1 // Licensed to the .NET Foundation under one or more agreements.
2 // The .NET Foundation licenses this file to you under the MIT license.
3 // See the LICENSE file in the project root for more information.
5 #if defined(_TARGET_ARM64_)
7 // The ARM64 instructions are all 32 bits in size.
8 // we use an unsigned int to hold the encoded instructions.
9 // This typedef defines the type that we use to hold encoded instructions.
11 typedef unsigned int code_t;
13 static bool strictArmAsm;
15 /************************************************************************/
16 /* Routines that compute the size of / encode instructions */
17 /************************************************************************/
29 /************************************************************************/
30 /* Debug-only routines to display instructions */
31 /************************************************************************/
33 const char* emitFPregName(unsigned reg, bool varName = true);
34 const char* emitVectorRegName(regNumber reg);
36 void emitDispInst(instruction ins);
37 void emitDispReloc(int value, bool addComma);
38 void emitDispImm(ssize_t imm, bool addComma, bool alwaysHex = false);
39 void emitDispFloatZero();
40 void emitDispFloatImm(ssize_t imm8);
41 void emitDispImmOptsLSL12(ssize_t imm, insOpts opt);
42 void emitDispCond(insCond cond);
43 void emitDispFlags(insCflags flags);
44 void emitDispBarrier(insBarrier barrier);
45 void emitDispShiftOpts(insOpts opt);
46 void emitDispExtendOpts(insOpts opt);
47 void emitDispLSExtendOpts(insOpts opt);
48 void emitDispReg(regNumber reg, emitAttr attr, bool addComma);
49 void emitDispVectorReg(regNumber reg, insOpts opt, bool addComma);
50 void emitDispVectorRegIndex(regNumber reg, emitAttr elemsize, ssize_t index, bool addComma);
51 void emitDispArrangement(insOpts opt);
52 void emitDispShiftedReg(regNumber reg, insOpts opt, ssize_t imm, emitAttr attr);
53 void emitDispExtendReg(regNumber reg, insOpts opt, ssize_t imm);
54 void emitDispAddrRI(regNumber reg, insOpts opt, ssize_t imm);
55 void emitDispAddrRRExt(regNumber reg1, regNumber reg2, insOpts opt, bool isScaled, emitAttr size);
57 void emitDispIns(instrDesc* id,
67 /************************************************************************/
68 /* Private members that deal with target-dependent instr. descriptors */
69 /************************************************************************/
72 instrDesc* emitNewInstrAmd(emitAttr attr, int dsp);
73 instrDesc* emitNewInstrAmdCns(emitAttr attr, int dsp, int cns);
75 instrDesc* emitNewInstrCallDir(int argCnt,
76 VARSET_VALARG_TP GCvars,
80 emitAttr secondRetSize);
82 instrDesc* emitNewInstrCallInd(int argCnt,
84 VARSET_VALARG_TP GCvars,
88 emitAttr secondRetSize);
90 void emitGetInsCns(instrDesc* id, CnsVal* cv);
91 ssize_t emitGetInsAmdCns(instrDesc* id, CnsVal* cv);
92 void emitGetInsDcmCns(instrDesc* id, CnsVal* cv);
93 ssize_t emitGetInsAmdAny(instrDesc* id);
95 /************************************************************************/
96 /* Private helpers for instruction output */
97 /************************************************************************/
100 bool emitInsIsCompare(instruction ins);
101 bool emitInsIsLoad(instruction ins);
102 bool emitInsIsStore(instruction ins);
103 bool emitInsIsLoadOrStore(instruction ins);
104 emitAttr emitInsAdjustLoadStoreAttr(instruction ins, emitAttr attr);
105 emitAttr emitInsTargetRegSize(instrDesc* id);
106 emitAttr emitInsLoadStoreSize(instrDesc* id);
108 emitter::insFormat emitInsFormat(instruction ins);
109 emitter::code_t emitInsCode(instruction ins, insFormat fmt);
111 // Generate code for a load or store operation and handle the case of contained GT_LEA op1 with [base + index<<scale +
113 void emitInsLoadStoreOp(instruction ins, emitAttr attr, regNumber dataReg, GenTreeIndir* indir);
115 // Emit the 32-bit Arm64 instruction 'code' into the 'dst' buffer
116 static unsigned emitOutput_Instr(BYTE* dst, code_t code);
118 // A helper method to return the natural scale for an EA 'size'
119 static unsigned NaturalScale_helper(emitAttr size);
121 // A helper method to perform a Rotate-Right shift operation
122 static UINT64 ROR_helper(UINT64 value, unsigned sh, unsigned width);
124 // A helper method to perform a 'NOT' bitwise complement operation
125 static UINT64 NOT_helper(UINT64 value, unsigned width);
127 // A helper method to perform a bit Replicate operation
128 static UINT64 Replicate_helper(UINT64 value, unsigned width, emitAttr size);
130 /************************************************************************
132 * This union is used to to encode/decode the special ARM64 immediate values
133 * that is listed as imm(N,r,s) and referred to as 'bitmask immediate'
139 unsigned immS : 6; // bits 0..5
140 unsigned immR : 6; // bits 6..11
141 unsigned immN : 1; // bits 12
143 unsigned immNRS; // concat N:R:S forming a 13-bit unsigned immediate
146 /************************************************************************
148 * Convert between a 64-bit immediate and its 'bitmask immediate'
149 * representation imm(i16,hw)
152 static emitter::bitMaskImm emitEncodeBitMaskImm(INT64 imm, emitAttr size);
154 static INT64 emitDecodeBitMaskImm(const emitter::bitMaskImm bmImm, emitAttr size);
156 /************************************************************************
158 * This union is used to to encode/decode the special ARM64 immediate values
159 * that is listed as imm(i16,hw) and referred to as 'halfword immediate'
165 unsigned immVal : 16; // bits 0..15
166 unsigned immHW : 2; // bits 16..17
168 unsigned immHWVal; // concat HW:Val forming a 18-bit unsigned immediate
171 /************************************************************************
173 * Convert between a 64-bit immediate and its 'halfword immediate'
174 * representation imm(i16,hw)
177 static emitter::halfwordImm emitEncodeHalfwordImm(INT64 imm, emitAttr size);
179 static INT64 emitDecodeHalfwordImm(const emitter::halfwordImm hwImm, emitAttr size);
181 /************************************************************************
183 * This union is used to encode/decode the special ARM64 immediate values
184 * that is listed as imm(i16,by) and referred to as 'byteShifted immediate'
187 union byteShiftedImm {
190 unsigned immVal : 8; // bits 0..7
191 unsigned immBY : 2; // bits 8..9
192 unsigned immOnes : 1; // bit 10
194 unsigned immBSVal; // concat Ones:BY:Val forming a 10-bit unsigned immediate
197 /************************************************************************
199 * Convert between a 16/32-bit immediate and its 'byteShifted immediate'
200 * representation imm(i8,by)
203 static emitter::byteShiftedImm emitEncodeByteShiftedImm(INT64 imm, emitAttr size, bool allow_MSL);
205 static INT32 emitDecodeByteShiftedImm(const emitter::byteShiftedImm bsImm, emitAttr size);
207 /************************************************************************
209 * This union is used to to encode/decode the special ARM64 immediate values
210 * that are use for FMOV immediate and referred to as 'float 8-bit immediate'
216 unsigned immMant : 4; // bits 0..3
217 unsigned immExp : 3; // bits 4..6
218 unsigned immSign : 1; // bits 7
220 unsigned immFPIVal; // concat Sign:Exp:Mant forming an 8-bit unsigned immediate
223 /************************************************************************
225 * Convert between a double and its 'float 8-bit immediate' representation
228 static emitter::floatImm8 emitEncodeFloatImm8(double immDbl);
230 static double emitDecodeFloatImm8(const emitter::floatImm8 fpImm);
232 /************************************************************************
234 * This union is used to to encode/decode the cond, nzcv and imm5 values for
235 * instructions that use them in the small constant immediate field
241 insCond cond : 4; // bits 0..3
242 insCflags flags : 4; // bits 4..7
243 unsigned imm5 : 5; // bits 8..12
245 unsigned immCFVal; // concat imm5:flags:cond forming an 13-bit unsigned immediate
248 // Returns an encoding for the specified register used in the 'Rd' position
249 static code_t insEncodeReg_Rd(regNumber reg);
251 // Returns an encoding for the specified register used in the 'Rt' position
252 static code_t insEncodeReg_Rt(regNumber reg);
254 // Returns an encoding for the specified register used in the 'Rn' position
255 static code_t insEncodeReg_Rn(regNumber reg);
257 // Returns an encoding for the specified register used in the 'Rm' position
258 static code_t insEncodeReg_Rm(regNumber reg);
260 // Returns an encoding for the specified register used in the 'Ra' position
261 static code_t insEncodeReg_Ra(regNumber reg);
263 // Returns an encoding for the specified register used in the 'Vd' position
264 static code_t insEncodeReg_Vd(regNumber reg);
266 // Returns an encoding for the specified register used in the 'Vt' position
267 static code_t insEncodeReg_Vt(regNumber reg);
269 // Returns an encoding for the specified register used in the 'Vn' position
270 static code_t insEncodeReg_Vn(regNumber reg);
272 // Returns an encoding for the specified register used in the 'Vm' position
273 static code_t insEncodeReg_Vm(regNumber reg);
275 // Returns an encoding for the specified register used in the 'Va' position
276 static code_t insEncodeReg_Va(regNumber reg);
278 // Returns an encoding for the imm which represents the condition code.
279 static code_t insEncodeCond(insCond cond);
281 // Returns an encoding for the imm whioch represents the 'condition code'
282 // with the lowest bit inverted (marked by invert(<cond>) in the architecture manual.
283 static code_t insEncodeInvertedCond(insCond cond);
285 // Returns an encoding for the imm which represents the flags.
286 static code_t insEncodeFlags(insCflags flags);
288 // Returns the encoding for the Shift Count bits to be used for Arm64 encodings
289 static code_t insEncodeShiftCount(ssize_t imm, emitAttr size);
291 // Returns the encoding to select the datasize for most Arm64 instructions
292 static code_t insEncodeDatasize(emitAttr size);
294 // Returns the encoding to select the datasize for the general load/store Arm64 instructions
295 static code_t insEncodeDatasizeLS(code_t code, emitAttr size);
297 // Returns the encoding to select the datasize for the vector load/store Arm64 instructions
298 static code_t insEncodeDatasizeVLS(code_t code, emitAttr size);
300 // Returns the encoding to select the datasize for the vector load/store pair Arm64 instructions
301 static code_t insEncodeDatasizeVPLS(code_t code, emitAttr size);
303 // Returns the encoding to select the datasize for bitfield Arm64 instructions
304 static code_t insEncodeDatasizeBF(code_t code, emitAttr size);
306 // Returns the encoding to select the vectorsize for SIMD Arm64 instructions
307 static code_t insEncodeVectorsize(emitAttr size);
309 // Returns the encoding to select 'index' for an Arm64 vector elem instruction
310 static code_t insEncodeVectorIndex(emitAttr elemsize, ssize_t index);
312 // Returns the encoding to select 'index2' for an Arm64 'ins' elem instruction
313 static code_t insEncodeVectorIndex2(emitAttr elemsize, ssize_t index2);
315 // Returns the encoding to select 'index' for an Arm64 'mul' elem instruction
316 static code_t insEncodeVectorIndexLMH(emitAttr elemsize, ssize_t index);
318 // Returns the encoding to shift by 'shift' bits for an Arm64 vector or scalar instruction
319 static code_t insEncodeVectorShift(emitAttr size, ssize_t shift);
321 // Returns the encoding to select the 1/2/4/8 byte elemsize for an Arm64 vector instruction
322 static code_t insEncodeElemsize(emitAttr size);
324 // Returns the encoding to select the 4/8 byte elemsize for an Arm64 float vector instruction
325 static code_t insEncodeFloatElemsize(emitAttr size);
327 // Returns the encoding to select the index for an Arm64 float vector by elem instruction
328 static code_t insEncodeFloatIndex(emitAttr elemsize, ssize_t index);
330 // Returns the encoding to select the 'conversion' operation for a type 'fmt' Arm64 instruction
331 static code_t insEncodeConvertOpt(insFormat fmt, insOpts conversion);
333 // Returns the encoding to have the Rn register of a ld/st reg be Pre/Post/Not indexed updated
334 static code_t insEncodeIndexedOpt(insOpts opt);
336 // Returns the encoding to have the Rn register of a ld/st pair be Pre/Post/Not indexed updated
337 static code_t insEncodePairIndexedOpt(instruction ins, insOpts opt);
339 // Returns the encoding to apply a Shift Type on the Rm register
340 static code_t insEncodeShiftType(insOpts opt);
342 // Returns the encoding to apply a 12 bit left shift to the immediate
343 static code_t insEncodeShiftImm12(insOpts opt);
345 // Returns the encoding to have the Rm register use an extend operation
346 static code_t insEncodeExtend(insOpts opt);
348 // Returns the encoding to scale the Rm register by {0,1,2,3,4} in an extend operation
349 static code_t insEncodeExtendScale(ssize_t imm);
351 // Returns the encoding to have the Rm register be auto scaled by the ld/st size
352 static code_t insEncodeReg3Scale(bool isScaled);
354 // Returns true if 'reg' represents an integer register.
355 static bool isIntegerRegister(regNumber reg)
357 return (reg >= REG_INT_FIRST) && (reg <= REG_INT_LAST);
360 // Returns true if 'value' is a legal unsigned immediate 8 bit encoding (such as for fMOV).
361 static bool isValidUimm8(ssize_t value)
363 return (0 <= value) && (value <= 0xFFLL);
366 // Returns true if 'value' is a legal unsigned immediate 12 bit encoding (such as for CMP, CMN).
367 static bool isValidUimm12(ssize_t value)
369 return (0 <= value) && (value <= 0xFFFLL);
372 // Returns true if 'value' is a legal unsigned immediate 16 bit encoding (such as for MOVZ, MOVN, MOVK).
373 static bool isValidUimm16(ssize_t value)
375 return (0 <= value) && (value <= 0xFFFFLL);
378 // Returns true if 'value' is a legal signed immediate 26 bit encoding (such as for B or BL).
379 static bool isValidSimm26(ssize_t value)
381 return (-0x2000000LL <= value) && (value <= 0x1FFFFFFLL);
384 // Returns true if 'value' is a legal signed immediate 19 bit encoding (such as for B.cond, CBNZ, CBZ).
385 static bool isValidSimm19(ssize_t value)
387 return (-0x40000LL <= value) && (value <= 0x3FFFFLL);
390 // Returns true if 'value' is a legal signed immediate 14 bit encoding (such as for TBNZ, TBZ).
391 static bool isValidSimm14(ssize_t value)
393 return (-0x2000LL <= value) && (value <= 0x1FFFLL);
396 // Returns true if 'value' represents a valid 'bitmask immediate' encoding.
397 static bool isValidImmNRS(size_t value, emitAttr size)
399 return (value >= 0) && (value < 0x2000);
400 } // any unsigned 13-bit immediate
402 // Returns true if 'value' represents a valid 'halfword immediate' encoding.
403 static bool isValidImmHWVal(size_t value, emitAttr size)
405 return (value >= 0) && (value < 0x40000);
406 } // any unsigned 18-bit immediate
408 // Returns true if 'value' represents a valid 'byteShifted immediate' encoding.
409 static bool isValidImmBSVal(size_t value, emitAttr size)
411 return (value >= 0) && (value < 0x800);
412 } // any unsigned 11-bit immediate
414 // The return value replaces REG_ZR with REG_SP
415 static regNumber encodingZRtoSP(regNumber reg)
417 return (reg == REG_ZR) ? REG_SP : reg;
418 } // ZR (R31) encodes the SP register
420 // The return value replaces REG_SP with REG_ZR
421 static regNumber encodingSPtoZR(regNumber reg)
423 return (reg == REG_SP) ? REG_ZR : reg;
424 } // SP is encoded using ZR (R31)
426 // For the given 'ins' returns the reverse instruction, if one exists, otherwise returns INS_INVALID
427 static instruction insReverse(instruction ins);
429 // For the given 'datasize' and 'elemsize' returns the insOpts that specifies the vector register arrangement
430 static insOpts optMakeArrangement(emitAttr datasize, emitAttr elemsize);
432 // For the given 'datasize' and 'opt' returns true if it specifies a valid vector register arrangement
433 static bool isValidArrangement(emitAttr datasize, insOpts opt);
435 // For the given 'arrangement' returns the 'datasize' specified by the vector register arrangement
436 static emitAttr optGetDatasize(insOpts arrangement);
438 // For the given 'arrangement' returns the 'elemsize' specified by the vector register arrangement
439 static emitAttr optGetElemsize(insOpts arrangement);
441 // For the given 'arrangement' returns the 'widen-arrangement' specified by the vector register arrangement
442 static insOpts optWidenElemsize(insOpts arrangement);
444 // For the given 'conversion' returns the 'dstsize' specified by the conversion option
445 static emitAttr optGetDstsize(insOpts conversion);
447 // For the given 'conversion' returns the 'srcsize' specified by the conversion option
448 static emitAttr optGetSrcsize(insOpts conversion);
450 // For the given 'datasize', 'elemsize' and 'index' returns true, if it specifies a valid 'index'
451 // for an element of size 'elemsize' in a vector register of size 'datasize'
452 static bool isValidVectorIndex(emitAttr datasize, emitAttr elemsize, ssize_t index);
454 /************************************************************************/
455 /* Public inline informational methods */
456 /************************************************************************/
459 // true if this 'imm' can be encoded as a input operand to a mov instruction
460 static bool emitIns_valid_imm_for_mov(INT64 imm, emitAttr size);
462 // true if this 'imm' can be encoded as a input operand to a vector movi instruction
463 static bool emitIns_valid_imm_for_movi(INT64 imm, emitAttr size);
465 // true if this 'immDbl' can be encoded as a input operand to a fmov instruction
466 static bool emitIns_valid_imm_for_fmov(double immDbl);
468 // true if this 'imm' can be encoded as a input operand to an add instruction
469 static bool emitIns_valid_imm_for_add(INT64 imm, emitAttr size);
471 // true if this 'imm' can be encoded as a input operand to a cmp instruction
472 static bool emitIns_valid_imm_for_cmp(INT64 imm, emitAttr size);
474 // true if this 'imm' can be encoded as a input operand to an alu instruction
475 static bool emitIns_valid_imm_for_alu(INT64 imm, emitAttr size);
477 // true if this 'imm' can be encoded as the offset in a ldr/str instruction
478 static bool emitIns_valid_imm_for_ldst_offset(INT64 imm, emitAttr size);
480 // true if 'imm' can use the left shifted by 12 bits encoding
481 static bool canEncodeWithShiftImmBy12(INT64 imm);
483 // Normalize the 'imm' so that the upper bits, as defined by 'size' are zero
484 static INT64 normalizeImm64(INT64 imm, emitAttr size);
486 // Normalize the 'imm' so that the upper bits, as defined by 'size' are zero
487 static INT32 normalizeImm32(INT32 imm, emitAttr size);
489 // true if 'imm' can be encoded using a 'bitmask immediate', also returns the encoding if wbBMI is non-null
490 static bool canEncodeBitMaskImm(INT64 imm, emitAttr size, emitter::bitMaskImm* wbBMI = nullptr);
492 // true if 'imm' can be encoded using a 'halfword immediate', also returns the encoding if wbHWI is non-null
493 static bool canEncodeHalfwordImm(INT64 imm, emitAttr size, emitter::halfwordImm* wbHWI = nullptr);
495 // true if 'imm' can be encoded using a 'byteShifted immediate', also returns the encoding if wbBSI is non-null
496 static bool canEncodeByteShiftedImm(INT64 imm, emitAttr size, bool allow_MSL, emitter::byteShiftedImm* wbBSI = nullptr);
498 // true if 'immDbl' can be encoded using a 'float immediate', also returns the encoding if wbFPI is non-null
499 static bool canEncodeFloatImm8(double immDbl, emitter::floatImm8* wbFPI = nullptr);
501 // Returns the number of bits used by the given 'size'.
502 inline static unsigned getBitWidth(emitAttr size)
504 assert(size <= EA_8BYTE);
505 return (unsigned)size * BITS_PER_BYTE;
508 // Returns true if the imm represents a valid bit shift or bit position for the given 'size' [0..31] or [0..63]
509 inline static unsigned isValidImmShift(ssize_t imm, emitAttr size)
511 return (imm >= 0) && (imm < getBitWidth(size));
514 inline static bool isValidGeneralDatasize(emitAttr size)
516 return (size == EA_8BYTE) || (size == EA_4BYTE);
519 inline static bool isValidScalarDatasize(emitAttr size)
521 return (size == EA_8BYTE) || (size == EA_4BYTE);
524 inline static bool isValidVectorDatasize(emitAttr size)
526 return (size == EA_16BYTE) || (size == EA_8BYTE);
529 inline static bool isValidGeneralLSDatasize(emitAttr size)
531 return (size == EA_8BYTE) || (size == EA_4BYTE) || (size == EA_2BYTE) || (size == EA_1BYTE);
534 inline static bool isValidVectorLSDatasize(emitAttr size)
536 return (size == EA_16BYTE) || (size == EA_8BYTE) || (size == EA_4BYTE) || (size == EA_2BYTE) || (size == EA_1BYTE);
539 inline static bool isValidVectorLSPDatasize(emitAttr size)
541 return (size == EA_16BYTE) || (size == EA_8BYTE) || (size == EA_4BYTE);
544 inline static bool isValidVectorElemsize(emitAttr size)
546 return (size == EA_8BYTE) || (size == EA_4BYTE) || (size == EA_2BYTE) || (size == EA_1BYTE);
549 inline static bool isValidVectorFcvtsize(emitAttr size)
551 return (size == EA_8BYTE) || (size == EA_4BYTE) || (size == EA_2BYTE);
554 inline static bool isValidVectorElemsizeFloat(emitAttr size)
556 return (size == EA_8BYTE) || (size == EA_4BYTE);
559 inline static bool isGeneralRegister(regNumber reg)
561 return (reg >= REG_INT_FIRST) && (reg <= REG_LR);
564 inline static bool isGeneralRegisterOrZR(regNumber reg)
566 return (reg >= REG_INT_FIRST) && (reg <= REG_ZR);
569 inline static bool isGeneralRegisterOrSP(regNumber reg)
571 return isGeneralRegister(reg) || (reg == REG_SP);
572 } // Includes REG_SP, Excludes REG_ZR
574 inline static bool isVectorRegister(regNumber reg)
576 return (reg >= REG_FP_FIRST && reg <= REG_FP_LAST);
579 inline static bool isFloatReg(regNumber reg)
581 return isVectorRegister(reg);
584 inline static bool insOptsNone(insOpts opt)
586 return (opt == INS_OPTS_NONE);
589 inline static bool insOptsIndexed(insOpts opt)
591 return (opt == INS_OPTS_PRE_INDEX) || (opt == INS_OPTS_POST_INDEX);
594 inline static bool insOptsPreIndex(insOpts opt)
596 return (opt == INS_OPTS_PRE_INDEX);
599 inline static bool insOptsPostIndex(insOpts opt)
601 return (opt == INS_OPTS_POST_INDEX);
604 inline static bool insOptsLSL12(insOpts opt) // special 12-bit shift only used for imm12
606 return (opt == INS_OPTS_LSL12);
609 inline static bool insOptsAnyShift(insOpts opt)
611 return ((opt >= INS_OPTS_LSL) && (opt <= INS_OPTS_ROR));
614 inline static bool insOptsAluShift(insOpts opt) // excludes ROR
616 return ((opt >= INS_OPTS_LSL) && (opt <= INS_OPTS_ASR));
619 inline static bool insOptsVectorImmShift(insOpts opt)
621 return ((opt == INS_OPTS_LSL) || (opt == INS_OPTS_MSL));
624 inline static bool insOptsLSL(insOpts opt)
626 return (opt == INS_OPTS_LSL);
629 inline static bool insOptsLSR(insOpts opt)
631 return (opt == INS_OPTS_LSR);
634 inline static bool insOptsASR(insOpts opt)
636 return (opt == INS_OPTS_ASR);
639 inline static bool insOptsROR(insOpts opt)
641 return (opt == INS_OPTS_ROR);
644 inline static bool insOptsAnyExtend(insOpts opt)
646 return ((opt >= INS_OPTS_UXTB) && (opt <= INS_OPTS_SXTX));
649 inline static bool insOptsLSExtend(insOpts opt)
651 return ((opt == INS_OPTS_NONE) || (opt == INS_OPTS_LSL) || (opt == INS_OPTS_UXTW) || (opt == INS_OPTS_SXTW) ||
652 (opt == INS_OPTS_UXTX) || (opt == INS_OPTS_SXTX));
655 inline static bool insOpts32BitExtend(insOpts opt)
657 return ((opt == INS_OPTS_UXTW) || (opt == INS_OPTS_SXTW));
660 inline static bool insOpts64BitExtend(insOpts opt)
662 return ((opt == INS_OPTS_UXTX) || (opt == INS_OPTS_SXTX));
665 inline static bool insOptsAnyArrangement(insOpts opt)
667 return ((opt >= INS_OPTS_8B) && (opt <= INS_OPTS_2D));
670 inline static bool insOptsConvertFloatToFloat(insOpts opt)
672 return ((opt >= INS_OPTS_S_TO_D) && (opt <= INS_OPTS_D_TO_H));
675 inline static bool insOptsConvertFloatToInt(insOpts opt)
677 return ((opt >= INS_OPTS_S_TO_4BYTE) && (opt <= INS_OPTS_D_TO_8BYTE));
680 inline static bool insOptsConvertIntToFloat(insOpts opt)
682 return ((opt >= INS_OPTS_4BYTE_TO_S) && (opt <= INS_OPTS_8BYTE_TO_D));
685 static bool isValidImmCond(ssize_t imm);
686 static bool isValidImmCondFlags(ssize_t imm);
687 static bool isValidImmCondFlagsImm5(ssize_t imm);
689 /************************************************************************/
690 /* The public entry points to output instructions */
691 /************************************************************************/
694 void emitIns(instruction ins);
696 void emitIns_I(instruction ins, emitAttr attr, ssize_t imm);
698 void emitIns_R(instruction ins, emitAttr attr, regNumber reg);
700 void emitIns_R_I(instruction ins, emitAttr attr, regNumber reg, ssize_t imm, insOpts opt = INS_OPTS_NONE);
702 void emitIns_R_F(instruction ins, emitAttr attr, regNumber reg, double immDbl, insOpts opt = INS_OPTS_NONE);
704 void emitIns_R_R(instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, insOpts opt = INS_OPTS_NONE);
706 void emitIns_R_R(instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, insFlags flags)
708 emitIns_R_R(ins, attr, reg1, reg2);
712 instruction ins, emitAttr attr, regNumber reg1, ssize_t imm1, ssize_t imm2, insOpts opt = INS_OPTS_NONE);
715 instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, ssize_t imm, insOpts opt = INS_OPTS_NONE);
717 // Checks for a large immediate that needs a second instruction
718 void emitIns_R_R_Imm(instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, ssize_t imm);
721 instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, regNumber reg3, insOpts opt = INS_OPTS_NONE);
723 void emitIns_R_R_R_I(instruction ins,
729 insOpts opt = INS_OPTS_NONE);
731 void emitIns_R_R_R_Ext(instruction ins,
736 insOpts opt = INS_OPTS_NONE,
737 int shiftAmount = -1);
739 void emitIns_R_R_I_I(instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, int imm1, int imm2);
741 void emitIns_R_R_R_R(instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, regNumber reg3, regNumber reg4);
743 void emitIns_R_COND(instruction ins, emitAttr attr, regNumber reg, insCond cond);
745 void emitIns_R_R_COND(instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, insCond cond);
747 void emitIns_R_R_R_COND(instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, regNumber reg3, insCond cond);
749 void emitIns_R_R_FLAGS_COND(
750 instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, insCflags flags, insCond cond);
752 void emitIns_R_I_FLAGS_COND(instruction ins, emitAttr attr, regNumber reg1, int imm, insCflags flags, insCond cond);
754 void emitIns_BARR(instruction ins, insBarrier barrier);
756 void emitIns_C(instruction ins, emitAttr attr, CORINFO_FIELD_HANDLE fdlHnd, int offs);
758 void emitIns_S(instruction ins, emitAttr attr, int varx, int offs);
760 void emitIns_S_R(instruction ins, emitAttr attr, regNumber ireg, int varx, int offs);
762 void emitIns_R_S(instruction ins, emitAttr attr, regNumber ireg, int varx, int offs);
764 void emitIns_S_I(instruction ins, emitAttr attr, int varx, int offs, int val);
767 instruction ins, emitAttr attr, regNumber reg, regNumber tmpReg, CORINFO_FIELD_HANDLE fldHnd, int offs);
769 void emitIns_C_R(instruction ins, emitAttr attr, CORINFO_FIELD_HANDLE fldHnd, regNumber reg, int offs);
771 void emitIns_C_I(instruction ins, emitAttr attr, CORINFO_FIELD_HANDLE fdlHnd, ssize_t offs, ssize_t val);
773 void emitIns_R_L(instruction ins, emitAttr attr, BasicBlock* dst, regNumber reg);
775 void emitIns_R_D(instruction ins, emitAttr attr, unsigned offs, regNumber reg);
777 void emitIns_J_R(instruction ins, emitAttr attr, BasicBlock* dst, regNumber reg);
780 instruction ins, emitAttr attr, int val, regNumber reg, int offs, int memCookie = 0, void* clsCookie = NULL);
783 instruction ins, emitAttr attr, regNumber ireg, regNumber reg, int offs, int memCookie = 0, void* clsCookie = NULL);
785 void emitIns_R_AI(instruction ins, emitAttr attr, regNumber ireg, ssize_t disp);
788 instruction ins, emitAttr attr, regNumber ireg, regNumber reg, int offs, int memCookie = 0, void* clsCookie = NULL);
790 void emitIns_R_ARR(instruction ins, emitAttr attr, regNumber ireg, regNumber reg, regNumber rg2, int disp);
792 void emitIns_ARR_R(instruction ins, emitAttr attr, regNumber ireg, regNumber reg, regNumber rg2, int disp);
795 instruction ins, emitAttr attr, regNumber ireg, regNumber reg, regNumber rg2, unsigned mul, int disp);
800 // I have included here, but commented out, all the values used by the x86 emitter.
801 // However, ARM has a much reduced instruction set, and so the ARM emitter only
802 // supports a subset of the x86 variants. By leaving them commented out, it becomes
803 // a compile time error if code tries to use them (and hopefully see this comment
804 // and know why they are unavailible on ARM), while making it easier to stay
805 // in-sync with x86 and possibly add them back in if needed.
807 EC_FUNC_TOKEN, // Direct call to a helper/static/nonvirtual/global method
808 // EC_FUNC_TOKEN_INDIR, // Indirect call to a helper/static/nonvirtual/global method
809 EC_FUNC_ADDR, // Direct call to an absolute address
811 // EC_FUNC_VIRTUAL, // Call to a virtual method (using the vtable)
812 EC_INDIR_R, // Indirect call via register
813 // EC_INDIR_SR, // Indirect call via stack-reference (local var)
814 // EC_INDIR_C, // Indirect call via static class var
815 // EC_INDIR_ARD, // Indirect call via an addressing mode
820 void emitIns_Call(EmitCallType callType,
821 CORINFO_METHOD_HANDLE methHnd,
822 INDEBUG_LDISASM_COMMA(CORINFO_SIG_INFO* sigInfo) // used to report call sites to the EE
826 emitAttr secondRetSize,
827 VARSET_VALARG_TP ptrVars,
830 IL_OFFSETX ilOffset = BAD_IL_OFFSET,
831 regNumber ireg = REG_NA,
832 regNumber xreg = REG_NA,
837 bool isProfLeaveCB = false);
839 BYTE* emitOutputLJ(insGroup* ig, BYTE* dst, instrDesc* i);
840 unsigned emitOutputCall(insGroup* ig, BYTE* dst, instrDesc* i, code_t code);
841 BYTE* emitOutputLoadLabel(BYTE* dst, BYTE* srcAddr, BYTE* dstAddr, instrDescJmp* id);
842 BYTE* emitOutputShortBranch(BYTE* dst, instruction ins, insFormat fmt, ssize_t distVal, instrDescJmp* id);
843 BYTE* emitOutputShortAddress(BYTE* dst, instruction ins, insFormat fmt, ssize_t distVal, regNumber reg);
844 BYTE* emitOutputShortConstant(
845 BYTE* dst, instruction ins, insFormat fmt, ssize_t distVal, regNumber reg, emitAttr opSize);
847 /*****************************************************************************
849 * Given an instrDesc, return true if it's a conditional jump.
852 inline bool emitIsCondJump(instrDesc* jmp)
854 return ((jmp->idInsFmt() == IF_BI_0B) || (jmp->idInsFmt() == IF_LARGEJMP));
857 /*****************************************************************************
859 * Given an instrDesc, return true if it's a compare and jump.
862 inline bool emitIsCmpJump(instrDesc* jmp)
864 return ((jmp->idInsFmt() == IF_BI_1A) || (jmp->idInsFmt() == IF_BI_1B));
867 /*****************************************************************************
869 * Given a instrDesc, return true if it's an unconditional jump.
872 inline bool emitIsUncondJump(instrDesc* jmp)
874 return (jmp->idInsFmt() == IF_BI_0A);
877 /*****************************************************************************
879 * Given a instrDesc, return true if it's a direct call.
882 inline bool emitIsDirectCall(instrDesc* call)
884 return (call->idInsFmt() == IF_BI_0C);
887 /*****************************************************************************
889 * Given a instrDesc, return true if it's a load label instruction.
892 inline bool emitIsLoadLabel(instrDesc* jmp)
894 return ((jmp->idInsFmt() == IF_DI_1E) || // adr or arp
895 (jmp->idInsFmt() == IF_LARGEADR));
898 /*****************************************************************************
900 * Given a instrDesc, return true if it's a load constant instruction.
903 inline bool emitIsLoadConstant(instrDesc* jmp)
905 return ((jmp->idInsFmt() == IF_LS_1A) || // ldr
906 (jmp->idInsFmt() == IF_LARGELDC));
909 #endif // _TARGET_ARM64_