1 // Licensed to the .NET Foundation under one or more agreements.
2 // The .NET Foundation licenses this file to you under the MIT license.
3 // See the LICENSE file in the project root for more information.
4 /*****************************************************************************/
15 #include "jitgcinfo.h"
17 /*****************************************************************************/
19 #ifndef _ADDRMAP_INCLUDED_
22 #ifndef _LOCALMAP_INCLUDED_
25 #ifndef _PDBREWRITE_H_
26 #include "pdbrewrite.h"
28 #endif // TRANSLATE_PDB
30 /*****************************************************************************/
32 #pragma warning(disable : 4200) // allow arrays of 0 size inside structs
34 #define TRACK_GC_TEMP_LIFETIMES 0
36 /*****************************************************************************/
41 #define EMITVERBOSE (emitComp->verbose)
45 #define EMIT_GC_VERBOSE 0
47 #define EMIT_GC_VERBOSE (emitComp->verbose)
51 #define EMIT_INSTLIST_VERBOSE 0
53 #define EMIT_INSTLIST_VERBOSE (emitComp->verbose)
56 /*****************************************************************************/
65 void emitterStats(FILE* fout);
66 void emitterStaticStats(FILE* fout); // Static stats about the emitter (data structure offsets, sizes, etc.)
69 void printRegMaskInt(regMaskTP mask);
71 /*****************************************************************************/
72 /* Forward declarations */
78 typedef void (*emitSplitCallbackType)(void* context, emitLocation* emitLoc);
80 /*****************************************************************************/
82 //-----------------------------------------------------------------------------
84 inline bool needsGC(GCtype gcType)
86 if (gcType == GCT_NONE)
92 assert(gcType == GCT_GCREF || gcType == GCT_BYREF);
97 //-----------------------------------------------------------------------------
101 inline bool IsValidGCtype(GCtype gcType)
103 return (gcType == GCT_NONE || gcType == GCT_GCREF || gcType == GCT_BYREF);
106 // Get a string name to represent the GC type
108 inline const char* GCtypeStr(GCtype gcType)
119 assert(!"Invalid GCtype");
126 /*****************************************************************************/
129 #define INTERESTING_JUMP_NUM -1 // set to 0 to see all jump info
130 //#define INTERESTING_JUMP_NUM 0
133 /*****************************************************************************
135 * Represent an emitter location.
141 emitLocation() : ig(nullptr), codePos(0)
145 emitLocation(insGroup* _ig) : ig(_ig), codePos(0)
149 emitLocation(void* emitCookie) : ig((insGroup*)emitCookie), codePos(0)
153 // A constructor for code that needs to call it explicitly.
156 this->emitLocation::emitLocation();
159 void CaptureLocation(emitter* emit);
161 bool IsCurrentLocation(emitter* emit) const;
163 // This function is highly suspect, since it presumes knowledge of the codePos "cookie",
164 // and doesn't look at the 'ig' pointer.
165 bool IsOffsetZero() const
167 return (codePos == 0);
170 UNATIVE_OFFSET CodeOffset(emitter* emit) const;
172 insGroup* GetIG() const
177 int GetInsNum() const;
179 bool operator!=(const emitLocation& other) const
181 return (ig != other.ig) || (codePos != other.codePos);
184 bool operator==(const emitLocation& other) const
186 return !(*this != other);
191 // Things we could validate:
192 // 1. the instruction group pointer is non-nullptr.
193 // 2. 'ig' is a legal pointer to an instruction group.
194 // 3. 'codePos' is a legal offset into 'ig'.
195 // Currently, we just do #1.
196 // #2 and #3 should only be done in DEBUG, if they are implemented.
206 #ifdef _TARGET_AMD64_
207 UNATIVE_OFFSET GetFuncletPrologOffset(emitter* emit) const;
208 #endif // _TARGET_AMD64_
215 insGroup* ig; // the instruction group
216 unsigned codePos; // the code position within the IG (see emitCurOffset())
219 /************************************************************************/
220 /* The following describes an instruction group */
221 /************************************************************************/
223 enum insGroupPlaceholderType : unsigned char
225 IGPT_PROLOG, // currently unused
227 #if FEATURE_EH_FUNCLETS
230 #endif // FEATURE_EH_FUNCLETS
233 #if defined(_MSC_VER) && defined(_TARGET_ARM_)
234 // ARM aligns structures that contain 64-bit ints or doubles on 64-bit boundaries. This causes unwanted
235 // padding to be added to the end, so sizeof() is unnecessarily big.
238 #endif // defined(_MSC_VER) && defined(_TARGET_ARM_)
240 struct insPlaceholderGroupData
244 VARSET_TP igPhInitGCrefVars;
245 regMaskTP igPhInitGCrefRegs;
246 regMaskTP igPhInitByrefRegs;
247 VARSET_TP igPhPrevGCrefVars;
248 regMaskTP igPhPrevGCrefRegs;
249 regMaskTP igPhPrevByrefRegs;
250 insGroupPlaceholderType igPhType;
251 }; // end of struct insPlaceholderGroupData
258 insGroup* igSelf; // for consistency checking
261 UNATIVE_OFFSET igNum; // for ordering (and display) purposes
262 UNATIVE_OFFSET igOffs; // offset of this group within method
263 unsigned int igFuncIdx; // Which function/funclet does this belong to? (Index into Compiler::compFuncInfos array.)
264 unsigned short igFlags; // see IGF_xxx below
265 unsigned short igSize; // # of bytes of code in this group
267 #define IGF_GC_VARS 0x0001 // new set of live GC ref variables
268 #define IGF_BYREF_REGS 0x0002 // new set of live by-ref registers
269 #if FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_)
270 #define IGF_FINALLY_TARGET 0x0004 // this group is the start of a basic block that is returned to after a finally.
271 #endif // FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_)
272 #define IGF_FUNCLET_PROLOG 0x0008 // this group belongs to a funclet prolog
273 #define IGF_FUNCLET_EPILOG 0x0010 // this group belongs to a funclet epilog.
274 #define IGF_EPILOG 0x0020 // this group belongs to a main function epilog
275 #define IGF_NOGCINTERRUPT 0x0040 // this IG is is a no-interrupt region (prolog, epilog, etc.)
276 #define IGF_UPD_ISZ 0x0080 // some instruction sizes updated
277 #define IGF_PLACEHOLDER 0x0100 // this is a placeholder group, to be filled in later
278 #define IGF_EMIT_ADD 0x0200 // this is a block added by the emitter
279 // because the codegen block was too big. Also used for
280 // placeholder IGs that aren't also labels.
282 // Mask of IGF_* flags that should be propagated to new blocks when they are created.
283 // This allows prologs and epilogs to be any number of IGs, but still be
284 // automatically marked properly.
285 #if FEATURE_EH_FUNCLETS
287 #define IGF_PROPAGATE_MASK (IGF_EPILOG | IGF_FUNCLET_PROLOG | IGF_FUNCLET_EPILOG)
289 #define IGF_PROPAGATE_MASK (IGF_EPILOG | IGF_FUNCLET_PROLOG)
291 #else // FEATURE_EH_FUNCLETS
292 #define IGF_PROPAGATE_MASK (IGF_EPILOG)
293 #endif // FEATURE_EH_FUNCLETS
295 // Try to do better packing based on how large regMaskSmall is (8, 16, or 64 bits).
296 CLANG_FORMAT_COMMENT_ANCHOR;
297 #if REGMASK_BITS <= 32
300 BYTE* igData; // addr of instruction descriptors
301 insPlaceholderGroupData* igPhData; // when igFlags & IGF_PLACEHOLDER
304 #if EMIT_TRACK_STACK_DEPTH
305 unsigned igStkLvl; // stack level on entry
307 regMaskSmall igGCregs; // set of registers with live GC refs
308 unsigned char igInsCnt; // # of instructions in this group
310 #else // REGMASK_BITS
312 regMaskSmall igGCregs; // set of registers with live GC refs
315 BYTE* igData; // addr of instruction descriptors
316 insPlaceholderGroupData* igPhData; // when igFlags & IGF_PLACEHOLDER
319 #if EMIT_TRACK_STACK_DEPTH
320 unsigned igStkLvl; // stack level on entry
323 unsigned char igInsCnt; // # of instructions in this group
325 #endif // REGMASK_BITS
327 VARSET_VALRET_TP igGCvars() const
329 assert(igFlags & IGF_GC_VARS);
331 BYTE* ptr = (BYTE*)igData;
332 ptr -= sizeof(VARSET_TP);
334 return *(VARSET_TP*)ptr;
337 unsigned igByrefRegs() const
339 assert(igFlags & IGF_BYREF_REGS);
341 BYTE* ptr = (BYTE*)igData;
343 if (igFlags & IGF_GC_VARS)
345 ptr -= sizeof(VARSET_TP);
348 ptr -= sizeof(unsigned);
350 return *(unsigned*)ptr;
353 }; // end of struct insGroup
355 // For AMD64 the maximum prolog/epilog size supported on the OS is 256 bytes
356 // Since it is incorrect for us to be jumping across funclet prolog/epilogs
357 // we will use the following estimate as the maximum placeholder size.
359 #define MAX_PLACEHOLDER_IG_SIZE 256
361 #if defined(_MSC_VER) && defined(_TARGET_ARM_)
363 #endif // defined(_MSC_VER) && defined(_TARGET_ARM_)
365 /*****************************************************************************/
367 #define DEFINE_ID_OPS
368 #include "emitfmts.h"
373 LVA_STANDARD_ENCODING = 0,
374 LVA_LARGE_OFFSET = 1,
375 LVA_COMPILER_TEMP = 2,
379 struct emitLclVarAddr
382 void initLclVarAddr(int varNum, unsigned offset);
384 int lvaVarNum(); // Returns the variable to access. Note that it returns a negative number for compiler spill temps.
385 unsigned lvaOffset(); // returns the offset into the variable to access
387 // This struct should be 32 bits in size for the release build.
388 // We have this constraint because this type is used in a union
389 // with several other pointer sized types in the instrDesc struct.
392 unsigned _lvaVarNum : 15; // Usually the lvaVarNum
393 unsigned _lvaExtra : 15; // Usually the lvaOffset
394 unsigned _lvaTag : 2; // tag field to support larger varnums
399 iaut_ALIGNED_POINTER = 0x0,
400 iaut_DATA_OFFSET = 0x1,
401 iaut_INST_COUNT = 0x2,
402 iaut_UNUSED_TAG = 0x3,
410 friend class emitLocation;
411 friend class Compiler;
412 friend class CodeGen;
413 friend class CodeGenInterface;
416 /*************************************************************************
418 * Define the public entry points.
425 // There seem to be some cases where this is used without being initialized via CodeGen::inst_set_SV_var().
429 #ifdef _TARGET_XARCH_
431 SetUseVEXEncoding(false);
432 #endif // _TARGET_XARCH_
438 /************************************************************************/
439 /* Miscellaneous stuff */
440 /************************************************************************/
446 typedef GCInfo::varPtrDsc varPtrDsc;
447 typedef GCInfo::regPtrDsc regPtrDsc;
448 typedef GCInfo::CallDsc callDsc;
450 void* emitGetMem(size_t sz);
452 enum opSize : unsigned
461 #ifdef _TARGET_AMD64_
468 #define OPSIZE_INVALID ((opSize)0xffff)
470 static const emitter::opSize emitSizeEncode[];
471 static const emitAttr emitSizeDecode[];
473 static emitter::opSize emitEncodeSize(emitAttr size);
474 static emitAttr emitDecodeSize(emitter::opSize ensz);
476 // Currently, we only allow one IG for the prolog
477 bool emitIGisInProlog(const insGroup* ig)
479 return ig == emitPrologIG;
482 bool emitIGisInEpilog(const insGroup* ig)
484 return (ig != nullptr) && ((ig->igFlags & IGF_EPILOG) != 0);
487 #if FEATURE_EH_FUNCLETS
489 bool emitIGisInFuncletProlog(const insGroup* ig)
491 return (ig != nullptr) && ((ig->igFlags & IGF_FUNCLET_PROLOG) != 0);
494 bool emitIGisInFuncletEpilog(const insGroup* ig)
496 return (ig != nullptr) && ((ig->igFlags & IGF_FUNCLET_EPILOG) != 0);
499 #endif // FEATURE_EH_FUNCLETS
501 // If "ig" corresponds to the start of a basic block that is the
502 // target of a funclet return, generate GC information for it's start
503 // address "cp", as if it were the return address of a call.
504 void emitGenGCInfoIfFuncletRetTarget(insGroup* ig, BYTE* cp);
506 void emitRecomputeIGoffsets();
508 /************************************************************************/
509 /* The following describes a single instruction */
510 /************************************************************************/
512 enum insFormat : unsigned
514 #define IF_DEF(en, op1, op2) IF_##en,
515 #include "emitfmts.h"
520 #define AM_DISP_BITS ((sizeof(unsigned) * 8) - 2 * (REGNUM_BITS + 1) - 2)
521 #define AM_DISP_BIG_VAL (-(1 << (AM_DISP_BITS - 1)))
522 #define AM_DISP_MIN (-((1 << (AM_DISP_BITS - 1)) - 1))
523 #define AM_DISP_MAX (+((1 << (AM_DISP_BITS - 1)) - 1))
527 regNumber amBaseReg : REGNUM_BITS + 1;
528 regNumber amIndxReg : REGNUM_BITS + 1;
529 emitter::opSize amScale : 2;
530 int amDisp : AM_DISP_BITS;
533 #ifdef DEBUG // This information is used in DEBUG builds to display the method name for call instructions
537 struct instrDescDebugInfo
540 size_t idSize; // size of the instruction descriptor
541 unsigned idVarRefOffs; // IL offset for LclVar reference
542 size_t idMemCookie; // for display of method name (also used by switch table)
544 unsigned int idilStart; // instruction descriptor source information for PDB translation
546 bool idFinallyCall; // Branch instruction is a call to finally
547 bool idCatchRet; // Instruction is for a catch 'return'
548 CORINFO_SIG_INFO* idCallSig; // Used to report native call site signatures to the EE
554 unsigned insEncodeSetFlags(insFlags sf);
556 enum insSize : unsigned
560 ISZ_48BIT // pseudo-instruction for conditional branch with imm24 range,
561 // encoded as IT of condition followed by an unconditional branch
564 unsigned insEncodeShiftOpts(insOpts opt);
565 unsigned insEncodePUW_G0(insOpts opt, int imm);
566 unsigned insEncodePUW_H0(insOpts opt, int imm);
568 #endif // _TARGET_ARM_
575 // The assembly instruction
576 #if defined(_TARGET_XARCH_)
577 static_assert_no_msg(INS_count <= 1024);
578 instruction _idIns : 10;
579 #elif defined(_TARGET_ARM64_)
580 static_assert_no_msg(INS_count <= 512);
581 instruction _idIns : 9;
582 #else // !(defined(_TARGET_XARCH_) || defined(_TARGET_ARM64_))
583 static_assert_no_msg(INS_count <= 256);
584 instruction _idIns : 8;
585 #endif // !(defined(_TARGET_XARCH_) || defined(_TARGET_ARM64_))
586 // The format for the instruction
587 #if defined(_TARGET_XARCH_)
588 static_assert_no_msg(IF_COUNT <= 128);
589 insFormat _idInsFmt : 7;
591 static_assert_no_msg(IF_COUNT <= 256);
592 insFormat _idInsFmt : 8;
596 instruction idIns() const
600 void idIns(instruction ins)
602 assert((ins != INS_invalid) && (ins < INS_count));
606 insFormat idInsFmt() const
610 void idInsFmt(insFormat insFmt)
612 #if defined(_TARGET_ARM64_)
613 noway_assert(insFmt != IF_NONE); // Only the x86 emitter uses IF_NONE, it is invalid for ARM64 (and ARM32)
615 assert(insFmt < IF_COUNT);
619 void idSetRelocFlags(emitAttr attr)
621 _idCnsReloc = (EA_IS_CNS_RELOC(attr) ? 1 : 0);
622 _idDspReloc = (EA_IS_DSP_RELOC(attr) ? 1 : 0);
625 ////////////////////////////////////////////////////////////////////////
626 // Space taken up to here:
633 #if defined(_TARGET_XARCH_)
634 unsigned _idCodeSize : 4; // size of instruction in bytes
635 opSize _idOpSize : 3; // operand size: 0=1 , 1=2 , 2=4 , 3=8, 4=16, 5=32
636 // At this point we have fully consumed first DWORD so that next field
637 // doesn't cross a byte boundary.
638 #elif defined(_TARGET_ARM64_)
639 // Moved the definition of '_idOpSize' later so that we don't cross a 32-bit boundary when laying out bitfields
641 opSize _idOpSize : 2; // operand size: 0=1 , 1=2 , 2=4 , 3=8
644 // On Amd64, this is where the second DWORD begins
645 // On System V a call could return a struct in 2 registers. The instrDescCGCA struct below has member that
646 // stores the GC-ness of the second register.
647 // It is added to the instrDescCGCA and not here (the base struct) since it is not needed by all the
648 // instructions. This struct (instrDesc) is very carefully kept to be no more than 128 bytes. There is no more
649 // space to add members for keeping GC-ness of the second return registers. It will also bloat the base struct
650 // unnecessarily since the GC-ness of the second register is only needed for call instructions.
651 // The instrDescCGCA struct's member keeping the GC-ness of the first return register is _idcSecondRetRegGCType.
652 GCtype _idGCref : 2; // GCref operand? (value is a "GCtype")
654 // The idReg1 and idReg2 fields hold the first and second register
655 // operand(s), whenever these are present. Note that currently the
656 // size of these fields is 6 bits on all targets, and care needs to
657 // be taken to make sure all of these fields stay reasonably packed.
659 // Note that we use the _idReg1 and _idReg2 fields to hold
660 // the live gcrefReg mask for the call instructions on x86/x64
662 regNumber _idReg1 : REGNUM_BITS; // register num
664 regNumber _idReg2 : REGNUM_BITS;
666 ////////////////////////////////////////////////////////////////////////
667 // Space taken up to here:
672 CLANG_FORMAT_COMMENT_ANCHOR;
674 unsigned _idSmallDsc : 1; // is this a "small" descriptor?
675 unsigned _idLargeCns : 1; // does a large constant follow?
676 unsigned _idLargeDsp : 1; // does a large displacement follow?
677 unsigned _idLargeCall : 1; // large call descriptor used
679 unsigned _idBound : 1; // jump target / frame offset bound
680 unsigned _idCallRegPtr : 1; // IL indirect calls: addr in reg
681 unsigned _idCallAddr : 1; // IL indirect calls: can make a direct call to iiaAddr
682 unsigned _idNoGC : 1; // Some helpers don't get recorded in GC tables
684 #ifdef _TARGET_ARM64_
685 opSize _idOpSize : 3; // operand size: 0=1 , 1=2 , 2=4 , 3=8, 4=16
686 insOpts _idInsOpt : 6; // options for instructions
687 unsigned _idLclVar : 1; // access a local on stack
691 insSize _idInsSize : 2; // size of instruction: 16, 32 or 48 bits
692 insFlags _idInsFlags : 1; // will this instruction set the flags
693 unsigned _idLclVar : 1; // access a local on stack
694 unsigned _idLclFPBase : 1; // access a local on stack - SP based offset
695 insOpts _idInsOpt : 3; // options for Load/Store instructions
697 // For arm we have used 16 bits
698 #define ID_EXTRA_BITFIELD_BITS (16)
700 #elif defined(_TARGET_ARM64_)
701 // For Arm64, we have used 17 bits from the second DWORD.
702 #define ID_EXTRA_BITFIELD_BITS (17)
703 #elif defined(_TARGET_XARCH_)
704 // For xarch, we have used 14 bits from the second DWORD.
705 #define ID_EXTRA_BITFIELD_BITS (14)
707 #error Unsupported or unset target architecture
710 ////////////////////////////////////////////////////////////////////////
711 // Space taken up to here:
717 unsigned _idCnsReloc : 1; // LargeCns is an RVA and needs reloc tag
718 unsigned _idDspReloc : 1; // LargeDsp is an RVA and needs reloc tag
720 #define ID_EXTRA_RELOC_BITS (2)
722 ////////////////////////////////////////////////////////////////////////
723 // Space taken up to here:
728 CLANG_FORMAT_COMMENT_ANCHOR;
730 #define ID_EXTRA_BITS (ID_EXTRA_RELOC_BITS + ID_EXTRA_BITFIELD_BITS)
732 /* Use whatever bits are left over for small constants */
734 #define ID_BIT_SMALL_CNS (32 - ID_EXTRA_BITS)
735 #define ID_MIN_SMALL_CNS 0
736 #define ID_MAX_SMALL_CNS (int)((1 << ID_BIT_SMALL_CNS) - 1U)
738 ////////////////////////////////////////////////////////////////////////
739 // Small constant size:
745 unsigned _idSmallCns : ID_BIT_SMALL_CNS;
747 ////////////////////////////////////////////////////////////////////////
748 // Space taken up to here: 64 bits, all architectures, by design.
749 ////////////////////////////////////////////////////////////////////////
750 CLANG_FORMAT_COMMENT_ANCHOR;
754 instrDescDebugInfo* _idDebugOnlyInfo;
757 instrDescDebugInfo* idDebugOnlyInfo() const
759 return _idDebugOnlyInfo;
761 void idDebugOnlyInfo(instrDescDebugInfo* info)
763 _idDebugOnlyInfo = info;
769 CLANG_FORMAT_COMMENT_ANCHOR;
772 // This is the end of the 'small' instrDesc which is the same on all
773 // platforms (except 64-bit DEBUG which is a little bigger).
775 // x86/amd64/arm/arm64: 64 bits
776 // DEBUG sizes (includes one pointer):
777 // x86: 2 DWORDs, 96 bits
778 // amd64: 4 DWORDs, 128 bits
779 // arm: 3 DWORDs, 96 bits
780 // arm64: 4 DWORDs, 128 bits
781 // There should no padding or alignment issues on any platform or
782 // configuration (including DEBUG which has 1 extra pointer).
786 If you add lots more fields that need to be cleared (such
787 as various flags), you might need to update the body of
788 emitter::emitAllocInstr() to clear them.
792 #define SMALL_IDSC_DEBUG_EXTRA (sizeof(void*))
794 #define SMALL_IDSC_DEBUG_EXTRA (0)
797 #define SMALL_IDSC_SIZE (8 + SMALL_IDSC_DEBUG_EXTRA)
802 // TODO-Cleanup: We should really add a DEBUG-only tag to this union so we can add asserts
803 // about reading what we think is here, to avoid unexpected corruption issues.
805 #ifndef _TARGET_ARM64_
806 emitLclVarAddr iiaLclVar;
808 BasicBlock* iiaBBlabel;
809 insGroup* iiaIGlabel;
811 emitAddrMode iiaAddrMode;
813 CORINFO_FIELD_HANDLE iiaFieldHnd; // iiaFieldHandle is also used to encode
814 // an offset into the JIT data constant area
815 bool iiaIsJitDataOffset() const;
816 int iiaGetJitDataOffset() const;
818 #ifdef _TARGET_ARMARCH_
820 // iiaEncodedInstrCount and its accessor functions are used to specify an instruction
821 // count for jumps, instead of using a label and multiple blocks. This is used in the
822 // prolog as well as for IF_LARGEJMP pseudo-branch instructions.
823 int iiaEncodedInstrCount;
825 bool iiaHasInstrCount() const
827 return (iiaEncodedInstrCount & iaut_MASK) == iaut_INST_COUNT;
829 int iiaGetInstrCount() const
831 assert(iiaHasInstrCount());
832 return (iiaEncodedInstrCount >> iaut_SHIFT);
834 void iiaSetInstrCount(int count)
836 assert(abs(count) < 10);
837 iiaEncodedInstrCount = (count << iaut_SHIFT) | iaut_INST_COUNT;
842 #ifdef _TARGET_ARM64_
843 // For 64-bit architecture this 32-bit structure can pack with these unsigned bit fields
844 emitLclVarAddr iiaLclVar;
845 unsigned _idReg3Scaled : 1; // Reg3 is scaled by idOpSize bits
846 GCtype _idGCref2 : 2;
848 regNumber _idReg3 : REGNUM_BITS;
849 regNumber _idReg4 : REGNUM_BITS;
851 #elif defined(_TARGET_XARCH_)
854 regNumber _idReg3 : REGNUM_BITS;
855 regNumber _idReg4 : REGNUM_BITS;
857 #endif // defined(_TARGET_XARCH_)
861 /* Trivial wrappers to return properly typed enums */
863 bool idIsSmallDsc() const
865 return (_idSmallDsc != 0);
867 void idSetIsSmallDsc()
872 #if defined(_TARGET_XARCH_)
874 unsigned idCodeSize() const
878 void idCodeSize(unsigned sz)
881 assert(sz == _idCodeSize);
884 #elif defined(_TARGET_ARM64_)
885 unsigned idCodeSize() const
893 // b<cond> + b<uncond>
897 if (isVectorRegister(idReg1()))
915 #elif defined(_TARGET_ARM_)
917 bool idInstrIsT1() const
919 return (_idInsSize == ISZ_16BIT);
921 unsigned idCodeSize() const
923 unsigned result = (_idInsSize == ISZ_16BIT) ? 2 : (_idInsSize == ISZ_32BIT) ? 4 : 6;
926 insSize idInsSize() const
930 void idInsSize(insSize isz)
933 assert(isz == _idInsSize);
935 insFlags idInsFlags() const
939 void idInsFlags(insFlags sf)
942 assert(sf == _idInsFlags);
944 #endif // _TARGET_ARM_
948 return emitDecodeSize(_idOpSize);
950 void idOpSize(emitAttr opsz)
952 _idOpSize = emitEncodeSize(opsz);
955 GCtype idGCref() const
957 return (GCtype)_idGCref;
959 void idGCref(GCtype gctype)
964 regNumber idReg1() const
968 void idReg1(regNumber reg)
971 assert(reg == _idReg1);
974 #ifdef _TARGET_ARM64_
975 GCtype idGCrefReg2() const
977 assert(!idIsSmallDsc());
978 return (GCtype)idAddr()->_idGCref2;
980 void idGCrefReg2(GCtype gctype)
982 assert(!idIsSmallDsc());
983 idAddr()->_idGCref2 = gctype;
985 #endif // _TARGET_ARM64_
987 regNumber idReg2() const
991 void idReg2(regNumber reg)
994 assert(reg == _idReg2);
997 #if defined(_TARGET_XARCH_)
998 regNumber idReg3() const
1000 assert(!idIsSmallDsc());
1001 return idAddr()->_idReg3;
1003 void idReg3(regNumber reg)
1005 assert(!idIsSmallDsc());
1006 idAddr()->_idReg3 = reg;
1007 assert(reg == idAddr()->_idReg3);
1009 regNumber idReg4() const
1011 assert(!idIsSmallDsc());
1012 return idAddr()->_idReg4;
1014 void idReg4(regNumber reg)
1016 assert(!idIsSmallDsc());
1017 idAddr()->_idReg4 = reg;
1018 assert(reg == idAddr()->_idReg4);
1020 #endif // defined(_TARGET_XARCH_)
1021 #ifdef _TARGET_ARMARCH_
1022 insOpts idInsOpt() const
1024 return (insOpts)_idInsOpt;
1026 void idInsOpt(insOpts opt)
1029 assert(opt == _idInsOpt);
1032 regNumber idReg3() const
1034 assert(!idIsSmallDsc());
1035 return idAddr()->_idReg3;
1037 void idReg3(regNumber reg)
1039 assert(!idIsSmallDsc());
1040 idAddr()->_idReg3 = reg;
1041 assert(reg == idAddr()->_idReg3);
1043 regNumber idReg4() const
1045 assert(!idIsSmallDsc());
1046 return idAddr()->_idReg4;
1048 void idReg4(regNumber reg)
1050 assert(!idIsSmallDsc());
1051 idAddr()->_idReg4 = reg;
1052 assert(reg == idAddr()->_idReg4);
1054 #ifdef _TARGET_ARM64_
1055 bool idReg3Scaled() const
1057 assert(!idIsSmallDsc());
1058 return (idAddr()->_idReg3Scaled == 1);
1060 void idReg3Scaled(bool val)
1062 assert(!idIsSmallDsc());
1063 idAddr()->_idReg3Scaled = val ? 1 : 0;
1065 #endif // _TARGET_ARM64_
1067 #endif // _TARGET_ARMARCH_
1069 inline static bool fitsInSmallCns(ssize_t val)
1071 return ((val >= ID_MIN_SMALL_CNS) && (val <= ID_MAX_SMALL_CNS));
1074 bool idIsLargeCns() const
1076 return _idLargeCns != 0;
1078 void idSetIsLargeCns()
1083 bool idIsLargeDsp() const
1085 return _idLargeDsp != 0;
1087 void idSetIsLargeDsp()
1091 void idSetIsSmallDsp()
1096 bool idIsLargeCall() const
1098 return _idLargeCall != 0;
1100 void idSetIsLargeCall()
1105 bool idIsBound() const
1107 return _idBound != 0;
1114 bool idIsCallRegPtr() const
1116 return _idCallRegPtr != 0;
1118 void idSetIsCallRegPtr()
1123 bool idIsCallAddr() const
1125 return _idCallAddr != 0;
1127 void idSetIsCallAddr()
1132 // Only call instructions that call helper functions may be marked as "IsNoGC", indicating
1133 // that a thread executing such a call cannot be stopped for GC. Thus, in partially-interruptible
1134 // code, it is not necessary to generate GC info for a call so labeled.
1135 bool idIsNoGC() const
1137 return _idNoGC != 0;
1139 void idSetIsNoGC(bool val)
1144 #ifdef _TARGET_ARMARCH_
1145 bool idIsLclVar() const
1147 return _idLclVar != 0;
1149 void idSetIsLclVar()
1153 #endif // _TARGET_ARMARCH_
1155 #if defined(_TARGET_ARM_)
1156 bool idIsLclFPBase() const
1158 return _idLclFPBase != 0;
1160 void idSetIsLclFPBase()
1164 #endif // defined(_TARGET_ARM_)
1166 bool idIsCnsReloc() const
1168 return _idCnsReloc != 0;
1170 void idSetIsCnsReloc()
1175 bool idIsDspReloc() const
1177 return _idDspReloc != 0;
1179 void idSetIsDspReloc(bool val = true)
1185 return idIsDspReloc() || idIsCnsReloc();
1188 unsigned idSmallCns() const
1192 void idSmallCns(size_t value)
1194 assert(fitsInSmallCns(value));
1195 _idSmallCns = value;
1198 inline const idAddrUnion* idAddr() const
1200 assert(!idIsSmallDsc());
1201 return &this->_idAddrUnion;
1204 inline idAddrUnion* idAddr()
1206 assert(!idIsSmallDsc());
1207 return &this->_idAddrUnion;
1209 }; // End of struct instrDesc
1211 void dispIns(instrDesc* id);
1213 void appendToCurIG(instrDesc* id);
1215 /********************************************************************************************/
1217 struct instrDescJmp : instrDesc
1219 instrDescJmp* idjNext; // next jump in the group/method
1220 insGroup* idjIG; // containing group
1223 BYTE* idjAddr; // address of jump ins (for patching)
1226 unsigned idjOffs : 30; // Before jump emission, this is the byte offset within IG of the jump instruction.
1227 // After emission, for forward jumps, this is the target offset -- in bytes from the
1228 // beginning of the function -- of the target instruction of the jump, used to
1229 // determine if this jump needs to be patched.
1230 unsigned idjShort : 1; // is the jump known to be a short one?
1231 unsigned idjKeepLong : 1; // should the jump be kept long? (used for
1232 // hot to cold and cold to hot jumps)
1235 #if !defined(_TARGET_ARM64_) // This shouldn't be needed for ARM32, either, but I don't want to touch the ARM32 JIT.
1236 struct instrDescLbl : instrDescJmp
1238 emitLclVarAddr dstLclVar;
1240 #endif // !_TARGET_ARM64_
1242 struct instrDescCns : instrDesc // large const
1247 struct instrDescDsp : instrDesc // large displacement
1252 struct instrDescCnsDsp : instrDesc // large cons + disp
1258 struct instrDescAmd : instrDesc // large addrmode disp
1263 struct instrDescCnsAmd : instrDesc // large cons + addrmode disp
1269 struct instrDescCGCA : instrDesc // call with ...
1271 VARSET_TP idcGCvars; // ... updated GC vars or
1272 ssize_t idcDisp; // ... big addrmode disp
1273 regMaskTP idcGcrefRegs; // ... gcref registers
1274 regMaskTP idcByrefRegs; // ... byref registers
1275 unsigned idcArgCnt; // ... lots of args or (<0 ==> caller pops args)
1277 #if MULTIREG_HAS_SECOND_GC_RET
1278 // This method handle the GC-ness of the second register in a 2 register returned struct on System V.
1279 GCtype idSecondGCref() const
1281 return (GCtype)_idcSecondRetRegGCType;
1283 void idSecondGCref(GCtype gctype)
1285 _idcSecondRetRegGCType = gctype;
1289 // This member stores the GC-ness of the second register in a 2 register returned struct on System V.
1290 // It is added to the call struct since it is not needed by the base instrDesc struct, which keeps GC-ness
1291 // of the first register for the instCall nodes.
1292 // The base instrDesc is very carefully kept to be no more than 128 bytes. There is no more space to add members
1293 // for keeping GC-ness of the second return registers. It will also bloat the base struct unnecessarily
1294 // since the GC-ness of the second register is only needed for call instructions.
1295 // The base struct's member keeping the GC-ness of the first return register is _idGCref.
1296 GCtype _idcSecondRetRegGCType : 2; // ... GC type for the second return register.
1297 #endif // MULTIREG_HAS_SECOND_GC_RET
1300 struct instrDescArmFP : instrDesc
1307 insUpdateModes emitInsUpdateMode(instruction ins);
1308 insFormat emitInsModeFormat(instruction ins, insFormat base);
1310 static const BYTE emitInsModeFmtTab[];
1312 static const unsigned emitInsModeFmtCnt;
1315 size_t emitGetInstrDescSize(const instrDesc* id);
1316 size_t emitGetInstrDescSizeSC(const instrDesc* id);
1318 ssize_t emitGetInsCns(instrDesc* id);
1319 ssize_t emitGetInsDsp(instrDesc* id);
1320 ssize_t emitGetInsAmd(instrDesc* id);
1321 ssize_t emitGetInsCnsDsp(instrDesc* id, ssize_t* dspPtr);
1322 ssize_t emitGetInsSC(instrDesc* id);
1323 ssize_t emitGetInsCIdisp(instrDesc* id);
1324 unsigned emitGetInsCIargs(instrDesc* id);
1326 // Return the argument count for a direct call "id".
1327 int emitGetInsCDinfo(instrDesc* id);
1329 unsigned emitInsCount;
1331 /************************************************************************/
1332 /* A few routines used for debug display purposes */
1333 /************************************************************************/
1335 #if defined(DEBUG) || EMITTER_STATS
1337 static const char* emitIfName(unsigned f);
1339 #endif // defined(DEBUG) || EMITTER_STATS
1343 unsigned emitVarRefOffs;
1345 const char* emitRegName(regNumber reg, emitAttr size = EA_PTRSIZE, bool varName = true);
1346 const char* emitFloatRegName(regNumber reg, emitAttr size = EA_PTRSIZE, bool varName = true);
1348 const char* emitFldName(CORINFO_FIELD_HANDLE fieldVal);
1349 const char* emitFncName(CORINFO_METHOD_HANDLE callVal);
1351 void emitDispIGflags(unsigned flags);
1352 void emitDispIG(insGroup* ig, insGroup* igPrev = nullptr, bool verbose = false);
1353 void emitDispIGlist(bool verbose = false);
1354 void emitDispGCinfo();
1355 void emitDispClsVar(CORINFO_FIELD_HANDLE fldHnd, ssize_t offs, bool reloc = false);
1356 void emitDispFrameRef(int varx, int disp, int offs, bool asmfm);
1357 void emitDispInsOffs(unsigned offs, bool doffs);
1358 void emitDispInsHex(BYTE* code, size_t sz);
1361 #define emitVarRefOffs 0
1364 /************************************************************************/
1365 /* Method prolog and epilog */
1366 /************************************************************************/
1368 unsigned emitPrologEndPos;
1370 unsigned emitEpilogCnt;
1371 UNATIVE_OFFSET emitEpilogSize;
1373 #ifdef _TARGET_XARCH_
1375 void emitStartExitSeq(); // Mark the start of the "return" sequence
1376 emitLocation emitExitSeqBegLoc;
1377 UNATIVE_OFFSET emitExitSeqSize; // minimum size of any return sequence - the 'ret' after the epilog
1379 #endif // _TARGET_XARCH_
1381 insGroup* emitPlaceholderList; // per method placeholder list - head
1382 insGroup* emitPlaceholderLast; // per method placeholder list - tail
1384 #ifdef JIT32_GCENCODER
1386 // The x86 GC encoder needs to iterate over a list of epilogs to generate a table of
1387 // epilog offsets. Epilogs always start at the beginning of an IG, so save the first
1388 // IG of the epilog, and use it to find the epilog offset at the end of code generation.
1394 EpilogList() : elNext(nullptr), elLoc()
1399 EpilogList* emitEpilogList; // per method epilog list - head
1400 EpilogList* emitEpilogLast; // per method epilog list - tail
1403 void emitStartEpilog();
1405 bool emitHasEpilogEnd();
1407 size_t emitGenEpilogLst(size_t (*fp)(void*, unsigned), void* cp);
1409 #endif // JIT32_GCENCODER
1411 void emitBegPrologEpilog(insGroup* igPh);
1412 void emitEndPrologEpilog();
1414 void emitBegFnEpilog(insGroup* igPh);
1415 void emitEndFnEpilog();
1417 #if FEATURE_EH_FUNCLETS
1419 void emitBegFuncletProlog(insGroup* igPh);
1420 void emitEndFuncletProlog();
1422 void emitBegFuncletEpilog(insGroup* igPh);
1423 void emitEndFuncletEpilog();
1425 #endif // FEATURE_EH_FUNCLETS
1427 /************************************************************************/
1428 /* Members and methods used in PDB translation */
1429 /************************************************************************/
1431 #ifdef TRANSLATE_PDB
1433 inline void SetIDSource(instrDesc* pID);
1434 void MapCode(int ilOffset, BYTE* imgDest);
1435 void MapFunc(int imgOff,
1442 OptJit::LclVarDsc* lvaTable,
1446 int emitInstrDescILBase; // code offset of IL that produced this instruction desctriptor
1447 int emitInstrDescILBase; // code offset of IL that produced this instruction desctriptor
1448 static AddrMap* emitPDBOffsetTable; // translation table for mapping IL addresses to native addresses
1449 static LocalMap* emitPDBLocalTable; // local symbol translation table
1450 static bool emitIsPDBEnabled; // flag to disable PDB translation code when a PDB is not found
1451 static BYTE* emitILBaseOfCode; // start of IL .text section
1452 static BYTE* emitILMethodBase; // beginning of IL method (start of header)
1453 static BYTE* emitILMethodStart; // beginning of IL method code (right after the header)
1454 static BYTE* emitImgBaseOfCode; // start of the image .text section
1458 /************************************************************************/
1459 /* Methods to record a code position and later convert to offset */
1460 /************************************************************************/
1462 unsigned emitFindInsNum(insGroup* ig, instrDesc* id);
1463 UNATIVE_OFFSET emitFindOffset(insGroup* ig, unsigned insNum);
1465 /************************************************************************/
1466 /* Members and methods used to issue (encode) instructions. */
1467 /************************************************************************/
1470 // If we have started issuing instructions from the list of instrDesc, this is set
1474 BYTE* emitCodeBlock; // Hot code block
1475 BYTE* emitColdCodeBlock; // Cold code block
1476 BYTE* emitConsBlock; // Read-only (constant) data block
1478 UNATIVE_OFFSET emitTotalHotCodeSize;
1479 UNATIVE_OFFSET emitTotalColdCodeSize;
1481 UNATIVE_OFFSET emitCurCodeOffs(BYTE* dst)
1484 if ((dst >= emitCodeBlock) && (dst <= (emitCodeBlock + emitTotalHotCodeSize)))
1486 distance = (dst - emitCodeBlock);
1490 assert(emitFirstColdIG);
1491 assert(emitColdCodeBlock);
1492 assert((dst >= emitColdCodeBlock) && (dst <= (emitColdCodeBlock + emitTotalColdCodeSize)));
1494 distance = (dst - emitColdCodeBlock + emitTotalHotCodeSize);
1496 noway_assert((UNATIVE_OFFSET)distance == distance);
1497 return (UNATIVE_OFFSET)distance;
1500 BYTE* emitOffsetToPtr(UNATIVE_OFFSET offset)
1502 if (offset < emitTotalHotCodeSize)
1504 return emitCodeBlock + offset;
1508 assert(offset < (emitTotalHotCodeSize + emitTotalColdCodeSize));
1510 return emitColdCodeBlock + (offset - emitTotalHotCodeSize);
1514 BYTE* emitDataOffsetToPtr(UNATIVE_OFFSET offset)
1516 assert(offset < emitDataSize());
1517 return emitConsBlock + offset;
1520 bool emitJumpCrossHotColdBoundary(size_t srcOffset, size_t dstOffset)
1522 if (emitTotalColdCodeSize == 0)
1527 assert(srcOffset < (emitTotalHotCodeSize + emitTotalColdCodeSize));
1528 assert(dstOffset < (emitTotalHotCodeSize + emitTotalColdCodeSize));
1530 return ((srcOffset < emitTotalHotCodeSize) != (dstOffset < emitTotalHotCodeSize));
1533 unsigned char emitOutputByte(BYTE* dst, ssize_t val);
1534 unsigned char emitOutputWord(BYTE* dst, ssize_t val);
1535 unsigned char emitOutputLong(BYTE* dst, ssize_t val);
1536 unsigned char emitOutputSizeT(BYTE* dst, ssize_t val);
1538 #if defined(_TARGET_X86_)
1539 unsigned char emitOutputByte(BYTE* dst, size_t val);
1540 unsigned char emitOutputWord(BYTE* dst, size_t val);
1541 unsigned char emitOutputLong(BYTE* dst, size_t val);
1542 unsigned char emitOutputSizeT(BYTE* dst, size_t val);
1544 unsigned char emitOutputByte(BYTE* dst, unsigned __int64 val);
1545 unsigned char emitOutputWord(BYTE* dst, unsigned __int64 val);
1546 unsigned char emitOutputLong(BYTE* dst, unsigned __int64 val);
1547 unsigned char emitOutputSizeT(BYTE* dst, unsigned __int64 val);
1548 #endif // defined(_TARGET_X86_)
1550 size_t emitIssue1Instr(insGroup* ig, instrDesc* id, BYTE** dp);
1551 size_t emitOutputInstr(insGroup* ig, instrDesc* id, BYTE** dp);
1553 bool emitHasFramePtr;
1555 #ifdef PSEUDORANDOM_NOP_INSERTION
1556 bool emitInInstrumentation;
1557 #endif // PSEUDORANDOM_NOP_INSERTION
1559 unsigned emitMaxTmpSize;
1562 bool emitChkAlign; // perform some alignment checks
1565 insGroup* emitCurIG;
1567 void emitSetShortJump(instrDescJmp* id);
1568 void emitSetMediumJump(instrDescJmp* id);
1569 UNATIVE_OFFSET emitSizeOfJump(instrDescJmp* jmp);
1570 UNATIVE_OFFSET emitInstCodeSz(instrDesc* id);
1571 CORINFO_FIELD_HANDLE emitAnyConst(const void* cnsAddr, unsigned cnsSize, bool dblAlign);
1572 CORINFO_FIELD_HANDLE emitFltOrDblConst(double constValue, emitAttr attr);
1573 regNumber emitInsBinary(instruction ins, emitAttr attr, GenTree* dst, GenTree* src);
1574 regNumber emitInsTernary(instruction ins, emitAttr attr, GenTree* dst, GenTree* src1, GenTree* src2);
1575 void emitInsLoadInd(instruction ins, emitAttr attr, regNumber dstReg, GenTreeIndir* mem);
1576 void emitInsStoreInd(instruction ins, emitAttr attr, GenTreeStoreInd* mem);
1577 void emitInsStoreLcl(instruction ins, emitAttr attr, GenTreeLclVarCommon* varNode);
1578 insFormat emitMapFmtForIns(insFormat fmt, instruction ins);
1579 insFormat emitMapFmtAtoM(insFormat fmt);
1580 void emitHandleMemOp(GenTreeIndir* indir, instrDesc* id, insFormat fmt, instruction ins);
1581 void spillIntArgRegsToShadowSlots();
1583 /************************************************************************/
1584 /* The logic that creates and keeps track of instruction groups */
1585 /************************************************************************/
1587 #ifdef _TARGET_ARMARCH_
1588 // The only place where this limited instruction group size is a problem is
1589 // in the prolog, where we only support a single instruction group. We should really fix that.
1590 // ARM32 and ARM64 both can require a bigger prolog instruction group. One scenario is where
1591 // a function uses all the incoming integer and single-precision floating-point arguments,
1592 // and must store them all to the frame on entry. If the frame is very large, we generate
1593 // ugly code like "movw r10, 0x488; add r10, sp; vstr s0, [r10]" for each store, which
1594 // eats up our insGroup buffer.
1595 #define SC_IG_BUFFER_SIZE (100 * sizeof(instrDesc) + 14 * SMALL_IDSC_SIZE)
1596 #else // !_TARGET_ARMARCH_
1597 #define SC_IG_BUFFER_SIZE (50 * sizeof(instrDesc) + 14 * SMALL_IDSC_SIZE)
1598 #endif // !_TARGET_ARMARCH_
1600 size_t emitIGbuffSize;
1602 insGroup* emitIGlist; // first instruction group
1603 insGroup* emitIGlast; // last instruction group
1604 insGroup* emitIGthis; // issued instruction group
1606 insGroup* emitPrologIG; // prolog instruction group
1608 instrDescJmp* emitJumpList; // list of local jumps in method
1609 instrDescJmp* emitJumpLast; // last of local jumps in method
1610 void emitJumpDistBind(); // Bind all the local jumps in method
1612 void emitCheckFuncletBranch(instrDesc* jmp, insGroup* jmpIG); // Check for illegal branches between funclets
1614 bool emitFwdJumps; // forward jumps present?
1615 bool emitNoGCIG; // Are we generating IGF_NOGCINTERRUPT insGroups (for prologs, epilogs, etc.)
1616 bool emitForceNewIG; // If we generate an instruction, and not another instruction group, force create a new emitAdd
1617 // instruction group.
1619 BYTE* emitCurIGfreeNext; // next available byte in buffer
1620 BYTE* emitCurIGfreeEndp; // one byte past the last available byte in buffer
1621 BYTE* emitCurIGfreeBase; // first byte address
1623 unsigned emitCurIGinsCnt; // # of collected instr's in buffer
1624 unsigned emitCurIGsize; // estimated code size of current group in bytes
1625 UNATIVE_OFFSET emitCurCodeOffset; // current code offset within group
1626 UNATIVE_OFFSET emitTotalCodeSize; // bytes of code in entire method
1628 insGroup* emitFirstColdIG; // first cold instruction group
1630 void emitSetFirstColdIGCookie(void* bbEmitCookie)
1632 emitFirstColdIG = (insGroup*)bbEmitCookie;
1635 int emitOffsAdj; // current code offset adjustment
1637 instrDescJmp* emitCurIGjmpList; // list of jumps in current IG
1639 // emitPrev* and emitInit* are only used during code generation, not during
1640 // emission (issuing), to determine what GC values to store into an IG.
1641 // Note that only the Vars ones are actually used, apparently due to bugs
1642 // in that tracking. See emitSavIG(): the important use of ByrefRegs is commented
1643 // out, and GCrefRegs is always saved.
1645 VARSET_TP emitPrevGCrefVars;
1646 regMaskTP emitPrevGCrefRegs;
1647 regMaskTP emitPrevByrefRegs;
1649 VARSET_TP emitInitGCrefVars;
1650 regMaskTP emitInitGCrefRegs;
1651 regMaskTP emitInitByrefRegs;
1653 // If this is set, we ignore comparing emitPrev* and emitInit* to determine
1654 // whether to save GC state (to save space in the IG), and always save it.
1656 bool emitForceStoreGCState;
1658 // emitThis* variables are used during emission, to track GC updates
1659 // on a per-instruction basis. During code generation, per-instruction
1660 // tracking is done with variables gcVarPtrSetCur, gcRegGCrefSetCur,
1661 // and gcRegByrefSetCur. However, these are also used for a slightly
1662 // different purpose during code generation: to try to minimize the
1663 // amount of GC data stored to an IG, by only storing deltas from what
1664 // we expect to see at an IG boundary. Also, only emitThisGCrefVars is
1665 // really the only one used; the others seem to be calculated, but not
1666 // used due to bugs.
1668 VARSET_TP emitThisGCrefVars;
1669 regMaskTP emitThisGCrefRegs; // Current set of registers holding GC references
1670 regMaskTP emitThisByrefRegs; // Current set of registers holding BYREF references
1672 bool emitThisGCrefVset; // Is "emitThisGCrefVars" up to date?
1674 regNumber emitSyncThisObjReg; // where is "this" enregistered for synchronized methods?
1676 #if MULTIREG_HAS_SECOND_GC_RET
1677 void emitSetSecondRetRegGCType(instrDescCGCA* id, emitAttr secondRetSize);
1678 #endif // MULTIREG_HAS_SECOND_GC_RET
1680 static void emitEncodeCallGCregs(regMaskTP regs, instrDesc* id);
1681 static unsigned emitDecodeCallGCregs(instrDesc* id);
1683 unsigned emitNxtIGnum;
1685 // random nop insertion to break up nop sleds
1686 unsigned emitNextNop;
1687 bool emitRandomNops;
1688 void emitEnableRandomNops()
1690 emitRandomNops = true;
1692 void emitDisableRandomNops()
1694 emitRandomNops = false;
1697 insGroup* emitAllocAndLinkIG();
1698 insGroup* emitAllocIG();
1699 void emitInitIG(insGroup* ig);
1700 void emitInsertIGAfter(insGroup* insertAfterIG, insGroup* ig);
1704 #if !defined(JIT32_GCENCODER)
1705 void emitDisableGC();
1706 void emitEnableGC();
1707 #endif // !defined(JIT32_GCENCODER)
1709 void emitGenIG(insGroup* ig);
1710 insGroup* emitSavIG(bool emitAdd = false);
1711 void emitNxtIG(bool emitAdd = false);
1713 bool emitCurIGnonEmpty()
1715 return (emitCurIG && emitCurIGfreeNext > emitCurIGfreeBase);
1718 instrDesc* emitLastIns;
1721 void emitCheckIGoffsets();
1724 // Terminates any in-progress instruction group, making the current IG a new empty one.
1725 // Mark this instruction group as having a label; return the the new instruction group.
1726 // Sets the emitter's record of the currently live GC variables
1727 // and registers. The "isFinallyTarget" parameter indicates that the current location is
1728 // the start of a basic block that is returned to after a finally clause in non-exceptional execution.
1729 void* emitAddLabel(VARSET_VALARG_TP GCvars, regMaskTP gcrefRegs, regMaskTP byrefRegs, BOOL isFinallyTarget = FALSE);
1731 #ifdef _TARGET_ARMARCH_
1733 void emitGetInstrDescs(insGroup* ig, instrDesc** id, int* insCnt);
1735 bool emitGetLocationInfo(emitLocation* emitLoc, insGroup** pig, instrDesc** pid, int* pinsRemaining = NULL);
1737 bool emitNextID(insGroup*& ig, instrDesc*& id, int& insRemaining);
1739 typedef void (*emitProcessInstrFunc_t)(instrDesc* id, void* context);
1741 void emitWalkIDs(emitLocation* locFrom, emitProcessInstrFunc_t processFunc, void* context);
1743 static void emitGenerateUnwindNop(instrDesc* id, void* context);
1745 #endif // _TARGET_ARMARCH_
1748 void emitMarkStackLvl(unsigned stackLevel);
1751 int emitNextRandomNop();
1753 void* emitAllocInstr(size_t sz, emitAttr attr);
1755 instrDesc* emitAllocInstr(emitAttr attr)
1757 return (instrDesc*)emitAllocInstr(sizeof(instrDesc), attr);
1760 instrDescJmp* emitAllocInstrJmp()
1762 return (instrDescJmp*)emitAllocInstr(sizeof(instrDescJmp), EA_1BYTE);
1765 #if !defined(_TARGET_ARM64_)
1766 instrDescLbl* emitAllocInstrLbl()
1768 return (instrDescLbl*)emitAllocInstr(sizeof(instrDescLbl), EA_4BYTE);
1770 #endif // !_TARGET_ARM64_
1772 instrDescCns* emitAllocInstrCns(emitAttr attr)
1774 return (instrDescCns*)emitAllocInstr(sizeof(instrDescCns), attr);
1776 instrDescCns* emitAllocInstrCns(emitAttr attr, int cns)
1778 instrDescCns* result = (instrDescCns*)emitAllocInstr(sizeof(instrDescCns), attr);
1779 result->idSetIsLargeCns();
1780 result->idcCnsVal = cns;
1784 instrDescDsp* emitAllocInstrDsp(emitAttr attr)
1786 return (instrDescDsp*)emitAllocInstr(sizeof(instrDescDsp), attr);
1789 instrDescCnsDsp* emitAllocInstrCnsDsp(emitAttr attr)
1791 return (instrDescCnsDsp*)emitAllocInstr(sizeof(instrDescCnsDsp), attr);
1794 instrDescAmd* emitAllocInstrAmd(emitAttr attr)
1796 return (instrDescAmd*)emitAllocInstr(sizeof(instrDescAmd), attr);
1799 instrDescCnsAmd* emitAllocInstrCnsAmd(emitAttr attr)
1801 return (instrDescCnsAmd*)emitAllocInstr(sizeof(instrDescCnsAmd), attr);
1804 instrDescCGCA* emitAllocInstrCGCA(emitAttr attr)
1806 return (instrDescCGCA*)emitAllocInstr(sizeof(instrDescCGCA), attr);
1809 instrDesc* emitNewInstrSmall(emitAttr attr);
1810 instrDesc* emitNewInstr(emitAttr attr = EA_4BYTE);
1811 instrDesc* emitNewInstrSC(emitAttr attr, ssize_t cns);
1812 instrDesc* emitNewInstrCns(emitAttr attr, ssize_t cns);
1813 instrDesc* emitNewInstrDsp(emitAttr attr, ssize_t dsp);
1814 instrDesc* emitNewInstrCnsDsp(emitAttr attr, ssize_t cns, int dsp);
1815 instrDescJmp* emitNewInstrJmp();
1817 #if !defined(_TARGET_ARM64_)
1818 instrDescLbl* emitNewInstrLbl();
1819 #endif // !_TARGET_ARM64_
1821 static const BYTE emitFmtToOps[];
1824 static const unsigned emitFmtCount;
1827 bool emitIsScnsInsDsc(instrDesc* id);
1829 size_t emitSizeOfInsDsc(instrDesc* id);
1831 /************************************************************************/
1832 /* The following keeps track of stack-based GC values */
1833 /************************************************************************/
1835 unsigned emitTrkVarCnt;
1836 int* emitGCrFrameOffsTab; // Offsets of tracked stack ptr vars (varTrkIndex -> stkOffs)
1838 unsigned emitGCrFrameOffsCnt; // Number of tracked stack ptr vars
1839 int emitGCrFrameOffsMin; // Min offset of a tracked stack ptr var
1840 int emitGCrFrameOffsMax; // Max offset of a tracked stack ptr var
1841 bool emitContTrkPtrLcls; // All lcl between emitGCrFrameOffsMin/Max are only tracked stack ptr vars
1842 varPtrDsc** emitGCrFrameLiveTab; // Cache of currently live varPtrs (stkOffs -> varPtrDsc)
1844 int emitArgFrameOffsMin;
1845 int emitArgFrameOffsMax;
1847 int emitLclFrameOffsMin;
1848 int emitLclFrameOffsMax;
1850 int emitSyncThisObjOffs; // what is the offset of "this" for synchronized methods?
1853 void emitSetFrameRangeGCRs(int offsLo, int offsHi);
1854 void emitSetFrameRangeLcls(int offsLo, int offsHi);
1855 void emitSetFrameRangeArgs(int offsLo, int offsHi);
1857 static instruction emitJumpKindToIns(emitJumpKind jumpKind);
1858 static emitJumpKind emitInsToJumpKind(instruction ins);
1859 static emitJumpKind emitReverseJumpKind(emitJumpKind jumpKind);
1862 static unsigned emitJumpKindCondCode(emitJumpKind jumpKind);
1866 void emitInsSanityCheck(instrDesc* id);
1869 #ifdef _TARGET_ARMARCH_
1870 // Returns true if instruction "id->idIns()" writes to a register that might be used to contain a GC
1871 // pointer. This exempts the SP and PC registers, and floating point registers. Memory access
1872 // instructions that pre- or post-increment their memory address registers are *not* considered to write
1873 // to GC registers, even if that memory address is a by-ref: such an instruction cannot change the GC
1874 // status of that register, since it must be a byref before and remains one after.
1876 // This may return false positives.
1877 bool emitInsMayWriteToGCReg(instrDesc* id);
1879 // Returns "true" if instruction "id->idIns()" writes to a LclVar stack location.
1880 bool emitInsWritesToLclVarStackLoc(instrDesc* id);
1882 // Returns true if the instruction may write to more than one register.
1883 bool emitInsMayWriteMultipleRegs(instrDesc* id);
1885 // Returns "true" if instruction "id->idIns()" writes to a LclVar stack slot pair.
1886 bool emitInsWritesToLclVarStackLocPair(instrDesc* id);
1887 #endif // _TARGET_ARMARCH_
1889 /************************************************************************/
1890 /* The following is used to distinguish helper vs non-helper calls */
1891 /************************************************************************/
1893 static bool emitNoGChelper(unsigned IHX);
1895 /************************************************************************/
1896 /* The following logic keeps track of live GC ref values */
1897 /************************************************************************/
1899 bool emitFullArgInfo; // full arg info (including non-ptr arg)?
1900 bool emitFullGCinfo; // full GC pointer maps?
1901 bool emitFullyInt; // fully interruptible code?
1903 #if EMIT_TRACK_STACK_DEPTH
1904 unsigned emitCntStackDepth; // 0 in prolog/epilog, One DWORD elsewhere
1905 unsigned emitMaxStackDepth; // actual computed max. stack depth
1908 /* Stack modelling wrt GC */
1910 bool emitSimpleStkUsed; // using the "simple" stack table?
1913 struct // if emitSimpleStkUsed==true
1915 #define BITS_IN_BYTE (8)
1916 #define MAX_SIMPLE_STK_DEPTH (BITS_IN_BYTE * sizeof(unsigned))
1918 unsigned emitSimpleStkMask; // bit per pushed dword (if it fits. Lowest bit <==> last pushed arg)
1919 unsigned emitSimpleByrefStkMask; // byref qualifier for emitSimpleStkMask
1922 struct // if emitSimpleStkUsed==false
1924 BYTE emitArgTrackLcl[16]; // small local table to avoid malloc
1925 BYTE* emitArgTrackTab; // base of the argument tracking stack
1926 BYTE* emitArgTrackTop; // top of the argument tracking stack
1927 USHORT emitGcArgTrackCnt; // count of pending arg records (stk-depth for frameless methods, gc ptrs on stk
1928 // for framed methods)
1932 unsigned emitCurStackLvl; // amount of bytes pushed on stack
1934 #if EMIT_TRACK_STACK_DEPTH
1935 /* Functions for stack tracking */
1937 void emitStackPush(BYTE* addr, GCtype gcType);
1939 void emitStackPushN(BYTE* addr, unsigned count);
1941 void emitStackPop(BYTE* addr, bool isCall, unsigned char callInstrSize, unsigned count = 1);
1943 void emitStackKillArgs(BYTE* addr, unsigned count, unsigned char callInstrSize);
1945 void emitRecordGCcall(BYTE* codePos, unsigned char callInstrSize);
1947 // Helpers for the above
1949 void emitStackPushLargeStk(BYTE* addr, GCtype gcType, unsigned count = 1);
1950 void emitStackPopLargeStk(BYTE* addr, bool isCall, unsigned char callInstrSize, unsigned count = 1);
1951 #endif // EMIT_TRACK_STACK_DEPTH
1953 /* Liveness of stack variables, and registers */
1955 void emitUpdateLiveGCvars(int offs, BYTE* addr, bool birth);
1956 void emitUpdateLiveGCvars(VARSET_VALARG_TP vars, BYTE* addr);
1957 void emitUpdateLiveGCregs(GCtype gcType, regMaskTP regs, BYTE* addr);
1960 const char* emitGetFrameReg();
1961 void emitDispRegSet(regMaskTP regs);
1962 void emitDispVarSet();
1965 void emitGCregLiveUpd(GCtype gcType, regNumber reg, BYTE* addr);
1966 void emitGCregLiveSet(GCtype gcType, regMaskTP mask, BYTE* addr, bool isThis);
1967 void emitGCregDeadUpdMask(regMaskTP, BYTE* addr);
1968 void emitGCregDeadUpd(regNumber reg, BYTE* addr);
1969 void emitGCregDeadSet(GCtype gcType, regMaskTP mask, BYTE* addr);
1971 void emitGCvarLiveUpd(int offs, int varNum, GCtype gcType, BYTE* addr);
1972 void emitGCvarLiveSet(int offs, GCtype gcType, BYTE* addr, ssize_t disp = -1);
1973 void emitGCvarDeadUpd(int offs, BYTE* addr);
1974 void emitGCvarDeadSet(int offs, BYTE* addr, ssize_t disp = -1);
1976 GCtype emitRegGCtype(regNumber reg);
1978 // We have a mixture of code emission methods, some of which return the size of the emitted instruction,
1979 // requiring the caller to add this to the current code pointer (dst += <call to emit code>), others of which
1980 // return the updated code pointer (dst = <call to emit code>). Sometimes we'd like to get the size of
1981 // the generated instruction for the latter style. This method accomplishes that --
1982 // "emitCodeWithInstructionSize(dst, <call to emitCode>, &instrSize)" will do the call, and set
1983 // "*instrSize" to the after-before code pointer difference. Returns the result of the call. (And
1984 // asserts that the instruction size fits in an unsigned char.)
1985 static BYTE* emitCodeWithInstructionSize(BYTE* codePtrBefore, BYTE* newCodePointer, unsigned char* instrSize);
1987 /************************************************************************/
1988 /* The following logic keeps track of initialized data sections */
1989 /************************************************************************/
1991 /* One of these is allocated for every blob of initialized data */
2002 dataSection* dsNext;
2003 UNATIVE_OFFSET dsSize;
2005 // variable-sized array used to store the constant data
2006 // or BasicBlock* array in the block cases.
2010 /* These describe the entire initialized/uninitialized data sections */
2014 dataSection* dsdList;
2015 dataSection* dsdLast;
2016 UNATIVE_OFFSET dsdOffs;
2019 dataSecDsc emitConsDsc;
2021 dataSection* emitDataSecCur;
2023 void emitOutputDataSec(dataSecDsc* sec, BYTE* dst);
2025 /************************************************************************/
2026 /* Handles to the current class and method. */
2027 /************************************************************************/
2029 COMP_HANDLE emitCmpHandle;
2031 /************************************************************************/
2032 /* Helpers for interface to EE */
2033 /************************************************************************/
2035 void emitRecordRelocation(void* location, /* IN */
2036 void* target, /* IN */
2037 WORD fRelocType, /* IN */
2038 WORD slotNum = 0, /* IN */
2039 INT32 addlDelta = 0); /* IN */
2042 void emitHandlePCRelativeMov32(void* location, /* IN */
2043 void* target); /* IN */
2046 void emitRecordCallSite(ULONG instrOffset, /* IN */
2047 CORINFO_SIG_INFO* callSig, /* IN */
2048 CORINFO_METHOD_HANDLE methodHandle); /* IN */
2051 // This is a scratch buffer used to minimize the number of sig info structs
2052 // we have to allocate for recordCallSite.
2053 CORINFO_SIG_INFO* emitScratchSigInfo;
2056 /************************************************************************/
2057 /* Logic to collect and display statistics */
2058 /************************************************************************/
2062 friend void emitterStats(FILE* fout);
2063 friend void emitterStaticStats(FILE* fout);
2065 static size_t emitSizeMethod;
2067 static unsigned emitTotalInsCnt;
2069 static unsigned emitTotalIGcnt; // total number of insGroup allocated
2070 static unsigned emitTotalPhIGcnt; // total number of insPlaceholderGroupData allocated
2071 static unsigned emitTotalIGicnt;
2072 static size_t emitTotalIGsize;
2073 static unsigned emitTotalIGmcnt; // total method count
2074 static unsigned emitTotalIGjmps;
2075 static unsigned emitTotalIGptrs;
2077 static size_t emitTotMemAlloc;
2079 static unsigned emitSmallDspCnt;
2080 static unsigned emitLargeDspCnt;
2082 static unsigned emitSmallCnsCnt;
2083 #define SMALL_CNS_TSZ 256
2084 static unsigned emitSmallCns[SMALL_CNS_TSZ];
2085 static unsigned emitLargeCnsCnt;
2087 static unsigned emitIFcounts[IF_COUNT];
2089 #endif // EMITTER_STATS
2091 /*************************************************************************
2093 * Define any target-dependent emitter members.
2096 #include "emitdef.h"
2098 // It would be better if this were a constructor, but that would entail revamping the allocation
2099 // infrastructure of the entire JIT...
2102 VarSetOps::AssignNoCopy(emitComp, emitPrevGCrefVars, VarSetOps::MakeEmpty(emitComp));
2103 VarSetOps::AssignNoCopy(emitComp, emitInitGCrefVars, VarSetOps::MakeEmpty(emitComp));
2104 VarSetOps::AssignNoCopy(emitComp, emitThisGCrefVars, VarSetOps::MakeEmpty(emitComp));
2108 /*****************************************************************************
2110 * Define any target-dependent inlines.
2113 #include "emitinl.h"
2115 inline void emitter::instrDesc::checkSizes()
2118 C_ASSERT(SMALL_IDSC_SIZE == (offsetof(instrDesc, _idDebugOnlyInfo) + sizeof(instrDescDebugInfo*)));
2120 C_ASSERT(SMALL_IDSC_SIZE == offsetof(instrDesc, _idAddrUnion));
2123 /*****************************************************************************
2125 * Returns true if the given instruction descriptor is a "small
2126 * constant" one (i.e. one of the descriptors that don't have all instrDesc
2127 * fields allocated).
2130 inline bool emitter::emitIsScnsInsDsc(instrDesc* id)
2132 return id->idIsSmallDsc();
2135 /*****************************************************************************
2137 * Given an instruction, return its "update mode" (RD/WR/RW).
2140 inline insUpdateModes emitter::emitInsUpdateMode(instruction ins)
2143 assert((unsigned)ins < emitInsModeFmtCnt);
2145 return (insUpdateModes)emitInsModeFmtTab[ins];
2148 /*****************************************************************************
2150 * Return the number of epilog blocks generated so far.
2153 inline unsigned emitter::emitGetEpilogCnt()
2155 return emitEpilogCnt;
2158 /*****************************************************************************
2160 * Return the current size of the specified data section.
2163 inline UNATIVE_OFFSET emitter::emitDataSize()
2165 return emitConsDsc.dsdOffs;
2168 /*****************************************************************************
2170 * Return a handle to the current position in the output stream. This can
2171 * be later converted to an actual code offset in bytes.
2174 inline void* emitter::emitCurBlock()
2179 /*****************************************************************************
2181 * The emitCurOffset() method returns a cookie that identifies the current
2182 * position in the instruction stream. Due to things like scheduling (and
2183 * the fact that the final size of some instructions cannot be known until
2184 * the end of code generation), we return a value with the instruction number
2185 * and its estimated offset to the caller.
2188 inline unsigned emitGetInsNumFromCodePos(unsigned codePos)
2190 return (codePos & 0xFFFF);
2193 inline unsigned emitGetInsOfsFromCodePos(unsigned codePos)
2195 return (codePos >> 16);
2198 inline unsigned emitter::emitCurOffset()
2200 unsigned codePos = emitCurIGinsCnt + (emitCurIGsize << 16);
2202 assert(emitGetInsOfsFromCodePos(codePos) == emitCurIGsize);
2203 assert(emitGetInsNumFromCodePos(codePos) == emitCurIGinsCnt);
2205 // printf("[IG=%02u;ID=%03u;OF=%04X] => %08X\n", emitCurIG->igNum, emitCurIGinsCnt, emitCurIGsize, codePos);
2210 extern const unsigned short emitTypeSizes[TYP_COUNT];
2213 inline emitAttr emitTypeSize(T type)
2215 assert(TypeGet(type) < TYP_COUNT);
2216 assert(emitTypeSizes[TypeGet(type)] > 0);
2217 return (emitAttr)emitTypeSizes[TypeGet(type)];
2220 extern const unsigned short emitTypeActSz[TYP_COUNT];
2223 inline emitAttr emitActualTypeSize(T type)
2225 assert(TypeGet(type) < TYP_COUNT);
2226 assert(emitTypeActSz[TypeGet(type)] > 0);
2227 return (emitAttr)emitTypeActSz[TypeGet(type)];
2230 /*****************************************************************************
2232 * Convert between an operand size in bytes and a smaller encoding used for
2233 * storage in instruction descriptors.
2236 /* static */ inline emitter::opSize emitter::emitEncodeSize(emitAttr size)
2238 assert(size == EA_1BYTE || size == EA_2BYTE || size == EA_4BYTE || size == EA_8BYTE || size == EA_16BYTE ||
2241 return emitSizeEncode[((int)size) - 1];
2244 /* static */ inline emitAttr emitter::emitDecodeSize(emitter::opSize ensz)
2246 assert(((unsigned)ensz) < OPSZ_COUNT);
2248 return emitSizeDecode[ensz];
2251 /*****************************************************************************
2253 * Little helpers to allocate various flavors of instructions.
2256 inline emitter::instrDesc* emitter::emitNewInstrSmall(emitAttr attr)
2260 // This is larger than the Tiny Descr
2261 id = (instrDesc*)emitAllocInstr(SMALL_IDSC_SIZE, attr);
2262 id->idSetIsSmallDsc();
2267 inline emitter::instrDesc* emitter::emitNewInstr(emitAttr attr)
2269 // This is larger than the Small Descr
2270 return emitAllocInstr(attr);
2273 inline emitter::instrDescJmp* emitter::emitNewInstrJmp()
2275 return emitAllocInstrJmp();
2278 #if !defined(_TARGET_ARM64_)
2279 inline emitter::instrDescLbl* emitter::emitNewInstrLbl()
2281 return emitAllocInstrLbl();
2283 #endif // !_TARGET_ARM64_
2285 inline emitter::instrDesc* emitter::emitNewInstrDsp(emitAttr attr, ssize_t dsp)
2289 instrDesc* id = emitAllocInstr(attr);
2299 instrDescDsp* id = emitAllocInstrDsp(attr);
2301 id->idSetIsLargeDsp();
2302 id->iddDspVal = dsp;
2312 /*****************************************************************************
2314 * Allocate an instruction descriptor for an instruction with a constant operand.
2315 * The instruction descriptor uses the idAddrUnion to save additional info
2316 * so the smallest size that this can be is sizeof(instrDesc).
2317 * Note that this very similar to emitter::emitNewInstrSC(), except it never
2318 * allocates a small descriptor.
2320 inline emitter::instrDesc* emitter::emitNewInstrCns(emitAttr attr, ssize_t cns)
2322 if (instrDesc::fitsInSmallCns(cns))
2324 instrDesc* id = emitAllocInstr(attr);
2326 id->idSmallCns(cns);
2330 if (cns - ID_MIN_SMALL_CNS >= SMALL_CNS_TSZ)
2331 emitSmallCns[SMALL_CNS_TSZ - 1]++;
2333 emitSmallCns[cns - ID_MIN_SMALL_CNS]++;
2340 instrDescCns* id = emitAllocInstrCns(attr);
2342 id->idSetIsLargeCns();
2343 id->idcCnsVal = cns;
2353 /*****************************************************************************
2355 * Get the instrDesc size, general purpose version
2359 inline size_t emitter::emitGetInstrDescSize(const instrDesc* id)
2361 if (id->idIsSmallDsc())
2363 return SMALL_IDSC_SIZE;
2366 if (id->idIsLargeCns())
2368 return sizeof(instrDescCns);
2371 return sizeof(instrDesc);
2374 /*****************************************************************************
2376 * Allocate an instruction descriptor for an instruction with a small integer
2377 * constant operand. This is the same as emitNewInstrCns() except that here
2378 * any constant that is small enough for instrDesc::fitsInSmallCns() only gets
2379 * allocated SMALL_IDSC_SIZE bytes (and is thus a small descriptor, whereas
2380 * emitNewInstrCns() always allocates at least sizeof(instrDesc).
2383 inline emitter::instrDesc* emitter::emitNewInstrSC(emitAttr attr, ssize_t cns)
2387 if (instrDesc::fitsInSmallCns(cns))
2389 id = (instrDesc*)emitAllocInstr(SMALL_IDSC_SIZE, attr);
2391 id->idSmallCns(cns);
2392 id->idSetIsSmallDsc();
2396 id = (instrDesc*)emitAllocInstr(sizeof(instrDescCns), attr);
2398 id->idSetIsLargeCns();
2399 ((instrDescCns*)id)->idcCnsVal = cns;
2405 /*****************************************************************************
2407 * Get the instrDesc size for something that contains a constant
2410 inline size_t emitter::emitGetInstrDescSizeSC(const instrDesc* id)
2412 if (id->idIsSmallDsc())
2414 return SMALL_IDSC_SIZE;
2416 else if (id->idIsLargeCns())
2418 return sizeof(instrDescCns);
2422 return sizeof(instrDesc);
2426 /*****************************************************************************
2428 * The following helpers should be used to access the various values that
2429 * get stored in different places within the instruction descriptor.
2432 inline ssize_t emitter::emitGetInsCns(instrDesc* id)
2434 return id->idIsLargeCns() ? ((instrDescCns*)id)->idcCnsVal : id->idSmallCns();
2437 inline ssize_t emitter::emitGetInsDsp(instrDesc* id)
2439 if (id->idIsLargeDsp())
2441 if (id->idIsLargeCns())
2443 return ((instrDescCnsDsp*)id)->iddcDspVal;
2445 return ((instrDescDsp*)id)->iddDspVal;
2450 inline ssize_t emitter::emitGetInsCnsDsp(instrDesc* id, ssize_t* dspPtr)
2452 if (id->idIsLargeCns())
2454 if (id->idIsLargeDsp())
2456 *dspPtr = ((instrDescCnsDsp*)id)->iddcDspVal;
2457 return ((instrDescCnsDsp*)id)->iddcCnsVal;
2462 return ((instrDescCns*)id)->idcCnsVal;
2467 if (id->idIsLargeDsp())
2469 *dspPtr = ((instrDescDsp*)id)->iddDspVal;
2470 return id->idSmallCns();
2475 return id->idSmallCns();
2480 /*****************************************************************************
2482 * Get hold of the argument count for an indirect call.
2485 inline unsigned emitter::emitGetInsCIargs(instrDesc* id)
2487 if (id->idIsLargeCall())
2489 return ((instrDescCGCA*)id)->idcArgCnt;
2493 assert(id->idIsLargeDsp() == false);
2494 assert(id->idIsLargeCns() == false);
2496 ssize_t cns = emitGetInsCns(id);
2497 assert((unsigned)cns == (size_t)cns);
2498 return (unsigned)cns;
2502 /*****************************************************************************
2504 * Returns true if the given register contains a live GC ref.
2507 inline GCtype emitter::emitRegGCtype(regNumber reg)
2509 assert(emitIssuing);
2511 if ((emitThisGCrefRegs & genRegMask(reg)) != 0)
2515 else if ((emitThisByrefRegs & genRegMask(reg)) != 0)
2527 #if EMIT_TRACK_STACK_DEPTH
2528 #define CHECK_STACK_DEPTH() assert((int)emitCurStackLvl >= 0)
2530 #define CHECK_STACK_DEPTH()
2535 /*****************************************************************************
2537 * Return true when a given code offset is properly aligned for the target
2540 inline bool IsCodeAligned(UNATIVE_OFFSET offset)
2542 return ((offset & (CODE_ALIGN - 1)) == 0);
2546 inline BYTE* emitter::emitCodeWithInstructionSize(BYTE* codePtrBefore, BYTE* newCodePointer, unsigned char* instrSize)
2548 // DLD: Perhaps this method should return the instruction size, and we should do dst += <that size>
2549 // as is done in other cases?
2550 assert(newCodePointer >= codePtrBefore);
2551 ClrSafeInt<unsigned char> callInstrSizeSafe = ClrSafeInt<unsigned char>(newCodePointer - codePtrBefore);
2552 assert(!callInstrSizeSafe.IsOverflow());
2553 *instrSize = callInstrSizeSafe.Value();
2554 return newCodePointer;
2557 /*****************************************************************************
2559 * Add a new IG to the current list, and get it ready to receive code.
2562 inline void emitter::emitNewIG()
2564 insGroup* ig = emitAllocAndLinkIG();
2566 /* It's linked in. Now, set it up to accept code */
2571 #if !defined(JIT32_GCENCODER)
2572 // Start a new instruction group that is not interruptable
2573 inline void emitter::emitDisableGC()
2577 if (emitCurIGnonEmpty())
2583 emitCurIG->igFlags |= IGF_NOGCINTERRUPT;
2587 // Start a new instruction group that is interruptable
2588 inline void emitter::emitEnableGC()
2592 // The next time an instruction needs to be generated, force a new instruction group.
2593 // It will be an emitAdd group in that case. Note that the next thing we see might be
2594 // a label, which will force a non-emitAdd group.
2596 // Note that we can't just create a new instruction group here, because we don't know
2597 // if there are going to be any instructions added to it, and we don't support empty
2598 // instruction groups.
2599 emitForceNewIG = true;
2601 #endif // !defined(JIT32_GCENCODER)
2603 /*****************************************************************************/
2605 /*****************************************************************************/