static_cast<unsigned>(numArgsArg->Current()->AsIntCon()->IconValue());
3053         bool     lowerBoundsSpecified;
3054
3055         if (numArgs == rank * 2)
3056         {
3057             lowerBoundsSpecified = true;
3058         }
3059         else if (numArgs == rank)
3060         {
3061             lowerBoundsSpecified = false;
3062
3063             //
3064             // If the rank is 1 and a lower bound isn't specified then the runtime creates
3065             // a SDArray. Note that even if a lower bound is specified it can be 0 and then
3066             // we get a SDArray as well, see the for loop below.
3067             //
3068
3069             if (rank == 1)
3070             {
3071                 isMDArray = false;
3072             }
3073         }
3074         else
3075         {
3076             return nullptr;
3077         }
3078
3079         //
3080         // The rank is known to be at least 1 so we can start with numElements being 1
3081         // to avoid the need to special case the first dimension.
3082         //
3083
3084         numElements = S_UINT32(1);
3085
3086         struct Match
3087         {
3088             static bool IsArgsFieldInit(GenTree* tree, unsigned index, unsigned lvaNewObjArrayArgs)
3089             {
3090                 return (tree->OperGet() == GT_ASG) && IsArgsFieldIndir(tree->gtGetOp1(), index, lvaNewObjArrayArgs) &&
3091                        IsArgsAddr(tree->gtGetOp1()->gtGetOp1()->gtGetOp1(), lvaNewObjArrayArgs);
3092             }
3093
3094             static bool IsArgsFieldIndir(GenTree* tree, unsigned index, unsigned lvaNewObjArrayArgs)
3095             {
3096                 return (tree->OperGet() == GT_IND) && (tree->gtGetOp1()->OperGet() == GT_ADD) &&
3097                        (tree->gtGetOp1()->gtGetOp2()->IsIntegralConst(sizeof(INT32) * index)) &&
3098                        IsArgsAddr(tree->gtGetOp1()->gtGetOp1(), lvaNewObjArrayArgs);
3099             }
3100
3101             static bool IsArgsAddr(GenTree* tree, unsigned lvaNewObjArrayArgs)
3102             {
3103                 return (tree->OperGet() == GT_ADDR) && (tree->gtGetOp1()->OperGet() == GT_LCL_VAR) &&
3104                        (tree->gtGetOp1()->AsLclVar()->GetLclNum() == lvaNewObjArrayArgs);
3105             }
3106
3107             static bool IsComma(GenTree* tree)
3108             {
3109                 return (tree != nullptr) && (tree->OperGet() == GT_COMMA);
3110             }
3111         };
3112
3113         unsigned argIndex = 0;
3114         GenTree* comma;
3115
3116         for (comma = argsArg->Current(); Match::IsComma(comma); comma = comma->gtGetOp2())
3117         {
3118             if (lowerBoundsSpecified)
3119             {
3120                 //
3121                 // In general lower bounds can be ignored because they're not needed to
3122                 // calculate the total number of elements. But for single dimensional arrays
3123                 // we need to know if the lower bound is 0 because in this case the runtime
3124                 // creates a SDArray and this affects the way the array data offset is calculated.
3125                 //
3126
3127                 if (rank == 1)
3128                 {
3129                     GenTree* lowerBoundAssign = comma->gtGetOp1();
3130                     assert(Match::IsArgsFieldInit(lowerBoundAssign, argIndex, lvaNewObjArrayArgs));
3131                     GenTree* lowerBoundNode = lowerBoundAssign->gtGetOp2();
3132
3133                     if (lowerBoundNode->IsIntegralConst(0))
3134                     {
3135                         isMDArray = false;
3136                     }
3137                 }
3138
3139                 comma = comma->gtGetOp2();
3140                 argIndex++;
3141             }
3142
3143             GenTree* lengthNodeAssign = comma->gtGetOp1();
3144             assert(Match::IsArgsFieldInit(lengthNodeAssign, argIndex, lvaNewObjArrayArgs));
3145             GenTree* lengthNode = lengthNodeAssign->gtGetOp2();
3146
3147             if (!lengthNode->IsCnsIntOrI())
3148             {
3149                 return nullptr;
3150             }
3151
3152             numElements *= S_SIZE_T(lengthNode->AsIntCon()->IconValue());
3153             argIndex++;
3154         }
3155
3156         assert((comma != nullptr) && Match::IsArgsAddr(comma, lvaNewObjArrayArgs));
3157
3158         if (argIndex != numArgs)
3159         {
3160             return nullptr;
3161         }
3162     }
3163     else
3164     {
3165         //
3166         // Make sure there are exactly two arguments:  the array class and
3167         // the number of elements.
3168         //
3169
3170         GenTreePtr arrayLengthNode;
3171
3172         GenTreeArgList* args = newArrayCall->gtCall.gtCallArgs;
3173 #ifdef FEATURE_READYTORUN_COMPILER
3174         if (newArrayCall->gtCall.gtCallMethHnd == eeFindHelper(CORINFO_HELP_READYTORUN_NEWARR_1))
3175         {
3176             // Array length is 1st argument for readytorun helper
3177             arrayLengthNode = args->Current();
3178         }
3179         else
3180 #endif
3181         {
3182             // Array length is 2nd argument for regular helper
3183             arrayLengthNode = args->Rest()->Current();
3184         }
3185
3186         //
3187         // Make sure that the number of elements look valid.
3188         //
3189         if (arrayLengthNode->gtOper != GT_CNS_INT)
3190         {
3191             return nullptr;
3192         }
3193
3194         numElements = S_SIZE_T(arrayLengthNode->gtIntCon.gtIconVal);
3195
3196         if (!info.compCompHnd->isSDArray(arrayClsHnd))
3197         {
3198             return nullptr;
3199         }
3200     }
3201
3202     CORINFO_CLASS_HANDLE elemClsHnd;
3203     var_types            elementType = JITtype2varType(info.compCompHnd->getChildType(arrayClsHnd, &elemClsHnd));
3204
3205     //
3206     // Note that genTypeSize will return zero for non primitive types, which is exactly
3207     // what we want (size will then be 0, and we will catch this in the conditional below).
3208     // Note that we don't expect this to fail for valid binaries, so we assert in the
3209     // non-verification case (the verification case should not assert but rather correctly
3210     // handle bad binaries).  This assert is not guarding any specific invariant, but rather
3211     // saying that we don't expect this to happen, and if it is hit, we need to investigate
3212     // why.
3213     //
3214
3215     S_UINT32 elemSize(genTypeSize(elementType));
3216     S_UINT32 size = elemSize * S_UINT32(numElements);
3217
3218     if (size.IsOverflow())
3219     {
3220         return nullptr;
3221     }
3222
3223     if ((size.Value() == 0) || (varTypeIsGC(elementType)))
3224     {
3225         assert(verNeedsVerification());
3226         return nullptr;
3227     }
3228
3229     void* initData = info.compCompHnd->getArrayInitializationData(fieldToken, size.Value());
3230     if (!initData)
3231     {
3232         return nullptr;
3233     }
3234
3235     //
3236     // At this point we are ready to commit to implementing the InitializeArray
3237     // intrinsic using a struct assignment.  Pop the arguments from the stack and
3238     // return the struct assignment node.
3239     //
3240
3241     impPopStack();
3242     impPopStack();
3243
3244     const unsigned blkSize = size.Value();
3245     GenTreePtr     dst;
3246
3247     if (isMDArray)
3248     {
3249         unsigned dataOffset = eeGetMDArrayDataOffset(elementType, rank);
3250
3251         dst = gtNewOperNode(GT_ADD, TYP_BYREF, arrayLocalNode, gtNewIconNode(dataOffset, TYP_I_IMPL));
3252     }
3253     else
3254     {
3255         dst = gtNewOperNode(GT_ADDR, TYP_BYREF, gtNewIndexRef(elementType, arrayLocalNode, gtNewIconNode(0)));
3256     }
3257     GenTreePtr blk     = gtNewBlockVal(dst, blkSize);
3258     GenTreePtr srcAddr = gtNewIconHandleNode((size_t)initData, GTF_ICON_STATIC_HDL);
3259     GenTreePtr src     = gtNewOperNode(GT_IND, TYP_STRUCT, srcAddr);
3260
3261     return gtNewBlkOpNode(blk,     // dst
3262                           src,     // src
3263                           blkSize, // size
3264                           false,   // volatil
3265                           true);   // copyBlock
3266 }
3267
3268 /*****************************************************************************/
3269 // Returns the GenTree that should be used to do the intrinsic instead of the call.
3270 // Returns NULL if an intrinsic cannot be used
3271
3272 GenTreePtr Compiler::impIntrinsic(GenTreePtr            newobjThis,
3273                                   CORINFO_CLASS_HANDLE  clsHnd,
3274                                   CORINFO_METHOD_HANDLE method,
3275                                   CORINFO_SIG_INFO*     sig,
3276                                   int                   memberRef,
3277                                   bool                  readonlyCall,
3278                                   bool                  tailCall,
3279                                   CorInfoIntrinsics*    pIntrinsicID)
3280 {
3281     bool mustExpand = false;
3282 #if COR_JIT_EE_VERSION > 460
3283     CorInfoIntrinsics intrinsicID = info.compCompHnd->getIntrinsicID(method, &mustExpand);
3284 #else
3285     CorInfoIntrinsics intrinsicID                                      = info.compCompHnd->getIntrinsicID(method);
3286 #endif
3287     *pIntrinsicID = intrinsicID;
3288
3289 #ifndef _TARGET_ARM_
3290     genTreeOps interlockedOperator;
3291 #endif
3292
3293     if (intrinsicID == CORINFO_INTRINSIC_StubHelpers_GetStubContext)
3294     {
3295         // must be done regardless of DbgCode and MinOpts
3296         return gtNewLclvNode(lvaStubArgumentVar, TYP_I_IMPL);
3297     }
3298 #ifdef _TARGET_64BIT_
3299     if (intrinsicID == CORINFO_INTRINSIC_StubHelpers_GetStubContextAddr)
3300     {
3301         // must be done regardless of DbgCode and MinOpts
3302         return gtNewOperNode(GT_ADDR, TYP_I_IMPL, gtNewLclvNode(lvaStubArgumentVar, TYP_I_IMPL));
3303     }
3304 #else
3305     assert(intrinsicID != CORINFO_INTRINSIC_StubHelpers_GetStubContextAddr);
3306 #endif
3307
3308     GenTreePtr retNode = nullptr;
3309
3310     //
3311     // We disable the inlining of instrinsics for MinOpts.
3312     //
3313     if (!mustExpand && (opts.compDbgCode || opts.MinOpts()))
3314     {
3315         *pIntrinsicID = CORINFO_INTRINSIC_Illegal;
3316         return retNode;
3317     }
3318
3319     // Currently we don't have CORINFO_INTRINSIC_Exp because it does not
3320     // seem to work properly for Infinity values, we don't do
3321     // CORINFO_INTRINSIC_Pow because it needs a Helper which we currently don't have
3322
3323     var_types callType = JITtype2varType(sig->retType);
3324
3325     /* First do the intrinsics which are always smaller than a call */
3326
3327     switch (intrinsicID)
3328     {
3329         GenTreePtr op1, op2;
3330
3331         case CORINFO_INTRINSIC_Sin:
3332         case CORINFO_INTRINSIC_Sqrt:
3333         case CORINFO_INTRINSIC_Abs:
3334         case CORINFO_INTRINSIC_Cos:
3335         case CORINFO_INTRINSIC_Round:
3336         case CORINFO_INTRINSIC_Cosh:
3337         case CORINFO_INTRINSIC_Sinh:
3338         case CORINFO_INTRINSIC_Tan:
3339         case CORINFO_INTRINSIC_Tanh:
3340         case CORINFO_INTRINSIC_Asin:
3341         case CORINFO_INTRINSIC_Acos:
3342         case CORINFO_INTRINSIC_Atan:
3343         case CORINFO_INTRINSIC_Atan2:
3344         case CORINFO_INTRINSIC_Log10:
3345         case CORINFO_INTRINSIC_Pow:
3346         case CORINFO_INTRINSIC_Exp:
3347         case CORINFO_INTRINSIC_Ceiling:
3348         case CORINFO_INTRINSIC_Floor:
3349
3350             // These are math intrinsics
3351
3352             assert(callType != TYP_STRUCT);
3353
3354             op1 = nullptr;
3355
3356 #if defined(LEGACY_BACKEND)
3357             if (IsTargetIntrinsic(intrinsicID))
3358 #elif !defined(_TARGET_X86_)
3359             // Intrinsics that are not implemented directly by target instructions will
3360             // be re-materialized as users calls in rationalizer. For prefixed tail calls,
3361             // don't do this optimization, because
3362             //  a) For back compatibility reasons on desktop.Net 4.6 / 4.6.1
3363             //  b) It will be non-trivial task or too late to re-materialize a surviving
3364             //     tail prefixed GT_INTRINSIC as tail call in rationalizer.
3365             if (!IsIntrinsicImplementedByUserCall(intrinsicID) || !tailCall)
3366 #else
3367             // On x86 RyuJIT, importing intrinsics that are implemented as user calls can cause incorrect calculation
3368             // of the depth of the stack if these intrinsics are used as arguments to another call. This causes bad
3369             // code generation for certain EH constructs.
3370             if (!IsIntrinsicImplementedByUserCall(intrinsicID))
3371 #endif
3372             {
3373                 switch (sig->numArgs)
3374                 {
3375                     case 1:
3376                         op1 = impPopStack().val;
3377
3378 #if FEATURE_X87_DOUBLES
3379
3380                         // X87 stack doesn't differentiate between float/double
3381                         // so it doesn't need a cast, but everybody else does
3382                         // Just double check it is at least a FP type
3383                         noway_assert(varTypeIsFloating(op1));
3384
3385 #else // FEATURE_X87_DOUBLES
3386
3387                         if (op1->TypeGet() != callType)
3388                         {
3389                             op1 = gtNewCastNode(callType, op1, callType);
3390                         }
3391
3392 #endif // FEATURE_X87_DOUBLES
3393
3394                         op1 = new (this, GT_INTRINSIC)
3395                             GenTreeIntrinsic(genActualType(callType), op1, intrinsicID, method);
3396                         break;
3397
3398                     case 2:
3399                         op2 = impPopStack().val;
3400                         op1 = impPopStack().val;
3401
3402 #if FEATURE_X87_DOUBLES
3403
3404                         // X87 stack doesn't differentiate between float/double
3405                         // so it doesn't need a cast, but everybody else does
3406                         // Just double check it is at least a FP type
3407                         noway_assert(varTypeIsFloating(op2));
3408                         noway_assert(varTypeIsFloating(op1));
3409
3410 #else // FEATURE_X87_DOUBLES
3411
3412                         if (op2->TypeGet() != callType)
3413                         {
3414                             op2 = gtNewCastNode(callType, op2, callType);
3415                         }
3416                         if (op1->TypeGet() != callType)
3417                         {
3418                             op1 = gtNewCastNode(callType, op1, callType);
3419                         }
3420
3421 #endif // FEATURE_X87_DOUBLES
3422
3423                         op1 = new (this, GT_INTRINSIC)
3424                             GenTreeIntrinsic(genActualType(callType), op1, op2, intrinsicID, method);
3425                         break;
3426
3427                     default:
3428                         NO_WAY("Unsupported number of args for Math Instrinsic");
3429                 }
3430
3431 #ifndef LEGACY_BACKEND
3432                 if (IsIntrinsicImplementedByUserCall(intrinsicID))
3433                 {
3434                     op1->gtFlags |= GTF_CALL;
3435                 }
3436 #endif
3437             }
3438
3439             retNode = op1;
3440             break;
3441
3442 #ifdef _TARGET_XARCH_
3443         // TODO-ARM-CQ: reenable treating Interlocked operation as intrinsic
3444         case CORINFO_INTRINSIC_InterlockedAdd32:
3445             interlockedOperator = GT_LOCKADD;
3446             goto InterlockedBinOpCommon;
3447         case CORINFO_INTRINSIC_InterlockedXAdd32:
3448             interlockedOperator = GT_XADD;
3449             goto InterlockedBinOpCommon;
3450         case CORINFO_INTRINSIC_InterlockedXchg32:
3451             interlockedOperator = GT_XCHG;
3452             goto InterlockedBinOpCommon;
3453
3454 #ifdef _TARGET_AMD64_
3455         case CORINFO_INTRINSIC_InterlockedAdd64:
3456             interlockedOperator = GT_LOCKADD;
3457             goto InterlockedBinOpCommon;
3458         case CORINFO_INTRINSIC_InterlockedXAdd64:
3459             interlockedOperator = GT_XADD;
3460             goto InterlockedBinOpCommon;
3461         case CORINFO_INTRINSIC_InterlockedXchg64:
3462             interlockedOperator = GT_XCHG;
3463             goto InterlockedBinOpCommon;
3464 #endif // _TARGET_AMD64_
3465
3466         InterlockedBinOpCommon:
3467             assert(callType != TYP_STRUCT);
3468             assert(sig->numArgs == 2);
3469
3470             op2 = impPopStack().val;
3471             op1 = impPopStack().val;
3472
3473             // This creates:
3474             //   val
3475             // XAdd
3476             //   addr
3477             //     field (for example)
3478             //
3479             // In the case where the first argument is the address of a local, we might
3480             // want to make this *not* make the var address-taken -- but atomic instructions
3481             // on a local are probably pretty useless anyway, so we probably don't care.
3482
3483             op1 = gtNewOperNode(interlockedOperator, genActualType(callType), op1, op2);
3484             op1->gtFlags |= GTF_GLOB_EFFECT;
3485             retNode = op1;
3486             break;
3487 #endif // _TARGET_XARCH_
3488
3489         case CORINFO_INTRINSIC_MemoryBarrier:
3490
3491             assert(sig->numArgs == 0);
3492
3493             op1 = new (this, GT_MEMORYBARRIER) GenTree(GT_MEMORYBARRIER, TYP_VOID);
3494             op1->gtFlags |= GTF_GLOB_EFFECT;
3495             retNode = op1;
3496             break;
3497
3498 #ifdef _TARGET_XARCH_
3499         // TODO-ARM-CQ: reenable treating InterlockedCmpXchg32 operation as intrinsic
3500         case CORINFO_INTRINSIC_InterlockedCmpXchg32:
3501 #ifdef _TARGET_AMD64_
3502         case CORINFO_INTRINSIC_InterlockedCmpXchg64:
3503 #endif
3504         {
3505             assert(callType != TYP_STRUCT);
3506             assert(sig->numArgs == 3);
3507             GenTreePtr op3;
3508
3509             op3 = impPopStack().val; // comparand
3510             op2 = impPopStack().val; // value
3511             op1 = impPopStack().val; // location
3512
3513             GenTreePtr node = new (this, GT_CMPXCHG) GenTreeCmpXchg(genActualType(callType), op1, op2, op3);
3514
3515             node->gtCmpXchg.gtOpLocation->gtFlags |= GTF_DONT_CSE;
3516             retNode = node;
3517             break;
3518         }
3519 #endif
3520
3521         case CORINFO_INTRINSIC_StringLength:
3522             op1 = impPopStack().val;
3523             if (!opts.MinOpts() && !opts.compDbgCode)
3524             {
3525                 GenTreeArrLen* arrLen =
3526                     new (this, GT_ARR_LENGTH) GenTreeArrLen(TYP_INT, op1, offsetof(CORINFO_String, stringLen));
3527                 op1 = arrLen;
3528             }
3529             else
3530             {
3531                 /* Create the expression "*(str_addr + stringLengthOffset)" */
3532                 op1 = gtNewOperNode(GT_ADD, TYP_BYREF, op1,
3533                                     gtNewIconNode(offsetof(CORINFO_String, stringLen), TYP_I_IMPL));
3534                 op1 = gtNewOperNode(GT_IND, TYP_INT, op1);
3535             }
3536             retNode = op1;
3537             break;
3538
3539         case CORINFO_INTRINSIC_StringGetChar:
3540             op2 = impPopStack().val;
3541             op1 = impPopStack().val;
3542             op1 = gtNewIndexRef(TYP_CHAR, op1, op2);
3543             op1->gtFlags |= GTF_INX_STRING_LAYOUT;
3544             retNode = op1;
3545             break;
3546
3547         case CORINFO_INTRINSIC_InitializeArray:
3548             retNode = impInitializeArrayIntrinsic(sig);
3549             break;
3550
3551         case CORINFO_INTRINSIC_Array_Address:
3552         case CORINFO_INTRINSIC_Array_Get:
3553         case CORINFO_INTRINSIC_Array_Set:
3554             retNode = impArrayAccessIntrinsic(clsHnd, sig, memberRef, readonlyCall, intrinsicID);
3555             break;
3556
3557         case CORINFO_INTRINSIC_GetTypeFromHandle:
3558             op1 = impStackTop(0).val;
3559             if (op1->gtOper == GT_CALL && (op1->gtCall.gtCallType == CT_HELPER) &&
3560                 gtIsTypeHandleToRuntimeTypeHelper(op1))
3561             {
3562                 op1 = impPopStack().val;
3563                 // Change call to return RuntimeType directly.
3564                 op1->gtType = TYP_REF;
3565                 retNode     = op1;
3566             }
3567             // Call the regular function.
3568             break;
3569
3570         case CORINFO_INTRINSIC_RTH_GetValueInternal:
3571             op1 = impStackTop(0).val;
3572             if (op1->gtOper == GT_CALL && (op1->gtCall.gtCallType == CT_HELPER) &&
3573                 gtIsTypeHandleToRuntimeTypeHelper(op1))
3574             {
3575                 // Old tree
3576                 // Helper-RuntimeTypeHandle -> TreeToGetNativeTypeHandle
3577                 //
3578                 // New tree
3579                 // TreeToGetNativeTypeHandle
3580
3581                 // Remove call to helper and return the native TypeHandle pointer that was the parameter
3582                 // to that helper.
3583
3584                 op1 = impPopStack().val;
3585
3586                 // Get native TypeHandle argument to old helper
3587                 op1 = op1->gtCall.gtCallArgs;
3588                 assert(op1->OperIsList());
3589                 assert(op1->gtOp.gtOp2 == nullptr);
3590                 op1     = op1->gtOp.gtOp1;
3591                 retNode = op1;
3592             }
3593             // Call the regular function.
3594             break;
3595
3596 #ifndef LEGACY_BACKEND
3597         case CORINFO_INTRINSIC_Object_GetType:
3598
3599             op1 = impPopStack().val;
3600             op1 = new (this, GT_INTRINSIC) GenTreeIntrinsic(genActualType(callType), op1, intrinsicID, method);
3601
3602             // Set the CALL flag to indicate that the operator is implemented by a call.
3603             // Set also the EXCEPTION flag because the native implementation of
3604             // CORINFO_INTRINSIC_Object_GetType intrinsic can throw NullReferenceException.
3605             op1->gtFlags |= (GTF_CALL | GTF_EXCEPT);
3606             retNode = op1;
3607             break;
3608 #endif
3609         // Implement ByReference Ctor.  This wraps the assignment of the ref into a byref-like field
3610         // in a value type.  The canonical example of this is Span<T>. In effect this is just a
3611         // substitution.  The parameter byref will be assigned into the newly allocated object.
3612         case CORINFO_INTRINSIC_ByReference_Ctor:
3613         {
3614             // Remove call to constructor and directly assign the byref passed
3615             // to the call to the first slot of the ByReference struct.
3616             op1                                    = impPopStack().val;
3617             GenTreePtr           thisptr           = newobjThis;
3618             CORINFO_FIELD_HANDLE fldHnd            = info.compCompHnd->getFieldInClass(clsHnd, 0);
3619             GenTreePtr           field             = gtNewFieldRef(TYP_BYREF, fldHnd, thisptr, 0, false);
3620             GenTreePtr           assign            = gtNewAssignNode(field, op1);
3621             GenTreePtr           byReferenceStruct = gtCloneExpr(thisptr->gtGetOp1());
3622             assert(byReferenceStruct != nullptr);
3623             impPushOnStack(byReferenceStruct, typeInfo(TI_STRUCT, clsHnd));
3624             retNode = assign;
3625             break;
3626         }
3627         // Implement ptr value getter for ByReference struct.
3628         case CORINFO_INTRINSIC_ByReference_Value:
3629         {
3630             op1                         = impPopStack().val;
3631             CORINFO_FIELD_HANDLE fldHnd = info.compCompHnd->getFieldInClass(clsHnd, 0);
3632             GenTreePtr           field  = gtNewFieldRef(TYP_BYREF, fldHnd, op1, 0, false);
3633             retNode                     = field;
3634             break;
3635         }
3636         default:
3637             /* Unknown intrinsic */
3638             break;
3639     }
3640
3641     if (mustExpand)
3642     {
3643         if (retNode == nullptr)
3644         {
3645             NO_WAY("JIT must expand the intrinsic!");
3646         }
3647     }
3648
3649     return retNode;
3650 }
3651
3652 /*****************************************************************************/
3653
3654 GenTreePtr Compiler::impArrayAccessIntrinsic(
3655     CORINFO_CLASS_HANDLE clsHnd, CORINFO_SIG_INFO* sig, int memberRef, bool readonlyCall, CorInfoIntrinsics intrinsicID)
3656 {
3657     /* If we are generating SMALL_CODE, we don't want to use intrinsics for
3658        the following, as it generates fatter code.
3659     */
3660
3661     if (compCodeOpt() == SMALL_CODE)
3662     {
3663         return nullptr;
3664     }
3665
3666     /* These intrinsics generate fatter (but faster) code and are only
3667        done if we don't need SMALL_CODE */
3668
3669     unsigned rank = (intrinsicID == CORINFO_INTRINSIC_Array_Set) ? (sig->numArgs - 1) : sig->numArgs;
3670
3671     // The rank 1 case is special because it has to handle two array formats
3672     // we will simply not do that case
3673     if (rank > GT_ARR_MAX_RANK || rank <= 1)
3674     {
3675         return nullptr;
3676     }
3677
3678     CORINFO_CLASS_HANDLE arrElemClsHnd = nullptr;
3679     var_types            elemType      = JITtype2varType(info.compCompHnd->getChildType(clsHnd, &arrElemClsHnd));
3680
3681     // For the ref case, we will only be able to inline if the types match
3682     // (verifier checks for this, we don't care for the nonverified case and the
3683     // type is final (so we don't need to do the cast)
3684     if ((intrinsicID != CORINFO_INTRINSIC_Array_Get) && !readonlyCall && varTypeIsGC(elemType))
3685     {
3686         // Get the call site signature
3687         CORINFO_SIG_INFO LocalSig;
3688         eeGetCallSiteSig(memberRef, info.compScopeHnd, impTokenLookupContextHandle, &LocalSig);
3689         assert(LocalSig.hasThis());
3690
3691         CORINFO_CLASS_HANDLE actualElemClsHnd;
3692
3693         if (intrinsicID == CORINFO_INTRINSIC_Array_Set)
3694         {
3695             // Fetch the last argument, the one that indicates the type we are setting.
3696             CORINFO_ARG_LIST_HANDLE argType = LocalSig.args;
3697             for (unsigned r = 0; r < rank; r++)
3698             {
3699                 argType = info.compCompHnd->getArgNext(argType);
3700             }
3701
3702             typeInfo argInfo = verParseArgSigToTypeInfo(&LocalSig, argType);
3703             actualElemClsHnd = argInfo.GetClassHandle();
3704         }
3705         else
3706         {
3707             assert(intrinsicID == CORINFO_INTRINSIC_Array_Address);
3708
3709             // Fetch the return type
3710             typeInfo retInfo = verMakeTypeInfo(LocalSig.retType, LocalSig.retTypeClass);
3711             assert(retInfo.IsByRef());
3712             actualElemClsHnd = retInfo.GetClassHandle();
3713         }
3714
3715         // if it's not final, we can't do the optimization
3716         if (!(info.compCompHnd->getClassAttribs(actualElemClsHnd) & CORINFO_FLG_FINAL))
3717         {
3718             return nullptr;
3719         }
3720     }
3721
3722     unsigned arrayElemSize;
3723     if (elemType == TYP_STRUCT)
3724     {
3725         assert(arrElemClsHnd);
3726
3727         arrayElemSize = info.compCompHnd->getClassSize(arrElemClsHnd);
3728     }
3729     else
3730     {
3731         arrayElemSize = genTypeSize(elemType);
3732     }
3733
3734     if ((unsigned char)arrayElemSize != arrayElemSize)
3735     {
3736         // arrayElemSize would be truncated as an unsigned char.
3737         // This means the array element is too large. Don't do the optimization.
3738         return nullptr;
3739     }
3740
3741     GenTreePtr val = nullptr;
3742
3743     if (intrinsicID == CORINFO_INTRINSIC_Array_Set)
3744     {
3745         // Assignment of a struct is more work, and there are more gets than sets.
3746         if (elemType == TYP_STRUCT)
3747         {
3748             return nullptr;
3749         }
3750
3751         val = impPopStack().val;
3752         assert(genActualType(elemType) == genActualType(val->gtType) ||
3753                (elemType == TYP_FLOAT && val->gtType == TYP_DOUBLE) ||
3754                (elemType == TYP_INT && val->gtType == TYP_BYREF) ||
3755                (elemType == TYP_DOUBLE && val->gtType == TYP_FLOAT));
3756     }
3757
3758     noway_assert((unsigned char)GT_ARR_MAX_RANK == GT_ARR_MAX_RANK);
3759
3760     GenTreePtr inds[GT_ARR_MAX_RANK];
3761     for (unsigned k = rank; k > 0; k--)
3762     {
3763         inds[k - 1] = impPopStack().val;
3764     }
3765
3766     GenTreePtr arr = impPopStack().val;
3767     assert(arr->gtType == TYP_REF);
3768
3769     GenTreePtr arrElem =
3770         new (this, GT_ARR_ELEM) GenTreeArrElem(TYP_BYREF, arr, static_cast<unsigned char>(rank),
3771                                                static_cast<unsigned char>(arrayElemSize), elemType, &inds[0]);
3772
3773     if (intrinsicID != CORINFO_INTRINSIC_Array_Address)
3774     {
3775         arrElem = gtNewOperNode(GT_IND, elemType, arrElem);
3776     }
3777
3778     if (intrinsicID == CORINFO_INTRINSIC_Array_Set)
3779     {
3780         assert(val != nullptr);
3781         return gtNewAssignNode(arrElem, val);
3782     }
3783     else
3784     {
3785         return arrElem;
3786     }
3787 }
3788
3789 BOOL Compiler::verMergeEntryStates(BasicBlock* block, bool* changed)
3790 {
3791     unsigned i;
3792
3793     // do some basic checks first
3794     if (block->bbStackDepthOnEntry() != verCurrentState.esStackDepth)
3795     {
3796         return FALSE;
3797     }
3798
3799     if (verCurrentState.esStackDepth > 0)
3800     {
3801         // merge stack types
3802         StackEntry* parentStack = block->bbStackOnEntry();
3803         StackEntry* childStack  = verCurrentState.esStack;
3804
3805         for (i = 0; i < verCurrentState.esStackDepth; i++, parentStack++, childStack++)
3806         {
3807             if (tiMergeToCommonParent(&parentStack->seTypeInfo, &childStack->seTypeInfo, changed) == FALSE)
3808             {
3809                 return FALSE;
3810             }
3811         }
3812     }
3813
3814     // merge initialization status of this ptr
3815
3816     if (verTrackObjCtorInitState)
3817     {
3818         // If we're tracking the CtorInitState, then it must not be unknown in the current state.
3819         assert(verCurrentState.thisInitialized != TIS_Bottom);
3820
3821         // If the successor block's thisInit state is unknown, copy it from the current state.
3822         if (block->bbThisOnEntry() == TIS_Bottom)
3823         {
3824             *changed = true;
3825             verSetThisInit(block, verCurrentState.thisInitialized);
3826         }
3827         else if (verCurrentState.thisInitialized != block->bbThisOnEntry())
3828         {
3829             if (block->bbThisOnEntry() != TIS_Top)
3830             {
3831                 *changed = true;
3832                 verSetThisInit(block, TIS_Top);
3833
3834                 if (block->bbFlags & BBF_FAILED_VERIFICATION)
3835                 {
3836                     // The block is bad. Control can flow through the block to any handler that catches the
3837                     // verification exception, but the importer ignores bad blocks and therefore won't model
3838                     // this flow in the normal way. To complete the merge into the bad block, the new state
3839                     // needs to be manually pushed to the handlers that may be reached after the verification
3840                     // exception occurs.
3841                     //
3842                     // Usually, the new state was already propagated to the relevant handlers while processing
3843                     // the predecessors of the bad block. The exception is when the bad block is at the start
3844                     // of a try region, meaning it is protected by additional handlers that do not protect its
3845                     // predecessors.
3846                     //
3847                     if (block->hasTryIndex() && ((block->bbFlags & BBF_TRY_BEG) != 0))
3848                     {
3849                         // Push TIS_Top to the handlers that protect the bad block. Note that this can cause
3850                         // recursive calls back into this code path (if successors of the current bad block are
3851                         // also bad blocks).
3852                         //
3853                         ThisInitState origTIS           = verCurrentState.thisInitialized;
3854                         verCurrentState.thisInitialized = TIS_Top;
3855                         impVerifyEHBlock(block, true);
3856                         verCurrentState.thisInitialized = origTIS;
3857                     }
3858                 }
3859             }
3860         }
3861     }
3862     else
3863     {
3864         assert(verCurrentState.thisInitialized == TIS_Bottom && block->bbThisOnEntry() == TIS_Bottom);
3865     }
3866
3867     return TRUE;
3868 }
3869
3870 /*****************************************************************************
3871  * 'logMsg' is true if a log message needs to be logged. false if the caller has
3872  *   already logged it (presumably in a more detailed fashion than done here)
3873  * 'bVerificationException' is true for a verification exception, false for a
3874  *   "call unauthorized by host" exception.
3875  */
3876
3877 void Compiler::verConvertBBToThrowVerificationException(BasicBlock* block DEBUGARG(bool logMsg))
3878 {
3879     block->bbJumpKind = BBJ_THROW;
3880     block->bbFlags |= BBF_FAILED_VERIFICATION;
3881
3882     impCurStmtOffsSet(block->bbCodeOffs);
3883
3884 #ifdef DEBUG
3885     // we need this since BeginTreeList asserts otherwise
3886     impTreeList = impTreeLast = nullptr;
3887     block->bbFlags &= ~BBF_IMPORTED;
3888
3889     if (logMsg)
3890     {
3891         JITLOG((LL_ERROR, "Verification failure: while compiling %s near IL offset %x..%xh \n", info.compFullName,
3892                 block->bbCodeOffs, block->bbCodeOffsEnd));
3893         if (verbose)
3894         {
3895             printf("\n\nVerification failure: %s near IL %xh \n", info.compFullName, block->bbCodeOffs);
3896         }
3897     }
3898
3899     if (JitConfig.DebugBreakOnVerificationFailure())
3900     {
3901         DebugBreak();
3902     }
3903 #endif
3904
3905     impBeginTreeList();
3906
3907     // if the stack is non-empty evaluate all the side-effects
3908     if (verCurrentState.esStackDepth > 0)
3909     {
3910         impEvalSideEffects();
3911     }
3912     assert(verCurrentState.esStackDepth == 0);
3913
3914     GenTreePtr op1 = gtNewHelperCallNode(CORINFO_HELP_VERIFICATION, TYP_VOID, GTF_EXCEPT,
3915                                          gtNewArgList(gtNewIconNode(block->bbCodeOffs)));
3916     // verCurrentState.esStackDepth = 0;
3917     impAppendTree(op1, (unsigned)CHECK_SPILL_NONE, impCurStmtOffs);
3918
3919     // The inliner is not able to handle methods that require throw block, so
3920     // make sure this methods never gets inlined.
3921     info.compCompHnd->setMethodAttribs(info.compMethodHnd, CORINFO_FLG_BAD_INLINEE);
3922 }
3923
3924 /*****************************************************************************
3925  *
3926  */
3927 void Compiler::verHandleVerificationFailure(BasicBlock* block DEBUGARG(bool logMsg))
3928
3929 {
3930     // In AMD64, for historical reasons involving design limitations of JIT64, the VM has a
3931     // slightly different mechanism in which it calls the JIT to perform IL verification:
3932     // in the case of transparent methods the VM calls for a predicate IsVerifiable()
3933     // that consists of calling the JIT with the IMPORT_ONLY flag and with the IL verify flag on.
3934     // If the JIT determines the method is not verifiable, it should raise the exception to the VM and let
3935     // it bubble up until reported by the runtime.  Currently in RyuJIT, this method doesn't bubble
3936     // up the exception, instead it embeds a throw inside the offending basic block and lets this
3937     // to fail upon runtime of the jitted method.
3938     //
3939     // For AMD64 we don't want this behavior when the JIT has been called only for verification (i.e.
3940     // with the IMPORT_ONLY and IL Verification flag set) because this won't actually generate code,
3941     // just try to find out whether to fail this method before even actually jitting it.  So, in case
3942     // we detect these two conditions, instead of generating a throw statement inside the offending
3943     // basic block, we immediately fail to JIT and notify the VM to make the IsVerifiable() predicate
3944     // to return false and make RyuJIT behave the same way JIT64 does.
3945     //
3946     // The rationale behind this workaround is to avoid modifying the VM and maintain compatibility between JIT64 and
3947     // RyuJIT for the time being until we completely replace JIT64.
3948     // TODO-ARM64-Cleanup:  We probably want to actually modify the VM in the future to avoid the unnecesary two passes.
3949
3950     // In AMD64 we must make sure we're behaving the same way as JIT64, meaning we should only raise the verification
3951     // exception if we are only importing and verifying.  The method verNeedsVerification() can also modify the
3952     // tiVerificationNeeded flag in the case it determines it can 'skip verification' during importation and defer it
3953     // to a runtime check. That's why we must assert one or the other (since the flag tiVerificationNeeded can
3954     // be turned off during importation).
3955     CLANG_FORMAT_COMMENT_ANCHOR;
3956
3957 #ifdef _TARGET_64BIT_
3958
3959 #ifdef DEBUG
3960     bool canSkipVerificationResult =
3961         info.compCompHnd->canSkipMethodVerification(info.compMethodHnd) != CORINFO_VERIFICATION_CANNOT_SKIP;
3962     assert(tiVerificationNeeded || canSkipVerificationResult);
3963 #endif // DEBUG
3964
3965     // Add the non verifiable flag to the compiler
3966     if (opts.jitFlags->IsSet(JitFlags::JIT_FLAG_IMPORT_ONLY))
3967     {
3968         tiIsVerifiableCode = FALSE;
3969     }
3970 #endif //_TARGET_64BIT_
3971     verResetCurrentState(block, &verCurrentState);
3972     verConvertBBToThrowVerificationException(block DEBUGARG(logMsg));
3973
3974 #ifdef DEBUG
3975     impNoteLastILoffs(); // Remember at which BC offset the tree was finished
3976 #endif                   // DEBUG
3977 }
3978
3979 /******************************************************************************/
3980 typeInfo Compiler::verMakeTypeInfo(CorInfoType ciType, CORINFO_CLASS_HANDLE clsHnd)
3981 {
3982     assert(ciType < CORINFO_TYPE_COUNT);
3983
3984     typeInfo tiResult;
3985     switch (ciType)
3986     {
3987         case CORINFO_TYPE_STRING:
3988         case CORINFO_TYPE_CLASS:
3989             tiResult = verMakeTypeInfo(clsHnd);
3990             if (!tiResult.IsType(TI_REF))
3991             { // type must be consistent with element type
3992                 return typeInfo();
3993             }
3994             break;
3995
3996 #ifdef _TARGET_64BIT_
3997         case CORINFO_TYPE_NATIVEINT:
3998         case CORINFO_TYPE_NATIVEUINT:
3999             if (clsHnd)
4000             {
4001                 // If we have more precise information, use it
4002                 return verMakeTypeInfo(clsHnd);
4003             }
4004             else
4005             {
4006                 return typeInfo::nativeInt();
4007             }
4008             break;
4009 #endif // _TARGET_64BIT_
4010
4011         case CORINFO_TYPE_VALUECLASS:
4012         case CORINFO_TYPE_REFANY:
4013             tiResult = verMakeTypeInfo(clsHnd);
4014             // type must be constant with element type;
4015             if (!tiResult.IsValueClass())
4016             {
4017                 return typeInfo();
4018             }
4019             break;
4020         case CORINFO_TYPE_VAR:
4021             return verMakeTypeInfo(clsHnd);
4022
4023         case CORINFO_TYPE_PTR: // for now, pointers are treated as an error
4024         case CORINFO_TYPE_VOID:
4025             return typeInfo();
4026             break;
4027
4028         case CORINFO_TYPE_BYREF:
4029         {
4030             CORINFO_CLASS_HANDLE childClassHandle;
4031             CorInfoType          childType = info.compCompHnd->getChildType(clsHnd, &childClassHandle);
4032             return ByRef(verMakeTypeInfo(childType, childClassHandle));
4033         }
4034         break;
4035
4036         default:
4037             if (clsHnd)
4038             { // If we have more precise information, use it
4039                 return typeInfo(TI_STRUCT, clsHnd);
4040             }
4041             else
4042             {
4043                 return typeInfo(JITtype2tiType(ciType));
4044             }
4045     }
4046     return tiResult;
4047 }
4048
4049 /******************************************************************************/
4050
4051 typeInfo Compiler::verMakeTypeInfo(CORINFO_CLASS_HANDLE clsHnd, bool bashStructToRef /* = false */)
4052 {
4053     if (clsHnd == nullptr)
4054     {
4055         return typeInfo();
4056     }
4057
4058     // Byrefs should only occur in method and local signatures, which are accessed
4059     // using ICorClassInfo and ICorClassInfo.getChildType.
4060     // So findClass() and getClassAttribs() should not be called for byrefs
4061
4062     if (JITtype2varType(info.compCompHnd->asCorInfoType(clsHnd)) == TYP_BYREF)
4063     {
4064         assert(!"Did findClass() return a Byref?");
4065         return typeInfo();
4066     }
4067
4068     unsigned attribs = info.compCompHnd->getClassAttribs(clsHnd);
4069
4070     if (attribs & CORINFO_FLG_VALUECLASS)
4071     {
4072         CorInfoType t = info.compCompHnd->getTypeForPrimitiveValueClass(clsHnd);
4073
4074         // Meta-data validation should ensure that CORINF_TYPE_BYREF should
4075         // not occur here, so we may want to change this to an assert instead.
4076         if (t == CORINFO_TYPE_VOID || t == CORINFO_TYPE_BYREF || t == CORINFO_TYPE_PTR)
4077         {
4078             return typeInfo();
4079         }
4080
4081 #ifdef _TARGET_64BIT_
4082         if (t == CORINFO_TYPE_NATIVEINT || t == CORINFO_TYPE_NATIVEUINT)
4083         {
4084             return typeInfo::nativeInt();
4085         }
4086 #endif // _TARGET_64BIT_
4087
4088         if (t != CORINFO_TYPE_UNDEF)
4089         {
4090             return (typeInfo(JITtype2tiType(t)));
4091         }
4092         else if (bashStructToRef)
4093         {
4094             return (typeInfo(TI_REF, clsHnd));
4095         }
4096         else
4097         {
4098             return (typeInfo(TI_STRUCT, clsHnd));
4099         }
4100     }
4101     else if (attribs & CORINFO_FLG_GENERIC_TYPE_VARIABLE)
4102     {
4103         // See comment in _typeInfo.h for why we do it this way.
4104         return (typeInfo(TI_REF, clsHnd, true));
4105     }
4106     else
4107     {
4108         return (typeInfo(TI_REF, clsHnd));
4109     }
4110 }
4111
4112 /******************************************************************************/
4113 BOOL Compiler::verIsSDArray(typeInfo ti)
4114 {
4115     if (ti.IsNullObjRef())
4116     { // nulls are SD arrays
4117         return TRUE;
4118     }
4119
4120     if (!ti.IsType(TI_REF))
4121     {
4122         return FALSE;
4123     }
4124
4125     if (!info.compCompHnd->isSDArray(ti.GetClassHandleForObjRef()))
4126     {
4127         return FALSE;
4128     }
4129     return TRUE;
4130 }
4131
4132 /******************************************************************************/
4133 /* Given 'arrayObjectType' which is an array type, fetch the element type. */
4134 /* Returns an error type if anything goes wrong */
4135
4136 typeInfo Compiler::verGetArrayElemType(typeInfo arrayObjectType)
4137 {
4138     assert(!arrayObjectType.IsNullObjRef()); // you need to check for null explictly since that is a success case
4139
4140     if (!verIsSDArray(arrayObjectType))
4141     {
4142         return typeInfo();
4143     }
4144
4145     CORINFO_CLASS_HANDLE childClassHandle = nullptr;
4146     CorInfoType ciType = info.compCompHnd->getChildType(arrayObjectType.GetClassHandleForObjRef(), &childClassHandle);
4147
4148     return verMakeTypeInfo(ciType, childClassHandle);
4149 }
4150
4151 /*****************************************************************************
4152  */
4153 typeInfo Compiler::verParseArgSigToTypeInfo(CORINFO_SIG_INFO* sig, CORINFO_ARG_LIST_HANDLE args)
4154 {
4155     CORINFO_CLASS_HANDLE classHandle;
4156     CorInfoType          ciType = strip(info.compCompHnd->getArgType(sig, args, &classHandle));
4157
4158     var_types type = JITtype2varType(ciType);
4159     if (varTypeIsGC(type))
4160     {
4161         // For efficiency, getArgType only returns something in classHandle for
4162         // value types.  For other types that have addition type info, you
4163         // have to call back explicitly
4164         classHandle = info.compCompHnd->getArgClass(sig, args);
4165         if (!classHandle)
4166         {
4167             NO_WAY("Could not figure out Class specified in argument or local signature");
4168         }
4169     }
4170
4171     return verMakeTypeInfo(ciType, classHandle);
4172 }
4173
4174 /*****************************************************************************/
4175
4176 // This does the expensive check to figure out whether the method
4177 // needs to be verified. It is called only when we fail verification,
4178 // just before throwing the verification exception.
4179
4180 BOOL Compiler::verNeedsVerification()
4181 {
4182     // If we have previously determined that verification is NOT needed
4183     // (for example in Compiler::compCompile), that means verification is really not needed.
4184     // Return the same decision we made before.
4185     // (Note: This literally means that tiVerificationNeeded can never go from 0 to 1.)
4186
4187     if (!tiVerificationNeeded)
4188     {
4189         return tiVerificationNeeded;
4190     }
4191
4192     assert(tiVerificationNeeded);
4193
4194     // Ok, we haven't concluded that verification is NOT needed. Consult the EE now to
4195     // obtain the answer.
4196     CorInfoCanSkipVerificationResult canSkipVerificationResult =
4197         info.compCompHnd->canSkipMethodVerification(info.compMethodHnd);
4198
4199     // canSkipVerification will return one of the following three values:
4200     //    CORINFO_VERIFICATION_CANNOT_SKIP = 0,       // Cannot skip verification during jit time.
4201     //    CORINFO_VERIFICATION_CAN_SKIP = 1,          // Can skip verification during jit time.
4202     //    CORINFO_VERIFICATION_RUNTIME_CHECK = 2,     // Skip verification during jit time,
4203     //     but need to insert a callout to the VM to ask during runtime
4204     //     whether to skip verification or not.
4205
4206     // Set tiRuntimeCalloutNeeded if canSkipVerification() instructs us to insert a callout for runtime check
4207     if (canSkipVerificationResult == CORINFO_VERIFICATION_RUNTIME_CHECK)
4208     {
4209         tiRuntimeCalloutNeeded = true;
4210     }
4211
4212     if (canSkipVerificationResult == CORINFO_VERIFICATION_DONT_JIT)
4213     {
4214         // Dev10 706080 - Testers don't like the assert, so just silence it
4215         // by not using the macros that invoke debugAssert.
4216         badCode();
4217     }
4218
4219     // When tiVerificationNeeded is true, JIT will do the verification during JIT time.
4220     // The following line means we will NOT do jit time verification if canSkipVerification
4221     // returns CORINFO_VERIFICATION_CAN_SKIP or CORINFO_VERIFICATION_RUNTIME_CHECK.
4222     tiVerificationNeeded = (canSkipVerificationResult == CORINFO_VERIFICATION_CANNOT_SKIP);
4223     return tiVerificationNeeded;
4224 }
4225
4226 BOOL Compiler::verIsByRefLike(const typeInfo& ti)
4227 {
4228     if (ti.IsByRef())
4229     {
4230         return TRUE;
4231     }
4232     if (!ti.IsType(TI_STRUCT))
4233     {
4234         return FALSE;
4235     }
4236     return info.compCompHnd->getClassAttribs(ti.GetClassHandleForValueClass()) & CORINFO_FLG_CONTAINS_STACK_PTR;
4237 }
4238
4239 BOOL Compiler::verIsSafeToReturnByRef(const typeInfo& ti)
4240 {
4241     if (ti.IsPermanentHomeByRef())
4242     {
4243         return TRUE;
4244     }
4245     else
4246     {
4247         return FALSE;
4248     }
4249 }
4250
4251 BOOL Compiler::verIsBoxable(const typeInfo& ti)
4252 {
4253     return (ti.IsPrimitiveType() || ti.IsObjRef() // includes boxed generic type variables
4254             || ti.IsUnboxedGenericTypeVar() ||
4255             (ti.IsType(TI_STRUCT) &&
4256              // exclude byreflike structs
4257              !(info.compCompHnd->getClassAttribs(ti.GetClassHandleForValueClass()) & CORINFO_FLG_CONTAINS_STACK_PTR)));
4258 }
4259
4260 // Is it a boxed value type?
4261 bool Compiler::verIsBoxedValueType(typeInfo ti)
4262 {
4263     if (ti.GetType() == TI_REF)
4264     {
4265         CORINFO_CLASS_HANDLE clsHnd = ti.GetClassHandleForObjRef();
4266         return !!eeIsValueClass(clsHnd);
4267     }
4268     else
4269     {
4270         return false;
4271     }
4272 }
4273
4274 /*****************************************************************************
4275  *
4276  *  Check if a TailCall is legal.
4277  */
4278
4279 bool Compiler::verCheckTailCallConstraint(
4280     OPCODE                  opcode,
4281     CORINFO_RESOLVED_TOKEN* pResolvedToken,
4282     CORINFO_RESOLVED_TOKEN* pConstrainedResolvedToken, // Is this a "constrained." call on a type parameter?
4283     bool                    speculative                // If true, won't throw if verificatoin fails. Instead it will
4284                                                        // return false to the caller.
4285                                                        // If false, it will throw.
4286     )
4287 {
4288     DWORD            mflags;
4289     CORINFO_SIG_INFO sig;
4290     unsigned int     popCount = 0; // we can't pop the stack since impImportCall needs it, so
4291                                    // this counter is used to keep track of how many items have been
4292                                    // virtually popped
4293
4294     CORINFO_METHOD_HANDLE methodHnd       = nullptr;
4295     CORINFO_CLASS_HANDLE  methodClassHnd  = nullptr;
4296     unsigned              methodClassFlgs = 0;
4297
4298     assert(impOpcodeIsCallOpcode(opcode));
4299
4300     if (compIsForInlining())
4301     {
4302         return false;
4303     }
4304
4305     // for calli, VerifyOrReturn that this is not a virtual method
4306     if (opcode == CEE_CALLI)
4307     {
4308         /* Get the call sig */
4309         eeGetSig(pResolvedToken->token, info.compScopeHnd, impTokenLookupContextHandle, &sig);
4310
4311         // We don't know the target method, so we have to infer the flags, or
4312         // assume the worst-case.
4313         mflags = (sig.callConv & CORINFO_CALLCONV_HASTHIS) ? 0 : CORINFO_FLG_STATIC;
4314     }
4315     else
4316     {
4317         methodHnd = pResolvedToken->hMethod;
4318
4319         mflags = info.compCompHnd->getMethodAttribs(methodHnd);
4320
4321         // When verifying generic code we pair the method handle with its
4322         // owning class to get the exact method signature.
4323         methodClassHnd = pResolvedToken->hClass;
4324         assert(methodClassHnd);
4325
4326         eeGetMethodSig(methodHnd, &sig, methodClassHnd);
4327
4328         // opcode specific check
4329         methodClassFlgs = info.compCompHnd->getClassAttribs(methodClassHnd);
4330     }
4331
4332     // We must have got the methodClassHnd if opcode is not CEE_CALLI
4333     assert((methodHnd != nullptr && methodClassHnd != nullptr) || opcode == CEE_CALLI);
4334
4335     if ((sig.callConv & CORINFO_CALLCONV_MASK) == CORINFO_CALLCONV_VARARG)
4336     {
4337         eeGetCallSiteSig(pResolvedToken->token, info.compScopeHnd, impTokenLookupContextHandle, &sig);
4338     }
4339
4340     // check compatibility of the arguments
4341     unsigned int argCount;
4342     argCount = sig.numArgs;
4343     CORINFO_ARG_LIST_HANDLE args;
4344     args = sig.args;
4345     while (argCount--)
4346     {
4347         typeInfo tiDeclared = verParseArgSigToTypeInfo(&sig, args).NormaliseForStack();
4348
4349         // check that the argument is not a byref for tailcalls
4350         VerifyOrReturnSpeculative(!verIsByRefLike(tiDeclared), "tailcall on byrefs", speculative);
4351
4352         // For unsafe code, we might have parameters containing pointer to the stack location.
4353         // Disallow the tailcall for this kind.
4354         CORINFO_CLASS_HANDLE classHandle;
4355         CorInfoType          ciType = strip(info.compCompHnd->getArgType(&sig, args, &classHandle));
4356         VerifyOrReturnSpeculative(ciType != CORINFO_TYPE_PTR, "tailcall on CORINFO_TYPE_PTR", speculative);
4357
4358         args = info.compCompHnd->getArgNext(args);
4359     }
4360
4361     // update popCount
4362     popCount += sig.numArgs;
4363
4364     // check for 'this' which is on non-static methods, not called via NEWOBJ
4365     if (!(mflags & CORINFO_FLG_STATIC))
4366     {
4367         // Always update the popCount.
4368         // This is crucial for the stack calculation to be correct.
4369         typeInfo tiThis = impStackTop(popCount).seTypeInfo;
4370         popCount++;
4371
4372         if (opcode == CEE_CALLI)
4373         {
4374             // For CALLI, we don't know the methodClassHnd. Therefore, let's check the "this" object
4375             // on the stack.
4376             if (tiThis.IsValueClass())
4377             {
4378                 tiThis.MakeByRef();
4379             }
4380             VerifyOrReturnSpeculative(!verIsByRefLike(tiThis), "byref in tailcall", speculative);
4381         }
4382         else
4383         {
4384             // Check type compatibility of the this argument
4385             typeInfo tiDeclaredThis = verMakeTypeInfo(methodClassHnd);
4386             if (tiDeclaredThis.IsValueClass())
4387             {
4388                 tiDeclaredThis.MakeByRef();
4389             }
4390
4391             VerifyOrReturnSpeculative(!verIsByRefLike(tiDeclaredThis), "byref in tailcall", speculative);
4392         }
4393     }
4394
4395     // Tail calls on constrained calls should be illegal too:
4396     // when instantiated at a value type, a constrained call may pass the address of a stack allocated value
4397     VerifyOrReturnSpeculative(!pConstrainedResolvedToken, "byref in constrained tailcall", speculative);
4398
4399     // Get the exact view of the signature for an array method
4400     if (sig.retType != CORINFO_TYPE_VOID)
4401     {
4402         if (methodClassFlgs & CORINFO_FLG_ARRAY)
4403         {
4404             assert(opcode != CEE_CALLI);
4405             eeGetCallSiteSig(pResolvedToken->token, info.compScopeHnd, impTokenLookupContextHandle, &sig);
4406         }
4407     }
4408
4409     typeInfo tiCalleeRetType = verMakeTypeInfo(sig.retType, sig.retTypeClass);
4410     typeInfo tiCallerRetType =
4411         verMakeTypeInfo(info.compMethodInfo->args.retType, info.compMethodInfo->args.retTypeClass);
4412
4413     // void return type gets morphed into the error type, so we have to treat them specially here
4414     if (sig.retType == CORINFO_TYPE_VOID)
4415     {
4416         VerifyOrReturnSpeculative(info.compMethodInfo->args.retType == CORINFO_TYPE_VOID, "tailcall return mismatch",
4417                                   speculative);
4418     }
4419     else
4420     {
4421         VerifyOrReturnSpeculative(tiCompatibleWith(NormaliseForStack(tiCalleeRetType),
4422                                                    NormaliseForStack(tiCallerRetType), true),
4423                                   "tailcall return mismatch", speculative);
4424     }
4425
4426     // for tailcall, stack must be empty
4427     VerifyOrReturnSpeculative(verCurrentState.esStackDepth == popCount, "stack non-empty on tailcall", speculative);
4428
4429     return true; // Yes, tailcall is legal
4430 }
4431
4432 /*****************************************************************************
4433  *
4434  *  Checks the IL verification rules for the call
4435  */
4436
4437 void Compiler::verVerifyCall(OPCODE                  opcode,
4438                              CORINFO_RESOLVED_TOKEN* pResolvedToken,
4439                              CORINFO_RESOLVED_TOKEN* pConstrainedResolvedToken,
4440                              bool                    tailCall,
4441                              bool                    readonlyCall,
4442                              const BYTE*             delegateCreateStart,
4443                              const BYTE*             codeAddr,
4444                              CORINFO_CALL_INFO* callInfo DEBUGARG(const char* methodName))
4445 {
4446     DWORD             mflags;
4447     CORINFO_SIG_INFO* sig      = nullptr;
4448     unsigned int      popCount = 0; // we can't pop the stack since impImportCall needs it, so
4449                                     // this counter is used to keep track of how many items have been
4450                                     // virtually popped
4451
4452     // for calli, VerifyOrReturn that this is not a virtual method
4453     if (opcode == CEE_CALLI)
4454     {
4455         Verify(false, "Calli not verifiable");
4456         return;
4457     }
4458
4459     //<NICE> It would be nice to cache the rest of it, but eeFindMethod is the big ticket item.
4460     mflags = callInfo->verMethodFlags;
4461
4462     sig = &callInfo->verSig;
4463
4464     if ((sig->callConv & CORINFO_CALLCONV_MASK) == CORINFO_CALLCONV_VARARG)
4465     {
4466         eeGetCallSiteSig(pResolvedToken->token, pResolvedToken->tokenScope, pResolvedToken->tokenContext, sig);
4467     }
4468
4469     // opcode specific check
4470     unsigned methodClassFlgs = callInfo->classFlags;
4471     switch (opcode)
4472     {
4473         case CEE_CALLVIRT:
4474             // cannot do callvirt on valuetypes
4475             VerifyOrReturn(!(methodClassFlgs & CORINFO_FLG_VALUECLASS), "callVirt on value class");
4476             VerifyOrReturn(sig->hasThis(), "CallVirt on static method");
4477             break;
4478
4479         case CEE_NEWOBJ:
4480         {
4481             assert(!tailCall); // Importer should not allow this
4482             VerifyOrReturn((mflags & CORINFO_FLG_CONSTRUCTOR) && !(mflags & CORINFO_FLG_STATIC),
4483                            "newobj must be on instance");
4484
4485             if (methodClassFlgs & CORINFO_FLG_DELEGATE)
4486             {
4487                 VerifyOrReturn(sig->numArgs == 2, "wrong number args to delegate ctor");
4488                 typeInfo tiDeclaredObj = verParseArgSigToTypeInfo(sig, sig->args).NormaliseForStack();
4489                 typeInfo tiDeclaredFtn =
4490                     verParseArgSigToTypeInfo(sig, info.compCompHnd->getArgNext(sig->args)).NormaliseForStack();
4491                 VerifyOrReturn(tiDeclaredFtn.IsNativeIntType(), "ftn arg needs to be a native int type");
4492
4493                 assert(popCount == 0);
4494                 typeInfo tiActualObj = impStackTop(1).seTypeInfo;
4495                 typeInfo tiActualFtn = impStackTop(0).seTypeInfo;
4496
4497                 VerifyOrReturn(tiActualFtn.IsMethod(), "delegate needs method as first arg");
4498                 VerifyOrReturn(tiCompatibleWith(tiActualObj, tiDeclaredObj, true), "delegate object type mismatch");
4499                 VerifyOrReturn(tiActualObj.IsNullObjRef() || tiActualObj.IsType(TI_REF),
4500                                "delegate object type mismatch");
4501
4502                 CORINFO_CLASS_HANDLE objTypeHandle =
4503                     tiActualObj.IsNullObjRef() ? nullptr : tiActualObj.GetClassHandleForObjRef();
4504
4505                 // the method signature must be compatible with the delegate's invoke method
4506
4507                 // check that for virtual functions, the type of the object used to get the
4508                 // ftn ptr is the same as the type of the object passed to the delegate ctor.
4509                 // since this is a bit of work to determine in general, we pattern match stylized
4510                 // code sequences
4511
4512                 // the delegate creation code check, which used to be done later, is now done here
4513                 // so we can read delegateMethodRef directly from
4514                 // from the preceding LDFTN or CEE_LDVIRTFN instruction sequence;
4515                 // we then use it in our call to isCompatibleDelegate().
4516
4517                 mdMemberRef delegateMethodRef = mdMemberRefNil;
4518                 VerifyOrReturn(verCheckDelegateCreation(delegateCreateStart, codeAddr, delegateMethodRef),
4519                                "must create delegates with certain IL");
4520
4521                 CORINFO_RESOLVED_TOKEN delegateResolvedToken;
4522                 delegateResolvedToken.tokenContext = impTokenLookupContextHandle;
4523                 delegateResolvedToken.tokenScope   = info.compScopeHnd;
4524                 delegateResolvedToken.token        = delegateMethodRef;
4525                 delegateResolvedToken.tokenType    = CORINFO_TOKENKIND_Method;
4526                 info.compCompHnd->resolveToken(&delegateResolvedToken);
4527
4528                 CORINFO_CALL_INFO delegateCallInfo;
4529                 eeGetCallInfo(&delegateResolvedToken, nullptr /* constraint typeRef */,
4530                               addVerifyFlag(CORINFO_CALLINFO_SECURITYCHECKS), &delegateCallInfo);
4531
4532                 BOOL isOpenDelegate = FALSE;
4533                 VerifyOrReturn(info.compCompHnd->isCompatibleDelegate(objTypeHandle, delegateResolvedToken.hClass,
4534                                                                       tiActualFtn.GetMethod(), pResolvedToken->hClass,
4535                                                                       &isOpenDelegate),
4536                                "function incompatible with delegate");
4537
4538                 // check the constraints on the target method
4539                 VerifyOrReturn(info.compCompHnd->satisfiesClassConstraints(delegateResolvedToken.hClass),
4540                                "delegate target has unsatisfied class constraints");
4541                 VerifyOrReturn(info.compCompHnd->satisfiesMethodConstraints(delegateResolvedToken.hClass,
4542                                                                             tiActualFtn.GetMethod()),
4543                                "delegate target has unsatisfied method constraints");
4544
4545                 // See ECMA spec section 1.8.1.5.2 (Delegating via instance dispatch)
4546                 // for additional verification rules for delegates
4547                 CORINFO_METHOD_HANDLE actualMethodHandle  = tiActualFtn.GetMethod();
4548                 DWORD                 actualMethodAttribs = info.compCompHnd->getMethodAttribs(actualMethodHandle);
4549                 if (impIsLDFTN_TOKEN(delegateCreateStart, codeAddr))
4550                 {
4551
4552                     if ((actualMethodAttribs & CORINFO_FLG_VIRTUAL) && ((actualMethodAttribs & CORINFO_FLG_FINAL) == 0)
4553 #ifdef DEBUG
4554                         && StrictCheckForNonVirtualCallToVirtualMethod()
4555 #endif
4556                             )
4557                     {
4558                         if (info.compCompHnd->shouldEnforceCallvirtRestriction(info.compScopeHnd))
4559                         {
4560                             VerifyOrReturn(tiActualObj.IsThisPtr() && lvaIsOriginalThisReadOnly() ||
4561                                                verIsBoxedValueType(tiActualObj),
4562                                            "The 'this' parameter to the call must be either the calling method's "
4563                                            "'this' parameter or "
4564                                            "a boxed value type.");
4565                         }
4566                     }
4567                 }
4568
4569                 if (actualMethodAttribs & CORINFO_FLG_PROTECTED)
4570                 {
4571                     BOOL targetIsStatic = actualMethodAttribs & CORINFO_FLG_STATIC;
4572
4573                     Verify(targetIsStatic || !isOpenDelegate,
4574                            "Unverifiable creation of an open instance delegate for a protected member.");
4575
4576                     CORINFO_CLASS_HANDLE instanceClassHnd = (tiActualObj.IsNullObjRef() || targetIsStatic)
4577                                                                 ? info.compClassHnd
4578                                                                 : tiActualObj.GetClassHandleForObjRef();
4579
4580                     // In the case of protected methods, it is a requirement that the 'this'
4581                     // pointer be a subclass of the current context.  Perform this check.
4582                     Verify(info.compCompHnd->canAccessFamily(info.compMethodHnd, instanceClassHnd),
4583                            "Accessing protected method through wrong type.");
4584                 }
4585                 goto DONE_ARGS;
4586             }
4587         }
4588         // fall thru to default checks
4589         default:
4590             VerifyOrReturn(!(mflags & CORINFO_FLG_ABSTRACT), "method abstract");
4591     }
4592     VerifyOrReturn(!((mflags & CORINFO_FLG_CONSTRUCTOR) && (methodClassFlgs & CORINFO_FLG_DELEGATE)),
4593                    "can only newobj a delegate constructor");
4594
4595     // check compatibility of the arguments
4596     unsigned int argCount;
4597     argCount = sig->numArgs;
4598     CORINFO_ARG_LIST_HANDLE args;
4599     args = sig->args;
4600     while (argCount--)
4601     {
4602         typeInfo tiActual = impStackTop(popCount + argCount).seTypeInfo;
4603
4604         typeInfo tiDeclared = verParseArgSigToTypeInfo(sig, args).NormaliseForStack();
4605         VerifyOrReturn(tiCompatibleWith(tiActual, tiDeclared, true), "type mismatch");
4606
4607         args = info.compCompHnd->getArgNext(args);
4608     }
4609
4610 DONE_ARGS:
4611
4612     // update popCount
4613     popCount += sig->numArgs;
4614
4615     // check for 'this' which are is non-static methods, not called via NEWOBJ
4616     CORINFO_CLASS_HANDLE instanceClassHnd = info.compClassHnd;
4617     if (!(mflags & CORINFO_FLG_STATIC) && (opcode != CEE_NEWOBJ))
4618     {
4619         typeInfo tiThis = impStackTop(popCount).seTypeInfo;
4620         popCount++;
4621
4622         // If it is null, we assume we can access it (since it will AV shortly)
4623         // If it is anything but a reference class, there is no hierarchy, so
4624         // again, we don't need the precise instance class to compute 'protected' access
4625         if (tiThis.IsType(TI_REF))
4626         {
4627             instanceClassHnd = tiThis.GetClassHandleForObjRef();
4628         }
4629
4630         // Check type compatibility of the this argument
4631         typeInfo tiDeclaredThis = verMakeTypeInfo(pResolvedToken->hClass);
4632         if (tiDeclaredThis.IsValueClass())
4633         {
4634             tiDeclaredThis.MakeByRef();
4635         }
4636
4637         // If this is a call to the base class .ctor, set thisPtr Init for
4638         // this block.
4639         if (mflags & CORINFO_FLG_CONSTRUCTOR)
4640         {
4641             if (verTrackObjCtorInitState && tiThis.IsThisPtr() &&
4642                 verIsCallToInitThisPtr(info.compClassHnd, pResolvedToken->hClass))
4643             {
4644                 assert(verCurrentState.thisInitialized !=
4645                        TIS_Bottom); // This should never be the case just from the logic of the verifier.
4646                 VerifyOrReturn(verCurrentState.thisInitialized == TIS_Uninit,
4647                                "Call to base class constructor when 'this' is possibly initialized");
4648                 // Otherwise, 'this' is now initialized.
4649                 verCurrentState.thisInitialized = TIS_Init;
4650                 tiThis.SetInitialisedObjRef();
4651             }
4652             else
4653             {
4654                 // We allow direct calls to value type constructors
4655                 // NB: we have to check that the contents of tiThis is a value type, otherwise we could use a
4656                 // constrained callvirt to illegally re-enter a .ctor on a value of reference type.
4657                 VerifyOrReturn(tiThis.IsByRef() && DereferenceByRef(tiThis).IsValueClass(),
4658                                "Bad call to a constructor");
4659             }
4660         }
4661
4662         if (pConstrainedResolvedToken != nullptr)
4663         {
4664             VerifyOrReturn(tiThis.IsByRef(), "non-byref this type in constrained call");
4665
4666             typeInfo tiConstraint = verMakeTypeInfo(pConstrainedResolvedToken->hClass);
4667
4668             // We just dereference this and test for equality
4669             tiThis.DereferenceByRef();
4670             VerifyOrReturn(typeInfo::AreEquivalent(tiThis, tiConstraint),
4671                            "this type mismatch with constrained type operand");
4672
4673             // Now pretend the this type is the boxed constrained type, for the sake of subsequent checks
4674             tiThis = typeInfo(TI_REF, pConstrainedResolvedToken->hClass);
4675         }
4676
4677         // To support direct calls on readonly byrefs, just pretend tiDeclaredThis is readonly too
4678         if (tiDeclaredThis.IsByRef() && tiThis.IsReadonlyByRef())
4679         {
4680             tiDeclaredThis.SetIsReadonlyByRef();
4681         }
4682
4683         VerifyOrReturn(tiCompatibleWith(tiThis, tiDeclaredThis, true), "this type mismatch");
4684
4685         if (tiThis.IsByRef())
4686         {
4687             // Find the actual type where the method exists (as opposed to what is declared
4688             // in the metadata). This is to prevent passing a byref as the "this" argument
4689             // while calling methods like System.ValueType.GetHashCode() which expect boxed objects.
4690
4691             CORINFO_CLASS_HANDLE actualClassHnd = info.compCompHnd->getMethodClass(pResolvedToken->hMethod);
4692             VerifyOrReturn(eeIsValueClass(actualClassHnd),
4693                            "Call to base type of valuetype (which is never a valuetype)");
4694         }
4695
4696         // Rules for non-virtual call to a non-final virtual method:
4697
4698         // Define:
4699         // The "this" pointer is considered to be "possibly written" if
4700         //   1. Its address have been taken (LDARGA 0) anywhere in the method.
4701         //   (or)
4702         //   2. It has been stored to (STARG.0) anywhere in the method.
4703
4704         // A non-virtual call to a non-final virtual method is only allowed if
4705         //   1. The this pointer passed to the callee is an instance of a boxed value type.
4706         //   (or)
4707         //   2. The this pointer passed to the callee is the current method's this pointer.
4708         //      (and) The current method's this pointer is not "possibly written".
4709
4710         // Thus the rule is that if you assign to this ANYWHERE you can't make "base" calls to
4711         // virtual methods.  (Luckily this does affect .ctors, since they are not virtual).
4712         // This is stronger that is strictly needed, but implementing a laxer rule is significantly
4713         // hard and more error prone.
4714
4715         if (opcode == CEE_CALL && (mflags & CORINFO_FLG_VIRTUAL) && ((mflags & CORINFO_FLG_FINAL) == 0)
4716 #ifdef DEBUG
4717             && StrictCheckForNonVirtualCallToVirtualMethod()
4718 #endif
4719                 )
4720         {
4721             if (info.compCompHnd->shouldEnforceCallvirtRestriction(info.compScopeHnd))
4722             {
4723                 VerifyOrReturn(
4724                     tiThis.IsThisPtr() && lvaIsOriginalThisReadOnly() || verIsBoxedValueType(tiThis),
4725                     "The 'this' parameter to the call must be either the calling method's 'this' parameter or "
4726                     "a boxed value type.");
4727             }
4728         }
4729     }
4730
4731     // check any constraints on the callee's class and type parameters
4732     VerifyOrReturn(info.compCompHnd->satisfiesClassConstraints(pResolvedToken->hClass),
4733                    "method has unsatisfied class constraints");
4734     VerifyOrReturn(info.compCompHnd->satisfiesMethodConstraints(pResolvedToken->hClass, pResolvedToken->hMethod),
4735                    "method has unsatisfied method constraints");
4736
4737     if (mflags & CORINFO_FLG_PROTECTED)
4738     {
4739         VerifyOrReturn(info.compCompHnd->canAccessFamily(info.compMethodHnd, instanceClassHnd),
4740                        "Can't access protected method");
4741     }
4742
4743     // Get the exact view of the signature for an array method
4744     if (sig->retType != CORINFO_TYPE_VOID)
4745     {
4746         eeGetMethodSig(pResolvedToken->hMethod, sig, pResolvedToken->hClass);
4747     }
4748
4749     // "readonly." prefixed calls only allowed for the Address operation on arrays.
4750     // The methods supported by array types are under the control of the EE
4751     // so we can trust that only the Address operation returns a byref.
4752     if (readonlyCall)
4753     {
4754         typeInfo tiCalleeRetType = verMakeTypeInfo(sig->retType, sig->retTypeClass);
4755         VerifyOrReturn((methodClassFlgs & CORINFO_FLG_ARRAY) && tiCalleeRetType.IsByRef(),
4756                        "unexpected use of readonly prefix");
4757     }
4758
4759     // Verify the tailcall
4760     if (tailCall)
4761     {
4762         verCheckTailCallConstraint(opcode, pResolvedToken, pConstrainedResolvedToken, false);
4763     }
4764 }
4765
4766 /*****************************************************************************
4767  *  Checks that a delegate creation is done using the following pattern:
4768  *     dup
4769  *     ldvirtftn targetMemberRef
4770  *  OR
4771  *     ldftn targetMemberRef
4772  *
4773  * 'delegateCreateStart' points at the last dup or ldftn in this basic block (null if
4774  *  not in this basic block)
4775  *
4776  *  targetMemberRef is read from the code sequence.
4777  *  targetMemberRef is validated iff verificationNeeded.
4778  */
4779
4780 BOOL Compiler::verCheckDelegateCreation(const BYTE*  delegateCreateStart,
4781                                         const BYTE*  codeAddr,
4782                                         mdMemberRef& targetMemberRef)
4783 {
4784     if (impIsLDFTN_TOKEN(delegateCreateStart, codeAddr))
4785     {
4786         targetMemberRef = getU4LittleEndian(&delegateCreateStart[2]);
4787         return TRUE;
4788     }
4789     else if (impIsDUP_LDVIRTFTN_TOKEN(delegateCreateStart, codeAddr))
4790     {
4791         targetMemberRef = getU4LittleEndian(&delegateCreateStart[3]);
4792         return TRUE;
4793     }
4794
4795     return FALSE;
4796 }
4797
4798 typeInfo Compiler::verVerifySTIND(const typeInfo& tiTo, const typeInfo& value, const typeInfo& instrType)
4799 {
4800     Verify(!tiTo.IsReadonlyByRef(), "write to readonly byref");
4801     typeInfo ptrVal     = verVerifyLDIND(tiTo, instrType);
4802     typeInfo normPtrVal = typeInfo(ptrVal).NormaliseForStack();
4803     if (!tiCompatibleWith(value, normPtrVal, true))
4804     {
4805         Verify(tiCompatibleWith(value, normPtrVal, true), "type mismatch");
4806         compUnsafeCastUsed = true;
4807     }
4808     return ptrVal;
4809 }
4810
4811 typeInfo Compiler::verVerifyLDIND(const typeInfo& ptr, const typeInfo& instrType)
4812 {
4813     assert(!instrType.IsStruct());
4814
4815     typeInfo ptrVal;
4816     if (ptr.IsByRef())
4817     {
4818         ptrVal = DereferenceByRef(ptr);
4819         if (instrType.IsObjRef() && !ptrVal.IsObjRef())
4820         {
4821             Verify(false, "bad pointer");
4822             compUnsafeCastUsed = true;
4823         }
4824         else if (!instrType.IsObjRef() && !typeInfo::AreEquivalent(instrType, ptrVal))
4825         {
4826             Verify(false, "pointer not consistent with instr");
4827             compUnsafeCastUsed = true;
4828         }
4829     }
4830     else
4831     {
4832         Verify(false, "pointer not byref");
4833         compUnsafeCastUsed = true;
4834     }
4835
4836     return ptrVal;
4837 }
4838
4839 // Verify that the field is used properly.  'tiThis' is NULL for statics,
4840 // 'fieldFlags' is the fields attributes, and mutator is TRUE if it is a
4841 // ld*flda or a st*fld.
4842 // 'enclosingClass' is given if we are accessing a field in some specific type.
4843
4844 void Compiler::verVerifyField(CORINFO_RESOLVED_TOKEN*   pResolvedToken,
4845                               const CORINFO_FIELD_INFO& fieldInfo,
4846                               const typeInfo*           tiThis,
4847                               BOOL                      mutator,
4848                               BOOL                      allowPlainStructAsThis)
4849 {
4850     CORINFO_CLASS_HANDLE enclosingClass = pResolvedToken->hClass;
4851     unsigned             fieldFlags     = fieldInfo.fieldFlags;
4852     CORINFO_CLASS_HANDLE instanceClass =
4853         info.compClassHnd; // for statics, we imagine the instance is the current class.
4854
4855     bool isStaticField = ((fieldFlags & CORINFO_FLG_FIELD_STATIC) != 0);
4856     if (mutator)
4857     {
4858         Verify(!(fieldFlags & CORINFO_FLG_FIELD_UNMANAGED), "mutating an RVA bases static");
4859         if ((fieldFlags & CORINFO_FLG_FIELD_FINAL))
4860         {
4861             Verify((info.compFlags & CORINFO_FLG_CONSTRUCTOR) && enclosingClass == info.compClassHnd &&
4862                        info.compIsStatic == isStaticField,
4863                    "bad use of initonly field (set or address taken)");
4864         }
4865     }
4866
4867     if (tiThis == nullptr)
4868     {
4869         Verify(isStaticField, "used static opcode with non-static field");
4870     }
4871     else
4872     {
4873         typeInfo tThis = *tiThis;
4874
4875         if (allowPlainStructAsThis && tThis.IsValueClass())
4876         {
4877             tThis.MakeByRef();
4878         }
4879
4880         // If it is null, we assume we can access it (since it will AV shortly)
4881         // If it is anything but a refernce class, there is no hierarchy, so
4882         // again, we don't need the precise instance class to compute 'protected' access
4883         if (tiThis->IsType(TI_REF))
4884         {
4885             instanceClass = tiThis->GetClassHandleForObjRef();
4886         }
4887
4888         // Note that even if the field is static, we require that the this pointer
4889         // satisfy the same constraints as a non-static field  This happens to
4890         // be simpler and seems reasonable
4891         typeInfo tiDeclaredThis = verMakeTypeInfo(enclosingClass);
4892         if (tiDeclaredThis.IsValueClass())
4893         {
4894             tiDeclaredThis.MakeByRef();
4895
4896             // we allow read-only tThis, on any field access (even stores!), because if the
4897             // class implementor wants to prohibit stores he should make the field private.
4898             // we do this by setting the read-only bit on the type we compare tThis to.
4899             tiDeclaredThis.SetIsReadonlyByRef();
4900         }
4901         else if (verTrackObjCtorInitState && tThis.IsThisPtr())
4902         {
4903             // Any field access is legal on "uninitialized" this pointers.
4904             // The easiest way to implement this is to simply set the
4905             // initialized bit for the duration of the type check on the
4906             // field access only.  It does not change the state of the "this"
4907             // for the function as a whole. Note that the "tThis" is a copy
4908             // of the original "this" type (*tiThis) passed in.
4909             tThis.SetInitialisedObjRef();
4910         }
4911
4912         Verify(tiCompatibleWith(tThis, tiDeclaredThis, true), "this type mismatch");
4913     }
4914
4915     // Presently the JIT does not check that we don't store or take the address of init-only fields
4916     // since we cannot guarantee their immutability and it is not a security issue.
4917
4918     // check any constraints on the fields's class --- accessing the field might cause a class constructor to run.
4919     VerifyOrReturn(info.compCompHnd->satisfiesClassConstraints(enclosingClass),
4920                    "field has unsatisfied class constraints");
4921     if (fieldFlags & CORINFO_FLG_FIELD_PROTECTED)
4922     {
4923         Verify(info.compCompHnd->canAccessFamily(info.compMethodHnd, instanceClass),
4924                "Accessing protected method through wrong type.");
4925     }
4926 }
4927
4928 void Compiler::verVerifyCond(const typeInfo& tiOp1, const typeInfo& tiOp2, unsigned opcode)
4929 {
4930     if (tiOp1.IsNumberType())
4931     {
4932 #ifdef _TARGET_64BIT_
4933         Verify(tiCompatibleWith(tiOp1, tiOp2, true), "Cond type mismatch");
4934 #else  // _TARGET_64BIT
4935         // [10/17/2013] Consider changing this: to put on my verification lawyer hat,
4936         // this is non-conforming to the ECMA Spec: types don't have to be equivalent,
4937         // but compatible, since we can coalesce native int with int32 (see section III.1.5).
4938         Verify(typeInfo::AreEquivalent(tiOp1, tiOp2), "Cond type mismatch");
4939 #endif // !_TARGET_64BIT_
4940     }
4941     else if (tiOp1.IsObjRef())
4942     {
4943         switch (opcode)
4944         {
4945             case CEE_BEQ_S:
4946             case CEE_BEQ:
4947             case CEE_BNE_UN_S:
4948             case CEE_BNE_UN:
4949             case CEE_CEQ:
4950             case CEE_CGT_UN:
4951                 break;
4952             default:
4953                 Verify(FALSE, "Cond not allowed on object types");
4954         }
4955         Verify(tiOp2.IsObjRef(), "Cond type mismatch");
4956     }
4957     else if (tiOp1.IsByRef())
4958     {
4959         Verify(tiOp2.IsByRef(), "Cond type mismatch");
4960     }
4961     else
4962     {
4963         Verify(tiOp1.IsMethod() && tiOp2.IsMethod(), "Cond type mismatch");
4964     }
4965 }
4966
4967 void Compiler::verVerifyThisPtrInitialised()
4968 {
4969     if (verTrackObjCtorInitState)
4970     {
4971         Verify(verCurrentState.thisInitialized == TIS_Init, "this ptr is not initialized");
4972     }
4973 }
4974
4975 BOOL Compiler::verIsCallToInitThisPtr(CORINFO_CLASS_HANDLE context, CORINFO_CLASS_HANDLE target)
4976 {
4977     // Either target == context, in this case calling an alternate .ctor
4978     // Or target is the immediate parent of context
4979
4980     return ((target == context) || (target == info.compCompHnd->getParentType(context)));
4981 }
4982
4983 GenTreePtr Compiler::impImportLdvirtftn(GenTreePtr              thisPtr,
4984                                         CORINFO_RESOLVED_TOKEN* pResolvedToken,
4985                                         CORINFO_CALL_INFO*      pCallInfo)
4986 {
4987     if ((pCallInfo->methodFlags & CORINFO_FLG_EnC) && !(pCallInfo->classFlags & CORINFO_FLG_INTERFACE))
4988     {
4989         NO_WAY("Virtual call to a function added via EnC is not supported");
4990     }
4991
4992 #ifdef FEATURE_READYTORUN_COMPILER
4993     if (opts.IsReadyToRun())
4994     {
4995         if (!pCallInfo->exactContextNeedsRuntimeLookup)
4996         {
4997             GenTreeCall* call = gtNewHelperCallNode(CORINFO_HELP_READYTORUN_VIRTUAL_FUNC_PTR, TYP_I_IMPL, GTF_EXCEPT,
4998                                                     gtNewArgList(thisPtr));
4999
5000             call->setEntryPoint(pCallInfo->codePointerLookup.constLookup);
5001
5002             return call;
5003         }
5004
5005         // We need a runtime lookup. CoreRT has a ReadyToRun helper for that too.
5006         if (IsTargetAbi(CORINFO_CORERT_ABI))
5007         {
5008             GenTreePtr ctxTree = getRuntimeContextTree(pCallInfo->codePointerLookup.lookupKind.runtimeLookupKind);
5009
5010             return impReadyToRunHelperToTree(pResolvedToken, CORINFO_HELP_READYTORUN_GENERIC_HANDLE, TYP_I_IMPL,
5011                                              gtNewArgList(ctxTree), &pCallInfo->codePointerLookup.lookupKind);
5012         }
5013     }
5014 #endif
5015
5016     // Get the exact descriptor for the static callsite
5017     GenTreePtr exactTypeDesc = impParentClassTokenToHandle(pResolvedToken);
5018     if (exactTypeDesc == nullptr)
5019     { // compDonotInline()
5020         return nullptr;
5021     }
5022
5023     GenTreePtr exactMethodDesc = impTokenToHandle(pResolvedToken);
5024     if (exactMethodDesc == nullptr)
5025     { // compDonotInline()
5026         return nullptr;
5027     }
5028
5029     GenTreeArgList* helpArgs = gtNewArgList(exactMethodDesc);
5030
5031     helpArgs = gtNewListNode(exactTypeDesc, helpArgs);
5032
5033     helpArgs = gtNewListNode(thisPtr, helpArgs);
5034
5035     // Call helper function.  This gets the target address of the final destination callsite.
5036
5037     return gtNewHelperCallNode(CORINFO_HELP_VIRTUAL_FUNC_PTR, TYP_I_IMPL, GTF_EXCEPT, helpArgs);
5038 }
5039
5040 /*****************************************************************************
5041  *
5042  *  Build and import a box node
5043  */
5044
5045 void Compiler::impImportAndPushBox(CORINFO_RESOLVED_TOKEN* pResolvedToken)
5046 {
5047     // Get the tree for the type handle for the boxed object.  In the case
5048     // of shared generic code or ngen'd code this might be an embedded
5049     // computation.
5050     // Note we can only box do it if the class construtor has been called
5051     // We can always do it on primitive types
5052
5053     GenTreePtr op1 = nullptr;
5054     GenTreePtr op2 = nullptr;
5055     var_types  lclTyp;
5056
5057     impSpillSpecialSideEff();
5058
5059     // Now get the expression to box from the stack.
5060     CORINFO_CLASS_HANDLE operCls;
5061     GenTreePtr           exprToBox = impPopStack(operCls).val;
5062
5063     CorInfoHelpFunc boxHelper = info.compCompHnd->getBoxHelper(pResolvedToken->hClass);
5064     if (boxHelper == CORINFO_HELP_BOX)
5065     {
5066         // we are doing 'normal' boxing.  This means that we can inline the box operation
5067         // Box(expr) gets morphed into
5068         // temp = new(clsHnd)
5069         // cpobj(temp+4, expr, clsHnd)
5070         // push temp
5071         // The code paths differ slightly below for structs and primitives because
5072         // "cpobj" differs in these cases.  In one case you get
5073         //    impAssignStructPtr(temp+4, expr, clsHnd)
5074         // and the other you get
5075         //    *(temp+4) = expr
5076
5077         if (impBoxTempInUse || impBoxTemp == BAD_VAR_NUM)
5078         {
5079             impBoxTemp = lvaGrabTemp(true DEBUGARG("Box Helper"));
5080         }
5081
5082         // needs to stay in use until this box expression is appended
5083         // some other node.  We approximate this by keeping it alive until
5084         // the opcode stack becomes empty
5085         impBoxTempInUse = true;
5086
5087 #ifdef FEATURE_READYTORUN_COMPILER
5088         bool usingReadyToRunHelper = false;
5089
5090         if (opts.IsReadyToRun())
5091         {
5092             op1                   = impReadyToRunHelperToTree(pResolvedToken, CORINFO_HELP_READYTORUN_NEW, TYP_REF);
5093             usingReadyToRunHelper = (op1 != nullptr);
5094         }
5095
5096         if (!usingReadyToRunHelper)
5097 #endif
5098         {
5099             // TODO: ReadyToRun: When generic dictionary lookups are necessary, replace the lookup call
5100             // and the newfast call with a single call to a dynamic R2R cell that will:
5101             //      1) Load the context
5102             //      2) Perform the generic dictionary lookup and caching, and generate the appropriate stub
5103             //      3) Allocate and return the new object for boxing
5104             // Reason: performance (today, we'll always use the slow helper for the R2R generics case)
5105
5106             // Ensure that the value class is restored
5107             op2 = impTokenToHandle(pResolvedToken, nullptr, TRUE /* mustRestoreHandle */);
5108             if (op2 == nullptr)
5109             { // compDonotInline()
5110                 return;
5111             }
5112
5113             op1 = gtNewHelperCallNode(info.compCompHnd->getNewHelper(pResolvedToken, info.compMethodHnd), TYP_REF, 0,
5114                                       gtNewArgList(op2));
5115         }
5116
5117         /* Remember that this basic block contains 'new' of an array */
5118         compCurBB->bbFlags |= BBF_HAS_NEWOBJ;
5119
5120         GenTreePtr asg = gtNewTempAssign(impBoxTemp, op1);
5121
5122         GenTreePtr asgStmt = impAppendTree(asg, (unsigned)CHECK_SPILL_NONE, impCurStmtOffs);
5123
5124         op1 = gtNewLclvNode(impBoxTemp, TYP_REF);
5125         op2 = gtNewIconNode(sizeof(void*), TYP_I_IMPL);
5126         op1 = gtNewOperNode(GT_ADD, TYP_BYREF, op1, op2);
5127
5128         if (varTypeIsStruct(exprToBox))
5129         {
5130             assert(info.compCompHnd->getClassSize(pResolvedToken->hClass) == info.compCompHnd->getClassSize(operCls));
5131             op1 = impAssignStructPtr(op1, exprToBox, operCls, (unsigned)CHECK_SPILL_ALL);
5132         }
5133         else
5134         {
5135             lclTyp = exprToBox->TypeGet();
5136             if (lclTyp == TYP_BYREF)
5137             {
5138                 lclTyp = TYP_I_IMPL;
5139             }
5140             CorInfoType jitType = info.compCompHnd->asCorInfoType(pResolvedToken->hClass);
5141             if (impIsPrimitive(jitType))
5142             {
5143                 lclTyp = JITtype2varType(jitType);
5144             }
5145             assert(genActualType(exprToBox->TypeGet()) == genActualType(lclTyp) ||
5146                    varTypeIsFloating(lclTyp) == varTypeIsFloating(exprToBox->TypeGet()));
5147             var_types srcTyp = exprToBox->TypeGet();
5148             var_types dstTyp = lclTyp;
5149
5150             if (srcTyp != dstTyp)
5151             {
5152                 assert((varTypeIsFloating(srcTyp) && varTypeIsFloating(dstTyp)) ||
5153                        (varTypeIsIntegral(srcTyp) && varTypeIsIntegral(dstTyp)));
5154                 exprToBox = gtNewCastNode(dstTyp, exprToBox, dstTyp);
5155             }
5156             op1 = gtNewAssignNode(gtNewOperNode(GT_IND, lclTyp, op1), exprToBox);
5157         }
5158
5159         op2 = gtNewLclvNode(impBoxTemp, TYP_REF);
5160         op1 = gtNewOperNode(GT_COMMA, TYP_REF, op1, op2);
5161
5162         // Record that this is a "box" node.
5163         op1 = new (this, GT_BOX) GenTreeBox(TYP_REF, op1, asgStmt);
5164
5165         // If it is a value class, mark the "box" node.  We can use this information
5166         // to optimise several cases:
5167         //    "box(x) == null" --> false
5168         //    "(box(x)).CallAnInterfaceMethod(...)" --> "(&x).CallAValueTypeMethod"
5169         //    "(box(x)).CallAnObjectMethod(...)" --> "(&x).CallAValueTypeMethod"
5170
5171         op1->gtFlags |= GTF_BOX_VALUE;
5172         assert(op1->IsBoxedValue());
5173         assert(asg->gtOper == GT_ASG);
5174     }
5175     else
5176     {
5177         // Don't optimize, just call the helper and be done with it
5178
5179         // Ensure that the value class is restored
5180         op2 = impTokenToHandle(pResolvedToken, nullptr, TRUE /* mustRestoreHandle */);
5181         if (op2 == nullptr)
5182         { // compDonotInline()
5183             return;
5184         }
5185
5186         GenTreeArgList* args = gtNewArgList(op2, impGetStructAddr(exprToBox, operCls, (unsigned)CHECK_SPILL_ALL, true));
5187         op1                  = gtNewHelperCallNode(boxHelper, TYP_REF, GTF_EXCEPT, args);
5188     }
5189
5190     /* Push the result back on the stack, */
5191     /* even if clsHnd is a value class we want the TI_REF */
5192     typeInfo tiRetVal = typeInfo(TI_REF, info.compCompHnd->getTypeForBox(pResolvedToken->hClass));
5193     impPushOnStack(op1, tiRetVal);
5194 }
5195
5196 //------------------------------------------------------------------------
5197 // impImportNewObjArray: Build and import `new` of multi-dimmensional array
5198 //
5199 // Arguments:
5200 //    pResolvedToken - The CORINFO_RESOLVED_TOKEN that has been initialized
5201 //                     by a call to CEEInfo::resolveToken().
5202 //    pCallInfo - The CORINFO_CALL_INFO that has been initialized
5203 //                by a call to CEEInfo::getCallInfo().
5204 //
5205 // Assumptions:
5206 //    The multi-dimensional array constructor arguments (array dimensions) are
5207 //    pushed on the IL stack on entry to this method.
5208 //
5209 // Notes:
5210 //    Multi-dimensional array constructors are imported as calls to a JIT
5211 //    helper, not as regular calls.
5212
5213 void Compiler::impImportNewObjArray(CORINFO_RESOLVED_TOKEN* pResolvedToken, CORINFO_CALL_INFO* pCallInfo)
5214 {
5215     GenTreePtr classHandle = impParentClassTokenToHandle(pResolvedToken);
5216     if (classHandle == nullptr)
5217     { // compDonotInline()
5218         return;
5219     }
5220
5221     assert(pCallInfo->sig.numArgs);
5222
5223     GenTreePtr      node;
5224     GenTreeArgList* args;
5225
5226     //
5227     // There are two different JIT helpers that can be used to allocate
5228     // multi-dimensional arrays:
5229     //
5230     // - CORINFO_HELP_NEW_MDARR - takes the array dimensions as varargs.
5231     //      This variant is deprecated. It should be eventually removed.
5232     //
5233     // - CORINFO_HELP_NEW_MDARR_NONVARARG - takes the array dimensions as
5234     //      pointer to block of int32s. This variant is more portable.
5235     //
5236     // The non-varargs helper is enabled for CoreRT only for now. Enabling this
5237     // unconditionally would require ReadyToRun version bump.
5238     //
5239     CLANG_FORMAT_COMMENT_ANCHOR;
5240
5241 #if COR_JIT_EE_VERSION > 460
5242     if (!opts.IsReadyToRun() || IsTargetAbi(CORINFO_CORERT_ABI))
5243     {
5244         LclVarDsc* newObjArrayArgsVar;
5245
5246         // Reuse the temp used to pass the array dimensions to avoid bloating
5247         // the stack frame in case there are multiple calls to multi-dim array
5248         // constructors within a single method.
5249         if (lvaNewObjArrayArgs == BAD_VAR_NUM)
5250         {
5251             lvaNewObjArrayArgs                       = lvaGrabTemp(false DEBUGARG("NewObjArrayArgs"));
5252             lvaTable[lvaNewObjArrayArgs].lvType      = TYP_BLK;
5253             lvaTable[lvaNewObjArrayArgs].lvExactSize = 0;
5254         }
5255
5256         // Increase size of lvaNewObjArrayArgs to be the largest size needed to hold 'numArgs' integers
5257         // for our call to CORINFO_HELP_NEW_MDARR_NONVARARG.
5258         lvaTable[lvaNewObjArrayArgs].lvExactSize =
5259             max(lvaTable[lvaNewObjArrayArgs].lvExactSize, pCallInfo->sig.numArgs * sizeof(INT32));
5260
5261         // The side-effects may include allocation of more multi-dimensional arrays. Spill all side-effects
5262         // to ensure that the shared lvaNewObjArrayArgs local variable is only ever used to pass arguments
5263         // to one allocation at a time.
5264         impSpillSideEffects(true, (unsigned)CHECK_SPILL_ALL DEBUGARG("impImportNewObjArray"));
5265
5266         //
5267         // The arguments of the CORINFO_HELP_NEW_MDARR_NONVARARG helper are:
5268         //  - Array class handle
5269         //  - Number of dimension arguments
5270         //  - Pointer to block of int32 dimensions - address  of lvaNewObjArrayArgs temp.
5271         //
5272
5273         node = gtNewLclvNode(lvaNewObjArrayArgs, TYP_BLK);
5274         node = gtNewOperNode(GT_ADDR, TYP_I_IMPL, node);
5275
5276         // Pop dimension arguments from the stack one at a time and store it
5277         // into lvaNewObjArrayArgs temp.
5278         for (int i = pCallInfo->sig.numArgs - 1; i >= 0; i--)
5279         {
5280             GenTreePtr arg = impImplicitIorI4Cast(impPopStack().val, TYP_INT);
5281
5282             GenTreePtr dest = gtNewLclvNode(lvaNewObjArrayArgs, TYP_BLK);
5283             dest            = gtNewOperNode(GT_ADDR, TYP_I_IMPL, dest);
5284             dest            = gtNewOperNode(GT_ADD, TYP_I_IMPL, dest,
5285                                  new (this, GT_CNS_INT) GenTreeIntCon(TYP_I_IMPL, sizeof(INT32) * i));
5286             dest = gtNewOperNode(GT_IND, TYP_INT, dest);
5287
5288             node = gtNewOperNode(GT_COMMA, node->TypeGet(), gtNewAssignNode(dest, arg), node);
5289         }
5290
5291         args = gtNewArgList(node);
5292
5293         // pass number of arguments to the helper
5294         args = gtNewListNode(gtNewIconNode(pCallInfo->sig.numArgs), args);
5295
5296         args = gtNewListNode(classHandle, args);
5297
5298         node = gtNewHelperCallNode(CORINFO_HELP_NEW_MDARR_NONVARARG, TYP_REF, 0, args);
5299     }
5300     else
5301 #endif
5302     {
5303         //
5304         // The varargs helper needs the type and method handles as last
5305         // and  last-1 param (this is a cdecl call, so args will be
5306         // pushed in reverse order on the CPU stack)
5307         //
5308
5309         args = gtNewArgList(classHandle);
5310
5311         // pass number of arguments to the helper
5312         args = gtNewListNode(gtNewIconNode(pCallInfo->sig.numArgs), args);
5313
5314         unsigned argFlags = 0;
5315         args              = impPopList(pCallInfo->sig.numArgs, &argFlags, &pCallInfo->sig, args);
5316
5317         node = gtNewHelperCallNode(CORINFO_HELP_NEW_MDARR, TYP_REF, 0, args);
5318
5319         // varargs, so we pop the arguments
5320         node->gtFlags |= GTF_CALL_POP_ARGS;
5321
5322 #ifdef DEBUG
5323         // At the present time we don't track Caller pop arguments
5324         // that have GC references in them
5325         for (GenTreeArgList* temp = args; temp; temp = temp->Rest())
5326         {
5327             assert(temp->Current()->gtType != TYP_REF);
5328         }
5329 #endif
5330     }
5331
5332     node->gtFlags |= args->gtFlags & GTF_GLOB_EFFECT;
5333     node->gtCall.compileTimeHelperArgumentHandle = (CORINFO_GENERIC_HANDLE)pResolvedToken->hClass;
5334
5335     // Remember that this basic block contains 'new' of a md array
5336     compCurBB->bbFlags |= BBF_HAS_NEWARRAY;
5337
5338     impPushOnStack(node, typeInfo(TI_REF, pResolvedToken->hClass));
5339 }
5340
5341 GenTreePtr Compiler::impTransformThis(GenTreePtr              thisPtr,
5342                                       CORINFO_RESOLVED_TOKEN* pConstrainedResolvedToken,
5343                                       CORINFO_THIS_TRANSFORM  transform)
5344 {
5345     switch (transform)
5346     {
5347         case CORINFO_DEREF_THIS:
5348         {
5349             GenTreePtr obj = thisPtr;
5350
5351             // This does a LDIND on the obj, which should be a byref. pointing to a ref
5352             impBashVarAddrsToI(obj);
5353             assert(genActualType(obj->gtType) == TYP_I_IMPL || obj->gtType == TYP_BYREF);
5354             CorInfoType constraintTyp = info.compCompHnd->asCorInfoType(pConstrainedResolvedToken->hClass);
5355
5356             obj = gtNewOperNode(GT_IND, JITtype2varType(constraintTyp), obj);
5357             // ldind could point anywhere, example a boxed class static int
5358             obj->gtFlags |= (GTF_EXCEPT | GTF_GLOB_REF | GTF_IND_TGTANYWHERE);
5359
5360             return obj;
5361         }
5362
5363         case CORINFO_BOX_THIS:
5364         {
5365             // Constraint calls where there might be no
5366             // unboxed entry point require us to implement the call via helper.
5367             // These only occur when a possible target of the call
5368             // may have inherited an implementation of an interface
5369             // method from System.Object or System.ValueType.  The EE does not provide us with
5370             // "unboxed" versions of these methods.
5371
5372             GenTreePtr obj = thisPtr;
5373
5374             assert(obj->TypeGet() == TYP_BYREF || obj->TypeGet() == TYP_I_IMPL);
5375             obj = gtNewObjNode(pConstrainedResolvedToken->hClass, obj);
5376             obj->gtFlags |= GTF_EXCEPT;
5377
5378             CorInfoType jitTyp  = info.compCompHnd->asCorInfoType(pConstrainedResolvedToken->hClass);
5379             var_types   objType = JITtype2varType(jitTyp);
5380             if (impIsPrimitive(jitTyp))
5381             {
5382                 if (obj->OperIsBlk())
5383                 {
5384                     obj->ChangeOperUnchecked(GT_IND);
5385
5386                     // Obj could point anywhere, example a boxed class static int
5387                     obj->gtFlags |= GTF_IND_TGTANYWHERE;
5388                     obj->gtOp.gtOp2 = nullptr; // must be zero for tree walkers
5389                 }
5390
5391                 obj->gtType = JITtype2varType(jitTyp);
5392                 assert(varTypeIsArithmetic(obj->gtType));
5393             }
5394
5395             // This pushes on the dereferenced byref
5396             // This is then used immediately to box.
5397             impPushOnStack(obj, verMakeTypeInfo(pConstrainedResolvedToken->hClass).NormaliseForStack());
5398
5399             // This pops off the byref-to-a-value-type remaining on the stack and
5400             // replaces it with a boxed object.
5401             // This is then used as the object to the virtual call immediately below.
5402             impImportAndPushBox(pConstrainedResolvedToken);
5403             if (compDonotInline())
5404             {
5405                 return nullptr;
5406             }
5407
5408             obj = impPopStack().val;
5409             return obj;
5410         }
5411         case CORINFO_NO_THIS_TRANSFORM:
5412         default:
5413             return thisPtr;
5414     }
5415 }
5416
5417 //------------------------------------------------------------------------
5418 // impCanPInvokeInline: check whether PInvoke inlining should enabled in current method.
5419 //
5420 // Return Value:
5421 //    true if PInvoke inlining should be enabled in current method, false otherwise
5422 //
5423 // Notes:
5424 //    Checks a number of ambient conditions where we could pinvoke but choose not to
5425
5426 bool Compiler::impCanPInvokeInline()
5427 {
5428     return getInlinePInvokeEnabled() && (!opts.compDbgCode) && (compCodeOpt() != SMALL_CODE) &&
5429            (!opts.compNoPInvokeInlineCB) // profiler is preventing inline pinvoke
5430         ;
5431 }
5432
5433 //------------------------------------------------------------------------
5434 // impCanPInvokeInlineCallSite: basic legality checks using information
5435 // from a call to see if the call qualifies as an inline pinvoke.
5436 //
5437 // Arguments:
5438 //    block      - block contaning the call, or for inlinees, block
5439 //                 containing the call being inlined
5440 //
5441 // Return Value:
5442 //    true if this call can legally qualify as an inline pinvoke, false otherwise
5443 //
5444 // Notes:
5445 //    For runtimes that support exception handling interop there are
5446 //    restrictions on using inline pinvoke in handler regions.
5447 //
5448 //    * We have to disable pinvoke inlining inside of filters because
5449 //    in case the main execution (i.e. in the try block) is inside
5450 //    unmanaged code, we cannot reuse the inlined stub (we still need
5451 //    the original state until we are in the catch handler)
5452 //
5453 //    * We disable pinvoke inlining inside handlers since the GSCookie
5454 //    is in the inlined Frame (see
5455 //    CORINFO_EE_INFO::InlinedCallFrameInfo::offsetOfGSCookie), but
5456 //    this would not protect framelets/return-address of handlers.
5457 //
5458 //    These restrictions are currently also in place for CoreCLR but
5459 //    can be relaxed when coreclr/#8459 is addressed.
5460
5461 bool Compiler::impCanPInvokeInlineCallSite(BasicBlock* block)
5462 {
5463     if (block->hasHndIndex())
5464     {
5465         return false;
5466     }
5467
5468     // The remaining limitations do not apply to CoreRT
5469     if (IsTargetAbi(CORINFO_CORERT_ABI))
5470     {
5471         return true;
5472     }
5473
5474 #ifdef _TARGET_AMD64_
5475     // On x64, we disable pinvoke inlining inside of try regions.
5476     // Here is the comment from JIT64 explaining why:
5477     //
5478     //   [VSWhidbey: 611015] - because the jitted code links in the
5479     //   Frame (instead of the stub) we rely on the Frame not being
5480     //   'active' until inside the stub.  This normally happens by the
5481     //   stub setting the return address pointer in the Frame object
5482     //   inside the stub.  On a normal return, the return address
5483     //   pointer is zeroed out so the Frame can be safely re-used, but
5484     //   if an exception occurs, nobody zeros out the return address
5485     //   pointer.  Thus if we re-used the Frame object, it would go
5486     //   'active' as soon as we link it into the Frame chain.
5487     //
5488     //   Technically we only need to disable PInvoke inlining if we're
5489     //   in a handler or if we're in a try body with a catch or
5490     //   filter/except where other non-handler code in this method
5491     //   might run and try to re-use the dirty Frame object.
5492     //
5493     //   A desktop test case where this seems to matter is
5494     //   jit\jit64\ebvts\mcpp\sources2\ijw\__clrcall\vector_ctor_dtor.02\deldtor_clr.exe
5495     if (block->hasTryIndex())
5496     {
5497         return false;
5498     }
5499 #endif // _TARGET_AMD64_
5500
5501     return true;
5502 }
5503
5504 //------------------------------------------------------------------------
5505 // impCheckForPInvokeCall examine call to see if it is a pinvoke and if so
5506 // if it can be expressed as an inline pinvoke.
5507 //
5508 // Arguments:
5509 //    call       - tree for the call
5510 //    methHnd    - handle for the method being called (may be null)
5511 //    sig        - signature of the method being called
5512 //    mflags     - method flags for the method being called
5513 //    block      - block contaning the call, or for inlinees, block
5514 //                 containing the call being inlined
5515 //
5516 // Notes:
5517 //   Sets GTF_CALL_M_PINVOKE on the call for pinvokes.
5518 //
5519 //   Also sets GTF_CALL_UNMANAGED on call for inline pinvokes if the
5520 //   call passes a combination of legality and profitabilty checks.
5521 //
5522 //   If GTF_CALL_UNMANAGED is set, increments info.compCallUnmanaged
5523
5524 void Compiler::impCheckForPInvokeCall(
5525     GenTreePtr call, CORINFO_METHOD_HANDLE methHnd, CORINFO_SIG_INFO* sig, unsigned mflags, BasicBlock* block)
5526 {
5527     CorInfoUnmanagedCallConv unmanagedCallConv;
5528
5529     // If VM flagged it as Pinvoke, flag the call node accordingly
5530     if ((mflags & CORINFO_FLG_PINVOKE) != 0)
5531     {
5532         call->gtCall.gtCallMoreFlags |= GTF_CALL_M_PINVOKE;
5533     }
5534
5535     if (methHnd)
5536     {
5537         if ((mflags & CORINFO_FLG_PINVOKE) == 0 || (mflags & CORINFO_FLG_NOSECURITYWRAP) == 0)
5538         {
5539             return;
5540         }
5541
5542         unmanagedCallConv = info.compCompHnd->getUnmanagedCallConv(methHnd);
5543     }
5544     else
5545     {
5546         CorInfoCallConv callConv = CorInfoCallConv(sig->callConv & CORINFO_CALLCONV_MASK);
5547         if (callConv == CORINFO_CALLCONV_NATIVEVARARG)
5548         {
5549             // Used by the IL Stubs.
5550             callConv = CORINFO_CALLCONV_C;
5551         }
5552         static_assert_no_msg((unsigned)CORINFO_CALLCONV_C == (unsigned)CORINFO_UNMANAGED_CALLCONV_C);
5553         static_assert_no_msg((unsigned)CORINFO_CALLCONV_STDCALL == (unsigned)CORINFO_UNMANAGED_CALLCONV_STDCALL);
5554         static_assert_no_msg((unsigned)CORINFO_CALLCONV_THISCALL == (unsigned)CORINFO_UNMANAGED_CALLCONV_THISCALL);
5555         unmanagedCallConv = CorInfoUnmanagedCallConv(callConv);
5556
5557         assert(!call->gtCall.gtCallCookie);
5558     }
5559
5560     if (unmanagedCallConv != CORINFO_UNMANAGED_CALLCONV_C && unmanagedCallConv != CORINFO_UNMANAGED_CALLCONV_STDCALL &&
5561         unmanagedCallConv != CORINFO_UNMANAGED_CALLCONV_THISCALL)
5562     {
5563         return;
5564     }
5565     optNativeCallCount++;
5566
5567     if (opts.jitFlags->IsSet(JitFlags::JIT_FLAG_IL_STUB) && methHnd == nullptr)
5568     {
5569         // PInvoke CALLI in IL stubs must be inlined
5570     }
5571     else
5572     {
5573         // Check legality
5574         if (!impCanPInvokeInlineCallSite(block))
5575         {
5576             return;
5577         }
5578
5579         // PInvoke CALL in IL stubs must be inlined on CoreRT. Skip the ambient conditions checks and
5580         // profitability checks
5581         if (!(opts.jitFlags->IsSet(JitFlags::JIT_FLAG_IL_STUB) && IsTargetAbi(CORINFO_CORERT_ABI)))
5582         {
5583             if (!impCanPInvokeInline())
5584             {
5585                 return;
5586             }
5587
5588             // Size-speed tradeoff: don't use inline pinvoke at rarely
5589             // executed call sites.  The non-inline version is more
5590             // compact.
5591             if (block->isRunRarely())
5592             {
5593                 return;
5594             }
5595         }
5596
5597         // The expensive check should be last
5598         if (info.compCompHnd->pInvokeMarshalingRequired(methHnd, sig))
5599         {
5600             return;
5601         }
5602     }
5603
5604     JITLOG((LL_INFO1000000, "\nInline a CALLI PINVOKE call from method %s", info.compFullName));
5605
5606     call->gtFlags |= GTF_CALL_UNMANAGED;
5607     info.compCallUnmanaged++;
5608
5609     // AMD64 convention is same for native and managed
5610     if (unmanagedCallConv == CORINFO_UNMANAGED_CALLCONV_C)
5611     {
5612         call->gtFlags |= GTF_CALL_POP_ARGS;
5613     }
5614
5615     if (unmanagedCallConv == CORINFO_UNMANAGED_CALLCONV_THISCALL)
5616     {
5617         call->gtCall.gtCallMoreFlags |= GTF_CALL_M_UNMGD_THISCALL;
5618     }
5619 }
5620
5621 GenTreePtr Compiler::impImportIndirectCall(CORINFO_SIG_INFO* sig, IL_OFFSETX ilOffset)
5622 {
5623     var_types callRetTyp = JITtype2varType(sig->retType);
5624
5625     /* The function pointer is on top of the stack - It may be a
5626      * complex expression. As it is evaluated after the args,
5627      * it may cause registered args to be spilled. Simply spill it.
5628      */
5629
5630     // Ignore this trivial case.
5631     if (impStackTop().val->gtOper != GT_LCL_VAR)
5632     {
5633         impSpillStackEntry(verCurrentState.esStackDepth - 1,
5634                            BAD_VAR_NUM DEBUGARG(false) DEBUGARG("impImportIndirectCall"));
5635     }
5636
5637     /* Get the function pointer */
5638
5639     GenTreePtr fptr = impPopStack().val;
5640     assert(genActualType(fptr->gtType) == TYP_I_IMPL);
5641
5642 #ifdef DEBUG
5643     // This temporary must never be converted to a double in stress mode,
5644     // because that can introduce a call to the cast helper after the
5645     // arguments have already been evaluated.
5646
5647     if (fptr->OperGet() == GT_LCL_VAR)
5648     {
5649         lvaTable[fptr->gtLclVarCommon.gtLclNum].lvKeepType = 1;
5650     }
5651 #endif
5652
5653     /* Create the call node */
5654
5655     GenTreePtr call = gtNewIndCallNode(fptr, callRetTyp, nullptr, ilOffset);
5656
5657     call->gtFlags |= GTF_EXCEPT | (fptr->gtFlags & GTF_GLOB_EFFECT);
5658
5659     return call;
5660 }
5661
5662 /*****************************************************************************/
5663
5664 void Compiler::impPopArgsForUnmanagedCall(GenTreePtr call, CORINFO_SIG_INFO* sig)
5665 {
5666     assert(call->gtFlags & GTF_CALL_UNMANAGED);
5667
5668     /* Since we push the arguments in reverse order (i.e. right -> left)
5669      * spill any side effects from the stack
5670      *
5671      * OBS: If there is only one side effect we do not need to spill it
5672      *      thus we have to spill all side-effects except last one
5673      */
5674
5675     unsigned lastLevelWithSideEffects = UINT_MAX;
5676
5677     unsigned argsToReverse = sig->numArgs;
5678
5679     // For "thiscall", the first argument goes in a register. Since its
5680     // order does not need to be changed, we do not need to spill it
5681
5682     if (call->gtCall.gtCallMoreFlags & GTF_CALL_M_UNMGD_THISCALL)
5683     {
5684         assert(argsToReverse);
5685         argsToReverse--;
5686     }
5687
5688 #ifndef _TARGET_X86_
5689     // Don't reverse args on ARM or x64 - first four args always placed in regs in order
5690     argsToReverse = 0;
5691 #endif
5692
5693     for (unsigned level = verCurrentState.esStackDepth - argsToReverse; level < verCurrentState.esStackDepth; level++)
5694     {
5695         if (verCurrentState.esStack[level].val->gtFlags & GTF_ORDER_SIDEEFF)
5696         {
5697             assert(lastLevelWithSideEffects == UINT_MAX);
5698
5699             impSpillStackEntry(level,
5700                                BAD_VAR_NUM DEBUGARG(false) DEBUGARG("impPopArgsForUnmanagedCall - other side effect"));
5701         }
5702         else if (verCurrentState.esStack[level].val->gtFlags & GTF_SIDE_EFFECT)
5703         {
5704             if (lastLevelWithSideEffects != UINT_MAX)
5705             {
5706                 /* We had a previous side effect - must spill it */
5707                 impSpillStackEntry(lastLevelWithSideEffects,
5708                                    BAD_VAR_NUM DEBUGARG(false) DEBUGARG("impPopArgsForUnmanagedCall - side effect"));
5709
5710                 /* Record the level for the current side effect in case we will spill it */
5711                 lastLevelWithSideEffects = level;
5712             }
5713             else
5714             {
5715                 /* This is the first side effect encountered - record its level */
5716
5717                 lastLevelWithSideEffects = level;
5718             }
5719         }
5720     }
5721
5722     /* The argument list is now "clean" - no out-of-order side effects
5723      * Pop the argument list in reverse order */
5724
5725     unsigned   argFlags = 0;
5726     GenTreePtr args     = call->gtCall.gtCallArgs =
5727         impPopRevList(sig->numArgs, &argFlags, sig, sig->numArgs - argsToReverse);
5728
5729     if (call->gtCall.gtCallMoreFlags & GTF_CALL_M_UNMGD_THISCALL)
5730     {
5731         GenTreePtr thisPtr = args->Current();
5732         impBashVarAddrsToI(thisPtr);
5733         assert(thisPtr->TypeGet() == TYP_I_IMPL || thisPtr->TypeGet() == TYP_BYREF);
5734     }
5735
5736     if (args)
5737     {
5738         call->gtFlags |= args->gtFlags & GTF_GLOB_EFFECT;
5739     }
5740 }
5741
5742 //------------------------------------------------------------------------
5743 // impInitClass: Build a node to initialize the class before accessing the
5744 //               field if necessary
5745 //
5746 // Arguments:
5747 //    pResolvedToken - The CORINFO_RESOLVED_TOKEN that has been initialized
5748 //                     by a call to CEEInfo::resolveToken().
5749 //
5750 // Return Value: If needed, a pointer to the node that will perform the class
5751 //               initializtion.  Otherwise, nullptr.
5752 //
5753
5754 GenTreePtr Compiler::impInitClass(CORINFO_RESOLVED_TOKEN* pResolvedToken)
5755 {
5756     CorInfoInitClassResult initClassResult =
5757         info.compCompHnd->initClass(pResolvedToken->hField, info.compMethodHnd, impTokenLookupContextHandle);
5758
5759     if ((initClassResult & CORINFO_INITCLASS_USE_HELPER) == 0)
5760     {
5761         return nullptr;
5762     }
5763     BOOL runtimeLookup;
5764
5765     GenTreePtr node = impParentClassTokenToHandle(pResolvedToken, &runtimeLookup);
5766
5767     if (node == nullptr)
5768     {
5769         assert(compDonotInline());
5770         return nullptr;
5771     }
5772
5773     if (runtimeLookup)
5774     {
5775         node = gtNewHelperCallNode(CORINFO_HELP_INITCLASS, TYP_VOID, 0, gtNewArgList(node));
5776     }
5777     else
5778     {
5779         // Call the shared non gc static helper, as its the fastest
5780         node = fgGetSharedCCtor(pResolvedToken->hClass);
5781     }
5782
5783     return node;
5784 }
5785
5786 GenTreePtr Compiler::impImportStaticReadOnlyField(void* fldAddr, var_types lclTyp)
5787 {
5788     GenTreePtr op1 = nullptr;
5789
5790     switch (lclTyp)
5791     {
5792         int     ival;
5793         __int64 lval;
5794         double  dval;
5795
5796         case TYP_BOOL:
5797             ival = *((bool*)fldAddr);
5798             goto IVAL_COMMON;
5799
5800         case TYP_BYTE:
5801             ival = *((signed char*)fldAddr);
5802             goto IVAL_COMMON;
5803
5804         case TYP_UBYTE:
5805             ival = *((unsigned char*)fldAddr);
5806             goto IVAL_COMMON;
5807
5808         case TYP_SHORT:
5809             ival = *((short*)fldAddr);
5810             goto IVAL_COMMON;
5811
5812         case TYP_CHAR:
5813         case TYP_USHORT:
5814             ival = *((unsigned short*)fldAddr);
5815             goto IVAL_COMMON;
5816
5817         case TYP_UINT:
5818         case TYP_INT:
5819             ival = *((int*)fldAddr);
5820         IVAL_COMMON:
5821             op1 = gtNewIconNode(ival);
5822             break;
5823
5824         case TYP_LONG:
5825         case TYP_ULONG:
5826             lval = *((__int64*)fldAddr);
5827             op1  = gtNewLconNode(lval);
5828             break;
5829
5830         case TYP_FLOAT:
5831             dval = *((float*)fldAddr);
5832             op1  = gtNewDconNode(dval);
5833 #if !FEATURE_X87_DOUBLES
5834             // X87 stack doesn't differentiate between float/double
5835             // so R4 is treated as R8, but everybody else does
5836             op1->gtType = TYP_FLOAT;
5837 #endif // FEATURE_X87_DOUBLES
5838             break;
5839
5840         case TYP_DOUBLE:
5841             dval = *((double*)fldAddr);
5842             op1  = gtNewDconNode(dval);
5843             break;
5844
5845         default:
5846             assert(!"Unexpected lclTyp");
5847             break;
5848     }
5849
5850     return op1;
5851 }
5852
5853 GenTreePtr Compiler::impImportStaticFieldAccess(CORINFO_RESOLVED_TOKEN* pResolvedToken,
5854                                                 CORINFO_ACCESS_FLAGS    access,
5855                                                 CORINFO_FIELD_INFO*     pFieldInfo,
5856                                                 var_types               lclTyp)
5857 {
5858     GenTreePtr op1;
5859
5860     switch (pFieldInfo->fieldAccessor)
5861     {
5862         case CORINFO_FIELD_STATIC_GENERICS_STATIC_HELPER:
5863         {
5864             assert(!compIsForInlining());
5865
5866             // We first call a special helper to get the statics base pointer
5867             op1 = impParentClassTokenToHandle(pResolvedToken);
5868
5869             // compIsForInlining() is false so we should not neve get NULL here
5870             assert(op1 != nullptr);
5871
5872             var_types type = TYP_BYREF;
5873
5874             switch (pFieldInfo->helper)
5875             {
5876                 case CORINFO_HELP_GETGENERICS_NONGCTHREADSTATIC_BASE:
5877                     type = TYP_I_IMPL;
5878                     break;
5879                 case CORINFO_HELP_GETGENERICS_GCSTATIC_BASE:
5880                 case CORINFO_HELP_GETGENERICS_NONGCSTATIC_BASE:
5881                 case CORINFO_HELP_GETGENERICS_GCTHREADSTATIC_BASE:
5882                     break;
5883                 default:
5884                     assert(!"unknown generic statics helper");
5885                     break;
5886             }
5887
5888             op1 = gtNewHelperCallNode(pFieldInfo->helper, type, 0, gtNewArgList(op1));
5889
5890             FieldSeqNode* fs = GetFieldSeqStore()->CreateSingleton(pResolvedToken->hField);
5891             op1              = gtNewOperNode(GT_ADD, type, op1,
5892                                 new (this, GT_CNS_INT) GenTreeIntCon(TYP_I_IMPL, pFieldInfo->offset, fs));
5893         }
5894         break;
5895
5896         case CORINFO_FIELD_STATIC_SHARED_STATIC_HELPER:
5897         {
5898 #ifdef FEATURE_READYTORUN_COMPILER
5899             if (opts.IsReadyToRun())
5900             {
5901                 unsigned callFlags = 0;
5902
5903                 if (info.compCompHnd->getClassAttribs(pResolvedToken->hClass) & CORINFO_FLG_BEFOREFIELDINIT)
5904                 {
5905                     callFlags |= GTF_CALL_HOISTABLE;
5906                 }
5907
5908                 op1 = gtNewHelperCallNode(CORINFO_HELP_READYTORUN_STATIC_BASE, TYP_BYREF, callFlags);
5909
5910                 op1->gtCall.setEntryPoint(pFieldInfo->fieldLookup);
5911             }
5912             else
5913 #endif
5914             {
5915                 op1 = fgGetStaticsCCtorHelper(pResolvedToken->hClass, pFieldInfo->helper);
5916             }
5917
5918             {
5919                 FieldSeqNode* fs = GetFieldSeqStore()->CreateSingleton(pResolvedToken->hField);
5920                 op1              = gtNewOperNode(GT_ADD, op1->TypeGet(), op1,
5921                                     new (this, GT_CNS_INT) GenTreeIntCon(TYP_INT, pFieldInfo->offset, fs));
5922             }
5923             break;
5924         }
5925 #if COR_JIT_EE_VERSION > 460
5926         case CORINFO_FIELD_STATIC_READYTORUN_HELPER:
5927         {
5928 #ifdef FEATURE_READYTORUN_COMPILER
5929             noway_assert(opts.IsReadyToRun());
5930             CORINFO_LOOKUP_KIND kind = info.compCompHnd->getLocationOfThisType(info.compMethodHnd);
5931             assert(kind.needsRuntimeLookup);
5932
5933             GenTreePtr      ctxTree = getRuntimeContextTree(kind.runtimeLookupKind);
5934             GenTreeArgList* args    = gtNewArgList(ctxTree);
5935
5936             unsigned callFlags = 0;
5937
5938             if (info.compCompHnd->getClassAttribs(pResolvedToken->hClass) & CORINFO_FLG_BEFOREFIELDINIT)
5939             {
5940                 callFlags |= GTF_CALL_HOISTABLE;
5941             }
5942             var_types type = TYP_BYREF;
5943             op1            = gtNewHelperCallNode(CORINFO_HELP_READYTORUN_GENERIC_STATIC_BASE, type, callFlags, args);
5944
5945             op1->gtCall.setEntryPoint(pFieldInfo->fieldLookup);
5946             FieldSeqNode* fs = GetFieldSeqStore()->CreateSingleton(pResolvedToken->hField);
5947             op1              = gtNewOperNode(GT_ADD, type, op1,
5948                                 new (this, GT_CNS_INT) GenTreeIntCon(TYP_I_IMPL, pFieldInfo->offset, fs));
5949 #else
5950             unreached();
5951 #endif // FEATURE_READYTORUN_COMPILER
5952         }
5953         break;
5954 #endif // COR_JIT_EE_VERSION > 460
5955         default:
5956         {
5957             if (!(access & CORINFO_ACCESS_ADDRESS))
5958             {
5959                 // In future, it may be better to just create the right tree here instead of folding it later.
5960                 op1 = gtNewFieldRef(lclTyp, pResolvedToken->hField);
5961
5962                 if (pFieldInfo->fieldFlags & CORINFO_FLG_FIELD_STATIC_IN_HEAP)
5963                 {
5964                     op1->gtType = TYP_REF; // points at boxed object
5965                     FieldSeqNode* firstElemFldSeq =
5966                         GetFieldSeqStore()->CreateSingleton(FieldSeqStore::FirstElemPseudoField);
5967                     op1 =
5968                         gtNewOperNode(GT_ADD, TYP_BYREF, op1,
5969                                       new (this, GT_CNS_INT) GenTreeIntCon(TYP_I_IMPL, sizeof(void*), firstElemFldSeq));
5970
5971                     if (varTypeIsStruct(lclTyp))
5972                     {
5973                         // Constructor adds GTF_GLOB_REF.  Note that this is *not* GTF_EXCEPT.
5974                         op1 = gtNewObjNode(pFieldInfo->structType, op1);
5975                     }
5976                     else
5977                     {
5978                         op1 = gtNewOperNode(GT_IND, lclTyp, op1);
5979                         op1->gtFlags |= GTF_GLOB_REF | GTF_IND_NONFAULTING;
5980                     }
5981                 }
5982
5983                 return op1;
5984             }
5985             else
5986             {
5987                 void** pFldAddr = nullptr;
5988                 void*  fldAddr  = info.compCompHnd->getFieldAddress(pResolvedToken->hField, (void**)&pFldAddr);
5989
5990                 FieldSeqNode* fldSeq = GetFieldSeqStore()->CreateSingleton(pResolvedToken->hField);
5991
5992                 /* Create the data member node */
5993                 if (pFldAddr == nullptr)
5994                 {
5995                     op1 = gtNewIconHandleNode((size_t)fldAddr, GTF_ICON_STATIC_HDL, fldSeq);
5996                 }
5997                 else
5998                 {
5999                     op1 = gtNewIconHandleNode((size_t)pFldAddr, GTF_ICON_STATIC_HDL, fldSeq);
6000
6001                     // There are two cases here, either the static is RVA based,
6002                     // in which case the type of the FIELD node is not a GC type
6003                     // and the handle to the RVA is a TYP_I_IMPL.  Or the FIELD node is
6004                     // a GC type and the handle to it is a TYP_BYREF in the GC heap
6005                     // because handles to statics now go into the large object heap
6006
6007                     var_types handleTyp = (var_types)(varTypeIsGC(lclTyp) ? TYP_BYREF : TYP_I_IMPL);
6008                     op1                 = gtNewOperNode(GT_IND, handleTyp, op1);
6009                     op1->gtFlags |= GTF_IND_INVARIANT | GTF_IND_NONFAULTING;
6010                 }
6011             }
6012             break;
6013         }
6014     }
6015
6016     if (pFieldInfo->fieldFlags & CORINFO_FLG_FIELD_STATIC_IN_HEAP)
6017     {
6018         op1 = gtNewOperNode(GT_IND, TYP_REF, op1);
6019
6020         FieldSeqNode* fldSeq = GetFieldSeqStore()->CreateSingleton(FieldSeqStore::FirstElemPseudoField);
6021
6022         op1 = gtNewOperNode(GT_ADD, TYP_BYREF, op1,
6023                             new (this, GT_CNS_INT) GenTreeIntCon(TYP_I_IMPL, sizeof(void*), fldSeq));
6024     }
6025
6026     if (!(access & CORINFO_ACCESS_ADDRESS))
6027     {
6028         op1 = gtNewOperNode(GT_IND, lclTyp, op1);
6029         op1->gtFlags |= GTF_GLOB_REF;
6030     }
6031
6032     return op1;
6033 }
6034
6035 // In general try to call this before most of the verification work.  Most people expect the access
6036 // exceptions before the verification exceptions.  If you do this after, that usually doesn't happen.  Turns
6037 // out if you can't access something we also think that you're unverifiable for other reasons.
6038 void Compiler::impHandleAccessAllowed(CorInfoIsAccessAllowedResult result, CORINFO_HELPER_DESC* helperCall)
6039 {
6040     if (result != CORINFO_ACCESS_ALLOWED)
6041     {
6042         impHandleAccessAllowedInternal(result, helperCall);
6043     }
6044 }
6045
6046 void Compiler::impHandleAccessAllowedInternal(CorInfoIsAccessAllowedResult result, CORINFO_HELPER_DESC* helperCall)
6047 {
6048     switch (result)
6049     {
6050         case CORINFO_ACCESS_ALLOWED:
6051             break;
6052         case CORINFO_ACCESS_ILLEGAL:
6053             // if we're verifying, then we need to reject the illegal access to ensure that we don't think the
6054             // method is verifiable.  Otherwise, delay the exception to runtime.
6055             if (compIsForImportOnly())
6056             {
6057                 info.compCompHnd->ThrowExceptionForHelper(helperCall);
6058             }
6059             else
6060             {
6061                 impInsertHelperCall(helperCall);
6062             }
6063             break;
6064         case CORINFO_ACCESS_RUNTIME_CHECK:
6065             impInsertHelperCall(helperCall);
6066             break;
6067     }
6068 }
6069
6070 void Compiler::impInsertHelperCall(CORINFO_HELPER_DESC* helperInfo)
6071 {
6072     // Construct the argument list
6073     GenTreeArgList* args = nullptr;
6074     assert(helperInfo->helperNum != CORINFO_HELP_UNDEF);
6075     for (unsigned i = helperInfo->numArgs; i > 0; --i)
6076     {
6077         const CORINFO_HELPER_ARG& helperArg  = helperInfo->args[i - 1];
6078         GenTreePtr                currentArg = nullptr;
6079         switch (helperArg.argType)
6080         {
6081             case CORINFO_HELPER_ARG_TYPE_Field:
6082                 info.compCompHnd->classMustBeLoadedBeforeCodeIsRun(
6083                     info.compCompHnd->getFieldClass(helperArg.fieldHandle));
6084                 currentArg = gtNewIconEmbFldHndNode(helperArg.fieldHandle);
6085                 break;
6086             case CORINFO_HELPER_ARG_TYPE_Method:
6087                 info.compCompHnd->methodMustBeLoadedBeforeCodeIsRun(helperArg.methodHandle);
6088                 currentArg = gtNewIconEmbMethHndNode(helperArg.methodHandle);
6089                 break;
6090             case CORINFO_HELPER_ARG_TYPE_Class:
6091                 info.compCompHnd->classMustBeLoadedBeforeCodeIsRun(helperArg.classHandle);
6092                 currentArg = gtNewIconEmbClsHndNode(helperArg.classHandle);
6093                 break;
6094             case CORINFO_HELPER_ARG_TYPE_Module:
6095                 currentArg = gtNewIconEmbScpHndNode(helperArg.moduleHandle);
6096                 break;
6097             case CORINFO_HELPER_ARG_TYPE_Const:
6098                 currentArg = gtNewIconNode(helperArg.constant);
6099                 break;
6100             default:
6101                 NO_WAY("Illegal helper arg type");
6102         }
6103         args = (currentArg == nullptr) ? gtNewArgList(currentArg) : gtNewListNode(currentArg, args);
6104     }
6105
6106     /* TODO-Review:
6107      * Mark as CSE'able, and hoistable.  Consider marking hoistable unless you're in the inlinee.
6108      * Also, consider sticking this in the first basic block.
6109      */
6110     GenTreePtr callout = gtNewHelperCallNode(helperInfo->helperNum, TYP_VOID, GTF_EXCEPT, args);
6111     impAppendTree(callout, (unsigned)CHECK_SPILL_NONE, impCurStmtOffs);
6112 }
6113
6114 void Compiler::impInsertCalloutForDelegate(CORINFO_METHOD_HANDLE callerMethodHnd,
6115                                            CORINFO_METHOD_HANDLE calleeMethodHnd,
6116                                            CORINFO_CLASS_HANDLE  delegateTypeHnd)
6117 {
6118 #ifdef FEATURE_CORECLR
6119     if (!info.compCompHnd->isDelegateCreationAllowed(delegateTypeHnd, calleeMethodHnd))
6120     {
6121         // Call the JIT_DelegateSecurityCheck helper before calling the actual function.
6122         // This helper throws an exception if the CLR host disallows the call.
6123
6124         GenTreePtr helper = gtNewHelperCallNode(CORINFO_HELP_DELEGATE_SECURITY_CHECK, TYP_VOID, GTF_EXCEPT,
6125                                                 gtNewArgList(gtNewIconEmbClsHndNode(delegateTypeHnd),
6126                                                              gtNewIconEmbMethHndNode(calleeMethodHnd)));
6127         // Append the callout statement
6128         impAppendTree(helper, (unsigned)CHECK_SPILL_NONE, impCurStmtOffs);
6129     }
6130 #endif // FEATURE_CORECLR
6131 }
6132
6133 // Checks whether the return types of caller and callee are compatible
6134 // so that callee can be tail called. Note that here we don't check
6135 // compatibility in IL Verifier sense, but on the lines of return type
6136 // sizes are equal and get returned in the same return register.
6137 bool Compiler::impTailCallRetTypeCompatible(var_types            callerRetType,
6138                                             CORINFO_CLASS_HANDLE callerRetTypeClass,
6139                                             var_types            calleeRetType,
6140                                             CORINFO_CLASS_HANDLE calleeRetTypeClass)
6141 {
6142     // Note that we can not relax this condition with genActualType() as the
6143     // calling convention dictates that the caller of a function with a small
6144     // typed return value is responsible for normalizing the return val.
6145     if (callerRetType == calleeRetType)
6146     {
6147         return true;
6148     }
6149
6150 #if defined(_TARGET_AMD64_) || defined(_TARGET_ARM64_)
6151     // Jit64 compat:
6152     if (callerRetType == TYP_VOID)
6153     {
6154         // This needs to be allowed to support the following IL pattern that Jit64 allows:
6155         //     tail.call
6156         //     pop
6157         //     ret
6158         //
6159         // Note that the above IL pattern is not valid as per IL verification rules.
6160         // Therefore, only full trust code can take advantage of this pattern.
6161         return true;
6162     }
6163
6164     // These checks return true if the return value type sizes are the same and
6165     // get returned in the same return register i.e. caller doesn't need to normalize
6166     // return value. Some of the tail calls permitted by below checks would have
6167     // been rejected by IL Verifier before we reached here.  Therefore, only full
6168     // trust code can make those tail calls.
6169     unsigned callerRetTypeSize = 0;
6170     unsigned calleeRetTypeSize = 0;
6171     bool     isCallerRetTypMBEnreg =
6172         VarTypeIsMultiByteAndCanEnreg(callerRetType, callerRetTypeClass, &callerRetTypeSize, true);
6173     bool isCalleeRetTypMBEnreg =
6174         VarTypeIsMultiByteAndCanEnreg(calleeRetType, calleeRetTypeClass, &calleeRetTypeSize, true);
6175
6176     if (varTypeIsIntegral(callerRetType) || isCallerRetTypMBEnreg)
6177     {
6178         return (varTypeIsIntegral(calleeRetType) || isCalleeRetTypMBEnreg) && (callerRetTypeSize == calleeRetTypeSize);
6179     }
6180 #endif // _TARGET_AMD64_ || _TARGET_ARM64_
6181
6182     return false;
6183 }
6184
6185 // For prefixFlags
6186 enum
6187 {
6188     PREFIX_TAILCALL_EXPLICIT = 0x00000001, // call has "tail" IL prefix
6189     PREFIX_TAILCALL_IMPLICIT =
6190         0x00000010, // call is treated as having "tail" prefix even though there is no "tail" IL prefix
6191     PREFIX_TAILCALL    = (PREFIX_TAILCALL_EXPLICIT | PREFIX_TAILCALL_IMPLICIT),
6192     PREFIX_VOLATILE    = 0x00000100,
6193     PREFIX_UNALIGNED   = 0x00001000,
6194     PREFIX_CONSTRAINED = 0x00010000,
6195     PREFIX_READONLY    = 0x00100000
6196 };
6197
6198 /********************************************************************************
6199  *
6200  * Returns true if the current opcode and and the opcodes following it correspond
6201  * to a supported tail call IL pattern.
6202  *
6203  */
6204 bool Compiler::impIsTailCallILPattern(bool        tailPrefixed,
6205                                       OPCODE      curOpcode,
6206                                       const BYTE* codeAddrOfNextOpcode,
6207                                       const BYTE* codeEnd,
6208                                       bool        isRecursive,
6209                                       bool*       isCallPopAndRet /* = nullptr */)
6210 {
6211     // Bail out if the current opcode is not a call.
6212     if (!impOpcodeIsCallOpcode(curOpcode))
6213     {
6214         return false;
6215     }
6216
6217 #if !FEATURE_TAILCALL_OPT_SHARED_RETURN
6218     // If shared ret tail opt is not enabled, we will enable
6219     // it for recursive methods.
6220     if (isRecursive)
6221 #endif
6222     {
6223         // we can actually handle if the ret is in a fallthrough block, as long as that is the only part of the
6224         // sequence. Make sure we don't go past the end of the IL however.
6225         codeEnd = min(codeEnd + 1, info.compCode + info.compILCodeSize);
6226     }
6227
6228     // Bail out if there is no next opcode after call
6229     if (codeAddrOfNextOpcode >= codeEnd)
6230     {
6231         return false;
6232     }
6233
6234     // Scan the opcodes to look for the following IL patterns if either
6235     //   i) the call is not tail prefixed (i.e. implicit tail call) or
6236     //  ii) if tail prefixed, IL verification is not needed for the method.
6237     //
6238     // Only in the above two cases we can allow the below tail call patterns
6239     // violating ECMA spec.
6240     //
6241     // Pattern1:
6242     //       call
6243     //       nop*
6244     //       ret
6245     //
6246     // Pattern2:
6247     //       call
6248     //       nop*
6249     //       pop
6250     //       nop*
6251     //       ret
6252     int    cntPop = 0;
6253     OPCODE nextOpcode;
6254
6255 #ifdef _TARGET_AMD64_
6256     do
6257     {
6258         nextOpcode = (OPCODE)getU1LittleEndian(codeAddrOfNextOpcode);
6259         codeAddrOfNextOpcode += sizeof(__int8);
6260     } while ((codeAddrOfNextOpcode < codeEnd) &&         // Haven't reached end of method
6261              (!tailPrefixed || !tiVerificationNeeded) && // Not ".tail" prefixed or method requires no IL verification
6262              ((nextOpcode == CEE_NOP) || ((nextOpcode == CEE_POP) && (++cntPop == 1)))); // Next opcode = nop or exactly
6263                                                                                          // one pop seen so far.
6264 #else
6265     nextOpcode = (OPCODE)getU1LittleEndian(codeAddrOfNextOpcode);
6266 #endif
6267
6268     if (isCallPopAndRet)
6269     {
6270         // Allow call+pop+ret to be tail call optimized if caller ret type is void
6271         *isCallPopAndRet = (nextOpcode == CEE_RET) && (cntPop == 1);
6272     }
6273
6274 #ifdef _TARGET_AMD64_
6275     // Jit64 Compat:
6276     // Tail call IL pattern could be either of the following
6277     // 1) call/callvirt/calli + ret
6278     // 2) call/callvirt/calli + pop + ret in a method returning void.
6279     return (nextOpcode == CEE_RET) && ((cntPop == 0) || ((cntPop == 1) && (info.compRetType == TYP_VOID)));
6280 #else //!_TARGET_AMD64_
6281     return (nextOpcode == CEE_RET) && (cntPop == 0);
6282 #endif
6283 }
6284
6285 /*****************************************************************************
6286  *
6287  * Determine whether the call could be converted to an implicit tail call
6288  *
6289  */
6290 bool Compiler::impIsImplicitTailCallCandidate(
6291     OPCODE opcode, const BYTE* codeAddrOfNextOpcode, const BYTE* codeEnd, int prefixFlags, bool isRecursive)
6292 {
6293
6294 #if FEATURE_TAILCALL_OPT
6295     if (!opts.compTailCallOpt)
6296     {
6297         return false;
6298     }
6299
6300     if (opts.compDbgCode || opts.MinOpts())
6301     {
6302         return false;
6303     }
6304
6305     // must not be tail prefixed
6306     if (prefixFlags & PREFIX_TAILCALL_EXPLICIT)
6307     {
6308         return false;
6309     }
6310
6311 #if !FEATURE_TAILCALL_OPT_SHARED_RETURN
6312     // the block containing call is marked as BBJ_RETURN
6313     // We allow shared ret tail call optimization on recursive calls even under
6314     // !FEATURE_TAILCALL_OPT_SHARED_RETURN.
6315     if (!isRecursive && (compCurBB->bbJumpKind != BBJ_RETURN))
6316         return false;
6317 #endif // !FEATURE_TAILCALL_OPT_SHARED_RETURN
6318
6319     // must be call+ret or call+pop+ret
6320     if (!impIsTailCallILPattern(false, opcode, codeAddrOfNextOpcode, codeEnd, isRecursive))
6321     {
6322         return false;
6323     }
6324
6325     return true;
6326 #else
6327     return false;
6328 #endif // FEATURE_TAILCALL_OPT
6329 }
6330
6331 //------------------------------------------------------------------------
6332 // impImportCall: import a call-inspiring opcode
6333 //
6334 // Arguments:
6335 //    opcode                    - opcode that inspires the call
6336 //    pResolvedToken            - resolved token for the call target
6337 //    pConstrainedResolvedToken - resolved constraint token (or nullptr)
6338 //    newObjThis                - tree for this pointer or uninitalized newobj temp (or nullptr)
6339 //    prefixFlags               - IL prefix flags for the call
6340 //    callInfo                  - EE supplied info for the call
6341 //    rawILOffset               - IL offset of the opcode
6342 //
6343 // Returns:
6344 //    Type of the call's return value.
6345 //
6346 // Notes:
6347 //    opcode can be CEE_CALL, CEE_CALLI, CEE_CALLVIRT, or CEE_NEWOBJ.
6348 //
6349 //    For CEE_NEWOBJ, newobjThis should be the temp grabbed for the allocated
6350 //    uninitalized object.
6351
6352 #ifdef _PREFAST_
6353 #pragma warning(push)
6354 #pragma warning(disable : 21000) // Suppress PREFast warning about overly large function
6355 #endif
6356
6357 var_types Compiler::impImportCall(OPCODE                  opcode,
6358                                   CORINFO_RESOLVED_TOKEN* pResolvedToken,
6359                                   CORINFO_RESOLVED_TOKEN* pConstrainedResolvedToken,
6360                                   GenTreePtr              newobjThis,
6361                                   int                     prefixFlags,
6362                                   CORINFO_CALL_INFO*      callInfo,
6363                                   IL_OFFSET               rawILOffset)
6364 {
6365     assert(opcode == CEE_CALL || opcode == CEE_CALLVIRT || opcode == CEE_NEWOBJ || opcode == CEE_CALLI);
6366
6367     IL_OFFSETX             ilOffset                       = impCurILOffset(rawILOffset, true);
6368     var_types              callRetTyp                     = TYP_COUNT;
6369     CORINFO_SIG_INFO*      sig                            = nullptr;
6370     CORINFO_METHOD_HANDLE  methHnd                        = nullptr;
6371     CORINFO_CLASS_HANDLE   clsHnd                         = nullptr;
6372     unsigned               clsFlags                       = 0;
6373     unsigned               mflags                         = 0;
6374     unsigned               argFlags                       = 0;
6375     GenTreePtr             call                           = nullptr;
6376     GenTreeArgList*        args                           = nullptr;
6377     CORINFO_THIS_TRANSFORM constraintCallThisTransform    = CORINFO_NO_THIS_TRANSFORM;
6378     CORINFO_CONTEXT_HANDLE exactContextHnd                = nullptr;
6379     BOOL                   exactContextNeedsRuntimeLookup = FALSE;
6380     bool                   canTailCall                    = true;
6381     const char*            szCanTailCallFailReason        = nullptr;
6382     int                    tailCall                       = prefixFlags & PREFIX_TAILCALL;
6383     bool                   readonlyCall                   = (prefixFlags & PREFIX_READONLY) != 0;
6384
6385     // Synchronized methods need to call CORINFO_HELP_MON_EXIT at the end. We could
6386     // do that before tailcalls, but that is probably not the intended
6387     // semantic. So just disallow tailcalls from synchronized methods.
6388     // Also, popping arguments in a varargs function is more work and NYI
6389     // If we have a security object, we have to keep our frame around for callers
6390     // to see any imperative security.
6391     if (info.compFlags & CORINFO_FLG_SYNCH)
6392     {
6393         canTailCall             = false;
6394         szCanTailCallFailReason = "Caller is synchronized";
6395     }
6396 #if !FEATURE_FIXED_OUT_ARGS
6397     else if (info.compIsVarArgs)
6398     {
6399         canTailCall             = false;
6400         szCanTailCallFailReason = "Caller is varargs";
6401     }
6402 #endif // FEATURE_FIXED_OUT_ARGS
6403     else if (opts.compNeedSecurityCheck)
6404     {
6405         canTailCall             = false;
6406         szCanTailCallFailReason = "Caller requires a security check.";
6407     }
6408
6409     // We only need to cast the return value of pinvoke inlined calls that return small types
6410
6411     // TODO-AMD64-Cleanup: Remove this when we stop interoperating with JIT64, or if we decide to stop
6412     // widening everything! CoreCLR does not support JIT64 interoperation so no need to widen there.
6413     // The existing x64 JIT doesn't bother widening all types to int, so we have to assume for
6414     // the time being that the callee might be compiled by the other JIT and thus the return
6415     // value will need to be widened by us (or not widened at all...)
6416
6417     // ReadyToRun code sticks with default calling convention that does not widen small return types.
6418
6419     bool checkForSmallType  = opts.IsJit64Compat() || opts.IsReadyToRun();
6420     bool bIntrinsicImported = false;
6421
6422     CORINFO_SIG_INFO calliSig;
6423     GenTreeArgList*  extraArg = nullptr;
6424
6425     /*-------------------------------------------------------------------------
6426      * First create the call node
6427      */
6428
6429     if (opcode == CEE_CALLI)
6430     {
6431         /* Get the call site sig */
6432         eeGetSig(pResolvedToken->token, info.compScopeHnd, impTokenLookupContextHandle, &calliSig);
6433
6434         callRetTyp = JITtype2varType(calliSig.retType);
6435         clsHnd     = calliSig.retTypeClass;
6436
6437         call = impImportIndirectCall(&calliSig, ilOffset);
6438
6439         // We don't know the target method, so we have to infer the flags, or
6440         // assume the worst-case.
6441         mflags = (calliSig.callConv & CORINFO_CALLCONV_HASTHIS) ? 0 : CORINFO_FLG_STATIC;
6442
6443 #ifdef DEBUG
6444         if (verbose)
6445         {
6446             unsigned structSize =
6447                 (callRetTyp == TYP_STRUCT) ? info.compCompHnd->getClassSize(calliSig.retTypeSigClass) : 0;
6448             printf("\nIn Compiler::impImportCall: opcode is %s, kind=%d, callRetType is %s, structSize is %d\n",
6449                    opcodeNames[opcode], callInfo->kind, varTypeName(callRetTyp), structSize);
6450         }
6451 #endif
6452         // This should be checked in impImportBlockCode.
6453         assert(!compIsForInlining() || !(impInlineInfo->inlineCandidateInfo->dwRestrictions & INLINE_RESPECT_BOUNDARY));
6454
6455         sig = &calliSig;
6456
6457 #ifdef DEBUG
6458         // We cannot lazily obtain the signature of a CALLI call because it has no method
6459         // handle that we can use, so we need to save its full call signature here.
6460         assert(call->gtCall.callSig == nullptr);
6461         call->gtCall.callSig  = new (this, CMK_CorSig) CORINFO_SIG_INFO;
6462         *call->gtCall.callSig = calliSig;
6463 #endif // DEBUG
6464
6465         if (IsTargetAbi(CORINFO_CORERT_ABI))
6466         {
6467             bool managedCall = (calliSig.callConv & GTF_CALL_UNMANAGED) == 0;
6468             if (managedCall)
6469             {
6470                 addFatPointerCandidate(call->AsCall());
6471             }
6472         }
6473     }
6474     else // (opcode != CEE_CALLI)
6475     {
6476         CorInfoIntrinsics intrinsicID = CORINFO_INTRINSIC_Count;
6477
6478         // Passing CORINFO_CALLINFO_ALLOWINSTPARAM indicates that this JIT is prepared to
6479         // supply the instantiation parameters necessary to make direct calls to underlying
6480         // shared generic code, rather than calling through instantiating stubs.  If the
6481         // returned signature has CORINFO_CALLCONV_PARAMTYPE then this indicates that the JIT
6482         // must indeed pass an instantiation parameter.
6483
6484         methHnd = callInfo->hMethod;
6485
6486         sig        = &(callInfo->sig);
6487         callRetTyp = JITtype2varType(sig->retType);
6488
6489         mflags = callInfo->methodFlags;
6490
6491 #ifdef DEBUG
6492         if (verbose)
6493         {
6494             unsigned structSize = (callRetTyp == TYP_STRUCT) ? info.compCompHnd->getClassSize(sig->retTypeSigClass) : 0;
6495             printf("\nIn Compiler::impImportCall: opcode is %s, kind=%d, callRetType is %s, structSize is %d\n",
6496                    opcodeNames[opcode], callInfo->kind, varTypeName(callRetTyp), structSize);
6497         }
6498 #endif
6499         if (compIsForInlining())
6500         {
6501             /* Does this call site have security boundary restrictions? */
6502
6503             if (impInlineInfo->inlineCandidateInfo->dwRestrictions & INLINE_RESPECT_BOUNDARY)
6504             {
6505                 compInlineResult->NoteFatal(InlineObservation::CALLSITE_CROSS_BOUNDARY_SECURITY);
6506                 return callRetTyp;
6507             }
6508
6509             /* Does the inlinee need a security check token on the frame */
6510
6511             if (mflags & CORINFO_FLG_SECURITYCHECK)
6512             {
6513                 compInlineResult->NoteFatal(InlineObservation::CALLEE_NEEDS_SECURITY_CHECK);
6514                 return callRetTyp;
6515             }
6516
6517             /* Does the inlinee use StackCrawlMark */
6518
6519             if (mflags & CORINFO_FLG_DONT_INLINE_CALLER)
6520             {
6521                 compInlineResult->NoteFatal(InlineObservation::CALLEE_STACK_CRAWL_MARK);
6522                 return callRetTyp;
6523             }
6524
6525             /* For now ignore delegate invoke */
6526
6527             if (mflags & CORINFO_FLG_DELEGATE_INVOKE)
6528             {
6529                 compInlineResult->NoteFatal(InlineObservation::CALLEE_HAS_DELEGATE_INVOKE);
6530                 return callRetTyp;
6531             }
6532
6533             /* For now ignore varargs */
6534             if ((sig->callConv & CORINFO_CALLCONV_MASK) == CORINFO_CALLCONV_NATIVEVARARG)
6535             {
6536                 compInlineResult->NoteFatal(InlineObservation::CALLEE_HAS_NATIVE_VARARGS);
6537                 return callRetTyp;
6538             }
6539
6540             if ((sig->callConv & CORINFO_CALLCONV_MASK) == CORINFO_CALLCONV_VARARG)
6541             {
6542                 compInlineResult->NoteFatal(InlineObservation::CALLEE_HAS_MANAGED_VARARGS);
6543                 return callRetTyp;
6544             }
6545
6546             if ((mflags & CORINFO_FLG_VIRTUAL) && (sig->sigInst.methInstCount != 0) && (opcode == CEE_CALLVIRT))
6547             {
6548                 compInlineResult->NoteFatal(InlineObservation::CALLEE_IS_GENERIC_VIRTUAL);
6549                 return callRetTyp;
6550             }
6551         }
6552
6553         clsHnd = pResolvedToken->hClass;
6554
6555         clsFlags = callInfo->classFlags;
6556
6557 #ifdef DEBUG
6558         // If this is a call to JitTestLabel.Mark, do "early inlining", and record the test attribute.
6559
6560         // This recognition should really be done by knowing the methHnd of the relevant Mark method(s).
6561         // These should be in mscorlib.h, and available through a JIT/EE interface call.
6562         const char* modName;
6563         const char* className;
6564         const char* methodName;
6565         if ((className = eeGetClassName(clsHnd)) != nullptr &&
6566             strcmp(className, "System.Runtime.CompilerServices.JitTestLabel") == 0 &&
6567             (methodName = eeGetMethodName(methHnd, &modName)) != nullptr && strcmp(methodName, "Mark") == 0)
6568         {
6569             return impImportJitTestLabelMark(sig->numArgs);
6570         }
6571 #endif // DEBUG
6572
6573         // <NICE> Factor this into getCallInfo </NICE>
6574         if ((mflags & CORINFO_FLG_INTRINSIC) && !pConstrainedResolvedToken)
6575         {
6576             call = impIntrinsic(newobjThis, clsHnd, methHnd, sig, pResolvedToken->token, readonlyCall,
6577                                 (canTailCall && (tailCall != 0)), &intrinsicID);
6578
6579             if (call != nullptr)
6580             {
6581                 assert(!(mflags & CORINFO_FLG_VIRTUAL) || (mflags & CORINFO_FLG_FINAL) ||
6582                        (clsFlags & CORINFO_FLG_FINAL));
6583
6584 #ifdef FEATURE_READYTORUN_COMPILER
6585                 if (call->OperGet() == GT_INTRINSIC)
6586                 {
6587                     if (opts.IsReadyToRun())
6588                     {
6589                         noway_assert(callInfo->kind == CORINFO_CALL);
6590                         call->gtIntrinsic.gtEntryPoint = callInfo->codePointerLookup.constLookup;
6591                     }
6592                     else
6593                     {
6594                         call->gtIntrinsic.gtEntryPoint.addr = nullptr;
6595                     }
6596                 }
6597 #endif
6598
6599                 bIntrinsicImported = true;
6600                 goto DONE_CALL;
6601             }
6602         }
6603
6604 #ifdef FEATURE_SIMD
6605         if (featureSIMD)
6606         {
6607             call = impSIMDIntrinsic(opcode, newobjThis, clsHnd, methHnd, sig, pResolvedToken->token);
6608             if (call != nullptr)
6609             {
6610                 bIntrinsicImported = true;
6611                 goto DONE_CALL;
6612             }
6613         }
6614 #endif // FEATURE_SIMD
6615
6616         if ((mflags & CORINFO_FLG_VIRTUAL) && (mflags & CORINFO_FLG_EnC) && (opcode == CEE_CALLVIRT))
6617         {
6618             NO_WAY("Virtual call to a function added via EnC is not supported");
6619         }
6620
6621         if ((sig->callConv & CORINFO_CALLCONV_MASK) != CORINFO_CALLCONV_DEFAULT &&
6622             (sig->callConv & CORINFO_CALLCONV_MASK) != CORINFO_CALLCONV_VARARG &&
6623             (sig->callConv & CORINFO_CALLCONV_MASK) != CORINFO_CALLCONV_NATIVEVARARG)
6624         {
6625             BADCODE("Bad calling convention");
6626         }
6627
6628         //-------------------------------------------------------------------------
6629         //  Construct the call node
6630         //
6631         // Work out what sort of call we're making.
6632         // Dispense with virtual calls implemented via LDVIRTFTN immediately.
6633
6634         constraintCallThisTransform = callInfo->thisTransform;
6635
6636         exactContextHnd                = callInfo->contextHandle;
6637         exactContextNeedsRuntimeLookup = callInfo->exactContextNeedsRuntimeLookup;
6638
6639         // Recursive call is treaded as a loop to the begining of the method.
6640         if (methHnd == info.compMethodHnd)
6641         {
6642 #ifdef DEBUG
6643             if (verbose)
6644             {
6645                 JITDUMP("\nFound recursive call in the method. Mark BB%02u to BB%02u as having a backward branch.\n",
6646                         fgFirstBB->bbNum, compCurBB->bbNum);
6647             }
6648 #endif
6649             fgMarkBackwardJump(fgFirstBB, compCurBB);
6650         }
6651
6652         switch (callInfo->kind)
6653         {
6654
6655             case CORINFO_VIRTUALCALL_STUB:
6656             {
6657                 assert(!(mflags & CORINFO_FLG_STATIC)); // can't call a static method
6658                 assert(!(clsFlags & CORINFO_FLG_VALUECLASS));
6659                 if (callInfo->stubLookup.lookupKind.needsRuntimeLookup)
6660                 {
6661
6662                     if (compIsForInlining())
6663                     {
6664                         // Don't import runtime lookups when inlining
6665                         // Inlining has to be aborted in such a case
6666                         /* XXX Fri 3/20/2009
6667                          * By the way, this would never succeed.  If the handle lookup is into the generic
6668                          * dictionary for a candidate, you'll generate different dictionary offsets and the
6669                          * inlined code will crash.
6670                          *
6671                          * To anyone code reviewing this, when could this ever succeed in the future?  It'll
6672                          * always have a handle lookup.  These lookups are safe intra-module, but we're just
6673                          * failing here.
6674                          */
6675                         compInlineResult->NoteFatal(InlineObservation::CALLSITE_HAS_COMPLEX_HANDLE);
6676                         return callRetTyp;
6677                     }
6678
6679                     GenTreePtr stubAddr = impRuntimeLookupToTree(pResolvedToken, &callInfo->stubLookup, methHnd);
6680                     assert(!compDonotInline());
6681
6682                     // This is the rough code to set up an indirect stub call
6683                     assert(stubAddr != nullptr);
6684
6685                     // The stubAddr may be a
6686                     // complex expression. As it is evaluated after the args,
6687                     // it may cause registered args to be spilled. Simply spill it.
6688
6689                     unsigned lclNum = lvaGrabTemp(true DEBUGARG("VirtualCall with runtime lookup"));
6690                     impAssignTempGen(lclNum, stubAddr, (unsigned)CHECK_SPILL_ALL);
6691                     stubAddr = gtNewLclvNode(lclNum, TYP_I_IMPL);
6692
6693                     // Create the actual call node
6694
6695                     assert((sig->callConv & CORINFO_CALLCONV_MASK) != CORINFO_CALLCONV_VARARG &&
6696                            (sig->callConv & CORINFO_CALLCONV_MASK) != CORINFO_CALLCONV_NATIVEVARARG);
6697
6698                     call = gtNewIndCallNode(stubAddr, callRetTyp, nullptr);
6699
6700                     call->gtFlags |= GTF_EXCEPT | (stubAddr->gtFlags & GTF_GLOB_EFFECT);
6701                     call->gtFlags |= GTF_CALL_VIRT_STUB;
6702
6703 #ifdef _TARGET_X86_
6704                     // No tailcalls allowed for these yet...
6705                     canTailCall             = false;
6706                     szCanTailCallFailReason = "VirtualCall with runtime lookup";
6707 #endif
6708                 }
6709                 else
6710                 {
6711                     // ok, the stub is available at compile type.
6712
6713                     call = gtNewCallNode(CT_USER_FUNC, callInfo->hMethod, callRetTyp, nullptr, ilOffset);
6714                     call->gtCall.gtStubCallStubAddr = callInfo->stubLookup.constLookup.addr;
6715                     call->gtFlags |= GTF_CALL_VIRT_STUB;
6716                     assert(callInfo->stubLookup.constLookup.accessType != IAT_PPVALUE);
6717                     if (callInfo->stubLookup.constLookup.accessType == IAT_PVALUE)
6718                     {
6719                         call->gtCall.gtCallMoreFlags |= GTF_CALL_M_VIRTSTUB_REL_INDIRECT;
6720                     }
6721                 }
6722
6723 #ifdef FEATURE_READYTORUN_COMPILER
6724                 if (opts.IsReadyToRun())
6725                 {
6726                     // Null check is sometimes needed for ready to run to handle
6727                     // non-virtual <-> virtual changes between versions
6728                     if (callInfo->nullInstanceCheck)
6729                     {
6730                         call->gtFlags |= GTF_CALL_NULLCHECK;
6731                     }
6732                 }
6733 #endif
6734
6735                 break;
6736             }
6737
6738             case CORINFO_VIRTUALCALL_VTABLE:
6739             {
6740                 assert(!(mflags & CORINFO_FLG_STATIC)); // can't call a static method
6741                 assert(!(clsFlags & CORINFO_FLG_VALUECLASS));
6742                 call = gtNewCallNode(CT_USER_FUNC, callInfo->hMethod, callRetTyp, nullptr, ilOffset);
6743                 call->gtFlags |= GTF_CALL_VIRT_VTABLE;
6744                 break;
6745             }
6746
6747             case CORINFO_VIRTUALCALL_LDVIRTFTN:
6748             {
6749                 if (compIsForInlining())
6750                 {
6751                     compInlineResult->NoteFatal(InlineObservation::CALLSITE_HAS_CALL_VIA_LDVIRTFTN);
6752                     return callRetTyp;
6753                 }
6754
6755                 assert(!(mflags & CORINFO_FLG_STATIC)); // can't call a static method
6756                 assert(!(clsFlags & CORINFO_FLG_VALUECLASS));
6757                 // OK, We've been told to call via LDVIRTFTN, so just
6758                 // take the call now....
6759
6760                 args = impPopList(sig->numArgs, &argFlags, sig);
6761
6762                 GenTreePtr thisPtr = impPopStack().val;
6763                 thisPtr            = impTransformThis(thisPtr, pConstrainedResolvedToken, callInfo->thisTransform);
6764                 if (compDonotInline())
6765                 {
6766                     return callRetTyp;
6767                 }
6768
6769                 // Clone the (possibly transformed) "this" pointer
6770                 GenTreePtr thisPtrCopy;
6771                 thisPtr = impCloneExpr(thisPtr, &thisPtrCopy, NO_CLASS_HANDLE, (unsigned)CHECK_SPILL_ALL,
6772                                        nullptr DEBUGARG("LDVIRTFTN this pointer"));
6773
6774                 GenTreePtr fptr = nullptr;
6775                 bool       coreRTGenericVirtualMethod =
6776                     ((sig->callConv & CORINFO_CALLCONV_GENERIC) != 0) && IsTargetAbi(CORINFO_CORERT_ABI);
6777 #if COR_JIT_EE_VERSION > 460
6778                 if (coreRTGenericVirtualMethod)
6779                 {
6780                     GenTreePtr runtimeMethodHandle = nullptr;
6781                     if (callInfo->exactContextNeedsRuntimeLookup)
6782                     {
6783                         runtimeMethodHandle =
6784                             impRuntimeLookupToTree(pResolvedToken, &callInfo->codePointerLookup, methHnd);
6785                     }
6786                     else
6787                     {
6788                         runtimeMethodHandle = gtNewIconEmbMethHndNode(pResolvedToken->hMethod);
6789                     }
6790                     fptr = gtNewHelperCallNode(CORINFO_HELP_GVMLOOKUP_FOR_SLOT, TYP_I_IMPL, GTF_EXCEPT,
6791                                                gtNewArgList(thisPtr, runtimeMethodHandle));
6792                 }
6793                 else
6794 #endif // COR_JIT_EE_VERSION
6795                 {
6796                     fptr = impImportLdvirtftn(thisPtr, pResolvedToken, callInfo);
6797                 }
6798
6799                 if (compDonotInline())
6800                 {
6801                     return callRetTyp;
6802                 }
6803
6804                 thisPtr = nullptr; // can't reuse it
6805
6806                 // Now make an indirect call through the function pointer
6807
6808                 unsigned lclNum = lvaGrabTemp(true DEBUGARG("VirtualCall through function pointer"));
6809                 impAssignTempGen(lclNum, fptr, (unsigned)CHECK_SPILL_ALL);
6810                 fptr = gtNewLclvNode(lclNum, TYP_I_IMPL);
6811
6812                 // Create the actual call node
6813
6814                 call                    = gtNewIndCallNode(fptr, callRetTyp, args, ilOffset);
6815                 call->gtCall.gtCallObjp = thisPtrCopy;
6816                 call->gtFlags |= GTF_EXCEPT | (fptr->gtFlags & GTF_GLOB_EFFECT);
6817
6818                 if (coreRTGenericVirtualMethod)
6819                 {
6820                     addFatPointerCandidate(call->AsCall());
6821                 }
6822 #ifdef FEATURE_READYTORUN_COMPILER
6823                 if (opts.IsReadyToRun())
6824                 {
6825                     // Null check is needed for ready to run to handle
6826                     // non-virtual <-> virtual changes between versions
6827                     call->gtFlags |= GTF_CALL_NULLCHECK;
6828                 }
6829 #endif
6830
6831                 // Sine we are jumping over some code, check that its OK to skip that code
6832                 assert((sig->callConv & CORINFO_CALLCONV_MASK) != CORINFO_CALLCONV_VARARG &&
6833                        (sig->callConv & CORINFO_CALLCONV_MASK) != CORINFO_CALLCONV_NATIVEVARARG);
6834                 goto DONE;
6835             }
6836
6837             case CORINFO_CALL:
6838             {
6839                 // This is for a non-virtual, non-interface etc. call
6840                 call = gtNewCallNode(CT_USER_FUNC, callInfo->hMethod, callRetTyp, nullptr, ilOffset);
6841
6842                 // We remove the nullcheck for the GetType call instrinsic.
6843                 // TODO-CQ: JIT64 does not introduce the null check for many more helper calls
6844                 // and instrinsics.
6845                 if (callInfo->nullInstanceCheck &&
6846                     !((mflags & CORINFO_FLG_INTRINSIC) != 0 && (intrinsicID == CORINFO_INTRINSIC_Object_GetType)))
6847                 {
6848                     call->gtFlags |= GTF_CALL_NULLCHECK;
6849                 }
6850
6851 #ifdef FEATURE_READYTORUN_COMPILER
6852                 if (opts.IsReadyToRun())
6853                 {
6854                     call->gtCall.setEntryPoint(callInfo->codePointerLookup.constLookup);
6855                 }
6856 #endif
6857                 break;
6858             }
6859
6860             case CORINFO_CALL_CODE_POINTER:
6861             {
6862                 // The EE has asked us to call by computing a code pointer and then doing an
6863                 // indirect call.  This is because a runtime lookup is required to get the code entry point.
6864
6865                 // These calls always follow a uniform calling convention, i.e. no extra hidden params
6866                 assert((sig->callConv & CORINFO_CALLCONV_PARAMTYPE) == 0);
6867
6868                 assert((sig->callConv & CORINFO_CALLCONV_MASK) != CORINFO_CALLCONV_VARARG);
6869                 assert((sig->callConv & CORINFO_CALLCONV_MASK) != CORINFO_CALLCONV_NATIVEVARARG);
6870
6871                 GenTreePtr fptr =
6872                     impLookupToTree(pResolvedToken, &callInfo->codePointerLookup, GTF_ICON_FTN_ADDR, callInfo->hMethod);
6873
6874                 if (compDonotInline())
6875                 {
6876                     return callRetTyp;
6877                 }
6878
6879                 // Now make an indirect call through the function pointer
6880
6881                 unsigned lclNum = lvaGrabTemp(true DEBUGARG("Indirect call through function pointer"));
6882                 impAssignTempGen(lclNum, fptr, (unsigned)CHECK_SPILL_ALL);
6883                 fptr = gtNewLclvNode(lclNum, TYP_I_IMPL);
6884
6885                 call = gtNewIndCallNode(fptr, callRetTyp, nullptr, ilOffset);
6886                 call->gtFlags |= GTF_EXCEPT | (fptr->gtFlags & GTF_GLOB_EFFECT);
6887                 if (callInfo->nullInstanceCheck)
6888                 {
6889                     call->gtFlags |= GTF_CALL_NULLCHECK;
6890                 }
6891
6892                 break;
6893             }
6894
6895             default:
6896                 assert(!"unknown call kind");
6897                 break;
6898         }
6899
6900         //-------------------------------------------------------------------------
6901         // Set more flags
6902
6903         PREFIX_ASSUME(call != nullptr);
6904
6905         if (mflags & CORINFO_FLG_NOGCCHECK)
6906         {
6907             call->gtCall.gtCallMoreFlags |= GTF_CALL_M_NOGCCHECK;
6908         }
6909
6910         // Mark call if it's one of the ones we will maybe treat as an intrinsic
6911         if (intrinsicID == CORINFO_INTRINSIC_Object_GetType || intrinsicID == CORINFO_INTRINSIC_TypeEQ ||
6912             intrinsicID == CORINFO_INTRINSIC_TypeNEQ || intrinsicID == CORINFO_INTRINSIC_GetCurrentManagedThread ||
6913             intrinsicID == CORINFO_INTRINSIC_GetManagedThreadId)
6914         {
6915             call->gtCall.gtCallMoreFlags |= GTF_CALL_M_SPECIAL_INTRINSIC;
6916         }
6917     }
6918     assert(sig);
6919     assert(clsHnd || (opcode == CEE_CALLI)); // We're never verifying for CALLI, so this is not set.
6920
6921     /* Some sanity checks */
6922
6923     // CALL_VIRT and NEWOBJ must have a THIS pointer
6924     assert((opcode != CEE_CALLVIRT && opcode != CEE_NEWOBJ) || (sig->callConv & CORINFO_CALLCONV_HASTHIS));
6925     // static bit and hasThis are negations of one another
6926     assert(((mflags & CORINFO_FLG_STATIC) != 0) == ((sig->callConv & CORINFO_CALLCONV_HASTHIS) == 0));
6927     assert(call != nullptr);
6928
6929     /*-------------------------------------------------------------------------
6930      * Check special-cases etc
6931      */
6932
6933     /* Special case - Check if it is a call to Delegate.Invoke(). */
6934
6935     if (mflags & CORINFO_FLG_DELEGATE_INVOKE)
6936     {
6937         assert(!compIsForInlining());
6938         assert(!(mflags & CORINFO_FLG_STATIC)); // can't call a static method
6939         assert(mflags & CORINFO_FLG_FINAL);
6940
6941         /* Set the delegate flag */
6942         call->gtCall.gtCallMoreFlags |= GTF_CALL_M_DELEGATE_INV;
6943
6944         if (callInfo->secureDelegateInvoke)
6945         {
6946             call->gtCall.gtCallMoreFlags |= GTF_CALL_M_SECURE_DELEGATE_INV;
6947         }
6948
6949         if (opcode == CEE_CALLVIRT)
6950         {
6951             assert(mflags & CORINFO_FLG_FINAL);
6952
6953             /* It should have the GTF_CALL_NULLCHECK flag set. Reset it */
6954             assert(call->gtFlags & GTF_CALL_NULLCHECK);
6955             call->gtFlags &= ~GTF_CALL_NULLCHECK;
6956         }
6957     }
6958
6959     CORINFO_CLASS_HANDLE actualMethodRetTypeSigClass;
6960     actualMethodRetTypeSigClass = sig->retTypeSigClass;
6961     if (varTypeIsStruct(callRetTyp))
6962     {
6963         callRetTyp   = impNormStructType(actualMethodRetTypeSigClass);
6964         call->gtType = callRetTyp;
6965     }
6966
6967 #if !FEATURE_VARARG
6968     /* Check for varargs */
6969     if ((sig->callConv & CORINFO_CALLCONV_MASK) == CORINFO_CALLCONV_VARARG ||
6970         (sig->callConv & CORINFO_CALLCONV_MASK) == CORINFO_CALLCONV_NATIVEVARARG)
6971     {
6972         BADCODE("Varargs not supported.");
6973     }
6974 #endif // !FEATURE_VARARG
6975
6976     if ((sig->callConv & CORINFO_CALLCONV_MASK) == CORINFO_CALLCONV_VARARG ||
6977         (sig->callConv & CORINFO_CALLCONV_MASK) == CORINFO_CALLCONV_NATIVEVARARG)
6978     {
6979         assert(!compIsForInlining());
6980
6981         /* Set the right flags */
6982
6983         call->gtFlags |= GTF_CALL_POP_ARGS;
6984         call->gtCall.gtCallMoreFlags |= GTF_CALL_M_VARARGS;
6985
6986         /* Can't allow tailcall for varargs as it is caller-pop. The caller
6987            will be expecting to pop a certain number of arguments, but if we
6988            tailcall to a function with a different number of arguments, we
6989            are hosed. There are ways around this (caller remembers esp value,
6990            varargs is not caller-pop, etc), but not worth it. */
6991         CLANG_FORMAT_COMMENT_ANCHOR;
6992
6993 #ifdef _TARGET_X86_
6994         if (canTailCall)
6995         {
6996             canTailCall             = false;
6997             szCanTailCallFailReason = "Callee is varargs";
6998         }
6999 #endif
7000
7001         /* Get the total number of arguments - this is already correct
7002          * for CALLI - for methods we have to get it from the call site */
7003
7004         if (opcode != CEE_CALLI)
7005         {
7006 #ifdef DEBUG
7007             unsigned numArgsDef = sig->numArgs;
7008 #endif
7009             eeGetCallSiteSig(pResolvedToken->token, info.compScopeHnd, impTokenLookupContextHandle, sig);
7010
7011 #ifdef DEBUG
7012             // We cannot lazily obtain the signature of a vararg call because using its method
7013             // handle will give us only the declared argument list, not the full argument list.
7014             assert(call->gtCall.callSig == nullptr);
7015             call->gtCall.callSig  = new (this, CMK_CorSig) CORINFO_SIG_INFO;
7016             *call->gtCall.callSig = *sig;
7017 #endif
7018
7019             // For vararg calls we must be sure to load the return type of the
7020             // method actually being called, as well as the return types of the
7021             // specified in the vararg signature. With type equivalency, these types
7022             // may not be the same.
7023             if (sig->retTypeSigClass != actualMethodRetTypeSigClass)
7024             {
7025                 if (actualMethodRetTypeSigClass != nullptr && sig->retType != CORINFO_TYPE_CLASS &&
7026                     sig->retType != CORINFO_TYPE_BYREF && sig->retType != CORINFO_TYPE_PTR &&
7027                     sig->retType != CORINFO_TYPE_VAR)
7028                 {
7029                     // Make sure that all valuetypes (including enums) that we push are loaded.
7030                     // This is to guarantee that if a GC is triggerred from the prestub of this methods,
7031                     // all valuetypes in the method signature are already loaded.
7032                     // We need to be able to find the size of the valuetypes, but we cannot
7033                     // do a class-load from within GC.
7034                     info.compCompHnd->classMustBeLoadedBeforeCodeIsRun(actualMethodRetTypeSigClass);
7035                 }
7036             }
7037
7038             assert(numArgsDef <= sig->numArgs);
7039         }
7040
7041         /* We will have "cookie" as the last argument but we cannot push
7042          * it on the operand stack because we may overflow, so we append it
7043          * to the arg list next after we pop them */
7044     }
7045
7046     if (mflags & CORINFO_FLG_SECURITYCHECK)
7047     {
7048         assert(!compIsForInlining());
7049
7050         // Need security prolog/epilog callouts when there is
7051         // imperative security in the method. This is to give security a
7052         // chance to do any setup in the prolog and cleanup in the epilog if needed.
7053
7054         if (compIsForInlining())
7055         {
7056             // Cannot handle this if the method being imported is an inlinee by itself.
7057             // Because inlinee method does not have its own frame.
7058
7059             compInlineResult->NoteFatal(InlineObservation::CALLEE_NEEDS_SECURITY_CHECK);
7060             return callRetTyp;
7061         }
7062         else
7063         {
7064             tiSecurityCalloutNeeded = true;
7065
7066             // If the current method calls a method which needs a security check,
7067             // (i.e. the method being compiled has imperative security)
7068             // we need to reserve a slot for the security object in
7069             // the current method's stack frame
7070             opts.compNeedSecurityCheck = true;
7071         }
7072     }
7073
7074     //--------------------------- Inline NDirect ------------------------------
7075
7076     // For inline cases we technically should look at both the current
7077     // block and the call site block (or just the latter if we've
7078     // fused the EH trees). However the block-related checks pertain to
7079     // EH and we currently won't inline a method with EH. So for
7080     // inlinees, just checking the call site block is sufficient.
7081     {
7082         // New lexical block here to avoid compilation errors because of GOTOs.
7083         BasicBlock* block = compIsForInlining() ? impInlineInfo->iciBlock : compCurBB;
7084         impCheckForPInvokeCall(call, methHnd, sig, mflags, block);
7085     }
7086
7087     if (call->gtFlags & GTF_CALL_UNMANAGED)
7088     {
7089         // We set up the unmanaged call by linking the frame, disabling GC, etc
7090         // This needs to be cleaned up on return
7091         if (canTailCall)
7092         {
7093             canTailCall             = false;
7094             szCanTailCallFailReason = "Callee is native";
7095         }
7096
7097         checkForSmallType = true;
7098
7099         impPopArgsForUnmanagedCall(call, sig);
7100
7101         goto DONE;
7102     }
7103     else if ((opcode == CEE_CALLI) && (((sig->callConv & CORINFO_CALLCONV_MASK) == CORINFO_CALLCONV_STDCALL) ||
7104                                        ((sig->callConv & CORINFO_CALLCONV_MASK) == CORINFO_CALLCONV_C) ||
7105                                        ((sig->callConv & CORINFO_CALLCONV_MASK) == CORINFO_CALLCONV_THISCALL) ||
7106                                        ((sig->callConv & CORINFO_CALLCONV_MASK) == CORINFO_CALLCONV_FASTCALL)))
7107     {
7108         if (!info.compCompHnd->canGetCookieForPInvokeCalliSig(sig))
7109         {
7110             // Normally this only happens with inlining.
7111             // However, a generic method (or type) being NGENd into another module
7112             // can run into this issue as well.  There's not an easy fall-back for NGEN
7113             // so instead we fallback to JIT.
7114             if (compIsForInlining())
7115             {
7116                 compInlineResult->NoteFatal(InlineObservation::CALLSITE_CANT_EMBED_PINVOKE_COOKIE);
7117             }
7118             else
7119             {
7120                 IMPL_LIMITATION("Can't get PInvoke cookie (cross module generics)");
7121             }
7122
7123             return callRetTyp;
7124         }
7125
7126         GenTreePtr cookie = eeGetPInvokeCookie(sig);
7127
7128         // This cookie is required to be either a simple GT_CNS_INT or
7129         // an indirection of a GT_CNS_INT
7130         //
7131         GenTreePtr cookieConst = cookie;
7132         if (cookie->gtOper == GT_IND)
7133         {
7134             cookieConst = cookie->gtOp.gtOp1;
7135         }
7136         assert(cookieConst->gtOper == GT_CNS_INT);
7137
7138         // Setting GTF_DONT_CSE on the GT_CNS_INT as well as on the GT_IND (if it exists) will ensure that
7139         // we won't allow this tree to participate in any CSE logic
7140         //
7141         cookie->gtFlags |= GTF_DONT_CSE;
7142         cookieConst->gtFlags |= GTF_DONT_CSE;
7143
7144         call->gtCall.gtCallCookie = cookie;
7145
7146         if (canTailCall)
7147         {
7148             canTailCall             = false;
7149             szCanTailCallFailReason = "PInvoke calli";
7150         }
7151     }
7152
7153     /*-------------------------------------------------------------------------
7154      * Create the argument list
7155      */
7156
7157     //-------------------------------------------------------------------------
7158     // Special case - for varargs we have an implicit last argument
7159
7160     if ((sig->callConv & CORINFO_CALLCONV_MASK) == CORINFO_CALLCONV_VARARG)
7161     {
7162         assert(!compIsForInlining());
7163
7164         void *varCookie, *pVarCookie;
7165         if (!info.compCompHnd->canGetVarArgsHandle(sig))
7166         {
7167             compInlineResult->NoteFatal(InlineObservation::CALLSITE_CANT_EMBED_VARARGS_COOKIE);
7168             return callRetTyp;
7169         }
7170
7171         varCookie = info.compCompHnd->getVarArgsHandle(sig, &pVarCookie);
7172         assert((!varCookie) != (!pVarCookie));
7173         GenTreePtr cookie = gtNewIconEmbHndNode(varCookie, pVarCookie, GTF_ICON_VARG_HDL);
7174
7175         assert(extraArg == nullptr);
7176         extraArg = gtNewArgList(cookie);
7177     }
7178
7179     //-------------------------------------------------------------------------
7180     // Extra arg for shared generic code and array methods
7181     //
7182     // Extra argument containing instantiation information is passed in the
7183     // following circumstances:
7184     // (a) To the "Address" method on array classes; the extra parameter is
7185     //     the array's type handle (a TypeDesc)
7186     // (b) To shared-code instance methods in generic structs; the extra parameter
7187     //     is the struct's type handle (a vtable ptr)
7188     // (c) To shared-code per-instantiation non-generic static methods in generic
7189     //     classes and structs; the extra parameter is the type handle
7190     // (d) To shared-code generic methods; the extra parameter is an
7191     //     exact-instantiation MethodDesc
7192     //
7193     // We also set the exact type context associated with the call so we can
7194     // inline the call correctly later on.
7195
7196     if (sig->callConv & CORINFO_CALLCONV_PARAMTYPE)
7197     {
7198         assert(call->gtCall.gtCallType == CT_USER_FUNC);
7199         if (clsHnd == nullptr)
7200         {
7201             NO_WAY("CALLI on parameterized type");
7202         }
7203
7204         assert(opcode != CEE_CALLI);
7205
7206         GenTreePtr instParam;
7207         BOOL       runtimeLookup;
7208
7209         // Instantiated generic method
7210         if (((SIZE_T)exactContextHnd & CORINFO_CONTEXTFLAGS_MASK) == CORINFO_CONTEXTFLAGS_METHOD)
7211         {
7212             CORINFO_METHOD_HANDLE exactMethodHandle =
7213                 (CORINFO_METHOD_HANDLE)((SIZE_T)exactContextHnd & ~CORINFO_CONTEXTFLAGS_MASK);
7214
7215             if (!exactContextNeedsRuntimeLookup)
7216             {
7217 #ifdef FEATURE_READYTORUN_COMPILER
7218                 if (opts.IsReadyToRun())
7219                 {
7220                     instParam =
7221                         impReadyToRunLookupToTree(&callInfo->instParamLookup, GTF_ICON_METHOD_HDL, exactMethodHandle);
7222                     if (instParam == nullptr)
7223                     {
7224                         return callRetTyp;
7225                     }
7226                 }
7227                 else
7228 #endif
7229                 {
7230                     instParam = gtNewIconEmbMethHndNode(exactMethodHandle);
7231                     info.compCompHnd->methodMustBeLoadedBeforeCodeIsRun(exactMethodHandle);
7232                 }
7233             }
7234             else
7235             {
7236                 instParam = impTokenToHandle(pResolvedToken, &runtimeLookup, TRUE /*mustRestoreHandle*/);
7237                 if (instParam == nullptr)
7238                 {
7239                     return callRetTyp;
7240                 }
7241             }
7242         }
7243
7244         // otherwise must be an instance method in a generic struct,
7245         // a static method in a generic type, or a runtime-generated array method
7246         else
7247         {
7248             assert(((SIZE_T)exactContextHnd & CORINFO_CONTEXTFLAGS_MASK) == CORINFO_CONTEXTFLAGS_CLASS);
7249             CORINFO_CLASS_HANDLE exactClassHandle =
7250                 (CORINFO_CLASS_HANDLE)((SIZE_T)exactContextHnd & ~CORINFO_CONTEXTFLAGS_MASK);
7251
7252             if (compIsForInlining() && (clsFlags & CORINFO_FLG_ARRAY) != 0)
7253             {
7254                 compInlineResult->NoteFatal(InlineObservation::CALLEE_IS_ARRAY_METHOD);
7255                 return callRetTyp;
7256             }
7257
7258             if ((clsFlags & CORINFO_FLG_ARRAY) && readonlyCall)
7259             {
7260                 // We indicate "readonly" to the Address operation by using a null
7261                 // instParam.
7262                 instParam = gtNewIconNode(0, TYP_REF);
7263             }
7264
7265             if (!exactContextNeedsRuntimeLookup)
7266             {
7267 #ifdef FEATURE_READYTORUN_COMPILER
7268                 if (opts.IsReadyToRun())
7269                 {
7270                     instParam =
7271                         impReadyToRunLookupToTree(&callInfo->instParamLookup, GTF_ICON_CLASS_HDL, exactClassHandle);
7272                     if (instParam == nullptr)
7273                     {
7274                         return callRetTyp;
7275                     }
7276                 }
7277                 else
7278 #endif
7279                 {
7280                     instParam = gtNewIconEmbClsHndNode(exactClassHandle);
7281                     info.compCompHnd->classMustBeLoadedBeforeCodeIsRun(exactClassHandle);
7282                 }
7283             }
7284             else
7285             {
7286                 instParam = impParentClassTokenToHandle(pResolvedToken, &runtimeLookup, TRUE /*mustRestoreHandle*/);
7287                 if (instParam == nullptr)
7288                 {
7289                     return callRetTyp;
7290                 }
7291             }
7292         }
7293
7294         assert(extraArg == nullptr);
7295         extraArg = gtNewArgList(instParam);
7296     }
7297
7298     // Inlining may need the exact type context (exactContextHnd) if we're inlining shared generic code, in particular
7299     // to inline 'polytypic' operations such as static field accesses, type tests and method calls which
7300     // rely on the exact context. The exactContextHnd is passed back to the JitInterface at appropriate points.
7301     // exactContextHnd is not currently required when inlining shared generic code into shared
7302     // generic code, since the inliner aborts whenever shared code polytypic operations are encountered
7303     // (e.g. anything marked needsRuntimeLookup)
7304     if (exactContextNeedsRuntimeLookup)
7305     {
7306         exactContextHnd = nullptr;
7307     }
7308
7309     //-------------------------------------------------------------------------
7310     // The main group of arguments
7311
7312     args = call->gtCall.gtCallArgs = impPopList(sig->numArgs, &argFlags, sig, extraArg);
7313
7314     if (args)
7315     {
7316         call->gtFlags |= args->gtFlags & GTF_GLOB_EFFECT;
7317     }
7318
7319     //-------------------------------------------------------------------------
7320     // The "this" pointer
7321
7322     if (!(mflags & CORINFO_FLG_STATIC) && !((opcode == CEE_NEWOBJ) && (newobjThis == nullptr)))
7323     {
7324         GenTreePtr obj;
7325
7326         if (opcode == CEE_NEWOBJ)
7327         {
7328             obj = newobjThis;
7329         }
7330         else
7331         {
7332             obj = impPopStack().val;
7333             obj = impTransformThis(obj, pConstrainedResolvedToken, constraintCallThisTransform);
7334             if (compDonotInline())
7335             {
7336                 return callRetTyp;
7337             }
7338         }
7339
7340         /* Is this a virtual or interface call? */
7341
7342         if ((call->gtFlags & GTF_CALL_VIRT_KIND_MASK) != GTF_CALL_NONVIRT)
7343         {
7344             /* only true object pointers can be virtual */
7345
7346             assert(obj->gtType == TYP_REF);
7347         }
7348         else
7349         {
7350             if (impIsThis(obj))
7351             {
7352                 call->gtCall.gtCallMoreFlags |= GTF_CALL_M_NONVIRT_SAME_THIS;
7353             }
7354         }
7355
7356         /* Store the "this" value in the call */
7357
7358         call->gtFlags |= obj->gtFlags & GTF_GLOB_EFFECT;
7359         call->gtCall.gtCallObjp = obj;
7360     }
7361
7362     //-------------------------------------------------------------------------
7363     // The "this" pointer for "newobj"
7364
7365     if (opcode == CEE_NEWOBJ)
7366     {
7367         if (clsFlags & CORINFO_FLG_VAROBJSIZE)
7368         {
7369             assert(!(clsFlags & CORINFO_FLG_ARRAY)); // arrays handled separately
7370             // This is a 'new' of a variable sized object, wher
7371             // the constructor is to return the object.  In this case
7372             // the constructor claims to return VOID but we know it
7373             // actually returns the new object
7374             assert(callRetTyp == TYP_VOID);
7375             callRetTyp   = TYP_REF;
7376             call->gtType = TYP_REF;
7377             impSpillSpecialSideEff();
7378
7379             impPushOnStack(call, typeInfo(TI_REF, clsHnd));
7380         }
7381         else
7382         {
7383             if (clsFlags & CORINFO_FLG_DELEGATE)
7384             {
7385                 // New inliner morph it in impImportCall.
7386                 // This will allow us to inline the call to the delegate constructor.
7387                 call = fgOptimizeDelegateConstructor(call, &exactContextHnd);
7388             }
7389
7390             if (!bIntrinsicImported)
7391             {
7392
7393 #if defined(DEBUG) || defined(INLINE_DATA)
7394
7395                 // Keep track of the raw IL offset of the call
7396                 call->gtCall.gtRawILOffset = rawILOffset;
7397
7398 #endif // defined(DEBUG) || defined(INLINE_DATA)
7399
7400                 // Is it an inline candidate?
7401                 impMarkInlineCandidate(call, exactContextHnd, callInfo);
7402             }
7403
7404             // append the call node.
7405             impAppendTree(call, (unsigned)CHECK_SPILL_ALL, impCurStmtOffs);
7406
7407             // Now push the value of the 'new onto the stack
7408
7409             // This is a 'new' of a non-variable sized object.
7410             // Append the new node (op1) to the statement list,
7411             // and then push the local holding the value of this
7412             // new instruction on the stack.
7413
7414             if (clsFlags & CORINFO_FLG_VALUECLASS)
7415             {
7416                 assert(newobjThis->gtOper == GT_ADDR && newobjThis->gtOp.gtOp1->gtOper == GT_LCL_VAR);
7417
7418                 unsigned tmp = newobjThis->gtOp.gtOp1->gtLclVarCommon.gtLclNum;
7419                 impPushOnStack(gtNewLclvNode(tmp, lvaGetRealType(tmp)), verMakeTypeInfo(clsHnd).NormaliseForStack());
7420             }
7421             else
7422             {
7423                 if (newobjThis->gtOper == GT_COMMA)
7424                 {
7425                     // In coreclr the callout can be inserted even if verification is disabled
7426                     // so we cannot rely on tiVerificationNeeded alone
7427
7428                     // We must have inserted the callout. Get the real newobj.
7429                     newobjThis = newobjThis->gtOp.gtOp2;
7430                 }
7431
7432                 assert(newobjThis->gtOper == GT_LCL_VAR);
7433                 impPushOnStack(gtNewLclvNode(newobjThis->gtLclVarCommon.gtLclNum, TYP_REF), typeInfo(TI_REF, clsHnd));
7434             }
7435         }
7436         return callRetTyp;
7437     }
7438
7439 DONE:
7440
7441     if (tailCall)
7442     {
7443         // This check cannot be performed for implicit tail calls for the reason
7444         // that impIsImplicitTailCallCandidate() is not checking whether return
7445         // types are compatible before marking a call node with PREFIX_TAILCALL_IMPLICIT.
7446         // As a result it is possible that in the following case, we find that
7447         // the type stack is non-empty if Callee() is considered for implicit
7448         // tail calling.
7449         //      int Caller(..) { .... void Callee(); ret val; ... }
7450         //
7451         // Note that we cannot check return type compatibility before ImpImportCall()
7452         // as we don't have required info or need to duplicate some of the logic of
7453         // ImpImportCall().
7454         //
7455         // For implicit tail calls, we perform this check after return types are
7456         // known to be compatible.
7457         if ((tailCall & PREFIX_TAILCALL_EXPLICIT) && (verCurrentState.esStackDepth != 0))
7458         {
7459             BADCODE("Stack should be empty after tailcall");
7460         }
7461
7462         // Note that we can not relax this condition with genActualType() as
7463         // the calling convention dictates that the caller of a function with
7464         // a small-typed return value is responsible for normalizing the return val
7465
7466         if (canTailCall &&
7467             !impTailCallRetTypeCompatible(info.compRetType, info.compMethodInfo->args.retTypeClass, callRetTyp,
7468                                           callInfo->sig.retTypeClass))
7469         {
7470             canTailCall             = false;
7471             szCanTailCallFailReason = "Return types are not tail call compatible";
7472         }
7473
7474         // Stack empty check for implicit tail calls.
7475         if (canTailCall && (tailCall & PREFIX_TAILCALL_IMPLICIT) && (verCurrentState.esStackDepth != 0))
7476         {
7477 #ifdef _TARGET_AMD64_
7478             // JIT64 Compatibility:  Opportunistic tail call stack mismatch throws a VerificationException
7479             // in JIT64, not an InvalidProgramException.
7480             Verify(false, "Stack should be empty after tailcall");
7481 #else  // _TARGET_64BIT_
7482             BADCODE("Stack should be empty after tailcall");
7483 #endif //!_TARGET_64BIT_
7484         }
7485
7486         // assert(compCurBB is not a catch, finally or filter block);
7487         // assert(compCurBB is not a try block protected by a finally block);
7488
7489         // Check for permission to tailcall
7490         bool explicitTailCall = (tailCall & PREFIX_TAILCALL_EXPLICIT) != 0;
7491
7492         assert(!explicitTailCall || compCurBB->bbJumpKind == BBJ_RETURN);
7493
7494         if (canTailCall)
7495         {
7496             // True virtual or indirect calls, shouldn't pass in a callee handle.
7497             CORINFO_METHOD_HANDLE exactCalleeHnd = ((call->gtCall.gtCallType != CT_USER_FUNC) ||
7498                                                     ((call->gtFlags & GTF_CALL_VIRT_KIND_MASK) != GTF_CALL_NONVIRT))
7499                                                        ? nullptr
7500                                                        : methHnd;
7501             GenTreePtr thisArg = call->gtCall.gtCallObjp;
7502
7503             if (info.compCompHnd->canTailCall(info.compMethodHnd, methHnd, exactCalleeHnd, explicitTailCall))
7504             {
7505                 canTailCall = true;
7506                 if (explicitTailCall)
7507                 {
7508                     // In case of explicit tail calls, mark it so that it is not considered
7509                     // for in-lining.
7510                     call->gtCall.gtCallMoreFlags |= GTF_CALL_M_EXPLICIT_TAILCALL;
7511 #ifdef DEBUG
7512                     if (verbose)
7513                     {
7514                         printf("\nGTF_CALL_M_EXPLICIT_TAILCALL bit set for call ");
7515                         printTreeID(call);
7516                         printf("\n");
7517                     }
7518 #endif
7519                 }
7520                 else
7521                 {
7522 #if FEATURE_TAILCALL_OPT
7523                     // Must be an implicit tail call.
7524                     assert((tailCall & PREFIX_TAILCALL_IMPLICIT) != 0);
7525
7526                     // It is possible that a call node is both an inline candidate and marked
7527                     // for opportunistic tail calling.  In-lining happens before morhphing of
7528                     // trees.  If in-lining of an in-line candidate gets aborted for whatever
7529                     // reason, it will survive to the morphing stage at which point it will be
7530                     // transformed into a tail call after performing additional checks.
7531
7532                     call->gtCall.gtCallMoreFlags |= GTF_CALL_M_IMPLICIT_TAILCALL;
7533 #ifdef DEBUG
7534                     if (verbose)
7535                     {
7536                         printf("\nGTF_CALL_M_IMPLICIT_TAILCALL bit set for call ");
7537                         printTreeID(call);
7538                         printf("\n");
7539                     }
7540 #endif
7541
7542 #else //! FEATURE_TAILCALL_OPT
7543                     NYI("Implicit tail call prefix on a target which doesn't support opportunistic tail calls");
7544
7545 #endif // FEATURE_TAILCALL_OPT
7546                 }
7547
7548                 // we can't report success just yet...
7549             }
7550             else
7551             {
7552                 canTailCall = false;
7553 // canTailCall reported its reasons already
7554 #ifdef DEBUG
7555                 if (verbose)
7556                 {
7557                     printf("\ninfo.compCompHnd->canTailCall returned false for call ");
7558                     printTreeID(call);
7559                     printf("\n");
7560                 }
7561 #endif
7562             }
7563         }
7564         else
7565         {
7566             // If this assert fires it means that canTailCall was set to false without setting a reason!
7567             assert(szCanTailCallFailReason != nullptr);
7568
7569 #ifdef DEBUG
7570             if (verbose)
7571             {
7572                 printf("\nRejecting %splicit tail call for call ", explicitTailCall ? "ex" : "im");
7573                 printTreeID(call);
7574                 printf(": %s\n", szCanTailCallFailReason);
7575             }
7576 #endif
7577             info.compCompHnd->reportTailCallDecision(info.compMethodHnd, methHnd, explicitTailCall, TAILCALL_FAIL,
7578                                                      szCanTailCallFailReason);
7579         }
7580     }
7581
7582     // Note: we assume that small return types are already normalized by the managed callee
7583     // or by the pinvoke stub for calls to unmanaged code.
7584
7585     if (!bIntrinsicImported)
7586     {
7587         //
7588         // Things needed to be checked when bIntrinsicImported is false.
7589         //
7590
7591         assert(call->gtOper == GT_CALL);
7592         assert(sig != nullptr);
7593
7594         // Tail calls require us to save the call site's sig info so we can obtain an argument
7595         // copying thunk from the EE later on.
7596         if (call->gtCall.callSig == nullptr)
7597         {
7598             call->gtCall.callSig  = new (this, CMK_CorSig) CORINFO_SIG_INFO;
7599             *call->gtCall.callSig = *sig;
7600         }
7601
7602         if (compIsForInlining() && opcode == CEE_CALLVIRT)
7603         {
7604             GenTreePtr callObj = call->gtCall.gtCallObjp;
7605             assert(callObj != nullptr);
7606
7607             unsigned callKind = call->gtFlags & GTF_CALL_VIRT_KIND_MASK;
7608
7609             if (((callKind != GTF_CALL_NONVIRT) || (call->gtFlags & GTF_CALL_NULLCHECK)) &&
7610                 impInlineIsGuaranteedThisDerefBeforeAnySideEffects(call->gtCall.gtCallArgs, callObj,
7611                                                                    impInlineInfo->inlArgInfo))
7612             {
7613                 impInlineInfo->thisDereferencedFirst = true;
7614             }
7615         }
7616
7617 #if defined(DEBUG) || defined(INLINE_DATA)
7618
7619         // Keep track of the raw IL offset of the call
7620         call->gtCall.gtRawILOffset = rawILOffset;
7621
7622 #endif // defined(DEBUG) || defined(INLINE_DATA)
7623
7624         // Is it an inline candidate?
7625         impMarkInlineCandidate(call, exactContextHnd, callInfo);
7626     }
7627
7628 DONE_CALL:
7629     // Push or append the result of the call
7630     if (callRetTyp == TYP_VOID)
7631     {
7632         if (opcode == CEE_NEWOBJ)
7633         {
7634             // we actually did push something, so don't spill the thing we just pushed.
7635             assert(verCurrentState.esStackDepth > 0);
7636             impAppendTree(call, verCurrentState.esStackDepth - 1, impCurStmtOffs);
7637         }
7638         else
7639         {
7640             impAppendTree(call, (unsigned)CHECK_SPILL_ALL, impCurStmtOffs);
7641         }
7642     }
7643     else
7644     {
7645         impSpillSpecialSideEff();
7646
7647         if (clsFlags & CORINFO_FLG_ARRAY)
7648         {
7649             eeGetCallSiteSig(pResolvedToken->token, pResolvedToken->tokenScope, pResolvedToken->tokenContext, sig);
7650         }
7651
7652         // Find the return type used for verification by interpreting the method signature.
7653         // NB: we are clobbering the already established sig.
7654         if (tiVerificationNeeded)
7655         {
7656             // Actually, we never get the sig for the original method.
7657             sig = &(callInfo->verSig);
7658         }
7659
7660         typeInfo tiRetVal = verMakeTypeInfo(sig->retType, sig->retTypeClass);
7661         tiRetVal.NormaliseForStack();
7662
7663         // The CEE_READONLY prefix modifies the verification semantics of an Address
7664         // operation on an array type.
7665         if ((clsFlags & CORINFO_FLG_ARRAY) && readonlyCall && tiRetVal.IsByRef())
7666         {
7667             tiRetVal.SetIsReadonlyByRef();
7668         }
7669
7670         if (tiVerificationNeeded)
7671         {
7672             // We assume all calls return permanent home byrefs. If they
7673             // didn't they wouldn't be verifiable. This is also covering
7674             // the Address() helper for multidimensional arrays.
7675             if (tiRetVal.IsByRef())
7676             {
7677                 tiRetVal.SetIsPermanentHomeByRef();
7678             }
7679         }
7680
7681         if (call->IsCall())
7682         {
7683             // Sometimes "call" is not a GT_CALL (if we imported an intrinsic that didn't turn into a call)
7684
7685             bool fatPointerCandidate = call->AsCall()->IsFatPointerCandidate();
7686             if (varTypeIsStruct(callRetTyp))
7687             {
7688                 call = impFixupCallStructReturn(call, sig->retTypeClass);
7689             }
7690
7691             if ((call->gtFlags & GTF_CALL_INLINE_CANDIDATE) != 0)
7692             {
7693                 assert(opts.OptEnabled(CLFLG_INLINING));
7694                 assert(!fatPointerCandidate); // We should not try to inline calli.
7695
7696                 // Make the call its own tree (spill the stack if needed).
7697                 impAppendTree(call, (unsigned)CHECK_SPILL_ALL, impCurStmtOffs);
7698
7699                 // TODO: Still using the widened type.
7700                 call = gtNewInlineCandidateReturnExpr(call, genActualType(callRetTyp));
7701             }
7702             else
7703             {
7704                 if (fatPointerCandidate)
7705                 {
7706                     // fatPointer candidates should be in statements of the form call() or var = call().
7707                     // Such form allows to find statements with fat calls without walking through whole trees
7708                     // and removes problems with cutting trees.
7709                     assert(!bIntrinsicImported);
7710                     assert(IsTargetAbi(CORINFO_CORERT_ABI));
7711                     if (call->OperGet() != GT_LCL_VAR) // can be already converted by impFixupCallStructReturn.
7712                     {
7713                         unsigned   calliSlot  = lvaGrabTemp(true DEBUGARG("calli"));
7714                         LclVarDsc* varDsc     = &lvaTable[calliSlot];
7715                         varDsc->lvVerTypeInfo = tiRetVal;
7716                         impAssignTempGen(calliSlot, call, clsHnd, (unsigned)CHECK_SPILL_NONE);
7717                         // impAssignTempGen can change src arg list and return type for call that returns struct.
7718                         var_types type = genActualType(lvaTable[calliSlot].TypeGet());
7719                         call           = gtNewLclvNode(calliSlot, type);
7720                     }
7721                 }
7722                 // For non-candidates we must also spill, since we
7723                 // might have locals live on the eval stack that this
7724                 // call can modify.
7725                 impSpillSideEffects(true, CHECK_SPILL_ALL DEBUGARG("non-inline candidate call"));
7726             }
7727         }
7728
7729         if (!bIntrinsicImported)
7730         {
7731             //-------------------------------------------------------------------------
7732             //
7733             /* If the call is of a small type and the callee is managed, the callee will normalize the result
7734                 before returning.
7735                 However, we need to normalize small type values returned by unmanaged
7736                 functions (pinvoke). The pinvoke stub does the normalization, but we need to do it here
7737                 if we use the shorter inlined pinvoke stub. */
7738
7739             if (checkForSmallType && varTypeIsIntegral(callRetTyp) && genTypeSize(callRetTyp) < genTypeSize(TYP_INT))
7740             {
7741                 call = gtNewCastNode(genActualType(callRetTyp), call, callRetTyp);
7742             }
7743         }
7744
7745         impPushOnStack(call, tiRetVal);
7746     }
7747
7748     // VSD functions get a new call target each time we getCallInfo, so clear the cache.
7749     // Also, the call info cache for CALLI instructions is largely incomplete, so clear it out.
7750     // if ( (opcode == CEE_CALLI) || (callInfoCache.fetchCallInfo().kind == CORINFO_VIRTUALCALL_STUB))
7751     //  callInfoCache.uncacheCallInfo();
7752
7753     return callRetTyp;
7754 }
7755 #ifdef _PREFAST_
7756 #pragma warning(pop)
7757 #endif
7758
7759 bool Compiler::impMethodInfo_hasRetBuffArg(CORINFO_METHOD_INFO* methInfo)
7760 {
7761     CorInfoType corType = methInfo->args.retType;
7762
7763     if ((corType == CORINFO_TYPE_VALUECLASS) || (corType == CORINFO_TYPE_REFANY))
7764     {
7765         // We have some kind of STRUCT being returned
7766
7767         structPassingKind howToReturnStruct = SPK_Unknown;
7768
7769         var_types returnType = getReturnTypeForStruct(methInfo->args.retTypeClass, &howToReturnStruct);
7770
7771         if (howToReturnStruct == SPK_ByReference)
7772         {
7773             return true;
7774         }
7775     }
7776
7777     return false;
7778 }
7779
7780 #ifdef DEBUG
7781 //
7782 var_types Compiler::impImportJitTestLabelMark(int numArgs)
7783 {
7784     TestLabelAndNum tlAndN;
7785     if (numArgs == 2)
7786     {
7787         tlAndN.m_num  = 0;
7788         StackEntry se = impPopStack();
7789         assert(se.seTypeInfo.GetType() == TI_INT);
7790         GenTreePtr val = se.val;
7791         assert(val->IsCnsIntOrI());
7792         tlAndN.m_tl = (TestLabel)val->AsIntConCommon()->IconValue();
7793     }
7794     else if (numArgs == 3)
7795     {
7796         StackEntry se = impPopStack();
7797         assert(se.seTypeInfo.GetType() == TI_INT);
7798         GenTreePtr val = se.val;
7799         assert(val->IsCnsIntOrI());
7800         tlAndN.m_num = val->AsIntConCommon()->IconValue();
7801         se           = impPopStack();
7802         assert(se.seTypeInfo.GetType() == TI_INT);
7803         val = se.val;
7804         assert(val->IsCnsIntOrI());
7805         tlAndN.m_tl = (TestLabel)val->AsIntConCommon()->IconValue();
7806     }
7807     else
7808     {
7809         assert(false);
7810     }
7811
7812     StackEntry expSe = impPopStack();
7813     GenTreePtr node  = expSe.val;
7814
7815     // There are a small number of special cases, where we actually put the annotation on a subnode.
7816     if (tlAndN.m_tl == TL_LoopHoist && tlAndN.m_num >= 100)
7817     {
7818         // A loop hoist annotation with value >= 100 means that the expression should be a static field access,
7819         // a GT_IND of a static field address, which should be the sum of a (hoistable) helper call and possibly some
7820         // offset within the the static field block whose address is returned by the helper call.
7821         // The annotation is saying that this address calculation, but not the entire access, should be hoisted.
7822         GenTreePtr helperCall = nullptr;
7823         assert(node->OperGet() == GT_IND);
7824         tlAndN.m_num -= 100;
7825         GetNodeTestData()->Set(node->gtOp.gtOp1, tlAndN);
7826         GetNodeTestData()->Remove(node);
7827     }
7828     else
7829     {
7830         GetNodeTestData()->Set(node, tlAndN);
7831     }
7832
7833     impPushOnStack(node, expSe.seTypeInfo);
7834     return node->TypeGet();
7835 }
7836 #endif // DEBUG
7837
7838 //-----------------------------------------------------------------------------------
7839 //  impFixupCallStructReturn: For a call node that returns a struct type either
7840 //  adjust the return type to an enregisterable type, or set the flag to indicate
7841 //  struct return via retbuf arg.
7842 //
7843 //  Arguments:
7844 //    call       -  GT_CALL GenTree node
7845 //    retClsHnd  -  Class handle of return type of the call
7846 //
7847 //  Return Value:
7848 //    Returns new GenTree node after fixing struct return of call node
7849 //
7850 GenTreePtr Compiler::impFixupCallStructReturn(GenTreePtr call, CORINFO_CLASS_HANDLE retClsHnd)
7851 {
7852     assert(call->gtOper == GT_CALL);
7853
7854     if (!varTypeIsStruct(call))
7855     {
7856         return call;
7857     }
7858
7859     call->gtCall.gtRetClsHnd = retClsHnd;
7860
7861     GenTreeCall* callNode = call->AsCall();
7862
7863 #if FEATURE_MULTIREG_RET
7864     // Initialize Return type descriptor of call node
7865     ReturnTypeDesc* retTypeDesc = callNode->GetReturnTypeDesc();
7866     retTypeDesc->InitializeStructReturnType(this, retClsHnd);
7867 #endif // FEATURE_MULTIREG_RET
7868
7869 #ifdef FEATURE_UNIX_AMD64_STRUCT_PASSING
7870
7871     // Not allowed for FEATURE_CORCLR which is the only SKU available for System V OSs.
7872     assert(!callNode->IsVarargs() && "varargs not allowed for System V OSs.");
7873
7874     // The return type will remain as the incoming struct type unless normalized to a
7875     // single eightbyte return type below.
7876     callNode->gtReturnType = call->gtType;
7877
7878     unsigned retRegCount = retTypeDesc->GetReturnRegCount();
7879     if (retRegCount != 0)
7880     {
7881         if (retRegCount == 1)
7882         {
7883             // struct returned in a single register
7884             callNode->gtReturnType = retTypeDesc->GetReturnRegType(0);
7885         }
7886         else
7887         {
7888             // must be a struct returned in two registers
7889             assert(retRegCount == 2);
7890
7891             if ((!callNode->CanTailCall()) && (!callNode->IsInlineCandidate()))
7892             {
7893                 // Force a call returning multi-reg struct to be always of the IR form
7894                 //   tmp = call
7895                 //
7896                 // No need to assign a multi-reg struct to a local var if:
7897                 //  - It is a tail call or
7898                 //  - The call is marked for in-lining later
7899                 return impAssignMultiRegTypeToVar(call, retClsHnd);
7900             }
7901         }
7902     }
7903     else
7904     {
7905         // struct not returned in registers i.e returned via hiddden retbuf arg.
7906         callNode->gtCallMoreFlags |= GTF_CALL_M_RETBUFFARG;
7907     }
7908
7909 #else // not FEATURE_UNIX_AMD64_STRUCT_PASSING
7910
7911 #if FEATURE_MULTIREG_RET && defined(_TARGET_ARM_)
7912     // There is no fixup necessary if the return type is a HFA struct.
7913     // HFA structs are returned in registers for ARM32 and ARM64
7914     //
7915     if (!call->gtCall.IsVarargs() && IsHfa(retClsHnd))
7916     {
7917         if (call->gtCall.CanTailCall())
7918         {
7919             if (info.compIsVarArgs)
7920             {
7921                 // We cannot tail call because control needs to return to fixup the calling
7922                 // convention for result return.
7923                 call->gtCall.gtCallMoreFlags &= ~GTF_CALL_M_EXPLICIT_TAILCALL;
7924             }
7925             else
7926             {
7927                 // If we can tail call returning HFA, then don't assign it to
7928                 // a variable back and forth.
7929                 return call;
7930             }
7931         }
7932
7933         if (call->gtFlags & GTF_CALL_INLINE_CANDIDATE)
7934         {
7935             return call;
7936         }
7937
7938         unsigned retRegCount = retTypeDesc->GetReturnRegCount();
7939         if (retRegCount >= 2)
7940         {
7941             return impAssignMultiRegTypeToVar(call, retClsHnd);
7942         }
7943     }
7944 #endif // _TARGET_ARM_
7945
7946     // Check for TYP_STRUCT type that wraps a primitive type
7947     // Such structs are returned using a single register
7948     // and we change the return type on those calls here.
7949     //
7950     structPassingKind howToReturnStruct;
7951     var_types         returnType = getReturnTypeForStruct(retClsHnd, &howToReturnStruct);
7952
7953     if (howToReturnStruct == SPK_ByReference)
7954     {
7955         assert(returnType == TYP_UNKNOWN);
7956         call->gtCall.gtCallMoreFlags |= GTF_CALL_M_RETBUFFARG;
7957     }
7958     else
7959     {
7960         assert(returnType != TYP_UNKNOWN);
7961         call->gtCall.gtReturnType = returnType;
7962
7963         // ToDo: Refactor this common code sequence into its own method as it is used 4+ times
7964         if ((returnType == TYP_LONG) && (compLongUsed == false))
7965         {
7966             compLongUsed = true;
7967         }
7968         else if (((returnType == TYP_FLOAT) || (returnType == TYP_DOUBLE)) && (compFloatingPointUsed == false))
7969         {
7970             compFloatingPointUsed = true;
7971         }
7972
7973 #if FEATURE_MULTIREG_RET
7974         unsigned retRegCount = retTypeDesc->GetReturnRegCount();
7975         assert(retRegCount != 0);
7976
7977         if (retRegCount >= 2)
7978         {
7979             if ((!callNode->CanTailCall()) && (!callNode->IsInlineCandidate()))
7980             {
7981                 // Force a call returning multi-reg struct to be always of the IR form
7982                 //   tmp = call
7983                 //
7984                 // No need to assign a multi-reg struct to a local var if:
7985                 //  - It is a tail call or
7986                 //  - The call is marked for in-lining later
7987                 return impAssignMultiRegTypeToVar(call, retClsHnd);
7988             }
7989         }
7990 #endif // FEATURE_MULTIREG_RET
7991     }
7992
7993 #endif // not FEATURE_UNIX_AMD64_STRUCT_PASSING
7994
7995     return call;
7996 }
7997
7998 /*****************************************************************************
7999    For struct return values, re-type the operand in the case where the ABI
8000    does not use a struct return buffer
8001    Note that this method is only call for !_TARGET_X86_
8002  */
8003
8004 GenTreePtr Compiler::impFixupStructReturnType(GenTreePtr op, CORINFO_CLASS_HANDLE retClsHnd)
8005 {
8006     assert(varTypeIsStruct(info.compRetType));
8007     assert(info.compRetBuffArg == BAD_VAR_NUM);
8008
8009 #if defined(_TARGET_XARCH_)
8010
8011 #ifdef FEATURE_UNIX_AMD64_STRUCT_PASSING
8012     // No VarArgs for CoreCLR on x64 Unix
8013     assert(!info.compIsVarArgs);
8014
8015     // Is method returning a multi-reg struct?
8016     if (varTypeIsStruct(info.compRetNativeType) && IsMultiRegReturnedType(retClsHnd))
8017     {
8018         // In case of multi-reg struct return, we force IR to be one of the following:
8019         // GT_RETURN(lclvar) or GT_RETURN(call).  If op is anything other than a
8020         // lclvar or call, it is assigned to a temp to create: temp = op and GT_RETURN(tmp).
8021
8022         if (op->gtOper == GT_LCL_VAR)
8023         {
8024             // Make sure that this struct stays in memory and doesn't get promoted.
8025             unsigned lclNum                  = op->gtLclVarCommon.gtLclNum;
8026             lvaTable[lclNum].lvIsMultiRegRet = true;
8027
8028             // TODO-1stClassStructs: Handle constant propagation and CSE-ing of multireg returns.
8029             op->gtFlags |= GTF_DONT_CSE;
8030
8031             return op;
8032         }
8033
8034         if (op->gtOper == GT_CALL)
8035         {
8036             return op;
8037         }
8038
8039         return impAssignMultiRegTypeToVar(op, retClsHnd);
8040     }
8041 #else  // !FEATURE_UNIX_AMD64_STRUCT_PASSING
8042     assert(info.compRetNativeType != TYP_STRUCT);
8043 #endif // !FEATURE_UNIX_AMD64_STRUCT_PASSING
8044
8045 #elif FEATURE_MULTIREG_RET && defined(_TARGET_ARM_)
8046
8047     if (varTypeIsStruct(info.compRetNativeType) && !info.compIsVarArgs && IsHfa(retClsHnd))
8048     {
8049         if (op->gtOper == GT_LCL_VAR)
8050         {
8051             // This LCL_VAR is an HFA return value, it stays as a TYP_STRUCT
8052             unsigned lclNum = op->gtLclVarCommon.gtLclNum;
8053             // Make sure this struct type stays as struct so that we can return it as an HFA
8054             lvaTable[lclNum].lvIsMultiRegRet = true;
8055
8056             // TODO-1stClassStructs: Handle constant propagation and CSE-ing of multireg returns.
8057             op->gtFlags |= GTF_DONT_CSE;
8058
8059             return op;
8060         }
8061
8062         if (op->gtOper == GT_CALL)
8063         {
8064             if (op->gtCall.IsVarargs())
8065             {
8066                 // We cannot tail call because control needs to return to fixup the calling
8067                 // convention for result return.
8068                 op->gtCall.gtCallMoreFlags &= ~GTF_CALL_M_TAILCALL;
8069                 op->gtCall.gtCallMoreFlags &= ~GTF_CALL_M_EXPLICIT_TAILCALL;
8070             }
8071             else
8072             {
8073                 return op;
8074             }
8075         }
8076         return impAssignMultiRegTypeToVar(op, retClsHnd);
8077     }
8078
8079 #elif FEATURE_MULTIREG_RET && defined(_TARGET_ARM64_)
8080
8081     // Is method returning a multi-reg struct?
8082     if (IsMultiRegReturnedType(retClsHnd))
8083     {
8084         if (op->gtOper == GT_LCL_VAR)
8085         {
8086             // This LCL_VAR stays as a TYP_STRUCT
8087             unsigned lclNum = op->gtLclVarCommon.gtLclNum;
8088
8089             // Make sure this struct type is not struct promoted
8090             lvaTable[lclNum].lvIsMultiRegRet = true;
8091
8092             // TODO-1stClassStructs: Handle constant propagation and CSE-ing of multireg returns.
8093             op->gtFlags |= GTF_DONT_CSE;
8094
8095             return op;
8096         }
8097
8098         if (op->gtOper == GT_CALL)
8099         {
8100             if (op->gtCall.IsVarargs())
8101             {
8102                 // We cannot tail call because control needs to return to fixup the calling
8103                 // convention for result return.
8104                 op->gtCall.gtCallMoreFlags &= ~GTF_CALL_M_TAILCALL;
8105                 op->gtCall.gtCallMoreFlags &= ~GTF_CALL_M_EXPLICIT_TAILCALL;
8106             }
8107             else
8108             {
8109                 return op;
8110             }
8111         }
8112         return impAssignMultiRegTypeToVar(op, retClsHnd);
8113     }
8114
8115 #endif //  FEATURE_MULTIREG_RET && FEATURE_HFA
8116
8117 REDO_RETURN_NODE:
8118     // adjust the type away from struct to integral
8119     // and no normalizing
8120     if (op->gtOper == GT_LCL_VAR)
8121     {
8122         op->ChangeOper(GT_LCL_FLD);
8123     }
8124     else if (op->gtOper == GT_OBJ)
8125     {
8126         GenTreePtr op1 = op->AsObj()->Addr();
8127
8128         // We will fold away OBJ/ADDR
8129         // except for OBJ/ADDR/INDEX
8130         //     as the array type influences the array element's offset
8131         //     Later in this method we change op->gtType to info.compRetNativeType
8132         //     This is not correct when op is a GT_INDEX as the starting offset
8133         //     for the array elements 'elemOffs' is different for an array of
8134         //     TYP_REF than an array of TYP_STRUCT (which simply wraps a TYP_REF)
8135         //     Also refer to the GTF_INX_REFARR_LAYOUT flag
8136         //
8137         if ((op1->gtOper == GT_ADDR) && (op1->gtOp.gtOp1->gtOper != GT_INDEX))
8138         {
8139             // Change '*(&X)' to 'X' and see if we can do better
8140             op = op1->gtOp.gtOp1;
8141             goto REDO_RETURN_NODE;
8142         }
8143         op->gtObj.gtClass = NO_CLASS_HANDLE;
8144         op->ChangeOperUnchecked(GT_IND);
8145         op->gtFlags |= GTF_IND_TGTANYWHERE;
8146     }
8147     else if (op->gtOper == GT_CALL)
8148     {
8149         if (op->AsCall()->TreatAsHasRetBufArg(this))
8150         {
8151             // This must be one of those 'special' helpers that don't
8152             // really have a return buffer, but instead use it as a way
8153             // to keep the trees cleaner with fewer address-taken temps.
8154             //
8155             // Well now we have to materialize the the return buffer as
8156             // an address-taken temp. Then we can return the temp.
8157             //
8158             // NOTE: this code assumes that since the call directly
8159             // feeds the return, then the call must be returning the
8160             // same structure/class/type.
8161             //
8162             unsigned tmpNum = lvaGrabTemp(true DEBUGARG("pseudo return buffer"));
8163
8164             // No need to spill anything as we're about to return.
8165             impAssignTempGen(tmpNum, op, info.compMethodInfo->args.retTypeClass, (unsigned)CHECK_SPILL_NONE);
8166
8167             // Don't create both a GT_ADDR & GT_OBJ just to undo all of that; instead,
8168             // jump directly to a GT_LCL_FLD.
8169             op = gtNewLclvNode(tmpNum, info.compRetNativeType);
8170             op->ChangeOper(GT_LCL_FLD);
8171         }
8172         else
8173         {
8174             assert(info.compRetNativeType == op->gtCall.gtReturnType);
8175
8176             // Don't change the gtType of the node just yet, it will get changed later.
8177             return op;
8178         }
8179     }
8180     else if (op->gtOper == GT_COMMA)
8181     {
8182         op->gtOp.gtOp2 = impFixupStructReturnType(op->gtOp.gtOp2, retClsHnd);
8183     }
8184
8185     op->gtType = info.compRetNativeType;
8186
8187     return op;
8188 }
8189
8190 /*****************************************************************************
8191    CEE_LEAVE may be jumping out of a protected block, viz, a catch or a
8192    finally-protected try. We find the finally blocks protecting the current
8193    offset (in order) by walking over the complete exception table and
8194    finding enclosing clauses. This assumes that the table is sorted.
8195    This will create a series of BBJ_CALLFINALLY -> BBJ_CALLFINALLY ... -> BBJ_ALWAYS.
8196
8197    If we are leaving a catch handler, we need to attach the
8198    CPX_ENDCATCHes to the correct BBJ_CALLFINALLY blocks.
8199
8200    After this function, the BBJ_LEAVE block has been converted to a different type.
8201  */
8202
8203 #if !FEATURE_EH_FUNCLETS
8204
8205 void Compiler::impImportLeave(BasicBlock* block)
8206 {
8207 #ifdef DEBUG
8208     if (verbose)
8209     {
8210         printf("\nBefore import CEE_LEAVE:\n");
8211         fgDispBasicBlocks();
8212         fgDispHandlerTab();
8213     }
8214 #endif // DEBUG
8215
8216     bool        invalidatePreds = false; // If we create new blocks, invalidate the predecessor lists (if created)
8217     unsigned    blkAddr         = block->bbCodeOffs;
8218     BasicBlock* leaveTarget     = block->bbJumpDest;
8219     unsigned    jmpAddr         = leaveTarget->bbCodeOffs;
8220
8221     // LEAVE clears the stack, spill side effects, and set stack to 0
8222
8223     impSpillSideEffects(true, (unsigned)CHECK_SPILL_ALL DEBUGARG("impImportLeave"));
8224     verCurrentState.esStackDepth = 0;
8225
8226     assert(block->bbJumpKind == BBJ_LEAVE);
8227     assert(fgBBs == (BasicBlock**)0xCDCD || fgLookupBB(jmpAddr) != NULL); // should be a BB boundary
8228
8229     BasicBlock* step         = DUMMY_INIT(NULL);
8230     unsigned    encFinallies = 0; // Number of enclosing finallies.
8231     GenTreePtr  endCatches   = NULL;
8232     GenTreePtr  endLFin      = NULL; // The statement tree to indicate the end of locally-invoked finally.
8233
8234     unsigned  XTnum;
8235     EHblkDsc* HBtab;
8236
8237     for (XTnum = 0, HBtab = compHndBBtab; XTnum < compHndBBtabCount; XTnum++, HBtab++)
8238     {
8239         // Grab the handler offsets
8240
8241         IL_OFFSET tryBeg = HBtab->ebdTryBegOffs();
8242         IL_OFFSET tryEnd = HBtab->ebdTryEndOffs();
8243         IL_OFFSET hndBeg = HBtab->ebdHndBegOffs();
8244         IL_OFFSET hndEnd = HBtab->ebdHndEndOffs();
8245
8246         /* Is this a catch-handler we are CEE_LEAVEing out of?
8247          * If so, we need to call CORINFO_HELP_ENDCATCH.
8248          */
8249
8250         if (jitIsBetween(blkAddr, hndBeg, hndEnd) && !jitIsBetween(jmpAddr, hndBeg, hndEnd))
8251         {
8252             // Can't CEE_LEAVE out of a finally/fault handler
8253             if (HBtab->HasFinallyOrFaultHandler())
8254                 BADCODE("leave out of fault/finally block");
8255
8256             // Create the call to CORINFO_HELP_ENDCATCH
8257             GenTreePtr endCatch = gtNewHelperCallNode(CORINFO_HELP_ENDCATCH, TYP_VOID);
8258
8259             // Make a list of all the currently pending endCatches
8260             if (endCatches)
8261                 endCatches = gtNewOperNode(GT_COMMA, TYP_VOID, endCatches, endCatch);
8262             else
8263                 endCatches = endCatch;
8264
8265 #ifdef DEBUG
8266             if (verbose)
8267             {
8268                 printf("impImportLeave - BB%02u jumping out of catch handler EH#%u, adding call to "
8269                        "CORINFO_HELP_ENDCATCH\n",
8270                        block->bbNum, XTnum);
8271             }
8272 #endif
8273         }
8274         else if (HBtab->HasFinallyHandler() && jitIsBetween(blkAddr, tryBeg, tryEnd) &&
8275                  !jitIsBetween(jmpAddr, tryBeg, tryEnd))
8276         {
8277             /* This is a finally-protected try we are jumping out of */
8278
8279             /* If there are any pending endCatches, and we have already
8280                jumped out of a finally-protected try, then the endCatches
8281                have to be put in a block in an outer try for async
8282                exceptions to work correctly.
8283                Else, just use append to the original block */
8284
8285             BasicBlock* callBlock;
8286
8287             assert(!encFinallies == !endLFin); // if we have finallies, we better have an endLFin tree, and vice-versa
8288
8289             if (encFinallies == 0)
8290             {
8291                 assert(step == DUMMY_INIT(NULL));
8292                 callBlock             = block;
8293                 callBlock->bbJumpKind = BBJ_CALLFINALLY; // convert the BBJ_LEAVE to BBJ_CALLFINALLY
8294
8295                 if (endCatches)
8296                     impAppendTree(endCatches, (unsigned)CHECK_SPILL_NONE, impCurStmtOffs);
8297
8298 #ifdef DEBUG
8299                 if (verbose)
8300                 {
8301                     printf("impImportLeave - jumping out of a finally-protected try, convert block to BBJ_CALLFINALLY "
8302                            "block BB%02u [%08p]\n",
8303                            callBlock->bbNum, dspPtr(callBlock));
8304                 }
8305 #endif
8306             }
8307             else
8308             {
8309                 assert(step != DUMMY_INIT(NULL));
8310
8311                 /* Calling the finally block */
8312                 callBlock = fgNewBBinRegion(BBJ_CALLFINALLY, XTnum + 1, 0, step);
8313                 assert(step->bbJumpKind == BBJ_ALWAYS);
8314                 step->bbJumpDest = callBlock; // the previous call to a finally returns to this call (to the next
8315                                               // finally in the chain)
8316                 step->bbJumpDest->bbRefs++;
8317
8318                 /* The new block will inherit this block's weight */
8319                 callBlock->setBBWeight(block->bbWeight);
8320                 callBlock->bbFlags |= block->bbFlags & BBF_RUN_RARELY;
8321
8322 #ifdef DEBUG
8323                 if (verbose)
8324                 {
8325                     printf("impImportLeave - jumping out of a finally-protected try, new BBJ_CALLFINALLY block BB%02u "
8326                            "[%08p]\n",
8327                            callBlock->bbNum, dspPtr(callBlock));
8328                 }
8329 #endif
8330
8331                 GenTreePtr lastStmt;
8332
8333                 if (endCatches)
8334                 {
8335                     lastStmt         = gtNewStmt(endCatches);
8336                     endLFin->gtNext  = lastStmt;
8337                     lastStmt->gtPrev = endLFin;
8338                 }
8339                 else
8340                 {
8341                     lastStmt = endLFin;
8342                 }
8343
8344                 // note that this sets BBF_IMPORTED on the block
8345                 impEndTreeList(callBlock, endLFin, lastStmt);
8346             }
8347
8348             step = fgNewBBafter(BBJ_ALWAYS, callBlock, true);
8349             /* The new block will inherit this block's weight */
8350             step->setBBWeight(block->bbWeight);
8351             step->bbFlags |= (block->bbFlags & BBF_RUN_RARELY) | BBF_IMPORTED | BBF_KEEP_BBJ_ALWAYS;
8352
8353 #ifdef DEBUG
8354             if (verbose)
8355             {
8356                 printf("impImportLeave - jumping out of a finally-protected try, created step (BBJ_ALWAYS) block "
8357                        "BB%02u [%08p]\n",
8358                        step->bbNum, dspPtr(step));
8359             }
8360 #endif
8361
8362             unsigned finallyNesting = compHndBBtab[XTnum].ebdHandlerNestingLevel;
8363             assert(finallyNesting <= compHndBBtabCount);
8364
8365             callBlock->bbJumpDest = HBtab->ebdHndBeg; // This callBlock will call the "finally" handler.
8366             endLFin               = new (this, GT_END_LFIN) GenTreeVal(GT_END_LFIN, TYP_VOID, finallyNesting);
8367             endLFin               = gtNewStmt(endLFin);
8368             endCatches            = NULL;
8369
8370             encFinallies++;
8371
8372             invalidatePreds = true;
8373         }
8374     }
8375
8376     /* Append any remaining endCatches, if any */
8377
8378     assert(!encFinallies == !endLFin);
8379
8380     if (encFinallies == 0)
8381     {
8382         assert(step == DUMMY_INIT(NULL));
8383         block->bbJumpKind = BBJ_ALWAYS; // convert the BBJ_LEAVE to a BBJ_ALWAYS
8384
8385         if (endCatches)
8386             impAppendTree(endCatches, (unsigned)CHECK_SPILL_NONE, impCurStmtOffs);
8387
8388 #ifdef DEBUG
8389         if (verbose)
8390         {
8391             printf("impImportLeave - no enclosing finally-protected try blocks; convert CEE_LEAVE block to BBJ_ALWAYS "
8392                    "block BB%02u [%08p]\n",
8393                    block->bbNum, dspPtr(block));
8394         }
8395 #endif
8396     }
8397     else
8398     {
8399         // If leaveTarget is the start of another try block, we want to make sure that
8400         // we do not insert finalStep into that try block. Hence, we find the enclosing
8401         // try block.
8402         unsigned tryIndex = bbFindInnermostCommonTryRegion(step, leaveTarget);
8403
8404         // Insert a new BB either in the try region indicated by tryIndex or
8405         // the handler region indicated by leaveTarget->bbHndIndex,
8406         // depending on which is the inner region.
8407         BasicBlock* finalStep = fgNewBBinRegion(BBJ_ALWAYS, tryIndex, leaveTarget->bbHndIndex, step);
8408         finalStep->bbFlags |= BBF_KEEP_BBJ_ALWAYS;
8409         step->bbJumpDest = finalStep;
8410
8411         /* The new block will inherit this block's weight */
8412         finalStep->setBBWeight(block->bbWeight);
8413         finalStep->bbFlags |= block->bbFlags & BBF_RUN_RARELY;
8414
8415 #ifdef DEBUG
8416         if (verbose)
8417         {
8418             printf("impImportLeave - finalStep block required (encFinallies(%d) > 0), new block BB%02u [%08p]\n",
8419                    encFinallies, finalStep->bbNum, dspPtr(finalStep));
8420         }
8421 #endif
8422
8423         GenTreePtr lastStmt;
8424
8425         if (endCatches)
8426         {
8427             lastStmt         = gtNewStmt(endCatches);
8428             endLFin->gtNext  = lastStmt;
8429             lastStmt->gtPrev = endLFin;
8430         }
8431         else
8432         {
8433             lastStmt = endLFin;
8434         }
8435
8436         impEndTreeList(finalStep, endLFin, lastStmt);
8437
8438         finalStep->bbJumpDest = leaveTarget; // this is the ultimate destination of the LEAVE
8439
8440         // Queue up the jump target for importing
8441
8442         impImportBlockPending(leaveTarget);
8443
8444         invalidatePreds = true;
8445     }
8446
8447     if (invalidatePreds && fgComputePredsDone)
8448     {
8449         JITDUMP("\n**** impImportLeave - Removing preds after creating new blocks\n");
8450         fgRemovePreds();
8451     }
8452
8453 #ifdef DEBUG
8454     fgVerifyHandlerTab();
8455
8456     if (verbose)
8457     {
8458         printf("\nAfter import CEE_LEAVE:\n");
8459         fgDispBasicBlocks();
8460         fgDispHandlerTab();
8461     }
8462 #endif // DEBUG
8463 }
8464
8465 #else // FEATURE_EH_FUNCLETS
8466
8467 void Compiler::impImportLeave(BasicBlock* block)
8468 {
8469 #ifdef DEBUG
8470     if (verbose)
8471     {
8472         printf("\nBefore import CEE_LEAVE in BB%02u (targetting BB%02u):\n", block->bbNum, block->bbJumpDest->bbNum);
8473         fgDispBasicBlocks();
8474         fgDispHandlerTab();
8475     }
8476 #endif // DEBUG
8477
8478     bool        invalidatePreds = false; // If we create new blocks, invalidate the predecessor lists (if created)
8479     unsigned    blkAddr         = block->bbCodeOffs;
8480     BasicBlock* leaveTarget     = block->bbJumpDest;
8481     unsigned    jmpAddr         = leaveTarget->bbCodeOffs;
8482
8483     // LEAVE clears the stack, spill side effects, and set stack to 0
8484
8485     impSpillSideEffects(true, (unsigned)CHECK_SPILL_ALL DEBUGARG("impImportLeave"));
8486     verCurrentState.esStackDepth = 0;
8487
8488     assert(block->bbJumpKind == BBJ_LEAVE);
8489     assert(fgBBs == (BasicBlock**)0xCDCD || fgLookupBB(jmpAddr) != nullptr); // should be a BB boundary
8490
8491     BasicBlock* step = nullptr;
8492
8493     enum StepType
8494     {
8495         // No step type; step == NULL.
8496         ST_None,
8497
8498         // Is the step block the BBJ_ALWAYS block of a BBJ_CALLFINALLY/BBJ_ALWAYS pair?
8499         // That is, is step->bbJumpDest where a finally will return to?
8500         ST_FinallyReturn,
8501
8502         // The step block is a catch return.
8503         ST_Catch,
8504
8505         // The step block is in a "try", created as the target for a finally return or the target for a catch return.
8506         ST_Try
8507     };
8508     StepType stepType = ST_None;
8509
8510     unsigned  XTnum;
8511     EHblkDsc* HBtab;
8512
8513     for (XTnum = 0, HBtab = compHndBBtab; XTnum < compHndBBtabCount; XTnum++, HBtab++)
8514     {
8515         // Grab the handler offsets
8516
8517         IL_OFFSET tryBeg = HBtab->ebdTryBegOffs();
8518         IL_OFFSET tryEnd = HBtab->ebdTryEndOffs();
8519         IL_OFFSET hndBeg = HBtab->ebdHndBegOffs();
8520         IL_OFFSET hndEnd = HBtab->ebdHndEndOffs();
8521
8522         /* Is this a catch-handler we are CEE_LEAVEing out of?
8523          */
8524
8525         if (jitIsBetween(blkAddr, hndBeg, hndEnd) && !jitIsBetween(jmpAddr, hndBeg, hndEnd))
8526         {
8527             // Can't CEE_LEAVE out of a finally/fault handler
8528             if (HBtab->HasFinallyOrFaultHandler())
8529             {
8530                 BADCODE("leave out of fault/finally block");
8531             }
8532
8533             /* We are jumping out of a catch */
8534
8535             if (step == nullptr)
8536             {
8537                 step             = block;
8538                 step->bbJumpKind = BBJ_EHCATCHRET; // convert the BBJ_LEAVE to BBJ_EHCATCHRET
8539                 stepType         = ST_Catch;
8540
8541 #ifdef DEBUG
8542                 if (verbose)
8543                 {
8544                     printf("impImportLeave - jumping out of a catch (EH#%u), convert block BB%02u to BBJ_EHCATCHRET "
8545                            "block\n",
8546                            XTnum, step->bbNum);
8547                 }
8548 #endif
8549             }
8550             else
8551             {
8552                 BasicBlock* exitBlock;
8553
8554                 /* Create a new catch exit block in the catch region for the existing step block to jump to in this
8555                  * scope */
8556                 exitBlock = fgNewBBinRegion(BBJ_EHCATCHRET, 0, XTnum + 1, step);
8557
8558                 assert(step->bbJumpKind == BBJ_ALWAYS || step->bbJumpKind == BBJ_EHCATCHRET);
8559                 step->bbJumpDest = exitBlock; // the previous step (maybe a call to a nested finally, or a nested catch
8560                                               // exit) returns to this block
8561                 step->bbJumpDest->bbRefs++;
8562
8563 #if defined(_TARGET_ARM_)
8564                 if (stepType == ST_FinallyReturn)
8565                 {
8566                     assert(step->bbJumpKind == BBJ_ALWAYS);
8567                     // Mark the target of a finally return
8568                     step->bbJumpDest->bbFlags |= BBF_FINALLY_TARGET;
8569                 }
8570 #endif // defined(_TARGET_ARM_)
8571
8572                 /* The new block will inherit this block's weight */
8573                 exitBlock->setBBWeight(block->bbWeight);
8574                 exitBlock->bbFlags |= (block->bbFlags & BBF_RUN_RARELY) | BBF_IMPORTED;
8575
8576                 /* This exit block is the new step */
8577                 step     = exitBlock;
8578                 stepType = ST_Catch;
8579
8580                 invalidatePreds = true;
8581
8582 #ifdef DEBUG
8583                 if (verbose)
8584                 {
8585                     printf("impImportLeave - jumping out of a catch (EH#%u), new BBJ_EHCATCHRET block BB%02u\n", XTnum,
8586                            exitBlock->bbNum);
8587                 }
8588 #endif
8589             }
8590         }
8591         else if (HBtab->HasFinallyHandler() && jitIsBetween(blkAddr, tryBeg, tryEnd) &&
8592                  !jitIsBetween(jmpAddr, tryBeg, tryEnd))
8593         {
8594             /* We are jumping out of a finally-protected try */
8595
8596             BasicBlock* callBlock;
8597
8598             if (step == nullptr)
8599             {
8600 #if FEATURE_EH_CALLFINALLY_THUNKS
8601
8602                 // Put the call to the finally in the enclosing region.
8603                 unsigned callFinallyTryIndex =
8604                     (HBtab->ebdEnclosingTryIndex == EHblkDsc::NO_ENCLOSING_INDEX) ? 0 : HBtab->ebdEnclosingTryIndex + 1;
8605                 unsigned callFinallyHndIndex =
8606                     (HBtab->ebdEnclosingHndIndex == EHblkDsc::NO_ENCLOSING_INDEX) ? 0 : HBtab->ebdEnclosingHndIndex + 1;
8607                 callBlock = fgNewBBinRegion(BBJ_CALLFINALLY, callFinallyTryIndex, callFinallyHndIndex, block);
8608
8609                 // Convert the BBJ_LEAVE to BBJ_ALWAYS, jumping to the new BBJ_CALLFINALLY. This is because
8610                 // the new BBJ_CALLFINALLY is in a different EH region, thus it can't just replace the BBJ_LEAVE,
8611                 // which might be in the middle of the "try". In most cases, the BBJ_ALWAYS will jump to the
8612                 // next block, and flow optimizations will remove it.
8613                 block->bbJumpKind = BBJ_ALWAYS;
8614                 block->bbJumpDest = callBlock;
8615                 block->bbJumpDest->bbRefs++;
8616
8617                 /* The new block will inherit this block's weight */
8618                 callBlock->setBBWeight(block->bbWeight);
8619                 callBlock->bbFlags |= (block->bbFlags & BBF_RUN_RARELY) | BBF_IMPORTED;
8620
8621 #ifdef DEBUG
8622                 if (verbose)
8623                 {
8624                     printf("impImportLeave - jumping out of a finally-protected try (EH#%u), convert block BB%02u to "
8625                            "BBJ_ALWAYS, add BBJ_CALLFINALLY block BB%02u\n",
8626                            XTnum, block->bbNum, callBlock->bbNum);
8627                 }
8628 #endif
8629
8630 #else // !FEATURE_EH_CALLFINALLY_THUNKS
8631
8632                 callBlock             = block;
8633                 callBlock->bbJumpKind = BBJ_CALLFINALLY; // convert the BBJ_LEAVE to BBJ_CALLFINALLY
8634
8635 #ifdef DEBUG
8636                 if (verbose)
8637                 {
8638                     printf("impImportLeave - jumping out of a finally-protected try (EH#%u), convert block BB%02u to "
8639                            "BBJ_CALLFINALLY block\n",
8640                            XTnum, callBlock->bbNum);
8641                 }
8642 #endif
8643
8644 #endif // !FEATURE_EH_CALLFINALLY_THUNKS
8645             }
8646             else
8647             {
8648                 // Calling the finally block. We already have a step block that is either the call-to-finally from a
8649                 // more nested try/finally (thus we are jumping out of multiple nested 'try' blocks, each protected by
8650                 // a 'finally'), or the step block is the return from a catch.
8651                 //
8652                 // Due to ThreadAbortException, we can't have the catch return target the call-to-finally block
8653                 // directly. Note that if a 'catch' ends without resetting the ThreadAbortException, the VM will
8654                 // automatically re-raise the exception, using the return address of the catch (that is, the target
8655                 // block of the BBJ_EHCATCHRET) as the re-raise address. If this address is in a finally, the VM will
8656                 // refuse to do the re-raise, and the ThreadAbortException will get eaten (and lost). On AMD64/ARM64,
8657                 // we put the call-to-finally thunk in a special "cloned finally" EH region that does look like a
8658                 // finally clause to the VM. Thus, on these platforms, we can't have BBJ_EHCATCHRET target a
8659                 // BBJ_CALLFINALLY directly. (Note that on ARM32, we don't mark the thunk specially -- it lives directly
8660                 // within the 'try' region protected by the finally, since we generate code in such a way that execution
8661                 // never returns to the call-to-finally call, and the finally-protected 'try' region doesn't appear on
8662                 // stack walks.)
8663
8664                 assert(step->bbJumpKind == BBJ_ALWAYS || step->bbJumpKind == BBJ_EHCATCHRET);
8665
8666 #if FEATURE_EH_CALLFINALLY_THUNKS
8667                 if (step->bbJumpKind == BBJ_EHCATCHRET)
8668                 {
8669                     // Need to create another step block in the 'try' region that will actually branch to the
8670                     // call-to-finally thunk.
8671                     BasicBlock* step2 = fgNewBBinRegion(BBJ_ALWAYS, XTnum + 1, 0, step);
8672                     step->bbJumpDest  = step2;
8673                     step->bbJumpDest->bbRefs++;
8674                     step2->setBBWeight(block->bbWeight);
8675                     step2->bbFlags |= (block->bbFlags & BBF_RUN_RARELY) | BBF_IMPORTED;
8676
8677 #ifdef DEBUG
8678                     if (verbose)
8679                     {
8680                         printf("impImportLeave - jumping out of a finally-protected try (EH#%u), step block is "
8681                                "BBJ_EHCATCHRET (BB%02u), new BBJ_ALWAYS step-step block BB%02u\n",
8682                                XTnum, step->bbNum, step2->bbNum);
8683                     }
8684 #endif
8685
8686                     step = step2;
8687                     assert(stepType == ST_Catch); // Leave it as catch type for now.
8688                 }
8689 #endif // FEATURE_EH_CALLFINALLY_THUNKS
8690
8691 #if FEATURE_EH_CALLFINALLY_THUNKS
8692                 unsigned callFinallyTryIndex =
8693                     (HBtab->ebdEnclosingTryIndex == EHblkDsc::NO_ENCLOSING_INDEX) ? 0 : HBtab->ebdEnclosingTryIndex + 1;
8694                 unsigned callFinallyHndIndex =
8695                     (HBtab->ebdEnclosingHndIndex == EHblkDsc::NO_ENCLOSING_INDEX) ? 0 : HBtab->ebdEnclosingHndIndex + 1;
8696 #else  // !FEATURE_EH_CALLFINALLY_THUNKS
8697                 unsigned callFinallyTryIndex = XTnum + 1;
8698                 unsigned callFinallyHndIndex = 0; // don't care
8699 #endif // !FEATURE_EH_CALLFINALLY_THUNKS
8700
8701                 callBlock        = fgNewBBinRegion(BBJ_CALLFINALLY, callFinallyTryIndex, callFinallyHndIndex, step);
8702                 step->bbJumpDest = callBlock; // the previous call to a finally returns to this call (to the next
8703                                               // finally in the chain)
8704                 step->bbJumpDest->bbRefs++;
8705
8706 #if defined(_TARGET_ARM_)
8707                 if (stepType == ST_FinallyReturn)
8708                 {
8709                     assert(step->bbJumpKind == BBJ_ALWAYS);
8710                     // Mark the target of a finally return
8711                     step->bbJumpDest->bbFlags |= BBF_FINALLY_TARGET;
8712                 }
8713 #endif // defined(_TARGET_ARM_)
8714
8715                 /* The new block will inherit this block's weight */
8716                 callBlock->setBBWeight(block->bbWeight);
8717                 callBlock->bbFlags |= (block->bbFlags & BBF_RUN_RARELY) | BBF_IMPORTED;
8718
8719 #ifdef DEBUG
8720                 if (verbose)
8721                 {
8722                     printf("impImportLeave - jumping out of a finally-protected try (EH#%u), new BBJ_CALLFINALLY block "
8723                            "BB%02u\n",
8724                            XTnum, callBlock->bbNum);
8725                 }
8726 #endif
8727             }
8728
8729             step     = fgNewBBafter(BBJ_ALWAYS, callBlock, true);
8730             stepType = ST_FinallyReturn;
8731
8732             /* The new block will inherit this block's weight */
8733             step->setBBWeight(block->bbWeight);
8734             step->bbFlags |= (block->bbFlags & BBF_RUN_RARELY) | BBF_IMPORTED | BBF_KEEP_BBJ_ALWAYS;
8735
8736 #ifdef DEBUG
8737             if (verbose)
8738             {
8739                 printf("impImportLeave - jumping out of a finally-protected try (EH#%u), created step (BBJ_ALWAYS) "
8740                        "block BB%02u\n",
8741                        XTnum, step->bbNum);
8742             }
8743 #endif
8744
8745             callBlock->bbJumpDest = HBtab->ebdHndBeg; // This callBlock will call the "finally" handler.
8746
8747             invalidatePreds = true;
8748         }
8749         else if (HBtab->HasCatchHandler() && jitIsBetween(blkAddr, tryBeg, tryEnd) &&
8750                  !jitIsBetween(jmpAddr, tryBeg, tryEnd))
8751         {
8752             // We are jumping out of a catch-protected try.
8753             //
8754             // If we are returning from a call to a finally, then we must have a step block within a try
8755             // that is protected by a catch. This is so when unwinding from that finally (e.g., if code within the
8756             // finally raises an exception), the VM will find this step block, notice that it is in a protected region,
8757             // and invoke the appropriate catch.
8758             //
8759             // We also need to handle a special case with the handling of ThreadAbortException. If a try/catch
8760             // catches a ThreadAbortException (which might be because it catches a parent, e.g. System.Exception),
8761             // and the catch doesn't call System.Threading.Thread::ResetAbort(), then when the catch returns to the VM,
8762             // the VM will automatically re-raise the ThreadAbortException. When it does this, it uses the target
8763             // address of the catch return as the new exception address. That is, the re-raised exception appears to
8764             // occur at the catch return address. If this exception return address skips an enclosing try/catch that
8765             // catches ThreadAbortException, then the enclosing try/catch will not catch the exception, as it should.
8766             // For example:
8767             //
8768             // try {
8769             //    try {
8770             //       // something here raises ThreadAbortException
8771             //       LEAVE LABEL_1; // no need to stop at LABEL_2
8772             //    } catch (Exception) {
8773             //       // This catches ThreadAbortException, but doesn't call System.Threading.Thread::ResetAbort(), so
8774             //       // ThreadAbortException is re-raised by the VM at the address specified by the LEAVE opcode.
8775             //       // This is bad, since it means the outer try/catch won't get a chance to catch the re-raised
8776             //       // ThreadAbortException. So, instead, create step block LABEL_2 and LEAVE to that. We only
8777             //       // need to do this transformation if the current EH block is a try/catch that catches
8778             //       // ThreadAbortException (or one of its parents), however we might not be able to find that
8779             //       // information, so currently we do it for all catch types.
8780             //       LEAVE LABEL_1; // Convert this to LEAVE LABEL2;
8781             //    }
8782             //    LABEL_2: LEAVE LABEL_1; // inserted by this step creation code
8783             // } catch (ThreadAbortException) {
8784             // }
8785             // LABEL_1:
8786             //
8787             // Note that this pattern isn't theoretical: it occurs in ASP.NET, in IL code generated by the Roslyn C#
8788             // compiler.
8789
8790             if ((stepType == ST_FinallyReturn) || (stepType == ST_Catch))
8791             {
8792                 BasicBlock* catchStep;
8793
8794                 assert(step);
8795
8796                 if (stepType == ST_FinallyReturn)
8797                 {
8798                     assert(step->bbJumpKind == BBJ_ALWAYS);
8799                 }
8800                 else
8801                 {
8802                     assert(stepType == ST_Catch);
8803                     assert(step->bbJumpKind == BBJ_EHCATCHRET);
8804                 }
8805
8806                 /* Create a new exit block in the try region for the existing step block to jump to in this scope */
8807                 catchStep        = fgNewBBinRegion(BBJ_ALWAYS, XTnum + 1, 0, step);
8808                 step->bbJumpDest = catchStep;
8809                 step->bbJumpDest->bbRefs++;
8810
8811 #if defined(_TARGET_ARM_)
8812                 if (stepType == ST_FinallyReturn)
8813                 {
8814                     // Mark the target of a finally return
8815                     step->bbJumpDest->bbFlags |= BBF_FINALLY_TARGET;
8816                 }
8817 #endif // defined(_TARGET_ARM_)
8818
8819                 /* The new block will inherit this block's weight */
8820                 catchStep->setBBWeight(block->bbWeight);
8821                 catchStep->bbFlags |= (block->bbFlags & BBF_RUN_RARELY) | BBF_IMPORTED;
8822
8823 #ifdef DEBUG
8824                 if (verbose)
8825                 {
8826                     if (stepType == ST_FinallyReturn)
8827                     {
8828                         printf("impImportLeave - return from finally jumping out of a catch-protected try (EH#%u), new "
8829                                "BBJ_ALWAYS block BB%02u\n",
8830                                XTnum, catchStep->bbNum);
8831                     }
8832                     else
8833                     {
8834                         assert(stepType == ST_Catch);
8835                         printf("impImportLeave - return from catch jumping out of a catch-protected try (EH#%u), new "
8836                                "BBJ_ALWAYS block BB%02u\n",
8837                                XTnum, catchStep->bbNum);
8838                     }
8839                 }
8840 #endif // DEBUG
8841
8842                 /* This block is the new step */
8843                 step     = catchStep;
8844                 stepType = ST_Try;
8845
8846                 invalidatePreds = true;
8847             }
8848         }
8849     }
8850
8851     if (step == nullptr)
8852     {
8853         block->bbJumpKind = BBJ_ALWAYS; // convert the BBJ_LEAVE to a BBJ_ALWAYS
8854
8855 #ifdef DEBUG
8856         if (verbose)
8857         {
8858             printf("impImportLeave - no enclosing finally-protected try blocks or catch handlers; convert CEE_LEAVE "
8859                    "block BB%02u to BBJ_ALWAYS\n",
8860                    block->bbNum);
8861         }
8862 #endif
8863     }
8864     else
8865     {
8866         step->bbJumpDest = leaveTarget; // this is the ultimate destination of the LEAVE
8867
8868 #if defined(_TARGET_ARM_)
8869         if (stepType == ST_FinallyReturn)
8870         {
8871             assert(step->bbJumpKind == BBJ_ALWAYS);
8872             // Mark the target of a finally return
8873             step->bbJumpDest->bbFlags |= BBF_FINALLY_TARGET;
8874         }
8875 #endif // defined(_TARGET_ARM_)
8876
8877 #ifdef DEBUG
8878         if (verbose)
8879         {
8880             printf("impImportLeave - final destination of step blocks set to BB%02u\n", leaveTarget->bbNum);
8881         }
8882 #endif
8883
8884         // Queue up the jump target for importing
8885
8886         impImportBlockPending(leaveTarget);
8887     }
8888
8889     if (invalidatePreds && fgComputePredsDone)
8890     {
8891         JITDUMP("\n**** impImportLeave - Removing preds after creating new blocks\n");
8892         fgRemovePreds();
8893     }
8894
8895 #ifdef DEBUG
8896     fgVerifyHandlerTab();
8897
8898     if (verbose)
8899     {
8900         printf("\nAfter import CEE_LEAVE:\n");
8901         fgDispBasicBlocks();
8902         fgDispHandlerTab();
8903     }
8904 #endif // DEBUG
8905 }
8906
8907 #endif // FEATURE_EH_FUNCLETS
8908
8909 /*****************************************************************************/
8910 // This is called when reimporting a leave block. It resets the JumpKind,
8911 // JumpDest, and bbNext to the original values
8912
8913 void Compiler::impResetLeaveBlock(BasicBlock* block, unsigned jmpAddr)
8914 {
8915 #if FEATURE_EH_FUNCLETS
8916     // With EH Funclets, while importing leave opcode we create another block ending with BBJ_ALWAYS (call it B1)
8917     // and the block containing leave (say B0) is marked as BBJ_CALLFINALLY.   Say for some reason we reimport B0,
8918     // it is reset (in this routine) by marking as ending with BBJ_LEAVE and further down when B0 is reimported, we
8919     // create another BBJ_ALWAYS (call it B2). In this process B1 gets orphaned and any blocks to which B1 is the
8920     // only predecessor are also considered orphans and attempted to be deleted.
8921     //
8922     //  try  {
8923     //     ....
8924     //     try
8925     //     {
8926     //         ....
8927     //         leave OUTSIDE;  // B0 is the block containing this leave, following this would be B1
8928     //     } finally { }
8929     //  } finally { }
8930     //  OUTSIDE:
8931     //
8932     // In the above nested try-finally example, we create a step block (call it Bstep) which in branches to a block
8933     // where a finally would branch to (and such block is marked as finally target).  Block B1 branches to step block.
8934     // Because of re-import of B0, Bstep is also orphaned. Since Bstep is a finally target it cannot be removed.  To
8935     // work around this we will duplicate B0 (call it B0Dup) before reseting. B0Dup is marked as BBJ_CALLFINALLY and
8936     // only serves to pair up with B1 (BBJ_ALWAYS) that got orphaned. Now during orphan block deletion B0Dup and B1
8937     // will be treated as pair and handled correctly.
8938     if (block->bbJumpKind == BBJ_CALLFINALLY)
8939     {
8940         BasicBlock* dupBlock = bbNewBasicBlock(block->bbJumpKind);
8941         dupBlock->bbFlags    = block->bbFlags;
8942         dupBlock->bbJumpDest = block->bbJumpDest;
8943         dupBlock->copyEHRegion(block);
8944         dupBlock->bbCatchTyp = block->bbCatchTyp;
8945
8946         // Mark this block as
8947         //  a) not referenced by any other block to make sure that it gets deleted
8948         //  b) weight zero
8949         //  c) prevent from being imported
8950         //  d) as internal
8951         //  e) as rarely run
8952         dupBlock->bbRefs   = 0;
8953         dupBlock->bbWeight = 0;
8954         dupBlock->bbFlags |= BBF_IMPORTED | BBF_INTERNAL | BBF_RUN_RARELY;
8955
8956         // Insert the block right after the block which is getting reset so that BBJ_CALLFINALLY and BBJ_ALWAYS
8957         // will be next to each other.
8958         fgInsertBBafter(block, dupBlock);
8959
8960 #ifdef DEBUG
8961         if (verbose)
8962         {
8963             printf("New Basic Block BB%02u duplicate of BB%02u created.\n", dupBlock->bbNum, block->bbNum);
8964         }
8965 #endif
8966     }
8967 #endif // FEATURE_EH_FUNCLETS
8968
8969     block->bbJumpKind = BBJ_LEAVE;
8970     fgInitBBLookup();
8971     block->bbJumpDest = fgLookupBB(jmpAddr);
8972
8973     // We will leave the BBJ_ALWAYS block we introduced. When it's reimported
8974     // the BBJ_ALWAYS block will be unreachable, and will be removed after. The
8975     // reason we don't want to remove the block at this point is that if we call
8976     // fgInitBBLookup() again we will do it wrong as the BBJ_ALWAYS block won't be
8977     // added and the linked list length will be different than fgBBcount.
8978 }
8979
8980 /*****************************************************************************/
8981 // Get the first non-prefix opcode. Used for verification of valid combinations
8982 // of prefixes and actual opcodes.
8983
8984 static OPCODE impGetNonPrefixOpcode(const BYTE* codeAddr, const BYTE* codeEndp)
8985 {
8986     while (codeAddr < codeEndp)
8987     {
8988         OPCODE opcode = (OPCODE)getU1LittleEndian(codeAddr);
8989         codeAddr += sizeof(__int8);
8990
8991         if (opcode == CEE_PREFIX1)
8992         {
8993             if (codeAddr >= codeEndp)
8994             {
8995                 break;
8996             }
8997             opcode = (OPCODE)(getU1LittleEndian(codeAddr) + 256);
8998             codeAddr += sizeof(__int8);
8999         }
9000
9001         switch (opcode)
9002         {
9003             case CEE_UNALIGNED:
9004             case CEE_VOLATILE:
9005             case CEE_TAILCALL:
9006             case CEE_CONSTRAINED:
9007             case CEE_READONLY:
9008                 break;
9009             default:
9010                 return opcode;
9011         }
9012
9013         codeAddr += opcodeSizes[opcode];
9014     }
9015
9016     return CEE_ILLEGAL;
9017 }
9018
9019 /*****************************************************************************/
9020 // Checks whether the opcode is a valid opcode for volatile. and unaligned. prefixes
9021
9022 static void impValidateMemoryAccessOpcode(const BYTE* codeAddr, const BYTE* codeEndp, bool volatilePrefix)
9023 {
9024     OPCODE opcode = impGetNonPrefixOpcode(codeAddr, codeEndp);
9025
9026     if (!(
9027             // Opcode of all ldind and stdind happen to be in continuous, except stind.i.
9028             ((CEE_LDIND_I1 <= opcode) && (opcode <= CEE_STIND_R8)) || (opcode == CEE_STIND_I) ||
9029             (opcode == CEE_LDFLD) || (opcode == CEE_STFLD) || (opcode == CEE_LDOBJ) || (opcode == CEE_STOBJ) ||
9030             (opcode == CEE_INITBLK) || (opcode == CEE_CPBLK) ||
9031             // volatile. prefix is allowed with the ldsfld and stsfld
9032             (volatilePrefix && ((opcode == CEE_LDSFLD) || (opcode == CEE_STSFLD)))))
9033     {
9034         BADCODE("Invalid opcode for unaligned. or volatile. prefix");
9035     }
9036 }
9037
9038 /*****************************************************************************/
9039
9040 #ifdef DEBUG
9041
9042 #undef RETURN // undef contracts RETURN macro
9043
9044 enum controlFlow_t
9045 {
9046     NEXT,
9047     CALL,
9048     RETURN,
9049     THROW,
9050     BRANCH,
9051     COND_BRANCH,
9052     BREAK,
9053     PHI,
9054     META,
9055 };
9056
9057 const static controlFlow_t controlFlow[] = {
9058 #define OPDEF(c, s, pop, push, args, type, l, s1, s2, flow) flow,
9059 #include "opcode.def"
9060 #undef OPDEF
9061 };
9062
9063 #endif // DEBUG
9064
9065 /*****************************************************************************
9066  *  Determine the result type of an arithemetic operation
9067  *  On 64-bit inserts upcasts when native int is mixed with int32
9068  */
9069 var_types Compiler::impGetByRefResultType(genTreeOps oper, bool fUnsigned, GenTreePtr* pOp1, GenTreePtr* pOp2)
9070 {
9071     var_types  type = TYP_UNDEF;
9072     GenTreePtr op1 = *pOp1, op2 = *pOp2;
9073
9074     // Arithemetic operations are generally only allowed with
9075     // primitive types, but certain operations are allowed
9076     // with byrefs
9077
9078     if ((oper == GT_SUB) && (genActualType(op1->TypeGet()) == TYP_BYREF || genActualType(op2->TypeGet()) == TYP_BYREF))
9079     {
9080         if ((genActualType(op1->TypeGet()) == TYP_BYREF) && (genActualType(op2->TypeGet()) == TYP_BYREF))
9081         {
9082             // byref1-byref2 => gives a native int
9083             type = TYP_I_IMPL;
9084         }
9085         else if (genActualTypeIsIntOrI(op1->TypeGet()) && (genActualType(op2->TypeGet()) == TYP_BYREF))
9086         {
9087             // [native] int - byref => gives a native int
9088
9089             //
9090             // The reason is that it is possible, in managed C++,
9091             // to have a tree like this:
9092             //
9093             //              -
9094             //             / \
9095             //            /   \
9096             //           /     \
9097             //          /       \
9098             // const(h) int     addr byref
9099             //
9100             // <BUGNUM> VSW 318822 </BUGNUM>
9101             //
9102             // So here we decide to make the resulting type to be a native int.
9103             CLANG_FORMAT_COMMENT_ANCHOR;
9104
9105 #ifdef _TARGET_64BIT_
9106             if (genActualType(op1->TypeGet()) != TYP_I_IMPL)
9107             {
9108                 // insert an explicit upcast
9109                 op1 = *pOp1 = gtNewCastNode(TYP_I_IMPL, op1, (var_types)(fUnsigned ? TYP_U_IMPL : TYP_I_IMPL));
9110             }
9111 #endif // _TARGET_64BIT_
9112
9113             type = TYP_I_IMPL;
9114         }
9115         else
9116         {
9117             // byref - [native] int => gives a byref
9118             assert(genActualType(op1->TypeGet()) == TYP_BYREF && genActualTypeIsIntOrI(op2->TypeGet()));
9119
9120 #ifdef _TARGET_64BIT_
9121             if ((genActualType(op2->TypeGet()) != TYP_I_IMPL))
9122             {
9123                 // insert an explicit upcast
9124                 op2 = *pOp2 = gtNewCastNode(TYP_I_IMPL, op2, (var_types)(fUnsigned ? TYP_U_IMPL : TYP_I_IMPL));
9125             }
9126 #endif // _TARGET_64BIT_
9127
9128             type = TYP_BYREF;
9129         }
9130     }
9131     else if ((oper == GT_ADD) &&
9132              (genActualType(op1->TypeGet()) == TYP_BYREF || genActualType(op2->TypeGet()) == TYP_BYREF))
9133     {
9134         // byref + [native] int => gives a byref
9135         // (or)
9136         // [native] int + byref => gives a byref
9137
9138         // only one can be a byref : byref op byref not allowed
9139         assert(genActualType(op1->TypeGet()) != TYP_BYREF || genActualType(op2->TypeGet()) != TYP_BYREF);
9140         assert(genActualTypeIsIntOrI(op1->TypeGet()) || genActualTypeIsIntOrI(op2->TypeGet()));
9141
9142 #ifdef _TARGET_64BIT_
9143         if (genActualType(op2->TypeGet()) == TYP_BYREF)
9144         {
9145             if (genActualType(op1->TypeGet()) != TYP_I_IMPL)
9146             {
9147                 // insert an explicit upcast
9148                 op1 = *pOp1 = gtNewCastNode(TYP_I_IMPL, op1, (var_types)(fUnsigned ? TYP_U_IMPL : TYP_I_IMPL));
9149             }
9150         }
9151         else if (genActualType(op2->TypeGet()) != TYP_I_IMPL)
9152         {
9153             // insert an explicit upcast
9154             op2 = *pOp2 = gtNewCastNode(TYP_I_IMPL, op2, (var_types)(fUnsigned ? TYP_U_IMPL : TYP_I_IMPL));
9155         }
9156 #endif // _TARGET_64BIT_
9157
9158         type = TYP_BYREF;
9159     }
9160 #ifdef _TARGET_64BIT_
9161     else if (genActualType(op1->TypeGet()) == TYP_I_IMPL || genActualType(op2->TypeGet()) == TYP_I_IMPL)
9162     {
9163         assert(!varTypeIsFloating(op1->gtType) && !varTypeIsFloating(op2->gtType));
9164
9165         // int + long => gives long
9166         // long + int => gives long
9167         // we get this because in the IL the long isn't Int64, it's just IntPtr
9168
9169         if (genActualType(op1->TypeGet()) != TYP_I_IMPL)
9170         {
9171             // insert an explicit upcast
9172             op1 = *pOp1 = gtNewCastNode(TYP_I_IMPL, op1, (var_types)(fUnsigned ? TYP_U_IMPL : TYP_I_IMPL));
9173         }
9174         else if (genActualType(op2->TypeGet()) != TYP_I_IMPL)
9175         {
9176             // insert an explicit upcast
9177             op2 = *pOp2 = gtNewCastNode(TYP_I_IMPL, op2, (var_types)(fUnsigned ? TYP_U_IMPL : TYP_I_IMPL));
9178         }
9179
9180         type = TYP_I_IMPL;
9181     }
9182 #else  // 32-bit TARGET
9183     else if (genActualType(op1->TypeGet()) == TYP_LONG || genActualType(op2->TypeGet()) == TYP_LONG)
9184     {
9185         assert(!varTypeIsFloating(op1->gtType) && !varTypeIsFloating(op2->gtType));
9186
9187         // int + long => gives long
9188         // long + int => gives long
9189
9190         type = TYP_LONG;
9191     }
9192 #endif // _TARGET_64BIT_
9193     else
9194     {
9195         // int + int => gives an int
9196         assert(genActualType(op1->TypeGet()) != TYP_BYREF && genActualType(op2->TypeGet()) != TYP_BYREF);
9197
9198         assert(genActualType(op1->TypeGet()) == genActualType(op2->TypeGet()) ||
9199                varTypeIsFloating(op1->gtType) && varTypeIsFloating(op2->gtType));
9200
9201         type = genActualType(op1->gtType);
9202
9203 #if FEATURE_X87_DOUBLES
9204
9205         // For x87, since we only have 1 size of registers, prefer double
9206         // For everybody else, be more precise
9207         if (type == TYP_FLOAT)
9208             type = TYP_DOUBLE;
9209
9210 #else // !FEATURE_X87_DOUBLES
9211
9212         // If both operands are TYP_FLOAT, then leave it as TYP_FLOAT.
9213         // Otherwise, turn floats into doubles
9214         if ((type == TYP_FLOAT) && (genActualType(op2->gtType) != TYP_FLOAT))
9215         {
9216             assert(genActualType(op2->gtType) == TYP_DOUBLE);
9217             type = TYP_DOUBLE;
9218         }
9219
9220 #endif // FEATURE_X87_DOUBLES
9221     }
9222
9223 #if FEATURE_X87_DOUBLES
9224     assert(type == TYP_BYREF || type == TYP_DOUBLE || type == TYP_LONG || type == TYP_INT);
9225 #else  // FEATURE_X87_DOUBLES
9226     assert(type == TYP_BYREF || type == TYP_DOUBLE || type == TYP_FLOAT || type == TYP_LONG || type == TYP_INT);
9227 #endif // FEATURE_X87_DOUBLES
9228
9229     return type;
9230 }
9231
9232 /*****************************************************************************
9233  * Casting Helper Function to service both CEE_CASTCLASS and CEE_ISINST
9234  *
9235  * typeRef contains the token, op1 to contain the value being cast,
9236  * and op2 to contain code that creates the type handle corresponding to typeRef
9237  * isCastClass = true means CEE_CASTCLASS, false means CEE_ISINST
9238  */
9239 GenTreePtr Compiler::impCastClassOrIsInstToTree(GenTreePtr              op1,
9240                                                 GenTreePtr              op2,
9241                                                 CORINFO_RESOLVED_TOKEN* pResolvedToken,
9242                                                 bool                    isCastClass)
9243 {
9244     bool expandInline;
9245
9246     assert(op1->TypeGet() == TYP_REF);
9247
9248     CorInfoHelpFunc helper = info.compCompHnd->getCastingHelper(pResolvedToken, isCastClass);
9249
9250     if (isCastClass)
9251     {
9252         // We only want to expand inline the normal CHKCASTCLASS helper;
9253         expandInline = (helper == CORINFO_HELP_CHKCASTCLASS);
9254     }
9255     else
9256     {
9257         if (helper == CORINFO_HELP_ISINSTANCEOFCLASS)
9258         {
9259             // Get the Class Handle abd class attributes for the type we are casting to
9260             //
9261             DWORD flags = info.compCompHnd->getClassAttribs(pResolvedToken->hClass);
9262
9263             //
9264             // If the class handle is marked as final we can also expand the IsInst check inline
9265             //
9266             expandInline = ((flags & CORINFO_FLG_FINAL) != 0);
9267
9268             //
9269             // But don't expand inline these two cases
9270             //
9271             if (flags & CORINFO_FLG_MARSHAL_BYREF)
9272             {
9273                 expandInline = false;
9274             }
9275             else if (flags & CORINFO_FLG_CONTEXTFUL)
9276             {
9277                 expandInline = false;
9278             }
9279         }
9280         else
9281         {
9282             //
9283             // We can't expand inline any other helpers
9284             //
9285             expandInline = false;
9286         }
9287     }
9288
9289     if (expandInline)
9290     {
9291         if (compCurBB->isRunRarely())
9292         {
9293             expandInline = false; // not worth the code expansion in a rarely run block
9294         }
9295
9296         if ((op1->gtFlags & GTF_GLOB_EFFECT) && lvaHaveManyLocals())
9297         {
9298             expandInline = false; // not worth creating an untracked local variable
9299         }
9300     }
9301
9302     if (!expandInline)
9303     {
9304         // If we CSE this class handle we prevent assertionProp from making SubType assertions
9305         // so instead we force the CSE logic to not consider CSE-ing this class handle.
9306         //
9307         op2->gtFlags |= GTF_DONT_CSE;
9308
9309         return gtNewHelperCallNode(helper, TYP_REF, 0, gtNewArgList(op2, op1));
9310     }
9311
9312     impSpillSideEffects(true, CHECK_SPILL_ALL DEBUGARG("bubbling QMark2"));
9313
9314     GenTreePtr temp;
9315     GenTreePtr condMT;
9316     //
9317     // expand the methodtable match:
9318     //
9319     //  condMT ==>   GT_NE
9320     //               /    \
9321     //           GT_IND   op2 (typically CNS_INT)
9322     //              |
9323     //           op1Copy
9324     //
9325
9326     // This can replace op1 with a GT_COMMA that evaluates op1 into a local
9327     //
9328     op1 = impCloneExpr(op1, &temp, NO_CLASS_HANDLE, (unsigned)CHECK_SPILL_ALL, nullptr DEBUGARG("CASTCLASS eval op1"));
9329     //
9330     // op1 is now known to be a non-complex tree
9331     // thus we can use gtClone(op1) from now on
9332     //
9333
9334     GenTreePtr op2Var = op2;
9335     if (isCastClass)
9336     {
9337         op2Var                                                  = fgInsertCommaFormTemp(&op2);
9338         lvaTable[op2Var->AsLclVarCommon()->GetLclNum()].lvIsCSE = true;
9339     }
9340     temp = gtNewOperNode(GT_IND, TYP_I_IMPL, temp);
9341     temp->gtFlags |= GTF_EXCEPT;
9342     condMT = gtNewOperNode(GT_NE, TYP_INT, temp, op2);
9343
9344     GenTreePtr condNull;
9345     //
9346     // expand the null check:
9347     //
9348     //  condNull ==>   GT_EQ
9349     //                 /    \
9350     //             op1Copy CNS_INT
9351     //                      null
9352     //
9353     condNull = gtNewOperNode(GT_EQ, TYP_INT, gtClone(op1), gtNewIconNode(0, TYP_REF));
9354
9355     //
9356     // expand the true and false trees for the condMT
9357     //
9358     GenTreePtr condFalse = gtClone(op1);
9359     GenTreePtr condTrue;
9360     if (isCastClass)
9361     {
9362         //
9363         // use the special helper that skips the cases checked by our inlined cast
9364         //
9365         helper = CORINFO_HELP_CHKCASTCLASS_SPECIAL;
9366
9367         condTrue = gtNewHelperCallNode(helper, TYP_REF, 0, gtNewArgList(op2Var, gtClone(op1)));
9368     }
9369     else
9370     {
9371         condTrue = gtNewIconNode(0, TYP_REF);
9372     }
9373
9374 #define USE_QMARK_TREES
9375
9376 #ifdef USE_QMARK_TREES
9377     GenTreePtr qmarkMT;
9378     //
9379     // Generate first QMARK - COLON tree
9380     //
9381     //  qmarkMT ==>   GT_QMARK
9382     //                 /     \
9383     //            condMT   GT_COLON
9384     //                      /     \
9385     //                condFalse  condTrue
9386     //
9387     temp    = new (this, GT_COLON) GenTreeColon(TYP_REF, condTrue, condFalse);
9388     qmarkMT = gtNewQmarkNode(TYP_REF, condMT, temp);
9389     condMT->gtFlags |= GTF_RELOP_QMARK;
9390
9391     GenTreePtr qmarkNull;
9392     //
9393     // Generate second QMARK - COLON tree
9394     //
9395     //  qmarkNull ==>  GT_QMARK
9396     //                 /     \
9397     //           condNull  GT_COLON
9398     //                      /     \
9399     //                qmarkMT   op1Copy
9400     //
9401     temp      = new (this, GT_COLON) GenTreeColon(TYP_REF, gtClone(op1), qmarkMT);
9402     qmarkNull = gtNewQmarkNode(TYP_REF, condNull, temp);
9403     qmarkNull->gtFlags |= GTF_QMARK_CAST_INSTOF;
9404     condNull->gtFlags |= GTF_RELOP_QMARK;
9405
9406     // Make QMark node a top level node by spilling it.
9407     unsigned tmp = lvaGrabTemp(true DEBUGARG("spilling QMark2"));
9408     impAssignTempGen(tmp, qmarkNull, (unsigned)CHECK_SPILL_NONE);
9409     return gtNewLclvNode(tmp, TYP_REF);
9410 #endif
9411 }
9412
9413 #ifndef DEBUG
9414 #define assertImp(cond) ((void)0)
9415 #else
9416 #define assertImp(cond)                                                                                                \
9417     do                                                                                                                 \
9418     {                                                                                                                  \
9419         if (!(cond))                                                                                                   \
9420         {                                                                                                              \
9421             const int cchAssertImpBuf = 600;                                                                           \
9422             char*     assertImpBuf    = (char*)alloca(cchAssertImpBuf);                                                \
9423             _snprintf_s(assertImpBuf, cchAssertImpBuf, cchAssertImpBuf - 1,                                            \
9424                         "%s : Possibly bad IL with CEE_%s at offset %04Xh (op1=%s op2=%s stkDepth=%d)", #cond,         \
9425                         impCurOpcName, impCurOpcOffs, op1 ? varTypeName(op1->TypeGet()) : "NULL",                      \
9426                         op2 ? varTypeName(op2->TypeGet()) : "NULL", verCurrentState.esStackDepth);                     \
9427             assertAbort(assertImpBuf, __FILE__, __LINE__);                                                             \
9428         }                                                                                                              \
9429     } while (0)
9430 #endif // DEBUG
9431
9432 #ifdef _PREFAST_
9433 #pragma warning(push)
9434 #pragma warning(disable : 21000) // Suppress PREFast warning about overly large function
9435 #endif
9436 /*****************************************************************************
9437  *  Import the instr for the given basic block
9438  */
9439 void Compiler::impImportBlockCode(BasicBlock* block)
9440 {
9441 #define _impResolveToken(kind) impResolveToken(codeAddr, &resolvedToken, kind)
9442
9443 #ifdef DEBUG
9444
9445     if (verbose)
9446     {
9447         printf("\nImporting BB%02u (PC=%03u) of '%s'", block->bbNum, block->bbCodeOffs, info.compFullName);
9448     }
9449 #endif
9450
9451     unsigned  nxtStmtIndex = impInitBlockLineInfo();
9452     IL_OFFSET nxtStmtOffs;
9453
9454     GenTreePtr                   arrayNodeFrom, arrayNodeTo, arrayNodeToIndex;
9455     bool                         expandInline;
9456     CorInfoHelpFunc              helper;
9457     CorInfoIsAccessAllowedResult accessAllowedResult;
9458     CORINFO_HELPER_DESC          calloutHelper;
9459     const BYTE*                  lastLoadToken = nullptr;
9460
9461     // reject cyclic constraints
9462     if (tiVerificationNeeded)
9463     {
9464         Verify(!info.hasCircularClassConstraints, "Method parent has circular class type parameter constraints.");
9465         Verify(!info.hasCircularMethodConstraints, "Method has circular method type parameter constraints.");
9466     }
9467
9468     /* Get the tree list started */
9469
9470     impBeginTreeList();
9471
9472     /* Walk the opcodes that comprise the basic block */
9473
9474     const BYTE* codeAddr = info.compCode + block->bbCodeOffs;
9475     const BYTE* codeEndp = info.compCode + block->bbCodeOffsEnd;
9476
9477     IL_OFFSET opcodeOffs    = block->bbCodeOffs;
9478     IL_OFFSET lastSpillOffs = opcodeOffs;
9479
9480     signed jmpDist;
9481
9482     /* remember the start of the delegate creation sequence (used for verification) */
9483     const BYTE* delegateCreateStart = nullptr;
9484
9485     int  prefixFlags = 0;
9486     bool explicitTailCall, constraintCall, readonlyCall;
9487
9488     bool     insertLdloc = false; // set by CEE_DUP and cleared by following store
9489     typeInfo tiRetVal;
9490
9491     unsigned numArgs = info.compArgsCount;
9492
9493     /* Now process all the opcodes in the block */
9494
9495     var_types callTyp    = TYP_COUNT;
9496     OPCODE    prevOpcode = CEE_ILLEGAL;
9497
9498     if (block->bbCatchTyp)
9499     {
9500         if (info.compStmtOffsetsImplicit & ICorDebugInfo::CALL_SITE_BOUNDARIES)
9501         {
9502             impCurStmtOffsSet(block->bbCodeOffs);
9503         }
9504
9505         // We will spill the GT_CATCH_ARG and the input of the BB_QMARK block
9506         // to a temp. This is a trade off for code simplicity
9507         impSpillSpecialSideEff();
9508     }
9509
9510     while (codeAddr < codeEndp)
9511     {
9512         bool                   usingReadyToRunHelper = false;
9513         CORINFO_RESOLVED_TOKEN resolvedToken;
9514         CORINFO_RESOLVED_TOKEN constrainedResolvedToken;
9515         CORINFO_CALL_INFO      callInfo;
9516         CORINFO_FIELD_INFO     fieldInfo;
9517
9518         tiRetVal = typeInfo(); // Default type info
9519
9520         //---------------------------------------------------------------------
9521
9522         /* We need to restrict the max tree depth as many of the Compiler
9523            functions are recursive. We do this by spilling the stack */
9524
9525         if (verCurrentState.esStackDepth)
9526         {
9527             /* Has it been a while since we last saw a non-empty stack (which
9528                guarantees that the tree depth isnt accumulating. */
9529
9530             if ((opcodeOffs - lastSpillOffs) > 200)
9531             {
9532                 impSpillStackEnsure();
9533                 lastSpillOffs = opcodeOffs;
9534             }
9535         }
9536         else
9537         {
9538             lastSpillOffs   = opcodeOffs;
9539             impBoxTempInUse = false; // nothing on the stack, box temp OK to use again
9540         }
9541
9542         /* Compute the current instr offset */
9543
9544         opcodeOffs = (IL_OFFSET)(codeAddr - info.compCode);
9545
9546 #ifndef DEBUG
9547         if (opts.compDbgInfo)
9548 #endif
9549         {
9550             if (!compIsForInlining())
9551             {
9552                 nxtStmtOffs =
9553                     (nxtStmtIndex < info.compStmtOffsetsCount) ? info.compStmtOffsets[nxtStmtIndex] : BAD_IL_OFFSET;
9554
9555                 /* Have we reached the next stmt boundary ? */
9556
9557                 if (nxtStmtOffs != BAD_IL_OFFSET && opcodeOffs >= nxtStmtOffs)
9558                 {
9559                     assert(nxtStmtOffs == info.compStmtOffsets[nxtStmtIndex]);
9560
9561                     if (verCurrentState.esStackDepth != 0 && opts.compDbgCode)
9562                     {
9563                         /* We need to provide accurate IP-mapping at this point.
9564                            So spill anything on the stack so that it will form
9565                            gtStmts with the correct stmt offset noted */
9566
9567                         impSpillStackEnsure(true);
9568                     }
9569
9570                     // Has impCurStmtOffs been reported in any tree?
9571
9572                     if (impCurStmtOffs != BAD_IL_OFFSET && opts.compDbgCode)
9573                     {
9574                         GenTreePtr placeHolder = new (this, GT_NO_OP) GenTree(GT_NO_OP, TYP_VOID);
9575                         impAppendTree(placeHolder, (unsigned)CHECK_SPILL_NONE, impCurStmtOffs);
9576
9577                         assert(impCurStmtOffs == BAD_IL_OFFSET);
9578                     }
9579
9580                     if (impCurStmtOffs == BAD_IL_OFFSET)
9581                     {
9582                         /* Make sure that nxtStmtIndex is in sync with opcodeOffs.
9583                            If opcodeOffs has gone past nxtStmtIndex, catch up */
9584
9585                         while ((nxtStmtIndex + 1) < info.compStmtOffsetsCount &&
9586                                info.compStmtOffsets[nxtStmtIndex + 1] <= opcodeOffs)
9587                         {
9588                             nxtStmtIndex++;
9589                         }
9590
9591                         /* Go to the new stmt */
9592
9593                         impCurStmtOffsSet(info.compStmtOffsets[nxtStmtIndex]);
9594
9595                         /* Update the stmt boundary index */
9596
9597                         nxtStmtIndex++;
9598                         assert(nxtStmtIndex <= info.compStmtOffsetsCount);
9599
9600                         /* Are there any more line# entries after this one? */
9601
9602                         if (nxtStmtIndex < info.compStmtOffsetsCount)
9603                         {
9604                             /* Remember where the next line# starts */
9605
9606                             nxtStmtOffs = info.compStmtOffsets[nxtStmtIndex];
9607                         }
9608                         else
9609                         {
9610                             /* No more line# entries */
9611
9612                             nxtStmtOffs = BAD_IL_OFFSET;
9613                         }
9614                     }
9615                 }
9616                 else if ((info.compStmtOffsetsImplicit & ICorDebugInfo::STACK_EMPTY_BOUNDARIES) &&
9617                          (verCurrentState.esStackDepth == 0))
9618                 {
9619                     /* At stack-empty locations, we have already added the tree to
9620                        the stmt list with the last offset. We just need to update
9621                        impCurStmtOffs
9622                      */
9623
9624                     impCurStmtOffsSet(opcodeOffs);
9625                 }
9626                 else if ((info.compStmtOffsetsImplicit & ICorDebugInfo::CALL_SITE_BOUNDARIES) &&
9627                          impOpcodeIsCallSiteBoundary(prevOpcode))
9628                 {
9629                     /* Make sure we have a type cached */
9630                     assert(callTyp != TYP_COUNT);
9631
9632                     if (callTyp == TYP_VOID)
9633                     {
9634                         impCurStmtOffsSet(opcodeOffs);
9635                     }
9636                     else if (opts.compDbgCode)
9637                     {
9638                         impSpillStackEnsure(true);
9639                         impCurStmtOffsSet(opcodeOffs);
9640                     }
9641                 }
9642                 else if ((info.compStmtOffsetsImplicit & ICorDebugInfo::NOP_BOUNDARIES) && (prevOpcode == CEE_NOP))
9643                 {
9644                     if (opts.compDbgCode)
9645                     {
9646                         impSpillStackEnsure(true);
9647                     }
9648
9649                     impCurStmtOffsSet(opcodeOffs);
9650                 }
9651
9652                 assert(impCurStmtOffs == BAD_IL_OFFSET || nxtStmtOffs == BAD_IL_OFFSET ||
9653                        jitGetILoffs(impCurStmtOffs) <= nxtStmtOffs);
9654             }
9655         }
9656
9657         CORINFO_CLASS_HANDLE clsHnd       = DUMMY_INIT(NULL);
9658         CORINFO_CLASS_HANDLE ldelemClsHnd = DUMMY_INIT(NULL);
9659         CORINFO_CLASS_HANDLE stelemClsHnd = DUMMY_INIT(NULL);
9660
9661         var_types       lclTyp, ovflType = TYP_UNKNOWN;
9662         GenTreePtr      op1           = DUMMY_INIT(NULL);
9663         GenTreePtr      op2           = DUMMY_INIT(NULL);
9664         GenTreeArgList* args          = nullptr; // What good do these "DUMMY_INIT"s do?
9665         GenTreePtr      newObjThisPtr = DUMMY_INIT(NULL);
9666         bool            uns           = DUMMY_INIT(false);
9667
9668         /* Get the next opcode and the size of its parameters */
9669
9670         OPCODE opcode = (OPCODE)getU1LittleEndian(codeAddr);
9671         codeAddr += sizeof(__int8);
9672
9673 #ifdef DEBUG
9674         impCurOpcOffs = (IL_OFFSET)(codeAddr - info.compCode - 1);
9675         JITDUMP("\n    [%2u] %3u (0x%03x) ", verCurrentState.esStackDepth, impCurOpcOffs, impCurOpcOffs);
9676 #endif
9677
9678     DECODE_OPCODE:
9679
9680         // Return if any previous code has caused inline to fail.
9681         if (compDonotInline())
9682         {
9683             return;
9684         }
9685
9686         /* Get the size of additional parameters */
9687
9688         signed int sz = opcodeSizes[opcode];
9689
9690 #ifdef DEBUG
9691         clsHnd  = NO_CLASS_HANDLE;
9692         lclTyp  = TYP_COUNT;
9693         callTyp = TYP_COUNT;
9694
9695         impCurOpcOffs = (IL_OFFSET)(codeAddr - info.compCode - 1);
9696         impCurOpcName = opcodeNames[opcode];
9697
9698         if (verbose && (opcode != CEE_PREFIX1))
9699         {
9700             printf("%s", impCurOpcName);
9701         }
9702
9703         /* Use assertImp() to display the opcode */
9704
9705         op1 = op2 = nullptr;
9706 #endif
9707
9708         /* See what kind of an opcode we have, then */
9709
9710         unsigned mflags   = 0;
9711         unsigned clsFlags = 0;
9712
9713         switch (opcode)
9714         {
9715             unsigned  lclNum;
9716             var_types type;
9717
9718             GenTreePtr op3;
9719             genTreeOps oper;
9720             unsigned   size;
9721
9722             int val;
9723
9724             CORINFO_SIG_INFO     sig;
9725             unsigned             flags;
9726             IL_OFFSET            jmpAddr;
9727             bool                 ovfl, unordered, callNode;
9728             bool                 ldstruct;
9729             CORINFO_CLASS_HANDLE tokenType;
9730
9731             union {
9732                 int     intVal;
9733                 float   fltVal;
9734                 __int64 lngVal;
9735                 double  dblVal;
9736             } cval;
9737
9738             case CEE_PREFIX1:
9739                 opcode = (OPCODE)(getU1LittleEndian(codeAddr) + 256);
9740                 codeAddr += sizeof(__int8);
9741                 opcodeOffs = (IL_OFFSET)(codeAddr - info.compCode);
9742                 goto DECODE_OPCODE;
9743
9744             SPILL_APPEND:
9745
9746                 // We need to call impSpillLclRefs() for a struct type lclVar.
9747                 // This is done for non-block assignments in the handling of stloc.
9748                 if ((op1->OperGet() == GT_ASG) && varTypeIsStruct(op1->gtOp.gtOp1) &&
9749                     (op1->gtOp.gtOp1->gtOper == GT_LCL_VAR))
9750                 {
9751                     impSpillLclRefs(op1->gtOp.gtOp1->AsLclVarCommon()->gtLclNum);
9752                 }
9753
9754                 /* Append 'op1' to the list of statements */
9755                 impAppendTree(op1, (unsigned)CHECK_SPILL_ALL, impCurStmtOffs);
9756                 goto DONE_APPEND;
9757
9758             APPEND:
9759
9760                 /* Append 'op1' to the list of statements */
9761
9762                 impAppendTree(op1, (unsigned)CHECK_SPILL_NONE, impCurStmtOffs);
9763                 goto DONE_APPEND;
9764
9765             DONE_APPEND:
9766
9767 #ifdef DEBUG
9768                 // Remember at which BC offset the tree was finished
9769                 impNoteLastILoffs();
9770 #endif
9771                 break;
9772
9773             case CEE_LDNULL:
9774                 impPushNullObjRefOnStack();
9775                 break;
9776
9777             case CEE_LDC_I4_M1:
9778             case CEE_LDC_I4_0:
9779             case CEE_LDC_I4_1:
9780             case CEE_LDC_I4_2:
9781             case CEE_LDC_I4_3:
9782             case CEE_LDC_I4_4:
9783             case CEE_LDC_I4_5:
9784             case CEE_LDC_I4_6:
9785             case CEE_LDC_I4_7:
9786             case CEE_LDC_I4_8:
9787                 cval.intVal = (opcode - CEE_LDC_I4_0);
9788                 assert(-1 <= cval.intVal && cval.intVal <= 8);
9789                 goto PUSH_I4CON;
9790
9791             case CEE_LDC_I4_S:
9792                 cval.intVal = getI1LittleEndian(codeAddr);
9793                 goto PUSH_I4CON;
9794             case CEE_LDC_I4:
9795                 cval.intVal = getI4LittleEndian(codeAddr);
9796                 goto PUSH_I4CON;
9797             PUSH_I4CON:
9798                 JITDUMP(" %d", cval.intVal);
9799                 impPushOnStack(gtNewIconNode(cval.intVal), typeInfo(TI_INT));
9800                 break;
9801
9802             case CEE_LDC_I8:
9803                 cval.lngVal = getI8LittleEndian(codeAddr);
9804                 JITDUMP(" 0x%016llx", cval.lngVal);
9805                 impPushOnStack(gtNewLconNode(cval.lngVal), typeInfo(TI_LONG));
9806                 break;
9807
9808             case CEE_LDC_R8:
9809                 cval.dblVal = getR8LittleEndian(codeAddr);
9810                 JITDUMP(" %#.17g", cval.dblVal);
9811                 impPushOnStack(gtNewDconNode(cval.dblVal), typeInfo(TI_DOUBLE));
9812                 break;
9813
9814             case CEE_LDC_R4:
9815                 cval.dblVal = getR4LittleEndian(codeAddr);
9816                 JITDUMP(" %#.17g", cval.dblVal);
9817                 {
9818                     GenTreePtr cnsOp = gtNewDconNode(cval.dblVal);
9819 #if !FEATURE_X87_DOUBLES
9820                     // X87 stack doesn't differentiate between float/double
9821                     // so R4 is treated as R8, but everybody else does
9822                     cnsOp->gtType = TYP_FLOAT;
9823 #endif // FEATURE_X87_DOUBLES
9824                     impPushOnStack(cnsOp, typeInfo(TI_DOUBLE));
9825                 }
9826                 break;
9827
9828             case CEE_LDSTR:
9829
9830                 if (compIsForInlining())
9831                 {
9832                     if (impInlineInfo->inlineCandidateInfo->dwRestrictions & INLINE_NO_CALLEE_LDSTR)
9833                     {
9834                         compInlineResult->NoteFatal(InlineObservation::CALLSITE_HAS_LDSTR_RESTRICTION);
9835                         return;
9836                     }
9837                 }
9838
9839                 val = getU4LittleEndian(codeAddr);
9840                 JITDUMP(" %08X", val);
9841                 if (tiVerificationNeeded)
9842                 {
9843                     Verify(info.compCompHnd->isValidStringRef(info.compScopeHnd, val), "bad string");
9844                     tiRetVal = typeInfo(TI_REF, impGetStringClass());
9845                 }
9846                 impPushOnStack(gtNewSconNode(val, info.compScopeHnd), tiRetVal);
9847
9848                 break;
9849
9850             case CEE_LDARG:
9851                 lclNum = getU2LittleEndian(codeAddr);
9852                 JITDUMP(" %u", lclNum);
9853                 impLoadArg(lclNum, opcodeOffs + sz + 1);
9854                 break;
9855
9856             case CEE_LDARG_S:
9857                 lclNum = getU1LittleEndian(codeAddr);
9858                 JITDUMP(" %u", lclNum);
9859                 impLoadArg(lclNum, opcodeOffs + sz + 1);
9860                 break;
9861
9862             case CEE_LDARG_0:
9863             case CEE_LDARG_1:
9864             case CEE_LDARG_2:
9865             case CEE_LDARG_3:
9866                 lclNum = (opcode - CEE_LDARG_0);
9867                 assert(lclNum >= 0 && lclNum < 4);
9868                 impLoadArg(lclNum, opcodeOffs + sz + 1);
9869                 break;
9870
9871             case CEE_LDLOC:
9872                 lclNum = getU2LittleEndian(codeAddr);
9873                 JITDUMP(" %u", lclNum);
9874                 impLoadLoc(lclNum, opcodeOffs + sz + 1);
9875                 break;
9876
9877             case CEE_LDLOC_S:
9878                 lclNum = getU1LittleEndian(codeAddr);
9879                 JITDUMP(" %u", lclNum);
9880                 impLoadLoc(lclNum, opcodeOffs + sz + 1);
9881                 break;
9882
9883             case CEE_LDLOC_0:
9884             case CEE_LDLOC_1:
9885             case CEE_LDLOC_2:
9886             case CEE_LDLOC_3:
9887                 lclNum = (opcode - CEE_LDLOC_0);
9888                 assert(lclNum >= 0 && lclNum < 4);
9889                 impLoadLoc(lclNum, opcodeOffs + sz + 1);
9890                 break;
9891
9892             case CEE_STARG:
9893                 lclNum = getU2LittleEndian(codeAddr);
9894                 goto STARG;
9895
9896             case CEE_STARG_S:
9897                 lclNum = getU1LittleEndian(codeAddr);
9898             STARG:
9899                 JITDUMP(" %u", lclNum);
9900
9901                 if (tiVerificationNeeded)
9902                 {
9903                     Verify(lclNum < info.compILargsCount, "bad arg num");
9904                 }
9905
9906                 if (compIsForInlining())
9907                 {
9908                     op1 = impInlineFetchArg(lclNum, impInlineInfo->inlArgInfo, impInlineInfo->lclVarInfo);
9909                     noway_assert(op1->gtOper == GT_LCL_VAR);
9910                     lclNum = op1->AsLclVar()->gtLclNum;
9911
9912                     goto VAR_ST_VALID;
9913                 }
9914
9915                 lclNum = compMapILargNum(lclNum); // account for possible hidden param
9916                 assertImp(lclNum < numArgs);
9917
9918                 if (lclNum == info.compThisArg)
9919                 {
9920                     lclNum = lvaArg0Var;
9921                 }
9922                 lvaTable[lclNum].lvArgWrite = 1;
9923
9924                 if (tiVerificationNeeded)
9925                 {
9926                     typeInfo& tiLclVar = lvaTable[lclNum].lvVerTypeInfo;
9927                     Verify(tiCompatibleWith(impStackTop().seTypeInfo, NormaliseForStack(tiLclVar), true),
9928                            "type mismatch");
9929
9930                     if (verTrackObjCtorInitState && (verCurrentState.thisInitialized != TIS_Init))
9931                     {
9932                         Verify(!tiLclVar.IsThisPtr(), "storing to uninit this ptr");
9933                     }
9934                 }
9935
9936                 goto VAR_ST;
9937
9938             case CEE_STLOC:
9939                 lclNum = getU2LittleEndian(codeAddr);
9940                 JITDUMP(" %u", lclNum);
9941                 goto LOC_ST;
9942
9943             case CEE_STLOC_S:
9944                 lclNum = getU1LittleEndian(codeAddr);
9945                 JITDUMP(" %u", lclNum);
9946                 goto LOC_ST;
9947
9948             case CEE_STLOC_0:
9949             case CEE_STLOC_1:
9950             case CEE_STLOC_2:
9951             case CEE_STLOC_3:
9952                 lclNum = (opcode - CEE_STLOC_0);
9953                 assert(lclNum >= 0 && lclNum < 4);
9954
9955             LOC_ST:
9956                 if (tiVerificationNeeded)
9957                 {
9958                     Verify(lclNum < info.compMethodInfo->locals.numArgs, "bad local num");
9959                     Verify(tiCompatibleWith(impStackTop().seTypeInfo,
9960                                             NormaliseForStack(lvaTable[lclNum + numArgs].lvVerTypeInfo), true),
9961                            "type mismatch");
9962                 }
9963
9964                 if (compIsForInlining())
9965                 {
9966                     lclTyp = impInlineInfo->lclVarInfo[lclNum + impInlineInfo->argCnt].lclTypeInfo;
9967
9968                     /* Have we allocated a temp for this local? */
9969
9970                     lclNum = impInlineFetchLocal(lclNum DEBUGARG("Inline stloc first use temp"));
9971
9972                     goto _PopValue;
9973                 }
9974
9975                 lclNum += numArgs;
9976
9977             VAR_ST:
9978
9979                 if (lclNum >= info.compLocalsCount && lclNum != lvaArg0Var)
9980                 {
9981                     assert(!tiVerificationNeeded); // We should have thrown the VerificationException before.
9982                     BADCODE("Bad IL");
9983                 }
9984
9985             VAR_ST_VALID:
9986
9987                 /* if it is a struct assignment, make certain we don't overflow the buffer */
9988                 assert(lclTyp != TYP_STRUCT || lvaLclSize(lclNum) >= info.compCompHnd->getClassSize(clsHnd));
9989
9990                 if (lvaTable[lclNum].lvNormalizeOnLoad())
9991                 {
9992                     lclTyp = lvaGetRealType(lclNum);
9993                 }
9994                 else
9995                 {
9996                     lclTyp = lvaGetActualType(lclNum);
9997                 }
9998
9999             _PopValue:
10000                 /* Pop the value being assigned */
10001
10002                 {
10003                     StackEntry se = impPopStack(clsHnd);
10004                     op1           = se.val;
10005                     tiRetVal      = se.seTypeInfo;
10006                 }
10007
10008 #ifdef FEATURE_SIMD
10009                 if (varTypeIsSIMD(lclTyp) && (lclTyp != op1->TypeGet()))
10010                 {
10011                     assert(op1->TypeGet() == TYP_STRUCT);
10012                     op1->gtType = lclTyp;
10013                 }
10014 #endif // FEATURE_SIMD
10015
10016                 op1 = impImplicitIorI4Cast(op1, lclTyp);
10017
10018 #ifdef _TARGET_64BIT_
10019                 // Downcast the TYP_I_IMPL into a 32-bit Int for x86 JIT compatiblity
10020                 if (varTypeIsI(op1->TypeGet()) && (genActualType(lclTyp) == TYP_INT))
10021                 {
10022                     assert(!tiVerificationNeeded); // We should have thrown the VerificationException before.
10023                     op1 = gtNewCastNode(TYP_INT, op1, TYP_INT);
10024                 }
10025 #endif // _TARGET_64BIT_
10026
10027                 // We had better assign it a value of the correct type
10028                 assertImp(
10029                     genActualType(lclTyp) == genActualType(op1->gtType) ||
10030                     genActualType(lclTyp) == TYP_I_IMPL && op1->IsVarAddr() ||
10031                     (genActualType(lclTyp) == TYP_I_IMPL && (op1->gtType == TYP_BYREF || op1->gtType == TYP_REF)) ||
10032                     (genActualType(op1->gtType) == TYP_I_IMPL && lclTyp == TYP_BYREF) ||
10033                     (varTypeIsFloating(lclTyp) && varTypeIsFloating(op1->TypeGet())) ||
10034                     ((genActualType(lclTyp) == TYP_BYREF) && genActualType(op1->TypeGet()) == TYP_REF));
10035
10036                 /* If op1 is "&var" then its type is the transient "*" and it can
10037                    be used either as TYP_BYREF or TYP_I_IMPL */
10038
10039                 if (op1->IsVarAddr())
10040                 {
10041                     assertImp(genActualType(lclTyp) == TYP_I_IMPL || lclTyp == TYP_BYREF);
10042
10043                     /* When "&var" is created, we assume it is a byref. If it is
10044                        being assigned to a TYP_I_IMPL var, change the type to
10045                        prevent unnecessary GC info */
10046
10047                     if (genActualType(lclTyp) == TYP_I_IMPL)
10048                     {
10049                         op1->gtType = TYP_I_IMPL;
10050                     }
10051                 }
10052
10053                 /* Filter out simple assignments to itself */
10054
10055                 if (op1->gtOper == GT_LCL_VAR && lclNum == op1->gtLclVarCommon.gtLclNum)
10056                 {
10057                     if (insertLdloc)
10058                     {
10059                         // This is a sequence of (ldloc, dup, stloc).  Can simplify
10060                         // to (ldloc, stloc).  Goto LDVAR to reconstruct the ldloc node.
10061                         CLANG_FORMAT_COMMENT_ANCHOR;
10062
10063 #ifdef DEBUG
10064                         if (tiVerificationNeeded)
10065                         {
10066                             assert(
10067                                 typeInfo::AreEquivalent(tiRetVal, NormaliseForStack(lvaTable[lclNum].lvVerTypeInfo)));
10068                         }
10069 #endif
10070
10071                         op1         = nullptr;
10072                         insertLdloc = false;
10073
10074                         impLoadVar(lclNum, opcodeOffs + sz + 1);
10075                         break;
10076                     }
10077                     else if (opts.compDbgCode)
10078                     {
10079                         op1 = gtNewNothingNode();
10080                         goto SPILL_APPEND;
10081                     }
10082                     else
10083                     {
10084                         break;
10085                     }
10086                 }
10087
10088                 /* Create the assignment node */
10089
10090                 op2 = gtNewLclvNode(lclNum, lclTyp, opcodeOffs + sz + 1);
10091
10092                 /* If the local is aliased, we need to spill calls and
10093                    indirections from the stack. */
10094
10095                 if ((lvaTable[lclNum].lvAddrExposed || lvaTable[lclNum].lvHasLdAddrOp) &&
10096                     verCurrentState.esStackDepth > 0)
10097                 {
10098                     impSpillSideEffects(false, (unsigned)CHECK_SPILL_ALL DEBUGARG("Local could be aliased"));
10099                 }
10100
10101                 /* Spill any refs to the local from the stack */
10102
10103                 impSpillLclRefs(lclNum);
10104
10105 #if !FEATURE_X87_DOUBLES
10106                 // We can generate an assignment to a TYP_FLOAT from a TYP_DOUBLE
10107                 // We insert a cast to the dest 'op2' type
10108                 //
10109                 if ((op1->TypeGet() != op2->TypeGet()) && varTypeIsFloating(op1->gtType) &&
10110                     varTypeIsFloating(op2->gtType))
10111                 {
10112                     op1 = gtNewCastNode(op2->TypeGet(), op1, op2->TypeGet());
10113                 }
10114 #endif // !FEATURE_X87_DOUBLES
10115
10116                 if (varTypeIsStruct(lclTyp))
10117                 {
10118                     op1 = impAssignStruct(op2, op1, clsHnd, (unsigned)CHECK_SPILL_ALL);
10119                 }
10120                 else
10121                 {
10122                     // The code generator generates GC tracking information
10123                     // based on the RHS of the assignment.  Later the LHS (which is
10124                     // is a BYREF) gets used and the emitter checks that that variable
10125                     // is being tracked.  It is not (since the RHS was an int and did
10126                     // not need tracking).  To keep this assert happy, we change the RHS
10127                     if (lclTyp == TYP_BYREF && !varTypeIsGC(op1->gtType))
10128                     {
10129                         op1->gtType = TYP_BYREF;
10130                     }
10131                     op1 = gtNewAssignNode(op2, op1);
10132                 }
10133
10134                 /* If insertLdloc is true, then we need to insert a ldloc following the
10135                    stloc.  This is done when converting a (dup, stloc) sequence into
10136                    a (stloc, ldloc) sequence. */
10137
10138                 if (insertLdloc)
10139                 {
10140                     // From SPILL_APPEND
10141                     impAppendTree(op1, (unsigned)CHECK_SPILL_ALL, impCurStmtOffs);
10142
10143 #ifdef DEBUG
10144                     // From DONE_APPEND
10145                     impNoteLastILoffs();
10146 #endif
10147                     op1         = nullptr;
10148                     insertLdloc = false;
10149
10150                     impLoadVar(lclNum, opcodeOffs + sz + 1, tiRetVal);
10151                     break;
10152                 }
10153
10154                 goto SPILL_APPEND;
10155
10156             case CEE_LDLOCA:
10157                 lclNum = getU2LittleEndian(codeAddr);
10158                 goto LDLOCA;
10159
10160             case CEE_LDLOCA_S:
10161                 lclNum = getU1LittleEndian(codeAddr);
10162             LDLOCA:
10163                 JITDUMP(" %u", lclNum);
10164                 if (tiVerificationNeeded)
10165                 {
10166                     Verify(lclNum < info.compMethodInfo->locals.numArgs, "bad local num");
10167                     Verify(info.compInitMem, "initLocals not set");
10168                 }
10169
10170                 if (compIsForInlining())
10171                 {
10172                     // Get the local type
10173                     lclTyp = impInlineInfo->lclVarInfo[lclNum + impInlineInfo->argCnt].lclTypeInfo;
10174
10175                     /* Have we allocated a temp for this local? */
10176
10177                     lclNum = impInlineFetchLocal(lclNum DEBUGARG("Inline ldloca(s) first use temp"));
10178
10179                     op1 = gtNewLclvNode(lclNum, lvaGetActualType(lclNum));
10180
10181                     goto _PUSH_ADRVAR;
10182                 }
10183
10184                 lclNum += numArgs;
10185                 assertImp(lclNum < info.compLocalsCount);
10186                 goto ADRVAR;
10187
10188             case CEE_LDARGA:
10189                 lclNum = getU2LittleEndian(codeAddr);
10190                 goto LDARGA;
10191
10192             case CEE_LDARGA_S:
10193                 lclNum = getU1LittleEndian(codeAddr);
10194             LDARGA:
10195                 JITDUMP(" %u", lclNum);
10196                 Verify(lclNum < info.compILargsCount, "bad arg num");
10197
10198                 if (compIsForInlining())
10199                 {
10200                     // In IL, LDARGA(_S) is used to load the byref managed pointer of struct argument,
10201                     // followed by a ldfld to load the field.
10202
10203                     op1 = impInlineFetchArg(lclNum, impInlineInfo->inlArgInfo, impInlineInfo->lclVarInfo);
10204                     if (op1->gtOper != GT_LCL_VAR)
10205                     {
10206                         compInlineResult->NoteFatal(InlineObservation::CALLSITE_LDARGA_NOT_LOCAL_VAR);
10207                         return;
10208                     }
10209
10210                     assert(op1->gtOper == GT_LCL_VAR);
10211
10212                     goto _PUSH_ADRVAR;
10213                 }
10214
10215                 lclNum = compMapILargNum(lclNum); // account for possible hidden param
10216                 assertImp(lclNum < numArgs);
10217
10218                 if (lclNum == info.compThisArg)
10219                 {
10220                     lclNum = lvaArg0Var;
10221                 }
10222
10223                 goto ADRVAR;
10224
10225             ADRVAR:
10226
10227                 op1 = gtNewLclvNode(lclNum, lvaGetActualType(lclNum), opcodeOffs + sz + 1);
10228
10229             _PUSH_ADRVAR:
10230                 assert(op1->gtOper == GT_LCL_VAR);
10231
10232                 /* Note that this is supposed to create the transient type "*"
10233                    which may be used as a TYP_I_IMPL. However we catch places
10234                    where it is used as a TYP_I_IMPL and change the node if needed.
10235                    Thus we are pessimistic and may report byrefs in the GC info
10236                    where it was not absolutely needed, but it is safer this way.
10237                  */
10238                 op1 = gtNewOperNode(GT_ADDR, TYP_BYREF, op1);
10239
10240                 // &aliasedVar doesnt need GTF_GLOB_REF, though alisasedVar does
10241                 assert((op1->gtFlags & GTF_GLOB_REF) == 0);
10242
10243                 tiRetVal = lvaTable[lclNum].lvVerTypeInfo;
10244                 if (tiVerificationNeeded)
10245                 {
10246                     // Don't allow taking address of uninit this ptr.
10247                     if (verTrackObjCtorInitState && (verCurrentState.thisInitialized != TIS_Init))
10248                     {
10249                         Verify(!tiRetVal.IsThisPtr(), "address of uninit this ptr");
10250                     }
10251
10252                     if (!tiRetVal.IsByRef())
10253                     {
10254                         tiRetVal.MakeByRef();
10255                     }
10256                     else
10257                     {
10258                         Verify(false, "byref to byref");
10259                     }
10260                 }
10261
10262                 impPushOnStack(op1, tiRetVal);
10263                 break;
10264
10265             case CEE_ARGLIST:
10266
10267                 if (!info.compIsVarArgs)
10268                 {
10269                     BADCODE("arglist in non-vararg method");
10270                 }
10271
10272                 if (tiVerificationNeeded)
10273                 {
10274                     tiRetVal = typeInfo(TI_STRUCT, impGetRuntimeArgumentHandle());
10275                 }
10276                 assertImp((info.compMethodInfo->args.callConv & CORINFO_CALLCONV_MASK) == CORINFO_CALLCONV_VARARG);
10277
10278                 /* The ARGLIST cookie is a hidden 'last' parameter, we have already
10279                    adjusted the arg count cos this is like fetching the last param */
10280                 assertImp(0 < numArgs);
10281                 assert(lvaTable[lvaVarargsHandleArg].lvAddrExposed);
10282                 lclNum = lvaVarargsHandleArg;
10283                 op1    = gtNewLclvNode(lclNum, TYP_I_IMPL, opcodeOffs + sz + 1);
10284                 op1    = gtNewOperNode(GT_ADDR, TYP_BYREF, op1);
10285                 impPushOnStack(op1, tiRetVal);
10286                 break;
10287
10288             case CEE_ENDFINALLY:
10289
10290                 if (compIsForInlining())
10291                 {
10292                     assert(!"Shouldn't have exception handlers in the inliner!");
10293                     compInlineResult->NoteFatal(InlineObservation::CALLEE_HAS_ENDFINALLY);
10294                     return;
10295                 }
10296
10297                 if (verCurrentState.esStackDepth > 0)
10298                 {
10299                     impEvalSideEffects();
10300                 }
10301
10302                 if (info.compXcptnsCount == 0)
10303                 {
10304                     BADCODE("endfinally outside finally");
10305                 }
10306
10307                 assert(verCurrentState.esStackDepth == 0);
10308
10309                 op1 = gtNewOperNode(GT_RETFILT, TYP_VOID, nullptr);
10310                 goto APPEND;
10311
10312             case CEE_ENDFILTER:
10313
10314                 if (compIsForInlining())
10315                 {
10316                     assert(!"Shouldn't have exception handlers in the inliner!");
10317                     compInlineResult->NoteFatal(InlineObservation::CALLEE_HAS_ENDFILTER);
10318                     return;
10319                 }
10320
10321                 block->bbSetRunRarely(); // filters are rare
10322
10323                 if (info.compXcptnsCount == 0)
10324                 {
10325                     BADCODE("endfilter outside filter");
10326                 }
10327
10328                 if (tiVerificationNeeded)
10329                 {
10330                     Verify(impStackTop().seTypeInfo.IsType(TI_INT), "bad endfilt arg");
10331                 }
10332
10333                 op1 = impPopStack().val;
10334                 assertImp(op1->gtType == TYP_INT);
10335                 if (!bbInFilterILRange(block))
10336                 {
10337                     BADCODE("EndFilter outside a filter handler");
10338                 }
10339
10340                 /* Mark current bb as end of filter */
10341
10342                 assert(compCurBB->bbFlags & BBF_DONT_REMOVE);
10343                 assert(compCurBB->bbJumpKind == BBJ_EHFILTERRET);
10344
10345                 /* Mark catch handler as successor */
10346
10347                 op1 = gtNewOperNode(GT_RETFILT, op1->TypeGet(), op1);
10348                 if (verCurrentState.esStackDepth != 0)
10349                 {
10350                     verRaiseVerifyException(INDEBUG("stack must be 1 on end of filter") DEBUGARG(__FILE__)
10351                                                 DEBUGARG(__LINE__));
10352                 }
10353                 goto APPEND;
10354
10355             case CEE_RET:
10356                 prefixFlags &= ~PREFIX_TAILCALL; // ret without call before it
10357             RET:
10358                 if (!impReturnInstruction(block, prefixFlags, opcode))
10359                 {
10360                     return; // abort
10361                 }
10362                 else
10363                 {
10364                     break;
10365                 }
10366
10367             case CEE_JMP:
10368
10369                 assert(!compIsForInlining());
10370
10371                 if (tiVerificationNeeded)
10372                 {
10373                     Verify(false, "Invalid opcode: CEE_JMP");
10374                 }
10375
10376                 if ((info.compFlags & CORINFO_FLG_SYNCH) || block->hasTryIndex() || block->hasHndIndex())
10377                 {
10378                     /* CEE_JMP does not make sense in some "protected" regions. */
10379
10380                     BADCODE("Jmp not allowed in protected region");
10381                 }
10382
10383                 if (verCurrentState.esStackDepth != 0)
10384                 {
10385                     BADCODE("Stack must be empty after CEE_JMPs");
10386                 }
10387
10388                 _impResolveToken(CORINFO_TOKENKIND_Method);
10389
10390                 JITDUMP(" %08X", resolvedToken.token);
10391
10392                 /* The signature of the target has to be identical to ours.
10393                    At least check that argCnt and returnType match */
10394
10395                 eeGetMethodSig(resolvedToken.hMethod, &sig);
10396                 if (sig.numArgs != info.compMethodInfo->args.numArgs ||
10397                     sig.retType != info.compMethodInfo->args.retType ||
10398                     sig.callConv != info.compMethodInfo->args.callConv)
10399                 {
10400                     BADCODE("Incompatible target for CEE_JMPs");
10401                 }
10402
10403 #if defined(_TARGET_XARCH_) || defined(_TARGET_ARMARCH_)
10404
10405                 op1 = new (this, GT_JMP) GenTreeVal(GT_JMP, TYP_VOID, (size_t)resolvedToken.hMethod);
10406
10407                 /* Mark the basic block as being a JUMP instead of RETURN */
10408
10409                 block->bbFlags |= BBF_HAS_JMP;
10410
10411                 /* Set this flag to make sure register arguments have a location assigned
10412                  * even if we don't use them inside the method */
10413
10414                 compJmpOpUsed = true;
10415
10416                 fgNoStructPromotion = true;
10417
10418                 goto APPEND;
10419
10420 #else // !_TARGET_XARCH_ && !_TARGET_ARMARCH_
10421
10422                 // Import this just like a series of LDARGs + tail. + call + ret
10423
10424                 if (info.compIsVarArgs)
10425                 {
10426                     // For now we don't implement true tail calls, so this breaks varargs.
10427                     // So warn the user instead of generating bad code.
10428                     // This is a semi-temporary workaround for DevDiv 173860, until we can properly
10429                     // implement true tail calls.
10430                     IMPL_LIMITATION("varags + CEE_JMP doesn't work yet");
10431                 }
10432
10433                 // First load up the arguments (0 - N)
10434                 for (unsigned argNum = 0; argNum < info.compILargsCount; argNum++)
10435                 {
10436                     impLoadArg(argNum, opcodeOffs + sz + 1);
10437                 }
10438
10439                 // Now generate the tail call
10440                 noway_assert(prefixFlags == 0);
10441                 prefixFlags = PREFIX_TAILCALL_EXPLICIT;
10442                 opcode      = CEE_CALL;
10443
10444                 eeGetCallInfo(&resolvedToken, NULL,
10445                               combine(CORINFO_CALLINFO_ALLOWINSTPARAM, CORINFO_CALLINFO_SECURITYCHECKS), &callInfo);
10446
10447                 // All calls and delegates need a security callout.
10448                 impHandleAccessAllowed(callInfo.accessAllowed, &callInfo.callsiteCalloutHelper);
10449
10450                 callTyp = impImportCall(CEE_CALL, &resolvedToken, NULL, NULL, PREFIX_TAILCALL_EXPLICIT, &callInfo,
10451                                         opcodeOffs);
10452
10453                 // And finish with the ret
10454                 goto RET;
10455
10456 #endif // _TARGET_XARCH_ || _TARGET_ARMARCH_
10457
10458             case CEE_LDELEMA:
10459                 assertImp(sz == sizeof(unsigned));
10460
10461                 _impResolveToken(CORINFO_TOKENKIND_Class);
10462
10463                 JITDUMP(" %08X", resolvedToken.token);
10464
10465                 ldelemClsHnd = resolvedToken.hClass;
10466
10467                 if (tiVerificationNeeded)
10468                 {
10469                     typeInfo tiArray = impStackTop(1).seTypeInfo;
10470                     typeInfo tiIndex = impStackTop().seTypeInfo;
10471
10472                     // As per ECMA 'index' specified can be either int32 or native int.
10473                     Verify(tiIndex.IsIntOrNativeIntType(), "bad index");
10474
10475                     typeInfo arrayElemType = verMakeTypeInfo(ldelemClsHnd);
10476                     Verify(tiArray.IsNullObjRef() ||
10477                                typeInfo::AreEquivalent(verGetArrayElemType(tiArray), arrayElemType),
10478                            "bad array");
10479
10480                     tiRetVal = arrayElemType;
10481                     tiRetVal.MakeByRef();
10482                     if (prefixFlags & PREFIX_READONLY)
10483                     {
10484                         tiRetVal.SetIsReadonlyByRef();
10485                     }
10486
10487                     // an array interior pointer is always in the heap
10488                     tiRetVal.SetIsPermanentHomeByRef();
10489                 }
10490
10491                 // If it's a value class array we just do a simple address-of
10492                 if (eeIsValueClass(ldelemClsHnd))
10493                 {
10494                     CorInfoType cit = info.compCompHnd->getTypeForPrimitiveValueClass(ldelemClsHnd);
10495                     if (cit == CORINFO_TYPE_UNDEF)
10496                     {
10497                         lclTyp = TYP_STRUCT;
10498                     }
10499                     else
10500                     {
10501                         lclTyp = JITtype2varType(cit);
10502                     }
10503                     goto ARR_LD_POST_VERIFY;
10504                 }
10505
10506                 // Similarly, if its a readonly access, we can do a simple address-of
10507                 // without doing a runtime type-check
10508                 if (prefixFlags & PREFIX_READONLY)
10509                 {
10510                     lclTyp = TYP_REF;
10511                     goto ARR_LD_POST_VERIFY;
10512                 }
10513
10514                 // Otherwise we need the full helper function with run-time type check
10515                 op1 = impTokenToHandle(&resolvedToken);
10516                 if (op1 == nullptr)
10517                 { // compDonotInline()
10518                     return;
10519                 }
10520
10521                 args = gtNewArgList(op1);                      // Type
10522                 args = gtNewListNode(impPopStack().val, args); // index
10523                 args = gtNewListNode(impPopStack().val, args); // array
10524                 op1  = gtNewHelperCallNode(CORINFO_HELP_LDELEMA_REF, TYP_BYREF, GTF_EXCEPT, args);
10525
10526                 impPushOnStack(op1, tiRetVal);
10527                 break;
10528
10529             // ldelem for reference and value types
10530             case CEE_LDELEM:
10531                 assertImp(sz == sizeof(unsigned));
10532
10533                 _impResolveToken(CORINFO_TOKENKIND_Class);
10534
10535                 JITDUMP(" %08X", resolvedToken.token);
10536
10537                 ldelemClsHnd = resolvedToken.hClass;
10538
10539                 if (tiVerificationNeeded)
10540                 {
10541                     typeInfo tiArray = impStackTop(1).seTypeInfo;
10542                     typeInfo tiIndex = impStackTop().seTypeInfo;
10543
10544                     // As per ECMA 'index' specified can be either int32 or native int.
10545                     Verify(tiIndex.IsIntOrNativeIntType(), "bad index");
10546                     tiRetVal = verMakeTypeInfo(ldelemClsHnd);
10547
10548                     Verify(tiArray.IsNullObjRef() || tiCompatibleWith(verGetArrayElemType(tiArray), tiRetVal, false),
10549                            "type of array incompatible with type operand");
10550                     tiRetVal.NormaliseForStack();
10551                 }
10552
10553                 // If it's a reference type or generic variable type
10554                 // then just generate code as though it's a ldelem.ref instruction
10555                 if (!eeIsValueClass(ldelemClsHnd))
10556                 {
10557                     lclTyp = TYP_REF;
10558                     opcode = CEE_LDELEM_REF;
10559                 }
10560                 else
10561                 {
10562                     CorInfoType jitTyp = info.compCompHnd->asCorInfoType(ldelemClsHnd);
10563                     lclTyp             = JITtype2varType(jitTyp);
10564                     tiRetVal           = verMakeTypeInfo(ldelemClsHnd); // precise type always needed for struct
10565                     tiRetVal.NormaliseForStack();
10566                 }
10567                 goto ARR_LD_POST_VERIFY;
10568
10569             case CEE_LDELEM_I1:
10570                 lclTyp = TYP_BYTE;
10571                 goto ARR_LD;
10572             case CEE_LDELEM_I2:
10573                 lclTyp = TYP_SHORT;
10574                 goto ARR_LD;
10575             case CEE_LDELEM_I:
10576                 lclTyp = TYP_I_IMPL;
10577                 goto ARR_LD;
10578
10579             // Should be UINT, but since no platform widens 4->8 bytes it doesn't matter
10580             // and treating it as TYP_INT avoids other asserts.
10581             case CEE_LDELEM_U4:
10582                 lclTyp = TYP_INT;
10583                 goto ARR_LD;
10584
10585             case CEE_LDELEM_I4:
10586                 lclTyp = TYP_INT;
10587                 goto ARR_LD;
10588             case CEE_LDELEM_I8:
10589                 lclTyp = TYP_LONG;
10590                 goto ARR_LD;
10591             case CEE_LDELEM_REF:
10592                 lclTyp = TYP_REF;
10593                 goto ARR_LD;
10594             case CEE_LDELEM_R4:
10595                 lclTyp = TYP_FLOAT;
10596                 goto ARR_LD;
10597             case CEE_LDELEM_R8:
10598                 lclTyp = TYP_DOUBLE;
10599                 goto ARR_LD;
10600             case CEE_LDELEM_U1:
10601                 lclTyp = TYP_UBYTE;
10602                 goto ARR_LD;
10603             case CEE_LDELEM_U2:
10604                 lclTyp = TYP_CHAR;
10605                 goto ARR_LD;
10606
10607             ARR_LD:
10608
10609                 if (tiVerificationNeeded)
10610                 {
10611                     typeInfo tiArray = impStackTop(1).seTypeInfo;
10612                     typeInfo tiIndex = impStackTop().seTypeInfo;
10613
10614                     // As per ECMA 'index' specified can be either int32 or native int.
10615                     Verify(tiIndex.IsIntOrNativeIntType(), "bad index");
10616                     if (tiArray.IsNullObjRef())
10617                     {
10618                         if (lclTyp == TYP_REF)
10619                         { // we will say a deref of a null array yields a null ref
10620                             tiRetVal = typeInfo(TI_NULL);
10621                         }
10622                         else
10623                         {
10624                             tiRetVal = typeInfo(lclTyp);
10625                         }
10626                     }
10627                     else
10628                     {
10629                         tiRetVal             = verGetArrayElemType(tiArray);
10630                         typeInfo arrayElemTi = typeInfo(lclTyp);
10631 #ifdef _TARGET_64BIT_
10632                         if (opcode == CEE_LDELEM_I)
10633                         {
10634                             arrayElemTi = typeInfo::nativeInt();
10635                         }
10636
10637                         if (lclTyp != TYP_REF && lclTyp != TYP_STRUCT)
10638                         {
10639                             Verify(typeInfo::AreEquivalent(tiRetVal, arrayElemTi), "bad array");
10640                         }
10641                         else
10642 #endif // _TARGET_64BIT_
10643                         {
10644                             Verify(tiRetVal.IsType(arrayElemTi.GetType()), "bad array");
10645                         }
10646                     }
10647                     tiRetVal.NormaliseForStack();
10648                 }
10649             ARR_LD_POST_VERIFY:
10650
10651                 /* Pull the index value and array address */
10652                 op2 = impPopStack().val;
10653                 op1 = impPopStack().val;
10654                 assertImp(op1->gtType == TYP_REF);
10655
10656                 /* Check for null pointer - in the inliner case we simply abort */
10657
10658                 if (compIsForInlining())
10659                 {
10660                     if (op1->gtOper == GT_CNS_INT)
10661                     {
10662                         compInlineResult->NoteFatal(InlineObservation::CALLEE_HAS_NULL_FOR_LDELEM);
10663                         return;
10664                     }
10665                 }
10666
10667                 op1 = impCheckForNullPointer(op1);
10668
10669                 /* Mark the block as containing an index expression */
10670
10671                 if (op1->gtOper == GT_LCL_VAR)
10672                 {
10673                     if (op2->gtOper == GT_LCL_VAR || op2->gtOper == GT_CNS_INT || op2->gtOper == GT_ADD)
10674                     {
10675                         block->bbFlags |= BBF_HAS_IDX_LEN;
10676                         optMethodFlags |= OMF_HAS_ARRAYREF;
10677                     }
10678                 }
10679
10680                 /* Create the index node and push it on the stack */
10681
10682                 op1 = gtNewIndexRef(lclTyp, op1, op2);
10683
10684                 ldstruct = (opcode == CEE_LDELEM && lclTyp == TYP_STRUCT);
10685
10686                 if ((opcode == CEE_LDELEMA) || ldstruct ||
10687                     (ldelemClsHnd != DUMMY_INIT(NULL) && eeIsValueClass(ldelemClsHnd)))
10688                 {
10689                     assert(ldelemClsHnd != DUMMY_INIT(NULL));
10690
10691                     // remember the element size
10692                     if (lclTyp == TYP_REF)
10693                     {
10694                         op1->gtIndex.gtIndElemSize = sizeof(void*);
10695                     }
10696                     else
10697                     {
10698                         // If ldElemClass is precisely a primitive type, use that, otherwise, preserve the struct type.
10699                         if (info.compCompHnd->getTypeForPrimitiveValueClass(ldelemClsHnd) == CORINFO_TYPE_UNDEF)
10700                         {
10701                             op1->gtIndex.gtStructElemClass = ldelemClsHnd;
10702                         }
10703                         assert(lclTyp != TYP_STRUCT || op1->gtIndex.gtStructElemClass != nullptr);
10704                         if (lclTyp == TYP_STRUCT)
10705                         {
10706                             size                       = info.compCompHnd->getClassSize(ldelemClsHnd);
10707                             op1->gtIndex.gtIndElemSize = size;
10708                             op1->gtType                = lclTyp;
10709                         }
10710                     }
10711
10712                     if ((opcode == CEE_LDELEMA) || ldstruct)
10713                     {
10714                         // wrap it in a &
10715                         lclTyp = TYP_BYREF;
10716
10717                         op1 = gtNewOperNode(GT_ADDR, lclTyp, op1);
10718                     }
10719                     else
10720                     {
10721                         assert(lclTyp != TYP_STRUCT);
10722                     }
10723                 }
10724
10725                 if (ldstruct)
10726                 {
10727                     // Create an OBJ for the result
10728                     op1 = gtNewObjNode(ldelemClsHnd, op1);
10729                     op1->gtFlags |= GTF_EXCEPT;
10730                 }
10731                 impPushOnStack(op1, tiRetVal);
10732                 break;
10733
10734             // stelem for reference and value types
10735             case CEE_STELEM:
10736
10737                 assertImp(sz == sizeof(unsigned));
10738
10739                 _impResolveToken(CORINFO_TOKENKIND_Class);
10740
10741                 JITDUMP(" %08X", resolvedToken.token);
10742
10743                 stelemClsHnd = resolvedToken.hClass;
10744
10745                 if (tiVerificationNeeded)
10746                 {
10747                     typeInfo tiArray = impStackTop(2).seTypeInfo;
10748                     typeInfo tiIndex = impStackTop(1).seTypeInfo;
10749                     typeInfo tiValue = impStackTop().seTypeInfo;
10750
10751                     // As per ECMA 'index' specified can be either int32 or native int.
10752                     Verify(tiIndex.IsIntOrNativeIntType(), "bad index");
10753                     typeInfo arrayElem = verMakeTypeInfo(stelemClsHnd);
10754
10755                     Verify(tiArray.IsNullObjRef() || tiCompatibleWith(arrayElem, verGetArrayElemType(tiArray), false),
10756                            "type operand incompatible with array element type");
10757                     arrayElem.NormaliseForStack();
10758                     Verify(tiCompatibleWith(tiValue, arrayElem, true), "value incompatible with type operand");
10759                 }
10760
10761                 // If it's a reference type just behave as though it's a stelem.ref instruction
10762                 if (!eeIsValueClass(stelemClsHnd))
10763                 {
10764                     goto STELEM_REF_POST_VERIFY;
10765                 }
10766
10767                 // Otherwise extract the type
10768                 {
10769                     CorInfoType jitTyp = info.compCompHnd->asCorInfoType(stelemClsHnd);
10770                     lclTyp             = JITtype2varType(jitTyp);
10771                     goto ARR_ST_POST_VERIFY;
10772                 }
10773
10774             case CEE_STELEM_REF:
10775
10776                 if (tiVerificationNeeded)
10777                 {
10778                     typeInfo tiArray = impStackTop(2).seTypeInfo;
10779                     typeInfo tiIndex = impStackTop(1).seTypeInfo;
10780                     typeInfo tiValue = impStackTop().seTypeInfo;
10781
10782                     // As per ECMA 'index' specified can be either int32 or native int.
10783                     Verify(tiIndex.IsIntOrNativeIntType(), "bad index");
10784                     Verify(tiValue.IsObjRef(), "bad value");
10785
10786                     // we only check that it is an object referece, The helper does additional checks
10787                     Verify(tiArray.IsNullObjRef() || verGetArrayElemType(tiArray).IsType(TI_REF), "bad array");
10788                 }
10789
10790                 arrayNodeTo      = impStackTop(2).val;
10791                 arrayNodeToIndex = impStackTop(1).val;
10792                 arrayNodeFrom    = impStackTop().val;
10793
10794                 //
10795                 // Note that it is not legal to optimize away CORINFO_HELP_ARRADDR_ST in a
10796                 // lot of cases because of covariance. ie. foo[] can be cast to object[].
10797                 //
10798
10799                 // Check for assignment to same array, ie. arrLcl[i] = arrLcl[j]
10800                 // This does not need CORINFO_HELP_ARRADDR_ST
10801
10802                 if (arrayNodeFrom->OperGet() == GT_INDEX && arrayNodeFrom->gtOp.gtOp1->gtOper == GT_LCL_VAR &&
10803                     arrayNodeTo->gtOper == GT_LCL_VAR &&
10804                     arrayNodeTo->gtLclVarCommon.gtLclNum == arrayNodeFrom->gtOp.gtOp1->gtLclVarCommon.gtLclNum &&
10805                     !lvaTable[arrayNodeTo->gtLclVarCommon.gtLclNum].lvAddrExposed)
10806                 {
10807                     lclTyp = TYP_REF;
10808                     goto ARR_ST_POST_VERIFY;
10809                 }
10810
10811                 // Check for assignment of NULL. This does not need CORINFO_HELP_ARRADDR_ST
10812
10813                 if (arrayNodeFrom->OperGet() == GT_CNS_INT)
10814                 {
10815                     assert(arrayNodeFrom->gtType == TYP_REF && arrayNodeFrom->gtIntCon.gtIconVal == 0);
10816
10817                     lclTyp = TYP_REF;
10818                     goto ARR_ST_POST_VERIFY;
10819                 }
10820
10821             STELEM_REF_POST_VERIFY:
10822
10823                 /* Call a helper function to do the assignment */
10824                 op1 = gtNewHelperCallNode(CORINFO_HELP_ARRADDR_ST, TYP_VOID, 0, impPopList(3, &flags, nullptr));
10825
10826                 goto SPILL_APPEND;
10827
10828             case CEE_STELEM_I1:
10829                 lclTyp = TYP_BYTE;
10830                 goto ARR_ST;
10831             case CEE_STELEM_I2:
10832                 lclTyp = TYP_SHORT;
10833                 goto ARR_ST;
10834             case CEE_STELEM_I:
10835                 lclTyp = TYP_I_IMPL;
10836                 goto ARR_ST;
10837             case CEE_STELEM_I4:
10838                 lclTyp = TYP_INT;
10839                 goto ARR_ST;
10840             case CEE_STELEM_I8:
10841                 lclTyp = TYP_LONG;
10842                 goto ARR_ST;
10843             case CEE_STELEM_R4:
10844                 lclTyp = TYP_FLOAT;
10845                 goto ARR_ST;
10846             case CEE_STELEM_R8:
10847                 lclTyp = TYP_DOUBLE;
10848                 goto ARR_ST;
10849
10850             ARR_ST:
10851
10852                 if (tiVerificationNeeded)
10853                 {
10854                     typeInfo tiArray = impStackTop(2).seTypeInfo;
10855                     typeInfo tiIndex = impStackTop(1).seTypeInfo;
10856                     typeInfo tiValue = impStackTop().seTypeInfo;
10857
10858                     // As per ECMA 'index' specified can be either int32 or native int.
10859                     Verify(tiIndex.IsIntOrNativeIntType(), "bad index");
10860                     typeInfo arrayElem = typeInfo(lclTyp);
10861 #ifdef _TARGET_64BIT_
10862                     if (opcode == CEE_STELEM_I)
10863                     {
10864                         arrayElem = typeInfo::nativeInt();
10865                     }
10866 #endif // _TARGET_64BIT_
10867                     Verify(tiArray.IsNullObjRef() || typeInfo::AreEquivalent(verGetArrayElemType(tiArray), arrayElem),
10868                            "bad array");
10869
10870                     Verify(tiCompatibleWith(NormaliseForStack(tiValue), arrayElem.NormaliseForStack(), true),
10871                            "bad value");
10872                 }
10873
10874             ARR_ST_POST_VERIFY:
10875                 /* The strict order of evaluation is LHS-operands, RHS-operands,
10876                    range-check, and then assignment. However, codegen currently
10877                    does the range-check before evaluation the RHS-operands. So to
10878                    maintain strict ordering, we spill the stack. */
10879
10880                 if (impStackTop().val->gtFlags & GTF_SIDE_EFFECT)
10881                 {
10882                     impSpillSideEffects(false, (unsigned)CHECK_SPILL_ALL DEBUGARG(
10883                                                    "Strict ordering of exceptions for Array store"));
10884                 }
10885
10886                 /* Pull the new value from the stack */
10887                 op2 = impPopStack().val;
10888
10889                 /* Pull the index value */
10890                 op1 = impPopStack().val;
10891
10892                 /* Pull the array address */
10893                 op3 = impPopStack().val;
10894
10895                 assertImp(op3->gtType == TYP_REF);
10896                 if (op2->IsVarAddr())
10897                 {
10898                     op2->gtType = TYP_I_IMPL;
10899                 }
10900
10901                 op3 = impCheckForNullPointer(op3);
10902
10903                 // Mark the block as containing an index expression
10904
10905                 if (op3->gtOper == GT_LCL_VAR)
10906                 {
10907                     if (op1->gtOper == GT_LCL_VAR || op1->gtOper == GT_CNS_INT || op1->gtOper == GT_ADD)
10908                     {
10909                         block->bbFlags |= BBF_HAS_IDX_LEN;
10910                         optMethodFlags |= OMF_HAS_ARRAYREF;
10911                     }
10912                 }
10913
10914                 /* Create the index node */
10915
10916                 op1 = gtNewIndexRef(lclTyp, op3, op1);
10917
10918                 /* Create the assignment node and append it */
10919
10920                 if (lclTyp == TYP_STRUCT)
10921                 {
10922                     assert(stelemClsHnd != DUMMY_INIT(NULL));
10923
10924                     op1->gtIndex.gtStructElemClass = stelemClsHnd;
10925                     op1->gtIndex.gtIndElemSize     = info.compCompHnd->getClassSize(stelemClsHnd);
10926                 }
10927                 if (varTypeIsStruct(op1))
10928                 {
10929                     op1 = impAssignStruct(op1, op2, stelemClsHnd, (unsigned)CHECK_SPILL_ALL);
10930                 }
10931                 else
10932                 {
10933                     op2 = impImplicitR4orR8Cast(op2, op1->TypeGet());
10934                     op1 = gtNewAssignNode(op1, op2);
10935                 }
10936
10937                 /* Mark the expression as containing an assignment */
10938
10939                 op1->gtFlags |= GTF_ASG;
10940
10941                 goto SPILL_APPEND;
10942
10943             case CEE_ADD:
10944                 oper = GT_ADD;
10945                 goto MATH_OP2;
10946
10947             case CEE_ADD_OVF:
10948                 uns = false;
10949                 goto ADD_OVF;
10950             case CEE_ADD_OVF_UN:
10951                 uns = true;
10952                 goto ADD_OVF;
10953
10954             ADD_OVF:
10955                 ovfl     = true;
10956                 callNode = false;
10957                 oper     = GT_ADD;
10958                 goto MATH_OP2_FLAGS;
10959
10960             case CEE_SUB:
10961                 oper = GT_SUB;
10962                 goto MATH_OP2;
10963
10964             case CEE_SUB_OVF:
10965                 uns = false;
10966                 goto SUB_OVF;
10967             case CEE_SUB_OVF_UN:
10968                 uns = true;
10969                 goto SUB_OVF;
10970
10971             SUB_OVF:
10972                 ovfl     = true;
10973                 callNode = false;
10974                 oper     = GT_SUB;
10975                 goto MATH_OP2_FLAGS;
10976
10977             case CEE_MUL:
10978                 oper = GT_MUL;
10979                 goto MATH_MAYBE_CALL_NO_OVF;
10980
10981             case CEE_MUL_OVF:
10982                 uns = false;
10983                 goto MUL_OVF;
10984             case CEE_MUL_OVF_UN:
10985                 uns = true;
10986                 goto MUL_OVF;
10987
10988             MUL_OVF:
10989                 ovfl = true;
10990                 oper = GT_MUL;
10991                 goto MATH_MAYBE_CALL_OVF;
10992
10993             // Other binary math operations
10994
10995             case CEE_DIV:
10996                 oper = GT_DIV;
10997                 goto MATH_MAYBE_CALL_NO_OVF;
10998
10999             case CEE_DIV_UN:
11000                 oper = GT_UDIV;
11001                 goto MATH_MAYBE_CALL_NO_OVF;
11002
11003             case CEE_REM:
11004                 oper = GT_MOD;
11005                 goto MATH_MAYBE_CALL_NO_OVF;
11006
11007             case CEE_REM_UN:
11008                 oper = GT_UMOD;
11009                 goto MATH_MAYBE_CALL_NO_OVF;
11010
11011             MATH_MAYBE_CALL_NO_OVF:
11012                 ovfl = false;
11013             MATH_MAYBE_CALL_OVF:
11014                 // Morpher has some complex logic about when to turn different
11015                 // typed nodes on different platforms into helper calls. We
11016                 // need to either duplicate that logic here, or just
11017                 // pessimistically make all the nodes large enough to become
11018                 // call nodes.  Since call nodes aren't that much larger and
11019                 // these opcodes are infrequent enough I chose the latter.
11020                 callNode = true;
11021                 goto MATH_OP2_FLAGS;
11022
11023             case CEE_AND:
11024                 oper = GT_AND;
11025                 goto MATH_OP2;
11026             case CEE_OR:
11027                 oper = GT_OR;
11028                 goto MATH_OP2;
11029             case CEE_XOR:
11030                 oper = GT_XOR;
11031                 goto MATH_OP2;
11032
11033             MATH_OP2: // For default values of 'ovfl' and 'callNode'
11034
11035                 ovfl     = false;
11036                 callNode = false;
11037
11038             MATH_OP2_FLAGS: // If 'ovfl' and 'callNode' have already been set
11039
11040                 /* Pull two values and push back the result */
11041
11042                 if (tiVerificationNeeded)
11043                 {
11044                     const typeInfo& tiOp1 = impStackTop(1).seTypeInfo;
11045                     const typeInfo& tiOp2 = impStackTop().seTypeInfo;
11046
11047                     Verify(tiCompatibleWith(tiOp1, tiOp2, true), "different arg type");
11048                     if (oper == GT_ADD || oper == GT_DIV || oper == GT_SUB || oper == GT_MUL || oper == GT_MOD)
11049                     {
11050                         Verify(tiOp1.IsNumberType(), "not number");
11051                     }
11052                     else
11053                     {
11054                         Verify(tiOp1.IsIntegerType(), "not integer");
11055                     }
11056
11057                     Verify(!ovfl || tiOp1.IsIntegerType(), "not integer");
11058
11059                     tiRetVal = tiOp1;
11060
11061 #ifdef _TARGET_64BIT_
11062                     if (tiOp2.IsNativeIntType())
11063                     {
11064                         tiRetVal = tiOp2;
11065                     }
11066 #endif // _TARGET_64BIT_
11067                 }
11068
11069                 op2 = impPopStack().val;
11070                 op1 = impPopStack().val;
11071
11072 #if !CPU_HAS_FP_SUPPORT
11073                 if (varTypeIsFloating(op1->gtType))
11074                 {
11075                     callNode = true;
11076                 }
11077 #endif
11078                 /* Can't do arithmetic with references */
11079                 assertImp(genActualType(op1->TypeGet()) != TYP_REF && genActualType(op2->TypeGet()) != TYP_REF);
11080
11081                 // Change both to TYP_I_IMPL (impBashVarAddrsToI won't change if its a true byref, only
11082                 // if it is in the stack)
11083                 impBashVarAddrsToI(op1, op2);
11084
11085                 type = impGetByRefResultType(oper, uns, &op1, &op2);
11086
11087                 assert(!ovfl || !varTypeIsFloating(op1->gtType));
11088
11089                 /* Special case: "int+0", "int-0", "int*1", "int/1" */
11090
11091                 if (op2->gtOper == GT_CNS_INT)
11092                 {
11093                     if ((op2->IsIntegralConst(0) && (oper == GT_ADD || oper == GT_SUB)) ||
11094                         (op2->IsIntegralConst(1) && (oper == GT_MUL || oper == GT_DIV)))
11095
11096                     {
11097                         impPushOnStack(op1, tiRetVal);
11098                         break;
11099                     }
11100                 }
11101
11102 #if !FEATURE_X87_DOUBLES
11103                 // We can generate a TYP_FLOAT operation that has a TYP_DOUBLE operand
11104                 //
11105                 if (varTypeIsFloating(type) && varTypeIsFloating(op1->gtType) && varTypeIsFloating(op2->gtType))
11106                 {
11107                     if (op1->TypeGet() != type)
11108                     {
11109                         // We insert a cast of op1 to 'type'
11110                         op1 = gtNewCastNode(type, op1, type);
11111                     }
11112                     if (op2->TypeGet() != type)
11113                     {
11114                         // We insert a cast of op2 to 'type'
11115                         op2 = gtNewCastNode(type, op2, type);
11116                     }
11117                 }
11118 #endif // !FEATURE_X87_DOUBLES
11119
11120 #if SMALL_TREE_NODES
11121                 if (callNode)
11122                 {
11123                     /* These operators can later be transformed into 'GT_CALL' */
11124
11125                     assert(GenTree::s_gtNodeSizes[GT_CALL] > GenTree::s_gtNodeSizes[GT_MUL]);
11126 #ifndef _TARGET_ARM_
11127                     assert(GenTree::s_gtNodeSizes[GT_CALL] > GenTree::s_gtNodeSizes[GT_DIV]);
11128                     assert(GenTree::s_gtNodeSizes[GT_CALL] > GenTree::s_gtNodeSizes[GT_UDIV]);
11129                     assert(GenTree::s_gtNodeSizes[GT_CALL] > GenTree::s_gtNodeSizes[GT_MOD]);
11130                     assert(GenTree::s_gtNodeSizes[GT_CALL] > GenTree::s_gtNodeSizes[GT_UMOD]);
11131 #endif
11132                     // It's tempting to use LargeOpOpcode() here, but this logic is *not* saying
11133                     // that we'll need to transform into a general large node, but rather specifically
11134                     // to a call: by doing it this way, things keep working if there are multiple sizes,
11135                     // and a CALL is no longer the largest.
11136                     // That said, as of now it *is* a large node, so we'll do this with an assert rather
11137                     // than an "if".
11138                     assert(GenTree::s_gtNodeSizes[GT_CALL] == TREE_NODE_SZ_LARGE);
11139                     op1 = new (this, GT_CALL) GenTreeOp(oper, type, op1, op2 DEBUGARG(/*largeNode*/ true));
11140                 }
11141                 else
11142 #endif // SMALL_TREE_NODES
11143                 {
11144                     op1 = gtNewOperNode(oper, type, op1, op2);
11145                 }
11146
11147                 /* Special case: integer/long division may throw an exception */
11148
11149                 if (varTypeIsIntegral(op1->TypeGet()) && op1->OperMayThrow())
11150                 {
11151                     op1->gtFlags |= GTF_EXCEPT;
11152                 }
11153
11154                 if (ovfl)
11155                 {
11156                     assert(oper == GT_ADD || oper == GT_SUB || oper == GT_MUL);
11157                     if (ovflType != TYP_UNKNOWN)
11158                     {
11159                         op1->gtType = ovflType;
11160                     }
11161                     op1->gtFlags |= (GTF_EXCEPT | GTF_OVERFLOW);
11162                     if (uns)
11163                     {
11164                         op1->gtFlags |= GTF_UNSIGNED;
11165                     }
11166                 }
11167
11168                 impPushOnStack(op1, tiRetVal);
11169                 break;
11170
11171             case CEE_SHL:
11172                 oper = GT_LSH;
11173                 goto CEE_SH_OP2;
11174
11175             case CEE_SHR:
11176                 oper = GT_RSH;
11177                 goto CEE_SH_OP2;
11178             case CEE_SHR_UN:
11179                 oper = GT_RSZ;
11180                 goto CEE_SH_OP2;
11181
11182             CEE_SH_OP2:
11183                 if (tiVerificationNeeded)
11184                 {
11185                     const typeInfo& tiVal   = impStackTop(1).seTypeInfo;
11186                     const typeInfo& tiShift = impStackTop(0).seTypeInfo;
11187                     Verify(tiVal.IsIntegerType() && tiShift.IsType(TI_INT), "Bad shift args");
11188                     tiRetVal = tiVal;
11189                 }
11190                 op2 = impPopStack().val;
11191                 op1 = impPopStack().val; // operand to be shifted
11192                 impBashVarAddrsToI(op1, op2);
11193
11194                 type = genActualType(op1->TypeGet());
11195                 op1  = gtNewOperNode(oper, type, op1, op2);
11196
11197                 impPushOnStack(op1, tiRetVal);
11198                 break;
11199
11200             case CEE_NOT:
11201                 if (tiVerificationNeeded)
11202                 {
11203                     tiRetVal = impStackTop().seTypeInfo;
11204                     Verify(tiRetVal.IsIntegerType(), "bad int value");
11205                 }
11206
11207                 op1 = impPopStack().val;
11208                 impBashVarAddrsToI(op1, nullptr);
11209                 type = genActualType(op1->TypeGet());
11210                 impPushOnStack(gtNewOperNode(GT_NOT, type, op1), tiRetVal);
11211                 break;
11212
11213             case CEE_CKFINITE:
11214                 if (tiVerificationNeeded)
11215                 {
11216                     tiRetVal = impStackTop().seTypeInfo;
11217                     Verify(tiRetVal.IsType(TI_DOUBLE), "bad R value");
11218                 }
11219                 op1  = impPopStack().val;
11220                 type = op1->TypeGet();
11221                 op1  = gtNewOperNode(GT_CKFINITE, type, op1);
11222                 op1->gtFlags |= GTF_EXCEPT;
11223
11224                 impPushOnStack(op1, tiRetVal);
11225                 break;
11226
11227             case CEE_LEAVE:
11228
11229                 val     = getI4LittleEndian(codeAddr); // jump distance
11230                 jmpAddr = (IL_OFFSET)((codeAddr - info.compCode + sizeof(__int32)) + val);
11231                 goto LEAVE;
11232
11233             case CEE_LEAVE_S:
11234                 val     = getI1LittleEndian(codeAddr); // jump distance
11235                 jmpAddr = (IL_OFFSET)((codeAddr - info.compCode + sizeof(__int8)) + val);
11236
11237             LEAVE:
11238
11239                 if (compIsForInlining())
11240                 {
11241                     compInlineResult->NoteFatal(InlineObservation::CALLEE_HAS_LEAVE);
11242                     return;
11243                 }
11244
11245                 JITDUMP(" %04X", jmpAddr);
11246                 if (block->bbJumpKind != BBJ_LEAVE)
11247                 {
11248                     impResetLeaveBlock(block, jmpAddr);
11249                 }
11250
11251                 assert(jmpAddr == block->bbJumpDest->bbCodeOffs);
11252                 impImportLeave(block);
11253                 impNoteBranchOffs();
11254
11255                 break;
11256
11257             case CEE_BR:
11258             case CEE_BR_S:
11259                 jmpDist = (sz == 1) ? getI1LittleEndian(codeAddr) : getI4LittleEndian(codeAddr);
11260
11261                 if (compIsForInlining() && jmpDist == 0)
11262                 {
11263                     break; /* NOP */
11264                 }
11265
11266                 impNoteBranchOffs();
11267                 break;
11268
11269             case CEE_BRTRUE:
11270             case CEE_BRTRUE_S:
11271             case CEE_BRFALSE:
11272             case CEE_BRFALSE_S:
11273
11274                 /* Pop the comparand (now there's a neat term) from the stack */
11275                 if (tiVerificationNeeded)
11276                 {
11277                     typeInfo& tiVal = impStackTop().seTypeInfo;
11278                     Verify(tiVal.IsObjRef() || tiVal.IsByRef() || tiVal.IsIntegerType() || tiVal.IsMethod(),
11279                            "bad value");
11280                 }
11281
11282                 op1  = impPopStack().val;
11283                 type = op1->TypeGet();
11284
11285                 // brfalse and brtrue is only allowed on I4, refs, and byrefs.
11286                 if (!opts.MinOpts() && !opts.compDbgCode && block->bbJumpDest == block->bbNext)
11287                 {
11288                     block->bbJumpKind = BBJ_NONE;
11289
11290                     if (op1->gtFlags & GTF_GLOB_EFFECT)
11291                     {
11292                         op1 = gtUnusedValNode(op1);
11293                         goto SPILL_APPEND;
11294                     }
11295                     else
11296                     {
11297                         break;
11298                     }
11299                 }
11300
11301                 if (op1->OperIsCompare())
11302                 {
11303                     if (opcode == CEE_BRFALSE || opcode == CEE_BRFALSE_S)
11304                     {
11305                         // Flip the sense of the compare
11306
11307                         op1 = gtReverseCond(op1);
11308                     }
11309                 }
11310                 else
11311                 {
11312                     /* We'll compare against an equally-sized integer 0 */
11313                     /* For small types, we always compare against int   */
11314                     op2 = gtNewZeroConNode(genActualType(op1->gtType));
11315
11316                     /* Create the comparison operator and try to fold it */
11317
11318                     oper = (opcode == CEE_BRTRUE || opcode == CEE_BRTRUE_S) ? GT_NE : GT_EQ;
11319                     op1  = gtNewOperNode(oper, TYP_INT, op1, op2);
11320                 }
11321
11322             // fall through
11323
11324             COND_JUMP:
11325
11326                 /* Fold comparison if we can */
11327
11328                 op1 = gtFoldExpr(op1);
11329
11330                 /* Try to fold the really simple cases like 'iconst *, ifne/ifeq'*/
11331                 /* Don't make any blocks unreachable in import only mode */
11332
11333                 if ((op1->gtOper == GT_CNS_INT) && !compIsForImportOnly())
11334                 {
11335                     /* gtFoldExpr() should prevent this as we don't want to make any blocks
11336                        unreachable under compDbgCode */
11337                     assert(!opts.compDbgCode);
11338
11339                     BBjumpKinds foldedJumpKind = (BBjumpKinds)(op1->gtIntCon.gtIconVal ? BBJ_ALWAYS : BBJ_NONE);
11340                     assertImp((block->bbJumpKind == BBJ_COND)            // normal case
11341                               || (block->bbJumpKind == foldedJumpKind)); // this can happen if we are reimporting the
11342                                                                          // block for the second time
11343
11344                     block->bbJumpKind = foldedJumpKind;
11345 #ifdef DEBUG
11346                     if (verbose)
11347                     {
11348                         if (op1->gtIntCon.gtIconVal)
11349                         {
11350                             printf("\nThe conditional jump becomes an unconditional jump to BB%02u\n",
11351                                    block->bbJumpDest->bbNum);
11352                         }
11353                         else
11354                         {
11355                             printf("\nThe block falls through into the next BB%02u\n", block->bbNext->bbNum);
11356                         }
11357                     }
11358 #endif
11359                     break;
11360                 }
11361
11362                 op1 = gtNewOperNode(GT_JTRUE, TYP_VOID, op1);
11363
11364                 /* GT_JTRUE is handled specially for non-empty stacks. See 'addStmt'
11365                    in impImportBlock(block). For correct line numbers, spill stack. */
11366
11367                 if (opts.compDbgCode && impCurStmtOffs != BAD_IL_OFFSET)
11368                 {
11369                     impSpillStackEnsure(true);
11370                 }
11371
11372                 goto SPILL_APPEND;
11373
11374             case CEE_CEQ:
11375                 oper = GT_EQ;
11376                 uns  = false;
11377                 goto CMP_2_OPs;
11378             case CEE_CGT_UN:
11379                 oper = GT_GT;
11380                 uns  = true;
11381                 goto CMP_2_OPs;
11382             case CEE_CGT:
11383                 oper = GT_GT;
11384                 uns  = false;
11385                 goto CMP_2_OPs;
11386             case CEE_CLT_UN:
11387                 oper = GT_LT;
11388                 uns  = true;
11389                 goto CMP_2_OPs;
11390             case CEE_CLT:
11391                 oper = GT_LT;
11392                 uns  = false;
11393                 goto CMP_2_OPs;
11394
11395             CMP_2_OPs:
11396                 if (tiVerificationNeeded)
11397                 {
11398                     verVerifyCond(impStackTop(1).seTypeInfo, impStackTop().seTypeInfo, opcode);
11399                     tiRetVal = typeInfo(TI_INT);
11400                 }
11401
11402                 op2 = impPopStack().val;
11403                 op1 = impPopStack().val;
11404
11405 #ifdef _TARGET_64BIT_
11406                 if (varTypeIsI(op1->TypeGet()) && (genActualType(op2->TypeGet()) == TYP_INT))
11407                 {
11408                     op2 = gtNewCastNode(TYP_I_IMPL, op2, (var_types)(uns ? TYP_U_IMPL : TYP_I_IMPL));
11409                 }
11410                 else if (varTypeIsI(op2->TypeGet()) && (genActualType(op1->TypeGet()) == TYP_INT))
11411                 {
11412                     op1 = gtNewCastNode(TYP_I_IMPL, op1, (var_types)(uns ? TYP_U_IMPL : TYP_I_IMPL));
11413                 }
11414 #endif // _TARGET_64BIT_
11415
11416                 assertImp(genActualType(op1->TypeGet()) == genActualType(op2->TypeGet()) ||
11417                           varTypeIsI(op1->TypeGet()) && varTypeIsI(op2->TypeGet()) ||
11418                           varTypeIsFloating(op1->gtType) && varTypeIsFloating(op2->gtType));
11419
11420                 /* Create the comparison node */
11421
11422                 op1 = gtNewOperNode(oper, TYP_INT, op1, op2);
11423
11424                 /* TODO: setting both flags when only one is appropriate */
11425                 if (opcode == CEE_CGT_UN || opcode == CEE_CLT_UN)
11426                 {
11427                     op1->gtFlags |= GTF_RELOP_NAN_UN | GTF_UNSIGNED;
11428                 }
11429
11430                 impPushOnStack(op1, tiRetVal);
11431                 break;
11432
11433             case CEE_BEQ_S:
11434             case CEE_BEQ:
11435                 oper = GT_EQ;
11436                 goto CMP_2_OPs_AND_BR;
11437
11438             case CEE_BGE_S:
11439             case CEE_BGE:
11440                 oper = GT_GE;
11441                 goto CMP_2_OPs_AND_BR;
11442
11443             case CEE_BGE_UN_S:
11444             case CEE_BGE_UN:
11445                 oper = GT_GE;
11446                 goto CMP_2_OPs_AND_BR_UN;
11447
11448             case CEE_BGT_S:
11449             case CEE_BGT:
11450                 oper = GT_GT;
11451                 goto CMP_2_OPs_AND_BR;
11452
11453             case CEE_BGT_UN_S:
11454             case CEE_BGT_UN:
11455                 oper = GT_GT;
11456                 goto CMP_2_OPs_AND_BR_UN;
11457
11458             case CEE_BLE_S:
11459             case CEE_BLE:
11460                 oper = GT_LE;
11461                 goto CMP_2_OPs_AND_BR;
11462
11463             case CEE_BLE_UN_S:
11464             case CEE_BLE_UN:
11465                 oper = GT_LE;
11466                 goto CMP_2_OPs_AND_BR_UN;
11467
11468             case CEE_BLT_S:
11469             case CEE_BLT:
11470                 oper = GT_LT;
11471                 goto CMP_2_OPs_AND_BR;
11472
11473             case CEE_BLT_UN_S:
11474             case CEE_BLT_UN:
11475                 oper = GT_LT;
11476                 goto CMP_2_OPs_AND_BR_UN;
11477
11478             case CEE_BNE_UN_S:
11479             case CEE_BNE_UN:
11480                 oper = GT_NE;
11481                 goto CMP_2_OPs_AND_BR_UN;
11482
11483             CMP_2_OPs_AND_BR_UN:
11484                 uns       = true;
11485                 unordered = true;
11486                 goto CMP_2_OPs_AND_BR_ALL;
11487             CMP_2_OPs_AND_BR:
11488                 uns       = false;
11489                 unordered = false;
11490                 goto CMP_2_OPs_AND_BR_ALL;
11491             CMP_2_OPs_AND_BR_ALL:
11492
11493                 if (tiVerificationNeeded)
11494                 {
11495                     verVerifyCond(impStackTop(1).seTypeInfo, impStackTop().seTypeInfo, opcode);
11496                 }
11497
11498                 /* Pull two values */
11499                 op2 = impPopStack().val;
11500                 op1 = impPopStack().val;
11501
11502 #ifdef _TARGET_64BIT_
11503                 if ((op1->TypeGet() == TYP_I_IMPL) && (genActualType(op2->TypeGet()) == TYP_INT))
11504                 {
11505                     op2 = gtNewCastNode(TYP_I_IMPL, op2, (var_types)(uns ? TYP_U_IMPL : TYP_I_IMPL));
11506                 }
11507                 else if ((op2->TypeGet() == TYP_I_IMPL) && (genActualType(op1->TypeGet()) == TYP_INT))
11508                 {
11509                     op1 = gtNewCastNode(TYP_I_IMPL, op1, (var_types)(uns ? TYP_U_IMPL : TYP_I_IMPL));
11510                 }
11511 #endif // _TARGET_64BIT_
11512
11513                 assertImp(genActualType(op1->TypeGet()) == genActualType(op2->TypeGet()) ||
11514                           varTypeIsI(op1->TypeGet()) && varTypeIsI(op2->TypeGet()) ||
11515                           varTypeIsFloating(op1->gtType) && varTypeIsFloating(op2->gtType));
11516
11517                 if (!opts.MinOpts() && !opts.compDbgCode && block->bbJumpDest == block->bbNext)
11518                 {
11519                     block->bbJumpKind = BBJ_NONE;
11520
11521                     if (op1->gtFlags & GTF_GLOB_EFFECT)
11522                     {
11523                         impSpillSideEffects(false, (unsigned)CHECK_SPILL_ALL DEBUGARG(
11524                                                        "Branch to next Optimization, op1 side effect"));
11525                         impAppendTree(gtUnusedValNode(op1), (unsigned)CHECK_SPILL_NONE, impCurStmtOffs);
11526                     }
11527                     if (op2->gtFlags & GTF_GLOB_EFFECT)
11528                     {
11529                         impSpillSideEffects(false, (unsigned)CHECK_SPILL_ALL DEBUGARG(
11530                                                        "Branch to next Optimization, op2 side effect"));
11531                         impAppendTree(gtUnusedValNode(op2), (unsigned)CHECK_SPILL_NONE, impCurStmtOffs);
11532                     }
11533
11534 #ifdef DEBUG
11535                     if ((op1->gtFlags | op2->gtFlags) & GTF_GLOB_EFFECT)
11536                     {
11537                         impNoteLastILoffs();
11538                     }
11539 #endif
11540                     break;
11541                 }
11542 #if !FEATURE_X87_DOUBLES
11543                 // We can generate an compare of different sized floating point op1 and op2
11544                 // We insert a cast
11545                 //
11546                 if (varTypeIsFloating(op1->TypeGet()))
11547                 {
11548                     if (op1->TypeGet() != op2->TypeGet())
11549                     {
11550                         assert(varTypeIsFloating(op2->TypeGet()));
11551
11552                         // say op1=double, op2=float. To avoid loss of precision
11553                         // while comparing, op2 is converted to double and double
11554                         // comparison is done.
11555                         if (op1->TypeGet() == TYP_DOUBLE)
11556                         {
11557                             // We insert a cast of op2 to TYP_DOUBLE
11558                             op2 = gtNewCastNode(TYP_DOUBLE, op2, TYP_DOUBLE);
11559                         }
11560                         else if (op2->TypeGet() == TYP_DOUBLE)
11561                         {
11562                             // We insert a cast of op1 to TYP_DOUBLE
11563                             op1 = gtNewCastNode(TYP_DOUBLE, op1, TYP_DOUBLE);
11564                         }
11565                     }
11566                 }
11567 #endif // !FEATURE_X87_DOUBLES
11568
11569                 /* Create and append the operator */
11570
11571                 op1 = gtNewOperNode(oper, TYP_INT, op1, op2);
11572
11573                 if (uns)
11574                 {
11575                     op1->gtFlags |= GTF_UNSIGNED;
11576                 }
11577
11578                 if (unordered)
11579                 {
11580                     op1->gtFlags |= GTF_RELOP_NAN_UN;
11581                 }
11582
11583                 goto COND_JUMP;
11584
11585             case CEE_SWITCH:
11586                 assert(!compIsForInlining());
11587
11588                 if (tiVerificationNeeded)
11589                 {
11590                     Verify(impStackTop().seTypeInfo.IsType(TI_INT), "Bad switch val");
11591                 }
11592                 /* Pop the switch value off the stack */
11593                 op1 = impPopStack().val;
11594                 assertImp(genActualTypeIsIntOrI(op1->TypeGet()));
11595
11596 #ifdef _TARGET_64BIT_
11597                 // Widen 'op1' on 64-bit targets
11598                 if (op1->TypeGet() != TYP_I_IMPL)
11599                 {
11600                     if (op1->OperGet() == GT_CNS_INT)
11601                     {
11602                         op1->gtType = TYP_I_IMPL;
11603                     }
11604                     else
11605                     {
11606                         op1 = gtNewCastNode(TYP_I_IMPL, op1, TYP_I_IMPL);
11607                     }
11608                 }
11609 #endif // _TARGET_64BIT_
11610                 assert(genActualType(op1->TypeGet()) == TYP_I_IMPL);
11611
11612                 /* We can create a switch node */
11613
11614                 op1 = gtNewOperNode(GT_SWITCH, TYP_VOID, op1);
11615
11616                 val = (int)getU4LittleEndian(codeAddr);
11617                 codeAddr += 4 + val * 4; // skip over the switch-table
11618
11619                 goto SPILL_APPEND;
11620
11621             /************************** Casting OPCODES ***************************/
11622
11623             case CEE_CONV_OVF_I1:
11624                 lclTyp = TYP_BYTE;
11625                 goto CONV_OVF;
11626             case CEE_CONV_OVF_I2:
11627                 lclTyp = TYP_SHORT;
11628                 goto CONV_OVF;
11629             case CEE_CONV_OVF_I:
11630                 lclTyp = TYP_I_IMPL;
11631                 goto CONV_OVF;
11632             case CEE_CONV_OVF_I4:
11633                 lclTyp = TYP_INT;
11634                 goto CONV_OVF;
11635             case CEE_CONV_OVF_I8:
11636                 lclTyp = TYP_LONG;
11637                 goto CONV_OVF;
11638
11639             case CEE_CONV_OVF_U1:
11640                 lclTyp = TYP_UBYTE;
11641                 goto CONV_OVF;
11642             case CEE_CONV_OVF_U2:
11643                 lclTyp = TYP_CHAR;
11644                 goto CONV_OVF;
11645             case CEE_CONV_OVF_U:
11646                 lclTyp = TYP_U_IMPL;
11647                 goto CONV_OVF;
11648             case CEE_CONV_OVF_U4:
11649                 lclTyp = TYP_UINT;
11650                 goto CONV_OVF;
11651             case CEE_CONV_OVF_U8:
11652                 lclTyp = TYP_ULONG;
11653                 goto CONV_OVF;
11654
11655             case CEE_CONV_OVF_I1_UN:
11656                 lclTyp = TYP_BYTE;
11657                 goto CONV_OVF_UN;
11658             case CEE_CONV_OVF_I2_UN:
11659                 lclTyp = TYP_SHORT;
11660                 goto CONV_OVF_UN;
11661             case CEE_CONV_OVF_I_UN:
11662                 lclTyp = TYP_I_IMPL;
11663                 goto CONV_OVF_UN;
11664             case CEE_CONV_OVF_I4_UN:
11665                 lclTyp = TYP_INT;
11666                 goto CONV_OVF_UN;
11667             case CEE_CONV_OVF_I8_UN:
11668                 lclTyp = TYP_LONG;
11669                 goto CONV_OVF_UN;
11670
11671             case CEE_CONV_OVF_U1_UN:
11672                 lclTyp = TYP_UBYTE;
11673                 goto CONV_OVF_UN;
11674             case CEE_CONV_OVF_U2_UN:
11675                 lclTyp = TYP_CHAR;
11676                 goto CONV_OVF_UN;
11677             case CEE_CONV_OVF_U_UN:
11678                 lclTyp = TYP_U_IMPL;
11679                 goto CONV_OVF_UN;
11680             case CEE_CONV_OVF_U4_UN:
11681                 lclTyp = TYP_UINT;
11682                 goto CONV_OVF_UN;
11683             case CEE_CONV_OVF_U8_UN:
11684                 lclTyp = TYP_ULONG;
11685                 goto CONV_OVF_UN;
11686
11687             CONV_OVF_UN:
11688                 uns = true;
11689                 goto CONV_OVF_COMMON;
11690             CONV_OVF:
11691                 uns = false;
11692                 goto CONV_OVF_COMMON;
11693
11694             CONV_OVF_COMMON:
11695                 ovfl = true;
11696                 goto _CONV;
11697
11698             case CEE_CONV_I1:
11699                 lclTyp = TYP_BYTE;
11700                 goto CONV;
11701             case CEE_CONV_I2:
11702                 lclTyp = TYP_SHORT;
11703                 goto CONV;
11704             case CEE_CONV_I:
11705                 lclTyp = TYP_I_IMPL;
11706                 goto CONV;
11707             case CEE_CONV_I4:
11708                 lclTyp = TYP_INT;
11709                 goto CONV;
11710             case CEE_CONV_I8:
11711                 lclTyp = TYP_LONG;
11712                 goto CONV;
11713
11714             case CEE_CONV_U1:
11715                 lclTyp = TYP_UBYTE;
11716                 goto CONV;
11717             case CEE_CONV_U2:
11718                 lclTyp = TYP_CHAR;
11719                 goto CONV;
11720 #if (REGSIZE_BYTES == 8)
11721             case CEE_CONV_U:
11722                 lclTyp = TYP_U_IMPL;
11723                 goto CONV_UN;
11724 #else
11725             case CEE_CONV_U:
11726                 lclTyp = TYP_U_IMPL;
11727                 goto CONV;
11728 #endif
11729             case CEE_CONV_U4:
11730                 lclTyp = TYP_UINT;
11731                 goto CONV;
11732             case CEE_CONV_U8:
11733                 lclTyp = TYP_ULONG;
11734                 goto CONV_UN;
11735
11736             case CEE_CONV_R4:
11737                 lclTyp = TYP_FLOAT;
11738                 goto CONV;
11739             case CEE_CONV_R8:
11740                 lclTyp = TYP_DOUBLE;
11741                 goto CONV;
11742
11743             case CEE_CONV_R_UN:
11744                 lclTyp = TYP_DOUBLE;
11745                 goto CONV_UN;
11746
11747             CONV_UN:
11748                 uns  = true;
11749                 ovfl = false;
11750                 goto _CONV;
11751
11752             CONV:
11753                 uns  = false;
11754                 ovfl = false;
11755                 goto _CONV;
11756
11757             _CONV:
11758                 // just check that we have a number on the stack
11759                 if (tiVerificationNeeded)
11760                 {
11761                     const typeInfo& tiVal = impStackTop().seTypeInfo;
11762                     Verify(tiVal.IsNumberType(), "bad arg");
11763
11764 #ifdef _TARGET_64BIT_
11765                     bool isNative = false;
11766
11767                     switch (opcode)
11768                     {
11769                         case CEE_CONV_OVF_I:
11770                         case CEE_CONV_OVF_I_UN:
11771                         case CEE_CONV_I:
11772                         case CEE_CONV_OVF_U:
11773                         case CEE_CONV_OVF_U_UN:
11774                         case CEE_CONV_U:
11775                             isNative = true;
11776                         default:
11777                             // leave 'isNative' = false;
11778                             break;
11779                     }
11780                     if (isNative)
11781                     {
11782                         tiRetVal = typeInfo::nativeInt();
11783                     }
11784                     else
11785 #endif // _TARGET_64BIT_
11786                     {
11787                         tiRetVal = typeInfo(lclTyp).NormaliseForStack();
11788                     }
11789                 }
11790
11791                 // only converts from FLOAT or DOUBLE to an integer type
11792                 // and converts from  ULONG (or LONG on ARM) to DOUBLE are morphed to calls
11793
11794                 if (varTypeIsFloating(lclTyp))
11795                 {
11796                     callNode = varTypeIsLong(impStackTop().val) || uns // uint->dbl gets turned into uint->long->dbl
11797 #ifdef _TARGET_64BIT_
11798                                // TODO-ARM64-Bug?: This was AMD64; I enabled it for ARM64 also. OK?
11799                                // TYP_BYREF could be used as TYP_I_IMPL which is long.
11800                                // TODO-CQ: remove this when we lower casts long/ulong --> float/double
11801                                // and generate SSE2 code instead of going through helper calls.
11802                                || (impStackTop().val->TypeGet() == TYP_BYREF)
11803 #endif
11804                         ;
11805                 }
11806                 else
11807                 {
11808                     callNode = varTypeIsFloating(impStackTop().val->TypeGet());
11809                 }
11810
11811                 // At this point uns, ovf, callNode all set
11812
11813                 op1 = impPopStack().val;
11814                 impBashVarAddrsToI(op1);
11815
11816                 if (varTypeIsSmall(lclTyp) && !ovfl && op1->gtType == TYP_INT && op1->gtOper == GT_AND)
11817                 {
11818                     op2 = op1->gtOp.gtOp2;
11819
11820                     if (op2->gtOper == GT_CNS_INT)
11821                     {
11822                         ssize_t ival = op2->gtIntCon.gtIconVal;
11823                         ssize_t mask, umask;
11824
11825                         switch (lclTyp)
11826                         {
11827                             case TYP_BYTE:
11828                             case TYP_UBYTE:
11829                                 mask  = 0x00FF;
11830                                 umask = 0x007F;
11831                                 break;
11832                             case TYP_CHAR:
11833                             case TYP_SHORT:
11834                                 mask  = 0xFFFF;
11835                                 umask = 0x7FFF;
11836                                 break;
11837
11838                             default:
11839                                 assert(!"unexpected type");
11840                                 return;
11841                         }
11842
11843                         if (((ival & umask) == ival) || ((ival & mask) == ival && uns))
11844                         {
11845                             /* Toss the cast, it's a waste of time */
11846
11847                             impPushOnStack(op1, tiRetVal);
11848                             break;
11849                         }
11850                         else if (ival == mask)
11851                         {
11852                             /* Toss the masking, it's a waste of time, since
11853                                we sign-extend from the small value anyways */
11854
11855                             op1 = op1->gtOp.gtOp1;
11856                         }
11857                     }
11858                 }
11859
11860                 /*  The 'op2' sub-operand of a cast is the 'real' type number,
11861                     since the result of a cast to one of the 'small' integer
11862                     types is an integer.
11863                  */
11864
11865                 type = genActualType(lclTyp);
11866
11867 #if SMALL_TREE_NODES
11868                 if (callNode)
11869                 {
11870                     op1 = gtNewCastNodeL(type, op1, lclTyp);
11871                 }
11872                 else
11873 #endif // SMALL_TREE_NODES
11874                 {
11875                     op1 = gtNewCastNode(type, op1, lclTyp);
11876                 }
11877
11878                 if (ovfl)
11879                 {
11880                     op1->gtFlags |= (GTF_OVERFLOW | GTF_EXCEPT);
11881                 }
11882                 if (uns)
11883                 {
11884                     op1->gtFlags |= GTF_UNSIGNED;
11885                 }
11886                 impPushOnStack(op1, tiRetVal);
11887                 break;
11888
11889             case CEE_NEG:
11890                 if (tiVerificationNeeded)
11891                 {
11892                     tiRetVal = impStackTop().seTypeInfo;
11893                     Verify(tiRetVal.IsNumberType(), "Bad arg");
11894                 }
11895
11896                 op1 = impPopStack().val;
11897                 impBashVarAddrsToI(op1, nullptr);
11898                 impPushOnStack(gtNewOperNode(GT_NEG, genActualType(op1->gtType), op1), tiRetVal);
11899                 break;
11900
11901             case CEE_POP:
11902                 if (tiVerificationNeeded)
11903                 {
11904                     impStackTop(0);
11905                 }
11906
11907                 /* Pull the top value from the stack */
11908
11909                 op1 = impPopStack(clsHnd).val;
11910
11911                 /* Get hold of the type of the value being duplicated */
11912
11913                 lclTyp = genActualType(op1->gtType);
11914
11915                 /* Does the value have any side effects? */
11916
11917                 if ((op1->gtFlags & GTF_SIDE_EFFECT) || opts.compDbgCode)
11918                 {
11919                     // Since we are throwing away the value, just normalize
11920                     // it to its address.  This is more efficient.
11921
11922                     if (varTypeIsStruct(op1))
11923                     {
11924 #ifdef FEATURE_UNIX_AMD64_STRUCT_PASSING
11925                         // Non-calls, such as obj or ret_expr, have to go through this.
11926                         // Calls with large struct return value have to go through this.
11927                         // Helper calls with small struct return value also have to go
11928                         // through this since they do not follow Unix calling convention.
11929                         if (op1->gtOper != GT_CALL || !IsMultiRegReturnedType(clsHnd) ||
11930                             op1->AsCall()->gtCallType == CT_HELPER)
11931 #endif // FEATURE_UNIX_AMD64_STRUCT_PASSING
11932                         {
11933                             op1 = impGetStructAddr(op1, clsHnd, (unsigned)CHECK_SPILL_ALL, false);
11934                         }
11935                     }
11936
11937                     // If op1 is non-overflow cast, throw it away since it is useless.
11938                     // Another reason for throwing away the useless cast is in the context of
11939                     // implicit tail calls when the operand of pop is GT_CAST(GT_CALL(..)).
11940                     // The cast gets added as part of importing GT_CALL, which gets in the way
11941                     // of fgMorphCall() on the forms of tail call nodes that we assert.
11942                     if ((op1->gtOper == GT_CAST) && !op1->gtOverflow())
11943                     {
11944                         op1 = op1->gtOp.gtOp1;
11945                     }
11946
11947                     // If 'op1' is an expression, create an assignment node.
11948                     // Helps analyses (like CSE) to work fine.
11949
11950                     if (op1->gtOper != GT_CALL)
11951                     {
11952                         op1 = gtUnusedValNode(op1);
11953                     }
11954
11955                     /* Append the value to the tree list */
11956                     goto SPILL_APPEND;
11957                 }
11958
11959                 /* No side effects - just throw the <BEEP> thing away */
11960                 break;
11961
11962             case CEE_DUP:
11963
11964                 if (tiVerificationNeeded)
11965                 {
11966                     // Dup could start the begining of delegate creation sequence, remember that
11967                     delegateCreateStart = codeAddr - 1;
11968                     impStackTop(0);
11969                 }
11970
11971                 // Convert a (dup, stloc) sequence into a (stloc, ldloc) sequence in the following cases:
11972                 // - If this is non-debug code - so that CSE will recognize the two as equal.
11973                 //   This helps eliminate a redundant bounds check in cases such as:
11974                 //       ariba[i+3] += some_value;
11975                 // - If the top of the stack is a non-leaf that may be expensive to clone.
11976
11977                 if (codeAddr < codeEndp)
11978                 {
11979                     OPCODE nextOpcode = (OPCODE)getU1LittleEndian(codeAddr);
11980                     if (impIsAnySTLOC(nextOpcode))
11981                     {
11982                         if (!opts.compDbgCode)
11983                         {
11984                             insertLdloc = true;
11985                             break;
11986                         }
11987                         GenTree* stackTop = impStackTop().val;
11988                         if (!stackTop->IsIntegralConst(0) && !stackTop->IsFPZero() && !stackTop->IsLocal())
11989                         {
11990                             insertLdloc = true;
11991                             break;
11992                         }
11993                     }
11994                 }
11995
11996                 /* Pull the top value from the stack */
11997                 op1 = impPopStack(tiRetVal);
11998
11999                 /* Clone the value */
12000                 op1 = impCloneExpr(op1, &op2, tiRetVal.GetClassHandle(), (unsigned)CHECK_SPILL_ALL,
12001                                    nullptr DEBUGARG("DUP instruction"));
12002
12003                 /* Either the tree started with no global effects, or impCloneExpr
12004                    evaluated the tree to a temp and returned two copies of that
12005                    temp. Either way, neither op1 nor op2 should have side effects.
12006                 */
12007                 assert(!(op1->gtFlags & GTF_GLOB_EFFECT) && !(op2->gtFlags & GTF_GLOB_EFFECT));
12008
12009                 /* Push the tree/temp back on the stack */
12010                 impPushOnStack(op1, tiRetVal);
12011
12012                 /* Push the copy on the stack */
12013                 impPushOnStack(op2, tiRetVal);
12014
12015                 break;
12016
12017             case CEE_STIND_I1:
12018                 lclTyp = TYP_BYTE;
12019                 goto STIND;
12020             case CEE_STIND_I2:
12021                 lclTyp = TYP_SHORT;
12022                 goto STIND;
12023             case CEE_STIND_I4:
12024                 lclTyp = TYP_INT;
12025                 goto STIND;
12026             case CEE_STIND_I8:
12027                 lclTyp = TYP_LONG;
12028                 goto STIND;
12029             case CEE_STIND_I:
12030                 lclTyp = TYP_I_IMPL;
12031                 goto STIND;
12032             case CEE_STIND_REF:
12033                 lclTyp = TYP_REF;
12034                 goto STIND;
12035             case CEE_STIND_R4:
12036                 lclTyp = TYP_FLOAT;
12037                 goto STIND;
12038             case CEE_STIND_R8:
12039                 lclTyp = TYP_DOUBLE;
12040                 goto STIND;
12041             STIND:
12042
12043                 if (tiVerificationNeeded)
12044                 {
12045                     typeInfo instrType(lclTyp);
12046 #ifdef _TARGET_64BIT_
12047                     if (opcode == CEE_STIND_I)
12048                     {
12049                         instrType = typeInfo::nativeInt();
12050                     }
12051 #endif // _TARGET_64BIT_
12052                     verVerifySTIND(impStackTop(1).seTypeInfo, impStackTop(0).seTypeInfo, instrType);
12053                 }
12054                 else
12055                 {
12056                     compUnsafeCastUsed = true; // Have to go conservative
12057                 }
12058
12059             STIND_POST_VERIFY:
12060
12061                 op2 = impPopStack().val; // value to store
12062                 op1 = impPopStack().val; // address to store to
12063
12064                 // you can indirect off of a TYP_I_IMPL (if we are in C) or a BYREF
12065                 assertImp(genActualType(op1->gtType) == TYP_I_IMPL || op1->gtType == TYP_BYREF);
12066
12067                 impBashVarAddrsToI(op1, op2);
12068
12069                 op2 = impImplicitR4orR8Cast(op2, lclTyp);
12070
12071 #ifdef _TARGET_64BIT_
12072                 // Automatic upcast for a GT_CNS_INT into TYP_I_IMPL
12073                 if ((op2->OperGet() == GT_CNS_INT) && varTypeIsI(lclTyp) && !varTypeIsI(op2->gtType))
12074                 {
12075                     op2->gtType = TYP_I_IMPL;
12076                 }
12077                 else
12078                 {
12079                     // Allow a downcast of op2 from TYP_I_IMPL into a 32-bit Int for x86 JIT compatiblity
12080                     //
12081                     if (varTypeIsI(op2->gtType) && (genActualType(lclTyp) == TYP_INT))
12082                     {
12083                         assert(!tiVerificationNeeded); // We should have thrown the VerificationException before.
12084                         op2 = gtNewCastNode(TYP_INT, op2, TYP_INT);
12085                     }
12086                     // Allow an upcast of op2 from a 32-bit Int into TYP_I_IMPL for x86 JIT compatiblity
12087                     //
12088                     if (varTypeIsI(lclTyp) && (genActualType(op2->gtType) == TYP_INT))
12089                     {
12090                         assert(!tiVerificationNeeded); // We should have thrown the VerificationException before.
12091                         op2 = gtNewCastNode(TYP_I_IMPL, op2, TYP_I_IMPL);
12092                     }
12093                 }
12094 #endif // _TARGET_64BIT_
12095
12096                 if (opcode == CEE_STIND_REF)
12097                 {
12098                     // STIND_REF can be used to store TYP_INT, TYP_I_IMPL, TYP_REF, or TYP_BYREF
12099                     assertImp(varTypeIsIntOrI(op2->gtType) || varTypeIsGC(op2->gtType));
12100                     lclTyp = genActualType(op2->TypeGet());
12101                 }
12102
12103 // Check target type.
12104 #ifdef DEBUG
12105                 if (op2->gtType == TYP_BYREF || lclTyp == TYP_BYREF)
12106                 {
12107                     if (op2->gtType == TYP_BYREF)
12108                     {
12109                         assertImp(lclTyp == TYP_BYREF || lclTyp == TYP_I_IMPL);
12110                     }
12111                     else if (lclTyp == TYP_BYREF)
12112                     {
12113                         assertImp(op2->gtType == TYP_BYREF || varTypeIsIntOrI(op2->gtType));
12114                     }
12115                 }
12116                 else
12117                 {
12118                     assertImp(genActualType(op2->gtType) == genActualType(lclTyp) ||
12119                               ((lclTyp == TYP_I_IMPL) && (genActualType(op2->gtType) == TYP_INT)) ||
12120                               (varTypeIsFloating(op2->gtType) && varTypeIsFloating(lclTyp)));
12121                 }
12122 #endif
12123
12124                 op1 = gtNewOperNode(GT_IND, lclTyp, op1);
12125
12126                 // stind could point anywhere, example a boxed class static int
12127                 op1->gtFlags |= GTF_IND_TGTANYWHERE;
12128
12129                 if (prefixFlags & PREFIX_VOLATILE)
12130                 {
12131                     assert(op1->OperGet() == GT_IND);
12132                     op1->gtFlags |= GTF_DONT_CSE;      // Can't CSE a volatile
12133                     op1->gtFlags |= GTF_ORDER_SIDEEFF; // Prevent this from being reordered
12134                     op1->gtFlags |= GTF_IND_VOLATILE;
12135                 }
12136
12137                 if (prefixFlags & PREFIX_UNALIGNED)
12138                 {
12139                     assert(op1->OperGet() == GT_IND);
12140                     op1->gtFlags |= GTF_IND_UNALIGNED;
12141                 }
12142
12143                 op1 = gtNewAssignNode(op1, op2);
12144                 op1->gtFlags |= GTF_EXCEPT | GTF_GLOB_REF;
12145
12146                 // Spill side-effects AND global-data-accesses
12147                 if (verCurrentState.esStackDepth > 0)
12148                 {
12149                     impSpillSideEffects(true, (unsigned)CHECK_SPILL_ALL DEBUGARG("spill side effects before STIND"));
12150                 }
12151
12152                 goto APPEND;
12153
12154             case CEE_LDIND_I1:
12155                 lclTyp = TYP_BYTE;
12156                 goto LDIND;
12157             case CEE_LDIND_I2:
12158                 lclTyp = TYP_SHORT;
12159                 goto LDIND;
12160             case CEE_LDIND_U4:
12161             case CEE_LDIND_I4:
12162                 lclTyp = TYP_INT;
12163                 goto LDIND;
12164             case CEE_LDIND_I8:
12165                 lclTyp = TYP_LONG;
12166                 goto LDIND;
12167             case CEE_LDIND_REF:
12168                 lclTyp = TYP_REF;
12169                 goto LDIND;
12170             case CEE_LDIND_I:
12171                 lclTyp = TYP_I_IMPL;
12172                 goto LDIND;
12173             case CEE_LDIND_R4:
12174                 lclTyp = TYP_FLOAT;
12175                 goto LDIND;
12176             case CEE_LDIND_R8:
12177                 lclTyp = TYP_DOUBLE;
12178                 goto LDIND;
12179             case CEE_LDIND_U1:
12180                 lclTyp = TYP_UBYTE;
12181                 goto LDIND;
12182             case CEE_LDIND_U2:
12183                 lclTyp = TYP_CHAR;
12184                 goto LDIND;
12185             LDIND:
12186
12187                 if (tiVerificationNeeded)
12188                 {
12189                     typeInfo lclTiType(lclTyp);
12190 #ifdef _TARGET_64BIT_
12191                     if (opcode == CEE_LDIND_I)
12192                     {
12193                         lclTiType = typeInfo::nativeInt();
12194                     }
12195 #endif // _TARGET_64BIT_
12196                     tiRetVal = verVerifyLDIND(impStackTop().seTypeInfo, lclTiType);
12197                     tiRetVal.NormaliseForStack();
12198                 }
12199                 else
12200                 {
12201                     compUnsafeCastUsed = true; // Have to go conservative
12202                 }
12203
12204             LDIND_POST_VERIFY:
12205
12206                 op1 = impPopStack().val; // address to load from
12207                 impBashVarAddrsToI(op1);
12208
12209 #ifdef _TARGET_64BIT_
12210                 // Allow an upcast of op1 from a 32-bit Int into TYP_I_IMPL for x86 JIT compatiblity
12211                 //
12212                 if (genActualType(op1->gtType) == TYP_INT)
12213                 {
12214                     assert(!tiVerificationNeeded); // We should have thrown the VerificationException before.
12215                     op1 = gtNewCastNode(TYP_I_IMPL, op1, TYP_I_IMPL);
12216                 }
12217 #endif
12218
12219                 assertImp(genActualType(op1->gtType) == TYP_I_IMPL || op1->gtType == TYP_BYREF);
12220
12221                 op1 = gtNewOperNode(GT_IND, lclTyp, op1);
12222
12223                 // ldind could point anywhere, example a boxed class static int
12224                 op1->gtFlags |= (GTF_EXCEPT | GTF_GLOB_REF | GTF_IND_TGTANYWHERE);
12225
12226                 if (prefixFlags & PREFIX_VOLATILE)
12227                 {
12228                     assert(op1->OperGet() == GT_IND);
12229                     op1->gtFlags |= GTF_DONT_CSE;      // Can't CSE a volatile
12230                     op1->gtFlags |= GTF_ORDER_SIDEEFF; // Prevent this from being reordered
12231                     op1->gtFlags |= GTF_IND_VOLATILE;
12232                 }
12233
12234                 if (prefixFlags & PREFIX_UNALIGNED)
12235                 {
12236                     assert(op1->OperGet() == GT_IND);
12237                     op1->gtFlags |= GTF_IND_UNALIGNED;
12238                 }
12239
12240                 impPushOnStack(op1, tiRetVal);
12241
12242                 break;
12243
12244             case CEE_UNALIGNED:
12245
12246                 assert(sz == 1);
12247                 val = getU1LittleEndian(codeAddr);
12248                 ++codeAddr;
12249                 JITDUMP(" %u", val);
12250                 if ((val != 1) && (val != 2) && (val != 4))
12251                 {
12252                     BADCODE("Alignment unaligned. must be 1, 2, or 4");
12253                 }
12254
12255                 Verify(!(prefixFlags & PREFIX_UNALIGNED), "Multiple unaligned. prefixes");
12256                 prefixFlags |= PREFIX_UNALIGNED;
12257
12258                 impValidateMemoryAccessOpcode(codeAddr, codeEndp, false);
12259
12260             PREFIX:
12261                 opcode = (OPCODE)getU1LittleEndian(codeAddr);
12262                 codeAddr += sizeof(__int8);
12263                 opcodeOffs = (IL_OFFSET)(codeAddr - info.compCode);
12264                 goto DECODE_OPCODE;
12265
12266             case CEE_VOLATILE:
12267
12268                 Verify(!(prefixFlags & PREFIX_VOLATILE), "Multiple volatile. prefixes");
12269                 prefixFlags |= PREFIX_VOLATILE;
12270
12271                 impValidateMemoryAccessOpcode(codeAddr, codeEndp, true);
12272
12273                 assert(sz == 0);
12274                 goto PREFIX;
12275
12276             case CEE_LDFTN:
12277             {
12278                 // Need to do a lookup here so that we perform an access check
12279                 // and do a NOWAY if protections are violated
12280                 _impResolveToken(CORINFO_TOKENKIND_Method);
12281
12282                 JITDUMP(" %08X", resolvedToken.token);
12283
12284                 eeGetCallInfo(&resolvedToken, nullptr /* constraint typeRef*/,
12285                               addVerifyFlag(combine(CORINFO_CALLINFO_SECURITYCHECKS, CORINFO_CALLINFO_LDFTN)),
12286                               &callInfo);
12287
12288                 // This check really only applies to intrinsic Array.Address methods
12289                 if (callInfo.sig.callConv & CORINFO_CALLCONV_PARAMTYPE)
12290                 {
12291                     NO_WAY("Currently do not support LDFTN of Parameterized functions");
12292                 }
12293
12294                 // Do this before DO_LDFTN since CEE_LDVIRTFN does it on its own.
12295                 impHandleAccessAllowed(callInfo.accessAllowed, &callInfo.callsiteCalloutHelper);
12296
12297                 if (tiVerificationNeeded)
12298                 {
12299                     // LDFTN could start the begining of delegate creation sequence, remember that
12300                     delegateCreateStart = codeAddr - 2;
12301
12302                     // check any constraints on the callee's class and type parameters
12303                     VerifyOrReturn(info.compCompHnd->satisfiesClassConstraints(resolvedToken.hClass),
12304                                    "method has unsatisfied class constraints");
12305                     VerifyOrReturn(info.compCompHnd->satisfiesMethodConstraints(resolvedToken.hClass,
12306                                                                                 resolvedToken.hMethod),
12307                                    "method has unsatisfied method constraints");
12308
12309                     mflags = callInfo.verMethodFlags;
12310                     Verify(!(mflags & CORINFO_FLG_CONSTRUCTOR), "LDFTN on a constructor");
12311                 }
12312
12313             DO_LDFTN:
12314                 op1 = impMethodPointer(&resolvedToken, &callInfo);
12315                 if (compDonotInline())
12316                 {
12317                     return;
12318                 }
12319
12320                 impPushOnStack(op1, typeInfo(resolvedToken.hMethod));
12321
12322                 break;
12323             }
12324
12325             case CEE_LDVIRTFTN:
12326             {
12327                 /* Get the method token */
12328
12329                 _impResolveToken(CORINFO_TOKENKIND_Method);
12330
12331                 JITDUMP(" %08X", resolvedToken.token);
12332
12333                 eeGetCallInfo(&resolvedToken, nullptr /* constraint typeRef */,
12334                               addVerifyFlag(combine(combine(CORINFO_CALLINFO_SECURITYCHECKS, CORINFO_CALLINFO_LDFTN),
12335                                                     CORINFO_CALLINFO_CALLVIRT)),
12336                               &callInfo);
12337
12338                 // This check really only applies to intrinsic Array.Address methods
12339                 if (callInfo.sig.callConv & CORINFO_CALLCONV_PARAMTYPE)
12340                 {
12341                     NO_WAY("Currently do not support LDFTN of Parameterized functions");
12342                 }
12343
12344                 mflags = callInfo.methodFlags;
12345
12346                 impHandleAccessAllowed(callInfo.accessAllowed, &callInfo.callsiteCalloutHelper);
12347
12348                 if (compIsForInlining())
12349                 {
12350                     if (mflags & (CORINFO_FLG_FINAL | CORINFO_FLG_STATIC) || !(mflags & CORINFO_FLG_VIRTUAL))
12351                     {
12352                         compInlineResult->NoteFatal(InlineObservation::CALLSITE_LDVIRTFN_ON_NON_VIRTUAL);
12353                         return;
12354                     }
12355                 }
12356
12357                 CORINFO_SIG_INFO& ftnSig = callInfo.sig;
12358
12359                 if (tiVerificationNeeded)
12360                 {
12361
12362                     Verify(ftnSig.hasThis(), "ldvirtftn on a static method");
12363                     Verify(!(mflags & CORINFO_FLG_CONSTRUCTOR), "LDVIRTFTN on a constructor");
12364
12365                     // JIT32 verifier rejects verifiable ldvirtftn pattern
12366                     typeInfo declType =
12367                         verMakeTypeInfo(resolvedToken.hClass, true); // Change TI_STRUCT to TI_REF when necessary
12368
12369                     typeInfo arg = impStackTop().seTypeInfo;
12370                     Verify((arg.IsType(TI_REF) || arg.IsType(TI_NULL)) && tiCompatibleWith(arg, declType, true),
12371                            "bad ldvirtftn");
12372
12373                     CORINFO_CLASS_HANDLE instanceClassHnd = info.compClassHnd;
12374                     if (!(arg.IsType(TI_NULL) || (mflags & CORINFO_FLG_STATIC)))
12375                     {
12376                         instanceClassHnd = arg.GetClassHandleForObjRef();
12377                     }
12378
12379                     // check any constraints on the method's class and type parameters
12380                     VerifyOrReturn(info.compCompHnd->satisfiesClassConstraints(resolvedToken.hClass),
12381                                    "method has unsatisfied class constraints");
12382                     VerifyOrReturn(info.compCompHnd->satisfiesMethodConstraints(resolvedToken.hClass,
12383                                                                                 resolvedToken.hMethod),
12384                                    "method has unsatisfied method constraints");
12385
12386                     if (mflags & CORINFO_FLG_PROTECTED)
12387                     {
12388                         Verify(info.compCompHnd->canAccessFamily(info.compMethodHnd, instanceClassHnd),
12389                                "Accessing protected method through wrong type.");
12390                     }
12391                 }
12392
12393                 /* Get the object-ref */
12394                 op1 = impPopStack().val;
12395                 assertImp(op1->gtType == TYP_REF);
12396
12397                 if (opts.IsReadyToRun())
12398                 {
12399                     if (callInfo.kind != CORINFO_VIRTUALCALL_LDVIRTFTN)
12400                     {
12401                         if (op1->gtFlags & GTF_SIDE_EFFECT)
12402                         {
12403                             op1 = gtUnusedValNode(op1);
12404                             impAppendTree(op1, (unsigned)CHECK_SPILL_ALL, impCurStmtOffs);
12405                         }
12406                         goto DO_LDFTN;
12407                     }
12408                 }
12409                 else if (mflags & (CORINFO_FLG_FINAL | CORINFO_FLG_STATIC) || !(mflags & CORINFO_FLG_VIRTUAL))
12410                 {
12411                     if (op1->gtFlags & GTF_SIDE_EFFECT)
12412                     {
12413                         op1 = gtUnusedValNode(op1);
12414                         impAppendTree(op1, (unsigned)CHECK_SPILL_ALL, impCurStmtOffs);
12415                     }
12416                     goto DO_LDFTN;
12417                 }
12418
12419                 GenTreePtr fptr = impImportLdvirtftn(op1, &resolvedToken, &callInfo);
12420                 if (compDonotInline())
12421                 {
12422                     return;
12423                 }
12424
12425                 impPushOnStack(fptr, typeInfo(resolvedToken.hMethod));
12426
12427                 break;
12428             }
12429
12430             case CEE_CONSTRAINED:
12431
12432                 assertImp(sz == sizeof(unsigned));
12433                 impResolveToken(codeAddr, &constrainedResolvedToken, CORINFO_TOKENKIND_Constrained);
12434                 codeAddr += sizeof(unsigned); // prefix instructions must increment codeAddr manually
12435                 JITDUMP(" (%08X) ", constrainedResolvedToken.token);
12436
12437                 Verify(!(prefixFlags & PREFIX_CONSTRAINED), "Multiple constrained. prefixes");
12438                 prefixFlags |= PREFIX_CONSTRAINED;
12439
12440                 {
12441                     OPCODE actualOpcode = impGetNonPrefixOpcode(codeAddr, codeEndp);
12442                     if (actualOpcode != CEE_CALLVIRT)
12443                     {
12444                         BADCODE("constrained. has to be followed by callvirt");
12445                     }
12446                 }
12447
12448                 goto PREFIX;
12449
12450             case CEE_READONLY:
12451                 JITDUMP(" readonly.");
12452
12453                 Verify(!(prefixFlags & PREFIX_READONLY), "Multiple readonly. prefixes");
12454                 prefixFlags |= PREFIX_READONLY;
12455
12456                 {
12457                     OPCODE actualOpcode = impGetNonPrefixOpcode(codeAddr, codeEndp);
12458                     if (actualOpcode != CEE_LDELEMA && !impOpcodeIsCallOpcode(actualOpcode))
12459                     {
12460                         BADCODE("readonly. has to be followed by ldelema or call");
12461                     }
12462                 }
12463
12464                 assert(sz == 0);
12465                 goto PREFIX;
12466
12467             case CEE_TAILCALL:
12468                 JITDUMP(" tail.");
12469
12470                 Verify(!(prefixFlags & PREFIX_TAILCALL_EXPLICIT), "Multiple tailcall. prefixes");
12471                 prefixFlags |= PREFIX_TAILCALL_EXPLICIT;
12472
12473                 {
12474                     OPCODE actualOpcode = impGetNonPrefixOpcode(codeAddr, codeEndp);
12475                     if (!impOpcodeIsCallOpcode(actualOpcode))
12476                     {
12477                         BADCODE("tailcall. has to be followed by call, callvirt or calli");
12478                     }
12479                 }
12480                 assert(sz == 0);
12481                 goto PREFIX;
12482
12483             case CEE_NEWOBJ:
12484
12485                 /* Since we will implicitly insert newObjThisPtr at the start of the
12486                    argument list, spill any GTF_ORDER_SIDEEFF */
12487                 impSpillSpecialSideEff();
12488
12489                 /* NEWOBJ does not respond to TAIL */
12490                 prefixFlags &= ~PREFIX_TAILCALL_EXPLICIT;
12491
12492                 /* NEWOBJ does not respond to CONSTRAINED */
12493                 prefixFlags &= ~PREFIX_CONSTRAINED;
12494
12495 #if COR_JIT_EE_VERSION > 460
12496                 _impResolveToken(CORINFO_TOKENKIND_NewObj);
12497 #else
12498                 _impResolveToken(CORINFO_TOKENKIND_Method);
12499 #endif
12500
12501                 eeGetCallInfo(&resolvedToken, nullptr /* constraint typeRef*/,
12502                               addVerifyFlag(combine(CORINFO_CALLINFO_SECURITYCHECKS, CORINFO_CALLINFO_ALLOWINSTPARAM)),
12503                               &callInfo);
12504
12505                 if (compIsForInlining())
12506                 {
12507                     if (impInlineInfo->inlineCandidateInfo->dwRestrictions & INLINE_RESPECT_BOUNDARY)
12508                     {
12509                         // Check to see if this call violates the boundary.
12510                         compInlineResult->NoteFatal(InlineObservation::CALLSITE_CROSS_BOUNDARY_SECURITY);
12511                         return;
12512                     }
12513                 }
12514
12515                 mflags = callInfo.methodFlags;
12516
12517                 if ((mflags & (CORINFO_FLG_STATIC | CORINFO_FLG_ABSTRACT)) != 0)
12518                 {
12519                     BADCODE("newobj on static or abstract method");
12520                 }
12521
12522                 // Insert the security callout before any actual code is generated
12523                 impHandleAccessAllowed(callInfo.accessAllowed, &callInfo.callsiteCalloutHelper);
12524
12525                 // There are three different cases for new
12526                 // Object size is variable (depends on arguments)
12527                 //      1) Object is an array (arrays treated specially by the EE)
12528                 //      2) Object is some other variable sized object (e.g. String)
12529                 //      3) Class Size can be determined beforehand (normal case)
12530                 // In the first case, we need to call a NEWOBJ helper (multinewarray)
12531                 // in the second case we call the constructor with a '0' this pointer
12532                 // In the third case we alloc the memory, then call the constuctor
12533
12534                 clsFlags = callInfo.classFlags;
12535                 if (clsFlags & CORINFO_FLG_ARRAY)
12536                 {
12537                     if (tiVerificationNeeded)
12538                     {
12539                         CORINFO_CLASS_HANDLE elemTypeHnd;
12540                         INDEBUG(CorInfoType corType =)
12541                         info.compCompHnd->getChildType(resolvedToken.hClass, &elemTypeHnd);
12542                         assert(!(elemTypeHnd == nullptr && corType == CORINFO_TYPE_VALUECLASS));
12543                         Verify(elemTypeHnd == nullptr ||
12544                                    !(info.compCompHnd->getClassAttribs(elemTypeHnd) & CORINFO_FLG_CONTAINS_STACK_PTR),
12545                                "newarr of byref-like objects");
12546                         verVerifyCall(opcode, &resolvedToken, nullptr, ((prefixFlags & PREFIX_TAILCALL_EXPLICIT) != 0),
12547                                       ((prefixFlags & PREFIX_READONLY) != 0), delegateCreateStart, codeAddr - 1,
12548                                       &callInfo DEBUGARG(info.compFullName));
12549                     }
12550                     // Arrays need to call the NEWOBJ helper.
12551                     assertImp(clsFlags & CORINFO_FLG_VAROBJSIZE);
12552
12553                     impImportNewObjArray(&resolvedToken, &callInfo);
12554                     if (compDonotInline())
12555                     {
12556                         return;
12557                     }
12558
12559                     callTyp = TYP_REF;
12560                     break;
12561                 }
12562                 // At present this can only be String
12563                 else if (clsFlags & CORINFO_FLG_VAROBJSIZE)
12564                 {
12565                     if (IsTargetAbi(CORINFO_CORERT_ABI))
12566                     {
12567                         // The dummy argument does not exist in CoreRT
12568                         newObjThisPtr = nullptr;
12569                     }
12570                     else
12571                     {
12572                         // This is the case for variable-sized objects that are not
12573                         // arrays.  In this case, call the constructor with a null 'this'
12574                         // pointer
12575                         newObjThisPtr = gtNewIconNode(0, TYP_REF);
12576                     }
12577
12578                     /* Remember that this basic block contains 'new' of an object */
12579                     block->bbFlags |= BBF_HAS_NEWOBJ;
12580                     optMethodFlags |= OMF_HAS_NEWOBJ;
12581                 }
12582                 else
12583                 {
12584                     // This is the normal case where the size of the object is
12585                     // fixed.  Allocate the memory and call the constructor.
12586
12587                     // Note: We cannot add a peep to avoid use of temp here
12588                     // becase we don't have enough interference info to detect when
12589                     // sources and destination interfere, example: s = new S(ref);
12590
12591                     // TODO: We find the correct place to introduce a general
12592                     // reverse copy prop for struct return values from newobj or
12593                     // any function returning structs.
12594
12595                     /* get a temporary for the new object */
12596                     lclNum = lvaGrabTemp(true DEBUGARG("NewObj constructor temp"));
12597
12598                     // In the value class case we only need clsHnd for size calcs.
12599                     //
12600                     // The lookup of the code pointer will be handled by CALL in this case
12601                     if (clsFlags & CORINFO_FLG_VALUECLASS)
12602                     {
12603                         if (compIsForInlining())
12604                         {
12605                             // If value class has GC fields, inform the inliner. It may choose to
12606                             // bail out on the inline.
12607                             DWORD typeFlags = info.compCompHnd->getClassAttribs(resolvedToken.hClass);
12608                             if ((typeFlags & CORINFO_FLG_CONTAINS_GC_PTR) != 0)
12609                             {
12610                                 compInlineResult->Note(InlineObservation::CALLEE_HAS_GC_STRUCT);
12611                                 if (compInlineResult->IsFailure())
12612                                 {
12613                                     return;
12614                                 }
12615
12616                                 // Do further notification in the case where the call site is rare;
12617                                 // some policies do not track the relative hotness of call sites for
12618                                 // "always" inline cases.
12619                                 if (impInlineInfo->iciBlock->isRunRarely())
12620                                 {
12621                                     compInlineResult->Note(InlineObservation::CALLSITE_RARE_GC_STRUCT);
12622                                     if (compInlineResult->IsFailure())
12623                                     {
12624                                         return;
12625                                     }
12626                                 }
12627                             }
12628                         }
12629
12630                         CorInfoType jitTyp = info.compCompHnd->asCorInfoType(resolvedToken.hClass);
12631                         unsigned    size   = info.compCompHnd->getClassSize(resolvedToken.hClass);
12632
12633                         if (impIsPrimitive(jitTyp))
12634                         {
12635                             lvaTable[lclNum].lvType = JITtype2varType(jitTyp);
12636                         }
12637                         else
12638                         {
12639                             // The local variable itself is the allocated space.
12640                             // Here we need unsafe value cls check, since the address of struct is taken for further use
12641                             // and potentially exploitable.
12642                             lvaSetStruct(lclNum, resolvedToken.hClass, true /* unsafe value cls check */);
12643                         }
12644
12645                         // Append a tree to zero-out the temp
12646                         newObjThisPtr = gtNewLclvNode(lclNum, lvaTable[lclNum].TypeGet());
12647
12648                         newObjThisPtr = gtNewBlkOpNode(newObjThisPtr,    // Dest
12649                                                        gtNewIconNode(0), // Value
12650                                                        size,             // Size
12651                                                        false,            // isVolatile
12652                                                        false);           // not copyBlock
12653                         impAppendTree(newObjThisPtr, (unsigned)CHECK_SPILL_NONE, impCurStmtOffs);
12654
12655                         // Obtain the address of the temp
12656                         newObjThisPtr =
12657                             gtNewOperNode(GT_ADDR, TYP_BYREF, gtNewLclvNode(lclNum, lvaTable[lclNum].TypeGet()));
12658                     }
12659                     else
12660                     {
12661 #ifdef FEATURE_READYTORUN_COMPILER
12662                         if (opts.IsReadyToRun())
12663                         {
12664                             op1 = impReadyToRunHelperToTree(&resolvedToken, CORINFO_HELP_READYTORUN_NEW, TYP_REF);
12665                             usingReadyToRunHelper = (op1 != nullptr);
12666                         }
12667
12668                         if (!usingReadyToRunHelper)
12669 #endif
12670                         {
12671                             op1 = impParentClassTokenToHandle(&resolvedToken, nullptr, TRUE);
12672                             if (op1 == nullptr)
12673                             { // compDonotInline()
12674                                 return;
12675                             }
12676
12677                             // TODO: ReadyToRun: When generic dictionary lookups are necessary, replace the lookup call
12678                             // and the newfast call with a single call to a dynamic R2R cell that will:
12679                             //      1) Load the context
12680                             //      2) Perform the generic dictionary lookup and caching, and generate the appropriate
12681                             //      stub
12682                             //      3) Allocate and return the new object
12683                             // Reason: performance (today, we'll always use the slow helper for the R2R generics case)
12684
12685                             op1 = gtNewAllocObjNode(info.compCompHnd->getNewHelper(&resolvedToken, info.compMethodHnd),
12686                                                     resolvedToken.hClass, TYP_REF, op1);
12687                         }
12688
12689                         // Remember that this basic block contains 'new' of an object
12690                         block->bbFlags |= BBF_HAS_NEWOBJ;
12691                         optMethodFlags |= OMF_HAS_NEWOBJ;
12692
12693                         // Append the assignment to the temp/local. Dont need to spill
12694                         // at all as we are just calling an EE-Jit helper which can only
12695                         // cause an (async) OutOfMemoryException.
12696
12697                         // We assign the newly allocated object (by a GT_ALLOCOBJ node)
12698                         // to a temp. Note that the pattern "temp = allocObj" is required
12699                         // by ObjectAllocator phase to be able to determine GT_ALLOCOBJ nodes
12700                         // without exhaustive walk over all expressions.
12701
12702                         impAssignTempGen(lclNum, op1, (unsigned)CHECK_SPILL_NONE);
12703
12704                         newObjThisPtr = gtNewLclvNode(lclNum, TYP_REF);
12705                     }
12706                 }
12707                 goto CALL;
12708
12709             case CEE_CALLI:
12710
12711                 /* CALLI does not respond to CONSTRAINED */
12712                 prefixFlags &= ~PREFIX_CONSTRAINED;
12713
12714                 if (compIsForInlining())
12715                 {
12716                     // CALLI doesn't have a method handle, so assume the worst.
12717                     if (impInlineInfo->inlineCandidateInfo->dwRestrictions & INLINE_RESPECT_BOUNDARY)
12718                     {
12719                         compInlineResult->NoteFatal(InlineObservation::CALLSITE_CROSS_BOUNDARY_CALLI);
12720                         return;
12721                     }
12722                 }
12723
12724             // fall through
12725
12726             case CEE_CALLVIRT:
12727             case CEE_CALL:
12728
12729                 // We can't call getCallInfo on the token from a CALLI, but we need it in
12730                 // many other places.  We unfortunately embed that knowledge here.
12731                 if (opcode != CEE_CALLI)
12732                 {
12733                     _impResolveToken(CORINFO_TOKENKIND_Method);
12734
12735                     eeGetCallInfo(&resolvedToken,
12736                                   (prefixFlags & PREFIX_CONSTRAINED) ? &constrainedResolvedToken : nullptr,
12737                                   // this is how impImportCall invokes getCallInfo
12738                                   addVerifyFlag(
12739                                       combine(combine(CORINFO_CALLINFO_ALLOWINSTPARAM, CORINFO_CALLINFO_SECURITYCHECKS),
12740                                               (opcode == CEE_CALLVIRT) ? CORINFO_CALLINFO_CALLVIRT
12741                                                                        : CORINFO_CALLINFO_NONE)),
12742                                   &callInfo);
12743                 }
12744                 else
12745                 {
12746                     // Suppress uninitialized use warning.
12747                     memset(&resolvedToken, 0, sizeof(resolvedToken));
12748                     memset(&callInfo, 0, sizeof(callInfo));
12749
12750                     resolvedToken.token = getU4LittleEndian(codeAddr);
12751                 }
12752
12753             CALL: // memberRef should be set.
12754                 // newObjThisPtr should be set for CEE_NEWOBJ
12755
12756                 JITDUMP(" %08X", resolvedToken.token);
12757                 constraintCall = (prefixFlags & PREFIX_CONSTRAINED) != 0;
12758
12759                 bool newBBcreatedForTailcallStress;
12760
12761                 newBBcreatedForTailcallStress = false;
12762
12763                 if (compIsForInlining())
12764                 {
12765                     if (compDonotInline())
12766                     {
12767                         return;
12768                     }
12769                     // We rule out inlinees with explicit tail calls in fgMakeBasicBlocks.
12770                     assert((prefixFlags & PREFIX_TAILCALL_EXPLICIT) == 0);
12771                 }
12772                 else
12773                 {
12774                     if (compTailCallStress())
12775                     {
12776                         // Have we created a new BB after the "call" instruction in fgMakeBasicBlocks()?
12777                         // Tail call stress only recognizes call+ret patterns and forces them to be
12778                         // explicit tail prefixed calls.  Also fgMakeBasicBlocks() under tail call stress
12779                         // doesn't import 'ret' opcode following the call into the basic block containing
12780                         // the call instead imports it to a new basic block.  Note that fgMakeBasicBlocks()
12781                         // is already checking that there is an opcode following call and hence it is
12782                         // safe here to read next opcode without bounds check.
12783                         newBBcreatedForTailcallStress =
12784                             impOpcodeIsCallOpcode(opcode) && // Current opcode is a CALL, (not a CEE_NEWOBJ). So, don't
12785                                                              // make it jump to RET.
12786                             (OPCODE)getU1LittleEndian(codeAddr + sz) == CEE_RET; // Next opcode is a CEE_RET
12787
12788                         if (newBBcreatedForTailcallStress &&
12789                             !(prefixFlags & PREFIX_TAILCALL_EXPLICIT) && // User hasn't set "tail." prefix yet.
12790                             verCheckTailCallConstraint(opcode, &resolvedToken,
12791                                                        constraintCall ? &constrainedResolvedToken : nullptr,
12792                                                        true) // Is it legal to do talcall?
12793                             )
12794                         {
12795                             // Stress the tailcall.
12796                             JITDUMP(" (Tailcall stress: prefixFlags |= PREFIX_TAILCALL_EXPLICIT)");
12797                             prefixFlags |= PREFIX_TAILCALL_EXPLICIT;
12798                         }
12799                     }
12800                 }
12801
12802                 // This is split up to avoid goto flow warnings.
12803                 bool isRecursive;
12804                 isRecursive = !compIsForInlining() && (callInfo.hMethod == info.compMethodHnd);
12805
12806                 // Note that when running under tail call stress, a call will be marked as explicit tail prefixed
12807                 // hence will not be considered for implicit tail calling.
12808                 if (impIsImplicitTailCallCandidate(opcode, codeAddr + sz, codeEndp, prefixFlags, isRecursive))
12809                 {
12810                     if (compIsForInlining())
12811                     {
12812 #if FEATURE_TAILCALL_OPT_SHARED_RETURN
12813                         // Are we inlining at an implicit tail call site? If so the we can flag
12814                         // implicit tail call sites in the inline body. These call sites
12815                         // often end up in non BBJ_RETURN blocks, so only flag them when
12816                         // we're able to handle shared returns.
12817                         if (impInlineInfo->iciCall->IsImplicitTailCall())
12818                         {
12819                             JITDUMP(" (Inline Implicit Tail call: prefixFlags |= PREFIX_TAILCALL_IMPLICIT)");
12820                             prefixFlags |= PREFIX_TAILCALL_IMPLICIT;
12821                         }
12822 #endif // FEATURE_TAILCALL_OPT_SHARED_RETURN
12823                     }
12824                     else
12825                     {
12826                         JITDUMP(" (Implicit Tail call: prefixFlags |= PREFIX_TAILCALL_IMPLICIT)");
12827                         prefixFlags |= PREFIX_TAILCALL_IMPLICIT;
12828                     }
12829                 }
12830
12831                 // Treat this call as tail call for verification only if "tail" prefixed (i.e. explicit tail call).
12832                 explicitTailCall = (prefixFlags & PREFIX_TAILCALL_EXPLICIT) != 0;
12833                 readonlyCall     = (prefixFlags & PREFIX_READONLY) != 0;
12834
12835                 if (opcode != CEE_CALLI && opcode != CEE_NEWOBJ)
12836                 {
12837                     // All calls and delegates need a security callout.
12838                     // For delegates, this is the call to the delegate constructor, not the access check on the
12839                     // LD(virt)FTN.
12840                     impHandleAccessAllowed(callInfo.accessAllowed, &callInfo.callsiteCalloutHelper);
12841
12842 #if 0 // DevDiv 410397 - This breaks too many obfuscated apps to do this in an in-place release
12843      
12844                 // DevDiv 291703 - we need to check for accessibility between the caller of InitializeArray
12845                 // and the field it is reading, thus it is now unverifiable to not immediately precede with
12846                 // ldtoken <filed token>, and we now check accessibility
12847                 if ((callInfo.methodFlags & CORINFO_FLG_INTRINSIC) &&
12848                     (info.compCompHnd->getIntrinsicID(callInfo.hMethod) == CORINFO_INTRINSIC_InitializeArray))
12849                 {
12850                     if (prevOpcode != CEE_LDTOKEN)
12851                     {
12852                         Verify(prevOpcode == CEE_LDTOKEN, "Need ldtoken for InitializeArray");
12853                     }
12854                     else
12855                     {
12856                         assert(lastLoadToken != NULL);
12857                         // Now that we know we have a token, verify that it is accessible for loading
12858                         CORINFO_RESOLVED_TOKEN resolvedLoadField;
12859                         impResolveToken(lastLoadToken, &resolvedLoadField, CORINFO_TOKENKIND_Field);
12860                         eeGetFieldInfo(&resolvedLoadField, CORINFO_ACCESS_INIT_ARRAY, &fieldInfo);
12861                         impHandleAccessAllowed(fieldInfo.accessAllowed, &fieldInfo.accessCalloutHelper);
12862                     }
12863                 }
12864
12865 #endif // DevDiv 410397
12866                 }
12867
12868                 if (tiVerificationNeeded)
12869                 {
12870                     verVerifyCall(opcode, &resolvedToken, constraintCall ? &constrainedResolvedToken : nullptr,
12871                                   explicitTailCall, readonlyCall, delegateCreateStart, codeAddr - 1,
12872                                   &callInfo DEBUGARG(info.compFullName));
12873                 }
12874
12875                 // Insert delegate callout here.
12876                 if (opcode == CEE_NEWOBJ && (mflags & CORINFO_FLG_CONSTRUCTOR) && (clsFlags & CORINFO_FLG_DELEGATE))
12877                 {
12878 #ifdef DEBUG
12879                     // We should do this only if verification is enabled
12880                     // If verification is disabled, delegateCreateStart will not be initialized correctly
12881                     if (tiVerificationNeeded)
12882                     {
12883                         mdMemberRef delegateMethodRef = mdMemberRefNil;
12884                         // We should get here only for well formed delegate creation.
12885                         assert(verCheckDelegateCreation(delegateCreateStart, codeAddr - 1, delegateMethodRef));
12886                     }
12887 #endif
12888
12889 #ifdef FEATURE_CORECLR
12890                     // In coreclr the delegate transparency rule needs to be enforced even if verification is disabled
12891                     typeInfo              tiActualFtn          = impStackTop(0).seTypeInfo;
12892                     CORINFO_METHOD_HANDLE delegateMethodHandle = tiActualFtn.GetMethod2();
12893
12894                     impInsertCalloutForDelegate(info.compMethodHnd, delegateMethodHandle, resolvedToken.hClass);
12895 #endif // FEATURE_CORECLR
12896                 }
12897
12898                 callTyp = impImportCall(opcode, &resolvedToken, constraintCall ? &constrainedResolvedToken : nullptr,
12899                                         newObjThisPtr, prefixFlags, &callInfo, opcodeOffs);
12900                 if (compDonotInline())
12901                 {
12902                     return;
12903                 }
12904
12905                 if (explicitTailCall || newBBcreatedForTailcallStress) // If newBBcreatedForTailcallStress is true, we
12906                                                                        // have created a new BB after the "call"
12907                 // instruction in fgMakeBasicBlocks(). So we need to jump to RET regardless.
12908                 {
12909                     assert(!compIsForInlining());
12910                     goto RET;
12911                 }
12912
12913                 break;
12914
12915             case CEE_LDFLD:
12916             case CEE_LDSFLD:
12917             case CEE_LDFLDA:
12918             case CEE_LDSFLDA:
12919             {
12920
12921                 BOOL isLoadAddress = (opcode == CEE_LDFLDA || opcode == CEE_LDSFLDA);
12922                 BOOL isLoadStatic  = (opcode == CEE_LDSFLD || opcode == CEE_LDSFLDA);
12923
12924                 /* Get the CP_Fieldref index */
12925                 assertImp(sz == sizeof(unsigned));
12926
12927                 _impResolveToken(CORINFO_TOKENKIND_Field);
12928
12929                 JITDUMP(" %08X", resolvedToken.token);
12930
12931                 int aflags = isLoadAddress ? CORINFO_ACCESS_ADDRESS : CORINFO_ACCESS_GET;
12932
12933                 GenTreePtr           obj     = nullptr;
12934                 typeInfo*            tiObj   = nullptr;
12935                 CORINFO_CLASS_HANDLE objType = nullptr; // used for fields
12936
12937                 if (opcode == CEE_LDFLD || opcode == CEE_LDFLDA)
12938                 {
12939                     tiObj = &impStackTop().seTypeInfo;
12940                     obj   = impPopStack(objType).val;
12941
12942                     if (impIsThis(obj))
12943                     {
12944                         aflags |= CORINFO_ACCESS_THIS;
12945
12946                         // An optimization for Contextful classes:
12947                         // we unwrap the proxy when we have a 'this reference'
12948
12949                         if (info.compUnwrapContextful)
12950                         {
12951                             aflags |= CORINFO_ACCESS_UNWRAP;
12952                         }
12953                     }
12954                 }
12955
12956                 eeGetFieldInfo(&resolvedToken, (CORINFO_ACCESS_FLAGS)aflags, &fieldInfo);
12957
12958                 // Figure out the type of the member.  We always call canAccessField, so you always need this
12959                 // handle
12960                 CorInfoType ciType = fieldInfo.fieldType;
12961                 clsHnd             = fieldInfo.structType;
12962
12963                 lclTyp = JITtype2varType(ciType);
12964
12965 #ifdef _TARGET_AMD64
12966                 noway_assert(varTypeIsIntegralOrI(lclTyp) || varTypeIsFloating(lclTyp) || lclTyp == TYP_STRUCT);
12967 #endif // _TARGET_AMD64
12968
12969                 if (compIsForInlining())
12970                 {
12971                     switch (fieldInfo.fieldAccessor)
12972                     {
12973                         case CORINFO_FIELD_INSTANCE_HELPER:
12974                         case CORINFO_FIELD_INSTANCE_ADDR_HELPER:
12975                         case CORINFO_FIELD_STATIC_ADDR_HELPER:
12976                         case CORINFO_FIELD_STATIC_TLS:
12977
12978                             compInlineResult->NoteFatal(InlineObservation::CALLEE_LDFLD_NEEDS_HELPER);
12979                             return;
12980
12981                         case CORINFO_FIELD_STATIC_GENERICS_STATIC_HELPER:
12982 #if COR_JIT_EE_VERSION > 460
12983                         case CORINFO_FIELD_STATIC_READYTORUN_HELPER:
12984 #endif
12985                             /* We may be able to inline the field accessors in specific instantiations of generic
12986                              * methods */
12987                             compInlineResult->NoteFatal(InlineObservation::CALLSITE_LDFLD_NEEDS_HELPER);
12988                             return;
12989
12990                         default:
12991                             break;
12992                     }
12993
12994                     if (!isLoadAddress && (fieldInfo.fieldFlags & CORINFO_FLG_FIELD_STATIC) && lclTyp == TYP_STRUCT &&
12995                         clsHnd)
12996                     {
12997                         if ((info.compCompHnd->getTypeForPrimitiveValueClass(clsHnd) == CORINFO_TYPE_UNDEF) &&
12998                             !(info.compFlags & CORINFO_FLG_FORCEINLINE))
12999                         {
13000                             // Loading a static valuetype field usually will cause a JitHelper to be called
13001                             // for the static base. This will bloat the code.
13002                             compInlineResult->Note(InlineObservation::CALLEE_LDFLD_STATIC_VALUECLASS);
13003
13004                             if (compInlineResult->IsFailure())
13005                             {
13006                                 return;
13007                             }
13008                         }
13009                     }
13010                 }
13011
13012                 tiRetVal = verMakeTypeInfo(ciType, clsHnd);
13013                 if (isLoadAddress)
13014                 {
13015                     tiRetVal.MakeByRef();
13016                 }
13017                 else
13018                 {
13019                     tiRetVal.NormaliseForStack();
13020                 }
13021
13022                 // Perform this check always to ensure that we get field access exceptions even with
13023                 // SkipVerification.
13024                 impHandleAccessAllowed(fieldInfo.accessAllowed, &fieldInfo.accessCalloutHelper);
13025
13026                 if (tiVerificationNeeded)
13027                 {
13028                     // You can also pass the unboxed struct to  LDFLD
13029                     BOOL bAllowPlainValueTypeAsThis = FALSE;
13030                     if (opcode == CEE_LDFLD && impIsValueType(tiObj))
13031                     {
13032                         bAllowPlainValueTypeAsThis = TRUE;
13033                     }
13034
13035                     verVerifyField(&resolvedToken, fieldInfo, tiObj, isLoadAddress, bAllowPlainValueTypeAsThis);
13036
13037                     // If we're doing this on a heap object or from a 'safe' byref
13038                     // then the result is a safe byref too
13039                     if (isLoadAddress) // load address
13040                     {
13041                         if (fieldInfo.fieldFlags &
13042                             CORINFO_FLG_FIELD_STATIC) // statics marked as safe will have permanent home
13043                         {
13044                             if (fieldInfo.fieldFlags & CORINFO_FLG_FIELD_SAFESTATIC_BYREF_RETURN)
13045                             {
13046                                 tiRetVal.SetIsPermanentHomeByRef();
13047                             }
13048                         }
13049                         else if (tiObj->IsObjRef() || tiObj->IsPermanentHomeByRef())
13050                         {
13051                             // ldflda of byref is safe if done on a gc object or on  a
13052                             // safe byref
13053                             tiRetVal.SetIsPermanentHomeByRef();
13054                         }
13055                     }
13056                 }
13057                 else
13058                 {
13059                     // tiVerificationNeeded is false.
13060                     // Raise InvalidProgramException if static load accesses non-static field
13061                     if (isLoadStatic && ((fieldInfo.fieldFlags & CORINFO_FLG_FIELD_STATIC) == 0))
13062                     {
13063                         BADCODE("static access on an instance field");
13064                     }
13065                 }
13066
13067                 // We are using ldfld/a on a static field. We allow it, but need to get side-effect from obj.
13068                 if ((fieldInfo.fieldFlags & CORINFO_FLG_FIELD_STATIC) && obj != nullptr)
13069                 {
13070                     if (obj->gtFlags & GTF_SIDE_EFFECT)
13071                     {
13072                         obj = gtUnusedValNode(obj);
13073                         impAppendTree(obj, (unsigned)CHECK_SPILL_ALL, impCurStmtOffs);
13074                     }
13075                     obj = nullptr;
13076                 }
13077
13078                 /* Preserve 'small' int types */
13079                 if (lclTyp > TYP_INT)
13080                 {
13081                     lclTyp = genActualType(lclTyp);
13082                 }
13083
13084                 bool usesHelper = false;
13085
13086                 switch (fieldInfo.fieldAccessor)
13087                 {
13088                     case CORINFO_FIELD_INSTANCE:
13089 #ifdef FEATURE_READYTORUN_COMPILER
13090                     case CORINFO_FIELD_INSTANCE_WITH_BASE:
13091 #endif
13092                     {
13093                         bool nullcheckNeeded = false;
13094
13095                         obj = impCheckForNullPointer(obj);
13096
13097                         if (isLoadAddress && (obj->gtType == TYP_BYREF) && fgAddrCouldBeNull(obj))
13098                         {
13099                             nullcheckNeeded = true;
13100                         }
13101
13102                         // If the object is a struct, what we really want is
13103                         // for the field to operate on the address of the struct.
13104                         if (!varTypeGCtype(obj->TypeGet()) && impIsValueType(tiObj))
13105                         {
13106                             assert(opcode == CEE_LDFLD && objType != nullptr);
13107
13108                             obj = impGetStructAddr(obj, objType, (unsigned)CHECK_SPILL_ALL, true);
13109                         }
13110
13111                         /* Create the data member node */
13112                         op1 = gtNewFieldRef(lclTyp, resolvedToken.hField, obj, fieldInfo.offset, nullcheckNeeded);
13113
13114 #ifdef FEATURE_READYTORUN_COMPILER
13115                         if (fieldInfo.fieldAccessor == CORINFO_FIELD_INSTANCE_WITH_BASE)
13116                         {
13117                             op1->gtField.gtFieldLookup = fieldInfo.fieldLookup;
13118                         }
13119 #endif
13120
13121                         op1->gtFlags |= (obj->gtFlags & GTF_GLOB_EFFECT);
13122
13123                         if (fgAddrCouldBeNull(obj))
13124                         {
13125                             op1->gtFlags |= GTF_EXCEPT;
13126                         }
13127
13128                         // If gtFldObj is a BYREF then our target is a value class and
13129                         // it could point anywhere, example a boxed class static int
13130                         if (obj->gtType == TYP_BYREF)
13131                         {
13132                             op1->gtFlags |= GTF_IND_TGTANYWHERE;
13133                         }
13134
13135                         DWORD typeFlags = info.compCompHnd->getClassAttribs(resolvedToken.hClass);
13136                         if (StructHasOverlappingFields(typeFlags))
13137                         {
13138                             op1->gtField.gtFldMayOverlap = true;
13139                         }
13140
13141                         // wrap it in a address of operator if necessary
13142                         if (isLoadAddress)
13143                         {
13144                             op1 = gtNewOperNode(GT_ADDR,
13145                                                 (var_types)(varTypeIsGC(obj->TypeGet()) ? TYP_BYREF : TYP_I_IMPL), op1);
13146                         }
13147                         else
13148                         {
13149                             if (compIsForInlining() &&
13150                                 impInlineIsGuaranteedThisDerefBeforeAnySideEffects(nullptr, obj,
13151                                                                                    impInlineInfo->inlArgInfo))
13152                             {
13153                                 impInlineInfo->thisDereferencedFirst = true;
13154                             }
13155                         }
13156                     }
13157                     break;
13158
13159                     case CORINFO_FIELD_STATIC_TLS:
13160 #ifdef _TARGET_X86_
13161                         // Legacy TLS access is implemented as intrinsic on x86 only
13162
13163                         /* Create the data member node */
13164                         op1 = gtNewFieldRef(lclTyp, resolvedToken.hField, NULL, fieldInfo.offset);
13165                         op1->gtFlags |= GTF_IND_TLS_REF; // fgMorphField will handle the transformation
13166
13167                         if (isLoadAddress)
13168                         {
13169                             op1 = gtNewOperNode(GT_ADDR, (var_types)TYP_I_IMPL, op1);
13170                         }
13171                         break;
13172 #else
13173                         fieldInfo.fieldAccessor = CORINFO_FIELD_STATIC_ADDR_HELPER;
13174
13175                         __fallthrough;
13176 #endif
13177
13178                     case CORINFO_FIELD_STATIC_ADDR_HELPER:
13179                     case CORINFO_FIELD_INSTANCE_HELPER:
13180                     case CORINFO_FIELD_INSTANCE_ADDR_HELPER:
13181                         op1 = gtNewRefCOMfield(obj, &resolvedToken, (CORINFO_ACCESS_FLAGS)aflags, &fieldInfo, lclTyp,
13182                                                clsHnd, nullptr);
13183                         usesHelper = true;
13184                         break;
13185
13186                     case CORINFO_FIELD_STATIC_ADDRESS:
13187                         // Replace static read-only fields with constant if possible
13188                         if ((aflags & CORINFO_ACCESS_GET) && (fieldInfo.fieldFlags & CORINFO_FLG_FIELD_FINAL) &&
13189                             !(fieldInfo.fieldFlags & CORINFO_FLG_FIELD_STATIC_IN_HEAP) &&
13190                             (varTypeIsIntegral(lclTyp) || varTypeIsFloating(lclTyp)))
13191                         {
13192                             CorInfoInitClassResult initClassResult =
13193                                 info.compCompHnd->initClass(resolvedToken.hField, info.compMethodHnd,
13194                                                             impTokenLookupContextHandle);
13195
13196                             if (initClassResult & CORINFO_INITCLASS_INITIALIZED)
13197                             {
13198                                 void** pFldAddr = nullptr;
13199                                 void*  fldAddr =
13200                                     info.compCompHnd->getFieldAddress(resolvedToken.hField, (void**)&pFldAddr);
13201
13202                                 // We should always be able to access this static's address directly
13203                                 assert(pFldAddr == nullptr);
13204
13205                                 op1 = impImportStaticReadOnlyField(fldAddr, lclTyp);
13206                                 goto FIELD_DONE;
13207                             }
13208                         }
13209
13210                         __fallthrough;
13211
13212                     case CORINFO_FIELD_STATIC_RVA_ADDRESS:
13213                     case CORINFO_FIELD_STATIC_SHARED_STATIC_HELPER:
13214                     case CORINFO_FIELD_STATIC_GENERICS_STATIC_HELPER:
13215 #if COR_JIT_EE_VERSION > 460
13216                     case CORINFO_FIELD_STATIC_READYTORUN_HELPER:
13217 #endif
13218                         op1 = impImportStaticFieldAccess(&resolvedToken, (CORINFO_ACCESS_FLAGS)aflags, &fieldInfo,
13219                                                          lclTyp);
13220                         break;
13221
13222                     case CORINFO_FIELD_INTRINSIC_ZERO:
13223                     {
13224                         assert(aflags & CORINFO_ACCESS_GET);
13225                         op1 = gtNewIconNode(0, lclTyp);
13226                         goto FIELD_DONE;
13227                     }
13228                     break;
13229
13230                     case CORINFO_FIELD_INTRINSIC_EMPTY_STRING:
13231                     {
13232                         assert(aflags & CORINFO_ACCESS_GET);
13233
13234                         LPVOID         pValue;
13235                         InfoAccessType iat = info.compCompHnd->emptyStringLiteral(&pValue);
13236                         op1                = gtNewStringLiteralNode(iat, pValue);
13237                         goto FIELD_DONE;
13238                     }
13239                     break;
13240
13241                     default:
13242                         assert(!"Unexpected fieldAccessor");
13243                 }
13244
13245                 if (!isLoadAddress)
13246                 {
13247
13248                     if (prefixFlags & PREFIX_VOLATILE)
13249                     {
13250                         op1->gtFlags |= GTF_DONT_CSE;      // Can't CSE a volatile
13251                         op1->gtFlags |= GTF_ORDER_SIDEEFF; // Prevent this from being reordered
13252
13253                         if (!usesHelper)
13254                         {
13255                             assert((op1->OperGet() == GT_FIELD) || (op1->OperGet() == GT_IND) ||
13256                                    (op1->OperGet() == GT_OBJ));
13257                             op1->gtFlags |= GTF_IND_VOLATILE;
13258                         }
13259                     }
13260
13261                     if (prefixFlags & PREFIX_UNALIGNED)
13262                     {
13263                         if (!usesHelper)
13264                         {
13265                             assert((op1->OperGet() == GT_FIELD) || (op1->OperGet() == GT_IND) ||
13266                                    (op1->OperGet() == GT_OBJ));
13267                             op1->gtFlags |= GTF_IND_UNALIGNED;
13268                         }
13269                     }
13270                 }
13271
13272                 /* Check if the class needs explicit initialization */
13273
13274                 if (fieldInfo.fieldFlags & CORINFO_FLG_FIELD_INITCLASS)
13275                 {
13276                     GenTreePtr helperNode = impInitClass(&resolvedToken);
13277                     if (compDonotInline())
13278                     {
13279                         return;
13280                     }
13281                     if (helperNode != nullptr)
13282                     {
13283                         op1 = gtNewOperNode(GT_COMMA, op1->TypeGet(), helperNode, op1);
13284                     }
13285                 }
13286
13287             FIELD_DONE:
13288                 impPushOnStack(op1, tiRetVal);
13289             }
13290             break;
13291
13292             case CEE_STFLD:
13293             case CEE_STSFLD:
13294             {
13295
13296                 BOOL isStoreStatic = (opcode == CEE_STSFLD);
13297
13298                 CORINFO_CLASS_HANDLE fieldClsHnd; // class of the field (if it's a ref type)
13299
13300                 /* Get the CP_Fieldref index */
13301
13302                 assertImp(sz == sizeof(unsigned));
13303
13304                 _impResolveToken(CORINFO_TOKENKIND_Field);
13305
13306                 JITDUMP(" %08X", resolvedToken.token);
13307
13308                 int        aflags = CORINFO_ACCESS_SET;
13309                 GenTreePtr obj    = nullptr;
13310                 typeInfo*  tiObj  = nullptr;
13311                 typeInfo   tiVal;
13312
13313                 /* Pull the value from the stack */
13314                 op2    = impPopStack(tiVal);
13315                 clsHnd = tiVal.GetClassHandle();
13316
13317                 if (opcode == CEE_STFLD)
13318                 {
13319                     tiObj = &impStackTop().seTypeInfo;
13320                     obj   = impPopStack().val;
13321
13322                     if (impIsThis(obj))
13323                     {
13324                         aflags |= CORINFO_ACCESS_THIS;
13325
13326                         // An optimization for Contextful classes:
13327                         // we unwrap the proxy when we have a 'this reference'
13328
13329                         if (info.compUnwrapContextful)
13330                         {
13331                             aflags |= CORINFO_ACCESS_UNWRAP;
13332                         }
13333                     }
13334                 }
13335
13336                 eeGetFieldInfo(&resolvedToken, (CORINFO_ACCESS_FLAGS)aflags, &fieldInfo);
13337
13338                 // Figure out the type of the member.  We always call canAccessField, so you always need this
13339                 // handle
13340                 CorInfoType ciType = fieldInfo.fieldType;
13341                 fieldClsHnd        = fieldInfo.structType;
13342
13343                 lclTyp = JITtype2varType(ciType);
13344
13345                 if (compIsForInlining())
13346                 {
13347                     /* Is this a 'special' (COM) field? or a TLS ref static field?, field stored int GC heap? or
13348                      * per-inst static? */
13349
13350                     switch (fieldInfo.fieldAccessor)
13351                     {
13352                         case CORINFO_FIELD_INSTANCE_HELPER:
13353                         case CORINFO_FIELD_INSTANCE_ADDR_HELPER:
13354                         case CORINFO_FIELD_STATIC_ADDR_HELPER:
13355                         case CORINFO_FIELD_STATIC_TLS:
13356
13357                             compInlineResult->NoteFatal(InlineObservation::CALLEE_STFLD_NEEDS_HELPER);
13358                             return;
13359
13360                         case CORINFO_FIELD_STATIC_GENERICS_STATIC_HELPER:
13361 #if COR_JIT_EE_VERSION > 460
13362                         case CORINFO_FIELD_STATIC_READYTORUN_HELPER:
13363 #endif
13364
13365                             /* We may be able to inline the field accessors in specific instantiations of generic
13366                              * methods */
13367                             compInlineResult->NoteFatal(InlineObservation::CALLSITE_STFLD_NEEDS_HELPER);
13368                             return;
13369
13370                         default:
13371                             break;
13372                     }
13373                 }
13374
13375                 impHandleAccessAllowed(fieldInfo.accessAllowed, &fieldInfo.accessCalloutHelper);
13376
13377                 if (tiVerificationNeeded)
13378                 {
13379                     verVerifyField(&resolvedToken, fieldInfo, tiObj, TRUE);
13380                     typeInfo fieldType = verMakeTypeInfo(ciType, fieldClsHnd);
13381                     Verify(tiCompatibleWith(tiVal, fieldType.NormaliseForStack(), true), "type mismatch");
13382                 }
13383                 else
13384                 {
13385                     // tiVerificationNeed is false.
13386                     // Raise InvalidProgramException if static store accesses non-static field
13387                     if (isStoreStatic && ((fieldInfo.fieldFlags & CORINFO_FLG_FIELD_STATIC) == 0))
13388                     {
13389                         BADCODE("static access on an instance field");
13390                     }
13391                 }
13392
13393                 // We are using stfld on a static field.
13394                 // We allow it, but need to eval any side-effects for obj
13395                 if ((fieldInfo.fieldFlags & CORINFO_FLG_FIELD_STATIC) && obj != nullptr)
13396                 {
13397                     if (obj->gtFlags & GTF_SIDE_EFFECT)
13398                     {
13399                         obj = gtUnusedValNode(obj);
13400                         impAppendTree(obj, (unsigned)CHECK_SPILL_ALL, impCurStmtOffs);
13401                     }
13402                     obj = nullptr;
13403                 }
13404
13405                 /* Preserve 'small' int types */
13406                 if (lclTyp > TYP_INT)
13407                 {
13408                     lclTyp = genActualType(lclTyp);
13409                 }
13410
13411                 switch (fieldInfo.fieldAccessor)
13412                 {
13413                     case CORINFO_FIELD_INSTANCE:
13414 #ifdef FEATURE_READYTORUN_COMPILER
13415                     case CORINFO_FIELD_INSTANCE_WITH_BASE:
13416 #endif
13417                     {
13418                         obj = impCheckForNullPointer(obj);
13419
13420                         /* Create the data member node */
13421                         op1             = gtNewFieldRef(lclTyp, resolvedToken.hField, obj, fieldInfo.offset);
13422                         DWORD typeFlags = info.compCompHnd->getClassAttribs(resolvedToken.hClass);
13423                         if (StructHasOverlappingFields(typeFlags))
13424                         {
13425                             op1->gtField.gtFldMayOverlap = true;
13426                         }
13427
13428 #ifdef FEATURE_READYTORUN_COMPILER
13429                         if (fieldInfo.fieldAccessor == CORINFO_FIELD_INSTANCE_WITH_BASE)
13430                         {
13431                             op1->gtField.gtFieldLookup = fieldInfo.fieldLookup;
13432                         }
13433 #endif
13434
13435                         op1->gtFlags |= (obj->gtFlags & GTF_GLOB_EFFECT);
13436
13437                         if (fgAddrCouldBeNull(obj))
13438                         {
13439                             op1->gtFlags |= GTF_EXCEPT;
13440                         }
13441
13442                         // If gtFldObj is a BYREF then our target is a value class and
13443                         // it could point anywhere, example a boxed class static int
13444                         if (obj->gtType == TYP_BYREF)
13445                         {
13446                             op1->gtFlags |= GTF_IND_TGTANYWHERE;
13447                         }
13448
13449                         if (compIsForInlining() &&
13450                             impInlineIsGuaranteedThisDerefBeforeAnySideEffects(op2, obj, impInlineInfo->inlArgInfo))
13451                         {
13452                             impInlineInfo->thisDereferencedFirst = true;
13453                         }
13454                     }
13455                     break;
13456
13457                     case CORINFO_FIELD_STATIC_TLS:
13458 #ifdef _TARGET_X86_
13459                         // Legacy TLS access is implemented as intrinsic on x86 only
13460
13461                         /* Create the data member node */
13462                         op1 = gtNewFieldRef(lclTyp, resolvedToken.hField, NULL, fieldInfo.offset);
13463                         op1->gtFlags |= GTF_IND_TLS_REF; // fgMorphField will handle the transformation
13464
13465                         break;
13466 #else
13467                         fieldInfo.fieldAccessor = CORINFO_FIELD_STATIC_ADDR_HELPER;
13468
13469                         __fallthrough;
13470 #endif
13471
13472                     case CORINFO_FIELD_STATIC_ADDR_HELPER:
13473                     case CORINFO_FIELD_INSTANCE_HELPER:
13474                     case CORINFO_FIELD_INSTANCE_ADDR_HELPER:
13475                         op1 = gtNewRefCOMfield(obj, &resolvedToken, (CORINFO_ACCESS_FLAGS)aflags, &fieldInfo, lclTyp,
13476                                                clsHnd, op2);
13477                         goto SPILL_APPEND;
13478
13479                     case CORINFO_FIELD_STATIC_ADDRESS:
13480                     case CORINFO_FIELD_STATIC_RVA_ADDRESS:
13481                     case CORINFO_FIELD_STATIC_SHARED_STATIC_HELPER:
13482                     case CORINFO_FIELD_STATIC_GENERICS_STATIC_HELPER:
13483 #if COR_JIT_EE_VERSION > 460
13484                     case CORINFO_FIELD_STATIC_READYTORUN_HELPER:
13485 #endif
13486                         op1 = impImportStaticFieldAccess(&resolvedToken, (CORINFO_ACCESS_FLAGS)aflags, &fieldInfo,
13487                                                          lclTyp);
13488                         break;
13489
13490                     default:
13491                         assert(!"Unexpected fieldAccessor");
13492                 }
13493
13494                 // Create the member assignment, unless we have a struct.
13495                 // TODO-1stClassStructs: This could be limited to TYP_STRUCT, to avoid extra copies.
13496                 bool deferStructAssign = varTypeIsStruct(lclTyp);
13497
13498                 if (!deferStructAssign)
13499                 {
13500                     if (prefixFlags & PREFIX_VOLATILE)
13501                     {
13502                         assert((op1->OperGet() == GT_FIELD) || (op1->OperGet() == GT_IND));
13503                         op1->gtFlags |= GTF_DONT_CSE;      // Can't CSE a volatile
13504                         op1->gtFlags |= GTF_ORDER_SIDEEFF; // Prevent this from being reordered
13505                         op1->gtFlags |= GTF_IND_VOLATILE;
13506                     }
13507                     if (prefixFlags & PREFIX_UNALIGNED)
13508                     {
13509                         assert((op1->OperGet() == GT_FIELD) || (op1->OperGet() == GT_IND));
13510                         op1->gtFlags |= GTF_IND_UNALIGNED;
13511                     }
13512
13513                     /* V4.0 allows assignment of i4 constant values to i8 type vars when IL verifier is bypassed (full
13514                        trust
13515                        apps).  The reason this works is that JIT stores an i4 constant in Gentree union during
13516                        importation
13517                        and reads from the union as if it were a long during code generation. Though this can potentially
13518                        read garbage, one can get lucky to have this working correctly.
13519
13520                        This code pattern is generated by Dev10 MC++ compiler while storing to fields when compiled with
13521                        /O2
13522                        switch (default when compiling retail configs in Dev10) and a customer app has taken a dependency
13523                        on
13524                        it.  To be backward compatible, we will explicitly add an upward cast here so that it works
13525                        correctly
13526                        always.
13527
13528                        Note that this is limited to x86 alone as thereis no back compat to be addressed for Arm JIT for
13529                        V4.0.
13530                     */
13531                     CLANG_FORMAT_COMMENT_ANCHOR;
13532
13533 #ifdef _TARGET_X86_
13534                     if (op1->TypeGet() != op2->TypeGet() && op2->OperIsConst() && varTypeIsIntOrI(op2->TypeGet()) &&
13535                         varTypeIsLong(op1->TypeGet()))
13536                     {
13537                         op2 = gtNewCastNode(op1->TypeGet(), op2, op1->TypeGet());
13538                     }
13539 #endif
13540
13541 #ifdef _TARGET_64BIT_
13542                     // Automatic upcast for a GT_CNS_INT into TYP_I_IMPL
13543                     if ((op2->OperGet() == GT_CNS_INT) && varTypeIsI(lclTyp) && !varTypeIsI(op2->gtType))
13544                     {
13545                         op2->gtType = TYP_I_IMPL;
13546                     }
13547                     else
13548                     {
13549                         // Allow a downcast of op2 from TYP_I_IMPL into a 32-bit Int for x86 JIT compatiblity
13550                         //
13551                         if (varTypeIsI(op2->gtType) && (genActualType(lclTyp) == TYP_INT))
13552                         {
13553                             op2 = gtNewCastNode(TYP_INT, op2, TYP_INT);
13554                         }
13555                         // Allow an upcast of op2 from a 32-bit Int into TYP_I_IMPL for x86 JIT compatiblity
13556                         //
13557                         if (varTypeIsI(lclTyp) && (genActualType(op2->gtType) == TYP_INT))
13558                         {
13559                             op2 = gtNewCastNode(TYP_I_IMPL, op2, TYP_I_IMPL);
13560                         }
13561                     }
13562 #endif
13563
13564 #if !FEATURE_X87_DOUBLES
13565                     // We can generate an assignment to a TYP_FLOAT from a TYP_DOUBLE
13566                     // We insert a cast to the dest 'op1' type
13567                     //
13568                     if ((op1->TypeGet() != op2->TypeGet()) && varTypeIsFloating(op1->gtType) &&
13569                         varTypeIsFloating(op2->gtType))
13570                     {
13571                         op2 = gtNewCastNode(op1->TypeGet(), op2, op1->TypeGet());
13572                     }
13573 #endif // !FEATURE_X87_DOUBLES
13574
13575                     op1 = gtNewAssignNode(op1, op2);
13576
13577                     /* Mark the expression as containing an assignment */
13578
13579                     op1->gtFlags |= GTF_ASG;
13580                 }
13581
13582                 /* Check if the class needs explicit initialization */
13583
13584                 if (fieldInfo.fieldFlags & CORINFO_FLG_FIELD_INITCLASS)
13585                 {
13586                     GenTreePtr helperNode = impInitClass(&resolvedToken);
13587                     if (compDonotInline())
13588                     {
13589                         return;
13590                     }
13591                     if (helperNode != nullptr)
13592                     {
13593                         op1 = gtNewOperNode(GT_COMMA, op1->TypeGet(), helperNode, op1);
13594                     }
13595                 }
13596
13597                 /* stfld can interfere with value classes (consider the sequence
13598                    ldloc, ldloca, ..., stfld, stloc).  We will be conservative and
13599                    spill all value class references from the stack. */
13600
13601                 if (obj && ((obj->gtType == TYP_BYREF) || (obj->gtType == TYP_I_IMPL)))
13602                 {
13603                     assert(tiObj);
13604
13605                     if (impIsValueType(tiObj))
13606                     {
13607                         impSpillEvalStack();
13608                     }
13609                     else
13610                     {
13611                         impSpillValueClasses();
13612                     }
13613                 }
13614
13615                 /* Spill any refs to the same member from the stack */
13616
13617                 impSpillLclRefs((ssize_t)resolvedToken.hField);
13618
13619                 /* stsfld also interferes with indirect accesses (for aliased
13620                    statics) and calls. But don't need to spill other statics
13621                    as we have explicitly spilled this particular static field. */
13622
13623                 impSpillSideEffects(false, (unsigned)CHECK_SPILL_ALL DEBUGARG("spill side effects before STFLD"));
13624
13625                 if (deferStructAssign)
13626                 {
13627                     op1 = impAssignStruct(op1, op2, clsHnd, (unsigned)CHECK_SPILL_ALL);
13628                 }
13629             }
13630                 goto APPEND;
13631
13632             case CEE_NEWARR:
13633             {
13634
13635                 /* Get the class type index operand */
13636
13637                 _impResolveToken(CORINFO_TOKENKIND_Newarr);
13638
13639                 JITDUMP(" %08X", resolvedToken.token);
13640
13641                 if (!opts.IsReadyToRun())
13642                 {
13643                     // Need to restore array classes before creating array objects on the heap
13644                     op1 = impTokenToHandle(&resolvedToken, nullptr, TRUE /*mustRestoreHandle*/);
13645                     if (op1 == nullptr)
13646                     { // compDonotInline()
13647                         return;
13648                     }
13649                 }
13650
13651                 if (tiVerificationNeeded)
13652                 {
13653                     // As per ECMA 'numElems' specified can be either int32 or native int.
13654                     Verify(impStackTop().seTypeInfo.IsIntOrNativeIntType(), "bad bound");
13655
13656                     CORINFO_CLASS_HANDLE elemTypeHnd;
13657                     info.compCompHnd->getChildType(resolvedToken.hClass, &elemTypeHnd);
13658                     Verify(elemTypeHnd == nullptr ||
13659                                !(info.compCompHnd->getClassAttribs(elemTypeHnd) & CORINFO_FLG_CONTAINS_STACK_PTR),
13660                            "array of byref-like type");
13661                     tiRetVal = verMakeTypeInfo(resolvedToken.hClass);
13662                 }
13663
13664                 accessAllowedResult =
13665                     info.compCompHnd->canAccessClass(&resolvedToken, info.compMethodHnd, &calloutHelper);
13666                 impHandleAccessAllowed(accessAllowedResult, &calloutHelper);
13667
13668                 /* Form the arglist: array class handle, size */
13669                 op2 = impPopStack().val;
13670                 assertImp(genActualTypeIsIntOrI(op2->gtType));
13671
13672 #ifdef FEATURE_READYTORUN_COMPILER
13673                 if (opts.IsReadyToRun())
13674                 {
13675                     op1 = impReadyToRunHelperToTree(&resolvedToken, CORINFO_HELP_READYTORUN_NEWARR_1, TYP_REF,
13676                                                     gtNewArgList(op2));
13677                     usingReadyToRunHelper = (op1 != nullptr);
13678
13679                     if (!usingReadyToRunHelper)
13680                     {
13681                         // TODO: ReadyToRun: When generic dictionary lookups are necessary, replace the lookup call
13682                         // and the newarr call with a single call to a dynamic R2R cell that will:
13683                         //      1) Load the context
13684                         //      2) Perform the generic dictionary lookup and caching, and generate the appropriate stub
13685                         //      3) Allocate the new array
13686                         // Reason: performance (today, we'll always use the slow helper for the R2R generics case)
13687
13688                         // Need to restore array classes before creating array objects on the heap
13689                         op1 = impTokenToHandle(&resolvedToken, nullptr, TRUE /*mustRestoreHandle*/);
13690                         if (op1 == nullptr)
13691                         { // compDonotInline()
13692                             return;
13693                         }
13694                     }
13695                 }
13696
13697                 if (!usingReadyToRunHelper)
13698 #endif
13699                 {
13700                     args = gtNewArgList(op1, op2);
13701
13702                     /* Create a call to 'new' */
13703
13704                     // Note that this only works for shared generic code because the same helper is used for all
13705                     // reference array types
13706                     op1 =
13707                         gtNewHelperCallNode(info.compCompHnd->getNewArrHelper(resolvedToken.hClass), TYP_REF, 0, args);
13708                 }
13709
13710                 op1->gtCall.compileTimeHelperArgumentHandle = (CORINFO_GENERIC_HANDLE)resolvedToken.hClass;
13711
13712                 /* Remember that this basic block contains 'new' of an sd array */
13713
13714                 block->bbFlags |= BBF_HAS_NEWARRAY;
13715                 optMethodFlags |= OMF_HAS_NEWARRAY;
13716
13717                 /* Push the result of the call on the stack */
13718
13719                 impPushOnStack(op1, tiRetVal);
13720
13721                 callTyp = TYP_REF;
13722             }
13723             break;
13724
13725             case CEE_LOCALLOC:
13726                 assert(!compIsForInlining());
13727
13728                 if (tiVerificationNeeded)
13729                 {
13730                     Verify(false, "bad opcode");
13731                 }
13732
13733                 // We don't allow locallocs inside handlers
13734                 if (block->hasHndIndex())
13735                 {
13736                     BADCODE("Localloc can't be inside handler");
13737                 }
13738
13739                 /* The FP register may not be back to the original value at the end
13740                    of the method, even if the frame size is 0, as localloc may
13741                    have modified it. So we will HAVE to reset it */
13742
13743                 compLocallocUsed = true;
13744                 setNeedsGSSecurityCookie();
13745
13746                 // Get the size to allocate
13747
13748                 op2 = impPopStack().val;
13749                 assertImp(genActualTypeIsIntOrI(op2->gtType));
13750
13751                 if (verCurrentState.esStackDepth != 0)
13752                 {
13753                     BADCODE("Localloc can only be used when the stack is empty");
13754                 }
13755
13756                 op1 = gtNewOperNode(GT_LCLHEAP, TYP_I_IMPL, op2);
13757
13758                 // May throw a stack overflow exception. Obviously, we don't want locallocs to be CSE'd.
13759
13760                 op1->gtFlags |= (GTF_EXCEPT | GTF_DONT_CSE);
13761
13762                 impPushOnStack(op1, tiRetVal);
13763                 break;
13764
13765             case CEE_ISINST:
13766
13767                 /* Get the type token */
13768                 assertImp(sz == sizeof(unsigned));
13769
13770                 _impResolveToken(CORINFO_TOKENKIND_Casting);
13771
13772                 JITDUMP(" %08X", resolvedToken.token);
13773
13774                 if (!opts.IsReadyToRun())
13775                 {
13776                     op2 = impTokenToHandle(&resolvedToken, nullptr, FALSE);
13777                     if (op2 == nullptr)
13778                     { // compDonotInline()
13779                         return;
13780                     }
13781                 }
13782
13783                 if (tiVerificationNeeded)
13784                 {
13785                     Verify(impStackTop().seTypeInfo.IsObjRef(), "obj reference needed");
13786                     // Even if this is a value class, we know it is boxed.
13787                     tiRetVal = typeInfo(TI_REF, resolvedToken.hClass);
13788                 }
13789                 accessAllowedResult =
13790                     info.compCompHnd->canAccessClass(&resolvedToken, info.compMethodHnd, &calloutHelper);
13791                 impHandleAccessAllowed(accessAllowedResult, &calloutHelper);
13792
13793                 op1 = impPopStack().val;
13794
13795 #ifdef FEATURE_READYTORUN_COMPILER
13796                 if (opts.IsReadyToRun())
13797                 {
13798                     GenTreePtr opLookup =
13799                         impReadyToRunHelperToTree(&resolvedToken, CORINFO_HELP_READYTORUN_ISINSTANCEOF, TYP_REF,
13800                                                   gtNewArgList(op1));
13801                     usingReadyToRunHelper = (opLookup != nullptr);
13802                     op1                   = (usingReadyToRunHelper ? opLookup : op1);
13803
13804                     if (!usingReadyToRunHelper)
13805                     {
13806                         // TODO: ReadyToRun: When generic dictionary lookups are necessary, replace the lookup call
13807                         // and the isinstanceof_any call with a single call to a dynamic R2R cell that will:
13808                         //      1) Load the context
13809                         //      2) Perform the generic dictionary lookup and caching, and generate the appropriate stub
13810                         //      3) Perform the 'is instance' check on the input object
13811                         // Reason: performance (today, we'll always use the slow helper for the R2R generics case)
13812
13813                         op2 = impTokenToHandle(&resolvedToken, nullptr, FALSE);
13814                         if (op2 == nullptr)
13815                         { // compDonotInline()
13816                             return;
13817                         }
13818                     }
13819                 }
13820
13821                 if (!usingReadyToRunHelper)
13822 #endif
13823                 {
13824                     op1 = impCastClassOrIsInstToTree(op1, op2, &resolvedToken, false);
13825                 }
13826                 if (compDonotInline())
13827                 {
13828                     return;
13829                 }
13830
13831                 impPushOnStack(op1, tiRetVal);
13832
13833                 break;
13834
13835             case CEE_REFANYVAL:
13836
13837                 // get the class handle and make a ICON node out of it
13838
13839                 _impResolveToken(CORINFO_TOKENKIND_Class);
13840
13841                 JITDUMP(" %08X", resolvedToken.token);
13842
13843                 op2 = impTokenToHandle(&resolvedToken);
13844                 if (op2 == nullptr)
13845                 { // compDonotInline()
13846                     return;
13847                 }
13848
13849                 if (tiVerificationNeeded)
13850                 {
13851                     Verify(typeInfo::AreEquivalent(impStackTop().seTypeInfo, verMakeTypeInfo(impGetRefAnyClass())),
13852                            "need refany");
13853                     tiRetVal = verMakeTypeInfo(resolvedToken.hClass).MakeByRef();
13854                 }
13855
13856                 op1 = impPopStack().val;
13857                 // make certain it is normalized;
13858                 op1 = impNormStructVal(op1, impGetRefAnyClass(), (unsigned)CHECK_SPILL_ALL);
13859
13860                 // Call helper GETREFANY(classHandle, op1);
13861                 args = gtNewArgList(op2, op1);
13862                 op1  = gtNewHelperCallNode(CORINFO_HELP_GETREFANY, TYP_BYREF, 0, args);
13863
13864                 impPushOnStack(op1, tiRetVal);
13865                 break;
13866
13867             case CEE_REFANYTYPE:
13868
13869                 if (tiVerificationNeeded)
13870                 {
13871                     Verify(typeInfo::AreEquivalent(impStackTop().seTypeInfo, verMakeTypeInfo(impGetRefAnyClass())),
13872                            "need refany");
13873                 }
13874
13875                 op1 = impPopStack().val;
13876
13877                 // make certain it is normalized;
13878                 op1 = impNormStructVal(op1, impGetRefAnyClass(), (unsigned)CHECK_SPILL_ALL);
13879
13880                 if (op1->gtOper == GT_OBJ)
13881                 {
13882                     // Get the address of the refany
13883                     op1 = op1->gtOp.gtOp1;
13884
13885                     // Fetch the type from the correct slot
13886                     op1 = gtNewOperNode(GT_ADD, TYP_BYREF, op1,
13887                                         gtNewIconNode(offsetof(CORINFO_RefAny, type), TYP_I_IMPL));
13888                     op1 = gtNewOperNode(GT_IND, TYP_BYREF, op1);
13889                 }
13890                 else
13891                 {
13892                     assertImp(op1->gtOper == GT_MKREFANY);
13893
13894                     // The pointer may have side-effects
13895                     if (op1->gtOp.gtOp1->gtFlags & GTF_SIDE_EFFECT)
13896                     {
13897                         impAppendTree(op1->gtOp.gtOp1, (unsigned)CHECK_SPILL_ALL, impCurStmtOffs);
13898 #ifdef DEBUG
13899                         impNoteLastILoffs();
13900 #endif
13901                     }
13902
13903                     // We already have the class handle
13904                     op1 = op1->gtOp.gtOp2;
13905                 }
13906
13907                 // convert native TypeHandle to RuntimeTypeHandle
13908                 {
13909                     GenTreeArgList* helperArgs = gtNewArgList(op1);
13910
13911                     op1 = gtNewHelperCallNode(CORINFO_HELP_TYPEHANDLE_TO_RUNTIMETYPE_MAYBENULL, TYP_STRUCT, GTF_EXCEPT,
13912                                               helperArgs);
13913
13914                     // The handle struct is returned in register
13915                     op1->gtCall.gtReturnType = TYP_REF;
13916
13917                     tiRetVal = typeInfo(TI_STRUCT, impGetTypeHandleClass());
13918                 }
13919
13920                 impPushOnStack(op1, tiRetVal);
13921                 break;
13922
13923             case CEE_LDTOKEN:
13924             {
13925                 /* Get the Class index */
13926                 assertImp(sz == sizeof(unsigned));
13927                 lastLoadToken = codeAddr;
13928                 _impResolveToken(CORINFO_TOKENKIND_Ldtoken);
13929
13930                 tokenType = info.compCompHnd->getTokenTypeAsHandle(&resolvedToken);
13931
13932                 op1 = impTokenToHandle(&resolvedToken, nullptr, TRUE);
13933                 if (op1 == nullptr)
13934                 { // compDonotInline()
13935                     return;
13936                 }
13937
13938                 helper = CORINFO_HELP_TYPEHANDLE_TO_RUNTIMETYPE;
13939                 assert(resolvedToken.hClass != nullptr);
13940
13941                 if (resolvedToken.hMethod != nullptr)
13942                 {
13943                     helper = CORINFO_HELP_METHODDESC_TO_STUBRUNTIMEMETHOD;
13944                 }
13945                 else if (resolvedToken.hField != nullptr)
13946                 {
13947                     helper = CORINFO_HELP_FIELDDESC_TO_STUBRUNTIMEFIELD;
13948                 }
13949
13950                 GenTreeArgList* helperArgs = gtNewArgList(op1);
13951
13952                 op1 = gtNewHelperCallNode(helper, TYP_STRUCT, GTF_EXCEPT, helperArgs);
13953
13954                 // The handle struct is returned in register
13955                 op1->gtCall.gtReturnType = TYP_REF;
13956
13957                 tiRetVal = verMakeTypeInfo(tokenType);
13958                 impPushOnStack(op1, tiRetVal);
13959             }
13960             break;
13961
13962             case CEE_UNBOX:
13963             case CEE_UNBOX_ANY:
13964             {
13965                 /* Get the Class index */
13966                 assertImp(sz == sizeof(unsigned));
13967
13968                 _impResolveToken(CORINFO_TOKENKIND_Class);
13969
13970                 JITDUMP(" %08X", resolvedToken.token);
13971
13972                 BOOL runtimeLookup;
13973                 op2 = impTokenToHandle(&resolvedToken, &runtimeLookup);
13974                 if (op2 == nullptr)
13975                 { // compDonotInline()
13976                     return;
13977                 }
13978
13979                 // Run this always so we can get access exceptions even with SkipVerification.
13980                 accessAllowedResult =
13981                     info.compCompHnd->canAccessClass(&resolvedToken, info.compMethodHnd, &calloutHelper);
13982                 impHandleAccessAllowed(accessAllowedResult, &calloutHelper);
13983
13984                 if (opcode == CEE_UNBOX_ANY && !eeIsValueClass(resolvedToken.hClass))
13985                 {
13986                     if (tiVerificationNeeded)
13987                     {
13988                         typeInfo tiUnbox = impStackTop().seTypeInfo;
13989                         Verify(tiUnbox.IsObjRef(), "bad unbox.any arg");
13990                         tiRetVal = verMakeTypeInfo(resolvedToken.hClass);
13991                         tiRetVal.NormaliseForStack();
13992                     }
13993                     op1 = impPopStack().val;
13994                     goto CASTCLASS;
13995                 }
13996
13997                 /* Pop the object and create the unbox helper call */
13998                 /* You might think that for UNBOX_ANY we need to push a different */
13999                 /* (non-byref) type, but here we're making the tiRetVal that is used */
14000                 /* for the intermediate pointer which we then transfer onto the OBJ */
14001                 /* instruction.  OBJ then creates the appropriate tiRetVal. */
14002                 if (tiVerificationNeeded)
14003                 {
14004                     typeInfo tiUnbox = impStackTop().seTypeInfo;
14005                     Verify(tiUnbox.IsObjRef(), "Bad unbox arg");
14006
14007                     tiRetVal = verMakeTypeInfo(resolvedToken.hClass);
14008                     Verify(tiRetVal.IsValueClass(), "not value class");
14009                     tiRetVal.MakeByRef();
14010
14011                     // We always come from an objref, so this is safe byref
14012                     tiRetVal.SetIsPermanentHomeByRef();
14013                     tiRetVal.SetIsReadonlyByRef();
14014                 }
14015
14016                 op1 = impPopStack().val;
14017                 assertImp(op1->gtType == TYP_REF);
14018
14019                 helper = info.compCompHnd->getUnBoxHelper(resolvedToken.hClass);
14020                 assert(helper == CORINFO_HELP_UNBOX || helper == CORINFO_HELP_UNBOX_NULLABLE);
14021
14022                 // We only want to expand inline the normal UNBOX helper;
14023                 expandInline = (helper == CORINFO_HELP_UNBOX);
14024
14025                 if (expandInline)
14026                 {
14027                     if (compCurBB->isRunRarely())
14028                     {
14029                         expandInline = false; // not worth the code expansion
14030                     }
14031                 }
14032
14033                 if (expandInline)
14034                 {
14035                     // we are doing normal unboxing
14036                     // inline the common case of the unbox helper
14037                     // UNBOX(exp) morphs into
14038                     // clone = pop(exp);
14039                     // ((*clone == typeToken) ? nop : helper(clone, typeToken));
14040                     // push(clone + sizeof(void*))
14041                     //
14042                     GenTreePtr cloneOperand;
14043                     op1 = impCloneExpr(op1, &cloneOperand, NO_CLASS_HANDLE, (unsigned)CHECK_SPILL_ALL,
14044                                        nullptr DEBUGARG("inline UNBOX clone1"));
14045                     op1 = gtNewOperNode(GT_IND, TYP_I_IMPL, op1);
14046
14047                     GenTreePtr condBox = gtNewOperNode(GT_EQ, TYP_INT, op1, op2);
14048
14049                     op1 = impCloneExpr(cloneOperand, &cloneOperand, NO_CLASS_HANDLE, (unsigned)CHECK_SPILL_ALL,
14050                                        nullptr DEBUGARG("inline UNBOX clone2"));
14051                     op2 = impTokenToHandle(&resolvedToken);
14052                     if (op2 == nullptr)
14053                     { // compDonotInline()
14054                         return;
14055                     }
14056                     args = gtNewArgList(op2, op1);
14057                     op1  = gtNewHelperCallNode(helper, TYP_VOID, 0, args);
14058
14059                     op1 = new (this, GT_COLON) GenTreeColon(TYP_VOID, gtNewNothingNode(), op1);
14060                     op1 = gtNewQmarkNode(TYP_VOID, condBox, op1);
14061                     condBox->gtFlags |= GTF_RELOP_QMARK;
14062
14063                     // QMARK nodes cannot reside on the evaluation stack. Because there
14064                     // may be other trees on the evaluation stack that side-effect the
14065                     // sources of the UNBOX operation we must spill the stack.
14066
14067                     impAppendTree(op1, (unsigned)CHECK_SPILL_ALL, impCurStmtOffs);
14068
14069                     // Create the address-expression to reference past the object header
14070                     // to the beginning of the value-type. Today this means adjusting
14071                     // past the base of the objects vtable field which is pointer sized.
14072
14073                     op2 = gtNewIconNode(sizeof(void*), TYP_I_IMPL);
14074                     op1 = gtNewOperNode(GT_ADD, TYP_BYREF, cloneOperand, op2);
14075                 }
14076                 else
14077                 {
14078                     unsigned callFlags = (helper == CORINFO_HELP_UNBOX) ? 0 : GTF_EXCEPT;
14079
14080                     // Don't optimize, just call the helper and be done with it
14081                     args = gtNewArgList(op2, op1);
14082                     op1  = gtNewHelperCallNode(helper,
14083                                               (var_types)((helper == CORINFO_HELP_UNBOX) ? TYP_BYREF : TYP_STRUCT),
14084                                               callFlags, args);
14085                 }
14086
14087                 assert(helper == CORINFO_HELP_UNBOX && op1->gtType == TYP_BYREF || // Unbox helper returns a byref.
14088                        helper == CORINFO_HELP_UNBOX_NULLABLE &&
14089                            varTypeIsStruct(op1) // UnboxNullable helper returns a struct.
14090                        );
14091
14092                 /*
14093                   ----------------------------------------------------------------------
14094                   | \ helper  |                         |                              |
14095                   |   \       |                         |                              |
14096                   |     \     | CORINFO_HELP_UNBOX      | CORINFO_HELP_UNBOX_NULLABLE  |
14097                   |       \   | (which returns a BYREF) | (which returns a STRUCT)     |                              |
14098                   | opcode  \ |                         |                              |
14099                   |---------------------------------------------------------------------
14100                   | UNBOX     | push the BYREF          | spill the STRUCT to a local, |
14101                   |           |                         | push the BYREF to this local |
14102                   |---------------------------------------------------------------------
14103                   | UNBOX_ANY | push a GT_OBJ of        | push the STRUCT              |
14104                   |           | the BYREF               | For Linux when the           |
14105                   |           |                         |  struct is returned in two   |
14106                   |           |                         |  registers create a temp     |
14107                   |           |                         |  which address is passed to  |
14108                   |           |                         |  the unbox_nullable helper.  |
14109                   |---------------------------------------------------------------------
14110                 */
14111
14112                 if (opcode == CEE_UNBOX)
14113                 {
14114                     if (helper == CORINFO_HELP_UNBOX_NULLABLE)
14115                     {
14116                         // Unbox nullable helper returns a struct type.
14117                         // We need to spill it to a temp so than can take the address of it.
14118                         // Here we need unsafe value cls check, since the address of struct is taken to be used
14119                         // further along and potetially be exploitable.
14120
14121                         unsigned tmp = lvaGrabTemp(true DEBUGARG("UNBOXing a nullable"));
14122                         lvaSetStruct(tmp, resolvedToken.hClass, true /* unsafe value cls check */);
14123
14124                         op2 = gtNewLclvNode(tmp, TYP_STRUCT);
14125                         op1 = impAssignStruct(op2, op1, resolvedToken.hClass, (unsigned)CHECK_SPILL_ALL);
14126                         assert(op1->gtType == TYP_VOID); // We must be assigning the return struct to the temp.
14127
14128                         op2 = gtNewLclvNode(tmp, TYP_STRUCT);
14129                         op2 = gtNewOperNode(GT_ADDR, TYP_BYREF, op2);
14130                         op1 = gtNewOperNode(GT_COMMA, TYP_BYREF, op1, op2);
14131                     }
14132
14133                     assert(op1->gtType == TYP_BYREF);
14134                     assert(!tiVerificationNeeded || tiRetVal.IsByRef());
14135                 }
14136                 else
14137                 {
14138                     assert(opcode == CEE_UNBOX_ANY);
14139
14140                     if (helper == CORINFO_HELP_UNBOX)
14141                     {
14142                         // Normal unbox helper returns a TYP_BYREF.
14143                         impPushOnStack(op1, tiRetVal);
14144                         oper = GT_OBJ;
14145                         goto OBJ;
14146                     }
14147
14148                     assert(helper == CORINFO_HELP_UNBOX_NULLABLE && "Make sure the helper is nullable!");
14149
14150 #if FEATURE_MULTIREG_RET
14151
14152                     if (varTypeIsStruct(op1) && IsMultiRegReturnedType(resolvedToken.hClass))
14153                     {
14154                         // Unbox nullable helper returns a TYP_STRUCT.
14155                         // For the multi-reg case we need to spill it to a temp so that
14156                         // we can pass the address to the unbox_nullable jit helper.
14157
14158                         unsigned tmp = lvaGrabTemp(true DEBUGARG("UNBOXing a register returnable nullable"));
14159                         lvaTable[tmp].lvIsMultiRegArg = true;
14160                         lvaSetStruct(tmp, resolvedToken.hClass, true /* unsafe value cls check */);
14161
14162                         op2 = gtNewLclvNode(tmp, TYP_STRUCT);
14163                         op1 = impAssignStruct(op2, op1, resolvedToken.hClass, (unsigned)CHECK_SPILL_ALL);
14164                         assert(op1->gtType == TYP_VOID); // We must be assigning the return struct to the temp.
14165
14166                         op2 = gtNewLclvNode(tmp, TYP_STRUCT);
14167                         op2 = gtNewOperNode(GT_ADDR, TYP_BYREF, op2);
14168                         op1 = gtNewOperNode(GT_COMMA, TYP_BYREF, op1, op2);
14169
14170                         // In this case the return value of the unbox helper is TYP_BYREF.
14171                         // Make sure the right type is placed on the operand type stack.
14172                         impPushOnStack(op1, tiRetVal);
14173
14174                         // Load the struct.
14175                         oper = GT_OBJ;
14176
14177                         assert(op1->gtType == TYP_BYREF);
14178                         assert(!tiVerificationNeeded || tiRetVal.IsByRef());
14179
14180                         goto OBJ;
14181                     }
14182                     else
14183
14184 #endif // !FEATURE_MULTIREG_RET
14185
14186                     {
14187                         // If non register passable struct we have it materialized in the RetBuf.
14188                         assert(op1->gtType == TYP_STRUCT);
14189                         tiRetVal = verMakeTypeInfo(resolvedToken.hClass);
14190                         assert(tiRetVal.IsValueClass());
14191                     }
14192                 }
14193
14194                 impPushOnStack(op1, tiRetVal);
14195             }
14196             break;
14197
14198             case CEE_BOX:
14199             {
14200                 /* Get the Class index */
14201                 assertImp(sz == sizeof(unsigned));
14202
14203                 _impResolveToken(CORINFO_TOKENKIND_Box);
14204
14205                 JITDUMP(" %08X", resolvedToken.token);
14206
14207                 if (tiVerificationNeeded)
14208                 {
14209                     typeInfo tiActual = impStackTop().seTypeInfo;
14210                     typeInfo tiBox    = verMakeTypeInfo(resolvedToken.hClass);
14211
14212                     Verify(verIsBoxable(tiBox), "boxable type expected");
14213
14214                     // check the class constraints of the boxed type in case we are boxing an uninitialized value
14215                     Verify(info.compCompHnd->satisfiesClassConstraints(resolvedToken.hClass),
14216                            "boxed type has unsatisfied class constraints");
14217
14218                     Verify(tiCompatibleWith(tiActual, tiBox.NormaliseForStack(), true), "type mismatch");
14219
14220                     // Observation: the following code introduces a boxed value class on the stack, but,
14221                     // according to the ECMA spec, one would simply expect: tiRetVal =
14222                     // typeInfo(TI_REF,impGetObjectClass());
14223
14224                     // Push the result back on the stack,
14225                     // even if clsHnd is a value class we want the TI_REF
14226                     // we call back to the EE to get find out what hte type we should push (for nullable<T> we push T)
14227                     tiRetVal = typeInfo(TI_REF, info.compCompHnd->getTypeForBox(resolvedToken.hClass));
14228                 }
14229
14230                 accessAllowedResult =
14231                     info.compCompHnd->canAccessClass(&resolvedToken, info.compMethodHnd, &calloutHelper);
14232                 impHandleAccessAllowed(accessAllowedResult, &calloutHelper);
14233
14234                 // Note BOX can be used on things that are not value classes, in which
14235                 // case we get a NOP.  However the verifier's view of the type on the
14236                 // stack changes (in generic code a 'T' becomes a 'boxed T')
14237                 if (!eeIsValueClass(resolvedToken.hClass))
14238                 {
14239                     verCurrentState.esStack[verCurrentState.esStackDepth - 1].seTypeInfo = tiRetVal;
14240                     break;
14241                 }
14242
14243                 // Look ahead for unbox.any
14244                 if (codeAddr + (sz + 1 + sizeof(mdToken)) <= codeEndp && codeAddr[sz] == CEE_UNBOX_ANY)
14245                 {
14246                     DWORD classAttribs = info.compCompHnd->getClassAttribs(resolvedToken.hClass);
14247                     if (!(classAttribs & CORINFO_FLG_SHAREDINST))
14248                     {
14249                         CORINFO_RESOLVED_TOKEN unboxResolvedToken;
14250
14251                         impResolveToken(codeAddr + (sz + 1), &unboxResolvedToken, CORINFO_TOKENKIND_Class);
14252
14253                         if (unboxResolvedToken.hClass == resolvedToken.hClass)
14254                         {
14255                             // Skip the next unbox.any instruction
14256                             sz += sizeof(mdToken) + 1;
14257                             break;
14258                         }
14259                     }
14260                 }
14261
14262                 impImportAndPushBox(&resolvedToken);
14263                 if (compDonotInline())
14264                 {
14265                     return;
14266                 }
14267             }
14268             break;
14269
14270             case CEE_SIZEOF:
14271
14272                 /* Get the Class index */
14273                 assertImp(sz == sizeof(unsigned));
14274
14275                 _impResolveToken(CORINFO_TOKENKIND_Class);
14276
14277                 JITDUMP(" %08X", resolvedToken.token);
14278
14279                 if (tiVerificationNeeded)
14280                 {
14281                     tiRetVal = typeInfo(TI_INT);
14282                 }
14283
14284                 op1 = gtNewIconNode(info.compCompHnd->getClassSize(resolvedToken.hClass));
14285                 impPushOnStack(op1, tiRetVal);
14286                 break;
14287
14288             case CEE_CASTCLASS:
14289
14290                 /* Get the Class index */
14291
14292                 assertImp(sz == sizeof(unsigned));
14293
14294                 _impResolveToken(CORINFO_TOKENKIND_Casting);
14295
14296                 JITDUMP(" %08X", resolvedToken.token);
14297
14298                 if (!opts.IsReadyToRun())
14299                 {
14300                     op2 = impTokenToHandle(&resolvedToken, nullptr, FALSE);
14301                     if (op2 == nullptr)
14302                     { // compDonotInline()
14303                         return;
14304                     }
14305                 }
14306
14307                 if (tiVerificationNeeded)
14308                 {
14309                     Verify(impStackTop().seTypeInfo.IsObjRef(), "object ref expected");
14310                     // box it
14311                     tiRetVal = typeInfo(TI_REF, resolvedToken.hClass);
14312                 }
14313
14314                 accessAllowedResult =
14315                     info.compCompHnd->canAccessClass(&resolvedToken, info.compMethodHnd, &calloutHelper);
14316                 impHandleAccessAllowed(accessAllowedResult, &calloutHelper);
14317
14318                 op1 = impPopStack().val;
14319
14320             /* Pop the address and create the 'checked cast' helper call */
14321
14322             // At this point we expect typeRef to contain the token, op1 to contain the value being cast,
14323             // and op2 to contain code that creates the type handle corresponding to typeRef
14324             CASTCLASS:
14325
14326 #ifdef FEATURE_READYTORUN_COMPILER
14327                 if (opts.IsReadyToRun())
14328                 {
14329                     GenTreePtr opLookup = impReadyToRunHelperToTree(&resolvedToken, CORINFO_HELP_READYTORUN_CHKCAST,
14330                                                                     TYP_REF, gtNewArgList(op1));
14331                     usingReadyToRunHelper = (opLookup != nullptr);
14332                     op1                   = (usingReadyToRunHelper ? opLookup : op1);
14333
14334                     if (!usingReadyToRunHelper)
14335                     {
14336                         // TODO: ReadyToRun: When generic dictionary lookups are necessary, replace the lookup call
14337                         // and the chkcastany call with a single call to a dynamic R2R cell that will:
14338                         //      1) Load the context
14339                         //      2) Perform the generic dictionary lookup and caching, and generate the appropriate stub
14340                         //      3) Check the object on the stack for the type-cast
14341                         // Reason: performance (today, we'll always use the slow helper for the R2R generics case)
14342
14343                         op2 = impTokenToHandle(&resolvedToken, nullptr, FALSE);
14344                         if (op2 == nullptr)
14345                         { // compDonotInline()
14346                             return;
14347                         }
14348                     }
14349                 }
14350
14351                 if (!usingReadyToRunHelper)
14352 #endif
14353                 {
14354                     op1 = impCastClassOrIsInstToTree(op1, op2, &resolvedToken, true);
14355                 }
14356                 if (compDonotInline())
14357                 {
14358                     return;
14359                 }
14360
14361                 /* Push the result back on the stack */
14362                 impPushOnStack(op1, tiRetVal);
14363                 break;
14364
14365             case CEE_THROW:
14366
14367                 if (compIsForInlining())
14368                 {
14369                     // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
14370                     // TODO: Will this be too strict, given that we will inline many basic blocks?
14371                     // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
14372
14373                     /* Do we have just the exception on the stack ?*/
14374
14375                     if (verCurrentState.esStackDepth != 1)
14376                     {
14377                         /* if not, just don't inline the method */
14378
14379                         compInlineResult->NoteFatal(InlineObservation::CALLEE_THROW_WITH_INVALID_STACK);
14380                         return;
14381                     }
14382                 }
14383
14384                 if (tiVerificationNeeded)
14385                 {
14386                     tiRetVal = impStackTop().seTypeInfo;
14387                     Verify(tiRetVal.IsObjRef(), "object ref expected");
14388                     if (verTrackObjCtorInitState && (verCurrentState.thisInitialized != TIS_Init))
14389                     {
14390                         Verify(!tiRetVal.IsThisPtr(), "throw uninitialized this");
14391                     }
14392                 }
14393
14394                 block->bbSetRunRarely(); // any block with a throw is rare
14395                 /* Pop the exception object and create the 'throw' helper call */
14396
14397                 op1 = gtNewHelperCallNode(CORINFO_HELP_THROW, TYP_VOID, GTF_EXCEPT, gtNewArgList(impPopStack().val));
14398
14399             EVAL_APPEND:
14400                 if (verCurrentState.esStackDepth > 0)
14401                 {
14402                     impEvalSideEffects();
14403                 }
14404
14405                 assert(verCurrentState.esStackDepth == 0);
14406
14407                 goto APPEND;
14408
14409             case CEE_RETHROW:
14410
14411                 assert(!compIsForInlining());
14412
14413                 if (info.compXcptnsCount == 0)
14414                 {
14415                     BADCODE("rethrow outside catch");
14416                 }
14417
14418                 if (tiVerificationNeeded)
14419                 {
14420                     Verify(block->hasHndIndex(), "rethrow outside catch");
14421                     if (block->hasHndIndex())
14422                     {
14423                         EHblkDsc* HBtab = ehGetDsc(block->getHndIndex());
14424                         Verify(!HBtab->HasFinallyOrFaultHandler(), "rethrow in finally or fault");
14425                         if (HBtab->HasFilter())
14426                         {
14427                             // we better be in the handler clause part, not the filter part
14428                             Verify(jitIsBetween(compCurBB->bbCodeOffs, HBtab->ebdHndBegOffs(), HBtab->ebdHndEndOffs()),
14429                                    "rethrow in filter");
14430                         }
14431                     }
14432                 }
14433
14434                 /* Create the 'rethrow' helper call */
14435
14436                 op1 = gtNewHelperCallNode(CORINFO_HELP_RETHROW, TYP_VOID, GTF_EXCEPT);
14437
14438                 goto EVAL_APPEND;
14439
14440             case CEE_INITOBJ:
14441
14442                 assertImp(sz == sizeof(unsigned));
14443
14444                 _impResolveToken(CORINFO_TOKENKIND_Class);
14445
14446                 JITDUMP(" %08X", resolvedToken.token);
14447
14448                 if (tiVerificationNeeded)
14449                 {
14450                     typeInfo tiTo    = impStackTop().seTypeInfo;
14451                     typeInfo tiInstr = verMakeTypeInfo(resolvedToken.hClass);
14452
14453                     Verify(tiTo.IsByRef(), "byref expected");
14454                     Verify(!tiTo.IsReadonlyByRef(), "write to readonly byref");
14455
14456                     Verify(tiCompatibleWith(tiInstr, tiTo.DereferenceByRef(), false),
14457                            "type operand incompatible with type of address");
14458                 }
14459
14460                 size = info.compCompHnd->getClassSize(resolvedToken.hClass); // Size
14461                 op2  = gtNewIconNode(0);                                     // Value
14462                 op1  = impPopStack().val;                                    // Dest
14463                 op1  = gtNewBlockVal(op1, size);
14464                 op1  = gtNewBlkOpNode(op1, op2, size, (prefixFlags & PREFIX_VOLATILE) != 0, false);
14465                 goto SPILL_APPEND;
14466
14467             case CEE_INITBLK:
14468
14469                 if (tiVerificationNeeded)
14470                 {
14471                     Verify(false, "bad opcode");
14472                 }
14473
14474                 op3 = impPopStack().val; // Size
14475                 op2 = impPopStack().val; // Value
14476                 op1 = impPopStack().val; // Dest
14477
14478                 if (op3->IsCnsIntOrI())
14479                 {
14480                     size = (unsigned)op3->AsIntConCommon()->IconValue();
14481                     op1  = new (this, GT_BLK) GenTreeBlk(GT_BLK, TYP_STRUCT, op1, size);
14482                 }
14483                 else
14484                 {
14485                     op1  = new (this, GT_DYN_BLK) GenTreeDynBlk(op1, op3);
14486                     size = 0;
14487                 }
14488                 op1 = gtNewBlkOpNode(op1, op2, size, (prefixFlags & PREFIX_VOLATILE) != 0, false);
14489
14490                 goto SPILL_APPEND;
14491
14492             case CEE_CPBLK:
14493
14494                 if (tiVerificationNeeded)
14495                 {
14496                     Verify(false, "bad opcode");
14497                 }
14498                 op3 = impPopStack().val; // Size
14499                 op2 = impPopStack().val; // Src
14500                 op1 = impPopStack().val; // Dest
14501
14502                 if (op3->IsCnsIntOrI())
14503                 {
14504                     size = (unsigned)op3->AsIntConCommon()->IconValue();
14505                     op1  = new (this, GT_BLK) GenTreeBlk(GT_BLK, TYP_STRUCT, op1, size);
14506                 }
14507                 else
14508                 {
14509                     op1  = new (this, GT_DYN_BLK) GenTreeDynBlk(op1, op3);
14510                     size = 0;
14511                 }
14512                 if (op2->OperGet() == GT_ADDR)
14513                 {
14514                     op2 = op2->gtOp.gtOp1;
14515                 }
14516                 else
14517                 {
14518                     op2 = gtNewOperNode(GT_IND, TYP_STRUCT, op2);
14519                 }
14520
14521                 op1 = gtNewBlkOpNode(op1, op2, size, (prefixFlags & PREFIX_VOLATILE) != 0, true);
14522                 goto SPILL_APPEND;
14523
14524             case CEE_CPOBJ:
14525
14526                 assertImp(sz == sizeof(unsigned));
14527
14528                 _impResolveToken(CORINFO_TOKENKIND_Class);
14529
14530                 JITDUMP(" %08X", resolvedToken.token);
14531
14532                 if (tiVerificationNeeded)
14533                 {
14534                     typeInfo tiFrom  = impStackTop().seTypeInfo;
14535                     typeInfo tiTo    = impStackTop(1).seTypeInfo;
14536                     typeInfo tiInstr = verMakeTypeInfo(resolvedToken.hClass);
14537
14538                     Verify(tiFrom.IsByRef(), "expected byref source");
14539                     Verify(tiTo.IsByRef(), "expected byref destination");
14540
14541                     Verify(tiCompatibleWith(tiFrom.DereferenceByRef(), tiInstr, false),
14542                            "type of source address incompatible with type operand");
14543                     Verify(!tiTo.IsReadonlyByRef(), "write to readonly byref");
14544                     Verify(tiCompatibleWith(tiInstr, tiTo.DereferenceByRef(), false),
14545                            "type operand incompatible with type of destination address");
14546                 }
14547
14548                 if (!eeIsValueClass(resolvedToken.hClass))
14549                 {
14550                     op1 = impPopStack().val; // address to load from
14551
14552                     impBashVarAddrsToI(op1);
14553
14554                     assertImp(genActualType(op1->gtType) == TYP_I_IMPL || op1->gtType == TYP_BYREF);
14555
14556                     op1 = gtNewOperNode(GT_IND, TYP_REF, op1);
14557                     op1->gtFlags |= GTF_EXCEPT | GTF_GLOB_REF;
14558
14559                     impPushOnStackNoType(op1);
14560                     opcode = CEE_STIND_REF;
14561                     lclTyp = TYP_REF;
14562                     goto STIND_POST_VERIFY;
14563                 }
14564
14565                 op2 = impPopStack().val; // Src
14566                 op1 = impPopStack().val; // Dest
14567                 op1 = gtNewCpObjNode(op1, op2, resolvedToken.hClass, ((prefixFlags & PREFIX_VOLATILE) != 0));
14568                 goto SPILL_APPEND;
14569
14570             case CEE_STOBJ:
14571             {
14572                 assertImp(sz == sizeof(unsigned));
14573
14574                 _impResolveToken(CORINFO_TOKENKIND_Class);
14575
14576                 JITDUMP(" %08X", resolvedToken.token);
14577
14578                 if (eeIsValueClass(resolvedToken.hClass))
14579                 {
14580                     lclTyp = TYP_STRUCT;
14581                 }
14582                 else
14583                 {
14584                     lclTyp = TYP_REF;
14585                 }
14586
14587                 if (tiVerificationNeeded)
14588                 {
14589
14590                     typeInfo tiPtr = impStackTop(1).seTypeInfo;
14591
14592                     // Make sure we have a good looking byref
14593                     Verify(tiPtr.IsByRef(), "pointer not byref");
14594                     Verify(!tiPtr.IsReadonlyByRef(), "write to readonly byref");
14595                     if (!tiPtr.IsByRef() || tiPtr.IsReadonlyByRef())
14596                     {
14597                         compUnsafeCastUsed = true;
14598                     }
14599
14600                     typeInfo ptrVal = DereferenceByRef(tiPtr);
14601                     typeInfo argVal = verMakeTypeInfo(resolvedToken.hClass);
14602
14603                     if (!tiCompatibleWith(impStackTop(0).seTypeInfo, NormaliseForStack(argVal), true))
14604                     {
14605                         Verify(false, "type of value incompatible with type operand");
14606                         compUnsafeCastUsed = true;
14607                     }
14608
14609                     if (!tiCompatibleWith(argVal, ptrVal, false))
14610                     {
14611                         Verify(false, "type operand incompatible with type of address");
14612                         compUnsafeCastUsed = true;
14613                     }
14614                 }
14615                 else
14616                 {
14617                     compUnsafeCastUsed = true;
14618                 }
14619
14620                 if (lclTyp == TYP_REF)
14621                 {
14622                     opcode = CEE_STIND_REF;
14623                     goto STIND_POST_VERIFY;
14624                 }
14625
14626                 CorInfoType jitTyp = info.compCompHnd->asCorInfoType(resolvedToken.hClass);
14627                 if (impIsPrimitive(jitTyp))
14628                 {
14629                     lclTyp = JITtype2varType(jitTyp);
14630                     goto STIND_POST_VERIFY;
14631                 }
14632
14633                 op2 = impPopStack().val; // Value
14634                 op1 = impPopStack().val; // Ptr
14635
14636                 assertImp(varTypeIsStruct(op2));
14637
14638                 op1 = impAssignStructPtr(op1, op2, resolvedToken.hClass, (unsigned)CHECK_SPILL_ALL);
14639                 goto SPILL_APPEND;
14640             }
14641
14642             case CEE_MKREFANY:
14643
14644                 assert(!compIsForInlining());
14645
14646                 // Being lazy here. Refanys are tricky in terms of gc tracking.
14647                 // Since it is uncommon, just don't perform struct promotion in any method that contains mkrefany.
14648
14649                 JITDUMP("disabling struct promotion because of mkrefany\n");
14650                 fgNoStructPromotion = true;
14651
14652                 oper = GT_MKREFANY;
14653                 assertImp(sz == sizeof(unsigned));
14654
14655                 _impResolveToken(CORINFO_TOKENKIND_Class);
14656
14657                 JITDUMP(" %08X", resolvedToken.token);
14658
14659                 op2 = impTokenToHandle(&resolvedToken, nullptr, TRUE);
14660                 if (op2 == nullptr)
14661                 { // compDonotInline()
14662                     return;
14663                 }
14664
14665                 if (tiVerificationNeeded)
14666                 {
14667                     typeInfo tiPtr   = impStackTop().seTypeInfo;
14668                     typeInfo tiInstr = verMakeTypeInfo(resolvedToken.hClass);
14669
14670                     Verify(!verIsByRefLike(tiInstr), "mkrefany of byref-like class");
14671                     Verify(!tiPtr.IsReadonlyByRef(), "readonly byref used with mkrefany");
14672                     Verify(typeInfo::AreEquivalent(tiPtr.DereferenceByRef(), tiInstr), "type mismatch");
14673                 }
14674
14675                 accessAllowedResult =
14676                     info.compCompHnd->canAccessClass(&resolvedToken, info.compMethodHnd, &calloutHelper);
14677                 impHandleAccessAllowed(accessAllowedResult, &calloutHelper);
14678
14679                 op1 = impPopStack().val;
14680
14681                 // @SPECVIOLATION: TYP_INT should not be allowed here by a strict reading of the spec.
14682                 // But JIT32 allowed it, so we continue to allow it.
14683                 assertImp(op1->TypeGet() == TYP_BYREF || op1->TypeGet() == TYP_I_IMPL || op1->TypeGet() == TYP_INT);
14684
14685                 // MKREFANY returns a struct.  op2 is the class token.
14686                 op1 = gtNewOperNode(oper, TYP_STRUCT, op1, op2);
14687
14688                 impPushOnStack(op1, verMakeTypeInfo(impGetRefAnyClass()));
14689                 break;
14690
14691             case CEE_LDOBJ:
14692             {
14693                 oper = GT_OBJ;
14694                 assertImp(sz == sizeof(unsigned));
14695
14696                 _impResolveToken(CORINFO_TOKENKIND_Class);
14697
14698                 JITDUMP(" %08X", resolvedToken.token);
14699
14700             OBJ:
14701
14702                 tiRetVal = verMakeTypeInfo(resolvedToken.hClass);
14703
14704                 if (tiVerificationNeeded)
14705                 {
14706                     typeInfo tiPtr = impStackTop().seTypeInfo;
14707
14708                     // Make sure we have a byref
14709                     if (!tiPtr.IsByRef())
14710                     {
14711                         Verify(false, "pointer not byref");
14712                         compUnsafeCastUsed = true;
14713                     }
14714                     typeInfo tiPtrVal = DereferenceByRef(tiPtr);
14715
14716                     if (!tiCompatibleWith(tiPtrVal, tiRetVal, false))
14717                     {
14718                         Verify(false, "type of address incompatible with type operand");
14719                         compUnsafeCastUsed = true;
14720                     }
14721                     tiRetVal.NormaliseForStack();
14722                 }
14723                 else
14724                 {
14725                     compUnsafeCastUsed = true;
14726                 }
14727
14728                 if (eeIsValueClass(resolvedToken.hClass))
14729                 {
14730                     lclTyp = TYP_STRUCT;
14731                 }
14732                 else
14733                 {
14734                     lclTyp = TYP_REF;
14735                     opcode = CEE_LDIND_REF;
14736                     goto LDIND_POST_VERIFY;
14737                 }
14738
14739                 op1 = impPopStack().val;
14740
14741                 assertImp(op1->TypeGet() == TYP_BYREF || op1->TypeGet() == TYP_I_IMPL);
14742
14743                 CorInfoType jitTyp = info.compCompHnd->asCorInfoType(resolvedToken.hClass);
14744                 if (impIsPrimitive(jitTyp))
14745                 {
14746                     op1 = gtNewOperNode(GT_IND, JITtype2varType(jitTyp), op1);
14747
14748                     // Could point anywhere, example a boxed class static int
14749                     op1->gtFlags |= GTF_IND_TGTANYWHERE | GTF_GLOB_REF;
14750                     assertImp(varTypeIsArithmetic(op1->gtType));
14751                 }
14752                 else
14753                 {
14754                     // OBJ returns a struct
14755                     // and an inline argument which is the class token of the loaded obj
14756                     op1 = gtNewObjNode(resolvedToken.hClass, op1);
14757                 }
14758                 op1->gtFlags |= GTF_EXCEPT;
14759
14760                 impPushOnStack(op1, tiRetVal);
14761                 break;
14762             }
14763
14764             case CEE_LDLEN:
14765                 if (tiVerificationNeeded)
14766                 {
14767                     typeInfo tiArray = impStackTop().seTypeInfo;
14768                     Verify(verIsSDArray(tiArray), "bad array");
14769                     tiRetVal = typeInfo(TI_INT);
14770                 }
14771
14772                 op1 = impPopStack().val;
14773                 if (!opts.MinOpts() && !opts.compDbgCode)
14774                 {
14775                     /* Use GT_ARR_LENGTH operator so rng check opts see this */
14776                     GenTreeArrLen* arrLen =
14777                         new (this, GT_ARR_LENGTH) GenTreeArrLen(TYP_INT, op1, offsetof(CORINFO_Array, length));
14778
14779                     /* Mark the block as containing a length expression */
14780
14781                     if (op1->gtOper == GT_LCL_VAR)
14782                     {
14783                         block->bbFlags |= BBF_HAS_IDX_LEN;
14784                     }
14785
14786                     op1 = arrLen;
14787                 }
14788                 else
14789                 {
14790                     /* Create the expression "*(array_addr + ArrLenOffs)" */
14791                     op1 = gtNewOperNode(GT_ADD, TYP_BYREF, op1,
14792                                         gtNewIconNode(offsetof(CORINFO_Array, length), TYP_I_IMPL));
14793                     op1 = gtNewOperNode(GT_IND, TYP_INT, op1);
14794                     op1->gtFlags |= GTF_IND_ARR_LEN;
14795                 }
14796
14797                 /* An indirection will cause a GPF if the address is null */
14798                 op1->gtFlags |= GTF_EXCEPT;
14799
14800                 /* Push the result back on the stack */
14801                 impPushOnStack(op1, tiRetVal);
14802                 break;
14803
14804             case CEE_BREAK:
14805                 op1 = gtNewHelperCallNode(CORINFO_HELP_USER_BREAKPOINT, TYP_VOID);
14806                 goto SPILL_APPEND;
14807
14808             case CEE_NOP:
14809                 if (opts.compDbgCode)
14810                 {
14811                     op1 = new (this, GT_NO_OP) GenTree(GT_NO_OP, TYP_VOID);
14812                     goto SPILL_APPEND;
14813                 }
14814                 break;
14815
14816             /******************************** NYI *******************************/
14817
14818             case 0xCC:
14819                 OutputDebugStringA("CLR: Invalid x86 breakpoint in IL stream\n");
14820
14821             case CEE_ILLEGAL:
14822             case CEE_MACRO_END:
14823
14824             default:
14825                 BADCODE3("unknown opcode", ": %02X", (int)opcode);
14826         }
14827
14828         codeAddr += sz;
14829         prevOpcode = opcode;
14830
14831         prefixFlags = 0;
14832         assert(!insertLdloc || opcode == CEE_DUP);
14833     }
14834
14835     assert(!insertLdloc);
14836
14837     return;
14838 #undef _impResolveToken
14839 }
14840 #ifdef _PREFAST_
14841 #pragma warning(pop)
14842 #endif
14843
14844 // Push a local/argument treeon the operand stack
14845 void Compiler::impPushVar(GenTree* op, typeInfo tiRetVal)
14846 {
14847     tiRetVal.NormaliseForStack();
14848
14849     if (verTrackObjCtorInitState && (verCurrentState.thisInitialized != TIS_Init) && tiRetVal.IsThisPtr())
14850     {
14851         tiRetVal.SetUninitialisedObjRef();
14852     }
14853
14854     impPushOnStack(op, tiRetVal);
14855 }
14856
14857 // Load a local/argument on the operand stack
14858 // lclNum is an index into lvaTable *NOT* the arg/lcl index in the IL
14859 void Compiler::impLoadVar(unsigned lclNum, IL_OFFSET offset, typeInfo tiRetVal)
14860 {
14861     var_types lclTyp;
14862
14863     if (lvaTable[lclNum].lvNormalizeOnLoad())
14864     {
14865         lclTyp = lvaGetRealType(lclNum);
14866     }
14867     else
14868     {
14869         lclTyp = lvaGetActualType(lclNum);
14870     }
14871
14872     impPushVar(gtNewLclvNode(lclNum, lclTyp, offset), tiRetVal);
14873 }
14874
14875 // Load an argument on the operand stack
14876 // Shared by the various CEE_LDARG opcodes
14877 // ilArgNum is the argument index as specified in IL.
14878 // It will be mapped to the correct lvaTable index
14879 void Compiler::impLoadArg(unsigned ilArgNum, IL_OFFSET offset)
14880 {
14881     Verify(ilArgNum < info.compILargsCount, "bad arg num");
14882
14883     if (compIsForInlining())
14884     {
14885         if (ilArgNum >= info.compArgsCount)
14886         {
14887             compInlineResult->NoteFatal(InlineObservation::CALLEE_BAD_ARGUMENT_NUMBER);
14888             return;
14889         }
14890
14891         impPushVar(impInlineFetchArg(ilArgNum, impInlineInfo->inlArgInfo, impInlineInfo->lclVarInfo),
14892                    impInlineInfo->lclVarInfo[ilArgNum].lclVerTypeInfo);
14893     }
14894     else
14895     {
14896         if (ilArgNum >= info.compArgsCount)
14897         {
14898             BADCODE("Bad IL");
14899         }
14900
14901         unsigned lclNum = compMapILargNum(ilArgNum); // account for possible hidden param
14902
14903         if (lclNum == info.compThisArg)
14904         {
14905             lclNum = lvaArg0Var;
14906         }
14907
14908         impLoadVar(lclNum, offset);
14909     }
14910 }
14911
14912 // Load a local on the operand stack
14913 // Shared by the various CEE_LDLOC opcodes
14914 // ilLclNum is the local index as specified in IL.
14915 // It will be mapped to the correct lvaTable index
14916 void Compiler::impLoadLoc(unsigned ilLclNum, IL_OFFSET offset)
14917 {
14918     if (tiVerificationNeeded)
14919     {
14920         Verify(ilLclNum < info.compMethodInfo->locals.numArgs, "bad loc num");
14921         Verify(info.compInitMem, "initLocals not set");
14922     }
14923
14924     if (compIsForInlining())
14925     {
14926         if (ilLclNum >= info.compMethodInfo->locals.numArgs)
14927         {
14928             compInlineResult->NoteFatal(InlineObservation::CALLEE_BAD_LOCAL_NUMBER);
14929             return;
14930         }
14931
14932         // Get the local type
14933         var_types lclTyp = impInlineInfo->lclVarInfo[ilLclNum + impInlineInfo->argCnt].lclTypeInfo;
14934
14935         typeInfo tiRetVal = impInlineInfo->lclVarInfo[ilLclNum + impInlineInfo->argCnt].lclVerTypeInfo;
14936
14937         /* Have we allocated a temp for this local? */
14938
14939         unsigned lclNum = impInlineFetchLocal(ilLclNum DEBUGARG("Inline ldloc first use temp"));
14940
14941         // All vars of inlined methods should be !lvNormalizeOnLoad()
14942
14943         assert(!lvaTable[lclNum].lvNormalizeOnLoad());
14944         lclTyp = genActualType(lclTyp);
14945
14946         impPushVar(gtNewLclvNode(lclNum, lclTyp), tiRetVal);
14947     }
14948     else
14949     {
14950         if (ilLclNum >= info.compMethodInfo->locals.numArgs)
14951         {
14952             BADCODE("Bad IL");
14953         }
14954
14955         unsigned lclNum = info.compArgsCount + ilLclNum;
14956
14957         impLoadVar(lclNum, offset);
14958     }
14959 }
14960
14961 #ifdef _TARGET_ARM_
14962 /**************************************************************************************
14963  *
14964  *  When assigning a vararg call src to a HFA lcl dest, mark that we cannot promote the
14965  *  dst struct, because struct promotion will turn it into a float/double variable while
14966  *  the rhs will be an int/long variable. We don't code generate assignment of int into
14967  *  a float, but there is nothing that might prevent us from doing so. The tree however
14968  *  would like: (=, (typ_float, typ_int)) or (GT_TRANSFER, (typ_float, typ_int))
14969  *
14970  *  tmpNum - the lcl dst variable num that is a struct.
14971  *  src    - the src tree assigned to the dest that is a struct/int (when varargs call.)
14972  *  hClass - the type handle for the struct variable.
14973  *
14974  *  TODO-ARM-CQ: [301608] This is a rare scenario with varargs and struct promotion coming into play,
14975  *        however, we could do a codegen of transferring from int to float registers
14976  *        (transfer, not a cast.)
14977  *
14978  */
14979 void Compiler::impMarkLclDstNotPromotable(unsigned tmpNum, GenTreePtr src, CORINFO_CLASS_HANDLE hClass)
14980 {
14981     if (src->gtOper == GT_CALL && src->gtCall.IsVarargs() && IsHfa(hClass))
14982     {
14983         int       hfaSlots = GetHfaCount(hClass);
14984         var_types hfaType  = GetHfaType(hClass);
14985
14986         // If we have varargs we morph the method's return type to be "int" irrespective of its original
14987         // type: struct/float at importer because the ABI calls out return in integer registers.
14988         // We don't want struct promotion to replace an expression like this:
14989         //   lclFld_int = callvar_int() into lclFld_float = callvar_int();
14990         // This means an int is getting assigned to a float without a cast. Prevent the promotion.
14991         if ((hfaType == TYP_DOUBLE && hfaSlots == sizeof(double) / REGSIZE_BYTES) ||
14992             (hfaType == TYP_FLOAT && hfaSlots == sizeof(float) / REGSIZE_BYTES))
14993         {
14994             // Make sure this struct type stays as struct so we can receive the call in a struct.
14995             lvaTable[tmpNum].lvIsMultiRegRet = true;
14996         }
14997     }
14998 }
14999 #endif // _TARGET_ARM_
15000
15001 #if FEATURE_MULTIREG_RET
15002 GenTreePtr Compiler::impAssignMultiRegTypeToVar(GenTreePtr op, CORINFO_CLASS_HANDLE hClass)
15003 {
15004     unsigned tmpNum = lvaGrabTemp(true DEBUGARG("Return value temp for multireg return."));
15005     impAssignTempGen(tmpNum, op, hClass, (unsigned)CHECK_SPILL_NONE);
15006     GenTreePtr ret = gtNewLclvNode(tmpNum, op->gtType);
15007
15008     // TODO-1stClassStructs: Handle constant propagation and CSE-ing of multireg returns.
15009     ret->gtFlags |= GTF_DONT_CSE;
15010
15011     assert(IsMultiRegReturnedType(hClass));
15012
15013     // Mark the var so that fields are not promoted and stay together.
15014     lvaTable[tmpNum].lvIsMultiRegRet = true;
15015
15016     return ret;
15017 }
15018 #endif // FEATURE_MULTIREG_RET
15019
15020 // do import for a return
15021 // returns false if inlining was aborted
15022 // opcode can be ret or call in the case of a tail.call
15023 bool Compiler::impReturnInstruction(BasicBlock* block, int prefixFlags, OPCODE& opcode)
15024 {
15025     if (tiVerificationNeeded)
15026     {
15027         verVerifyThisPtrInitialised();
15028
15029         unsigned expectedStack = 0;
15030         if (info.compRetType != TYP_VOID)
15031         {
15032             typeInfo tiVal = impStackTop().seTypeInfo;
15033             typeInfo tiDeclared =
15034                 verMakeTypeInfo(info.compMethodInfo->args.retType, info.compMethodInfo->args.retTypeClass);
15035
15036             Verify(!verIsByRefLike(tiDeclared) || verIsSafeToReturnByRef(tiVal), "byref return");
15037
15038             Verify(tiCompatibleWith(tiVal, tiDeclared.NormaliseForStack(), true), "type mismatch");
15039             expectedStack = 1;
15040         }
15041         Verify(verCurrentState.esStackDepth == expectedStack, "stack non-empty on return");
15042     }
15043
15044     GenTree*             op2       = nullptr;
15045     GenTree*             op1       = nullptr;
15046     CORINFO_CLASS_HANDLE retClsHnd = nullptr;
15047
15048     if (info.compRetType != TYP_VOID)
15049     {
15050         StackEntry se = impPopStack(retClsHnd);
15051         op2           = se.val;
15052
15053         if (!compIsForInlining())
15054         {
15055             impBashVarAddrsToI(op2);
15056             op2 = impImplicitIorI4Cast(op2, info.compRetType);
15057             op2 = impImplicitR4orR8Cast(op2, info.compRetType);
15058             assertImp((genActualType(op2->TypeGet()) == genActualType(info.compRetType)) ||
15059                       ((op2->TypeGet() == TYP_I_IMPL) && (info.compRetType == TYP_BYREF)) ||
15060                       ((op2->TypeGet() == TYP_BYREF) && (info.compRetType == TYP_I_IMPL)) ||
15061                       (varTypeIsFloating(op2->gtType) && varTypeIsFloating(info.compRetType)) ||
15062                       (varTypeIsStruct(op2) && varTypeIsStruct(info.compRetType)));
15063
15064 #ifdef DEBUG
15065             if (opts.compGcChecks && info.compRetType == TYP_REF)
15066             {
15067                 // DDB 3483  : JIT Stress: early termination of GC ref's life time in exception code path
15068                 // VSW 440513: Incorrect gcinfo on the return value under COMPlus_JitGCChecks=1 for methods with
15069                 // one-return BB.
15070
15071                 assert(op2->gtType == TYP_REF);
15072
15073                 // confirm that the argument is a GC pointer (for debugging (GC stress))
15074                 GenTreeArgList* args = gtNewArgList(op2);
15075                 op2                  = gtNewHelperCallNode(CORINFO_HELP_CHECK_OBJ, TYP_REF, 0, args);
15076
15077                 if (verbose)
15078                 {
15079                     printf("\ncompGcChecks tree:\n");
15080                     gtDispTree(op2);
15081                 }
15082             }
15083 #endif
15084         }
15085         else
15086         {
15087             // inlinee's stack should be empty now.
15088             assert(verCurrentState.esStackDepth == 0);
15089
15090 #ifdef DEBUG
15091             if (verbose)
15092             {
15093                 printf("\n\n    Inlinee Return expression (before normalization)  =>\n");
15094                 gtDispTree(op2);
15095             }
15096 #endif
15097
15098             // Make sure the type matches the original call.
15099
15100             var_types returnType       = genActualType(op2->gtType);
15101             var_types originalCallType = impInlineInfo->inlineCandidateInfo->fncRetType;
15102             if ((returnType != originalCallType) && (originalCallType == TYP_STRUCT))
15103             {
15104                 originalCallType = impNormStructType(impInlineInfo->inlineCandidateInfo->methInfo.args.retTypeClass);
15105             }
15106
15107             if (returnType != originalCallType)
15108             {
15109                 compInlineResult->NoteFatal(InlineObservation::CALLSITE_RETURN_TYPE_MISMATCH);
15110                 return false;
15111             }
15112
15113             // Below, we are going to set impInlineInfo->retExpr to the tree with the return
15114             // expression. At this point, retExpr could already be set if there are multiple
15115             // return blocks (meaning lvaInlineeReturnSpillTemp != BAD_VAR_NUM) and one of
15116             // the other blocks already set it. If there is only a single return block,
15117             // retExpr shouldn't be set. However, this is not true if we reimport a block
15118             // with a return. In that case, retExpr will be set, then the block will be
15119             // reimported, but retExpr won't get cleared as part of setting the block to
15120             // be reimported. The reimported retExpr value should be the same, so even if
15121             // we don't unconditionally overwrite it, it shouldn't matter.
15122             if (info.compRetNativeType != TYP_STRUCT)
15123             {
15124                 // compRetNativeType is not TYP_STRUCT.
15125                 // This implies it could be either a scalar type or SIMD vector type or
15126                 // a struct type that can be normalized to a scalar type.
15127
15128                 if (varTypeIsStruct(info.compRetType))
15129                 {
15130                     noway_assert(info.compRetBuffArg == BAD_VAR_NUM);
15131                     // adjust the type away from struct to integral
15132                     // and no normalizing
15133                     op2 = impFixupStructReturnType(op2, retClsHnd);
15134                 }
15135                 else
15136                 {
15137                     // Do we have to normalize?
15138                     var_types fncRealRetType = JITtype2varType(info.compMethodInfo->args.retType);
15139                     if ((varTypeIsSmall(op2->TypeGet()) || varTypeIsSmall(fncRealRetType)) &&
15140                         fgCastNeeded(op2, fncRealRetType))
15141                     {
15142                         // Small-typed return values are normalized by the callee
15143                         op2 = gtNewCastNode(TYP_INT, op2, fncRealRetType);
15144                     }
15145                 }
15146
15147                 if (lvaInlineeReturnSpillTemp != BAD_VAR_NUM)
15148                 {
15149                     assert(info.compRetNativeType != TYP_VOID &&
15150                            (fgMoreThanOneReturnBlock() || impInlineInfo->hasPinnedLocals));
15151
15152                     // This is a bit of a workaround...
15153                     // If we are inlining a call that returns a struct, where the actual "native" return type is
15154                     // not a struct (for example, the struct is composed of exactly one int, and the native
15155                     // return type is thus an int), and the inlinee has multiple return blocks (thus,
15156                     // lvaInlineeReturnSpillTemp is != BAD_VAR_NUM, and is the index of a local var that is set
15157                     // to the *native* return type), and at least one of the return blocks is the result of
15158                     // a call, then we have a problem. The situation is like this (from a failed test case):
15159                     //
15160                     // inliner:
15161                     //      // Note: valuetype plinq_devtests.LazyTests/LIX is a struct with only a single int
15162                     //      call !!0 [mscorlib]System.Threading.LazyInitializer::EnsureInitialized<valuetype
15163                     //      plinq_devtests.LazyTests/LIX>(!!0&, bool&, object&, class [mscorlib]System.Func`1<!!0>)
15164                     //
15165                     // inlinee:
15166                     //      ...
15167                     //      ldobj      !!T                 // this gets bashed to a GT_LCL_FLD, type TYP_INT
15168                     //      ret
15169                     //      ...
15170                     //      call       !!0 System.Threading.LazyInitializer::EnsureInitializedCore<!!0>(!!0&, bool&,
15171                     //      object&, class System.Func`1<!!0>)
15172                     //      ret
15173                     //
15174                     // In the code above, when we call impFixupStructReturnType(), we will change the op2 return type
15175                     // of the inlinee return node, but we don't do that for GT_CALL nodes, which we delay until
15176                     // morphing when we call fgFixupStructReturn(). We do this, apparently, to handle nested
15177                     // inlining properly by leaving the correct type on the GT_CALL node through importing.
15178                     //
15179                     // To fix this, for this case, we temporarily change the GT_CALL node type to the
15180                     // native return type, which is what it will be set to eventually. We generate the
15181                     // assignment to the return temp, using the correct type, and then restore the GT_CALL
15182                     // node type. During morphing, the GT_CALL will get the correct, final, native return type.
15183
15184                     bool restoreType = false;
15185                     if ((op2->OperGet() == GT_CALL) && (info.compRetType == TYP_STRUCT))
15186                     {
15187                         noway_assert(op2->TypeGet() == TYP_STRUCT);
15188                         op2->gtType = info.compRetNativeType;
15189                         restoreType = true;
15190                     }
15191
15192                     impAssignTempGen(lvaInlineeReturnSpillTemp, op2, se.seTypeInfo.GetClassHandle(),
15193                                      (unsigned)CHECK_SPILL_ALL);
15194
15195                     GenTreePtr tmpOp2 = gtNewLclvNode(lvaInlineeReturnSpillTemp, op2->TypeGet());
15196
15197                     if (restoreType)
15198                     {
15199                         op2->gtType = TYP_STRUCT; // restore it to what it was
15200                     }
15201
15202                     op2 = tmpOp2;
15203
15204 #ifdef DEBUG
15205                     if (impInlineInfo->retExpr)
15206                     {
15207                         // Some other block(s) have seen the CEE_RET first.
15208                         // Better they spilled to the same temp.
15209                         assert(impInlineInfo->retExpr->gtOper == GT_LCL_VAR);
15210                         assert(impInlineInfo->retExpr->gtLclVarCommon.gtLclNum == op2->gtLclVarCommon.gtLclNum);
15211                     }
15212 #endif
15213                 }
15214
15215 #ifdef DEBUG
15216                 if (verbose)
15217                 {
15218                     printf("\n\n    Inlinee Return expression (after normalization) =>\n");
15219                     gtDispTree(op2);
15220                 }
15221 #endif
15222
15223                 // Report the return expression
15224                 impInlineInfo->retExpr = op2;
15225             }
15226             else
15227             {
15228                 // compRetNativeType is TYP_STRUCT.
15229                 // This implies that struct return via RetBuf arg or multi-reg struct return
15230
15231                 GenTreePtr iciCall = impInlineInfo->iciCall;
15232                 assert(iciCall->gtOper == GT_CALL);
15233
15234                 // Assign the inlinee return into a spill temp.
15235                 // spill temp only exists if there are multiple return points
15236                 if (lvaInlineeReturnSpillTemp != BAD_VAR_NUM)
15237                 {
15238                     // in this case we have to insert multiple struct copies to the temp
15239                     // and the retexpr is just the temp.
15240                     assert(info.compRetNativeType != TYP_VOID);
15241                     assert(fgMoreThanOneReturnBlock() || impInlineInfo->hasPinnedLocals);
15242
15243                     impAssignTempGen(lvaInlineeReturnSpillTemp, op2, se.seTypeInfo.GetClassHandle(),
15244                                      (unsigned)CHECK_SPILL_ALL);
15245                 }
15246
15247 #if defined(_TARGET_ARM_) || defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)
15248 #if defined(_TARGET_ARM_)
15249                 // TODO-ARM64-NYI: HFA
15250                 // TODO-AMD64-Unix and TODO-ARM once the ARM64 functionality is implemented the
15251                 // next ifdefs could be refactored in a single method with the ifdef inside.
15252                 if (IsHfa(retClsHnd))
15253                 {
15254 // Same as !IsHfa but just don't bother with impAssignStructPtr.
15255 #else  // defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)
15256                 ReturnTypeDesc retTypeDesc;
15257                 retTypeDesc.InitializeStructReturnType(this, retClsHnd);
15258                 unsigned retRegCount = retTypeDesc.GetReturnRegCount();
15259
15260                 if (retRegCount != 0)
15261                 {
15262                     // If single eightbyte, the return type would have been normalized and there won't be a temp var.
15263                     // This code will be called only if the struct return has not been normalized (i.e. 2 eightbytes -
15264                     // max allowed.)
15265                     assert(retRegCount == MAX_RET_REG_COUNT);
15266                     // Same as !structDesc.passedInRegisters but just don't bother with impAssignStructPtr.
15267                     CLANG_FORMAT_COMMENT_ANCHOR;
15268 #endif // defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)
15269
15270                     if (lvaInlineeReturnSpillTemp != BAD_VAR_NUM)
15271                     {
15272                         if (!impInlineInfo->retExpr)
15273                         {
15274 #if defined(_TARGET_ARM_)
15275                             impInlineInfo->retExpr = gtNewLclvNode(lvaInlineeReturnSpillTemp, info.compRetType);
15276 #else  // defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)
15277                             // The inlinee compiler has figured out the type of the temp already. Use it here.
15278                             impInlineInfo->retExpr =
15279                                 gtNewLclvNode(lvaInlineeReturnSpillTemp, lvaTable[lvaInlineeReturnSpillTemp].lvType);
15280 #endif // defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)
15281                         }
15282                     }
15283                     else
15284                     {
15285                         impInlineInfo->retExpr = op2;
15286                     }
15287                 }
15288                 else
15289 #elif defined(_TARGET_ARM64_)
15290                 ReturnTypeDesc retTypeDesc;
15291                 retTypeDesc.InitializeStructReturnType(this, retClsHnd);
15292                 unsigned retRegCount = retTypeDesc.GetReturnRegCount();
15293
15294                 if (retRegCount != 0)
15295                 {
15296                     assert(!iciCall->AsCall()->HasRetBufArg());
15297                     assert(retRegCount >= 2);
15298                     if (lvaInlineeReturnSpillTemp != BAD_VAR_NUM)
15299                     {
15300                         if (!impInlineInfo->retExpr)
15301                         {
15302                             // The inlinee compiler has figured out the type of the temp already. Use it here.
15303                             impInlineInfo->retExpr =
15304                                 gtNewLclvNode(lvaInlineeReturnSpillTemp, lvaTable[lvaInlineeReturnSpillTemp].lvType);
15305                         }
15306                     }
15307                     else
15308                     {
15309                         impInlineInfo->retExpr = op2;
15310                     }
15311                 }
15312                 else
15313 #endif // defined(_TARGET_ARM64_)
15314                 {
15315                     assert(iciCall->AsCall()->HasRetBufArg());
15316                     GenTreePtr dest = gtCloneExpr(iciCall->gtCall.gtCallArgs->gtOp.gtOp1);
15317                     // spill temp only exists if there are multiple return points
15318                     if (lvaInlineeReturnSpillTemp != BAD_VAR_NUM)
15319                     {
15320                         // if this is the first return we have seen set the retExpr
15321                         if (!impInlineInfo->retExpr)
15322                         {
15323                             impInlineInfo->retExpr =
15324                                 impAssignStructPtr(dest, gtNewLclvNode(lvaInlineeReturnSpillTemp, info.compRetType),
15325                                                    retClsHnd, (unsigned)CHECK_SPILL_ALL);
15326                         }
15327                     }
15328                     else
15329                     {
15330                         impInlineInfo->retExpr = impAssignStructPtr(dest, op2, retClsHnd, (unsigned)CHECK_SPILL_ALL);
15331                     }
15332                 }
15333             }
15334         }
15335     }
15336
15337     if (compIsForInlining())
15338     {
15339         return true;
15340     }
15341
15342     if (info.compRetType == TYP_VOID)
15343     {
15344         // return void
15345         op1 = new (this, GT_RETURN) GenTreeOp(GT_RETURN, TYP_VOID);
15346     }
15347     else if (info.compRetBuffArg != BAD_VAR_NUM)
15348     {
15349         // Assign value to return buff (first param)
15350         GenTreePtr retBuffAddr = gtNewLclvNode(info.compRetBuffArg, TYP_BYREF, impCurStmtOffs);
15351
15352         op2 = impAssignStructPtr(retBuffAddr, op2, retClsHnd, (unsigned)CHECK_SPILL_ALL);
15353         impAppendTree(op2, (unsigned)CHECK_SPILL_NONE, impCurStmtOffs);
15354
15355         // There are cases where the address of the implicit RetBuf should be returned explicitly (in RAX).
15356         CLANG_FORMAT_COMMENT_ANCHOR;
15357
15358 #if defined(_TARGET_AMD64_)
15359
15360         // x64 (System V and Win64) calling convention requires to
15361         // return the implicit return buffer explicitly (in RAX).
15362         // Change the return type to be BYREF.
15363         op1 = gtNewOperNode(GT_RETURN, TYP_BYREF, gtNewLclvNode(info.compRetBuffArg, TYP_BYREF));
15364 #else  // !defined(_TARGET_AMD64_)
15365         // In case of non-AMD64 targets the profiler hook requires to return the implicit RetBuf explicitly (in RAX).
15366         // In such case the return value of the function is changed to BYREF.
15367         // If profiler hook is not needed the return type of the function is TYP_VOID.
15368         if (compIsProfilerHookNeeded())
15369         {
15370             op1 = gtNewOperNode(GT_RETURN, TYP_BYREF, gtNewLclvNode(info.compRetBuffArg, TYP_BYREF));
15371         }
15372         else
15373         {
15374             // return void
15375             op1 = new (this, GT_RETURN) GenTreeOp(GT_RETURN, TYP_VOID);
15376         }
15377 #endif // !defined(_TARGET_AMD64_)
15378     }
15379     else if (varTypeIsStruct(info.compRetType))
15380     {
15381 #if !FEATURE_MULTIREG_RET
15382         // For both ARM architectures the HFA native types are maintained as structs.
15383         // Also on System V AMD64 the multireg structs returns are also left as structs.
15384         noway_assert(info.compRetNativeType != TYP_STRUCT);
15385 #endif
15386         op2 = impFixupStructReturnType(op2, retClsHnd);
15387         // return op2
15388         op1 = gtNewOperNode(GT_RETURN, genActualType(info.compRetNativeType), op2);
15389     }
15390     else
15391     {
15392         // return op2
15393         op1 = gtNewOperNode(GT_RETURN, genActualType(info.compRetType), op2);
15394     }
15395
15396     // We must have imported a tailcall and jumped to RET
15397     if (prefixFlags & PREFIX_TAILCALL)
15398     {
15399 #ifndef _TARGET_AMD64_
15400         // Jit64 compat:
15401         // This cannot be asserted on Amd64 since we permit the following IL pattern:
15402         //      tail.call
15403         //      pop
15404         //      ret
15405         assert(verCurrentState.esStackDepth == 0 && impOpcodeIsCallOpcode(opcode));
15406 #endif
15407
15408         opcode = CEE_RET; // To prevent trying to spill if CALL_SITE_BOUNDARIES
15409
15410         // impImportCall() would have already appended TYP_VOID calls
15411         if (info.compRetType == TYP_VOID)
15412         {
15413             return true;
15414         }
15415     }
15416
15417     impAppendTree(op1, (unsigned)CHECK_SPILL_NONE, impCurStmtOffs);
15418 #ifdef DEBUG
15419     // Remember at which BC offset the tree was finished
15420     impNoteLastILoffs();
15421 #endif
15422     return true;
15423 }
15424
15425 /*****************************************************************************
15426  *  Mark the block as unimported.
15427  *  Note that the caller is responsible for calling impImportBlockPending(),
15428  *  with the appropriate stack-state
15429  */
15430
15431 inline void Compiler::impReimportMarkBlock(BasicBlock* block)
15432 {
15433 #ifdef DEBUG
15434     if (verbose && (block->bbFlags & BBF_IMPORTED))
15435     {
15436         printf("\nBB%02u will be reimported\n", block->bbNum);
15437     }
15438 #endif
15439
15440     block->bbFlags &= ~BBF_IMPORTED;
15441 }
15442
15443 /*****************************************************************************
15444  *  Mark the successors of the given block as unimported.
15445  *  Note that the caller is responsible for calling impImportBlockPending()
15446  *  for all the successors, with the appropriate stack-state.
15447  */
15448
15449 void Compiler::impReimportMarkSuccessors(BasicBlock* block)
15450 {
15451     for (unsigned i = 0; i < block->NumSucc(); i++)
15452     {
15453         impReimportMarkBlock(block->GetSucc(i));
15454     }
15455 }
15456
15457 /*****************************************************************************
15458  *
15459  *  Filter wrapper to handle only passed in exception code
15460  *  from it).
15461  */
15462
15463 LONG FilterVerificationExceptions(PEXCEPTION_POINTERS pExceptionPointers, LPVOID lpvParam)
15464 {
15465     if (pExceptionPointers->ExceptionRecord->ExceptionCode == SEH_VERIFICATION_EXCEPTION)
15466     {
15467         return EXCEPTION_EXECUTE_HANDLER;
15468     }
15469
15470     return EXCEPTION_CONTINUE_SEARCH;
15471 }
15472
15473 void Compiler::impVerifyEHBlock(BasicBlock* block, bool isTryStart)
15474 {
15475     assert(block->hasTryIndex());
15476     assert(!compIsForInlining());
15477
15478     unsigned  tryIndex = block->getTryIndex();
15479     EHblkDsc* HBtab    = ehGetDsc(tryIndex);
15480
15481     if (isTryStart)
15482     {
15483         assert(block->bbFlags & BBF_TRY_BEG);
15484
15485         // The Stack must be empty
15486         //
15487         if (block->bbStkDepth != 0)
15488         {
15489             BADCODE("Evaluation stack must be empty on entry into a try block");
15490         }
15491     }
15492
15493     // Save the stack contents, we'll need to restore it later
15494     //
15495     SavedStack blockState;
15496     impSaveStackState(&blockState, false);
15497
15498     while (HBtab != nullptr)
15499     {
15500         if (isTryStart)
15501         {
15502             // Are we verifying that an instance constructor properly initializes it's 'this' pointer once?
15503             //  We do not allow the 'this' pointer to be uninitialized when entering most kinds try regions
15504             //
15505             if (verTrackObjCtorInitState && (verCurrentState.thisInitialized != TIS_Init))
15506             {
15507                 // We  trigger an invalid program exception here unless we have a try/fault region.
15508                 //
15509                 if (HBtab->HasCatchHandler() || HBtab->HasFinallyHandler() || HBtab->HasFilter())
15510                 {
15511                     BADCODE(
15512                         "The 'this' pointer of an instance constructor is not intialized upon entry to a try region");
15513                 }
15514                 else
15515                 {
15516                     // Allow a try/fault region to proceed.
15517                     assert(HBtab->HasFaultHandler());
15518                 }
15519             }
15520
15521             /* Recursively process the handler block */
15522             BasicBlock* hndBegBB = HBtab->ebdHndBeg;
15523
15524             //  Construct the proper verification stack state
15525             //   either empty or one that contains just
15526             //   the Exception Object that we are dealing with
15527             //
15528             verCurrentState.esStackDepth = 0;
15529
15530             if (handlerGetsXcptnObj(hndBegBB->bbCatchTyp))
15531             {
15532                 CORINFO_CLASS_HANDLE clsHnd;
15533
15534                 if (HBtab->HasFilter())
15535                 {
15536                     clsHnd = impGetObjectClass();
15537                 }
15538                 else
15539                 {
15540                     CORINFO_RESOLVED_TOKEN resolvedToken;
15541
15542                     resolvedToken.tokenContext = impTokenLookupContextHandle;
15543                     resolvedToken.tokenScope   = info.compScopeHnd;
15544                     resolvedToken.token        = HBtab->ebdTyp;
15545                     resolvedToken.tokenType    = CORINFO_TOKENKIND_Class;
15546                     info.compCompHnd->resolveToken(&resolvedToken);
15547
15548                     clsHnd = resolvedToken.hClass;
15549                 }
15550
15551                 // push catch arg the stack, spill to a temp if necessary
15552                 // Note: can update HBtab->ebdHndBeg!
15553                 hndBegBB = impPushCatchArgOnStack(hndBegBB, clsHnd);
15554             }
15555
15556             // Queue up the handler for importing
15557             //
15558             impImportBlockPending(hndBegBB);
15559
15560             if (HBtab->HasFilter())
15561             {
15562                 /* @VERIFICATION : Ideally the end of filter state should get
15563                    propagated to the catch handler, this is an incompleteness,
15564                    but is not a security/compliance issue, since the only
15565                    interesting state is the 'thisInit' state.
15566                    */
15567
15568                 verCurrentState.esStackDepth = 0;
15569
15570                 BasicBlock* filterBB = HBtab->ebdFilter;
15571
15572                 // push catch arg the stack, spill to a temp if necessary
15573                 // Note: can update HBtab->ebdFilter!
15574                 filterBB = impPushCatchArgOnStack(filterBB, impGetObjectClass());
15575
15576                 impImportBlockPending(filterBB);
15577             }
15578         }
15579         else if (verTrackObjCtorInitState && HBtab->HasFaultHandler())
15580         {
15581             /* Recursively process the handler block */
15582
15583             verCurrentState.esStackDepth = 0;
15584
15585             // Queue up the fault handler for importing
15586             //
15587             impImportBlockPending(HBtab->ebdHndBeg);
15588         }
15589
15590         // Now process our enclosing try index (if any)
15591         //
15592         tryIndex = HBtab->ebdEnclosingTryIndex;
15593         if (tryIndex == EHblkDsc::NO_ENCLOSING_INDEX)
15594         {
15595             HBtab = nullptr;
15596         }
15597         else
15598         {
15599             HBtab = ehGetDsc(tryIndex);
15600         }
15601     }
15602
15603     // Restore the stack contents
15604     impRestoreStackState(&blockState);
15605 }
15606
15607 //***************************************************************
15608 // Import the instructions for the given basic block.  Perform
15609 // verification, throwing an exception on failure.  Push any successor blocks that are enabled for the first
15610 // time, or whose verification pre-state is changed.
15611
15612 #ifdef _PREFAST_
15613 #pragma warning(push)
15614 #pragma warning(disable : 21000) // Suppress PREFast warning about overly large function
15615 #endif
15616 void Compiler::impImportBlock(BasicBlock* block)
15617 {
15618     // BBF_INTERNAL blocks only exist during importation due to EH canonicalization. We need to
15619     // handle them specially. In particular, there is no IL to import for them, but we do need
15620     // to mark them as imported and put their successors on the pending import list.
15621     if (block->bbFlags & BBF_INTERNAL)
15622     {
15623         JITDUMP("Marking BBF_INTERNAL block BB%02u as BBF_IMPORTED\n", block->bbNum);
15624         block->bbFlags |= BBF_IMPORTED;
15625
15626         for (unsigned i = 0; i < block->NumSucc(); i++)
15627         {
15628             impImportBlockPending(block->GetSucc(i));
15629         }
15630
15631         return;
15632     }
15633
15634     bool markImport;
15635
15636     assert(block);
15637
15638     /* Make the block globaly available */
15639
15640     compCurBB = block;
15641
15642 #ifdef DEBUG
15643     /* Initialize the debug variables */
15644     impCurOpcName = "unknown";
15645     impCurOpcOffs = block->bbCodeOffs;
15646 #endif
15647
15648     /* Set the current stack state to the merged result */
15649     verResetCurrentState(block, &verCurrentState);
15650
15651     /* Now walk the code and import the IL into GenTrees */
15652
15653     struct FilterVerificationExceptionsParam
15654     {
15655         Compiler*   pThis;
15656         BasicBlock* block;
15657     };
15658     FilterVerificationExceptionsParam param;
15659
15660     param.pThis = this;
15661     param.block = block;
15662
15663     PAL_TRY(FilterVerificationExceptionsParam*, pParam, &param)
15664     {
15665         /* @VERIFICATION : For now, the only state propagation from try
15666            to it's handler is "thisInit" state (stack is empty at start of try).
15667            In general, for state that we track in verification, we need to
15668            model the possibility that an exception might happen at any IL
15669            instruction, so we really need to merge all states that obtain
15670            between IL instructions in a try block into the start states of
15671            all handlers.
15672
15673            However we do not allow the 'this' pointer to be uninitialized when
15674            entering most kinds try regions (only try/fault are allowed to have
15675            an uninitialized this pointer on entry to the try)
15676
15677            Fortunately, the stack is thrown away when an exception
15678            leads to a handler, so we don't have to worry about that.
15679            We DO, however, have to worry about the "thisInit" state.
15680            But only for the try/fault case.
15681
15682            The only allowed transition is from TIS_Uninit to TIS_Init.
15683
15684            So for a try/fault region for the fault handler block
15685            we will merge the start state of the try begin
15686            and the post-state of each block that is part of this try region
15687         */
15688
15689         // merge the start state of the try begin
15690         //
15691         if (pParam->block->bbFlags & BBF_TRY_BEG)
15692         {
15693             pParam->pThis->impVerifyEHBlock(pParam->block, true);
15694         }
15695
15696         pParam->pThis->impImportBlockCode(pParam->block);
15697
15698         // As discussed above:
15699         // merge the post-state of each block that is part of this try region
15700         //
15701         if (pParam->block->hasTryIndex())
15702         {
15703             pParam->pThis->impVerifyEHBlock(pParam->block, false);
15704         }
15705     }
15706     PAL_EXCEPT_FILTER(FilterVerificationExceptions)
15707     {
15708         verHandleVerificationFailure(block DEBUGARG(false));
15709     }
15710     PAL_ENDTRY
15711
15712     if (compDonotInline())
15713     {
15714         return;
15715     }
15716
15717     assert(!compDonotInline());
15718
15719     markImport = false;
15720
15721 SPILLSTACK:
15722
15723     unsigned    baseTmp             = NO_BASE_TMP; // input temps assigned to successor blocks
15724     bool        reimportSpillClique = false;
15725     BasicBlock* tgtBlock            = nullptr;
15726
15727     /* If the stack is non-empty, we might have to spill its contents */
15728
15729     if (verCurrentState.esStackDepth != 0)
15730     {
15731         impBoxTemp = BAD_VAR_NUM; // if a box temp is used in a block that leaves something
15732                                   // on the stack, its lifetime is hard to determine, simply
15733                                   // don't reuse such temps.
15734
15735         GenTreePtr addStmt = nullptr;
15736
15737         /* Do the successors of 'block' have any other predecessors ?
15738            We do not want to do some of the optimizations related to multiRef
15739            if we can reimport blocks */
15740
15741         unsigned multRef = impCanReimport ? unsigned(~0) : 0;
15742
15743         switch (block->bbJumpKind)
15744         {
15745             case BBJ_COND:
15746
15747                 /* Temporarily remove the 'jtrue' from the end of the tree list */
15748
15749                 assert(impTreeLast);
15750                 assert(impTreeLast->gtOper == GT_STMT);
15751                 assert(impTreeLast->gtStmt.gtStmtExpr->gtOper == GT_JTRUE);
15752
15753                 addStmt     = impTreeLast;
15754                 impTreeLast = impTreeLast->gtPrev;
15755
15756                 /* Note if the next block has more than one ancestor */
15757
15758                 multRef |= block->bbNext->bbRefs;
15759
15760                 /* Does the next block have temps assigned? */
15761
15762                 baseTmp  = block->bbNext->bbStkTempsIn;
15763                 tgtBlock = block->bbNext;
15764
15765                 if (baseTmp != NO_BASE_TMP)
15766                 {
15767                     break;
15768                 }
15769
15770                 /* Try the target of the jump then */
15771
15772                 multRef |= block->bbJumpDest->bbRefs;
15773                 baseTmp  = block->bbJumpDest->bbStkTempsIn;
15774                 tgtBlock = block->bbJumpDest;
15775                 break;
15776
15777             case BBJ_ALWAYS:
15778                 multRef |= block->bbJumpDest->bbRefs;
15779                 baseTmp  = block->bbJumpDest->bbStkTempsIn;
15780                 tgtBlock = block->bbJumpDest;
15781                 break;
15782
15783             case BBJ_NONE:
15784                 multRef |= block->bbNext->bbRefs;
15785                 baseTmp  = block->bbNext->bbStkTempsIn;
15786                 tgtBlock = block->bbNext;
15787                 break;
15788
15789             case BBJ_SWITCH:
15790
15791                 BasicBlock** jmpTab;
15792                 unsigned     jmpCnt;
15793
15794                 /* Temporarily remove the GT_SWITCH from the end of the tree list */
15795
15796                 assert(impTreeLast);
15797                 assert(impTreeLast->gtOper == GT_STMT);
15798                 assert(impTreeLast->gtStmt.gtStmtExpr->gtOper == GT_SWITCH);
15799
15800                 addStmt     = impTreeLast;
15801                 impTreeLast = impTreeLast->gtPrev;
15802
15803                 jmpCnt = block->bbJumpSwt->bbsCount;
15804                 jmpTab = block->bbJumpSwt->bbsDstTab;
15805
15806                 do
15807                 {
15808                     tgtBlock = (*jmpTab);
15809
15810                     multRef |= tgtBlock->bbRefs;
15811
15812                     // Thanks to spill cliques, we should have assigned all or none
15813                     assert((baseTmp == NO_BASE_TMP) || (baseTmp == tgtBlock->bbStkTempsIn));
15814                     baseTmp = tgtBlock->bbStkTempsIn;
15815                     if (multRef > 1)
15816                     {
15817                         break;
15818                     }
15819                 } while (++jmpTab, --jmpCnt);
15820
15821                 break;
15822
15823             case BBJ_CALLFINALLY:
15824             case BBJ_EHCATCHRET:
15825             case BBJ_RETURN:
15826             case BBJ_EHFINALLYRET:
15827             case BBJ_EHFILTERRET:
15828             case BBJ_THROW:
15829                 NO_WAY("can't have 'unreached' end of BB with non-empty stack");
15830                 break;
15831
15832             default:
15833                 noway_assert(!"Unexpected bbJumpKind");
15834                 break;
15835         }
15836
15837         assert(multRef >= 1);
15838
15839         /* Do we have a base temp number? */
15840
15841         bool newTemps = (baseTmp == NO_BASE_TMP);
15842
15843         if (newTemps)
15844         {
15845             /* Grab enough temps for the whole stack */
15846             baseTmp = impGetSpillTmpBase(block);
15847         }
15848
15849         /* Spill all stack entries into temps */
15850         unsigned level, tempNum;
15851
15852         JITDUMP("\nSpilling stack entries into temps\n");
15853         for (level = 0, tempNum = baseTmp; level < verCurrentState.esStackDepth; level++, tempNum++)
15854         {
15855             GenTreePtr tree = verCurrentState.esStack[level].val;
15856
15857             /* VC generates code where it pushes a byref from one branch, and an int (ldc.i4 0) from
15858                the other. This should merge to a byref in unverifiable code.
15859                However, if the branch which leaves the TYP_I_IMPL on the stack is imported first, the
15860                successor would be imported assuming there was a TYP_I_IMPL on
15861                the stack. Thus the value would not get GC-tracked. Hence,
15862                change the temp to TYP_BYREF and reimport the successors.
15863                Note: We should only allow this in unverifiable code.
15864             */
15865             if (tree->gtType == TYP_BYREF && lvaTable[tempNum].lvType == TYP_I_IMPL && !verNeedsVerification())
15866             {
15867                 lvaTable[tempNum].lvType = TYP_BYREF;
15868                 impReimportMarkSuccessors(block);
15869                 markImport = true;
15870             }
15871
15872 #ifdef _TARGET_64BIT_
15873             if (genActualType(tree->gtType) == TYP_I_IMPL && lvaTable[tempNum].lvType == TYP_INT)
15874             {
15875                 if (tiVerificationNeeded && tgtBlock->bbEntryState != nullptr &&
15876                     (tgtBlock->bbFlags & BBF_FAILED_VERIFICATION) == 0)
15877                 {
15878                     // Merge the current state into the entry state of block;
15879                     // the call to verMergeEntryStates must have changed
15880                     // the entry state of the block by merging the int local var
15881                     // and the native-int stack entry.
15882                     bool changed = false;
15883                     if (verMergeEntryStates(tgtBlock, &changed))
15884                     {
15885                         impRetypeEntryStateTemps(tgtBlock);
15886                         impReimportBlockPending(tgtBlock);
15887                         assert(changed);
15888                     }
15889                     else
15890                     {
15891                         tgtBlock->bbFlags |= BBF_FAILED_VERIFICATION;
15892                         break;
15893                     }
15894                 }
15895
15896                 // Some other block in the spill clique set this to "int", but now we have "native int".
15897                 // Change the type and go back to re-import any blocks that used the wrong type.
15898                 lvaTable[tempNum].lvType = TYP_I_IMPL;
15899                 reimportSpillClique      = true;
15900             }
15901             else if (genActualType(tree->gtType) == TYP_INT && lvaTable[tempNum].lvType == TYP_I_IMPL)
15902             {
15903                 // Spill clique has decided this should be "native int", but this block only pushes an "int".
15904                 // Insert a sign-extension to "native int" so we match the clique.
15905                 verCurrentState.esStack[level].val = gtNewCastNode(TYP_I_IMPL, tree, TYP_I_IMPL);
15906             }
15907
15908             // Consider the case where one branch left a 'byref' on the stack and the other leaves
15909             // an 'int'. On 32-bit, this is allowed (in non-verifiable code) since they are the same
15910             // size. JIT64 managed to make this work on 64-bit. For compatibility, we support JIT64
15911             // behavior instead of asserting and then generating bad code (where we save/restore the
15912             // low 32 bits of a byref pointer to an 'int' sized local). If the 'int' side has been
15913             // imported already, we need to change the type of the local and reimport the spill clique.
15914             // If the 'byref' side has imported, we insert a cast from int to 'native int' to match
15915             // the 'byref' size.
15916             if (!tiVerificationNeeded)
15917             {
15918                 if (genActualType(tree->gtType) == TYP_BYREF && lvaTable[tempNum].lvType == TYP_INT)
15919                 {
15920                     // Some other block in the spill clique set this to "int", but now we have "byref".
15921                     // Change the type and go back to re-import any blocks that used the wrong type.
15922                     lvaTable[tempNum].lvType = TYP_BYREF;
15923                     reimportSpillClique      = true;
15924                 }
15925                 else if (genActualType(tree->gtType) == TYP_INT && lvaTable[tempNum].lvType == TYP_BYREF)
15926                 {
15927                     // Spill clique has decided this should be "byref", but this block only pushes an "int".
15928                     // Insert a sign-extension to "native int" so we match the clique size.
15929                     verCurrentState.esStack[level].val = gtNewCastNode(TYP_I_IMPL, tree, TYP_I_IMPL);
15930                 }
15931             }
15932 #endif // _TARGET_64BIT_
15933
15934 #if FEATURE_X87_DOUBLES
15935             // X87 stack doesn't differentiate between float/double
15936             // so promoting is no big deal.
15937             // For everybody else keep it as float until we have a collision and then promote
15938             // Just like for x64's TYP_INT<->TYP_I_IMPL
15939
15940             if (multRef > 1 && tree->gtType == TYP_FLOAT)
15941             {
15942                 verCurrentState.esStack[level].val = gtNewCastNode(TYP_DOUBLE, tree, TYP_DOUBLE);
15943             }
15944
15945 #else // !FEATURE_X87_DOUBLES
15946
15947             if (tree->gtType == TYP_DOUBLE && lvaTable[tempNum].lvType == TYP_FLOAT)
15948             {
15949                 // Some other block in the spill clique set this to "float", but now we have "double".
15950                 // Change the type and go back to re-import any blocks that used the wrong type.
15951                 lvaTable[tempNum].lvType = TYP_DOUBLE;
15952                 reimportSpillClique      = true;
15953             }
15954             else if (tree->gtType == TYP_FLOAT && lvaTable[tempNum].lvType == TYP_DOUBLE)
15955             {
15956                 // Spill clique has decided this should be "double", but this block only pushes a "float".
15957                 // Insert a cast to "double" so we match the clique.
15958                 verCurrentState.esStack[level].val = gtNewCastNode(TYP_DOUBLE, tree, TYP_DOUBLE);
15959             }
15960
15961 #endif // FEATURE_X87_DOUBLES
15962
15963             /* If addStmt has a reference to tempNum (can only happen if we
15964                are spilling to the temps already used by a previous block),
15965                we need to spill addStmt */
15966
15967             if (addStmt && !newTemps && gtHasRef(addStmt->gtStmt.gtStmtExpr, tempNum, false))
15968             {
15969                 GenTreePtr addTree = addStmt->gtStmt.gtStmtExpr;
15970
15971                 if (addTree->gtOper == GT_JTRUE)
15972                 {
15973                     GenTreePtr relOp = addTree->gtOp.gtOp1;
15974                     assert(relOp->OperIsCompare());
15975
15976                     var_types type = genActualType(relOp->gtOp.gtOp1->TypeGet());
15977
15978                     if (gtHasRef(relOp->gtOp.gtOp1, tempNum, false))
15979                     {
15980                         unsigned temp = lvaGrabTemp(true DEBUGARG("spill addStmt JTRUE ref Op1"));
15981                         impAssignTempGen(temp, relOp->gtOp.gtOp1, level);
15982                         type              = genActualType(lvaTable[temp].TypeGet());
15983                         relOp->gtOp.gtOp1 = gtNewLclvNode(temp, type);
15984                     }
15985
15986                     if (gtHasRef(relOp->gtOp.gtOp2, tempNum, false))
15987                     {
15988                         unsigned temp = lvaGrabTemp(true DEBUGARG("spill addStmt JTRUE ref Op2"));
15989                         impAssignTempGen(temp, relOp->gtOp.gtOp2, level);
15990                         type              = genActualType(lvaTable[temp].TypeGet());
15991                         relOp->gtOp.gtOp2 = gtNewLclvNode(temp, type);
15992                     }
15993                 }
15994                 else
15995                 {
15996                     assert(addTree->gtOper == GT_SWITCH && genActualType(addTree->gtOp.gtOp1->gtType) == TYP_I_IMPL);
15997
15998                     unsigned temp = lvaGrabTemp(true DEBUGARG("spill addStmt SWITCH"));
15999                     impAssignTempGen(temp, addTree->gtOp.gtOp1, level);
16000                     addTree->gtOp.gtOp1 = gtNewLclvNode(temp, TYP_I_IMPL);
16001                 }
16002             }
16003
16004             /* Spill the stack entry, and replace with the temp */
16005
16006             if (!impSpillStackEntry(level, tempNum
16007 #ifdef DEBUG
16008                                     ,
16009                                     true, "Spill Stack Entry"
16010 #endif
16011                                     ))
16012             {
16013                 if (markImport)
16014                 {
16015                     BADCODE("bad stack state");
16016                 }
16017
16018                 // Oops. Something went wrong when spilling. Bad code.
16019                 verHandleVerificationFailure(block DEBUGARG(true));
16020
16021                 goto SPILLSTACK;
16022             }
16023         }
16024
16025         /* Put back the 'jtrue'/'switch' if we removed it earlier */
16026
16027         if (addStmt)
16028         {
16029             impAppendStmt(addStmt, (unsigned)CHECK_SPILL_NONE);
16030         }
16031     }
16032
16033     // Some of the append/spill logic works on compCurBB
16034
16035     assert(compCurBB == block);
16036
16037     /* Save the tree list in the block */
16038     impEndTreeList(block);
16039
16040     // impEndTreeList sets BBF_IMPORTED on the block
16041     // We do *NOT* want to set it later than this because
16042     // impReimportSpillClique might clear it if this block is both a
16043     // predecessor and successor in the current spill clique
16044     assert(block->bbFlags & BBF_IMPORTED);
16045
16046     // If we had a int/native int, or float/double collision, we need to re-import
16047     if (reimportSpillClique)
16048     {
16049         // This will re-import all the successors of block (as well as each of their predecessors)
16050         impReimportSpillClique(block);
16051
16052         // For blocks that haven't been imported yet, we still need to mark them as pending import.
16053         for (unsigned i = 0; i < block->NumSucc(); i++)
16054         {
16055             BasicBlock* succ = block->GetSucc(i);
16056             if ((succ->bbFlags & BBF_IMPORTED) == 0)
16057             {
16058                 impImportBlockPending(succ);
16059             }
16060         }
16061     }
16062     else // the normal case
16063     {
16064         // otherwise just import the successors of block
16065
16066         /* Does this block jump to any other blocks? */
16067         for (unsigned i = 0; i < block->NumSucc(); i++)
16068         {
16069             impImportBlockPending(block->GetSucc(i));
16070         }
16071     }
16072 }
16073 #ifdef _PREFAST_
16074 #pragma warning(pop)
16075 #endif
16076
16077 /*****************************************************************************/
16078 //
16079 // Ensures that "block" is a member of the list of BBs waiting to be imported, pushing it on the list if
16080 // necessary (and ensures that it is a member of the set of BB's on the list, by setting its byte in
16081 // impPendingBlockMembers).  Merges the current verification state into the verification state of "block"
16082 // (its "pre-state").
16083
16084 void Compiler::impImportBlockPending(BasicBlock* block)
16085 {
16086 #ifdef DEBUG
16087     if (verbose)
16088     {
16089         printf("\nimpImportBlockPending for BB%02u\n", block->bbNum);
16090     }
16091 #endif
16092
16093     // We will add a block to the pending set if it has not already been imported (or needs to be re-imported),
16094     // or if it has, but merging in a predecessor's post-state changes the block's pre-state.
16095     // (When we're doing verification, we always attempt the merge to detect verification errors.)
16096
16097     // If the block has not been imported, add to pending set.
16098     bool addToPending = ((block->bbFlags & BBF_IMPORTED) == 0);
16099
16100     // Initialize bbEntryState just the first time we try to add this block to the pending list
16101     // Just because bbEntryState is NULL, doesn't mean the pre-state wasn't previously set
16102     // We use NULL to indicate the 'common' state to avoid memory allocation
16103     if ((block->bbEntryState == nullptr) && ((block->bbFlags & (BBF_IMPORTED | BBF_FAILED_VERIFICATION)) == 0) &&
16104         (impGetPendingBlockMember(block) == 0))
16105     {
16106         verInitBBEntryState(block, &verCurrentState);
16107         assert(block->bbStkDepth == 0);
16108         block->bbStkDepth = static_cast<unsigned short>(verCurrentState.esStackDepth);
16109         assert(addToPending);
16110         assert(impGetPendingBlockMember(block) == 0);
16111     }
16112     else
16113     {
16114         // The stack should have the same height on entry to the block from all its predecessors.
16115         if (block->bbStkDepth != verCurrentState.esStackDepth)
16116         {
16117 #ifdef DEBUG
16118             char buffer[400];
16119             sprintf_s(buffer, sizeof(buffer),
16120                       "Block at offset %4.4x to %4.4x in %s entered with different stack depths.\n"
16121                       "Previous depth was %d, current depth is %d",
16122                       block->bbCodeOffs, block->bbCodeOffsEnd, info.compFullName, block->bbStkDepth,
16123                       verCurrentState.esStackDepth);
16124             buffer[400 - 1] = 0;
16125             NO_WAY(buffer);
16126 #else
16127             NO_WAY("Block entered with different stack depths");
16128 #endif
16129         }
16130
16131         // Additionally, if we need to verify, merge the verification state.
16132         if (tiVerificationNeeded)
16133         {
16134             // Merge the current state into the entry state of block; if this does not change the entry state
16135             // by merging, do not add the block to the pending-list.
16136             bool changed = false;
16137             if (!verMergeEntryStates(block, &changed))
16138             {
16139                 block->bbFlags |= BBF_FAILED_VERIFICATION;
16140                 addToPending = true; // We will pop it off, and check the flag set above.
16141             }
16142             else if (changed)
16143             {
16144                 addToPending = true;
16145
16146                 JITDUMP("Adding BB%02u to pending set due to new merge result\n", block->bbNum);
16147             }
16148         }
16149
16150         if (!addToPending)
16151         {
16152             return;
16153         }
16154
16155         if (block->bbStkDepth > 0)
16156         {
16157             // We need to fix the types of any spill temps that might have changed:
16158             //   int->native int, float->double, int->byref, etc.
16159             impRetypeEntryStateTemps(block);
16160         }
16161
16162         // OK, we must add to the pending list, if it's not already in it.
16163         if (impGetPendingBlockMember(block) != 0)
16164         {
16165             return;
16166         }
16167     }
16168
16169     // Get an entry to add to the pending list
16170
16171     PendingDsc* dsc;
16172
16173     if (impPendingFree)
16174     {
16175         // We can reuse one of the freed up dscs.
16176         dsc            = impPendingFree;
16177         impPendingFree = dsc->pdNext;
16178     }
16179     else
16180     {
16181         // We have to create a new dsc
16182         dsc = new (this, CMK_Unknown) PendingDsc;
16183     }
16184
16185     dsc->pdBB                 = block;
16186     dsc->pdSavedStack.ssDepth = verCurrentState.esStackDepth;
16187     dsc->pdThisPtrInit        = verCurrentState.thisInitialized;
16188
16189     // Save the stack trees for later
16190
16191     if (verCurrentState.esStackDepth)
16192     {
16193         impSaveStackState(&dsc->pdSavedStack, false);
16194     }
16195
16196     // Add the entry to the pending list
16197
16198     dsc->pdNext    = impPendingList;
16199     impPendingList = dsc;
16200     impSetPendingBlockMember(block, 1); // And indicate that it's now a member of the set.
16201
16202     // Various assertions require us to now to consider the block as not imported (at least for
16203     // the final time...)
16204     block->bbFlags &= ~BBF_IMPORTED;
16205
16206 #ifdef DEBUG
16207     if (verbose && 0)
16208     {
16209         printf("Added PendingDsc - %08p for BB%02u\n", dspPtr(dsc), block->bbNum);
16210     }
16211 #endif
16212 }
16213
16214 /*****************************************************************************/
16215 //
16216 // Ensures that "block" is a member of the list of BBs waiting to be imported, pushing it on the list if
16217 // necessary (and ensures that it is a member of the set of BB's on the list, by setting its byte in
16218 // impPendingBlockMembers).  Does *NOT* change the existing "pre-state" of the block.
16219
16220 void Compiler::impReimportBlockPending(BasicBlock* block)
16221 {
16222     JITDUMP("\nimpReimportBlockPending for BB%02u", block->bbNum);
16223
16224     assert(block->bbFlags & BBF_IMPORTED);
16225
16226     // OK, we must add to the pending list, if it's not already in it.
16227     if (impGetPendingBlockMember(block) != 0)
16228     {
16229         return;
16230     }
16231
16232     // Get an entry to add to the pending list
16233
16234     PendingDsc* dsc;
16235
16236     if (impPendingFree)
16237     {
16238         // We can reuse one of the freed up dscs.
16239         dsc            = impPendingFree;
16240         impPendingFree = dsc->pdNext;
16241     }
16242     else
16243     {
16244         // We have to create a new dsc
16245         dsc = new (this, CMK_ImpStack) PendingDsc;
16246     }
16247
16248     dsc->pdBB = block;
16249
16250     if (block->bbEntryState)
16251     {
16252         dsc->pdThisPtrInit        = block->bbEntryState->thisInitialized;
16253         dsc->pdSavedStack.ssDepth = block->bbEntryState->esStackDepth;
16254         dsc->pdSavedStack.ssTrees = block->bbEntryState->esStack;
16255     }
16256     else
16257     {
16258         dsc->pdThisPtrInit        = TIS_Bottom;
16259         dsc->pdSavedStack.ssDepth = 0;
16260         dsc->pdSavedStack.ssTrees = nullptr;
16261     }
16262
16263     // Add the entry to the pending list
16264
16265     dsc->pdNext    = impPendingList;
16266     impPendingList = dsc;
16267     impSetPendingBlockMember(block, 1); // And indicate that it's now a member of the set.
16268
16269     // Various assertions require us to now to consider the block as not imported (at least for
16270     // the final time...)
16271     block->bbFlags &= ~BBF_IMPORTED;
16272
16273 #ifdef DEBUG
16274     if (verbose && 0)
16275     {
16276         printf("Added PendingDsc - %08p for BB%02u\n", dspPtr(dsc), block->bbNum);
16277     }
16278 #endif
16279 }
16280
16281 void* Compiler::BlockListNode::operator new(size_t sz, Compiler* comp)
16282 {
16283     if (comp->impBlockListNodeFreeList == nullptr)
16284     {
16285         return (BlockListNode*)comp->compGetMem(sizeof(BlockListNode), CMK_BasicBlock);
16286     }
16287     else
16288     {
16289         BlockListNode* res             = comp->impBlockListNodeFreeList;
16290         comp->impBlockListNodeFreeList = res->m_next;
16291         return res;
16292     }
16293 }
16294
16295 void Compiler::FreeBlockListNode(Compiler::BlockListNode* node)
16296 {
16297     node->m_next             = impBlockListNodeFreeList;
16298     impBlockListNodeFreeList = node;
16299 }
16300
16301 void Compiler::impWalkSpillCliqueFromPred(BasicBlock* block, SpillCliqueWalker* callback)
16302 {
16303     bool toDo = true;
16304
16305     noway_assert(!fgComputePredsDone);
16306     if (!fgCheapPredsValid)
16307     {
16308         fgComputeCheapPreds();
16309     }
16310
16311     BlockListNode* succCliqueToDo = nullptr;
16312     BlockListNode* predCliqueToDo = new (this) BlockListNode(block);
16313     while (toDo)
16314     {
16315         toDo = false;
16316         // Look at the successors of every member of the predecessor to-do list.
16317         while (predCliqueToDo != nullptr)
16318         {
16319             BlockListNode* node = predCliqueToDo;
16320             predCliqueToDo      = node->m_next;
16321             BasicBlock* blk     = node->m_blk;
16322             FreeBlockListNode(node);
16323
16324             for (unsigned succNum = 0; succNum < blk->NumSucc(); succNum++)
16325             {
16326                 BasicBlock* succ = blk->GetSucc(succNum);
16327                 // If it's not already in the clique, add it, and also add it
16328                 // as a member of the successor "toDo" set.
16329                 if (impSpillCliqueGetMember(SpillCliqueSucc, succ) == 0)
16330                 {
16331                     callback->Visit(SpillCliqueSucc, succ);
16332                     impSpillCliqueSetMember(SpillCliqueSucc, succ, 1);
16333                     succCliqueToDo = new (this) BlockListNode(succ, succCliqueToDo);
16334                     toDo           = true;
16335                 }
16336             }
16337         }
16338         // Look at the predecessors of every member of the successor to-do list.
16339         while (succCliqueToDo != nullptr)
16340         {
16341             BlockListNode* node = succCliqueToDo;
16342             succCliqueToDo      = node->m_next;
16343             BasicBlock* blk     = node->m_blk;
16344             FreeBlockListNode(node);
16345
16346             for (BasicBlockList* pred = blk->bbCheapPreds; pred != nullptr; pred = pred->next)
16347             {
16348                 BasicBlock* predBlock = pred->block;
16349                 // If it's not already in the clique, add it, and also add it
16350                 // as a member of the predecessor "toDo" set.
16351                 if (impSpillCliqueGetMember(SpillCliquePred, predBlock) == 0)
16352                 {
16353                     callback->Visit(SpillCliquePred, predBlock);
16354                     impSpillCliqueSetMember(SpillCliquePred, predBlock, 1);
16355                     predCliqueToDo = new (this) BlockListNode(predBlock, predCliqueToDo);
16356                     toDo           = true;
16357                 }
16358             }
16359         }
16360     }
16361
16362     // If this fails, it means we didn't walk the spill clique properly and somehow managed
16363     // miss walking back to include the predecessor we started from.
16364     // This most likely cause: missing or out of date bbPreds
16365     assert(impSpillCliqueGetMember(SpillCliquePred, block) != 0);
16366 }
16367
16368 void Compiler::SetSpillTempsBase::Visit(SpillCliqueDir predOrSucc, BasicBlock* blk)
16369 {
16370     if (predOrSucc == SpillCliqueSucc)
16371     {
16372         assert(blk->bbStkTempsIn == NO_BASE_TMP); // Should not already be a member of a clique as a successor.
16373         blk->bbStkTempsIn = m_baseTmp;
16374     }
16375     else
16376     {
16377         assert(predOrSucc == SpillCliquePred);
16378         assert(blk->bbStkTempsOut == NO_BASE_TMP); // Should not already be a member of a clique as a predecessor.
16379         blk->bbStkTempsOut = m_baseTmp;
16380     }
16381 }
16382
16383 void Compiler::ReimportSpillClique::Visit(SpillCliqueDir predOrSucc, BasicBlock* blk)
16384 {
16385     // For Preds we could be a little smarter and just find the existing store
16386     // and re-type it/add a cast, but that is complicated and hopefully very rare, so
16387     // just re-import the whole block (just like we do for successors)
16388
16389     if (((blk->bbFlags & BBF_IMPORTED) == 0) && (m_pComp->impGetPendingBlockMember(blk) == 0))
16390     {
16391         // If we haven't imported this block and we're not going to (because it isn't on
16392         // the pending list) then just ignore it for now.
16393
16394         // This block has either never been imported (EntryState == NULL) or it failed
16395         // verification. Neither state requires us to force it to be imported now.
16396         assert((blk->bbEntryState == nullptr) || (blk->bbFlags & BBF_FAILED_VERIFICATION));
16397         return;
16398     }
16399
16400     // For successors we have a valid verCurrentState, so just mark them for reimport
16401     // the 'normal' way
16402     // Unlike predecessors, we *DO* need to reimport the current block because the
16403     // initial import had the wrong entry state types.
16404     // Similarly, blocks that are currently on the pending list, still need to call
16405     // impImportBlockPending to fixup their entry state.
16406     if (predOrSucc == SpillCliqueSucc)
16407     {
16408         m_pComp->impReimportMarkBlock(blk);
16409
16410         // Set the current stack state to that of the blk->bbEntryState
16411         m_pComp->verResetCurrentState(blk, &m_pComp->verCurrentState);
16412         assert(m_pComp->verCurrentState.thisInitialized == blk->bbThisOnEntry());
16413
16414         m_pComp->impImportBlockPending(blk);
16415     }
16416     else if ((blk != m_pComp->compCurBB) && ((blk->bbFlags & BBF_IMPORTED) != 0))
16417     {
16418         // As described above, we are only visiting predecessors so they can
16419         // add the appropriate casts, since we have already done that for the current
16420         // block, it does not need to be reimported.
16421         // Nor do we need to reimport blocks that are still pending, but not yet
16422         // imported.
16423         //
16424         // For predecessors, we have no state to seed the EntryState, so we just have
16425         // to assume the existing one is correct.
16426         // If the block is also a successor, it will get the EntryState properly
16427         // updated when it is visited as a successor in the above "if" block.
16428         assert(predOrSucc == SpillCliquePred);
16429         m_pComp->impReimportBlockPending(blk);
16430     }
16431 }
16432
16433 // Re-type the incoming lclVar nodes to match the varDsc.
16434 void Compiler::impRetypeEntryStateTemps(BasicBlock* blk)
16435 {
16436     if (blk->bbEntryState != nullptr)
16437     {
16438         EntryState* es = blk->bbEntryState;
16439         for (unsigned level = 0; level < es->esStackDepth; level++)
16440         {
16441             GenTreePtr tree = es->esStack[level].val;
16442             if ((tree->gtOper == GT_LCL_VAR) || (tree->gtOper == GT_LCL_FLD))
16443             {
16444                 unsigned lclNum = tree->gtLclVarCommon.gtLclNum;
16445                 noway_assert(lclNum < lvaCount);
16446                 LclVarDsc* varDsc              = lvaTable + lclNum;
16447                 es->esStack[level].val->gtType = varDsc->TypeGet();
16448             }
16449         }
16450     }
16451 }
16452
16453 unsigned Compiler::impGetSpillTmpBase(BasicBlock* block)
16454 {
16455     if (block->bbStkTempsOut != NO_BASE_TMP)
16456     {
16457         return block->bbStkTempsOut;
16458     }
16459
16460 #ifdef DEBUG
16461     if (verbose)
16462     {
16463         printf("\n*************** In impGetSpillTmpBase(BB%02u)\n", block->bbNum);
16464     }
16465 #endif // DEBUG
16466
16467     // Otherwise, choose one, and propagate to all members of the spill clique.
16468     // Grab enough temps for the whole stack.
16469     unsigned baseTmp = lvaGrabTemps(verCurrentState.esStackDepth DEBUGARG("IL Stack Entries"));
16470     SetSpillTempsBase callback(baseTmp);
16471
16472     // We do *NOT* need to reset the SpillClique*Members because a block can only be the predecessor
16473     // to one spill clique, and similarly can only be the sucessor to one spill clique
16474     impWalkSpillCliqueFromPred(block, &callback);
16475
16476     return baseTmp;
16477 }
16478
16479 void Compiler::impReimportSpillClique(BasicBlock* block)
16480 {
16481 #ifdef DEBUG
16482     if (verbose)
16483     {
16484         printf("\n*************** In impReimportSpillClique(BB%02u)\n", block->bbNum);
16485     }
16486 #endif // DEBUG
16487
16488     // If we get here, it is because this block is already part of a spill clique
16489     // and one predecessor had an outgoing live stack slot of type int, and this
16490     // block has an outgoing live stack slot of type native int.
16491     // We need to reset these before traversal because they have already been set
16492     // by the previous walk to determine all the members of the spill clique.
16493     impInlineRoot()->impSpillCliquePredMembers.Reset();
16494     impInlineRoot()->impSpillCliqueSuccMembers.Reset();
16495
16496     ReimportSpillClique callback(this);
16497
16498     impWalkSpillCliqueFromPred(block, &callback);
16499 }
16500
16501 // Set the pre-state of "block" (which should not have a pre-state allocated) to
16502 // a copy of "srcState", cloning tree pointers as required.
16503 void Compiler::verInitBBEntryState(BasicBlock* block, EntryState* srcState)
16504 {
16505     if (srcState->esStackDepth == 0 && srcState->thisInitialized == TIS_Bottom)
16506     {
16507         block->bbEntryState = nullptr;
16508         return;
16509     }
16510
16511     block->bbEntryState = (EntryState*)compGetMemA(sizeof(EntryState));
16512
16513     // block->bbEntryState.esRefcount = 1;
16514
16515     block->bbEntryState->esStackDepth    = srcState->esStackDepth;
16516     block->bbEntryState->thisInitialized = TIS_Bottom;
16517
16518     if (srcState->esStackDepth > 0)
16519     {
16520         block->bbSetStack(new (this, CMK_Unknown) StackEntry[srcState->esStackDepth]);
16521         unsigned stackSize = srcState->esStackDepth * sizeof(StackEntry);
16522
16523         memcpy(block->bbEntryState->esStack, srcState->esStack, stackSize);
16524         for (unsigned level = 0; level < srcState->esStackDepth; level++)
16525         {
16526             GenTreePtr tree                         = srcState->esStack[level].val;
16527             block->bbEntryState->esStack[level].val = gtCloneExpr(tree);
16528         }
16529     }
16530
16531     if (verTrackObjCtorInitState)
16532     {
16533         verSetThisInit(block, srcState->thisInitialized);
16534     }
16535
16536     return;
16537 }
16538
16539 void Compiler::verSetThisInit(BasicBlock* block, ThisInitState tis)
16540 {
16541     assert(tis != TIS_Bottom); // Precondition.
16542     if (block->bbEntryState == nullptr)
16543     {
16544         block->bbEntryState = new (this, CMK_Unknown) EntryState();
16545     }
16546
16547     block->bbEntryState->thisInitialized = tis;
16548 }
16549
16550 /*
16551  * Resets the current state to the state at the start of the basic block
16552  */
16553 void Compiler::verResetCurrentState(BasicBlock* block, EntryState* destState)
16554 {
16555
16556     if (block->bbEntryState == nullptr)
16557     {
16558         destState->esStackDepth    = 0;
16559         destState->thisInitialized = TIS_Bottom;
16560         return;
16561     }
16562
16563     destState->esStackDepth = block->bbEntryState->esStackDepth;
16564
16565     if (destState->esStackDepth > 0)
16566     {
16567         unsigned stackSize = destState->esStackDepth * sizeof(StackEntry);
16568
16569         memcpy(destState->esStack, block->bbStackOnEntry(), stackSize);
16570     }
16571
16572     destState->thisInitialized = block->bbThisOnEntry();
16573
16574     return;
16575 }
16576
16577 ThisInitState BasicBlock::bbThisOnEntry()
16578 {
16579     return bbEntryState ? bbEntryState->thisInitialized : TIS_Bottom;
16580 }
16581
16582 unsigned BasicBlock::bbStackDepthOnEntry()
16583 {
16584     return (bbEntryState ? bbEntryState->esStackDepth : 0);
16585 }
16586
16587 void BasicBlock::bbSetStack(void* stackBuffer)
16588 {
16589     assert(bbEntryState);
16590     assert(stackBuffer);
16591     bbEntryState->esStack = (StackEntry*)stackBuffer;
16592 }
16593
16594 StackEntry* BasicBlock::bbStackOnEntry()
16595 {
16596     assert(bbEntryState);
16597     return bbEntryState->esStack;
16598 }
16599
16600 void Compiler::verInitCurrentState()
16601 {
16602     verTrackObjCtorInitState        = FALSE;
16603     verCurrentState.thisInitialized = TIS_Bottom;
16604
16605     if (tiVerificationNeeded)
16606     {
16607         // Track this ptr initialization
16608         if (!info.compIsStatic && (info.compFlags & CORINFO_FLG_CONSTRUCTOR) && lvaTable[0].lvVerTypeInfo.IsObjRef())
16609         {
16610             verTrackObjCtorInitState        = TRUE;
16611             verCurrentState.thisInitialized = TIS_Uninit;
16612         }
16613     }
16614
16615     // initialize stack info
16616
16617     verCurrentState.esStackDepth = 0;
16618     assert(verCurrentState.esStack != nullptr);
16619
16620     // copy current state to entry state of first BB
16621     verInitBBEntryState(fgFirstBB, &verCurrentState);
16622 }
16623
16624 Compiler* Compiler::impInlineRoot()
16625 {
16626     if (impInlineInfo == nullptr)
16627     {
16628         return this;
16629     }
16630     else
16631     {
16632         return impInlineInfo->InlineRoot;
16633     }
16634 }
16635
16636 BYTE Compiler::impSpillCliqueGetMember(SpillCliqueDir predOrSucc, BasicBlock* blk)
16637 {
16638     if (predOrSucc == SpillCliquePred)
16639     {
16640         return impInlineRoot()->impSpillCliquePredMembers.Get(blk->bbInd());
16641     }
16642     else
16643     {
16644         assert(predOrSucc == SpillCliqueSucc);
16645         return impInlineRoot()->impSpillCliqueSuccMembers.Get(blk->bbInd());
16646     }
16647 }
16648
16649 void Compiler::impSpillCliqueSetMember(SpillCliqueDir predOrSucc, BasicBlock* blk, BYTE val)
16650 {
16651     if (predOrSucc == SpillCliquePred)
16652     {
16653         impInlineRoot()->impSpillCliquePredMembers.Set(blk->bbInd(), val);
16654     }
16655     else
16656     {
16657         assert(predOrSucc == SpillCliqueSucc);
16658         impInlineRoot()->impSpillCliqueSuccMembers.Set(blk->bbInd(), val);
16659     }
16660 }
16661
16662 /*****************************************************************************
16663  *
16664  *  Convert the instrs ("import") into our internal format (trees). The
16665  *  basic flowgraph has already been constructed and is passed in.
16666  */
16667
16668 void Compiler::impImport(BasicBlock* method)
16669 {
16670 #ifdef DEBUG
16671     if (verbose)
16672     {
16673         printf("*************** In impImport() for %s\n", info.compFullName);
16674     }
16675 #endif
16676
16677     /* Allocate the stack contents */
16678
16679     if (info.compMaxStack <= sizeof(impSmallStack) / sizeof(impSmallStack[0]))
16680     {
16681         /* Use local variable, don't waste time allocating on the heap */
16682
16683         impStkSize              = sizeof(impSmallStack) / sizeof(impSmallStack[0]);
16684         verCurrentState.esStack = impSmallStack;
16685     }
16686     else
16687     {
16688         impStkSize              = info.compMaxStack;
16689         verCurrentState.esStack = new (this, CMK_ImpStack) StackEntry[impStkSize];
16690     }
16691
16692     // initialize the entry state at start of method
16693     verInitCurrentState();
16694
16695     // Initialize stuff related to figuring "spill cliques" (see spec comment for impGetSpillTmpBase).
16696     Compiler* inlineRoot = impInlineRoot();
16697     if (this == inlineRoot) // These are only used on the root of the inlining tree.
16698     {
16699         // We have initialized these previously, but to size 0.  Make them larger.
16700         impPendingBlockMembers.Init(getAllocator(), fgBBNumMax * 2);
16701         impSpillCliquePredMembers.Init(getAllocator(), fgBBNumMax * 2);
16702         impSpillCliqueSuccMembers.Init(getAllocator(), fgBBNumMax * 2);
16703     }
16704     inlineRoot->impPendingBlockMembers.Reset(fgBBNumMax * 2);
16705     inlineRoot->impSpillCliquePredMembers.Reset(fgBBNumMax * 2);
16706     inlineRoot->impSpillCliqueSuccMembers.Reset(fgBBNumMax * 2);
16707     impBlockListNodeFreeList = nullptr;
16708
16709 #ifdef DEBUG
16710     impLastILoffsStmt   = nullptr;
16711     impNestedStackSpill = false;
16712 #endif
16713     impBoxTemp = BAD_VAR_NUM;
16714
16715     impPendingList = impPendingFree = nullptr;
16716
16717     /* Add the entry-point to the worker-list */
16718
16719     // Skip leading internal blocks. There can be one as a leading scratch BB, and more
16720     // from EH normalization.
16721     // NOTE: It might be possible to always just put fgFirstBB on the pending list, and let everything else just fall
16722     // out.
16723     for (; method->bbFlags & BBF_INTERNAL; method = method->bbNext)
16724     {
16725         // Treat these as imported.
16726         assert(method->bbJumpKind == BBJ_NONE); // We assume all the leading ones are fallthrough.
16727         JITDUMP("Marking leading BBF_INTERNAL block BB%02u as BBF_IMPORTED\n", method->bbNum);
16728         method->bbFlags |= BBF_IMPORTED;
16729     }
16730
16731     impImportBlockPending(method);
16732
16733     /* Import blocks in the worker-list until there are no more */
16734
16735     while (impPendingList)
16736     {
16737         /* Remove the entry at the front of the list */
16738
16739         PendingDsc* dsc = impPendingList;
16740         impPendingList  = impPendingList->pdNext;
16741         impSetPendingBlockMember(dsc->pdBB, 0);
16742
16743         /* Restore the stack state */
16744
16745         verCurrentState.thisInitialized = dsc->pdThisPtrInit;
16746         verCurrentState.esStackDepth    = dsc->pdSavedStack.ssDepth;
16747         if (verCurrentState.esStackDepth)
16748         {
16749             impRestoreStackState(&dsc->pdSavedStack);
16750         }
16751
16752         /* Add the entry to the free list for reuse */
16753
16754         dsc->pdNext    = impPendingFree;
16755         impPendingFree = dsc;
16756
16757         /* Now import the block */
16758
16759         if (dsc->pdBB->bbFlags & BBF_FAILED_VERIFICATION)
16760         {
16761
16762 #ifdef _TARGET_64BIT_
16763             // On AMD64, during verification we have to match JIT64 behavior since the VM is very tighly
16764             // coupled with the JIT64 IL Verification logic.  Look inside verHandleVerificationFailure
16765             // method for further explanation on why we raise this exception instead of making the jitted
16766             // code throw the verification exception during execution.
16767             if (tiVerificationNeeded && opts.jitFlags->IsSet(JitFlags::JIT_FLAG_IMPORT_ONLY))
16768             {
16769                 BADCODE("Basic block marked as not verifiable");
16770             }
16771             else
16772 #endif // _TARGET_64BIT_
16773             {
16774                 verConvertBBToThrowVerificationException(dsc->pdBB DEBUGARG(true));
16775                 impEndTreeList(dsc->pdBB);
16776             }
16777         }
16778         else
16779         {
16780             impImportBlock(dsc->pdBB);
16781
16782             if (compDonotInline())
16783             {
16784                 return;
16785             }
16786             if (compIsForImportOnly() && !tiVerificationNeeded)
16787             {
16788                 return;
16789             }
16790         }
16791     }
16792
16793 #ifdef DEBUG
16794     if (verbose && info.compXcptnsCount)
16795     {
16796         printf("\nAfter impImport() added block for try,catch,finally");
16797         fgDispBasicBlocks();
16798         printf("\n");
16799     }
16800
16801     // Used in impImportBlockPending() for STRESS_CHK_REIMPORT
16802     for (BasicBlock* block = fgFirstBB; block; block = block->bbNext)
16803     {
16804         block->bbFlags &= ~BBF_VISITED;
16805     }
16806 #endif
16807
16808     assert(!compIsForInlining() || !tiVerificationNeeded);
16809 }
16810
16811 // Checks if a typeinfo (usually stored in the type stack) is a struct.
16812 // The invariant here is that if it's not a ref or a method and has a class handle
16813 // it's a valuetype
16814 bool Compiler::impIsValueType(typeInfo* pTypeInfo)
16815 {
16816     if (pTypeInfo && pTypeInfo->IsValueClassWithClsHnd())
16817     {
16818         return true;
16819     }
16820     else
16821     {
16822         return false;
16823     }
16824 }
16825
16826 /*****************************************************************************
16827  *  Check to see if the tree is the address of a local or
16828     the address of a field in a local.
16829
16830     *lclVarTreeOut will contain the GT_LCL_VAR tree when it returns TRUE.
16831
16832  */
16833
16834 BOOL Compiler::impIsAddressInLocal(GenTreePtr tree, GenTreePtr* lclVarTreeOut)
16835 {
16836     if (tree->gtOper != GT_ADDR)
16837     {
16838         return FALSE;
16839     }
16840
16841     GenTreePtr op = tree->gtOp.gtOp1;
16842     while (op->gtOper == GT_FIELD)
16843     {
16844         op = op->gtField.gtFldObj;
16845         if (op && op->gtOper == GT_ADDR) // Skip static fields where op will be NULL.
16846         {
16847             op = op->gtOp.gtOp1;
16848         }
16849         else
16850         {
16851             return false;
16852         }
16853     }
16854
16855     if (op->gtOper == GT_LCL_VAR)
16856     {
16857         *lclVarTreeOut = op;
16858         return TRUE;
16859     }
16860     else
16861     {
16862         return FALSE;
16863     }
16864 }
16865
16866 //------------------------------------------------------------------------
16867 // impMakeDiscretionaryInlineObservations: make observations that help
16868 // determine the profitability of a discretionary inline
16869 //
16870 // Arguments:
16871 //    pInlineInfo -- InlineInfo for the inline, or null for the prejit root
16872 //    inlineResult -- InlineResult accumulating information about this inline
16873 //
16874 // Notes:
16875 //    If inlining or prejitting the root, this method also makes
16876 //    various observations about the method that factor into inline
16877 //    decisions. It sets `compNativeSizeEstimate` as a side effect.
16878
16879 void Compiler::impMakeDiscretionaryInlineObservations(InlineInfo* pInlineInfo, InlineResult* inlineResult)
16880 {
16881     assert(pInlineInfo != nullptr && compIsForInlining() || // Perform the actual inlining.
16882            pInlineInfo == nullptr && !compIsForInlining()   // Calculate the static inlining hint for ngen.
16883            );
16884
16885     // If we're really inlining, we should just have one result in play.
16886     assert((pInlineInfo == nullptr) || (inlineResult == pInlineInfo->inlineResult));
16887
16888     // If this is a "forceinline" method, the JIT probably shouldn't have gone
16889     // to the trouble of estimating the native code size. Even if it did, it
16890     // shouldn't be relying on the result of this method.
16891     assert(inlineResult->GetObservation() == InlineObservation::CALLEE_IS_DISCRETIONARY_INLINE);
16892
16893     // Note if the caller contains NEWOBJ or NEWARR.
16894     Compiler* rootCompiler = impInlineRoot();
16895
16896     if ((rootCompiler->optMethodFlags & OMF_HAS_NEWARRAY) != 0)
16897     {
16898         inlineResult->Note(InlineObservation::CALLER_HAS_NEWARRAY);
16899     }
16900
16901     if ((rootCompiler->optMethodFlags & OMF_HAS_NEWOBJ) != 0)
16902     {
16903         inlineResult->Note(InlineObservation::CALLER_HAS_NEWOBJ);
16904     }
16905
16906     bool calleeIsStatic  = (info.compFlags & CORINFO_FLG_STATIC) != 0;
16907     bool isSpecialMethod = (info.compFlags & CORINFO_FLG_CONSTRUCTOR) != 0;
16908
16909     if (isSpecialMethod)
16910     {
16911         if (calleeIsStatic)
16912         {
16913             inlineResult->Note(InlineObservation::CALLEE_IS_CLASS_CTOR);
16914         }
16915         else
16916         {
16917             inlineResult->Note(InlineObservation::CALLEE_IS_INSTANCE_CTOR);
16918         }
16919     }
16920     else if (!calleeIsStatic)
16921     {
16922         // Callee is an instance method.
16923         //
16924         // Check if the callee has the same 'this' as the root.
16925         if (pInlineInfo != nullptr)
16926         {
16927             GenTreePtr thisArg = pInlineInfo->iciCall->gtCall.gtCallObjp;
16928             assert(thisArg);
16929             bool isSameThis = impIsThis(thisArg);
16930             inlineResult->NoteBool(InlineObservation::CALLSITE_IS_SAME_THIS, isSameThis);
16931         }
16932     }
16933
16934     // Note if the callee's class is a promotable struct
16935     if ((info.compClassAttr & CORINFO_FLG_VALUECLASS) != 0)
16936     {
16937         lvaStructPromotionInfo structPromotionInfo;
16938         lvaCanPromoteStructType(info.compClassHnd, &structPromotionInfo, false);
16939         if (structPromotionInfo.canPromote)
16940         {
16941             inlineResult->Note(InlineObservation::CALLEE_CLASS_PROMOTABLE);
16942         }
16943     }
16944
16945 #ifdef FEATURE_SIMD
16946
16947     // Note if this method is has SIMD args or return value
16948     if (pInlineInfo != nullptr && pInlineInfo->hasSIMDTypeArgLocalOrReturn)
16949     {
16950         inlineResult->Note(InlineObservation::CALLEE_HAS_SIMD);
16951     }
16952
16953 #endif // FEATURE_SIMD
16954
16955     // Roughly classify callsite frequency.
16956     InlineCallsiteFrequency frequency = InlineCallsiteFrequency::UNUSED;
16957
16958     // If this is a prejit root, or a maximally hot block...
16959     if ((pInlineInfo == nullptr) || (pInlineInfo->iciBlock->bbWeight >= BB_MAX_WEIGHT))
16960     {
16961         frequency = InlineCallsiteFrequency::HOT;
16962     }
16963     // No training data.  Look for loop-like things.
16964     // We consider a recursive call loop-like.  Do not give the inlining boost to the method itself.
16965     // However, give it to things nearby.
16966     else if ((pInlineInfo->iciBlock->bbFlags & BBF_BACKWARD_JUMP) &&
16967              (pInlineInfo->fncHandle != pInlineInfo->inlineCandidateInfo->ilCallerHandle))
16968     {
16969         frequency = InlineCallsiteFrequency::LOOP;
16970     }
16971     else if ((pInlineInfo->iciBlock->bbFlags & BBF_PROF_WEIGHT) && (pInlineInfo->iciBlock->bbWeight > BB_ZERO_WEIGHT))
16972     {
16973         frequency = InlineCallsiteFrequency::WARM;
16974     }
16975     // Now modify the multiplier based on where we're called from.
16976     else if (pInlineInfo->iciBlock->isRunRarely() || ((info.compFlags & FLG_CCTOR) == FLG_CCTOR))
16977     {
16978         frequency = InlineCallsiteFrequency::RARE;
16979     }
16980     else
16981     {
16982         frequency = InlineCallsiteFrequency::BORING;
16983     }
16984
16985     // Also capture the block weight of the call site.  In the prejit
16986     // root case, assume there's some hot call site for this method.
16987     unsigned weight = 0;
16988
16989     if (pInlineInfo != nullptr)
16990     {
16991         weight = pInlineInfo->iciBlock->bbWeight;
16992     }
16993     else
16994     {
16995         weight = BB_MAX_WEIGHT;
16996     }
16997
16998     inlineResult->NoteInt(InlineObservation::CALLSITE_FREQUENCY, static_cast<int>(frequency));
16999     inlineResult->NoteInt(InlineObservation::CALLSITE_WEIGHT, static_cast<int>(weight));
17000 }
17001
17002 /*****************************************************************************
17003  This method makes STATIC inlining decision based on the IL code.
17004  It should not make any inlining decision based on the context.
17005  If forceInline is true, then the inlining decision should not depend on
17006  performance heuristics (code size, etc.).
17007  */
17008
17009 void Compiler::impCanInlineIL(CORINFO_METHOD_HANDLE fncHandle,
17010                               CORINFO_METHOD_INFO*  methInfo,
17011                               bool                  forceInline,
17012                               InlineResult*         inlineResult)
17013 {
17014     unsigned codeSize = methInfo->ILCodeSize;
17015
17016     // We shouldn't have made up our minds yet...
17017     assert(!inlineResult->IsDecided());
17018
17019     if (methInfo->EHcount)
17020     {
17021         inlineResult->NoteFatal(InlineObservation::CALLEE_HAS_EH);
17022         return;
17023     }
17024
17025     if ((methInfo->ILCode == nullptr) || (codeSize == 0))
17026     {
17027         inlineResult->NoteFatal(InlineObservation::CALLEE_HAS_NO_BODY);
17028         return;
17029     }
17030
17031     // For now we don't inline varargs (import code can't handle it)
17032
17033     if (methInfo->args.isVarArg())
17034     {
17035         inlineResult->NoteFatal(InlineObservation::CALLEE_HAS_MANAGED_VARARGS);
17036         return;
17037     }
17038
17039     // Reject if it has too many locals.
17040     // This is currently an implementation limit due to fixed-size arrays in the
17041     // inline info, rather than a performance heuristic.
17042
17043     inlineResult->NoteInt(InlineObservation::CALLEE_NUMBER_OF_LOCALS, methInfo->locals.numArgs);
17044
17045     if (methInfo->locals.numArgs > MAX_INL_LCLS)
17046     {
17047         inlineResult->NoteFatal(InlineObservation::CALLEE_TOO_MANY_LOCALS);
17048         return;
17049     }
17050
17051     // Make sure there aren't too many arguments.
17052     // This is currently an implementation limit due to fixed-size arrays in the
17053     // inline info, rather than a performance heuristic.
17054
17055     inlineResult->NoteInt(InlineObservation::CALLEE_NUMBER_OF_ARGUMENTS, methInfo->args.numArgs);
17056
17057     if (methInfo->args.numArgs > MAX_INL_ARGS)
17058     {
17059         inlineResult->NoteFatal(InlineObservation::CALLEE_TOO_MANY_ARGUMENTS);
17060         return;
17061     }
17062
17063     // Note force inline state
17064
17065     inlineResult->NoteBool(InlineObservation::CALLEE_IS_FORCE_INLINE, forceInline);
17066
17067     // Note IL code size
17068
17069     inlineResult->NoteInt(InlineObservation::CALLEE_IL_CODE_SIZE, codeSize);
17070
17071     if (inlineResult->IsFailure())
17072     {
17073         return;
17074     }
17075
17076     // Make sure maxstack is not too big
17077
17078     inlineResult->NoteInt(InlineObservation::CALLEE_MAXSTACK, methInfo->maxStack);
17079
17080     if (inlineResult->IsFailure())
17081     {
17082         return;
17083     }
17084 }
17085
17086 /*****************************************************************************
17087  */
17088
17089 void Compiler::impCheckCanInline(GenTreePtr             call,
17090                                  CORINFO_METHOD_HANDLE  fncHandle,
17091                                  unsigned               methAttr,
17092                                  CORINFO_CONTEXT_HANDLE exactContextHnd,
17093                                  InlineCandidateInfo**  ppInlineCandidateInfo,
17094                                  InlineResult*          inlineResult)
17095 {
17096     // Either EE or JIT might throw exceptions below.
17097     // If that happens, just don't inline the method.
17098
17099     struct Param
17100     {
17101         Compiler*              pThis;
17102         GenTreePtr             call;
17103         CORINFO_METHOD_HANDLE  fncHandle;
17104         unsigned               methAttr;
17105         CORINFO_CONTEXT_HANDLE exactContextHnd;
17106         InlineResult*          result;
17107         InlineCandidateInfo**  ppInlineCandidateInfo;
17108     } param = {nullptr};
17109
17110     param.pThis                 = this;
17111     param.call                  = call;
17112     param.fncHandle             = fncHandle;
17113     param.methAttr              = methAttr;
17114     param.exactContextHnd       = (exactContextHnd != nullptr) ? exactContextHnd : MAKE_METHODCONTEXT(fncHandle);
17115     param.result                = inlineResult;
17116     param.ppInlineCandidateInfo = ppInlineCandidateInfo;
17117
17118     bool success = eeRunWithErrorTrap<Param>(
17119         [](Param* pParam) {
17120             DWORD                  dwRestrictions = 0;
17121             CorInfoInitClassResult initClassResult;
17122
17123 #ifdef DEBUG
17124             const char* methodName;
17125             const char* className;
17126             methodName = pParam->pThis->eeGetMethodName(pParam->fncHandle, &className);
17127
17128             if (JitConfig.JitNoInline())
17129             {
17130                 pParam->result->NoteFatal(InlineObservation::CALLEE_IS_JIT_NOINLINE);
17131                 goto _exit;
17132             }
17133 #endif
17134
17135             /* Try to get the code address/size for the method */
17136
17137             CORINFO_METHOD_INFO methInfo;
17138             if (!pParam->pThis->info.compCompHnd->getMethodInfo(pParam->fncHandle, &methInfo))
17139             {
17140                 pParam->result->NoteFatal(InlineObservation::CALLEE_NO_METHOD_INFO);
17141                 goto _exit;
17142             }
17143
17144             bool forceInline;
17145             forceInline = !!(pParam->methAttr & CORINFO_FLG_FORCEINLINE);
17146
17147             pParam->pThis->impCanInlineIL(pParam->fncHandle, &methInfo, forceInline, pParam->result);
17148
17149             if (pParam->result->IsFailure())
17150             {
17151                 assert(pParam->result->IsNever());
17152                 goto _exit;
17153             }
17154
17155             // Speculatively check if initClass() can be done.
17156             // If it can be done, we will try to inline the method. If inlining
17157             // succeeds, then we will do the non-speculative initClass() and commit it.
17158             // If this speculative call to initClass() fails, there is no point
17159             // trying to inline this method.
17160             initClassResult =
17161                 pParam->pThis->info.compCompHnd->initClass(nullptr /* field */, pParam->fncHandle /* method */,
17162                                                            pParam->exactContextHnd /* context */,
17163                                                            TRUE /* speculative */);
17164
17165             if (initClassResult & CORINFO_INITCLASS_DONT_INLINE)
17166             {
17167                 pParam->result->NoteFatal(InlineObservation::CALLSITE_CLASS_INIT_FAILURE_SPEC);
17168                 goto _exit;
17169             }
17170
17171             // Given the EE the final say in whether to inline or not.
17172             // This should be last since for verifiable code, this can be expensive
17173
17174             /* VM Inline check also ensures that the method is verifiable if needed */
17175             CorInfoInline vmResult;
17176             vmResult = pParam->pThis->info.compCompHnd->canInline(pParam->pThis->info.compMethodHnd, pParam->fncHandle,
17177                                                                   &dwRestrictions);
17178
17179             if (vmResult == INLINE_FAIL)
17180             {
17181                 pParam->result->NoteFatal(InlineObservation::CALLSITE_IS_VM_NOINLINE);
17182             }
17183             else if (vmResult == INLINE_NEVER)
17184             {
17185                 pParam->result->NoteFatal(InlineObservation::CALLEE_IS_VM_NOINLINE);
17186             }
17187
17188             if (pParam->result->IsFailure())
17189             {
17190                 // Make sure not to report this one.  It was already reported by the VM.
17191                 pParam->result->SetReported();
17192                 goto _exit;
17193             }
17194
17195             // check for unsupported inlining restrictions
17196             assert((dwRestrictions & ~(INLINE_RESPECT_BOUNDARY | INLINE_NO_CALLEE_LDSTR | INLINE_SAME_THIS)) == 0);
17197
17198             if (dwRestrictions & INLINE_SAME_THIS)
17199             {
17200                 GenTreePtr thisArg = pParam->call->gtCall.gtCallObjp;
17201                 assert(thisArg);
17202
17203                 if (!pParam->pThis->impIsThis(thisArg))
17204                 {
17205                     pParam->result->NoteFatal(InlineObservation::CALLSITE_REQUIRES_SAME_THIS);
17206                     goto _exit;
17207                 }
17208             }
17209
17210             /* Get the method properties */
17211
17212             CORINFO_CLASS_HANDLE clsHandle;
17213             clsHandle = pParam->pThis->info.compCompHnd->getMethodClass(pParam->fncHandle);
17214             unsigned clsAttr;
17215             clsAttr = pParam->pThis->info.compCompHnd->getClassAttribs(clsHandle);
17216
17217             /* Get the return type */
17218
17219             var_types fncRetType;
17220             fncRetType = pParam->call->TypeGet();
17221
17222 #ifdef DEBUG
17223             var_types fncRealRetType;
17224             fncRealRetType = JITtype2varType(methInfo.args.retType);
17225
17226             assert((genActualType(fncRealRetType) == genActualType(fncRetType)) ||
17227                    // <BUGNUM> VSW 288602 </BUGNUM>
17228                    // In case of IJW, we allow to assign a native pointer to a BYREF.
17229                    (fncRetType == TYP_BYREF && methInfo.args.retType == CORINFO_TYPE_PTR) ||
17230                    (varTypeIsStruct(fncRetType) && (fncRealRetType == TYP_STRUCT)));
17231 #endif
17232
17233             //
17234             // Allocate an InlineCandidateInfo structure
17235             //
17236             InlineCandidateInfo* pInfo;
17237             pInfo = new (pParam->pThis, CMK_Inlining) InlineCandidateInfo;
17238
17239             pInfo->dwRestrictions  = dwRestrictions;
17240             pInfo->methInfo        = methInfo;
17241             pInfo->methAttr        = pParam->methAttr;
17242             pInfo->clsHandle       = clsHandle;
17243             pInfo->clsAttr         = clsAttr;
17244             pInfo->fncRetType      = fncRetType;
17245             pInfo->exactContextHnd = pParam->exactContextHnd;
17246             pInfo->ilCallerHandle  = pParam->pThis->info.compMethodHnd;
17247             pInfo->initClassResult = initClassResult;
17248
17249             *(pParam->ppInlineCandidateInfo) = pInfo;
17250
17251         _exit:;
17252         },
17253         &param);
17254     if (!success)
17255     {
17256         param.result->NoteFatal(InlineObservation::CALLSITE_COMPILATION_ERROR);
17257     }
17258 }
17259
17260 void Compiler::impInlineRecordArgInfo(InlineInfo*   pInlineInfo,
17261                                       GenTreePtr    curArgVal,
17262                                       unsigned      argNum,
17263                                       InlineResult* inlineResult)
17264 {
17265     InlArgInfo* inlCurArgInfo = &pInlineInfo->inlArgInfo[argNum];
17266
17267     if (curArgVal->gtOper == GT_MKREFANY)
17268     {
17269         inlineResult->NoteFatal(InlineObservation::CALLSITE_ARG_IS_MKREFANY);
17270         return;
17271     }
17272
17273     inlCurArgInfo->argNode = curArgVal;
17274
17275     GenTreePtr lclVarTree;
17276     if (impIsAddressInLocal(curArgVal, &lclVarTree) && varTypeIsStruct(lclVarTree))
17277     {
17278         inlCurArgInfo->argIsByRefToStructLocal = true;
17279 #ifdef FEATURE_SIMD
17280         if (lvaTable[lclVarTree->AsLclVarCommon()->gtLclNum].lvSIMDType)
17281         {
17282             pInlineInfo->hasSIMDTypeArgLocalOrReturn = true;
17283         }
17284 #endif // FEATURE_SIMD
17285     }
17286
17287     if (curArgVal->gtFlags & GTF_ALL_EFFECT)
17288     {
17289         inlCurArgInfo->argHasGlobRef = (curArgVal->gtFlags & GTF_GLOB_REF) != 0;
17290         inlCurArgInfo->argHasSideEff = (curArgVal->gtFlags & (GTF_ALL_EFFECT & ~GTF_GLOB_REF)) != 0;
17291     }
17292
17293     if (curArgVal->gtOper == GT_LCL_VAR)
17294     {
17295         inlCurArgInfo->argIsLclVar = true;
17296
17297         /* Remember the "original" argument number */
17298         curArgVal->gtLclVar.gtLclILoffs = argNum;
17299     }
17300
17301     if ((curArgVal->OperKind() & GTK_CONST) ||
17302         ((curArgVal->gtOper == GT_ADDR) && (curArgVal->gtOp.gtOp1->gtOper == GT_LCL_VAR)))
17303     {
17304         inlCurArgInfo->argIsInvariant = true;
17305         if (inlCurArgInfo->argIsThis && (curArgVal->gtOper == GT_CNS_INT) && (curArgVal->gtIntCon.gtIconVal == 0))
17306         {
17307             /* Abort, but do not mark as not inlinable */
17308             inlineResult->NoteFatal(InlineObservation::CALLSITE_ARG_HAS_NULL_THIS);
17309             return;
17310         }
17311     }
17312
17313     if (!inlCurArgInfo->argIsInvariant && gtHasLocalsWithAddrOp(curArgVal))
17314     {
17315         inlCurArgInfo->argHasLdargaOp = true;
17316     }
17317
17318 #ifdef DEBUG
17319     if (verbose)
17320     {
17321         if (inlCurArgInfo->argIsThis)
17322         {
17323             printf("thisArg:");
17324         }
17325         else
17326         {
17327             printf("\nArgument #%u:", argNum);
17328         }
17329         if (inlCurArgInfo->argIsLclVar)
17330         {
17331             printf(" is a local var");
17332         }
17333         if (inlCurArgInfo->argIsInvariant)
17334         {
17335             printf(" is a constant");
17336         }
17337         if (inlCurArgInfo->argHasGlobRef)
17338         {
17339             printf(" has global refs");
17340         }
17341         if (inlCurArgInfo->argHasSideEff)
17342         {
17343             printf(" has side effects");
17344         }
17345         if (inlCurArgInfo->argHasLdargaOp)
17346         {
17347             printf(" has ldarga effect");
17348         }
17349         if (inlCurArgInfo->argHasStargOp)
17350         {
17351             printf(" has starg effect");
17352         }
17353         if (inlCurArgInfo->argIsByRefToStructLocal)
17354         {
17355             printf(" is byref to a struct local");
17356         }
17357
17358         printf("\n");
17359         gtDispTree(curArgVal);
17360         printf("\n");
17361     }
17362 #endif
17363 }
17364
17365 /*****************************************************************************
17366  *
17367  */
17368
17369 void Compiler::impInlineInitVars(InlineInfo* pInlineInfo)
17370 {
17371     assert(!compIsForInlining());
17372
17373     GenTreePtr           call         = pInlineInfo->iciCall;
17374     CORINFO_METHOD_INFO* methInfo     = &pInlineInfo->inlineCandidateInfo->methInfo;
17375     unsigned             clsAttr      = pInlineInfo->inlineCandidateInfo->clsAttr;
17376     InlArgInfo*          inlArgInfo   = pInlineInfo->inlArgInfo;
17377     InlLclVarInfo*       lclVarInfo   = pInlineInfo->lclVarInfo;
17378     InlineResult*        inlineResult = pInlineInfo->inlineResult;
17379
17380     const bool hasRetBuffArg = impMethodInfo_hasRetBuffArg(methInfo);
17381
17382     /* init the argument stuct */
17383
17384     memset(inlArgInfo, 0, (MAX_INL_ARGS + 1) * sizeof(inlArgInfo[0]));
17385
17386     /* Get hold of the 'this' pointer and the argument list proper */
17387
17388     GenTreePtr thisArg = call->gtCall.gtCallObjp;
17389     GenTreePtr argList = call->gtCall.gtCallArgs;
17390     unsigned   argCnt  = 0; // Count of the arguments
17391
17392     assert((methInfo->args.hasThis()) == (thisArg != nullptr));
17393
17394     if (thisArg)
17395     {
17396         inlArgInfo[0].argIsThis = true;
17397
17398         impInlineRecordArgInfo(pInlineInfo, thisArg, argCnt, inlineResult);
17399
17400         if (inlineResult->IsFailure())
17401         {
17402             return;
17403         }
17404
17405         /* Increment the argument count */
17406         argCnt++;
17407     }
17408
17409     /* Record some information about each of the arguments */
17410     bool hasTypeCtxtArg = (methInfo->args.callConv & CORINFO_CALLCONV_PARAMTYPE) != 0;
17411
17412 #if USER_ARGS_COME_LAST
17413     unsigned typeCtxtArg = thisArg ? 1 : 0;
17414 #else  // USER_ARGS_COME_LAST
17415     unsigned typeCtxtArg = methInfo->args.totalILArgs();
17416 #endif // USER_ARGS_COME_LAST
17417
17418     for (GenTreePtr argTmp = argList; argTmp; argTmp = argTmp->gtOp.gtOp2)
17419     {
17420         if (argTmp == argList && hasRetBuffArg)
17421         {
17422             continue;
17423         }
17424
17425         // Ignore the type context argument
17426         if (hasTypeCtxtArg && (argCnt == typeCtxtArg))
17427         {
17428             typeCtxtArg = 0xFFFFFFFF;
17429             continue;
17430         }
17431
17432         assert(argTmp->gtOper == GT_LIST);
17433         GenTreePtr argVal = argTmp->gtOp.gtOp1;
17434
17435         impInlineRecordArgInfo(pInlineInfo, argVal, argCnt, inlineResult);
17436
17437         if (inlineResult->IsFailure())
17438         {
17439             return;
17440         }
17441
17442         /* Increment the argument count */
17443         argCnt++;
17444     }
17445
17446     /* Make sure we got the arg number right */
17447     assert(argCnt == methInfo->args.totalILArgs());
17448
17449 #ifdef FEATURE_SIMD
17450     bool foundSIMDType = pInlineInfo->hasSIMDTypeArgLocalOrReturn;
17451 #endif // FEATURE_SIMD
17452
17453     /* We have typeless opcodes, get type information from the signature */
17454
17455     if (thisArg)
17456     {
17457         var_types sigType;
17458
17459         if (clsAttr & CORINFO_FLG_VALUECLASS)
17460         {
17461             sigType = TYP_BYREF;
17462         }
17463         else
17464         {
17465             sigType = TYP_REF;
17466         }
17467
17468         lclVarInfo[0].lclVerTypeInfo = verMakeTypeInfo(pInlineInfo->inlineCandidateInfo->clsHandle);
17469         lclVarInfo[0].lclHasLdlocaOp = false;
17470
17471 #ifdef FEATURE_SIMD
17472         // We always want to check isSIMDClass, since we want to set foundSIMDType (to increase
17473         // the inlining multiplier) for anything in that assembly.
17474         // But we only need to normalize it if it is a TYP_STRUCT
17475         // (which we need to do even if we have already set foundSIMDType).
17476         if ((!foundSIMDType || (sigType == TYP_STRUCT)) && isSIMDClass(&(lclVarInfo[0].lclVerTypeInfo)))
17477         {
17478             if (sigType == TYP_STRUCT)
17479             {
17480                 sigType = impNormStructType(lclVarInfo[0].lclVerTypeInfo.GetClassHandle());
17481             }
17482             foundSIMDType = true;
17483         }
17484 #endif // FEATURE_SIMD
17485         lclVarInfo[0].lclTypeInfo = sigType;
17486
17487         assert(varTypeIsGC(thisArg->gtType) ||   // "this" is managed
17488                (thisArg->gtType == TYP_I_IMPL && // "this" is unmgd but the method's class doesnt care
17489                 (clsAttr & CORINFO_FLG_VALUECLASS)));
17490
17491         if (genActualType(thisArg->gtType) != genActualType(sigType))
17492         {
17493             if (sigType == TYP_REF)
17494             {
17495                 /* The argument cannot be bashed into a ref (see bug 750871) */
17496                 inlineResult->NoteFatal(InlineObservation::CALLSITE_ARG_NO_BASH_TO_REF);
17497                 return;
17498             }
17499
17500             /* This can only happen with byrefs <-> ints/shorts */
17501
17502             assert(genActualType(sigType) == TYP_I_IMPL || sigType == TYP_BYREF);
17503             assert(genActualType(thisArg->gtType) == TYP_I_IMPL || thisArg->gtType == TYP_BYREF);
17504
17505             if (sigType == TYP_BYREF)
17506             {
17507                 lclVarInfo[0].lclVerTypeInfo = typeInfo(varType2tiType(TYP_I_IMPL));
17508             }
17509             else if (thisArg->gtType == TYP_BYREF)
17510             {
17511                 assert(sigType == TYP_I_IMPL);
17512
17513                 /* If possible change the BYREF to an int */
17514                 if (thisArg->IsVarAddr())
17515                 {
17516                     thisArg->gtType              = TYP_I_IMPL;
17517                     lclVarInfo[0].lclVerTypeInfo = typeInfo(varType2tiType(TYP_I_IMPL));
17518                 }
17519                 else
17520                 {
17521                     /* Arguments 'int <- byref' cannot be bashed */
17522                     inlineResult->NoteFatal(InlineObservation::CALLSITE_ARG_NO_BASH_TO_INT);
17523                     return;
17524                 }
17525             }
17526         }
17527     }
17528
17529     /* Init the types of the arguments and make sure the types
17530      * from the trees match the types in the signature */
17531
17532     CORINFO_ARG_LIST_HANDLE argLst;
17533     argLst = methInfo->args.args;
17534
17535     unsigned i;
17536     for (i = (thisArg ? 1 : 0); i < argCnt; i++, argLst = info.compCompHnd->getArgNext(argLst))
17537     {
17538         var_types sigType = (var_types)eeGetArgType(argLst, &methInfo->args);
17539
17540         lclVarInfo[i].lclVerTypeInfo = verParseArgSigToTypeInfo(&methInfo->args, argLst);
17541
17542 #ifdef FEATURE_SIMD
17543         if ((!foundSIMDType || (sigType == TYP_STRUCT)) && isSIMDClass(&(lclVarInfo[i].lclVerTypeInfo)))
17544         {
17545             // If this is a SIMD class (i.e. in the SIMD assembly), then we will consider that we've
17546             // found a SIMD type, even if this may not be a type we recognize (the assumption is that
17547             // it is likely to use a SIMD type, and therefore we want to increase the inlining multiplier).
17548             foundSIMDType = true;
17549             if (sigType == TYP_STRUCT)
17550             {
17551                 var_types structType = impNormStructType(lclVarInfo[i].lclVerTypeInfo.GetClassHandle());
17552                 sigType              = structType;
17553             }
17554         }
17555 #endif // FEATURE_SIMD
17556
17557         lclVarInfo[i].lclTypeInfo    = sigType;
17558         lclVarInfo[i].lclHasLdlocaOp = false;
17559
17560         /* Does the tree type match the signature type? */
17561
17562         GenTreePtr inlArgNode = inlArgInfo[i].argNode;
17563
17564         if (sigType != inlArgNode->gtType)
17565         {
17566             /* In valid IL, this can only happen for short integer types or byrefs <-> [native] ints,
17567                but in bad IL cases with caller-callee signature mismatches we can see other types.
17568                Intentionally reject cases with mismatches so the jit is more flexible when
17569                encountering bad IL. */
17570
17571             bool isPlausibleTypeMatch = (genActualType(sigType) == genActualType(inlArgNode->gtType)) ||
17572                                         (genActualTypeIsIntOrI(sigType) && inlArgNode->gtType == TYP_BYREF) ||
17573                                         (sigType == TYP_BYREF && genActualTypeIsIntOrI(inlArgNode->gtType));
17574
17575             if (!isPlausibleTypeMatch)
17576             {
17577                 inlineResult->NoteFatal(InlineObservation::CALLSITE_ARG_TYPES_INCOMPATIBLE);
17578                 return;
17579             }
17580
17581             /* Is it a narrowing or widening cast?
17582              * Widening casts are ok since the value computed is already
17583              * normalized to an int (on the IL stack) */
17584
17585             if (genTypeSize(inlArgNode->gtType) >= genTypeSize(sigType))
17586             {
17587                 if (sigType == TYP_BYREF)
17588                 {
17589                     lclVarInfo[i].lclVerTypeInfo = typeInfo(varType2tiType(TYP_I_IMPL));
17590                 }
17591                 else if (inlArgNode->gtType == TYP_BYREF)
17592                 {
17593                     assert(varTypeIsIntOrI(sigType));
17594
17595                     /* If possible bash the BYREF to an int */
17596                     if (inlArgNode->IsVarAddr())
17597                     {
17598                         inlArgNode->gtType           = TYP_I_IMPL;
17599                         lclVarInfo[i].lclVerTypeInfo = typeInfo(varType2tiType(TYP_I_IMPL));
17600                     }
17601                     else
17602                     {
17603                         /* Arguments 'int <- byref' cannot be changed */
17604                         inlineResult->NoteFatal(InlineObservation::CALLSITE_ARG_NO_BASH_TO_INT);
17605                         return;
17606                     }
17607                 }
17608                 else if (genTypeSize(sigType) < EA_PTRSIZE)
17609                 {
17610                     /* Narrowing cast */
17611
17612                     if (inlArgNode->gtOper == GT_LCL_VAR &&
17613                         !lvaTable[inlArgNode->gtLclVarCommon.gtLclNum].lvNormalizeOnLoad() &&
17614                         sigType == lvaGetRealType(inlArgNode->gtLclVarCommon.gtLclNum))
17615                     {
17616                         /* We don't need to insert a cast here as the variable
17617                            was assigned a normalized value of the right type */
17618
17619                         continue;
17620                     }
17621
17622                     inlArgNode = inlArgInfo[i].argNode = gtNewCastNode(TYP_INT, inlArgNode, sigType);
17623
17624                     inlArgInfo[i].argIsLclVar = false;
17625
17626                     /* Try to fold the node in case we have constant arguments */
17627
17628                     if (inlArgInfo[i].argIsInvariant)
17629                     {
17630                         inlArgNode            = gtFoldExprConst(inlArgNode);
17631                         inlArgInfo[i].argNode = inlArgNode;
17632                         assert(inlArgNode->OperIsConst());
17633                     }
17634                 }
17635 #ifdef _TARGET_64BIT_
17636                 else if (genTypeSize(genActualType(inlArgNode->gtType)) < genTypeSize(sigType))
17637                 {
17638                     // This should only happen for int -> native int widening
17639                     inlArgNode = inlArgInfo[i].argNode = gtNewCastNode(genActualType(sigType), inlArgNode, sigType);
17640
17641                     inlArgInfo[i].argIsLclVar = false;
17642
17643                     /* Try to fold the node in case we have constant arguments */
17644
17645                     if (inlArgInfo[i].argIsInvariant)
17646                     {
17647                         inlArgNode            = gtFoldExprConst(inlArgNode);
17648                         inlArgInfo[i].argNode = inlArgNode;
17649                         assert(inlArgNode->OperIsConst());
17650                     }
17651                 }
17652 #endif // _TARGET_64BIT_
17653             }
17654         }
17655     }
17656
17657     /* Init the types of the local variables */
17658
17659     CORINFO_ARG_LIST_HANDLE localsSig;
17660     localsSig = methInfo->locals.args;
17661
17662     for (i = 0; i < methInfo->locals.numArgs; i++)
17663     {
17664         bool      isPinned;
17665         var_types type = (var_types)eeGetArgType(localsSig, &methInfo->locals, &isPinned);
17666
17667         lclVarInfo[i + argCnt].lclHasLdlocaOp = false;
17668         lclVarInfo[i + argCnt].lclIsPinned    = isPinned;
17669         lclVarInfo[i + argCnt].lclTypeInfo    = type;
17670
17671         if (isPinned)
17672         {
17673             // Pinned locals may cause inlines to fail.
17674             inlineResult->Note(InlineObservation::CALLEE_HAS_PINNED_LOCALS);
17675             if (inlineResult->IsFailure())
17676             {
17677                 return;
17678             }
17679         }
17680
17681         lclVarInfo[i + argCnt].lclVerTypeInfo = verParseArgSigToTypeInfo(&methInfo->locals, localsSig);
17682
17683         // If this local is a struct type with GC fields, inform the inliner. It may choose to bail
17684         // out on the inline.
17685         if (type == TYP_STRUCT)
17686         {
17687             CORINFO_CLASS_HANDLE lclHandle = lclVarInfo[i + argCnt].lclVerTypeInfo.GetClassHandle();
17688             DWORD                typeFlags = info.compCompHnd->getClassAttribs(lclHandle);
17689             if ((typeFlags & CORINFO_FLG_CONTAINS_GC_PTR) != 0)
17690             {
17691                 inlineResult->Note(InlineObservation::CALLEE_HAS_GC_STRUCT);
17692                 if (inlineResult->IsFailure())
17693                 {
17694                     return;
17695                 }
17696
17697                 // Do further notification in the case where the call site is rare; some policies do
17698                 // not track the relative hotness of call sites for "always" inline cases.
17699                 if (pInlineInfo->iciBlock->isRunRarely())
17700                 {
17701                     inlineResult->Note(InlineObservation::CALLSITE_RARE_GC_STRUCT);
17702                     if (inlineResult->IsFailure())
17703                     {
17704
17705                         return;
17706                     }
17707                 }
17708             }
17709         }
17710
17711         localsSig = info.compCompHnd->getArgNext(localsSig);
17712
17713 #ifdef FEATURE_SIMD
17714         if ((!foundSIMDType || (type == TYP_STRUCT)) && isSIMDClass(&(lclVarInfo[i + argCnt].lclVerTypeInfo)))
17715         {
17716             foundSIMDType = true;
17717             if (featureSIMD && type == TYP_STRUCT)
17718             {
17719                 var_types structType = impNormStructType(lclVarInfo[i + argCnt].lclVerTypeInfo.GetClassHandle());
17720                 lclVarInfo[i + argCnt].lclTypeInfo = structType;
17721             }
17722         }
17723 #endif // FEATURE_SIMD
17724     }
17725
17726 #ifdef FEATURE_SIMD
17727     if (!foundSIMDType && (call->AsCall()->gtRetClsHnd != nullptr) && isSIMDClass(call->AsCall()->gtRetClsHnd))
17728     {
17729         foundSIMDType = true;
17730     }
17731     pInlineInfo->hasSIMDTypeArgLocalOrReturn = foundSIMDType;
17732 #endif // FEATURE_SIMD
17733 }
17734
17735 unsigned Compiler::impInlineFetchLocal(unsigned lclNum DEBUGARG(const char* reason))
17736 {
17737     assert(compIsForInlining());
17738
17739     unsigned tmpNum = impInlineInfo->lclTmpNum[lclNum];
17740
17741     if (tmpNum == BAD_VAR_NUM)
17742     {
17743         var_types lclTyp = impInlineInfo->lclVarInfo[lclNum + impInlineInfo->argCnt].lclTypeInfo;
17744
17745         // The lifetime of this local might span multiple BBs.
17746         // So it is a long lifetime local.
17747         impInlineInfo->lclTmpNum[lclNum] = tmpNum = lvaGrabTemp(false DEBUGARG(reason));
17748
17749         lvaTable[tmpNum].lvType = lclTyp;
17750         if (impInlineInfo->lclVarInfo[lclNum + impInlineInfo->argCnt].lclHasLdlocaOp)
17751         {
17752             lvaTable[tmpNum].lvHasLdAddrOp = 1;
17753         }
17754
17755         if (impInlineInfo->lclVarInfo[lclNum + impInlineInfo->argCnt].lclIsPinned)
17756         {
17757             lvaTable[tmpNum].lvPinned = 1;
17758
17759             if (!impInlineInfo->hasPinnedLocals)
17760             {
17761                 // If the inlinee returns a value, use a spill temp
17762                 // for the return value to ensure that even in case
17763                 // where the return expression refers to one of the
17764                 // pinned locals, we can unpin the local right after
17765                 // the inlined method body.
17766                 if ((info.compRetNativeType != TYP_VOID) && (lvaInlineeReturnSpillTemp == BAD_VAR_NUM))
17767                 {
17768                     lvaInlineeReturnSpillTemp =
17769                         lvaGrabTemp(false DEBUGARG("Inline candidate pinned local return spill temp"));
17770                     lvaTable[lvaInlineeReturnSpillTemp].lvType = info.compRetNativeType;
17771                 }
17772             }
17773
17774             impInlineInfo->hasPinnedLocals = true;
17775         }
17776
17777         if (impInlineInfo->lclVarInfo[lclNum + impInlineInfo->argCnt].lclVerTypeInfo.IsStruct())
17778         {
17779             if (varTypeIsStruct(lclTyp))
17780             {
17781                 lvaSetStruct(tmpNum,
17782                              impInlineInfo->lclVarInfo[lclNum + impInlineInfo->argCnt].lclVerTypeInfo.GetClassHandle(),
17783                              true /* unsafe value cls check */);
17784             }
17785             else
17786             {
17787                 // This is a wrapped primitive.  Make sure the verstate knows that
17788                 lvaTable[tmpNum].lvVerTypeInfo =
17789                     impInlineInfo->lclVarInfo[lclNum + impInlineInfo->argCnt].lclVerTypeInfo;
17790             }
17791         }
17792     }
17793
17794     return tmpNum;
17795 }
17796
17797 // A method used to return the GenTree (usually a GT_LCL_VAR) representing the arguments of the inlined method.
17798 // Only use this method for the arguments of the inlinee method.
17799 // !!! Do not use it for the locals of the inlinee method. !!!!
17800
17801 GenTreePtr Compiler::impInlineFetchArg(unsigned lclNum, InlArgInfo* inlArgInfo, InlLclVarInfo* lclVarInfo)
17802 {
17803     /* Get the argument type */
17804     var_types lclTyp = lclVarInfo[lclNum].lclTypeInfo;
17805
17806     GenTreePtr op1 = nullptr;
17807
17808     // constant or address of local
17809     if (inlArgInfo[lclNum].argIsInvariant && !inlArgInfo[lclNum].argHasLdargaOp && !inlArgInfo[lclNum].argHasStargOp)
17810     {
17811         /* Clone the constant. Note that we cannot directly use argNode
17812         in the trees even if inlArgInfo[lclNum].argIsUsed==false as this
17813         would introduce aliasing between inlArgInfo[].argNode and
17814         impInlineExpr. Then gtFoldExpr() could change it, causing further
17815         references to the argument working off of the bashed copy. */
17816
17817         op1 = gtCloneExpr(inlArgInfo[lclNum].argNode);
17818         PREFIX_ASSUME(op1 != nullptr);
17819         inlArgInfo[lclNum].argTmpNum = (unsigned)-1; // illegal temp
17820     }
17821     else if (inlArgInfo[lclNum].argIsLclVar && !inlArgInfo[lclNum].argHasLdargaOp && !inlArgInfo[lclNum].argHasStargOp)
17822     {
17823         /* Argument is a local variable (of the caller)
17824          * Can we re-use the passed argument node? */
17825
17826         op1                          = inlArgInfo[lclNum].argNode;
17827         inlArgInfo[lclNum].argTmpNum = op1->gtLclVarCommon.gtLclNum;
17828
17829         if (inlArgInfo[lclNum].argIsUsed)
17830         {
17831             assert(op1->gtOper == GT_LCL_VAR);
17832             assert(lclNum == op1->gtLclVar.gtLclILoffs);
17833
17834             if (!lvaTable[op1->gtLclVarCommon.gtLclNum].lvNormalizeOnLoad())
17835             {
17836                 lclTyp = genActualType(lclTyp);
17837             }
17838
17839             /* Create a new lcl var node - remember the argument lclNum */
17840             op1 = gtNewLclvNode(op1->gtLclVarCommon.gtLclNum, lclTyp, op1->gtLclVar.gtLclILoffs);
17841         }
17842     }
17843     else if (inlArgInfo[lclNum].argIsByRefToStructLocal && !inlArgInfo[lclNum].argHasStargOp)
17844     {
17845         /* Argument is a by-ref address to a struct, a normed struct, or its field.
17846            In these cases, don't spill the byref to a local, simply clone the tree and use it.
17847            This way we will increase the chance for this byref to be optimized away by
17848            a subsequent "dereference" operation.
17849
17850            From Dev11 bug #139955: Argument node can also be TYP_I_IMPL if we've bashed the tree
17851            (in impInlineInitVars()), if the arg has argHasLdargaOp as well as argIsByRefToStructLocal.
17852            For example, if the caller is:
17853                 ldloca.s   V_1  // V_1 is a local struct
17854                 call       void Test.ILPart::RunLdargaOnPointerArg(int32*)
17855            and the callee being inlined has:
17856                 .method public static void  RunLdargaOnPointerArg(int32* ptrToInts) cil managed
17857                     ldarga.s   ptrToInts
17858                     call       void Test.FourInts::NotInlined_SetExpectedValuesThroughPointerToPointer(int32**)
17859            then we change the argument tree (of "ldloca.s V_1") to TYP_I_IMPL to match the callee signature. We'll
17860            soon afterwards reject the inlining anyway, since the tree we return isn't a GT_LCL_VAR.
17861         */
17862         assert(inlArgInfo[lclNum].argNode->TypeGet() == TYP_BYREF ||
17863                inlArgInfo[lclNum].argNode->TypeGet() == TYP_I_IMPL);
17864         op1 = gtCloneExpr(inlArgInfo[lclNum].argNode);
17865     }
17866     else
17867     {
17868         /* Argument is a complex expression - it must be evaluated into a temp */
17869
17870         if (inlArgInfo[lclNum].argHasTmp)
17871         {
17872             assert(inlArgInfo[lclNum].argIsUsed);
17873             assert(inlArgInfo[lclNum].argTmpNum < lvaCount);
17874
17875             /* Create a new lcl var node - remember the argument lclNum */
17876             op1 = gtNewLclvNode(inlArgInfo[lclNum].argTmpNum, genActualType(lclTyp));
17877
17878             /* This is the second or later use of the this argument,
17879             so we have to use the temp (instead of the actual arg) */
17880             inlArgInfo[lclNum].argBashTmpNode = nullptr;
17881         }
17882         else
17883         {
17884             /* First time use */
17885             assert(inlArgInfo[lclNum].argIsUsed == false);
17886
17887             /* Reserve a temp for the expression.
17888             * Use a large size node as we may change it later */
17889
17890             unsigned tmpNum = lvaGrabTemp(true DEBUGARG("Inlining Arg"));
17891
17892             lvaTable[tmpNum].lvType = lclTyp;
17893             assert(lvaTable[tmpNum].lvAddrExposed == 0);
17894             if (inlArgInfo[lclNum].argHasLdargaOp)
17895             {
17896                 lvaTable[tmpNum].lvHasLdAddrOp = 1;
17897             }
17898
17899             if (lclVarInfo[lclNum].lclVerTypeInfo.IsStruct())
17900             {
17901                 if (varTypeIsStruct(lclTyp))
17902                 {
17903                     lvaSetStruct(tmpNum, impInlineInfo->lclVarInfo[lclNum].lclVerTypeInfo.GetClassHandle(),
17904                                  true /* unsafe value cls check */);
17905                 }
17906                 else
17907                 {
17908                     // This is a wrapped primitive.  Make sure the verstate knows that
17909                     lvaTable[tmpNum].lvVerTypeInfo = impInlineInfo->lclVarInfo[lclNum].lclVerTypeInfo;
17910                 }
17911             }
17912
17913             inlArgInfo[lclNum].argHasTmp = true;
17914             inlArgInfo[lclNum].argTmpNum = tmpNum;
17915
17916             // If we require strict exception order, then arguments must
17917             // be evaluated in sequence before the body of the inlined method.
17918             // So we need to evaluate them to a temp.
17919             // Also, if arguments have global references, we need to
17920             // evaluate them to a temp before the inlined body as the
17921             // inlined body may be modifying the global ref.
17922             // TODO-1stClassStructs: We currently do not reuse an existing lclVar
17923             // if it is a struct, because it requires some additional handling.
17924
17925             if (!varTypeIsStruct(lclTyp) && (!inlArgInfo[lclNum].argHasSideEff) && (!inlArgInfo[lclNum].argHasGlobRef))
17926             {
17927                 /* Get a *LARGE* LCL_VAR node */
17928                 op1 = gtNewLclLNode(tmpNum, genActualType(lclTyp), lclNum);
17929
17930                 /* Record op1 as the very first use of this argument.
17931                 If there are no further uses of the arg, we may be
17932                 able to use the actual arg node instead of the temp.
17933                 If we do see any further uses, we will clear this. */
17934                 inlArgInfo[lclNum].argBashTmpNode = op1;
17935             }
17936             else
17937             {
17938                 /* Get a small LCL_VAR node */
17939                 op1 = gtNewLclvNode(tmpNum, genActualType(lclTyp));
17940                 /* No bashing of this argument */
17941                 inlArgInfo[lclNum].argBashTmpNode = nullptr;
17942             }
17943         }
17944     }
17945
17946     /* Mark the argument as used */
17947
17948     inlArgInfo[lclNum].argIsUsed = true;
17949
17950     return op1;
17951 }
17952
17953 /******************************************************************************
17954  Is this the original "this" argument to the call being inlined?
17955
17956  Note that we do not inline methods with "starg 0", and so we do not need to
17957  worry about it.
17958 */
17959
17960 BOOL Compiler::impInlineIsThis(GenTreePtr tree, InlArgInfo* inlArgInfo)
17961 {
17962     assert(compIsForInlining());
17963     return (tree->gtOper == GT_LCL_VAR && tree->gtLclVarCommon.gtLclNum == inlArgInfo[0].argTmpNum);
17964 }
17965
17966 //-----------------------------------------------------------------------------
17967 // This function checks if a dereference in the inlinee can guarantee that
17968 // the "this" is non-NULL.
17969 // If we haven't hit a branch or a side effect, and we are dereferencing
17970 // from 'this' to access a field or make GTF_CALL_NULLCHECK call,
17971 // then we can avoid a separate null pointer check.
17972 //
17973 // "additionalTreesToBeEvaluatedBefore"
17974 // is the set of pending trees that have not yet been added to the statement list,
17975 // and which have been removed from verCurrentState.esStack[]
17976
17977 BOOL Compiler::impInlineIsGuaranteedThisDerefBeforeAnySideEffects(GenTreePtr  additionalTreesToBeEvaluatedBefore,
17978                                                                   GenTreePtr  variableBeingDereferenced,
17979                                                                   InlArgInfo* inlArgInfo)
17980 {
17981     assert(compIsForInlining());
17982     assert(opts.OptEnabled(CLFLG_INLINING));
17983
17984     BasicBlock* block = compCurBB;
17985
17986     GenTreePtr stmt;
17987     GenTreePtr expr;
17988
17989     if (block != fgFirstBB)
17990     {
17991         return FALSE;
17992     }
17993
17994     if (!impInlineIsThis(variableBeingDereferenced, inlArgInfo))
17995     {
17996         return FALSE;
17997     }
17998
17999     if (additionalTreesToBeEvaluatedBefore &&
18000         GTF_GLOBALLY_VISIBLE_SIDE_EFFECTS(additionalTreesToBeEvaluatedBefore->gtFlags))
18001     {
18002         return FALSE;
18003     }
18004
18005     for (stmt = impTreeList->gtNext; stmt; stmt = stmt->gtNext)
18006     {
18007         expr = stmt->gtStmt.gtStmtExpr;
18008
18009         if (GTF_GLOBALLY_VISIBLE_SIDE_EFFECTS(expr->gtFlags))
18010         {
18011             return FALSE;
18012         }
18013     }
18014
18015     for (unsigned level = 0; level < verCurrentState.esStackDepth; level++)
18016     {
18017         unsigned stackTreeFlags = verCurrentState.esStack[level].val->gtFlags;
18018         if (GTF_GLOBALLY_VISIBLE_SIDE_EFFECTS(stackTreeFlags))
18019         {
18020             return FALSE;
18021         }
18022     }
18023
18024     return TRUE;
18025 }
18026
18027 /******************************************************************************/
18028 // Check the inlining eligibility of this GT_CALL node.
18029 // Mark GTF_CALL_INLINE_CANDIDATE on the GT_CALL node
18030
18031 // Todo: find a way to record the failure reasons in the IR (or
18032 // otherwise build tree context) so when we do the inlining pass we
18033 // can capture these reasons
18034
18035 void Compiler::impMarkInlineCandidate(GenTreePtr             callNode,
18036                                       CORINFO_CONTEXT_HANDLE exactContextHnd,
18037                                       CORINFO_CALL_INFO*     callInfo)
18038 {
18039     // Let the strategy know there's another call
18040     impInlineRoot()->m_inlineStrategy->NoteCall();
18041
18042     if (!opts.OptEnabled(CLFLG_INLINING))
18043     {
18044         /* XXX Mon 8/18/2008
18045          * This assert is misleading.  The caller does not ensure that we have CLFLG_INLINING set before
18046          * calling impMarkInlineCandidate.  However, if this assert trips it means that we're an inlinee and
18047          * CLFLG_MINOPT is set.  That doesn't make a lot of sense.  If you hit this assert, work back and
18048          * figure out why we did not set MAXOPT for this compile.
18049          */
18050         assert(!compIsForInlining());
18051         return;
18052     }
18053
18054     if (compIsForImportOnly())
18055     {
18056         // Don't bother creating the inline candidate during verification.
18057         // Otherwise the call to info.compCompHnd->canInline will trigger a recursive verification
18058         // that leads to the creation of multiple instances of Compiler.
18059         return;
18060     }
18061
18062     GenTreeCall* call = callNode->AsCall();
18063     InlineResult inlineResult(this, call, nullptr, "impMarkInlineCandidate");
18064
18065     // Don't inline if not optimizing root method
18066     if (opts.compDbgCode)
18067     {
18068         inlineResult.NoteFatal(InlineObservation::CALLER_DEBUG_CODEGEN);
18069         return;
18070     }
18071
18072     // Don't inline if inlining into root method is disabled.
18073     if (InlineStrategy::IsNoInline(info.compCompHnd, info.compMethodHnd))
18074     {
18075         inlineResult.NoteFatal(InlineObservation::CALLER_IS_JIT_NOINLINE);
18076         return;
18077     }
18078
18079     // Inlining candidate determination needs to honor only IL tail prefix.
18080     // Inlining takes precedence over implicit tail call optimization (if the call is not directly recursive).
18081     if (call->IsTailPrefixedCall())
18082     {
18083         inlineResult.NoteFatal(InlineObservation::CALLSITE_EXPLICIT_TAIL_PREFIX);
18084         return;
18085     }
18086
18087     // Tail recursion elimination takes precedence over inlining.
18088     // TODO: We may want to do some of the additional checks from fgMorphCall
18089     // here to reduce the chance we don't inline a call that won't be optimized
18090     // as a fast tail call or turned into a loop.
18091     if (gtIsRecursiveCall(call) && call->IsImplicitTailCall())
18092     {
18093         inlineResult.NoteFatal(InlineObservation::CALLSITE_IMPLICIT_REC_TAIL_CALL);
18094         return;
18095     }
18096
18097     if ((call->gtFlags & GTF_CALL_VIRT_KIND_MASK) != GTF_CALL_NONVIRT)
18098     {
18099         inlineResult.NoteFatal(InlineObservation::CALLSITE_IS_NOT_DIRECT);
18100         return;
18101     }
18102
18103     /* Ignore helper calls */
18104
18105     if (call->gtCallType == CT_HELPER)
18106     {
18107         inlineResult.NoteFatal(InlineObservation::CALLSITE_IS_CALL_TO_HELPER);
18108         return;
18109     }
18110
18111     /* Ignore indirect calls */
18112     if (call->gtCallType == CT_INDIRECT)
18113     {
18114         inlineResult.NoteFatal(InlineObservation::CALLSITE_IS_NOT_DIRECT_MANAGED);
18115         return;
18116     }
18117
18118     /* I removed the check for BBJ_THROW.  BBJ_THROW is usually marked as rarely run.  This more or less
18119      * restricts the inliner to non-expanding inlines.  I removed the check to allow for non-expanding
18120      * inlining in throw blocks.  I should consider the same thing for catch and filter regions. */
18121
18122     CORINFO_METHOD_HANDLE fncHandle = call->gtCallMethHnd;
18123     unsigned              methAttr;
18124
18125     // Reuse method flags from the original callInfo if possible
18126     if (fncHandle == callInfo->hMethod)
18127     {
18128         methAttr = callInfo->methodFlags;
18129     }
18130     else
18131     {
18132         methAttr = info.compCompHnd->getMethodAttribs(fncHandle);
18133     }
18134
18135 #ifdef DEBUG
18136     if (compStressCompile(STRESS_FORCE_INLINE, 0))
18137     {
18138         methAttr |= CORINFO_FLG_FORCEINLINE;
18139     }
18140 #endif
18141
18142     // Check for COMPlus_AggressiveInlining
18143     if (compDoAggressiveInlining)
18144     {
18145         methAttr |= CORINFO_FLG_FORCEINLINE;
18146     }
18147
18148     if (!(methAttr & CORINFO_FLG_FORCEINLINE))
18149     {
18150         /* Don't bother inline blocks that are in the filter region */
18151         if (bbInCatchHandlerILRange(compCurBB))
18152         {
18153 #ifdef DEBUG
18154             if (verbose)
18155             {
18156                 printf("\nWill not inline blocks that are in the catch handler region\n");
18157             }
18158
18159 #endif
18160
18161             inlineResult.NoteFatal(InlineObservation::CALLSITE_IS_WITHIN_CATCH);
18162             return;
18163         }
18164
18165         if (bbInFilterILRange(compCurBB))
18166         {
18167 #ifdef DEBUG
18168             if (verbose)
18169             {
18170                 printf("\nWill not inline blocks that are in the filter region\n");
18171             }
18172 #endif
18173
18174             inlineResult.NoteFatal(InlineObservation::CALLSITE_IS_WITHIN_FILTER);
18175             return;
18176         }
18177     }
18178
18179     /* If the caller's stack frame is marked, then we can't do any inlining. Period. */
18180
18181     if (opts.compNeedSecurityCheck)
18182     {
18183         inlineResult.NoteFatal(InlineObservation::CALLER_NEEDS_SECURITY_CHECK);
18184         return;
18185     }
18186
18187     /* Check if we tried to inline this method before */
18188
18189     if (methAttr & CORINFO_FLG_DONT_INLINE)
18190     {
18191         inlineResult.NoteFatal(InlineObservation::CALLEE_IS_NOINLINE);
18192         return;
18193     }
18194
18195     /* Cannot inline synchronized methods */
18196
18197     if (methAttr & CORINFO_FLG_SYNCH)
18198     {
18199         inlineResult.NoteFatal(InlineObservation::CALLEE_IS_SYNCHRONIZED);
18200         return;
18201     }
18202
18203     /* Do not inline if callee needs security checks (since they would then mark the wrong frame) */
18204
18205     if (methAttr & CORINFO_FLG_SECURITYCHECK)
18206     {
18207         inlineResult.NoteFatal(InlineObservation::CALLEE_NEEDS_SECURITY_CHECK);
18208         return;
18209     }
18210
18211     InlineCandidateInfo* inlineCandidateInfo = nullptr;
18212     impCheckCanInline(call, fncHandle, methAttr, exactContextHnd, &inlineCandidateInfo, &inlineResult);
18213
18214     if (inlineResult.IsFailure())
18215     {
18216         return;
18217     }
18218
18219     // The old value should be NULL
18220     assert(call->gtInlineCandidateInfo == nullptr);
18221
18222     call->gtInlineCandidateInfo = inlineCandidateInfo;
18223
18224     // Mark the call node as inline candidate.
18225     call->gtFlags |= GTF_CALL_INLINE_CANDIDATE;
18226
18227     // Let the strategy know there's another candidate.
18228     impInlineRoot()->m_inlineStrategy->NoteCandidate();
18229
18230     // Since we're not actually inlining yet, and this call site is
18231     // still just an inline candidate, there's nothing to report.
18232     inlineResult.SetReported();
18233 }
18234
18235 /******************************************************************************/
18236 // Returns true if the given intrinsic will be implemented by target-specific
18237 // instructions
18238
18239 bool Compiler::IsTargetIntrinsic(CorInfoIntrinsics intrinsicId)
18240 {
18241 #if defined(_TARGET_AMD64_) || (defined(_TARGET_X86_) && !defined(LEGACY_BACKEND))
18242     switch (intrinsicId)
18243     {
18244         // Amd64 only has SSE2 instruction to directly compute sqrt/abs.
18245         //
18246         // TODO: Because the x86 backend only targets SSE for floating-point code,
18247         //       it does not treat Sine, Cosine, or Round as intrinsics (JIT32
18248         //       implemented those intrinsics as x87 instructions). If this poses
18249         //       a CQ problem, it may be necessary to change the implementation of
18250         //       the helper calls to decrease call overhead or switch back to the
18251         //       x87 instructions. This is tracked by #7097.
18252         case CORINFO_INTRINSIC_Sqrt:
18253         case CORINFO_INTRINSIC_Abs:
18254             return true;
18255
18256         default:
18257             return false;
18258     }
18259 #elif defined(_TARGET_ARM64_)
18260     switch (intrinsicId)
18261     {
18262         case CORINFO_INTRINSIC_Sqrt:
18263         case CORINFO_INTRINSIC_Abs:
18264         case CORINFO_INTRINSIC_Round:
18265             return true;
18266
18267         default:
18268             return false;
18269     }
18270 #elif defined(_TARGET_ARM_)
18271     switch (intrinsicId)
18272     {
18273         case CORINFO_INTRINSIC_Sqrt:
18274         case CORINFO_INTRINSIC_Abs:
18275         case CORINFO_INTRINSIC_Round:
18276             return true;
18277
18278         default:
18279             return false;
18280     }
18281 #elif defined(_TARGET_X86_)
18282     switch (intrinsicId)
18283     {
18284         case CORINFO_INTRINSIC_Sin:
18285         case CORINFO_INTRINSIC_Cos:
18286         case CORINFO_INTRINSIC_Sqrt:
18287         case CORINFO_INTRINSIC_Abs:
18288         case CORINFO_INTRINSIC_Round:
18289             return true;
18290
18291         default:
18292             return false;
18293     }
18294 #else
18295     // TODO: This portion of logic is not implemented for other arch.
18296     // The reason for returning true is that on all other arch the only intrinsic
18297     // enabled are target intrinsics.
18298     return true;
18299 #endif //_TARGET_AMD64_
18300 }
18301
18302 /******************************************************************************/
18303 // Returns true if the given intrinsic will be implemented by calling System.Math
18304 // methods.
18305
18306 bool Compiler::IsIntrinsicImplementedByUserCall(CorInfoIntrinsics intrinsicId)
18307 {
18308     // Currently, if an math intrisic is not implemented by target-specific
18309     // intructions, it will be implemented by a System.Math call. In the
18310     // future, if we turn to implementing some of them with helper callers,
18311     // this predicate needs to be revisited.
18312     return !IsTargetIntrinsic(intrinsicId);
18313 }
18314
18315 bool Compiler::IsMathIntrinsic(CorInfoIntrinsics intrinsicId)
18316 {
18317     switch (intrinsicId)
18318     {
18319         case CORINFO_INTRINSIC_Sin:
18320         case CORINFO_INTRINSIC_Sqrt:
18321         case CORINFO_INTRINSIC_Abs:
18322         case CORINFO_INTRINSIC_Cos:
18323         case CORINFO_INTRINSIC_Round:
18324         case CORINFO_INTRINSIC_Cosh:
18325         case CORINFO_INTRINSIC_Sinh:
18326         case CORINFO_INTRINSIC_Tan:
18327         case CORINFO_INTRINSIC_Tanh:
18328         case CORINFO_INTRINSIC_Asin:
18329         case CORINFO_INTRINSIC_Acos:
18330         case CORINFO_INTRINSIC_Atan:
18331         case CORINFO_INTRINSIC_Atan2:
18332         case CORINFO_INTRINSIC_Log10:
18333         case CORINFO_INTRINSIC_Pow:
18334         case CORINFO_INTRINSIC_Exp:
18335         case CORINFO_INTRINSIC_Ceiling:
18336         case CORINFO_INTRINSIC_Floor:
18337             return true;
18338         default:
18339             return false;
18340     }
18341 }
18342
18343 bool Compiler::IsMathIntrinsic(GenTreePtr tree)
18344 {
18345     return (tree->OperGet() == GT_INTRINSIC) && IsMathIntrinsic(tree->gtIntrinsic.gtIntrinsicId);
18346 }
18347 /*****************************************************************************/