ARM64 Aes Crypto intrinsics implementation
[platform/upstream/coreclr.git] / src / jit / codegenlinear.h
1 // Licensed to the .NET Foundation under one or more agreements.
2 // The .NET Foundation licenses this file to you under the MIT license.
3 // See the LICENSE file in the project root for more information.
4
5 //
6 // This file contains the members of CodeGen that are defined and used
7 // only by the RyuJIT backend.  It is included by CodeGen.h in the
8 // definition of the CodeGen class.
9 //
10
11 #ifndef LEGACY_BACKEND // Not necessary (it's this way in the #include location), but helpful to IntelliSense
12
13 void genSetRegToConst(regNumber targetReg, var_types targetType, GenTree* tree);
14 void genCodeForTreeNode(GenTree* treeNode);
15 void genCodeForBinary(GenTree* treeNode);
16
17 #if defined(_TARGET_X86_)
18 void genCodeForLongUMod(GenTreeOp* node);
19 #endif // _TARGET_X86_
20
21 void genCodeForDivMod(GenTreeOp* treeNode);
22 void genCodeForMul(GenTreeOp* treeNode);
23 void genCodeForMulHi(GenTreeOp* treeNode);
24 void genLeaInstruction(GenTreeAddrMode* lea);
25 void genSetRegToCond(regNumber dstReg, GenTree* tree);
26
27 #if defined(_TARGET_ARMARCH_)
28 void genScaledAdd(emitAttr attr, regNumber targetReg, regNumber baseReg, regNumber indexReg, int scale);
29 #endif // _TARGET_ARMARCH_
30
31 #if defined(_TARGET_ARM_)
32 void genCodeForMulLong(GenTreeMultiRegOp* treeNode);
33 #endif // _TARGET_ARM_
34
35 #if !defined(_TARGET_64BIT_)
36 void genLongToIntCast(GenTree* treeNode);
37 #endif
38
39 void genIntToIntCast(GenTree* treeNode);
40 void genFloatToFloatCast(GenTree* treeNode);
41 void genFloatToIntCast(GenTree* treeNode);
42 void genIntToFloatCast(GenTree* treeNode);
43 void genCkfinite(GenTree* treeNode);
44 void genCodeForCompare(GenTreeOp* tree);
45 void genIntrinsic(GenTree* treeNode);
46 void genPutArgStk(GenTreePutArgStk* treeNode);
47 void genPutArgReg(GenTreeOp* tree);
48 #ifdef _TARGET_ARM_
49 void genPutArgSplit(GenTreePutArgSplit* treeNode);
50 #endif
51
52 #if defined(_TARGET_XARCH_)
53 unsigned getBaseVarForPutArgStk(GenTree* treeNode);
54 #endif // _TARGET_XARCH_
55
56 unsigned getFirstArgWithStackSlot();
57
58 void genCompareFloat(GenTree* treeNode);
59 void genCompareInt(GenTree* treeNode);
60
61 #ifdef FEATURE_SIMD
62 enum SIMDScalarMoveType
63 {
64     SMT_ZeroInitUpper,                  // zero initlaize target upper bits
65     SMT_ZeroInitUpper_SrcHasUpperZeros, // zero initialize target upper bits; source upper bits are known to be zero
66     SMT_PreserveUpper                   // preserve target upper bits
67 };
68
69 #ifdef _TARGET_ARM64_
70 insOpts genGetSimdInsOpt(bool is16B, var_types elementType);
71 #endif
72 instruction getOpForSIMDIntrinsic(SIMDIntrinsicID intrinsicId, var_types baseType, unsigned* ival = nullptr);
73 void genSIMDScalarMove(
74     var_types targetType, var_types type, regNumber target, regNumber src, SIMDScalarMoveType moveType);
75 void genSIMDZero(var_types targetType, var_types baseType, regNumber targetReg);
76 void genSIMDIntrinsicInit(GenTreeSIMD* simdNode);
77 void genSIMDIntrinsicInitN(GenTreeSIMD* simdNode);
78 void genSIMDIntrinsicInitArray(GenTreeSIMD* simdNode);
79 void genSIMDIntrinsicUnOp(GenTreeSIMD* simdNode);
80 void genSIMDIntrinsicBinOp(GenTreeSIMD* simdNode);
81 void genSIMDIntrinsicRelOp(GenTreeSIMD* simdNode);
82 void genSIMDIntrinsicDotProduct(GenTreeSIMD* simdNode);
83 void genSIMDIntrinsicSetItem(GenTreeSIMD* simdNode);
84 void genSIMDIntrinsicGetItem(GenTreeSIMD* simdNode);
85 void genSIMDIntrinsicShuffleSSE2(GenTreeSIMD* simdNode);
86 void genSIMDIntrinsicUpperSave(GenTreeSIMD* simdNode);
87 void genSIMDIntrinsicUpperRestore(GenTreeSIMD* simdNode);
88 void genSIMDLo64BitConvert(SIMDIntrinsicID intrinsicID,
89                            var_types       simdType,
90                            var_types       baseType,
91                            regNumber       tmpReg,
92                            regNumber       tmpIntReg,
93                            regNumber       targetReg);
94 void genSIMDIntrinsic32BitConvert(GenTreeSIMD* simdNode);
95 void genSIMDIntrinsic64BitConvert(GenTreeSIMD* simdNode);
96 void genSIMDIntrinsicNarrow(GenTreeSIMD* simdNode);
97 void genSIMDExtractUpperHalf(GenTreeSIMD* simdNode, regNumber srcReg, regNumber tgtReg);
98 void genSIMDIntrinsicWiden(GenTreeSIMD* simdNode);
99 void genSIMDIntrinsic(GenTreeSIMD* simdNode);
100 void genSIMDCheck(GenTree* treeNode);
101
102 // TYP_SIMD12 (i.e Vector3 of size 12 bytes) is not a hardware supported size and requires
103 // two reads/writes on 64-bit targets. These routines abstract reading/writing of Vector3
104 // values through an indirection. Note that Vector3 locals allocated on stack would have
105 // their size rounded to TARGET_POINTER_SIZE (which is 8 bytes on 64-bit targets) and hence
106 // Vector3 locals could be treated as TYP_SIMD16 while reading/writing.
107 void genStoreIndTypeSIMD12(GenTree* treeNode);
108 void genLoadIndTypeSIMD12(GenTree* treeNode);
109 void genStoreLclTypeSIMD12(GenTree* treeNode);
110 void genLoadLclTypeSIMD12(GenTree* treeNode);
111 #ifdef _TARGET_X86_
112 void genStoreSIMD12ToStack(regNumber operandReg, regNumber tmpReg);
113 void genPutArgStkSIMD12(GenTree* treeNode);
114 #endif // _TARGET_X86_
115 #endif // FEATURE_SIMD
116
117 #ifdef FEATURE_HW_INTRINSICS
118 void genHWIntrinsic(GenTreeHWIntrinsic* node);
119 #if defined(_TARGET_XARCH_)
120 void genHWIntrinsic_R_R_RM(GenTreeHWIntrinsic* node, instruction ins);
121 void genHWIntrinsic_R_R_RM_I(GenTreeHWIntrinsic* node, instruction ins);
122 void genSSEIntrinsic(GenTreeHWIntrinsic* node);
123 void genSSE2Intrinsic(GenTreeHWIntrinsic* node);
124 void genSSE3Intrinsic(GenTreeHWIntrinsic* node);
125 void genSSSE3Intrinsic(GenTreeHWIntrinsic* node);
126 void genSSE41Intrinsic(GenTreeHWIntrinsic* node);
127 void genSSE42Intrinsic(GenTreeHWIntrinsic* node);
128 void genAVXIntrinsic(GenTreeHWIntrinsic* node);
129 void genAVX2Intrinsic(GenTreeHWIntrinsic* node);
130 void genAESIntrinsic(GenTreeHWIntrinsic* node);
131 void genBMI1Intrinsic(GenTreeHWIntrinsic* node);
132 void genBMI2Intrinsic(GenTreeHWIntrinsic* node);
133 void genFMAIntrinsic(GenTreeHWIntrinsic* node);
134 void genLZCNTIntrinsic(GenTreeHWIntrinsic* node);
135 void genPCLMULQDQIntrinsic(GenTreeHWIntrinsic* node);
136 void genPOPCNTIntrinsic(GenTreeHWIntrinsic* node);
137 #endif // defined(_TARGET_XARCH_)
138 #if defined(_TARGET_ARM64_)
139 instruction getOpForHWIntrinsic(GenTreeHWIntrinsic* node, var_types instrType);
140 void genHWIntrinsicUnaryOp(GenTreeHWIntrinsic* node);
141 void genHWIntrinsicCrcOp(GenTreeHWIntrinsic* node);
142 void genHWIntrinsicSimdBinaryOp(GenTreeHWIntrinsic* node);
143 void genHWIntrinsicSimdExtractOp(GenTreeHWIntrinsic* node);
144 void genHWIntrinsicSimdInsertOp(GenTreeHWIntrinsic* node);
145 void genHWIntrinsicSimdSelectOp(GenTreeHWIntrinsic* node);
146 void genHWIntrinsicSimdSetAllOp(GenTreeHWIntrinsic* node);
147 void genHWIntrinsicSimdUnaryOp(GenTreeHWIntrinsic* node);
148 void genHWIntrinsicSimdBinaryRMWOp(GenTreeHWIntrinsic* node);
149 template <typename HWIntrinsicSwitchCaseBody>
150 void genHWIntrinsicSwitchTable(regNumber swReg, regNumber tmpReg, int swMax, HWIntrinsicSwitchCaseBody emitSwCase);
151 #endif // defined(_TARGET_XARCH_)
152 #endif // FEATURE_HW_INTRINSICS
153
154 #if !defined(_TARGET_64BIT_)
155
156 // CodeGen for Long Ints
157
158 void genStoreLongLclVar(GenTree* treeNode);
159
160 #endif // !defined(_TARGET_64BIT_)
161
162 void genProduceReg(GenTree* tree);
163 void genUnspillRegIfNeeded(GenTree* tree);
164 regNumber genConsumeReg(GenTree* tree);
165 void genCopyRegIfNeeded(GenTree* tree, regNumber needReg);
166 void genConsumeRegAndCopy(GenTree* tree, regNumber needReg);
167
168 void genConsumeIfReg(GenTree* tree)
169 {
170     if (!tree->isContained())
171     {
172         (void)genConsumeReg(tree);
173     }
174 }
175
176 void genRegCopy(GenTree* tree);
177 void genTransferRegGCState(regNumber dst, regNumber src);
178 void genConsumeAddress(GenTree* addr);
179 void genConsumeAddrMode(GenTreeAddrMode* mode);
180 void genSetBlockSize(GenTreeBlk* blkNode, regNumber sizeReg);
181 void genConsumeBlockSrc(GenTreeBlk* blkNode);
182 void genSetBlockSrc(GenTreeBlk* blkNode, regNumber srcReg);
183 void genConsumeBlockOp(GenTreeBlk* blkNode, regNumber dstReg, regNumber srcReg, regNumber sizeReg);
184
185 #ifdef FEATURE_PUT_STRUCT_ARG_STK
186 void genConsumePutStructArgStk(GenTreePutArgStk* putArgStkNode, regNumber dstReg, regNumber srcReg, regNumber sizeReg);
187 #endif // FEATURE_PUT_STRUCT_ARG_STK
188 #ifdef _TARGET_ARM_
189 void genConsumeArgSplitStruct(GenTreePutArgSplit* putArgNode);
190 #endif
191
192 void genConsumeRegs(GenTree* tree);
193 void genConsumeOperands(GenTreeOp* tree);
194 void genEmitGSCookieCheck(bool pushReg);
195 void genSetRegToIcon(regNumber reg, ssize_t val, var_types type = TYP_INT, insFlags flags = INS_FLAGS_DONT_CARE);
196 void genCodeForShift(GenTree* tree);
197
198 #if defined(_TARGET_X86_) || defined(_TARGET_ARM_)
199 void genCodeForShiftLong(GenTree* tree);
200 #endif
201
202 #ifdef _TARGET_XARCH_
203 void genCodeForShiftRMW(GenTreeStoreInd* storeInd);
204 void genCodeForBT(GenTreeOp* bt);
205 #endif // _TARGET_XARCH_
206
207 void genCodeForCast(GenTreeOp* tree);
208 void genCodeForLclAddr(GenTree* tree);
209 void genCodeForIndexAddr(GenTreeIndexAddr* tree);
210 void genCodeForIndir(GenTreeIndir* tree);
211 void genCodeForNegNot(GenTree* tree);
212 void genCodeForLclVar(GenTreeLclVar* tree);
213 void genCodeForLclFld(GenTreeLclFld* tree);
214 void genCodeForStoreLclFld(GenTreeLclFld* tree);
215 void genCodeForStoreLclVar(GenTreeLclVar* tree);
216 void genCodeForReturnTrap(GenTreeOp* tree);
217 void genCodeForJcc(GenTreeCC* tree);
218 void genCodeForSetcc(GenTreeCC* setcc);
219 void genCodeForStoreInd(GenTreeStoreInd* tree);
220 void genCodeForSwap(GenTreeOp* tree);
221 void genCodeForCpObj(GenTreeObj* cpObjNode);
222 void genCodeForCpBlk(GenTreeBlk* cpBlkNode);
223 void genCodeForCpBlkRepMovs(GenTreeBlk* cpBlkNode);
224 void genCodeForCpBlkUnroll(GenTreeBlk* cpBlkNode);
225 void genCodeForPhysReg(GenTreePhysReg* tree);
226 void genCodeForNullCheck(GenTreeOp* tree);
227 void genCodeForCmpXchg(GenTreeCmpXchg* tree);
228
229 void genAlignStackBeforeCall(GenTreePutArgStk* putArgStk);
230 void genAlignStackBeforeCall(GenTreeCall* call);
231 void genRemoveAlignmentAfterCall(GenTreeCall* call, unsigned bias = 0);
232
233 #if defined(UNIX_X86_ABI)
234
235 unsigned curNestedAlignment; // Keep track of alignment adjustment required during codegen.
236 unsigned maxNestedAlignment; // The maximum amount of alignment adjustment required.
237
238 void SubtractNestedAlignment(unsigned adjustment)
239 {
240     assert(curNestedAlignment >= adjustment);
241     unsigned newNestedAlignment = curNestedAlignment - adjustment;
242     if (curNestedAlignment != newNestedAlignment)
243     {
244         JITDUMP("Adjusting stack nested alignment from %d to %d\n", curNestedAlignment, newNestedAlignment);
245     }
246     curNestedAlignment = newNestedAlignment;
247 }
248
249 void AddNestedAlignment(unsigned adjustment)
250 {
251     unsigned newNestedAlignment = curNestedAlignment + adjustment;
252     if (curNestedAlignment != newNestedAlignment)
253     {
254         JITDUMP("Adjusting stack nested alignment from %d to %d\n", curNestedAlignment, newNestedAlignment);
255     }
256     curNestedAlignment = newNestedAlignment;
257
258     if (curNestedAlignment > maxNestedAlignment)
259     {
260         JITDUMP("Max stack nested alignment changed from %d to %d\n", maxNestedAlignment, curNestedAlignment);
261         maxNestedAlignment = curNestedAlignment;
262     }
263 }
264
265 #endif
266
267 #ifdef FEATURE_PUT_STRUCT_ARG_STK
268 #ifdef _TARGET_X86_
269 bool genAdjustStackForPutArgStk(GenTreePutArgStk* putArgStk);
270 void genPushReg(var_types type, regNumber srcReg);
271 void genPutArgStkFieldList(GenTreePutArgStk* putArgStk);
272 #endif // _TARGET_X86_
273
274 void genPutStructArgStk(GenTreePutArgStk* treeNode);
275
276 unsigned genMove8IfNeeded(unsigned size, regNumber tmpReg, GenTree* srcAddr, unsigned offset);
277 unsigned genMove4IfNeeded(unsigned size, regNumber tmpReg, GenTree* srcAddr, unsigned offset);
278 unsigned genMove2IfNeeded(unsigned size, regNumber tmpReg, GenTree* srcAddr, unsigned offset);
279 unsigned genMove1IfNeeded(unsigned size, regNumber tmpReg, GenTree* srcAddr, unsigned offset);
280 void genStructPutArgRepMovs(GenTreePutArgStk* putArgStkNode);
281 void genStructPutArgUnroll(GenTreePutArgStk* putArgStkNode);
282 void genStoreRegToStackArg(var_types type, regNumber reg, int offset);
283 #endif // FEATURE_PUT_STRUCT_ARG_STK
284
285 void genCodeForLoadOffset(instruction ins, emitAttr size, regNumber dst, GenTree* base, unsigned offset);
286 void genCodeForStoreOffset(instruction ins, emitAttr size, regNumber src, GenTree* base, unsigned offset);
287
288 #ifdef _TARGET_ARM64_
289 void genCodeForLoadPairOffset(regNumber dst, regNumber dst2, GenTree* base, unsigned offset);
290 void genCodeForStorePairOffset(regNumber src, regNumber src2, GenTree* base, unsigned offset);
291 #endif // _TARGET_ARM64_
292
293 void genCodeForStoreBlk(GenTreeBlk* storeBlkNode);
294 void genCodeForInitBlk(GenTreeBlk* initBlkNode);
295 void genCodeForInitBlkRepStos(GenTreeBlk* initBlkNode);
296 void genCodeForInitBlkUnroll(GenTreeBlk* initBlkNode);
297 void genJumpTable(GenTree* tree);
298 void genTableBasedSwitch(GenTree* tree);
299 void genCodeForArrIndex(GenTreeArrIndex* treeNode);
300 void genCodeForArrOffset(GenTreeArrOffs* treeNode);
301 instruction genGetInsForOper(genTreeOps oper, var_types type);
302 bool genEmitOptimizedGCWriteBarrier(GCInfo::WriteBarrierForm writeBarrierForm, GenTree* addr, GenTree* data);
303 void genCallInstruction(GenTreeCall* call);
304 void genJmpMethod(GenTree* jmp);
305 BasicBlock* genCallFinally(BasicBlock* block);
306 void genCodeForJumpTrue(GenTree* tree);
307 #ifdef _TARGET_ARM64_
308 void genCodeForJumpCompare(GenTreeOp* tree);
309 #endif // _TARGET_ARM64_
310
311 #if FEATURE_EH_FUNCLETS
312 void genEHCatchRet(BasicBlock* block);
313 #else  // !FEATURE_EH_FUNCLETS
314 void genEHFinallyOrFilterRet(BasicBlock* block);
315 #endif // !FEATURE_EH_FUNCLETS
316
317 void genMultiRegCallStoreToLocal(GenTree* treeNode);
318
319 // Deals with codegen for muti-register struct returns.
320 bool isStructReturn(GenTree* treeNode);
321 void genStructReturn(GenTree* treeNode);
322
323 void genReturn(GenTree* treeNode);
324
325 void genLclHeap(GenTree* tree);
326
327 bool genIsRegCandidateLocal(GenTree* tree)
328 {
329     if (!tree->IsLocal())
330     {
331         return false;
332     }
333     const LclVarDsc* varDsc = &compiler->lvaTable[tree->gtLclVarCommon.gtLclNum];
334     return (varDsc->lvIsRegCandidate());
335 }
336
337 #ifdef FEATURE_PUT_STRUCT_ARG_STK
338 #ifdef _TARGET_X86_
339 bool m_pushStkArg;
340 #else  // !_TARGET_X86_
341 unsigned m_stkArgVarNum;
342 unsigned m_stkArgOffset;
343 #endif // !_TARGET_X86_
344 #endif // !FEATURE_PUT_STRUCT_ARG_STK
345
346 #ifdef DEBUG
347 GenTree* lastConsumedNode;
348 void genNumberOperandUse(GenTree* const operand, int& useNum) const;
349 void genCheckConsumeNode(GenTree* const node);
350 #else  // !DEBUG
351 inline void genCheckConsumeNode(GenTree* treeNode)
352 {
353 }
354 #endif // DEBUG
355
356 #endif // !LEGACY_BACKEND