1 // Licensed to the .NET Foundation under one or more agreements.
2 // The .NET Foundation licenses this file to you under the MIT license.
3 // See the LICENSE file in the project root for more information.
4 /*****************************************************************************/
15 #include "jitgcinfo.h"
17 /*****************************************************************************/
19 #ifndef _ADDRMAP_INCLUDED_
22 #ifndef _LOCALMAP_INCLUDED_
25 #ifndef _PDBREWRITE_H_
26 #include "pdbrewrite.h"
28 #endif // TRANSLATE_PDB
30 /*****************************************************************************/
32 #pragma warning(disable : 4200) // allow arrays of 0 size inside structs
34 #define TRACK_GC_TEMP_LIFETIMES 0
36 /*****************************************************************************/
41 #define EMITVERBOSE (emitComp->verbose)
45 #define EMIT_GC_VERBOSE 0
47 #define EMIT_GC_VERBOSE (emitComp->verbose)
51 #define EMIT_INSTLIST_VERBOSE 0
53 #define EMIT_INSTLIST_VERBOSE (emitComp->verbose)
56 /*****************************************************************************/
65 void emitterStats(FILE* fout);
66 void emitterStaticStats(FILE* fout); // Static stats about the emitter (data structure offsets, sizes, etc.)
69 void printRegMaskInt(regMaskTP mask);
71 /*****************************************************************************/
72 /* Forward declarations */
78 typedef void (*emitSplitCallbackType)(void* context, emitLocation* emitLoc);
80 /*****************************************************************************/
82 //-----------------------------------------------------------------------------
84 inline bool needsGC(GCtype gcType)
86 if (gcType == GCT_NONE)
92 assert(gcType == GCT_GCREF || gcType == GCT_BYREF);
97 //-----------------------------------------------------------------------------
101 inline bool IsValidGCtype(GCtype gcType)
103 return (gcType == GCT_NONE || gcType == GCT_GCREF || gcType == GCT_BYREF);
106 // Get a string name to represent the GC type
108 inline const char* GCtypeStr(GCtype gcType)
119 assert(!"Invalid GCtype");
126 /*****************************************************************************/
129 #define INTERESTING_JUMP_NUM -1 // set to 0 to see all jump info
130 //#define INTERESTING_JUMP_NUM 0
133 /*****************************************************************************
135 * Represent an emitter location.
141 emitLocation() : ig(nullptr), codePos(0)
145 emitLocation(insGroup* _ig) : ig(_ig), codePos(0)
149 emitLocation(void* emitCookie) : ig((insGroup*)emitCookie), codePos(0)
153 // A constructor for code that needs to call it explicitly.
156 this->emitLocation::emitLocation();
159 void CaptureLocation(emitter* emit);
161 bool IsCurrentLocation(emitter* emit) const;
163 // This function is highly suspect, since it presumes knowledge of the codePos "cookie",
164 // and doesn't look at the 'ig' pointer.
165 bool IsOffsetZero() const
167 return (codePos == 0);
170 UNATIVE_OFFSET CodeOffset(emitter* emit) const;
172 insGroup* GetIG() const
177 int GetInsNum() const;
179 bool operator!=(const emitLocation& other) const
181 return (ig != other.ig) || (codePos != other.codePos);
184 bool operator==(const emitLocation& other) const
186 return !(*this != other);
191 // Things we could validate:
192 // 1. the instruction group pointer is non-nullptr.
193 // 2. 'ig' is a legal pointer to an instruction group.
194 // 3. 'codePos' is a legal offset into 'ig'.
195 // Currently, we just do #1.
196 // #2 and #3 should only be done in DEBUG, if they are implemented.
206 #ifdef _TARGET_AMD64_
207 UNATIVE_OFFSET GetFuncletPrologOffset(emitter* emit) const;
208 #endif // _TARGET_AMD64_
215 insGroup* ig; // the instruction group
216 unsigned codePos; // the code position within the IG (see emitCurOffset())
219 /************************************************************************/
220 /* The following describes an instruction group */
221 /************************************************************************/
223 enum insGroupPlaceholderType : unsigned char
225 IGPT_PROLOG, // currently unused
227 #if FEATURE_EH_FUNCLETS
230 #endif // FEATURE_EH_FUNCLETS
233 #if defined(_MSC_VER) && defined(_TARGET_ARM_)
234 // ARM aligns structures that contain 64-bit ints or doubles on 64-bit boundaries. This causes unwanted
235 // padding to be added to the end, so sizeof() is unnecessarily big.
238 #endif // defined(_MSC_VER) && defined(_TARGET_ARM_)
240 struct insPlaceholderGroupData
244 VARSET_TP igPhInitGCrefVars;
245 regMaskTP igPhInitGCrefRegs;
246 regMaskTP igPhInitByrefRegs;
247 VARSET_TP igPhPrevGCrefVars;
248 regMaskTP igPhPrevGCrefRegs;
249 regMaskTP igPhPrevByrefRegs;
250 insGroupPlaceholderType igPhType;
251 }; // end of struct insPlaceholderGroupData
258 insGroup* igSelf; // for consistency checking
261 UNATIVE_OFFSET igNum; // for ordering (and display) purposes
262 UNATIVE_OFFSET igOffs; // offset of this group within method
263 unsigned int igFuncIdx; // Which function/funclet does this belong to? (Index into Compiler::compFuncInfos array.)
264 unsigned short igFlags; // see IGF_xxx below
265 unsigned short igSize; // # of bytes of code in this group
267 #define IGF_GC_VARS 0x0001 // new set of live GC ref variables
268 #define IGF_BYREF_REGS 0x0002 // new set of live by-ref registers
269 #if FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_)
270 #define IGF_FINALLY_TARGET 0x0004 // this group is the start of a basic block that is returned to after a finally.
271 #endif // FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_)
272 #define IGF_FUNCLET_PROLOG 0x0008 // this group belongs to a funclet prolog
273 #define IGF_FUNCLET_EPILOG 0x0010 // this group belongs to a funclet epilog.
274 #define IGF_EPILOG 0x0020 // this group belongs to a main function epilog
275 #define IGF_NOGCINTERRUPT 0x0040 // this IG is is a no-interrupt region (prolog, epilog, etc.)
276 #define IGF_UPD_ISZ 0x0080 // some instruction sizes updated
277 #define IGF_PLACEHOLDER 0x0100 // this is a placeholder group, to be filled in later
278 #define IGF_EMIT_ADD 0x0200 // this is a block added by the emitter
279 // because the codegen block was too big. Also used for
280 // placeholder IGs that aren't also labels.
282 // Mask of IGF_* flags that should be propagated to new blocks when they are created.
283 // This allows prologs and epilogs to be any number of IGs, but still be
284 // automatically marked properly.
285 #if FEATURE_EH_FUNCLETS
287 #define IGF_PROPAGATE_MASK (IGF_EPILOG | IGF_FUNCLET_PROLOG | IGF_FUNCLET_EPILOG)
289 #define IGF_PROPAGATE_MASK (IGF_EPILOG | IGF_FUNCLET_PROLOG)
291 #else // FEATURE_EH_FUNCLETS
292 #define IGF_PROPAGATE_MASK (IGF_EPILOG)
293 #endif // FEATURE_EH_FUNCLETS
295 // Try to do better packing based on how large regMaskSmall is (8, 16, or 64 bits).
296 CLANG_FORMAT_COMMENT_ANCHOR;
297 #if REGMASK_BITS <= 32
300 BYTE* igData; // addr of instruction descriptors
301 insPlaceholderGroupData* igPhData; // when igFlags & IGF_PLACEHOLDER
304 #if EMIT_TRACK_STACK_DEPTH
305 unsigned igStkLvl; // stack level on entry
307 regMaskSmall igGCregs; // set of registers with live GC refs
308 unsigned char igInsCnt; // # of instructions in this group
310 #else // REGMASK_BITS
312 regMaskSmall igGCregs; // set of registers with live GC refs
315 BYTE* igData; // addr of instruction descriptors
316 insPlaceholderGroupData* igPhData; // when igFlags & IGF_PLACEHOLDER
319 #if EMIT_TRACK_STACK_DEPTH
320 unsigned igStkLvl; // stack level on entry
323 unsigned char igInsCnt; // # of instructions in this group
325 #endif // REGMASK_BITS
327 VARSET_VALRET_TP igGCvars() const
329 assert(igFlags & IGF_GC_VARS);
331 BYTE* ptr = (BYTE*)igData;
332 ptr -= sizeof(VARSET_TP);
334 return *(VARSET_TP*)ptr;
337 unsigned igByrefRegs() const
339 assert(igFlags & IGF_BYREF_REGS);
341 BYTE* ptr = (BYTE*)igData;
343 if (igFlags & IGF_GC_VARS)
345 ptr -= sizeof(VARSET_TP);
348 ptr -= sizeof(unsigned);
350 return *(unsigned*)ptr;
353 }; // end of struct insGroup
355 // For AMD64 the maximum prolog/epilog size supported on the OS is 256 bytes
356 // Since it is incorrect for us to be jumping across funclet prolog/epilogs
357 // we will use the following estimate as the maximum placeholder size.
359 #define MAX_PLACEHOLDER_IG_SIZE 256
361 #if defined(_MSC_VER) && defined(_TARGET_ARM_)
363 #endif // defined(_MSC_VER) && defined(_TARGET_ARM_)
365 /*****************************************************************************/
367 #define DEFINE_ID_OPS
368 #include "emitfmts.h"
373 LVA_STANDARD_ENCODING = 0,
374 LVA_LARGE_OFFSET = 1,
375 LVA_COMPILER_TEMP = 2,
379 struct emitLclVarAddr
382 void initLclVarAddr(int varNum, unsigned offset);
384 int lvaVarNum(); // Returns the variable to access. Note that it returns a negative number for compiler spill temps.
385 unsigned lvaOffset(); // returns the offset into the variable to access
387 // This struct should be 32 bits in size for the release build.
388 // We have this constraint because this type is used in a union
389 // with several other pointer sized types in the instrDesc struct.
392 unsigned _lvaVarNum : 15; // Usually the lvaVarNum
393 unsigned _lvaExtra : 15; // Usually the lvaOffset
394 unsigned _lvaTag : 2; // tag field to support larger varnums
399 iaut_ALIGNED_POINTER = 0x0,
400 iaut_DATA_OFFSET = 0x1,
401 iaut_INST_COUNT = 0x2,
402 iaut_UNUSED_TAG = 0x3,
410 friend class emitLocation;
411 friend class Compiler;
412 friend class CodeGen;
413 friend class CodeGenInterface;
416 /*************************************************************************
418 * Define the public entry points.
425 // There seem to be some cases where this is used without being initialized via CodeGen::inst_set_SV_var().
429 #ifdef _TARGET_XARCH_
432 #endif // _TARGET_XARCH_
438 /************************************************************************/
439 /* Miscellaneous stuff */
440 /************************************************************************/
446 typedef GCInfo::varPtrDsc varPtrDsc;
447 typedef GCInfo::regPtrDsc regPtrDsc;
448 typedef GCInfo::CallDsc callDsc;
450 void* emitGetMem(size_t sz);
452 enum opSize : unsigned
461 #ifdef _TARGET_AMD64_
468 #define OPSIZE_INVALID ((opSize)0xffff)
470 static const emitter::opSize emitSizeEncode[];
471 static const emitAttr emitSizeDecode[];
473 static emitter::opSize emitEncodeSize(emitAttr size);
474 static emitAttr emitDecodeSize(emitter::opSize ensz);
476 // Currently, we only allow one IG for the prolog
477 bool emitIGisInProlog(const insGroup* ig)
479 return ig == emitPrologIG;
482 bool emitIGisInEpilog(const insGroup* ig)
484 return (ig != nullptr) && ((ig->igFlags & IGF_EPILOG) != 0);
487 #if FEATURE_EH_FUNCLETS
489 bool emitIGisInFuncletProlog(const insGroup* ig)
491 return (ig != nullptr) && ((ig->igFlags & IGF_FUNCLET_PROLOG) != 0);
494 bool emitIGisInFuncletEpilog(const insGroup* ig)
496 return (ig != nullptr) && ((ig->igFlags & IGF_FUNCLET_EPILOG) != 0);
499 #endif // FEATURE_EH_FUNCLETS
501 // If "ig" corresponds to the start of a basic block that is the
502 // target of a funclet return, generate GC information for it's start
503 // address "cp", as if it were the return address of a call.
504 void emitGenGCInfoIfFuncletRetTarget(insGroup* ig, BYTE* cp);
506 void emitRecomputeIGoffsets();
508 /************************************************************************/
509 /* The following describes a single instruction */
510 /************************************************************************/
512 enum insFormat : unsigned
514 #define IF_DEF(en, op1, op2) IF_##en,
515 #include "emitfmts.h"
520 #define AM_DISP_BITS ((sizeof(unsigned) * 8) - 2 * (REGNUM_BITS + 1) - 2)
521 #define AM_DISP_BIG_VAL (-(1 << (AM_DISP_BITS - 1)))
522 #define AM_DISP_MIN (-((1 << (AM_DISP_BITS - 1)) - 1))
523 #define AM_DISP_MAX (+((1 << (AM_DISP_BITS - 1)) - 1))
527 regNumber amBaseReg : REGNUM_BITS + 1;
528 regNumber amIndxReg : REGNUM_BITS + 1;
529 emitter::opSize amScale : 2;
530 int amDisp : AM_DISP_BITS;
533 #ifdef DEBUG // This information is used in DEBUG builds to display the method name for call instructions
537 struct instrDescDebugInfo
540 size_t idSize; // size of the instruction descriptor
541 unsigned idVarRefOffs; // IL offset for LclVar reference
542 size_t idMemCookie; // for display of method name (also used by switch table)
544 unsigned int idilStart; // instruction descriptor source information for PDB translation
546 bool idFinallyCall; // Branch instruction is a call to finally
547 bool idCatchRet; // Instruction is for a catch 'return'
548 CORINFO_SIG_INFO* idCallSig; // Used to report native call site signatures to the EE
554 unsigned insEncodeSetFlags(insFlags sf);
556 enum insSize : unsigned
560 ISZ_48BIT // pseudo-instruction for conditional branch with imm24 range,
561 // encoded as IT of condition followed by an unconditional branch
564 unsigned insEncodeShiftOpts(insOpts opt);
565 unsigned insEncodePUW_G0(insOpts opt, int imm);
566 unsigned insEncodePUW_H0(insOpts opt, int imm);
568 #endif // _TARGET_ARM_
570 #if defined(_TARGET_X86_) && defined(LEGACY_BACKEND)
571 #define HAS_TINY_DESC 1
573 #define HAS_TINY_DESC 0
581 #if (defined(_TARGET_XARCH_) || defined(_TARGET_ARM64_)) && !defined(LEGACY_BACKEND)
582 // The assembly instruction
583 instruction _idIns : 9;
584 #else // !(defined(_TARGET_XARCH_) || defined(_TARGET_ARM64_)) || defined(LEGACY_BACKEND)
585 // The assembly instruction
586 instruction _idIns : 8;
587 #endif // !(defined(_TARGET_XARCH_) || defined(_TARGET_ARM64_)) || defined(LEGACY_BACKEND)
588 // The format for the instruction
589 insFormat _idInsFmt : 8;
592 instruction idIns() const
596 void idIns(instruction ins)
599 assert(_idIns == ins);
602 insFormat idInsFmt() const
606 void idInsFmt(insFormat insFmt)
608 #if defined(_TARGET_ARM64_)
609 noway_assert(insFmt != IF_NONE); // Only the x86 emitter uses IF_NONE, it is invalid for ARM64 (and ARM32)
612 assert(_idInsFmt == insFmt);
616 The idReg1 and idReg2 fields hold the first and second register
617 operand(s), whenever these are present. Note that the size of
618 these fields ranges from 3 to 6 bits, and care needs to be taken
619 to make sure all of these fields stay reasonably packed.
622 void idSetRelocFlags(emitAttr attr)
624 _idCnsReloc = (EA_IS_CNS_RELOC(attr) ? 1 : 0);
625 _idDspReloc = (EA_IS_DSP_RELOC(attr) ? 1 : 0);
628 ////////////////////////////////////////////////////////////////////////
629 // Space taken up to here:
636 #ifdef _TARGET_XARCH_
637 unsigned _idCodeSize : 4; // size of instruction in bytes
640 #if defined(_TARGET_XARCH_) && !defined(LEGACY_BACKEND)
641 opSize _idOpSize : 3; // operand size: 0=1 , 1=2 , 2=4 , 3=8, 4=16, 5=32
642 // At this point we have fully consumed first DWORD so that next field
643 // doesn't cross a byte boundary.
644 #elif defined(_TARGET_ARM64_)
645 // Moved the definition of '_idOpSize' later so that we don't cross a 32-bit boundary when laying out bitfields
646 #else // ARM or x86-LEGACY_BACKEND
647 opSize _idOpSize : 2; // operand size: 0=1 , 1=2 , 2=4 , 3=8
648 #endif // ARM or x86-LEGACY_BACKEND
650 // On Amd64, this is where the second DWORD begins
651 // On System V a call could return a struct in 2 registers. The instrDescCGCA struct below has member that
652 // stores the GC-ness of the second register.
653 // It is added to the instrDescCGCA and not here (the base struct) since it is not needed by all the
654 // instructions. This struct (instrDesc) is very carefully kept to be no more than 128 bytes. There is no more
655 // space to add members for keeping GC-ness of the second return registers. It will also bloat the base struct
656 // unnecessarily since the GC-ness of the second register is only needed for call instructions.
657 // The instrDescCGCA struct's member keeping the GC-ness of the first return register is _idcSecondRetRegGCType.
658 GCtype _idGCref : 2; // GCref operand? (value is a "GCtype")
660 // Note that we use the _idReg1 and _idReg2 fields to hold
661 // the live gcrefReg mask for the call instructions on x86/x64
663 regNumber _idReg1 : REGNUM_BITS; // register num
665 regNumber _idReg2 : REGNUM_BITS;
667 ////////////////////////////////////////////////////////////////////////
668 // Space taken up to here:
673 CLANG_FORMAT_COMMENT_ANCHOR;
677 // For x86 use last two bits to differentiate if we are tiny or small
679 unsigned _idTinyDsc : 1; // is this a "tiny" descriptor?
680 unsigned _idSmallDsc : 1; // is this a "small" descriptor?
682 #else // !HAS_TINY_DESC
685 // On x86/arm platforms we have used 32 bits so far (4 bytes)
686 // On amd64 we have used 38 bits so far (4 bytes + 6 bits)
690 // For amd64 we just can't fit anything useful into a single DWORD
691 // So we eliminate the notion of 'tiny', and have small (2 DWORDS)
692 // or not small (which is bigger, just like x86)
695 unsigned _idSmallDsc : 1; // is this a "small" descriptor?
696 unsigned _idLargeCns : 1; // does a large constant follow?
697 unsigned _idLargeDsp : 1; // does a large displacement follow?
698 unsigned _idLargeCall : 1; // large call descriptor used
700 unsigned _idBound : 1; // jump target / frame offset bound
701 unsigned _idCallRegPtr : 1; // IL indirect calls: addr in reg
702 unsigned _idCallAddr : 1; // IL indirect calls: can make a direct call to iiaAddr
703 unsigned _idNoGC : 1; // Some helpers don't get recorded in GC tables
705 #ifdef _TARGET_ARM64_
706 opSize _idOpSize : 3; // operand size: 0=1 , 1=2 , 2=4 , 3=8, 4=16
707 insOpts _idInsOpt : 6; // options for instructions
708 unsigned _idLclVar : 1; // access a local on stack
712 insSize _idInsSize : 2; // size of instruction: 16, 32 or 48 bits
713 insFlags _idInsFlags : 1; // will this instruction set the flags
714 unsigned _idLclVar : 1; // access a local on stack
715 unsigned _idLclFPBase : 1; // access a local on stack - SP based offset
716 insOpts _idInsOpt : 3; // options for Load/Store instructions
718 // For arm we have used 16 bits
719 #define ID_EXTRA_BITFIELD_BITS (16)
721 #elif defined(_TARGET_ARM64_)
722 // For Arm64, we have used 17 bits from the second DWORD.
723 #define ID_EXTRA_BITFIELD_BITS (17)
724 #elif defined(_TARGET_XARCH_) && !defined(LEGACY_BACKEND)
725 // For xarch !LEGACY_BACKEND, we have used 14 bits from the second DWORD.
726 #define ID_EXTRA_BITFIELD_BITS (14)
727 #elif defined(_TARGET_X86_)
728 // For x86, we have used 6 bits from the second DWORD.
729 #define ID_EXTRA_BITFIELD_BITS (6)
731 #error Unsupported or unset target architecture
734 ////////////////////////////////////////////////////////////////////////
735 // Space taken up to here:
736 // x86: 38 bits // if HAS_TINY_DESC is not defined (which it is)
740 CLANG_FORMAT_COMMENT_ANCHOR;
742 unsigned _idCnsReloc : 1; // LargeCns is an RVA and needs reloc tag
743 unsigned _idDspReloc : 1; // LargeDsp is an RVA and needs reloc tag
745 #define ID_EXTRA_RELOC_BITS (2)
747 ////////////////////////////////////////////////////////////////////////
748 // Space taken up to here:
753 CLANG_FORMAT_COMMENT_ANCHOR;
755 #define ID_EXTRA_BITS (ID_EXTRA_RELOC_BITS + ID_EXTRA_BITFIELD_BITS)
757 /* Use whatever bits are left over for small constants */
759 #define ID_BIT_SMALL_CNS (32 - ID_EXTRA_BITS)
760 #define ID_MIN_SMALL_CNS 0
761 #define ID_MAX_SMALL_CNS (int)((1 << ID_BIT_SMALL_CNS) - 1U)
763 ////////////////////////////////////////////////////////////////////////
764 // Small constant size:
770 unsigned _idSmallCns : ID_BIT_SMALL_CNS;
772 ////////////////////////////////////////////////////////////////////////
773 // Space taken up to here: 64 bits, all architectures, by design.
774 ////////////////////////////////////////////////////////////////////////
775 CLANG_FORMAT_COMMENT_ANCHOR;
777 #endif // !HAS_TINY_DESC
781 instrDescDebugInfo* _idDebugOnlyInfo;
784 instrDescDebugInfo* idDebugOnlyInfo() const
786 return _idDebugOnlyInfo;
788 void idDebugOnlyInfo(instrDescDebugInfo* info)
790 _idDebugOnlyInfo = info;
797 // This is the end of the smallest instrDesc we can allocate for all
800 // x86: 32 bits, and it is called the 'tiny' descriptor.
801 // amd64/arm/arm64: 64 bits, and it is called the 'small' descriptor.
802 // DEBUG sizes (includes one pointer):
803 // x86: 2 DWORDs, 64 bits
804 // amd64: 4 DWORDs, 128 bits
805 // arm: 3 DWORDs, 96 bits
806 // arm64: 4 DWORDs, 128 bits
807 // There should no padding or alignment issues on any platform or
808 // configuration (including DEBUG which has 1 extra pointer).
810 CLANG_FORMAT_COMMENT_ANCHOR;
814 unsigned _idLargeCns : 1; // does a large constant follow?
815 unsigned _idLargeDsp : 1; // does a large displacement follow?
816 unsigned _idLargeCall : 1; // large call descriptor used
817 unsigned _idBound : 1; // jump target / frame offset bound
819 unsigned _idCallRegPtr : 1; // IL indirect calls: addr in reg
820 unsigned _idCallAddr : 1; // IL indirect calls: can make a direct call to iiaAddr
821 unsigned _idNoGC : 1; // Some helpers don't get recorded in GC tables
823 #define ID_EXTRA_BITFIELD_BITS (7)
826 // For x86, we are using 7 bits from the second DWORD for bitfields.
829 unsigned _idCnsReloc : 1; // LargeCns is an RVA and needs reloc tag
830 unsigned _idDspReloc : 1; // LargeDsp is an RVA and needs reloc tag
832 #define ID_EXTRA_RELOC_BITS (2)
834 #define ID_EXTRA_REG_BITS (0)
836 #define ID_EXTRA_BITS (ID_EXTRA_BITFIELD_BITS + ID_EXTRA_RELOC_BITS + ID_EXTRA_REG_BITS)
838 /* Use whatever bits are left over for small constants */
840 #define ID_BIT_SMALL_CNS (32 - ID_EXTRA_BITS)
841 #define ID_MIN_SMALL_CNS 0
842 #define ID_MAX_SMALL_CNS (int)((1 << ID_BIT_SMALL_CNS) - 1U)
844 // For x86 we have 23 bits remaining for the
845 // small constant in this extra DWORD.
847 unsigned _idSmallCns : ID_BIT_SMALL_CNS;
849 #endif // HAS_TINY_DESC
852 // This is the end of the 'small' instrDesc which is the same on all
853 // platforms (except 64-bit DEBUG which is a little bigger).
855 // x86/amd64/arm/arm64: 64 bits
856 // DEBUG sizes (includes one pointer):
857 // x86: 2 DWORDs, 64 bits
858 // amd64: 4 DWORDs, 128 bits
859 // arm: 3 DWORDs, 96 bits
860 // arm64: 4 DWORDs, 128 bits
861 // There should no padding or alignment issues on any platform or
862 // configuration (including DEBUG which has 1 extra pointer).
866 If you add lots more fields that need to be cleared (such
867 as various flags), you might need to update the body of
868 emitter::emitAllocInstr() to clear them.
872 #define TINY_IDSC_DEBUG_EXTRA (sizeof(void*))
874 #define TINY_IDSC_DEBUG_EXTRA (0)
878 #define TINY_IDSC_SIZE (4 + TINY_IDSC_DEBUG_EXTRA)
879 #define SMALL_IDSC_SIZE (8 + TINY_IDSC_DEBUG_EXTRA)
881 #define TINY_IDSC_SIZE (8 + TINY_IDSC_DEBUG_EXTRA)
882 #define SMALL_IDSC_SIZE TINY_IDSC_SIZE
888 // TODO-Cleanup: We should really add a DEBUG-only tag to this union so we can add asserts
889 // about reading what we think is here, to avoid unexpected corruption issues.
891 #ifndef _TARGET_ARM64_
892 emitLclVarAddr iiaLclVar;
894 BasicBlock* iiaBBlabel;
895 insGroup* iiaIGlabel;
897 emitAddrMode iiaAddrMode;
899 CORINFO_FIELD_HANDLE iiaFieldHnd; // iiaFieldHandle is also used to encode
900 // an offset into the JIT data constant area
901 bool iiaIsJitDataOffset() const;
902 int iiaGetJitDataOffset() const;
904 #ifdef _TARGET_ARMARCH_
906 // iiaEncodedInstrCount and its accessor functions are used to specify an instruction
907 // count for jumps, instead of using a label and multiple blocks. This is used in the
908 // prolog as well as for IF_LARGEJMP pseudo-branch instructions.
909 int iiaEncodedInstrCount;
911 bool iiaHasInstrCount() const
913 return (iiaEncodedInstrCount & iaut_MASK) == iaut_INST_COUNT;
915 int iiaGetInstrCount() const
917 assert(iiaHasInstrCount());
918 return (iiaEncodedInstrCount >> iaut_SHIFT);
920 void iiaSetInstrCount(int count)
922 assert(abs(count) < 10);
923 iiaEncodedInstrCount = (count << iaut_SHIFT) | iaut_INST_COUNT;
928 #ifdef _TARGET_ARM64_
929 // For 64-bit architecture this 32-bit structure can pack with these unsigned bit fields
930 emitLclVarAddr iiaLclVar;
931 unsigned _idReg3Scaled : 1; // Reg3 is scaled by idOpSize bits
932 GCtype _idGCref2 : 2;
934 regNumber _idReg3 : REGNUM_BITS;
935 regNumber _idReg4 : REGNUM_BITS;
937 #elif defined(_TARGET_XARCH_)
940 regNumber _idReg3 : REGNUM_BITS;
942 #endif // defined(_TARGET_XARCH_)
946 /* Trivial wrappers to return properly typed enums */
950 bool idIsTiny() const
952 return (_idTinyDsc != 0);
961 bool idIsTiny() const
970 #endif // HAS_TINY_DESC
972 bool idIsSmallDsc() const
974 return (_idSmallDsc != 0);
976 void idSetIsSmallDsc()
981 #if defined(_TARGET_XARCH_)
983 unsigned idCodeSize() const
987 void idCodeSize(unsigned sz)
990 assert(sz == _idCodeSize);
993 #elif defined(_TARGET_ARM64_)
994 unsigned idCodeSize() const
1002 // b<cond> + b<uncond>
1006 if (isVectorRegister(idReg1()))
1008 // adrp + ldr + fmov
1024 #elif defined(_TARGET_ARM_)
1026 bool idInstrIsT1() const
1028 return (_idInsSize == ISZ_16BIT);
1030 unsigned idCodeSize() const
1032 unsigned result = (_idInsSize == ISZ_16BIT) ? 2 : (_idInsSize == ISZ_32BIT) ? 4 : 6;
1035 insSize idInsSize() const
1039 void idInsSize(insSize isz)
1042 assert(isz == _idInsSize);
1044 insFlags idInsFlags() const
1048 void idInsFlags(insFlags sf)
1051 assert(sf == _idInsFlags);
1053 #endif // _TARGET_ARM_
1057 return emitDecodeSize(_idOpSize);
1059 void idOpSize(emitAttr opsz)
1061 _idOpSize = emitEncodeSize(opsz);
1064 GCtype idGCref() const
1066 return (GCtype)_idGCref;
1068 void idGCref(GCtype gctype)
1073 regNumber idReg1() const
1077 void idReg1(regNumber reg)
1080 assert(reg == _idReg1);
1083 #ifdef _TARGET_ARM64_
1084 GCtype idGCrefReg2() const
1086 assert(!idIsTiny());
1087 assert(!idIsSmallDsc());
1088 return (GCtype)idAddr()->_idGCref2;
1090 void idGCrefReg2(GCtype gctype)
1092 assert(!idIsTiny());
1093 assert(!idIsSmallDsc());
1094 idAddr()->_idGCref2 = gctype;
1096 #endif // _TARGET_ARM64_
1098 regNumber idReg2() const
1102 void idReg2(regNumber reg)
1105 assert(reg == _idReg2);
1108 #if defined(_TARGET_XARCH_)
1109 regNumber idReg3() const
1111 assert(!idIsTiny());
1112 assert(!idIsSmallDsc());
1113 return idAddr()->_idReg3;
1115 void idReg3(regNumber reg)
1117 assert(!idIsTiny());
1118 assert(!idIsSmallDsc());
1119 idAddr()->_idReg3 = reg;
1120 assert(reg == idAddr()->_idReg3);
1122 #endif // defined(_TARGET_XARCH_)
1123 #ifdef _TARGET_ARMARCH_
1124 insOpts idInsOpt() const
1126 return (insOpts)_idInsOpt;
1128 void idInsOpt(insOpts opt)
1131 assert(opt == _idInsOpt);
1134 regNumber idReg3() const
1136 assert(!idIsTiny());
1137 assert(!idIsSmallDsc());
1138 return idAddr()->_idReg3;
1140 void idReg3(regNumber reg)
1142 assert(!idIsTiny());
1143 assert(!idIsSmallDsc());
1144 idAddr()->_idReg3 = reg;
1145 assert(reg == idAddr()->_idReg3);
1147 regNumber idReg4() const
1149 assert(!idIsTiny());
1150 assert(!idIsSmallDsc());
1151 return idAddr()->_idReg4;
1153 void idReg4(regNumber reg)
1155 assert(!idIsTiny());
1156 assert(!idIsSmallDsc());
1157 idAddr()->_idReg4 = reg;
1158 assert(reg == idAddr()->_idReg4);
1160 #ifdef _TARGET_ARM64_
1161 bool idReg3Scaled() const
1163 assert(!idIsTiny());
1164 assert(!idIsSmallDsc());
1165 return (idAddr()->_idReg3Scaled == 1);
1167 void idReg3Scaled(bool val)
1169 assert(!idIsTiny());
1170 assert(!idIsSmallDsc());
1171 idAddr()->_idReg3Scaled = val ? 1 : 0;
1173 #endif // _TARGET_ARM64_
1175 #endif // _TARGET_ARMARCH_
1177 inline static bool fitsInSmallCns(ssize_t val)
1179 return ((val >= ID_MIN_SMALL_CNS) && (val <= ID_MAX_SMALL_CNS));
1182 bool idIsLargeCns() const
1184 assert(!idIsTiny());
1185 return _idLargeCns != 0;
1187 void idSetIsLargeCns()
1189 assert(!idIsTiny());
1193 bool idIsLargeDsp() const
1195 assert(!idIsTiny());
1196 return _idLargeDsp != 0;
1198 void idSetIsLargeDsp()
1200 assert(!idIsTiny());
1203 void idSetIsSmallDsp()
1205 assert(!idIsTiny());
1209 bool idIsLargeCall() const
1211 assert(!idIsTiny());
1212 return _idLargeCall != 0;
1214 void idSetIsLargeCall()
1216 assert(!idIsTiny());
1220 bool idIsBound() const
1222 assert(!idIsTiny());
1223 return _idBound != 0;
1227 assert(!idIsTiny());
1231 bool idIsCallRegPtr() const
1233 assert(!idIsTiny());
1234 return _idCallRegPtr != 0;
1236 void idSetIsCallRegPtr()
1238 assert(!idIsTiny());
1242 bool idIsCallAddr() const
1244 assert(!idIsTiny());
1245 return _idCallAddr != 0;
1247 void idSetIsCallAddr()
1249 assert(!idIsTiny());
1253 // Only call instructions that call helper functions may be marked as "IsNoGC", indicating
1254 // that a thread executing such a call cannot be stopped for GC. Thus, in partially-interruptible
1255 // code, it is not necessary to generate GC info for a call so labeled.
1256 bool idIsNoGC() const
1258 assert(!idIsTiny());
1259 return _idNoGC != 0;
1261 void idSetIsNoGC(bool val)
1263 assert(!idIsTiny());
1267 #ifdef _TARGET_ARMARCH_
1268 bool idIsLclVar() const
1270 return !idIsTiny() && _idLclVar != 0;
1272 void idSetIsLclVar()
1274 assert(!idIsTiny());
1277 #endif // _TARGET_ARMARCH_
1279 #if defined(_TARGET_ARM_)
1280 bool idIsLclFPBase() const
1282 return !idIsTiny() && _idLclFPBase != 0;
1284 void idSetIsLclFPBase()
1286 assert(!idIsTiny());
1289 #endif // defined(_TARGET_ARM_)
1291 bool idIsCnsReloc() const
1293 assert(!idIsTiny());
1294 return _idCnsReloc != 0;
1296 void idSetIsCnsReloc()
1298 assert(!idIsTiny());
1302 bool idIsDspReloc() const
1304 assert(!idIsTiny());
1305 return _idDspReloc != 0;
1307 void idSetIsDspReloc(bool val = true)
1309 assert(!idIsTiny());
1314 return idIsDspReloc() || idIsCnsReloc();
1317 unsigned idSmallCns() const
1319 assert(!idIsTiny());
1322 void idSmallCns(size_t value)
1324 assert(!idIsTiny());
1325 assert(fitsInSmallCns(value));
1326 _idSmallCns = value;
1329 inline const idAddrUnion* idAddr() const
1331 assert(!idIsSmallDsc() && !idIsTiny());
1332 return &this->_idAddrUnion;
1335 inline idAddrUnion* idAddr()
1337 assert(!idIsSmallDsc() && !idIsTiny());
1338 return &this->_idAddrUnion;
1340 }; // End of struct instrDesc
1342 void dispIns(instrDesc* id);
1344 void appendToCurIG(instrDesc* id);
1346 /********************************************************************************************/
1348 struct instrDescJmp : instrDesc
1350 instrDescJmp* idjNext; // next jump in the group/method
1351 insGroup* idjIG; // containing group
1354 BYTE* idjAddr; // address of jump ins (for patching)
1357 unsigned idjOffs : 30; // Before jump emission, this is the byte offset within IG of the jump instruction.
1358 // After emission, for forward jumps, this is the target offset -- in bytes from the
1359 // beginning of the function -- of the target instruction of the jump, used to
1360 // determine if this jump needs to be patched.
1361 unsigned idjShort : 1; // is the jump known to be a short one?
1362 unsigned idjKeepLong : 1; // should the jump be kept long? (used for
1363 // hot to cold and cold to hot jumps)
1366 #if !defined(_TARGET_ARM64_) // This shouldn't be needed for ARM32, either, but I don't want to touch the ARM32 JIT.
1367 struct instrDescLbl : instrDescJmp
1369 emitLclVarAddr dstLclVar;
1371 #endif // !_TARGET_ARM64_
1373 struct instrDescCns : instrDesc // large const
1378 struct instrDescDsp : instrDesc // large displacement
1383 struct instrDescCnsDsp : instrDesc // large cons + disp
1389 struct instrDescAmd : instrDesc // large addrmode disp
1394 struct instrDescCnsAmd : instrDesc // large cons + addrmode disp
1400 struct instrDescCGCA : instrDesc // call with ...
1402 VARSET_TP idcGCvars; // ... updated GC vars or
1403 ssize_t idcDisp; // ... big addrmode disp
1404 regMaskTP idcGcrefRegs; // ... gcref registers
1405 regMaskTP idcByrefRegs; // ... byref registers
1406 unsigned idcArgCnt; // ... lots of args or (<0 ==> caller pops args)
1408 #if MULTIREG_HAS_SECOND_GC_RET
1409 // This method handle the GC-ness of the second register in a 2 register returned struct on System V.
1410 GCtype idSecondGCref() const
1412 return (GCtype)_idcSecondRetRegGCType;
1414 void idSecondGCref(GCtype gctype)
1416 _idcSecondRetRegGCType = gctype;
1420 // This member stores the GC-ness of the second register in a 2 register returned struct on System V.
1421 // It is added to the call struct since it is not needed by the base instrDesc struct, which keeps GC-ness
1422 // of the first register for the instCall nodes.
1423 // The base instrDesc is very carefully kept to be no more than 128 bytes. There is no more space to add members
1424 // for keeping GC-ness of the second return registers. It will also bloat the base struct unnecessarily
1425 // since the GC-ness of the second register is only needed for call instructions.
1426 // The base struct's member keeping the GC-ness of the first return register is _idGCref.
1427 GCtype _idcSecondRetRegGCType : 2; // ... GC type for the second return register.
1428 #endif // MULTIREG_HAS_SECOND_GC_RET
1431 struct instrDescArmFP : instrDesc
1438 insUpdateModes emitInsUpdateMode(instruction ins);
1439 insFormat emitInsModeFormat(instruction ins, insFormat base);
1441 static const BYTE emitInsModeFmtTab[];
1443 static const unsigned emitInsModeFmtCnt;
1446 size_t emitGetInstrDescSize(const instrDesc* id);
1447 size_t emitGetInstrDescSizeSC(const instrDesc* id);
1449 ssize_t emitGetInsCns(instrDesc* id);
1450 ssize_t emitGetInsDsp(instrDesc* id);
1451 ssize_t emitGetInsAmd(instrDesc* id);
1452 ssize_t emitGetInsCnsDsp(instrDesc* id, ssize_t* dspPtr);
1453 ssize_t emitGetInsSC(instrDesc* id);
1454 ssize_t emitGetInsCIdisp(instrDesc* id);
1455 unsigned emitGetInsCIargs(instrDesc* id);
1457 // Return the argument count for a direct call "id".
1458 int emitGetInsCDinfo(instrDesc* id);
1460 unsigned emitInsCount;
1462 /************************************************************************/
1463 /* A few routines used for debug display purposes */
1464 /************************************************************************/
1466 #if defined(DEBUG) || EMITTER_STATS
1468 static const char* emitIfName(unsigned f);
1470 #endif // defined(DEBUG) || EMITTER_STATS
1474 unsigned emitVarRefOffs;
1476 const char* emitRegName(regNumber reg, emitAttr size = EA_PTRSIZE, bool varName = true);
1477 const char* emitFloatRegName(regNumber reg, emitAttr size = EA_PTRSIZE, bool varName = true);
1479 const char* emitFldName(CORINFO_FIELD_HANDLE fieldVal);
1480 const char* emitFncName(CORINFO_METHOD_HANDLE callVal);
1482 void emitDispIGflags(unsigned flags);
1483 void emitDispIG(insGroup* ig, insGroup* igPrev = nullptr, bool verbose = false);
1484 void emitDispIGlist(bool verbose = false);
1485 void emitDispGCinfo();
1486 void emitDispClsVar(CORINFO_FIELD_HANDLE fldHnd, ssize_t offs, bool reloc = false);
1487 void emitDispFrameRef(int varx, int disp, int offs, bool asmfm);
1488 void emitDispInsOffs(unsigned offs, bool doffs);
1489 void emitDispInsHex(BYTE* code, size_t sz);
1492 #define emitVarRefOffs 0
1495 /************************************************************************/
1496 /* Method prolog and epilog */
1497 /************************************************************************/
1499 unsigned emitPrologEndPos;
1501 unsigned emitEpilogCnt;
1502 UNATIVE_OFFSET emitEpilogSize;
1504 #ifdef _TARGET_XARCH_
1506 void emitStartExitSeq(); // Mark the start of the "return" sequence
1507 emitLocation emitExitSeqBegLoc;
1508 UNATIVE_OFFSET emitExitSeqSize; // minimum size of any return sequence - the 'ret' after the epilog
1510 #endif // _TARGET_XARCH_
1512 insGroup* emitPlaceholderList; // per method placeholder list - head
1513 insGroup* emitPlaceholderLast; // per method placeholder list - tail
1515 #ifdef JIT32_GCENCODER
1517 // The x86 GC encoder needs to iterate over a list of epilogs to generate a table of
1518 // epilog offsets. Epilogs always start at the beginning of an IG, so save the first
1519 // IG of the epilog, and use it to find the epilog offset at the end of code generation.
1525 EpilogList() : elNext(nullptr), elLoc()
1530 EpilogList* emitEpilogList; // per method epilog list - head
1531 EpilogList* emitEpilogLast; // per method epilog list - tail
1534 void emitStartEpilog();
1536 bool emitHasEpilogEnd();
1538 size_t emitGenEpilogLst(size_t (*fp)(void*, unsigned), void* cp);
1540 #endif // JIT32_GCENCODER
1542 void emitBegPrologEpilog(insGroup* igPh);
1543 void emitEndPrologEpilog();
1545 void emitBegFnEpilog(insGroup* igPh);
1546 void emitEndFnEpilog();
1548 #if FEATURE_EH_FUNCLETS
1550 void emitBegFuncletProlog(insGroup* igPh);
1551 void emitEndFuncletProlog();
1553 void emitBegFuncletEpilog(insGroup* igPh);
1554 void emitEndFuncletEpilog();
1556 #endif // FEATURE_EH_FUNCLETS
1558 /************************************************************************/
1559 /* Members and methods used in PDB translation */
1560 /************************************************************************/
1562 #ifdef TRANSLATE_PDB
1564 inline void SetIDSource(instrDesc* pID);
1565 void MapCode(int ilOffset, BYTE* imgDest);
1566 void MapFunc(int imgOff,
1573 OptJit::LclVarDsc* lvaTable,
1577 int emitInstrDescILBase; // code offset of IL that produced this instruction desctriptor
1578 int emitInstrDescILBase; // code offset of IL that produced this instruction desctriptor
1579 static AddrMap* emitPDBOffsetTable; // translation table for mapping IL addresses to native addresses
1580 static LocalMap* emitPDBLocalTable; // local symbol translation table
1581 static bool emitIsPDBEnabled; // flag to disable PDB translation code when a PDB is not found
1582 static BYTE* emitILBaseOfCode; // start of IL .text section
1583 static BYTE* emitILMethodBase; // beginning of IL method (start of header)
1584 static BYTE* emitILMethodStart; // beginning of IL method code (right after the header)
1585 static BYTE* emitImgBaseOfCode; // start of the image .text section
1589 /************************************************************************/
1590 /* Methods to record a code position and later convert to offset */
1591 /************************************************************************/
1593 unsigned emitFindInsNum(insGroup* ig, instrDesc* id);
1594 UNATIVE_OFFSET emitFindOffset(insGroup* ig, unsigned insNum);
1596 /************************************************************************/
1597 /* Members and methods used to issue (encode) instructions. */
1598 /************************************************************************/
1601 // If we have started issuing instructions from the list of instrDesc, this is set
1605 BYTE* emitCodeBlock; // Hot code block
1606 BYTE* emitColdCodeBlock; // Cold code block
1607 BYTE* emitConsBlock; // Read-only (constant) data block
1609 UNATIVE_OFFSET emitTotalHotCodeSize;
1610 UNATIVE_OFFSET emitTotalColdCodeSize;
1612 UNATIVE_OFFSET emitCurCodeOffs(BYTE* dst)
1615 if ((dst >= emitCodeBlock) && (dst <= (emitCodeBlock + emitTotalHotCodeSize)))
1617 distance = (dst - emitCodeBlock);
1621 assert(emitFirstColdIG);
1622 assert(emitColdCodeBlock);
1623 assert((dst >= emitColdCodeBlock) && (dst <= (emitColdCodeBlock + emitTotalColdCodeSize)));
1625 distance = (dst - emitColdCodeBlock + emitTotalHotCodeSize);
1627 noway_assert((UNATIVE_OFFSET)distance == distance);
1628 return (UNATIVE_OFFSET)distance;
1631 BYTE* emitOffsetToPtr(UNATIVE_OFFSET offset)
1633 if (offset < emitTotalHotCodeSize)
1635 return emitCodeBlock + offset;
1639 assert(offset < (emitTotalHotCodeSize + emitTotalColdCodeSize));
1641 return emitColdCodeBlock + (offset - emitTotalHotCodeSize);
1645 BYTE* emitDataOffsetToPtr(UNATIVE_OFFSET offset)
1647 assert(offset < emitDataSize());
1648 return emitConsBlock + offset;
1651 bool emitJumpCrossHotColdBoundary(size_t srcOffset, size_t dstOffset)
1653 if (emitTotalColdCodeSize == 0)
1658 assert(srcOffset < (emitTotalHotCodeSize + emitTotalColdCodeSize));
1659 assert(dstOffset < (emitTotalHotCodeSize + emitTotalColdCodeSize));
1661 return ((srcOffset < emitTotalHotCodeSize) != (dstOffset < emitTotalHotCodeSize));
1664 unsigned char emitOutputByte(BYTE* dst, ssize_t val);
1665 unsigned char emitOutputWord(BYTE* dst, ssize_t val);
1666 unsigned char emitOutputLong(BYTE* dst, ssize_t val);
1667 unsigned char emitOutputSizeT(BYTE* dst, ssize_t val);
1669 #if !defined(LEGACY_BACKEND) && defined(_TARGET_X86_)
1670 unsigned char emitOutputByte(BYTE* dst, size_t val);
1671 unsigned char emitOutputWord(BYTE* dst, size_t val);
1672 unsigned char emitOutputLong(BYTE* dst, size_t val);
1673 unsigned char emitOutputSizeT(BYTE* dst, size_t val);
1675 unsigned char emitOutputByte(BYTE* dst, unsigned __int64 val);
1676 unsigned char emitOutputWord(BYTE* dst, unsigned __int64 val);
1677 unsigned char emitOutputLong(BYTE* dst, unsigned __int64 val);
1678 unsigned char emitOutputSizeT(BYTE* dst, unsigned __int64 val);
1679 #endif // !defined(LEGACY_BACKEND) && defined(_TARGET_X86_)
1681 size_t emitIssue1Instr(insGroup* ig, instrDesc* id, BYTE** dp);
1682 size_t emitOutputInstr(insGroup* ig, instrDesc* id, BYTE** dp);
1684 bool emitHasFramePtr;
1686 #ifdef PSEUDORANDOM_NOP_INSERTION
1687 bool emitInInstrumentation;
1688 #endif // PSEUDORANDOM_NOP_INSERTION
1690 unsigned emitMaxTmpSize;
1692 #ifdef LEGACY_BACKEND
1693 unsigned emitLclSize;
1694 unsigned emitGrowableMaxByteOffs;
1695 void emitTmpSizeChanged(unsigned tmpSize);
1697 unsigned emitMaxByteOffsIdNum;
1699 #endif // LEGACY_BACKEND
1702 bool emitChkAlign; // perform some alignment checks
1705 insGroup* emitCurIG;
1707 void emitSetShortJump(instrDescJmp* id);
1708 void emitSetMediumJump(instrDescJmp* id);
1709 UNATIVE_OFFSET emitSizeOfJump(instrDescJmp* jmp);
1710 UNATIVE_OFFSET emitInstCodeSz(instrDesc* id);
1712 #ifndef LEGACY_BACKEND
1713 CORINFO_FIELD_HANDLE emitLiteralConst(ssize_t cnsValIn, emitAttr attr = EA_8BYTE);
1714 CORINFO_FIELD_HANDLE emitFltOrDblConst(GenTreeDblCon* tree, emitAttr attr = EA_UNKNOWN);
1715 regNumber emitInsBinary(instruction ins, emitAttr attr, GenTree* dst, GenTree* src);
1716 regNumber emitInsTernary(instruction ins, emitAttr attr, GenTree* dst, GenTree* src1, GenTree* src2);
1717 void emitInsLoadInd(instruction ins, emitAttr attr, regNumber dstReg, GenTreeIndir* mem);
1718 void emitInsStoreInd(instruction ins, emitAttr attr, GenTreeStoreInd* mem);
1719 void emitInsStoreLcl(instruction ins, emitAttr attr, GenTreeLclVarCommon* varNode);
1720 insFormat emitMapFmtForIns(insFormat fmt, instruction ins);
1721 insFormat emitMapFmtAtoM(insFormat fmt);
1722 void emitHandleMemOp(GenTreeIndir* indir, instrDesc* id, insFormat fmt, instruction ins);
1723 void spillIntArgRegsToShadowSlots();
1724 #endif // !LEGACY_BACKEND
1726 /************************************************************************/
1727 /* The logic that creates and keeps track of instruction groups */
1728 /************************************************************************/
1731 // The only place where this limited instruction group size is a problem is
1732 // in the prolog, where we only support a single instruction group. We should really fix that.
1733 // ARM can require a bigger prolog instruction group. One scenario is where a
1734 // function uses all the incoming integer and single-precision floating-point arguments,
1735 // and must store them all to the frame on entry. If the frame is very large, we generate
1736 // ugly code like "movw r10, 0x488; add r10, sp; vstr s0, [r10]" for each store, which
1737 // eats up our insGroup buffer.
1738 #define SC_IG_BUFFER_SIZE (100 * sizeof(instrDesc) + 14 * TINY_IDSC_SIZE)
1739 #else // !_TARGET_ARM_
1740 #define SC_IG_BUFFER_SIZE (50 * sizeof(instrDesc) + 14 * TINY_IDSC_SIZE)
1741 #endif // !_TARGET_ARM_
1743 size_t emitIGbuffSize;
1745 insGroup* emitIGlist; // first instruction group
1746 insGroup* emitIGlast; // last instruction group
1747 insGroup* emitIGthis; // issued instruction group
1749 insGroup* emitPrologIG; // prolog instruction group
1751 instrDescJmp* emitJumpList; // list of local jumps in method
1752 instrDescJmp* emitJumpLast; // last of local jumps in method
1753 void emitJumpDistBind(); // Bind all the local jumps in method
1755 void emitCheckFuncletBranch(instrDesc* jmp, insGroup* jmpIG); // Check for illegal branches between funclets
1757 bool emitFwdJumps; // forward jumps present?
1758 bool emitNoGCIG; // Are we generating IGF_NOGCINTERRUPT insGroups (for prologs, epilogs, etc.)
1759 bool emitForceNewIG; // If we generate an instruction, and not another instruction group, force create a new emitAdd
1760 // instruction group.
1762 BYTE* emitCurIGfreeNext; // next available byte in buffer
1763 BYTE* emitCurIGfreeEndp; // one byte past the last available byte in buffer
1764 BYTE* emitCurIGfreeBase; // first byte address
1766 unsigned emitCurIGinsCnt; // # of collected instr's in buffer
1767 unsigned emitCurIGsize; // estimated code size of current group in bytes
1768 UNATIVE_OFFSET emitCurCodeOffset; // current code offset within group
1769 UNATIVE_OFFSET emitTotalCodeSize; // bytes of code in entire method
1771 insGroup* emitFirstColdIG; // first cold instruction group
1773 void emitSetFirstColdIGCookie(void* bbEmitCookie)
1775 emitFirstColdIG = (insGroup*)bbEmitCookie;
1778 int emitOffsAdj; // current code offset adjustment
1780 instrDescJmp* emitCurIGjmpList; // list of jumps in current IG
1782 // emitPrev* and emitInit* are only used during code generation, not during
1783 // emission (issuing), to determine what GC values to store into an IG.
1784 // Note that only the Vars ones are actually used, apparently due to bugs
1785 // in that tracking. See emitSavIG(): the important use of ByrefRegs is commented
1786 // out, and GCrefRegs is always saved.
1788 VARSET_TP emitPrevGCrefVars;
1789 regMaskTP emitPrevGCrefRegs;
1790 regMaskTP emitPrevByrefRegs;
1792 VARSET_TP emitInitGCrefVars;
1793 regMaskTP emitInitGCrefRegs;
1794 regMaskTP emitInitByrefRegs;
1796 // If this is set, we ignore comparing emitPrev* and emitInit* to determine
1797 // whether to save GC state (to save space in the IG), and always save it.
1799 bool emitForceStoreGCState;
1801 // emitThis* variables are used during emission, to track GC updates
1802 // on a per-instruction basis. During code generation, per-instruction
1803 // tracking is done with variables gcVarPtrSetCur, gcRegGCrefSetCur,
1804 // and gcRegByrefSetCur. However, these are also used for a slightly
1805 // different purpose during code generation: to try to minimize the
1806 // amount of GC data stored to an IG, by only storing deltas from what
1807 // we expect to see at an IG boundary. Also, only emitThisGCrefVars is
1808 // really the only one used; the others seem to be calculated, but not
1809 // used due to bugs.
1811 VARSET_TP emitThisGCrefVars;
1812 regMaskTP emitThisGCrefRegs; // Current set of registers holding GC references
1813 regMaskTP emitThisByrefRegs; // Current set of registers holding BYREF references
1815 bool emitThisGCrefVset; // Is "emitThisGCrefVars" up to date?
1817 regNumber emitSyncThisObjReg; // where is "this" enregistered for synchronized methods?
1819 #if MULTIREG_HAS_SECOND_GC_RET
1820 void emitSetSecondRetRegGCType(instrDescCGCA* id, emitAttr secondRetSize);
1821 #endif // MULTIREG_HAS_SECOND_GC_RET
1823 static void emitEncodeCallGCregs(regMaskTP regs, instrDesc* id);
1824 static unsigned emitDecodeCallGCregs(instrDesc* id);
1826 unsigned emitNxtIGnum;
1828 // random nop insertion to break up nop sleds
1829 unsigned emitNextNop;
1830 bool emitRandomNops;
1831 void emitEnableRandomNops()
1833 emitRandomNops = true;
1835 void emitDisableRandomNops()
1837 emitRandomNops = false;
1840 insGroup* emitAllocAndLinkIG();
1841 insGroup* emitAllocIG();
1842 void emitInitIG(insGroup* ig);
1843 void emitInsertIGAfter(insGroup* insertAfterIG, insGroup* ig);
1847 #if !defined(JIT32_GCENCODER)
1848 void emitDisableGC();
1849 void emitEnableGC();
1850 #endif // !defined(JIT32_GCENCODER)
1852 void emitGenIG(insGroup* ig);
1853 insGroup* emitSavIG(bool emitAdd = false);
1854 void emitNxtIG(bool emitAdd = false);
1856 bool emitCurIGnonEmpty()
1858 return (emitCurIG && emitCurIGfreeNext > emitCurIGfreeBase);
1861 instrDesc* emitLastIns;
1864 void emitCheckIGoffsets();
1867 // Terminates any in-progress instruction group, making the current IG a new empty one.
1868 // Mark this instruction group as having a label; return the the new instruction group.
1869 // Sets the emitter's record of the currently live GC variables
1870 // and registers. The "isFinallyTarget" parameter indicates that the current location is
1871 // the start of a basic block that is returned to after a finally clause in non-exceptional execution.
1872 void* emitAddLabel(VARSET_VALARG_TP GCvars, regMaskTP gcrefRegs, regMaskTP byrefRegs, BOOL isFinallyTarget = FALSE);
1874 #ifdef _TARGET_ARMARCH_
1876 void emitGetInstrDescs(insGroup* ig, instrDesc** id, int* insCnt);
1878 bool emitGetLocationInfo(emitLocation* emitLoc, insGroup** pig, instrDesc** pid, int* pinsRemaining = NULL);
1880 bool emitNextID(insGroup*& ig, instrDesc*& id, int& insRemaining);
1882 typedef void (*emitProcessInstrFunc_t)(instrDesc* id, void* context);
1884 void emitWalkIDs(emitLocation* locFrom, emitProcessInstrFunc_t processFunc, void* context);
1886 static void emitGenerateUnwindNop(instrDesc* id, void* context);
1888 #endif // _TARGET_ARMARCH_
1890 #if defined(_TARGET_ARM_)
1891 emitter::insFormat emitInsFormat(instruction ins);
1892 size_t emitInsCode(instruction ins, insFormat fmt);
1896 void emitMarkStackLvl(unsigned stackLevel);
1899 int emitNextRandomNop();
1901 void* emitAllocInstr(size_t sz, emitAttr attr);
1903 instrDesc* emitAllocInstr(emitAttr attr)
1905 return (instrDesc*)emitAllocInstr(sizeof(instrDesc), attr);
1908 instrDescJmp* emitAllocInstrJmp()
1910 return (instrDescJmp*)emitAllocInstr(sizeof(instrDescJmp), EA_1BYTE);
1913 #if !defined(_TARGET_ARM64_)
1914 instrDescLbl* emitAllocInstrLbl()
1916 return (instrDescLbl*)emitAllocInstr(sizeof(instrDescLbl), EA_4BYTE);
1918 #endif // !_TARGET_ARM64_
1920 instrDescCns* emitAllocInstrCns(emitAttr attr)
1922 return (instrDescCns*)emitAllocInstr(sizeof(instrDescCns), attr);
1924 instrDescCns* emitAllocInstrCns(emitAttr attr, int cns)
1926 instrDescCns* result = (instrDescCns*)emitAllocInstr(sizeof(instrDescCns), attr);
1927 result->idSetIsLargeCns();
1928 result->idcCnsVal = cns;
1932 instrDescDsp* emitAllocInstrDsp(emitAttr attr)
1934 return (instrDescDsp*)emitAllocInstr(sizeof(instrDescDsp), attr);
1937 instrDescCnsDsp* emitAllocInstrCnsDsp(emitAttr attr)
1939 return (instrDescCnsDsp*)emitAllocInstr(sizeof(instrDescCnsDsp), attr);
1942 instrDescAmd* emitAllocInstrAmd(emitAttr attr)
1944 return (instrDescAmd*)emitAllocInstr(sizeof(instrDescAmd), attr);
1947 instrDescCnsAmd* emitAllocInstrCnsAmd(emitAttr attr)
1949 return (instrDescCnsAmd*)emitAllocInstr(sizeof(instrDescCnsAmd), attr);
1952 instrDescCGCA* emitAllocInstrCGCA(emitAttr attr)
1954 return (instrDescCGCA*)emitAllocInstr(sizeof(instrDescCGCA), attr);
1957 instrDesc* emitNewInstrTiny(emitAttr attr);
1958 instrDesc* emitNewInstrSmall(emitAttr attr);
1959 instrDesc* emitNewInstr(emitAttr attr = EA_4BYTE);
1960 instrDesc* emitNewInstrSC(emitAttr attr, ssize_t cns);
1961 instrDesc* emitNewInstrCns(emitAttr attr, ssize_t cns);
1962 instrDesc* emitNewInstrDsp(emitAttr attr, ssize_t dsp);
1963 instrDesc* emitNewInstrCnsDsp(emitAttr attr, ssize_t cns, int dsp);
1964 instrDescJmp* emitNewInstrJmp();
1966 #if !defined(_TARGET_ARM64_)
1967 instrDescLbl* emitNewInstrLbl();
1968 #endif // !_TARGET_ARM64_
1970 static const BYTE emitFmtToOps[];
1973 static const unsigned emitFmtCount;
1976 bool emitIsTinyInsDsc(instrDesc* id);
1977 bool emitIsScnsInsDsc(instrDesc* id);
1979 size_t emitSizeOfInsDsc(instrDesc* id);
1981 /************************************************************************/
1982 /* The following keeps track of stack-based GC values */
1983 /************************************************************************/
1985 unsigned emitTrkVarCnt;
1986 int* emitGCrFrameOffsTab; // Offsets of tracked stack ptr vars (varTrkIndex -> stkOffs)
1988 unsigned emitGCrFrameOffsCnt; // Number of tracked stack ptr vars
1989 int emitGCrFrameOffsMin; // Min offset of a tracked stack ptr var
1990 int emitGCrFrameOffsMax; // Max offset of a tracked stack ptr var
1991 bool emitContTrkPtrLcls; // All lcl between emitGCrFrameOffsMin/Max are only tracked stack ptr vars
1992 varPtrDsc** emitGCrFrameLiveTab; // Cache of currently live varPtrs (stkOffs -> varPtrDsc)
1994 int emitArgFrameOffsMin;
1995 int emitArgFrameOffsMax;
1997 int emitLclFrameOffsMin;
1998 int emitLclFrameOffsMax;
2000 int emitSyncThisObjOffs; // what is the offset of "this" for synchronized methods?
2003 void emitSetFrameRangeGCRs(int offsLo, int offsHi);
2004 void emitSetFrameRangeLcls(int offsLo, int offsHi);
2005 void emitSetFrameRangeArgs(int offsLo, int offsHi);
2007 static instruction emitJumpKindToIns(emitJumpKind jumpKind);
2008 static emitJumpKind emitInsToJumpKind(instruction ins);
2009 static emitJumpKind emitReverseJumpKind(emitJumpKind jumpKind);
2012 static unsigned emitJumpKindCondCode(emitJumpKind jumpKind);
2016 void emitInsSanityCheck(instrDesc* id);
2019 #ifdef _TARGET_ARMARCH_
2020 // Returns true if instruction "id->idIns()" writes to a register that might be used to contain a GC
2021 // pointer. This exempts the SP and PC registers, and floating point registers. Memory access
2022 // instructions that pre- or post-increment their memory address registers are *not* considered to write
2023 // to GC registers, even if that memory address is a by-ref: such an instruction cannot change the GC
2024 // status of that register, since it must be a byref before and remains one after.
2026 // This may return false positives.
2027 bool emitInsMayWriteToGCReg(instrDesc* id);
2029 // Returns "true" if instruction "id->idIns()" writes to a LclVar stack location.
2030 bool emitInsWritesToLclVarStackLoc(instrDesc* id);
2032 // Returns true if the instruction may write to more than one register.
2033 bool emitInsMayWriteMultipleRegs(instrDesc* id);
2035 // Returns "true" if instruction "id->idIns()" writes to a LclVar stack slot pair.
2036 bool emitInsWritesToLclVarStackLocPair(instrDesc* id);
2037 #endif // _TARGET_ARMARCH_
2039 /************************************************************************/
2040 /* The following is used to distinguish helper vs non-helper calls */
2041 /************************************************************************/
2043 static bool emitNoGChelper(unsigned IHX);
2045 /************************************************************************/
2046 /* The following logic keeps track of live GC ref values */
2047 /************************************************************************/
2049 bool emitFullArgInfo; // full arg info (including non-ptr arg)?
2050 bool emitFullGCinfo; // full GC pointer maps?
2051 bool emitFullyInt; // fully interruptible code?
2053 #if EMIT_TRACK_STACK_DEPTH
2054 unsigned emitCntStackDepth; // 0 in prolog/epilog, One DWORD elsewhere
2055 unsigned emitMaxStackDepth; // actual computed max. stack depth
2058 /* Stack modelling wrt GC */
2060 bool emitSimpleStkUsed; // using the "simple" stack table?
2063 struct // if emitSimpleStkUsed==true
2065 #define BITS_IN_BYTE (8)
2066 #define MAX_SIMPLE_STK_DEPTH (BITS_IN_BYTE * sizeof(unsigned))
2068 unsigned emitSimpleStkMask; // bit per pushed dword (if it fits. Lowest bit <==> last pushed arg)
2069 unsigned emitSimpleByrefStkMask; // byref qualifier for emitSimpleStkMask
2072 struct // if emitSimpleStkUsed==false
2074 BYTE emitArgTrackLcl[16]; // small local table to avoid malloc
2075 BYTE* emitArgTrackTab; // base of the argument tracking stack
2076 BYTE* emitArgTrackTop; // top of the argument tracking stack
2077 USHORT emitGcArgTrackCnt; // count of pending arg records (stk-depth for frameless methods, gc ptrs on stk
2078 // for framed methods)
2082 unsigned emitCurStackLvl; // amount of bytes pushed on stack
2084 #if EMIT_TRACK_STACK_DEPTH
2085 /* Functions for stack tracking */
2087 void emitStackPush(BYTE* addr, GCtype gcType);
2089 void emitStackPushN(BYTE* addr, unsigned count);
2091 void emitStackPop(BYTE* addr, bool isCall, unsigned char callInstrSize, unsigned count = 1);
2093 void emitStackKillArgs(BYTE* addr, unsigned count, unsigned char callInstrSize);
2095 void emitRecordGCcall(BYTE* codePos, unsigned char callInstrSize);
2097 // Helpers for the above
2099 void emitStackPushLargeStk(BYTE* addr, GCtype gcType, unsigned count = 1);
2100 void emitStackPopLargeStk(BYTE* addr, bool isCall, unsigned char callInstrSize, unsigned count = 1);
2101 #endif // EMIT_TRACK_STACK_DEPTH
2103 /* Liveness of stack variables, and registers */
2105 void emitUpdateLiveGCvars(int offs, BYTE* addr, bool birth);
2106 void emitUpdateLiveGCvars(VARSET_VALARG_TP vars, BYTE* addr);
2107 void emitUpdateLiveGCregs(GCtype gcType, regMaskTP regs, BYTE* addr);
2110 const char* emitGetFrameReg();
2111 void emitDispRegSet(regMaskTP regs);
2112 void emitDispVarSet();
2115 void emitGCregLiveUpd(GCtype gcType, regNumber reg, BYTE* addr);
2116 void emitGCregLiveSet(GCtype gcType, regMaskTP mask, BYTE* addr, bool isThis);
2117 void emitGCregDeadUpdMask(regMaskTP, BYTE* addr);
2118 void emitGCregDeadUpd(regNumber reg, BYTE* addr);
2119 void emitGCregDeadSet(GCtype gcType, regMaskTP mask, BYTE* addr);
2121 void emitGCvarLiveUpd(int offs, int varNum, GCtype gcType, BYTE* addr);
2122 void emitGCvarLiveSet(int offs, GCtype gcType, BYTE* addr, ssize_t disp = -1);
2123 void emitGCvarDeadUpd(int offs, BYTE* addr);
2124 void emitGCvarDeadSet(int offs, BYTE* addr, ssize_t disp = -1);
2126 GCtype emitRegGCtype(regNumber reg);
2128 // We have a mixture of code emission methods, some of which return the size of the emitted instruction,
2129 // requiring the caller to add this to the current code pointer (dst += <call to emit code>), others of which
2130 // return the updated code pointer (dst = <call to emit code>). Sometimes we'd like to get the size of
2131 // the generated instruction for the latter style. This method accomplishes that --
2132 // "emitCodeWithInstructionSize(dst, <call to emitCode>, &instrSize)" will do the call, and set
2133 // "*instrSize" to the after-before code pointer difference. Returns the result of the call. (And
2134 // asserts that the instruction size fits in an unsigned char.)
2135 static BYTE* emitCodeWithInstructionSize(BYTE* codePtrBefore, BYTE* newCodePointer, unsigned char* instrSize);
2137 /************************************************************************/
2138 /* The following logic keeps track of initialized data sections */
2139 /************************************************************************/
2141 /* One of these is allocated for every blob of initialized data */
2152 dataSection* dsNext;
2153 UNATIVE_OFFSET dsSize;
2155 // variable-sized array used to store the constant data
2156 // or BasicBlock* array in the block cases.
2160 /* These describe the entire initialized/uninitialized data sections */
2164 dataSection* dsdList;
2165 dataSection* dsdLast;
2166 UNATIVE_OFFSET dsdOffs;
2169 dataSecDsc emitConsDsc;
2171 dataSection* emitDataSecCur;
2173 void emitOutputDataSec(dataSecDsc* sec, BYTE* dst);
2175 /************************************************************************/
2176 /* Handles to the current class and method. */
2177 /************************************************************************/
2179 COMP_HANDLE emitCmpHandle;
2181 /************************************************************************/
2182 /* Helpers for interface to EE */
2183 /************************************************************************/
2185 void emitRecordRelocation(void* location, /* IN */
2186 void* target, /* IN */
2187 WORD fRelocType, /* IN */
2188 WORD slotNum = 0, /* IN */
2189 INT32 addlDelta = 0); /* IN */
2192 void emitHandlePCRelativeMov32(void* location, /* IN */
2193 void* target); /* IN */
2196 void emitRecordCallSite(ULONG instrOffset, /* IN */
2197 CORINFO_SIG_INFO* callSig, /* IN */
2198 CORINFO_METHOD_HANDLE methodHandle); /* IN */
2201 // This is a scratch buffer used to minimize the number of sig info structs
2202 // we have to allocate for recordCallSite.
2203 CORINFO_SIG_INFO* emitScratchSigInfo;
2206 /************************************************************************/
2207 /* Logic to collect and display statistics */
2208 /************************************************************************/
2212 friend void emitterStats(FILE* fout);
2213 friend void emitterStaticStats(FILE* fout);
2215 static size_t emitSizeMethod;
2217 static unsigned emitTotalInsCnt;
2219 static unsigned emitTotalIGcnt; // total number of insGroup allocated
2220 static unsigned emitTotalPhIGcnt; // total number of insPlaceholderGroupData allocated
2221 static unsigned emitTotalIGicnt;
2222 static size_t emitTotalIGsize;
2223 static unsigned emitTotalIGmcnt; // total method count
2224 static unsigned emitTotalIGjmps;
2225 static unsigned emitTotalIGptrs;
2227 static size_t emitTotMemAlloc;
2229 static unsigned emitSmallDspCnt;
2230 static unsigned emitLargeDspCnt;
2232 static unsigned emitSmallCnsCnt;
2233 #define SMALL_CNS_TSZ 256
2234 static unsigned emitSmallCns[SMALL_CNS_TSZ];
2235 static unsigned emitLargeCnsCnt;
2237 static unsigned emitIFcounts[IF_COUNT];
2239 #endif // EMITTER_STATS
2241 /*************************************************************************
2243 * Define any target-dependent emitter members.
2246 #include "emitdef.h"
2248 // It would be better if this were a constructor, but that would entail revamping the allocation
2249 // infrastructure of the entire JIT...
2252 VarSetOps::AssignNoCopy(emitComp, emitPrevGCrefVars, VarSetOps::MakeEmpty(emitComp));
2253 VarSetOps::AssignNoCopy(emitComp, emitInitGCrefVars, VarSetOps::MakeEmpty(emitComp));
2254 VarSetOps::AssignNoCopy(emitComp, emitThisGCrefVars, VarSetOps::MakeEmpty(emitComp));
2258 /*****************************************************************************
2260 * Define any target-dependent inlines.
2263 #include "emitinl.h"
2265 inline void emitter::instrDesc::checkSizes()
2269 C_ASSERT(TINY_IDSC_SIZE == (offsetof(instrDesc, _idDebugOnlyInfo) + sizeof(instrDescDebugInfo*)));
2271 C_ASSERT(SMALL_IDSC_SIZE == (offsetof(instrDesc, _idDebugOnlyInfo) + sizeof(instrDescDebugInfo*)));
2274 C_ASSERT(SMALL_IDSC_SIZE == offsetof(instrDesc, _idAddrUnion));
2277 /*****************************************************************************
2279 * Returns true if the given instruction descriptor is a "tiny" or a "small
2280 * constant" one (i.e. one of the descriptors that don't have all instrDesc
2281 * fields allocated).
2284 inline bool emitter::emitIsTinyInsDsc(instrDesc* id)
2286 return id->idIsTiny();
2289 inline bool emitter::emitIsScnsInsDsc(instrDesc* id)
2291 return id->idIsSmallDsc();
2294 /*****************************************************************************
2296 * Given an instruction, return its "update mode" (RD/WR/RW).
2299 inline insUpdateModes emitter::emitInsUpdateMode(instruction ins)
2302 assert((unsigned)ins < emitInsModeFmtCnt);
2304 return (insUpdateModes)emitInsModeFmtTab[ins];
2307 /*****************************************************************************
2309 * Return the number of epilog blocks generated so far.
2312 inline unsigned emitter::emitGetEpilogCnt()
2314 return emitEpilogCnt;
2317 /*****************************************************************************
2319 * Return the current size of the specified data section.
2322 inline UNATIVE_OFFSET emitter::emitDataSize()
2324 return emitConsDsc.dsdOffs;
2327 /*****************************************************************************
2329 * Return a handle to the current position in the output stream. This can
2330 * be later converted to an actual code offset in bytes.
2333 inline void* emitter::emitCurBlock()
2338 /*****************************************************************************
2340 * The emitCurOffset() method returns a cookie that identifies the current
2341 * position in the instruction stream. Due to things like scheduling (and
2342 * the fact that the final size of some instructions cannot be known until
2343 * the end of code generation), we return a value with the instruction number
2344 * and its estimated offset to the caller.
2347 inline unsigned emitGetInsNumFromCodePos(unsigned codePos)
2349 return (codePos & 0xFFFF);
2352 inline unsigned emitGetInsOfsFromCodePos(unsigned codePos)
2354 return (codePos >> 16);
2357 inline unsigned emitter::emitCurOffset()
2359 unsigned codePos = emitCurIGinsCnt + (emitCurIGsize << 16);
2361 assert(emitGetInsOfsFromCodePos(codePos) == emitCurIGsize);
2362 assert(emitGetInsNumFromCodePos(codePos) == emitCurIGinsCnt);
2364 // printf("[IG=%02u;ID=%03u;OF=%04X] => %08X\n", emitCurIG->igNum, emitCurIGinsCnt, emitCurIGsize, codePos);
2369 extern const unsigned short emitTypeSizes[TYP_COUNT];
2372 inline emitAttr emitTypeSize(T type)
2374 assert(TypeGet(type) < TYP_COUNT);
2375 assert(emitTypeSizes[TypeGet(type)] > 0);
2376 return (emitAttr)emitTypeSizes[TypeGet(type)];
2379 extern const unsigned short emitTypeActSz[TYP_COUNT];
2382 inline emitAttr emitActualTypeSize(T type)
2384 assert(TypeGet(type) < TYP_COUNT);
2385 assert(emitTypeActSz[TypeGet(type)] > 0);
2386 return (emitAttr)emitTypeActSz[TypeGet(type)];
2389 /*****************************************************************************
2391 * Convert between an operand size in bytes and a smaller encoding used for
2392 * storage in instruction descriptors.
2395 /* static */ inline emitter::opSize emitter::emitEncodeSize(emitAttr size)
2397 assert(size == EA_1BYTE || size == EA_2BYTE || size == EA_4BYTE || size == EA_8BYTE || size == EA_16BYTE ||
2400 return emitSizeEncode[((int)size) - 1];
2403 /* static */ inline emitAttr emitter::emitDecodeSize(emitter::opSize ensz)
2405 assert(((unsigned)ensz) < OPSZ_COUNT);
2407 return emitSizeDecode[ensz];
2410 /*****************************************************************************
2412 * Little helpers to allocate various flavors of instructions.
2415 inline emitter::instrDesc* emitter::emitNewInstrTiny(emitAttr attr)
2419 id = (instrDesc*)emitAllocInstr(TINY_IDSC_SIZE, attr);
2425 inline emitter::instrDesc* emitter::emitNewInstrSmall(emitAttr attr)
2429 // This is larger than the Tiny Descr
2430 id = (instrDesc*)emitAllocInstr(SMALL_IDSC_SIZE, attr);
2431 id->idSetIsSmallDsc();
2436 inline emitter::instrDesc* emitter::emitNewInstr(emitAttr attr)
2438 // This is larger than the Small Descr
2439 return emitAllocInstr(attr);
2442 inline emitter::instrDescJmp* emitter::emitNewInstrJmp()
2444 return emitAllocInstrJmp();
2447 #if !defined(_TARGET_ARM64_)
2448 inline emitter::instrDescLbl* emitter::emitNewInstrLbl()
2450 return emitAllocInstrLbl();
2452 #endif // !_TARGET_ARM64_
2454 inline emitter::instrDesc* emitter::emitNewInstrDsp(emitAttr attr, ssize_t dsp)
2458 instrDesc* id = emitAllocInstr(attr);
2468 instrDescDsp* id = emitAllocInstrDsp(attr);
2470 id->idSetIsLargeDsp();
2471 id->iddDspVal = dsp;
2481 /*****************************************************************************
2483 * Allocate an instruction descriptor for an instruction with a constant operand.
2484 * The instruction descriptor uses the idAddrUnion to save additional info
2485 * so the smallest size that this can be is sizeof(instrDesc).
2486 * Note that this very similar to emitter::emitNewInstrSC(), except it never
2487 * allocates a small descriptor.
2489 inline emitter::instrDesc* emitter::emitNewInstrCns(emitAttr attr, ssize_t cns)
2491 if (instrDesc::fitsInSmallCns(cns))
2493 instrDesc* id = emitAllocInstr(attr);
2495 id->idSmallCns(cns);
2499 if (cns - ID_MIN_SMALL_CNS >= SMALL_CNS_TSZ)
2500 emitSmallCns[SMALL_CNS_TSZ - 1]++;
2502 emitSmallCns[cns - ID_MIN_SMALL_CNS]++;
2509 instrDescCns* id = emitAllocInstrCns(attr);
2511 id->idSetIsLargeCns();
2512 id->idcCnsVal = cns;
2522 /*****************************************************************************
2524 * Get the instrDesc size, general purpose version
2528 inline size_t emitter::emitGetInstrDescSize(const instrDesc* id)
2532 return TINY_IDSC_SIZE;
2535 if (id->idIsSmallDsc())
2537 return SMALL_IDSC_SIZE;
2540 if (id->idIsLargeCns())
2542 return sizeof(instrDescCns);
2545 return sizeof(instrDesc);
2548 /*****************************************************************************
2550 * Allocate an instruction descriptor for an instruction with a small integer
2551 * constant operand. This is the same as emitNewInstrCns() except that here
2552 * any constant that is small enough for instrDesc::fitsInSmallCns() only gets
2553 * allocated SMALL_IDSC_SIZE bytes (and is thus a small descriptor, whereas
2554 * emitNewInstrCns() always allocates at least sizeof(instrDesc).
2557 inline emitter::instrDesc* emitter::emitNewInstrSC(emitAttr attr, ssize_t cns)
2561 if (instrDesc::fitsInSmallCns(cns))
2563 id = (instrDesc*)emitAllocInstr(SMALL_IDSC_SIZE, attr);
2565 id->idSmallCns(cns);
2566 id->idSetIsSmallDsc();
2570 id = (instrDesc*)emitAllocInstr(sizeof(instrDescCns), attr);
2572 id->idSetIsLargeCns();
2573 ((instrDescCns*)id)->idcCnsVal = cns;
2579 /*****************************************************************************
2581 * Get the instrDesc size for something that contains a constant
2584 inline size_t emitter::emitGetInstrDescSizeSC(const instrDesc* id)
2586 if (id->idIsSmallDsc())
2588 return SMALL_IDSC_SIZE;
2590 else if (id->idIsLargeCns())
2592 return sizeof(instrDescCns);
2596 return sizeof(instrDesc);
2600 /*****************************************************************************
2602 * The following helpers should be used to access the various values that
2603 * get stored in different places within the instruction descriptor.
2606 inline ssize_t emitter::emitGetInsCns(instrDesc* id)
2608 return id->idIsLargeCns() ? ((instrDescCns*)id)->idcCnsVal : id->idSmallCns();
2611 inline ssize_t emitter::emitGetInsDsp(instrDesc* id)
2613 if (id->idIsLargeDsp())
2615 if (id->idIsLargeCns())
2617 return ((instrDescCnsDsp*)id)->iddcDspVal;
2619 return ((instrDescDsp*)id)->iddDspVal;
2624 inline ssize_t emitter::emitGetInsCnsDsp(instrDesc* id, ssize_t* dspPtr)
2626 if (id->idIsLargeCns())
2628 if (id->idIsLargeDsp())
2630 *dspPtr = ((instrDescCnsDsp*)id)->iddcDspVal;
2631 return ((instrDescCnsDsp*)id)->iddcCnsVal;
2636 return ((instrDescCns*)id)->idcCnsVal;
2641 if (id->idIsLargeDsp())
2643 *dspPtr = ((instrDescDsp*)id)->iddDspVal;
2644 return id->idSmallCns();
2649 return id->idSmallCns();
2654 /*****************************************************************************
2656 * Get hold of the argument count for an indirect call.
2659 inline unsigned emitter::emitGetInsCIargs(instrDesc* id)
2661 if (id->idIsLargeCall())
2663 return ((instrDescCGCA*)id)->idcArgCnt;
2667 assert(id->idIsLargeDsp() == false);
2668 assert(id->idIsLargeCns() == false);
2670 ssize_t cns = emitGetInsCns(id);
2671 assert((unsigned)cns == (size_t)cns);
2672 return (unsigned)cns;
2676 /*****************************************************************************
2678 * Returns true if the given register contains a live GC ref.
2681 inline GCtype emitter::emitRegGCtype(regNumber reg)
2683 assert(emitIssuing);
2685 if ((emitThisGCrefRegs & genRegMask(reg)) != 0)
2689 else if ((emitThisByrefRegs & genRegMask(reg)) != 0)
2701 #if EMIT_TRACK_STACK_DEPTH
2702 #define CHECK_STACK_DEPTH() assert((int)emitCurStackLvl >= 0)
2704 #define CHECK_STACK_DEPTH()
2709 /*****************************************************************************
2711 * Return true when a given code offset is properly aligned for the target
2714 inline bool IsCodeAligned(UNATIVE_OFFSET offset)
2716 return ((offset & (CODE_ALIGN - 1)) == 0);
2720 inline BYTE* emitter::emitCodeWithInstructionSize(BYTE* codePtrBefore, BYTE* newCodePointer, unsigned char* instrSize)
2722 // DLD: Perhaps this method should return the instruction size, and we should do dst += <that size>
2723 // as is done in other cases?
2724 assert(newCodePointer >= codePtrBefore);
2725 ClrSafeInt<unsigned char> callInstrSizeSafe = ClrSafeInt<unsigned char>(newCodePointer - codePtrBefore);
2726 assert(!callInstrSizeSafe.IsOverflow());
2727 *instrSize = callInstrSizeSafe.Value();
2728 return newCodePointer;
2731 /*****************************************************************************
2733 * Add a new IG to the current list, and get it ready to receive code.
2736 inline void emitter::emitNewIG()
2738 insGroup* ig = emitAllocAndLinkIG();
2740 /* It's linked in. Now, set it up to accept code */
2745 #if !defined(JIT32_GCENCODER)
2746 // Start a new instruction group that is not interruptable
2747 inline void emitter::emitDisableGC()
2751 if (emitCurIGnonEmpty())
2757 emitCurIG->igFlags |= IGF_NOGCINTERRUPT;
2761 // Start a new instruction group that is interruptable
2762 inline void emitter::emitEnableGC()
2766 // The next time an instruction needs to be generated, force a new instruction group.
2767 // It will be an emitAdd group in that case. Note that the next thing we see might be
2768 // a label, which will force a non-emitAdd group.
2770 // Note that we can't just create a new instruction group here, because we don't know
2771 // if there are going to be any instructions added to it, and we don't support empty
2772 // instruction groups.
2773 emitForceNewIG = true;
2775 #endif // !defined(JIT32_GCENCODER)
2777 /*****************************************************************************/
2779 /*****************************************************************************/