1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
7 #include <fstream> // NOLINT(readability/streams)
13 #include "src/base/platform/platform.h"
14 #include "src/base/sys-info.h"
15 #include "src/base/utils/random-number-generator.h"
16 #include "src/basic-block-profiler.h"
17 #include "src/bootstrapper.h"
18 #include "src/codegen.h"
19 #include "src/compilation-cache.h"
20 #include "src/compilation-statistics.h"
21 #include "src/cpu-profiler.h"
22 #include "src/debug/debug.h"
23 #include "src/deoptimizer.h"
24 #include "src/frames-inl.h"
25 #include "src/heap-profiler.h"
26 #include "src/hydrogen.h"
27 #include "src/ic/stub-cache.h"
28 #include "src/interpreter/interpreter.h"
29 #include "src/lithium-allocator.h"
31 #include "src/messages.h"
32 #include "src/prototype.h"
33 #include "src/regexp/regexp-stack.h"
34 #include "src/runtime-profiler.h"
35 #include "src/sampler.h"
36 #include "src/scopeinfo.h"
37 #include "src/simulator.h"
38 #include "src/snapshot/serialize.h"
39 #include "src/version.h"
40 #include "src/vm-state-inl.h"
46 base::Atomic32 ThreadId::highest_thread_id_ = 0;
48 int ThreadId::AllocateThreadId() {
49 int new_id = base::NoBarrier_AtomicIncrement(&highest_thread_id_, 1);
54 int ThreadId::GetCurrentThreadId() {
55 int thread_id = base::Thread::GetThreadLocalInt(Isolate::thread_id_key_);
57 thread_id = AllocateThreadId();
58 base::Thread::SetThreadLocalInt(Isolate::thread_id_key_, thread_id);
64 ThreadLocalTop::ThreadLocalTop() {
69 void ThreadLocalTop::InitializeInternal() {
77 external_callback_scope_ = NULL;
78 current_vm_state_ = EXTERNAL;
79 try_catch_handler_ = NULL;
81 thread_id_ = ThreadId::Invalid();
82 external_caught_exception_ = false;
83 failed_access_check_callback_ = NULL;
85 promise_on_stack_ = NULL;
87 // These members are re-initialized later after deserialization
89 pending_exception_ = NULL;
90 rethrowing_message_ = false;
91 pending_message_obj_ = NULL;
92 scheduled_exception_ = NULL;
96 void ThreadLocalTop::Initialize() {
99 simulator_ = Simulator::current(isolate_);
101 thread_id_ = ThreadId::Current();
105 void ThreadLocalTop::Free() {
106 // Match unmatched PopPromise calls.
107 while (promise_on_stack_) isolate_->PopPromise();
111 base::Thread::LocalStorageKey Isolate::isolate_key_;
112 base::Thread::LocalStorageKey Isolate::thread_id_key_;
113 base::Thread::LocalStorageKey Isolate::per_isolate_thread_data_key_;
114 base::LazyMutex Isolate::thread_data_table_mutex_ = LAZY_MUTEX_INITIALIZER;
115 Isolate::ThreadDataTable* Isolate::thread_data_table_ = NULL;
116 base::Atomic32 Isolate::isolate_counter_ = 0;
118 base::Atomic32 Isolate::isolate_key_created_ = 0;
121 Isolate::PerIsolateThreadData*
122 Isolate::FindOrAllocatePerThreadDataForThisThread() {
123 ThreadId thread_id = ThreadId::Current();
124 PerIsolateThreadData* per_thread = NULL;
126 base::LockGuard<base::Mutex> lock_guard(thread_data_table_mutex_.Pointer());
127 per_thread = thread_data_table_->Lookup(this, thread_id);
128 if (per_thread == NULL) {
129 per_thread = new PerIsolateThreadData(this, thread_id);
130 thread_data_table_->Insert(per_thread);
132 DCHECK(thread_data_table_->Lookup(this, thread_id) == per_thread);
138 Isolate::PerIsolateThreadData* Isolate::FindPerThreadDataForThisThread() {
139 ThreadId thread_id = ThreadId::Current();
140 return FindPerThreadDataForThread(thread_id);
144 Isolate::PerIsolateThreadData* Isolate::FindPerThreadDataForThread(
145 ThreadId thread_id) {
146 PerIsolateThreadData* per_thread = NULL;
148 base::LockGuard<base::Mutex> lock_guard(thread_data_table_mutex_.Pointer());
149 per_thread = thread_data_table_->Lookup(this, thread_id);
155 void Isolate::InitializeOncePerProcess() {
156 base::LockGuard<base::Mutex> lock_guard(thread_data_table_mutex_.Pointer());
157 CHECK(thread_data_table_ == NULL);
158 isolate_key_ = base::Thread::CreateThreadLocalKey();
160 base::NoBarrier_Store(&isolate_key_created_, 1);
162 thread_id_key_ = base::Thread::CreateThreadLocalKey();
163 per_isolate_thread_data_key_ = base::Thread::CreateThreadLocalKey();
164 thread_data_table_ = new Isolate::ThreadDataTable();
168 Address Isolate::get_address_from_id(Isolate::AddressId id) {
169 return isolate_addresses_[id];
173 char* Isolate::Iterate(ObjectVisitor* v, char* thread_storage) {
174 ThreadLocalTop* thread = reinterpret_cast<ThreadLocalTop*>(thread_storage);
176 return thread_storage + sizeof(ThreadLocalTop);
180 void Isolate::IterateThread(ThreadVisitor* v, char* t) {
181 ThreadLocalTop* thread = reinterpret_cast<ThreadLocalTop*>(t);
182 v->VisitThread(this, thread);
186 void Isolate::Iterate(ObjectVisitor* v, ThreadLocalTop* thread) {
187 // Visit the roots from the top for a given thread.
188 v->VisitPointer(&thread->pending_exception_);
189 v->VisitPointer(&(thread->pending_message_obj_));
190 v->VisitPointer(bit_cast<Object**>(&(thread->context_)));
191 v->VisitPointer(&thread->scheduled_exception_);
193 for (v8::TryCatch* block = thread->try_catch_handler();
195 block = block->next_) {
196 v->VisitPointer(bit_cast<Object**>(&(block->exception_)));
197 v->VisitPointer(bit_cast<Object**>(&(block->message_obj_)));
200 // Iterate over pointers on native execution stack.
201 for (StackFrameIterator it(this, thread); !it.done(); it.Advance()) {
202 it.frame()->Iterate(v);
207 void Isolate::Iterate(ObjectVisitor* v) {
208 ThreadLocalTop* current_t = thread_local_top();
209 Iterate(v, current_t);
213 void Isolate::IterateDeferredHandles(ObjectVisitor* visitor) {
214 for (DeferredHandles* deferred = deferred_handles_head_;
216 deferred = deferred->next_) {
217 deferred->Iterate(visitor);
223 bool Isolate::IsDeferredHandle(Object** handle) {
224 // Each DeferredHandles instance keeps the handles to one job in the
225 // concurrent recompilation queue, containing a list of blocks. Each block
226 // contains kHandleBlockSize handles except for the first block, which may
227 // not be fully filled.
228 // We iterate through all the blocks to see whether the argument handle
229 // belongs to one of the blocks. If so, it is deferred.
230 for (DeferredHandles* deferred = deferred_handles_head_;
232 deferred = deferred->next_) {
233 List<Object**>* blocks = &deferred->blocks_;
234 for (int i = 0; i < blocks->length(); i++) {
235 Object** block_limit = (i == 0) ? deferred->first_block_limit_
236 : blocks->at(i) + kHandleBlockSize;
237 if (blocks->at(i) <= handle && handle < block_limit) return true;
245 void Isolate::RegisterTryCatchHandler(v8::TryCatch* that) {
246 thread_local_top()->set_try_catch_handler(that);
250 void Isolate::UnregisterTryCatchHandler(v8::TryCatch* that) {
251 DCHECK(thread_local_top()->try_catch_handler() == that);
252 thread_local_top()->set_try_catch_handler(that->next_);
256 Handle<String> Isolate::StackTraceString() {
257 if (stack_trace_nesting_level_ == 0) {
258 stack_trace_nesting_level_++;
259 HeapStringAllocator allocator;
260 StringStream::ClearMentionedObjectCache(this);
261 StringStream accumulator(&allocator);
262 incomplete_message_ = &accumulator;
263 PrintStack(&accumulator);
264 Handle<String> stack_trace = accumulator.ToString(this);
265 incomplete_message_ = NULL;
266 stack_trace_nesting_level_ = 0;
268 } else if (stack_trace_nesting_level_ == 1) {
269 stack_trace_nesting_level_++;
270 base::OS::PrintError(
271 "\n\nAttempt to print stack while printing stack (double fault)\n");
272 base::OS::PrintError(
273 "If you are lucky you may find a partial stack dump on stdout.\n\n");
274 incomplete_message_->OutputToStdOut();
275 return factory()->empty_string();
279 return factory()->empty_string();
284 void Isolate::PushStackTraceAndDie(unsigned int magic, void* ptr1, void* ptr2,
285 unsigned int magic2) {
286 const int kMaxStackTraceSize = 32 * KB;
287 Handle<String> trace = StackTraceString();
288 uint8_t buffer[kMaxStackTraceSize];
289 int length = Min(kMaxStackTraceSize - 1, trace->length());
290 String::WriteToFlat(*trace, buffer, 0, length);
291 buffer[length] = '\0';
292 // TODO(dcarney): convert buffer to utf8?
293 base::OS::PrintError("Stacktrace (%x-%x) %p %p: %s\n", magic, magic2, ptr1,
294 ptr2, reinterpret_cast<char*>(buffer));
299 // Determines whether the given stack frame should be displayed in
300 // a stack trace. The caller is the error constructor that asked
301 // for the stack trace to be collected. The first time a construct
302 // call to this function is encountered it is skipped. The seen_caller
303 // in/out parameter is used to remember if the caller has been seen
305 static bool IsVisibleInStackTrace(JSFunction* fun,
309 if ((fun == caller) && !(*seen_caller)) {
313 // Skip all frames until we've seen the caller.
314 if (!(*seen_caller)) return false;
315 // Also, skip non-visible built-in functions and any call with the builtins
316 // object as receiver, so as to not reveal either the builtins object or
317 // an internal function.
318 // The --builtins-in-stack-traces command line flag allows including
319 // internal call sites in the stack trace for debugging purposes.
320 if (!FLAG_builtins_in_stack_traces) {
321 if (receiver->IsJSBuiltinsObject()) return false;
322 if (fun->IsBuiltin()) {
323 return fun->shared()->native();
324 } else if (!fun->IsSubjectToDebugging()) {
332 Handle<Object> Isolate::CaptureSimpleStackTrace(Handle<JSObject> error_object,
333 Handle<Object> caller) {
334 // Get stack trace limit.
335 Handle<JSObject> error = error_function();
336 Handle<String> stackTraceLimit =
337 factory()->InternalizeUtf8String("stackTraceLimit");
338 DCHECK(!stackTraceLimit.is_null());
339 Handle<Object> stack_trace_limit =
340 JSReceiver::GetDataProperty(error, stackTraceLimit);
341 if (!stack_trace_limit->IsNumber()) return factory()->undefined_value();
342 int limit = FastD2IChecked(stack_trace_limit->Number());
343 limit = Max(limit, 0); // Ensure that limit is not negative.
345 int initial_size = Min(limit, 10);
346 Handle<FixedArray> elements =
347 factory()->NewFixedArrayWithHoles(initial_size * 4 + 1);
349 // If the caller parameter is a function we skip frames until we're
350 // under it before starting to collect.
351 bool seen_caller = !caller->IsJSFunction();
352 // First element is reserved to store the number of sloppy frames.
355 int sloppy_frames = 0;
356 bool encountered_strict_function = false;
357 for (JavaScriptFrameIterator iter(this);
358 !iter.done() && frames_seen < limit;
360 JavaScriptFrame* frame = iter.frame();
361 // Set initial size to the maximum inlining level + 1 for the outermost
363 List<FrameSummary> frames(FLAG_max_inlining_levels + 1);
364 frame->Summarize(&frames);
365 for (int i = frames.length() - 1; i >= 0; i--) {
366 Handle<JSFunction> fun = frames[i].function();
367 Handle<Object> recv = frames[i].receiver();
368 // Filter out internal frames that we do not want to show.
369 if (!IsVisibleInStackTrace(*fun, *caller, *recv, &seen_caller)) continue;
370 // Filter out frames from other security contexts.
371 if (!this->context()->HasSameSecurityTokenAs(fun->context())) continue;
372 if (cursor + 4 > elements->length()) {
373 int new_capacity = JSObject::NewElementsCapacity(elements->length());
374 Handle<FixedArray> new_elements =
375 factory()->NewFixedArrayWithHoles(new_capacity);
376 for (int i = 0; i < cursor; i++) {
377 new_elements->set(i, elements->get(i));
379 elements = new_elements;
381 DCHECK(cursor + 4 <= elements->length());
383 Handle<Code> code = frames[i].code();
384 Handle<Smi> offset(Smi::FromInt(frames[i].offset()), this);
385 // The stack trace API should not expose receivers and function
386 // objects on frames deeper than the top-most one with a strict
387 // mode function. The number of sloppy frames is stored as
388 // first element in the result array.
389 if (!encountered_strict_function) {
390 if (is_strict(fun->shared()->language_mode())) {
391 encountered_strict_function = true;
396 elements->set(cursor++, *recv);
397 elements->set(cursor++, *fun);
398 elements->set(cursor++, *code);
399 elements->set(cursor++, *offset);
403 elements->set(0, Smi::FromInt(sloppy_frames));
404 elements->Shrink(cursor);
405 Handle<JSArray> result = factory()->NewJSArrayWithElements(elements);
406 result->set_length(Smi::FromInt(cursor));
407 // TODO(yangguo): Queue this structured stack trace for preprocessing on GC.
412 MaybeHandle<JSObject> Isolate::CaptureAndSetDetailedStackTrace(
413 Handle<JSObject> error_object) {
414 if (capture_stack_trace_for_uncaught_exceptions_) {
415 // Capture stack trace for a detailed exception message.
416 Handle<Name> key = factory()->detailed_stack_trace_symbol();
417 Handle<JSArray> stack_trace = CaptureCurrentStackTrace(
418 stack_trace_for_uncaught_exceptions_frame_limit_,
419 stack_trace_for_uncaught_exceptions_options_);
421 this, JSObject::SetProperty(error_object, key, stack_trace, STRICT),
428 MaybeHandle<JSObject> Isolate::CaptureAndSetSimpleStackTrace(
429 Handle<JSObject> error_object, Handle<Object> caller) {
430 // Capture stack trace for simple stack trace string formatting.
431 Handle<Name> key = factory()->stack_trace_symbol();
432 Handle<Object> stack_trace = CaptureSimpleStackTrace(error_object, caller);
434 this, JSObject::SetProperty(error_object, key, stack_trace, STRICT),
440 Handle<JSArray> Isolate::GetDetailedStackTrace(Handle<JSObject> error_object) {
441 Handle<Name> key_detailed = factory()->detailed_stack_trace_symbol();
442 Handle<Object> stack_trace =
443 JSReceiver::GetDataProperty(error_object, key_detailed);
444 if (stack_trace->IsJSArray()) return Handle<JSArray>::cast(stack_trace);
446 if (!capture_stack_trace_for_uncaught_exceptions_) return Handle<JSArray>();
448 // Try to get details from simple stack trace.
449 Handle<JSArray> detailed_stack_trace =
450 GetDetailedFromSimpleStackTrace(error_object);
451 if (!detailed_stack_trace.is_null()) {
452 // Save the detailed stack since the simple one might be withdrawn later.
453 JSObject::SetProperty(error_object, key_detailed, detailed_stack_trace,
456 return detailed_stack_trace;
460 class CaptureStackTraceHelper {
462 CaptureStackTraceHelper(Isolate* isolate,
463 StackTrace::StackTraceOptions options)
464 : isolate_(isolate) {
465 if (options & StackTrace::kColumnOffset) {
467 factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("column"));
469 if (options & StackTrace::kLineNumber) {
471 factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("lineNumber"));
473 if (options & StackTrace::kScriptId) {
475 factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("scriptId"));
477 if (options & StackTrace::kScriptName) {
479 factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("scriptName"));
481 if (options & StackTrace::kScriptNameOrSourceURL) {
482 script_name_or_source_url_key_ = factory()->InternalizeOneByteString(
483 STATIC_CHAR_VECTOR("scriptNameOrSourceURL"));
485 if (options & StackTrace::kFunctionName) {
486 function_key_ = factory()->InternalizeOneByteString(
487 STATIC_CHAR_VECTOR("functionName"));
489 if (options & StackTrace::kIsEval) {
491 factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("isEval"));
493 if (options & StackTrace::kIsConstructor) {
494 constructor_key_ = factory()->InternalizeOneByteString(
495 STATIC_CHAR_VECTOR("isConstructor"));
499 Handle<JSObject> NewStackFrameObject(Handle<JSFunction> fun, int position,
500 bool is_constructor) {
501 Handle<JSObject> stack_frame =
502 factory()->NewJSObject(isolate_->object_function());
504 Handle<Script> script(Script::cast(fun->shared()->script()));
506 if (!line_key_.is_null()) {
507 int script_line_offset = script->line_offset()->value();
508 int line_number = Script::GetLineNumber(script, position);
509 // line_number is already shifted by the script_line_offset.
510 int relative_line_number = line_number - script_line_offset;
511 if (!column_key_.is_null() && relative_line_number >= 0) {
512 Handle<FixedArray> line_ends(FixedArray::cast(script->line_ends()));
513 int start = (relative_line_number == 0) ? 0 :
514 Smi::cast(line_ends->get(relative_line_number - 1))->value() + 1;
515 int column_offset = position - start;
516 if (relative_line_number == 0) {
517 // For the case where the code is on the same line as the script
519 column_offset += script->column_offset()->value();
521 JSObject::AddProperty(stack_frame, column_key_,
522 handle(Smi::FromInt(column_offset + 1), isolate_),
525 JSObject::AddProperty(stack_frame, line_key_,
526 handle(Smi::FromInt(line_number + 1), isolate_),
530 if (!script_id_key_.is_null()) {
531 JSObject::AddProperty(stack_frame, script_id_key_,
532 handle(script->id(), isolate_), NONE);
535 if (!script_name_key_.is_null()) {
536 JSObject::AddProperty(stack_frame, script_name_key_,
537 handle(script->name(), isolate_), NONE);
540 if (!script_name_or_source_url_key_.is_null()) {
541 Handle<Object> result = Script::GetNameOrSourceURL(script);
542 JSObject::AddProperty(stack_frame, script_name_or_source_url_key_, result,
546 if (!function_key_.is_null()) {
547 Handle<Object> fun_name = JSFunction::GetDebugName(fun);
548 JSObject::AddProperty(stack_frame, function_key_, fun_name, NONE);
551 if (!eval_key_.is_null()) {
552 Handle<Object> is_eval = factory()->ToBoolean(
553 script->compilation_type() == Script::COMPILATION_TYPE_EVAL);
554 JSObject::AddProperty(stack_frame, eval_key_, is_eval, NONE);
557 if (!constructor_key_.is_null()) {
558 Handle<Object> is_constructor_obj = factory()->ToBoolean(is_constructor);
559 JSObject::AddProperty(stack_frame, constructor_key_, is_constructor_obj,
567 inline Factory* factory() { return isolate_->factory(); }
570 Handle<String> column_key_;
571 Handle<String> line_key_;
572 Handle<String> script_id_key_;
573 Handle<String> script_name_key_;
574 Handle<String> script_name_or_source_url_key_;
575 Handle<String> function_key_;
576 Handle<String> eval_key_;
577 Handle<String> constructor_key_;
581 int PositionFromStackTrace(Handle<FixedArray> elements, int index) {
582 DisallowHeapAllocation no_gc;
583 Object* maybe_code = elements->get(index + 2);
584 if (maybe_code->IsSmi()) {
585 return Smi::cast(maybe_code)->value();
587 Code* code = Code::cast(maybe_code);
588 Address pc = code->address() + Smi::cast(elements->get(index + 3))->value();
589 return code->SourcePosition(pc);
594 Handle<JSArray> Isolate::GetDetailedFromSimpleStackTrace(
595 Handle<JSObject> error_object) {
596 Handle<Name> key = factory()->stack_trace_symbol();
597 Handle<Object> property = JSReceiver::GetDataProperty(error_object, key);
598 if (!property->IsJSArray()) return Handle<JSArray>();
599 Handle<JSArray> simple_stack_trace = Handle<JSArray>::cast(property);
601 CaptureStackTraceHelper helper(this,
602 stack_trace_for_uncaught_exceptions_options_);
605 Handle<FixedArray> elements(FixedArray::cast(simple_stack_trace->elements()));
606 int elements_limit = Smi::cast(simple_stack_trace->length())->value();
608 int frame_limit = stack_trace_for_uncaught_exceptions_frame_limit_;
609 if (frame_limit < 0) frame_limit = (elements_limit - 1) / 4;
611 Handle<JSArray> stack_trace = factory()->NewJSArray(frame_limit);
612 for (int i = 1; i < elements_limit && frames_seen < frame_limit; i += 4) {
613 Handle<Object> recv = handle(elements->get(i), this);
614 Handle<JSFunction> fun =
615 handle(JSFunction::cast(elements->get(i + 1)), this);
616 bool is_constructor =
617 recv->IsJSObject() &&
618 Handle<JSObject>::cast(recv)->map()->GetConstructor() == *fun;
619 int position = PositionFromStackTrace(elements, i);
621 Handle<JSObject> stack_frame =
622 helper.NewStackFrameObject(fun, position, is_constructor);
624 FixedArray::cast(stack_trace->elements())->set(frames_seen, *stack_frame);
628 stack_trace->set_length(Smi::FromInt(frames_seen));
633 Handle<JSArray> Isolate::CaptureCurrentStackTrace(
634 int frame_limit, StackTrace::StackTraceOptions options) {
635 CaptureStackTraceHelper helper(this, options);
637 // Ensure no negative values.
638 int limit = Max(frame_limit, 0);
639 Handle<JSArray> stack_trace = factory()->NewJSArray(frame_limit);
641 StackTraceFrameIterator it(this);
643 while (!it.done() && (frames_seen < limit)) {
644 JavaScriptFrame* frame = it.frame();
645 // Set initial size to the maximum inlining level + 1 for the outermost
647 List<FrameSummary> frames(FLAG_max_inlining_levels + 1);
648 frame->Summarize(&frames);
649 for (int i = frames.length() - 1; i >= 0 && frames_seen < limit; i--) {
650 Handle<JSFunction> fun = frames[i].function();
651 // Filter frames from other security contexts.
652 if (!(options & StackTrace::kExposeFramesAcrossSecurityOrigins) &&
653 !this->context()->HasSameSecurityTokenAs(fun->context())) continue;
654 int position = frames[i].code()->SourcePosition(frames[i].pc());
655 Handle<JSObject> stack_frame =
656 helper.NewStackFrameObject(fun, position, frames[i].is_constructor());
658 FixedArray::cast(stack_trace->elements())->set(frames_seen, *stack_frame);
664 stack_trace->set_length(Smi::FromInt(frames_seen));
669 void Isolate::PrintStack(FILE* out, PrintStackMode mode) {
670 if (stack_trace_nesting_level_ == 0) {
671 stack_trace_nesting_level_++;
672 StringStream::ClearMentionedObjectCache(this);
673 HeapStringAllocator allocator;
674 StringStream accumulator(&allocator);
675 incomplete_message_ = &accumulator;
676 PrintStack(&accumulator, mode);
677 accumulator.OutputToFile(out);
678 InitializeLoggingAndCounters();
679 accumulator.Log(this);
680 incomplete_message_ = NULL;
681 stack_trace_nesting_level_ = 0;
682 } else if (stack_trace_nesting_level_ == 1) {
683 stack_trace_nesting_level_++;
684 base::OS::PrintError(
685 "\n\nAttempt to print stack while printing stack (double fault)\n");
686 base::OS::PrintError(
687 "If you are lucky you may find a partial stack dump on stdout.\n\n");
688 incomplete_message_->OutputToFile(out);
693 static void PrintFrames(Isolate* isolate,
694 StringStream* accumulator,
695 StackFrame::PrintMode mode) {
696 StackFrameIterator it(isolate);
697 for (int i = 0; !it.done(); it.Advance()) {
698 it.frame()->Print(accumulator, mode, i++);
703 void Isolate::PrintStack(StringStream* accumulator, PrintStackMode mode) {
704 // The MentionedObjectCache is not GC-proof at the moment.
705 DisallowHeapAllocation no_gc;
706 DCHECK(accumulator->IsMentionedObjectCacheClear(this));
708 // Avoid printing anything if there are no frames.
709 if (c_entry_fp(thread_local_top()) == 0) return;
712 "\n==== JS stack trace =========================================\n\n");
713 PrintFrames(this, accumulator, StackFrame::OVERVIEW);
714 if (mode == kPrintStackVerbose) {
716 "\n==== Details ================================================\n\n");
717 PrintFrames(this, accumulator, StackFrame::DETAILS);
718 accumulator->PrintMentionedObjectCache(this);
720 accumulator->Add("=====================\n\n");
724 void Isolate::SetFailedAccessCheckCallback(
725 v8::FailedAccessCheckCallback callback) {
726 thread_local_top()->failed_access_check_callback_ = callback;
730 static inline AccessCheckInfo* GetAccessCheckInfo(Isolate* isolate,
731 Handle<JSObject> receiver) {
732 Object* maybe_constructor = receiver->map()->GetConstructor();
733 if (!maybe_constructor->IsJSFunction()) return NULL;
734 JSFunction* constructor = JSFunction::cast(maybe_constructor);
735 if (!constructor->shared()->IsApiFunction()) return NULL;
738 constructor->shared()->get_api_func_data()->access_check_info();
739 if (data_obj == isolate->heap()->undefined_value()) return NULL;
741 return AccessCheckInfo::cast(data_obj);
745 void Isolate::ReportFailedAccessCheck(Handle<JSObject> receiver) {
746 if (!thread_local_top()->failed_access_check_callback_) {
747 return ScheduleThrow(*factory()->NewTypeError(MessageTemplate::kNoAccess));
750 DCHECK(receiver->IsAccessCheckNeeded());
753 // Get the data object from access check info.
754 HandleScope scope(this);
756 { DisallowHeapAllocation no_gc;
757 AccessCheckInfo* access_check_info = GetAccessCheckInfo(this, receiver);
758 if (!access_check_info) {
759 AllowHeapAllocation doesnt_matter_anymore;
760 return ScheduleThrow(
761 *factory()->NewTypeError(MessageTemplate::kNoAccess));
763 data = handle(access_check_info->data(), this);
766 // Leaving JavaScript.
767 VMState<EXTERNAL> state(this);
768 thread_local_top()->failed_access_check_callback_(
769 v8::Utils::ToLocal(receiver), v8::ACCESS_HAS, v8::Utils::ToLocal(data));
773 bool Isolate::IsInternallyUsedPropertyName(Handle<Object> name) {
774 if (name->IsSymbol()) {
775 return Handle<Symbol>::cast(name)->is_private();
777 return name.is_identical_to(factory()->hidden_string());
781 bool Isolate::IsInternallyUsedPropertyName(Object* name) {
782 if (name->IsSymbol()) {
783 return Symbol::cast(name)->is_private();
785 return name == heap()->hidden_string();
789 bool Isolate::MayAccess(Handle<JSObject> receiver) {
790 DCHECK(receiver->IsJSGlobalProxy() || receiver->IsAccessCheckNeeded());
792 // Check for compatibility between the security tokens in the
793 // current lexical context and the accessed object.
797 DisallowHeapAllocation no_gc;
798 // During bootstrapping, callback functions are not enabled yet.
799 if (bootstrapper()->IsActive()) return true;
801 if (receiver->IsJSGlobalProxy()) {
802 Object* receiver_context =
803 JSGlobalProxy::cast(*receiver)->native_context();
804 if (!receiver_context->IsContext()) return false;
806 // Get the native context of current top context.
807 // avoid using Isolate::native_context() because it uses Handle.
808 Context* native_context = context()->global_object()->native_context();
809 if (receiver_context == native_context) return true;
811 if (Context::cast(receiver_context)->security_token() ==
812 native_context->security_token())
817 HandleScope scope(this);
819 v8::NamedSecurityCallback callback;
820 { DisallowHeapAllocation no_gc;
821 AccessCheckInfo* access_check_info = GetAccessCheckInfo(this, receiver);
822 if (!access_check_info) return false;
823 Object* fun_obj = access_check_info->named_callback();
824 callback = v8::ToCData<v8::NamedSecurityCallback>(fun_obj);
825 if (!callback) return false;
826 data = handle(access_check_info->data(), this);
829 LOG(this, ApiSecurityCheck());
831 // Leaving JavaScript.
832 VMState<EXTERNAL> state(this);
833 Handle<Object> key = factory()->undefined_value();
834 return callback(v8::Utils::ToLocal(receiver), v8::Utils::ToLocal(key),
835 v8::ACCESS_HAS, v8::Utils::ToLocal(data));
839 const char* const Isolate::kStackOverflowMessage =
840 "Uncaught RangeError: Maximum call stack size exceeded";
843 Object* Isolate::StackOverflow() {
844 HandleScope scope(this);
845 // At this point we cannot create an Error object using its javascript
846 // constructor. Instead, we copy the pre-constructed boilerplate and
847 // attach the stack trace as a hidden property.
848 Handle<String> key = factory()->stack_overflow_string();
849 Handle<Object> boilerplate =
850 Object::GetProperty(js_builtins_object(), key).ToHandleChecked();
851 if (boilerplate->IsUndefined()) {
852 return Throw(heap()->undefined_value(), nullptr);
854 Handle<JSObject> exception =
855 factory()->CopyJSObject(Handle<JSObject>::cast(boilerplate));
856 Throw(*exception, nullptr);
858 CaptureAndSetSimpleStackTrace(exception, factory()->undefined_value());
860 if (FLAG_verify_heap && FLAG_stress_compaction) {
861 heap()->CollectAllAvailableGarbage("trigger compaction");
863 #endif // VERIFY_HEAP
865 return heap()->exception();
869 Object* Isolate::TerminateExecution() {
870 return Throw(heap_.termination_exception(), nullptr);
874 void Isolate::CancelTerminateExecution() {
875 if (try_catch_handler()) {
876 try_catch_handler()->has_terminated_ = false;
878 if (has_pending_exception() &&
879 pending_exception() == heap_.termination_exception()) {
880 thread_local_top()->external_caught_exception_ = false;
881 clear_pending_exception();
883 if (has_scheduled_exception() &&
884 scheduled_exception() == heap_.termination_exception()) {
885 thread_local_top()->external_caught_exception_ = false;
886 clear_scheduled_exception();
891 void Isolate::RequestInterrupt(InterruptCallback callback, void* data) {
892 ExecutionAccess access(this);
893 api_interrupts_queue_.push(InterruptEntry(callback, data));
894 stack_guard()->RequestApiInterrupt();
898 void Isolate::InvokeApiInterruptCallbacks() {
899 // Note: callback below should be called outside of execution access lock.
901 InterruptEntry entry;
903 ExecutionAccess access(this);
904 if (api_interrupts_queue_.empty()) return;
905 entry = api_interrupts_queue_.front();
906 api_interrupts_queue_.pop();
908 VMState<EXTERNAL> state(this);
909 HandleScope handle_scope(this);
910 entry.first(reinterpret_cast<v8::Isolate*>(this), entry.second);
915 void ReportBootstrappingException(Handle<Object> exception,
916 MessageLocation* location) {
917 base::OS::PrintError("Exception thrown during bootstrapping\n");
918 if (location == NULL || location->script().is_null()) return;
919 // We are bootstrapping and caught an error where the location is set
920 // and we have a script for the location.
921 // In this case we could have an extension (or an internal error
922 // somewhere) and we print out the line number at which the error occured
923 // to the console for easier debugging.
925 location->script()->GetLineNumber(location->start_pos()) + 1;
926 if (exception->IsString() && location->script()->name()->IsString()) {
927 base::OS::PrintError(
928 "Extension or internal compilation error: %s in %s at line %d.\n",
929 String::cast(*exception)->ToCString().get(),
930 String::cast(location->script()->name())->ToCString().get(),
932 } else if (location->script()->name()->IsString()) {
933 base::OS::PrintError(
934 "Extension or internal compilation error in %s at line %d.\n",
935 String::cast(location->script()->name())->ToCString().get(),
937 } else if (exception->IsString()) {
938 base::OS::PrintError("Extension or internal compilation error: %s.\n",
939 String::cast(*exception)->ToCString().get());
941 base::OS::PrintError("Extension or internal compilation error.\n");
944 // Since comments and empty lines have been stripped from the source of
945 // builtins, print the actual source here so that line numbers match.
946 if (location->script()->source()->IsString()) {
947 Handle<String> src(String::cast(location->script()->source()));
948 PrintF("Failing script:");
949 int len = src->length();
951 PrintF(" <not available>\n");
955 PrintF("%5d: ", line_number);
956 for (int i = 0; i < len; i++) {
957 uint16_t character = src->Get(i);
958 PrintF("%c", character);
959 if (character == '\n' && i < len - 2) {
960 PrintF("%5d: ", ++line_number);
970 Object* Isolate::Throw(Object* exception, MessageLocation* location) {
971 DCHECK(!has_pending_exception());
973 HandleScope scope(this);
974 Handle<Object> exception_handle(exception, this);
976 // Determine whether a message needs to be created for the given exception
977 // depending on the following criteria:
978 // 1) External v8::TryCatch missing: Always create a message because any
979 // JavaScript handler for a finally-block might re-throw to top-level.
980 // 2) External v8::TryCatch exists: Only create a message if the handler
981 // captures messages or is verbose (which reports despite the catch).
982 // 3) ReThrow from v8::TryCatch: The message from a previous throw still
983 // exists and we preserve it instead of creating a new message.
984 bool requires_message = try_catch_handler() == nullptr ||
985 try_catch_handler()->is_verbose_ ||
986 try_catch_handler()->capture_message_;
987 bool rethrowing_message = thread_local_top()->rethrowing_message_;
989 thread_local_top()->rethrowing_message_ = false;
991 // Notify debugger of exception.
992 if (is_catchable_by_javascript(exception)) {
993 debug()->OnThrow(exception_handle);
996 // Generate the message if required.
997 if (requires_message && !rethrowing_message) {
998 MessageLocation potential_computed_location;
999 if (location == NULL) {
1000 // If no location was specified we use a computed one instead.
1001 ComputeLocation(&potential_computed_location);
1002 location = &potential_computed_location;
1005 if (bootstrapper()->IsActive()) {
1006 // It's not safe to try to make message objects or collect stack traces
1007 // while the bootstrapper is active since the infrastructure may not have
1008 // been properly initialized.
1009 ReportBootstrappingException(exception_handle, location);
1011 Handle<Object> message_obj = CreateMessage(exception_handle, location);
1012 thread_local_top()->pending_message_obj_ = *message_obj;
1014 // If the abort-on-uncaught-exception flag is specified, abort on any
1015 // exception not caught by JavaScript, even when an external handler is
1016 // present. This flag is intended for use by JavaScript developers, so
1017 // print a user-friendly stack trace (not an internal one).
1018 if (FLAG_abort_on_uncaught_exception &&
1019 PredictExceptionCatcher() != CAUGHT_BY_JAVASCRIPT) {
1020 FLAG_abort_on_uncaught_exception = false; // Prevent endless recursion.
1021 PrintF(stderr, "%s\n\nFROM\n",
1022 MessageHandler::GetLocalizedMessage(this, message_obj).get());
1023 PrintCurrentStackTrace(stderr);
1029 // Set the exception being thrown.
1030 set_pending_exception(*exception_handle);
1031 return heap()->exception();
1035 Object* Isolate::ReThrow(Object* exception) {
1036 DCHECK(!has_pending_exception());
1038 // Set the exception being re-thrown.
1039 set_pending_exception(exception);
1040 return heap()->exception();
1044 Object* Isolate::UnwindAndFindHandler() {
1045 Object* exception = pending_exception();
1047 Code* code = nullptr;
1048 Context* context = nullptr;
1049 intptr_t offset = 0;
1050 Address handler_sp = nullptr;
1051 Address handler_fp = nullptr;
1053 // Special handling of termination exceptions, uncatchable by JavaScript code,
1054 // we unwind the handlers until the top ENTRY handler is found.
1055 bool catchable_by_js = is_catchable_by_javascript(exception);
1057 // Compute handler and stack unwinding information by performing a full walk
1058 // over the stack and dispatching according to the frame type.
1059 for (StackFrameIterator iter(this); !iter.done(); iter.Advance()) {
1060 StackFrame* frame = iter.frame();
1062 // For JSEntryStub frames we always have a handler.
1063 if (frame->is_entry() || frame->is_entry_construct()) {
1064 StackHandler* handler = frame->top_handler();
1066 // Restore the next handler.
1067 thread_local_top()->handler_ = handler->next()->address();
1069 // Gather information from the handler.
1070 code = frame->LookupCode();
1071 handler_sp = handler->address() + StackHandlerConstants::kSize;
1072 offset = Smi::cast(code->handler_table()->get(0))->value();
1076 // For optimized frames we perform a lookup in the handler table.
1077 if (frame->is_optimized() && catchable_by_js) {
1078 OptimizedFrame* js_frame = static_cast<OptimizedFrame*>(frame);
1079 int stack_slots = 0; // Will contain stack slot count of frame.
1080 offset = js_frame->LookupExceptionHandlerInTable(&stack_slots, NULL);
1082 // Compute the stack pointer from the frame pointer. This ensures that
1083 // argument slots on the stack are dropped as returning would.
1084 Address return_sp = frame->fp() -
1085 StandardFrameConstants::kFixedFrameSizeFromFp -
1086 stack_slots * kPointerSize;
1088 // Gather information from the frame.
1089 code = frame->LookupCode();
1090 handler_sp = return_sp;
1091 handler_fp = frame->fp();
1096 // For JavaScript frames we perform a range lookup in the handler table.
1097 if (frame->is_java_script() && catchable_by_js) {
1098 JavaScriptFrame* js_frame = static_cast<JavaScriptFrame*>(frame);
1099 int stack_slots = 0; // Will contain operand stack depth of handler.
1100 offset = js_frame->LookupExceptionHandlerInTable(&stack_slots, NULL);
1102 // Compute the stack pointer from the frame pointer. This ensures that
1103 // operand stack slots are dropped for nested statements. Also restore
1104 // correct context for the handler which is pushed within the try-block.
1105 Address return_sp = frame->fp() -
1106 StandardFrameConstants::kFixedFrameSizeFromFp -
1107 stack_slots * kPointerSize;
1108 STATIC_ASSERT(TryBlockConstant::kElementCount == 1);
1109 context = Context::cast(Memory::Object_at(return_sp - kPointerSize));
1111 // Gather information from the frame.
1112 code = frame->LookupCode();
1113 handler_sp = return_sp;
1114 handler_fp = frame->fp();
1119 RemoveMaterializedObjectsOnUnwind(frame);
1122 // Handler must exist.
1123 CHECK(code != nullptr);
1125 // Store information to be consumed by the CEntryStub.
1126 thread_local_top()->pending_handler_context_ = context;
1127 thread_local_top()->pending_handler_code_ = code;
1128 thread_local_top()->pending_handler_offset_ = offset;
1129 thread_local_top()->pending_handler_fp_ = handler_fp;
1130 thread_local_top()->pending_handler_sp_ = handler_sp;
1132 // Return and clear pending exception.
1133 clear_pending_exception();
1138 Isolate::CatchType Isolate::PredictExceptionCatcher() {
1139 Address external_handler = thread_local_top()->try_catch_handler_address();
1140 Address entry_handler = Isolate::handler(thread_local_top());
1141 if (IsExternalHandlerOnTop(nullptr)) return CAUGHT_BY_EXTERNAL;
1143 // Search for an exception handler by performing a full walk over the stack.
1144 for (StackFrameIterator iter(this); !iter.done(); iter.Advance()) {
1145 StackFrame* frame = iter.frame();
1147 // For JSEntryStub frames we update the JS_ENTRY handler.
1148 if (frame->is_entry() || frame->is_entry_construct()) {
1149 entry_handler = frame->top_handler()->next()->address();
1152 // For JavaScript frames we perform a lookup in the handler table.
1153 if (frame->is_java_script()) {
1154 JavaScriptFrame* js_frame = static_cast<JavaScriptFrame*>(frame);
1155 int stack_slots = 0; // The computed stack slot count is not used.
1156 HandlerTable::CatchPrediction prediction;
1157 if (js_frame->LookupExceptionHandlerInTable(&stack_slots, &prediction) >
1159 // We are conservative with our prediction: try-finally is considered
1160 // to always rethrow, to meet the expectation of the debugger.
1161 if (prediction == HandlerTable::CAUGHT) return CAUGHT_BY_JAVASCRIPT;
1165 // The exception has been externally caught if and only if there is an
1166 // external handler which is on top of the top-most JS_ENTRY handler.
1167 if (external_handler != nullptr && !try_catch_handler()->is_verbose_) {
1168 if (entry_handler == nullptr || entry_handler > external_handler) {
1169 return CAUGHT_BY_EXTERNAL;
1174 // Handler not found.
1179 void Isolate::RemoveMaterializedObjectsOnUnwind(StackFrame* frame) {
1180 if (frame->is_optimized()) {
1181 bool removed = materialized_object_store_->Remove(frame->fp());
1183 // If there were any materialized objects, the code should be
1184 // marked for deopt.
1185 DCHECK(!removed || frame->LookupCode()->marked_for_deoptimization());
1190 Object* Isolate::ThrowIllegalOperation() {
1191 if (FLAG_stack_trace_on_illegal) PrintStack(stdout);
1192 return Throw(heap()->illegal_access_string());
1196 void Isolate::ScheduleThrow(Object* exception) {
1197 // When scheduling a throw we first throw the exception to get the
1198 // error reporting if it is uncaught before rescheduling it.
1200 PropagatePendingExceptionToExternalTryCatch();
1201 if (has_pending_exception()) {
1202 thread_local_top()->scheduled_exception_ = pending_exception();
1203 thread_local_top()->external_caught_exception_ = false;
1204 clear_pending_exception();
1209 void Isolate::RestorePendingMessageFromTryCatch(v8::TryCatch* handler) {
1210 DCHECK(handler == try_catch_handler());
1211 DCHECK(handler->HasCaught());
1212 DCHECK(handler->rethrow_);
1213 DCHECK(handler->capture_message_);
1214 Object* message = reinterpret_cast<Object*>(handler->message_obj_);
1215 DCHECK(message->IsJSMessageObject() || message->IsTheHole());
1216 thread_local_top()->pending_message_obj_ = message;
1220 void Isolate::CancelScheduledExceptionFromTryCatch(v8::TryCatch* handler) {
1221 DCHECK(has_scheduled_exception());
1222 if (scheduled_exception() == handler->exception_) {
1223 DCHECK(scheduled_exception() != heap()->termination_exception());
1224 clear_scheduled_exception();
1229 Object* Isolate::PromoteScheduledException() {
1230 Object* thrown = scheduled_exception();
1231 clear_scheduled_exception();
1232 // Re-throw the exception to avoid getting repeated error reporting.
1233 return ReThrow(thrown);
1237 void Isolate::PrintCurrentStackTrace(FILE* out) {
1238 StackTraceFrameIterator it(this);
1239 while (!it.done()) {
1240 HandleScope scope(this);
1241 // Find code position if recorded in relocation info.
1242 JavaScriptFrame* frame = it.frame();
1243 int pos = frame->LookupCode()->SourcePosition(frame->pc());
1244 Handle<Object> pos_obj(Smi::FromInt(pos), this);
1245 // Fetch function and receiver.
1246 Handle<JSFunction> fun(frame->function());
1247 Handle<Object> recv(frame->receiver(), this);
1248 // Advance to the next JavaScript frame and determine if the
1249 // current frame is the top-level frame.
1251 Handle<Object> is_top_level = factory()->ToBoolean(it.done());
1252 // Generate and print stack trace line.
1253 Handle<String> line =
1254 Execution::GetStackTraceLine(recv, fun, pos_obj, is_top_level);
1255 if (line->length() > 0) {
1263 void Isolate::ComputeLocation(MessageLocation* target) {
1264 *target = MessageLocation(Handle<Script>(heap_.empty_script()), -1, -1);
1265 StackTraceFrameIterator it(this);
1267 JavaScriptFrame* frame = it.frame();
1268 JSFunction* fun = frame->function();
1269 Object* script = fun->shared()->script();
1270 if (script->IsScript() &&
1271 !(Script::cast(script)->source()->IsUndefined())) {
1272 int pos = frame->LookupCode()->SourcePosition(frame->pc());
1273 // Compute the location from the function and the reloc info.
1274 Handle<Script> casted_script(Script::cast(script));
1275 *target = MessageLocation(casted_script, pos, pos + 1, handle(fun));
1281 bool Isolate::ComputeLocationFromException(MessageLocation* target,
1282 Handle<Object> exception) {
1283 if (!exception->IsJSObject()) return false;
1285 Handle<Name> start_pos_symbol = factory()->error_start_pos_symbol();
1286 Handle<Object> start_pos = JSReceiver::GetDataProperty(
1287 Handle<JSObject>::cast(exception), start_pos_symbol);
1288 if (!start_pos->IsSmi()) return false;
1289 int start_pos_value = Handle<Smi>::cast(start_pos)->value();
1291 Handle<Name> end_pos_symbol = factory()->error_end_pos_symbol();
1292 Handle<Object> end_pos = JSReceiver::GetDataProperty(
1293 Handle<JSObject>::cast(exception), end_pos_symbol);
1294 if (!end_pos->IsSmi()) return false;
1295 int end_pos_value = Handle<Smi>::cast(end_pos)->value();
1297 Handle<Name> script_symbol = factory()->error_script_symbol();
1298 Handle<Object> script = JSReceiver::GetDataProperty(
1299 Handle<JSObject>::cast(exception), script_symbol);
1300 if (!script->IsScript()) return false;
1302 Handle<Script> cast_script(Script::cast(*script));
1303 *target = MessageLocation(cast_script, start_pos_value, end_pos_value);
1308 bool Isolate::ComputeLocationFromStackTrace(MessageLocation* target,
1309 Handle<Object> exception) {
1310 *target = MessageLocation(Handle<Script>(heap_.empty_script()), -1, -1);
1312 if (!exception->IsJSObject()) return false;
1313 Handle<Name> key = factory()->stack_trace_symbol();
1314 Handle<Object> property =
1315 JSReceiver::GetDataProperty(Handle<JSObject>::cast(exception), key);
1316 if (!property->IsJSArray()) return false;
1317 Handle<JSArray> simple_stack_trace = Handle<JSArray>::cast(property);
1319 Handle<FixedArray> elements(FixedArray::cast(simple_stack_trace->elements()));
1320 int elements_limit = Smi::cast(simple_stack_trace->length())->value();
1322 for (int i = 1; i < elements_limit; i += 4) {
1323 Handle<JSFunction> fun =
1324 handle(JSFunction::cast(elements->get(i + 1)), this);
1325 if (!fun->IsSubjectToDebugging()) continue;
1327 Object* script = fun->shared()->script();
1328 if (script->IsScript() &&
1329 !(Script::cast(script)->source()->IsUndefined())) {
1330 int pos = PositionFromStackTrace(elements, i);
1331 Handle<Script> casted_script(Script::cast(script));
1332 *target = MessageLocation(casted_script, pos, pos + 1);
1340 // Traverse prototype chain to find out whether the object is derived from
1341 // the Error object.
1342 bool Isolate::IsErrorObject(Handle<Object> obj) {
1343 if (!obj->IsJSObject()) return false;
1344 Handle<Object> error_constructor = error_function();
1345 DisallowHeapAllocation no_gc;
1346 for (PrototypeIterator iter(this, *obj, PrototypeIterator::START_AT_RECEIVER);
1347 !iter.IsAtEnd(); iter.Advance()) {
1348 if (iter.GetCurrent()->IsJSProxy()) return false;
1349 if (JSObject::cast(iter.GetCurrent())->map()->GetConstructor() ==
1350 *error_constructor) {
1358 Handle<JSMessageObject> Isolate::CreateMessage(Handle<Object> exception,
1359 MessageLocation* location) {
1360 Handle<JSArray> stack_trace_object;
1361 MessageLocation potential_computed_location;
1362 if (capture_stack_trace_for_uncaught_exceptions_) {
1363 if (IsErrorObject(exception)) {
1364 // We fetch the stack trace that corresponds to this error object.
1365 // If the lookup fails, the exception is probably not a valid Error
1366 // object. In that case, we fall through and capture the stack trace
1367 // at this throw site.
1368 stack_trace_object =
1369 GetDetailedStackTrace(Handle<JSObject>::cast(exception));
1371 if (stack_trace_object.is_null()) {
1372 // Not an error object, we capture stack and location at throw site.
1373 stack_trace_object = CaptureCurrentStackTrace(
1374 stack_trace_for_uncaught_exceptions_frame_limit_,
1375 stack_trace_for_uncaught_exceptions_options_);
1379 if (!ComputeLocationFromException(&potential_computed_location,
1381 if (!ComputeLocationFromStackTrace(&potential_computed_location,
1383 ComputeLocation(&potential_computed_location);
1386 location = &potential_computed_location;
1389 return MessageHandler::MakeMessageObject(
1390 this, MessageTemplate::kUncaughtException, location, exception,
1391 stack_trace_object);
1395 bool Isolate::IsJavaScriptHandlerOnTop(Object* exception) {
1396 DCHECK_NE(heap()->the_hole_value(), exception);
1398 // For uncatchable exceptions, the JavaScript handler cannot be on top.
1399 if (!is_catchable_by_javascript(exception)) return false;
1401 // Get the top-most JS_ENTRY handler, cannot be on top if it doesn't exist.
1402 Address entry_handler = Isolate::handler(thread_local_top());
1403 if (entry_handler == nullptr) return false;
1405 // Get the address of the external handler so we can compare the address to
1406 // determine which one is closer to the top of the stack.
1407 Address external_handler = thread_local_top()->try_catch_handler_address();
1408 if (external_handler == nullptr) return true;
1410 // The exception has been externally caught if and only if there is an
1411 // external handler which is on top of the top-most JS_ENTRY handler.
1413 // Note, that finally clauses would re-throw an exception unless it's aborted
1414 // by jumps in control flow (like return, break, etc.) and we'll have another
1415 // chance to set proper v8::TryCatch later.
1416 return (entry_handler < external_handler);
1420 bool Isolate::IsExternalHandlerOnTop(Object* exception) {
1421 DCHECK_NE(heap()->the_hole_value(), exception);
1423 // Get the address of the external handler so we can compare the address to
1424 // determine which one is closer to the top of the stack.
1425 Address external_handler = thread_local_top()->try_catch_handler_address();
1426 if (external_handler == nullptr) return false;
1428 // For uncatchable exceptions, the external handler is always on top.
1429 if (!is_catchable_by_javascript(exception)) return true;
1431 // Get the top-most JS_ENTRY handler, cannot be on top if it doesn't exist.
1432 Address entry_handler = Isolate::handler(thread_local_top());
1433 if (entry_handler == nullptr) return true;
1435 // The exception has been externally caught if and only if there is an
1436 // external handler which is on top of the top-most JS_ENTRY handler.
1438 // Note, that finally clauses would re-throw an exception unless it's aborted
1439 // by jumps in control flow (like return, break, etc.) and we'll have another
1440 // chance to set proper v8::TryCatch later.
1441 return (entry_handler > external_handler);
1445 void Isolate::ReportPendingMessages() {
1446 Object* exception = pending_exception();
1448 // Try to propagate the exception to an external v8::TryCatch handler. If
1449 // propagation was unsuccessful, then we will get another chance at reporting
1450 // the pending message if the exception is re-thrown.
1451 bool has_been_propagated = PropagatePendingExceptionToExternalTryCatch();
1452 if (!has_been_propagated) return;
1454 // Clear the pending message object early to avoid endless recursion.
1455 Object* message_obj = thread_local_top_.pending_message_obj_;
1456 clear_pending_message();
1458 // For uncatchable exceptions we do nothing. If needed, the exception and the
1459 // message have already been propagated to v8::TryCatch.
1460 if (!is_catchable_by_javascript(exception)) return;
1462 // Determine whether the message needs to be reported to all message handlers
1463 // depending on whether and external v8::TryCatch or an internal JavaScript
1464 // handler is on top.
1465 bool should_report_exception;
1466 if (IsExternalHandlerOnTop(exception)) {
1467 // Only report the exception if the external handler is verbose.
1468 should_report_exception = try_catch_handler()->is_verbose_;
1470 // Report the exception if it isn't caught by JavaScript code.
1471 should_report_exception = !IsJavaScriptHandlerOnTop(exception);
1474 // Actually report the pending message to all message handlers.
1475 if (!message_obj->IsTheHole() && should_report_exception) {
1476 HandleScope scope(this);
1477 Handle<JSMessageObject> message(JSMessageObject::cast(message_obj));
1478 Handle<JSValue> script_wrapper(JSValue::cast(message->script()));
1479 Handle<Script> script(Script::cast(script_wrapper->value()));
1480 int start_pos = message->start_position();
1481 int end_pos = message->end_position();
1482 MessageLocation location(script, start_pos, end_pos);
1483 MessageHandler::ReportMessage(this, &location, message);
1488 MessageLocation Isolate::GetMessageLocation() {
1489 DCHECK(has_pending_exception());
1491 if (thread_local_top_.pending_exception_ != heap()->termination_exception() &&
1492 !thread_local_top_.pending_message_obj_->IsTheHole()) {
1493 Handle<JSMessageObject> message_obj(
1494 JSMessageObject::cast(thread_local_top_.pending_message_obj_));
1495 Handle<JSValue> script_wrapper(JSValue::cast(message_obj->script()));
1496 Handle<Script> script(Script::cast(script_wrapper->value()));
1497 int start_pos = message_obj->start_position();
1498 int end_pos = message_obj->end_position();
1499 return MessageLocation(script, start_pos, end_pos);
1502 return MessageLocation();
1506 bool Isolate::OptionalRescheduleException(bool is_bottom_call) {
1507 DCHECK(has_pending_exception());
1508 PropagatePendingExceptionToExternalTryCatch();
1510 bool is_termination_exception =
1511 pending_exception() == heap_.termination_exception();
1513 // Do not reschedule the exception if this is the bottom call.
1514 bool clear_exception = is_bottom_call;
1516 if (is_termination_exception) {
1517 if (is_bottom_call) {
1518 thread_local_top()->external_caught_exception_ = false;
1519 clear_pending_exception();
1522 } else if (thread_local_top()->external_caught_exception_) {
1523 // If the exception is externally caught, clear it if there are no
1524 // JavaScript frames on the way to the C++ frame that has the
1525 // external handler.
1526 DCHECK(thread_local_top()->try_catch_handler_address() != NULL);
1527 Address external_handler_address =
1528 thread_local_top()->try_catch_handler_address();
1529 JavaScriptFrameIterator it(this);
1530 if (it.done() || (it.frame()->sp() > external_handler_address)) {
1531 clear_exception = true;
1535 // Clear the exception if needed.
1536 if (clear_exception) {
1537 thread_local_top()->external_caught_exception_ = false;
1538 clear_pending_exception();
1542 // Reschedule the exception.
1543 thread_local_top()->scheduled_exception_ = pending_exception();
1544 clear_pending_exception();
1549 void Isolate::PushPromise(Handle<JSObject> promise,
1550 Handle<JSFunction> function) {
1551 ThreadLocalTop* tltop = thread_local_top();
1552 PromiseOnStack* prev = tltop->promise_on_stack_;
1553 Handle<JSObject> global_promise =
1554 Handle<JSObject>::cast(global_handles()->Create(*promise));
1555 Handle<JSFunction> global_function =
1556 Handle<JSFunction>::cast(global_handles()->Create(*function));
1557 tltop->promise_on_stack_ =
1558 new PromiseOnStack(global_function, global_promise, prev);
1562 void Isolate::PopPromise() {
1563 ThreadLocalTop* tltop = thread_local_top();
1564 if (tltop->promise_on_stack_ == NULL) return;
1565 PromiseOnStack* prev = tltop->promise_on_stack_->prev();
1566 Handle<Object> global_function = tltop->promise_on_stack_->function();
1567 Handle<Object> global_promise = tltop->promise_on_stack_->promise();
1568 delete tltop->promise_on_stack_;
1569 tltop->promise_on_stack_ = prev;
1570 global_handles()->Destroy(global_function.location());
1571 global_handles()->Destroy(global_promise.location());
1575 Handle<Object> Isolate::GetPromiseOnStackOnThrow() {
1576 Handle<Object> undefined = factory()->undefined_value();
1577 ThreadLocalTop* tltop = thread_local_top();
1578 if (tltop->promise_on_stack_ == NULL) return undefined;
1579 Handle<JSFunction> promise_function = tltop->promise_on_stack_->function();
1580 // Find the top-most try-catch or try-finally handler.
1581 if (PredictExceptionCatcher() != CAUGHT_BY_JAVASCRIPT) return undefined;
1582 for (JavaScriptFrameIterator it(this); !it.done(); it.Advance()) {
1583 JavaScriptFrame* frame = it.frame();
1584 int stack_slots = 0; // The computed stack slot count is not used.
1585 if (frame->LookupExceptionHandlerInTable(&stack_slots, NULL) > 0) {
1586 // Throwing inside a Promise only leads to a reject if not caught by an
1587 // inner try-catch or try-finally.
1588 if (frame->function() == *promise_function) {
1589 return tltop->promise_on_stack_->promise();
1598 void Isolate::SetCaptureStackTraceForUncaughtExceptions(
1601 StackTrace::StackTraceOptions options) {
1602 capture_stack_trace_for_uncaught_exceptions_ = capture;
1603 stack_trace_for_uncaught_exceptions_frame_limit_ = frame_limit;
1604 stack_trace_for_uncaught_exceptions_options_ = options;
1608 Handle<Context> Isolate::native_context() {
1609 return handle(context()->native_context());
1613 Handle<Context> Isolate::GetCallingNativeContext() {
1614 JavaScriptFrameIterator it(this);
1615 if (debug_->in_debug_scope()) {
1616 while (!it.done()) {
1617 JavaScriptFrame* frame = it.frame();
1618 Context* context = Context::cast(frame->context());
1619 if (context->native_context() == *debug_->debug_context()) {
1626 if (it.done()) return Handle<Context>::null();
1627 JavaScriptFrame* frame = it.frame();
1628 Context* context = Context::cast(frame->context());
1629 return Handle<Context>(context->native_context());
1633 char* Isolate::ArchiveThread(char* to) {
1634 MemCopy(to, reinterpret_cast<char*>(thread_local_top()),
1635 sizeof(ThreadLocalTop));
1636 InitializeThreadLocal();
1637 clear_pending_exception();
1638 clear_pending_message();
1639 clear_scheduled_exception();
1640 return to + sizeof(ThreadLocalTop);
1644 char* Isolate::RestoreThread(char* from) {
1645 MemCopy(reinterpret_cast<char*>(thread_local_top()), from,
1646 sizeof(ThreadLocalTop));
1647 // This might be just paranoia, but it seems to be needed in case a
1648 // thread_local_top_ is restored on a separate OS thread.
1649 #ifdef USE_SIMULATOR
1650 thread_local_top()->simulator_ = Simulator::current(this);
1652 DCHECK(context() == NULL || context()->IsContext());
1653 return from + sizeof(ThreadLocalTop);
1657 Isolate::ThreadDataTable::ThreadDataTable()
1662 Isolate::ThreadDataTable::~ThreadDataTable() {
1663 // TODO(svenpanne) The assertion below would fire if an embedder does not
1664 // cleanly dispose all Isolates before disposing v8, so we are conservative
1665 // and leave it out for now.
1666 // DCHECK_NULL(list_);
1670 Isolate::PerIsolateThreadData::~PerIsolateThreadData() {
1671 #if defined(USE_SIMULATOR)
1677 Isolate::PerIsolateThreadData*
1678 Isolate::ThreadDataTable::Lookup(Isolate* isolate,
1679 ThreadId thread_id) {
1680 for (PerIsolateThreadData* data = list_; data != NULL; data = data->next_) {
1681 if (data->Matches(isolate, thread_id)) return data;
1687 void Isolate::ThreadDataTable::Insert(Isolate::PerIsolateThreadData* data) {
1688 if (list_ != NULL) list_->prev_ = data;
1689 data->next_ = list_;
1694 void Isolate::ThreadDataTable::Remove(PerIsolateThreadData* data) {
1695 if (list_ == data) list_ = data->next_;
1696 if (data->next_ != NULL) data->next_->prev_ = data->prev_;
1697 if (data->prev_ != NULL) data->prev_->next_ = data->next_;
1702 void Isolate::ThreadDataTable::RemoveAllThreads(Isolate* isolate) {
1703 PerIsolateThreadData* data = list_;
1704 while (data != NULL) {
1705 PerIsolateThreadData* next = data->next_;
1706 if (data->isolate() == isolate) Remove(data);
1713 #define TRACE_ISOLATE(tag) \
1715 if (FLAG_trace_isolates) { \
1716 PrintF("Isolate %p (id %d)" #tag "\n", \
1717 reinterpret_cast<void*>(this), id()); \
1721 #define TRACE_ISOLATE(tag)
1725 Isolate::Isolate(bool enable_serializer)
1728 stack_trace_nesting_level_(0),
1729 incomplete_message_(NULL),
1730 bootstrapper_(NULL),
1731 runtime_profiler_(NULL),
1732 compilation_cache_(NULL),
1738 code_aging_helper_(NULL),
1739 deoptimizer_data_(NULL),
1740 materialized_object_store_(NULL),
1741 capture_stack_trace_for_uncaught_exceptions_(false),
1742 stack_trace_for_uncaught_exceptions_frame_limit_(0),
1743 stack_trace_for_uncaught_exceptions_options_(StackTrace::kOverview),
1744 memory_allocator_(NULL),
1745 keyed_lookup_cache_(NULL),
1746 context_slot_cache_(NULL),
1747 descriptor_lookup_cache_(NULL),
1748 handle_scope_implementer_(NULL),
1749 unicode_cache_(NULL),
1750 inner_pointer_to_code_cache_(NULL),
1751 global_handles_(NULL),
1752 eternal_handles_(NULL),
1753 thread_manager_(NULL),
1754 has_installed_extensions_(false),
1755 regexp_stack_(NULL),
1757 call_descriptor_data_(NULL),
1758 // TODO(bmeurer) Initialized lazily because it depends on flags; can
1759 // be fixed once the default isolate cleanup is done.
1760 random_number_generator_(NULL),
1761 store_buffer_hash_set_1_address_(NULL),
1762 store_buffer_hash_set_2_address_(NULL),
1763 serializer_enabled_(enable_serializer),
1764 has_fatal_error_(false),
1765 initialized_from_snapshot_(false),
1766 cpu_profiler_(NULL),
1767 heap_profiler_(NULL),
1768 function_entry_hook_(NULL),
1769 deferred_handles_head_(NULL),
1770 optimizing_compile_dispatcher_(NULL),
1771 stress_deopt_count_(0),
1772 next_optimization_id_(0),
1774 next_unique_sfi_id_(0),
1776 use_counter_callback_(NULL),
1777 basic_block_profiler_(NULL) {
1779 base::LockGuard<base::Mutex> lock_guard(thread_data_table_mutex_.Pointer());
1780 CHECK(thread_data_table_);
1782 id_ = base::NoBarrier_AtomicIncrement(&isolate_counter_, 1);
1783 TRACE_ISOLATE(constructor);
1785 memset(isolate_addresses_, 0,
1786 sizeof(isolate_addresses_[0]) * (kIsolateAddressCount + 1));
1788 heap_.isolate_ = this;
1789 stack_guard_.isolate_ = this;
1791 // ThreadManager is initialized early to support locking an isolate
1792 // before it is entered.
1793 thread_manager_ = new ThreadManager();
1794 thread_manager_->isolate_ = this;
1797 // heap_histograms_ initializes itself.
1798 memset(&js_spill_information_, 0, sizeof(js_spill_information_));
1801 handle_scope_data_.Initialize();
1803 #define ISOLATE_INIT_EXECUTE(type, name, initial_value) \
1804 name##_ = (initial_value);
1805 ISOLATE_INIT_LIST(ISOLATE_INIT_EXECUTE)
1806 #undef ISOLATE_INIT_EXECUTE
1808 #define ISOLATE_INIT_ARRAY_EXECUTE(type, name, length) \
1809 memset(name##_, 0, sizeof(type) * length);
1810 ISOLATE_INIT_ARRAY_LIST(ISOLATE_INIT_ARRAY_EXECUTE)
1811 #undef ISOLATE_INIT_ARRAY_EXECUTE
1813 InitializeLoggingAndCounters();
1814 debug_ = new Debug(this);
1818 void Isolate::TearDown() {
1819 TRACE_ISOLATE(tear_down);
1821 // Temporarily set this isolate as current so that various parts of
1822 // the isolate can access it in their destructors without having a
1823 // direct pointer. We don't use Enter/Exit here to avoid
1824 // initializing the thread data.
1825 PerIsolateThreadData* saved_data = CurrentPerIsolateThreadData();
1826 Isolate* saved_isolate = UncheckedCurrent();
1827 SetIsolateThreadLocals(this, NULL);
1832 base::LockGuard<base::Mutex> lock_guard(thread_data_table_mutex_.Pointer());
1833 thread_data_table_->RemoveAllThreads(this);
1838 // Restore the previous current isolate.
1839 SetIsolateThreadLocals(saved_isolate, saved_data);
1843 void Isolate::GlobalTearDown() {
1844 delete thread_data_table_;
1845 thread_data_table_ = NULL;
1849 void Isolate::ClearSerializerData() {
1850 delete external_reference_table_;
1851 external_reference_table_ = NULL;
1852 delete external_reference_map_;
1853 external_reference_map_ = NULL;
1854 delete root_index_map_;
1855 root_index_map_ = NULL;
1859 void Isolate::Deinit() {
1860 TRACE_ISOLATE(deinit);
1864 FreeThreadResources();
1866 if (concurrent_recompilation_enabled()) {
1867 optimizing_compile_dispatcher_->Stop();
1868 delete optimizing_compile_dispatcher_;
1869 optimizing_compile_dispatcher_ = NULL;
1872 if (heap_.mark_compact_collector()->sweeping_in_progress()) {
1873 heap_.mark_compact_collector()->EnsureSweepingCompleted();
1876 DumpAndResetCompilationStats();
1878 if (FLAG_print_deopt_stress) {
1879 PrintF(stdout, "=== Stress deopt counter: %u\n", stress_deopt_count_);
1882 // We must stop the logger before we tear down other components.
1883 Sampler* sampler = logger_->sampler();
1884 if (sampler && sampler->IsActive()) sampler->Stop();
1886 delete interpreter_;
1887 interpreter_ = NULL;
1889 delete deoptimizer_data_;
1890 deoptimizer_data_ = NULL;
1891 builtins_.TearDown();
1892 bootstrapper_->TearDown();
1894 if (runtime_profiler_ != NULL) {
1895 delete runtime_profiler_;
1896 runtime_profiler_ = NULL;
1899 delete basic_block_profiler_;
1900 basic_block_profiler_ = NULL;
1902 for (Cancelable* task : cancelable_tasks_) {
1905 cancelable_tasks_.clear();
1908 logger_->TearDown();
1910 delete heap_profiler_;
1911 heap_profiler_ = NULL;
1912 delete cpu_profiler_;
1913 cpu_profiler_ = NULL;
1915 ClearSerializerData();
1919 void Isolate::SetIsolateThreadLocals(Isolate* isolate,
1920 PerIsolateThreadData* data) {
1921 base::Thread::SetThreadLocal(isolate_key_, isolate);
1922 base::Thread::SetThreadLocal(per_isolate_thread_data_key_, data);
1926 Isolate::~Isolate() {
1927 TRACE_ISOLATE(destructor);
1929 // Has to be called while counters_ are still alive
1930 runtime_zone_.DeleteKeptSegment();
1932 // The entry stack must be empty when we get here.
1933 DCHECK(entry_stack_ == NULL || entry_stack_->previous_item == NULL);
1935 delete entry_stack_;
1936 entry_stack_ = NULL;
1938 delete unicode_cache_;
1939 unicode_cache_ = NULL;
1944 delete[] call_descriptor_data_;
1945 call_descriptor_data_ = NULL;
1947 delete regexp_stack_;
1948 regexp_stack_ = NULL;
1950 delete descriptor_lookup_cache_;
1951 descriptor_lookup_cache_ = NULL;
1952 delete context_slot_cache_;
1953 context_slot_cache_ = NULL;
1954 delete keyed_lookup_cache_;
1955 keyed_lookup_cache_ = NULL;
1959 delete code_aging_helper_;
1960 code_aging_helper_ = NULL;
1961 delete stats_table_;
1962 stats_table_ = NULL;
1964 delete materialized_object_store_;
1965 materialized_object_store_ = NULL;
1973 delete handle_scope_implementer_;
1974 handle_scope_implementer_ = NULL;
1976 delete code_tracer();
1977 set_code_tracer(NULL);
1979 delete compilation_cache_;
1980 compilation_cache_ = NULL;
1981 delete bootstrapper_;
1982 bootstrapper_ = NULL;
1983 delete inner_pointer_to_code_cache_;
1984 inner_pointer_to_code_cache_ = NULL;
1986 delete thread_manager_;
1987 thread_manager_ = NULL;
1989 delete memory_allocator_;
1990 memory_allocator_ = NULL;
1993 delete global_handles_;
1994 global_handles_ = NULL;
1995 delete eternal_handles_;
1996 eternal_handles_ = NULL;
1998 delete string_stream_debug_object_cache_;
1999 string_stream_debug_object_cache_ = NULL;
2001 delete random_number_generator_;
2002 random_number_generator_ = NULL;
2008 Simulator::TearDown(simulator_i_cache_, simulator_redirection_);
2009 simulator_i_cache_ = nullptr;
2010 simulator_redirection_ = nullptr;
2015 void Isolate::InitializeThreadLocal() {
2016 thread_local_top_.isolate_ = this;
2017 thread_local_top_.Initialize();
2021 bool Isolate::PropagatePendingExceptionToExternalTryCatch() {
2022 Object* exception = pending_exception();
2024 if (IsJavaScriptHandlerOnTop(exception)) {
2025 thread_local_top_.external_caught_exception_ = false;
2029 if (!IsExternalHandlerOnTop(exception)) {
2030 thread_local_top_.external_caught_exception_ = false;
2034 thread_local_top_.external_caught_exception_ = true;
2035 if (!is_catchable_by_javascript(exception)) {
2036 try_catch_handler()->can_continue_ = false;
2037 try_catch_handler()->has_terminated_ = true;
2038 try_catch_handler()->exception_ = heap()->null_value();
2040 v8::TryCatch* handler = try_catch_handler();
2041 DCHECK(thread_local_top_.pending_message_obj_->IsJSMessageObject() ||
2042 thread_local_top_.pending_message_obj_->IsTheHole());
2043 handler->can_continue_ = true;
2044 handler->has_terminated_ = false;
2045 handler->exception_ = pending_exception();
2046 // Propagate to the external try-catch only if we got an actual message.
2047 if (thread_local_top_.pending_message_obj_->IsTheHole()) return true;
2049 handler->message_obj_ = thread_local_top_.pending_message_obj_;
2055 void Isolate::InitializeLoggingAndCounters() {
2056 if (logger_ == NULL) {
2057 logger_ = new Logger(this);
2059 if (counters_ == NULL) {
2060 counters_ = new Counters(this);
2065 bool Isolate::Init(Deserializer* des) {
2066 TRACE_ISOLATE(init);
2068 stress_deopt_count_ = FLAG_deopt_every_n_times;
2070 has_fatal_error_ = false;
2072 if (function_entry_hook() != NULL) {
2073 // When function entry hooking is in effect, we have to create the code
2074 // stubs from scratch to get entry hooks, rather than loading the previously
2075 // generated stubs from disk.
2076 // If this assert fires, the initialization path has regressed.
2077 DCHECK(des == NULL);
2080 // The initialization process does not handle memory exhaustion.
2081 DisallowAllocationFailure disallow_allocation_failure(this);
2083 memory_allocator_ = new MemoryAllocator(this);
2084 code_range_ = new CodeRange(this);
2086 // Safe after setting Heap::isolate_, and initializing StackGuard
2087 heap_.SetStackLimits();
2089 #define ASSIGN_ELEMENT(CamelName, hacker_name) \
2090 isolate_addresses_[Isolate::k##CamelName##Address] = \
2091 reinterpret_cast<Address>(hacker_name##_address());
2092 FOR_EACH_ISOLATE_ADDRESS_NAME(ASSIGN_ELEMENT)
2093 #undef ASSIGN_ELEMENT
2095 compilation_cache_ = new CompilationCache(this);
2096 keyed_lookup_cache_ = new KeyedLookupCache();
2097 context_slot_cache_ = new ContextSlotCache();
2098 descriptor_lookup_cache_ = new DescriptorLookupCache();
2099 unicode_cache_ = new UnicodeCache();
2100 inner_pointer_to_code_cache_ = new InnerPointerToCodeCache(this);
2101 global_handles_ = new GlobalHandles(this);
2102 eternal_handles_ = new EternalHandles();
2103 bootstrapper_ = new Bootstrapper(this);
2104 handle_scope_implementer_ = new HandleScopeImplementer(this);
2105 stub_cache_ = new StubCache(this);
2106 materialized_object_store_ = new MaterializedObjectStore(this);
2107 regexp_stack_ = new RegExpStack();
2108 regexp_stack_->isolate_ = this;
2109 date_cache_ = new DateCache();
2110 call_descriptor_data_ =
2111 new CallInterfaceDescriptorData[CallDescriptors::NUMBER_OF_DESCRIPTORS];
2112 cpu_profiler_ = new CpuProfiler(this);
2113 heap_profiler_ = new HeapProfiler(heap());
2114 interpreter_ = new interpreter::Interpreter(this);
2116 // Enable logging before setting up the heap
2117 logger_->SetUp(this);
2119 // Initialize other runtime facilities
2120 #if defined(USE_SIMULATOR)
2121 #if V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_MIPS || \
2122 V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_PPC
2123 Simulator::Initialize(this);
2127 code_aging_helper_ = new CodeAgingHelper();
2130 // Ensure that the thread has a valid stack guard. The v8::Locker object
2131 // will ensure this too, but we don't have to use lockers if we are only
2132 // using one thread.
2133 ExecutionAccess lock(this);
2134 stack_guard_.InitThread(lock);
2137 // SetUp the object heap.
2138 DCHECK(!heap_.HasBeenSetUp());
2139 if (!heap_.SetUp()) {
2140 V8::FatalProcessOutOfMemory("heap setup");
2144 deoptimizer_data_ = new DeoptimizerData(memory_allocator_);
2146 const bool create_heap_objects = (des == NULL);
2147 if (create_heap_objects && !heap_.CreateHeapObjects()) {
2148 V8::FatalProcessOutOfMemory("heap object creation");
2152 if (create_heap_objects) {
2153 // Terminate the cache array with the sentinel so we can iterate.
2154 partial_snapshot_cache_.Add(heap_.undefined_value());
2157 InitializeThreadLocal();
2159 bootstrapper_->Initialize(create_heap_objects);
2160 builtins_.SetUp(this, create_heap_objects);
2162 if (FLAG_log_internal_timer_events) {
2163 set_event_logger(Logger::DefaultEventLoggerSentinel);
2166 if (FLAG_trace_hydrogen || FLAG_trace_hydrogen_stubs) {
2167 PrintF("Concurrent recompilation has been disabled for tracing.\n");
2168 } else if (OptimizingCompileDispatcher::Enabled()) {
2169 optimizing_compile_dispatcher_ = new OptimizingCompileDispatcher(this);
2172 // Initialize runtime profiler before deserialization, because collections may
2173 // occur, clearing/updating ICs.
2174 runtime_profiler_ = new RuntimeProfiler(this);
2176 if (create_heap_objects) {
2177 if (!bootstrapper_->CreateCodeStubContext(this)) {
2182 // If we are deserializing, read the state into the now-empty heap.
2183 if (!create_heap_objects) {
2184 des->Deserialize(this);
2186 stub_cache_->Initialize();
2188 if (FLAG_ignition) {
2189 interpreter_->Initialize();
2192 // Finish initialization of ThreadLocal after deserialization is done.
2193 clear_pending_exception();
2194 clear_pending_message();
2195 clear_scheduled_exception();
2197 // Deserializing may put strange things in the root array's copy of the
2199 heap_.SetStackLimits();
2201 // Quiet the heap NaN if needed on target platform.
2202 if (!create_heap_objects) Assembler::QuietNaN(heap_.nan_value());
2204 if (FLAG_trace_turbo) {
2205 // Create an empty file.
2206 std::ofstream(GetTurboCfgFileName().c_str(), std::ios_base::trunc);
2209 CHECK_EQ(static_cast<int>(OFFSET_OF(Isolate, embedder_data_)),
2210 Internals::kIsolateEmbedderDataOffset);
2211 CHECK_EQ(static_cast<int>(OFFSET_OF(Isolate, heap_.roots_)),
2212 Internals::kIsolateRootsOffset);
2213 CHECK_EQ(static_cast<int>(
2214 OFFSET_OF(Isolate, heap_.amount_of_external_allocated_memory_)),
2215 Internals::kAmountOfExternalAllocatedMemoryOffset);
2216 CHECK_EQ(static_cast<int>(OFFSET_OF(
2218 heap_.amount_of_external_allocated_memory_at_last_global_gc_)),
2219 Internals::kAmountOfExternalAllocatedMemoryAtLastGlobalGCOffset);
2221 time_millis_at_init_ = base::OS::TimeCurrentMillis();
2223 heap_.NotifyDeserializationComplete();
2225 if (!create_heap_objects) {
2226 // Now that the heap is consistent, it's OK to generate the code for the
2227 // deopt entry table that might have been referred to by optimized code in
2229 HandleScope scope(this);
2230 Deoptimizer::EnsureCodeForDeoptimizationEntry(
2233 kDeoptTableSerializeEntryCount - 1);
2236 if (!serializer_enabled()) {
2237 // Ensure that all stubs which need to be generated ahead of time, but
2238 // cannot be serialized into the snapshot have been generated.
2239 HandleScope scope(this);
2240 CodeStub::GenerateFPStubs(this);
2241 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(this);
2242 StubFailureTrampolineStub::GenerateAheadOfTime(this);
2245 initialized_from_snapshot_ = (des != NULL);
2247 if (!FLAG_inline_new) heap_.DisableInlineAllocation();
2253 // Initialized lazily to allow early
2254 // v8::V8::SetAddHistogramSampleFunction calls.
2255 StatsTable* Isolate::stats_table() {
2256 if (stats_table_ == NULL) {
2257 stats_table_ = new StatsTable;
2259 return stats_table_;
2263 void Isolate::Enter() {
2264 Isolate* current_isolate = NULL;
2265 PerIsolateThreadData* current_data = CurrentPerIsolateThreadData();
2266 if (current_data != NULL) {
2267 current_isolate = current_data->isolate_;
2268 DCHECK(current_isolate != NULL);
2269 if (current_isolate == this) {
2270 DCHECK(Current() == this);
2271 DCHECK(entry_stack_ != NULL);
2272 DCHECK(entry_stack_->previous_thread_data == NULL ||
2273 entry_stack_->previous_thread_data->thread_id().Equals(
2274 ThreadId::Current()));
2275 // Same thread re-enters the isolate, no need to re-init anything.
2276 entry_stack_->entry_count++;
2281 PerIsolateThreadData* data = FindOrAllocatePerThreadDataForThisThread();
2282 DCHECK(data != NULL);
2283 DCHECK(data->isolate_ == this);
2285 EntryStackItem* item = new EntryStackItem(current_data,
2288 entry_stack_ = item;
2290 SetIsolateThreadLocals(this, data);
2292 // In case it's the first time some thread enters the isolate.
2293 set_thread_id(data->thread_id());
2297 void Isolate::Exit() {
2298 DCHECK(entry_stack_ != NULL);
2299 DCHECK(entry_stack_->previous_thread_data == NULL ||
2300 entry_stack_->previous_thread_data->thread_id().Equals(
2301 ThreadId::Current()));
2303 if (--entry_stack_->entry_count > 0) return;
2305 DCHECK(CurrentPerIsolateThreadData() != NULL);
2306 DCHECK(CurrentPerIsolateThreadData()->isolate_ == this);
2309 EntryStackItem* item = entry_stack_;
2310 entry_stack_ = item->previous_item;
2312 PerIsolateThreadData* previous_thread_data = item->previous_thread_data;
2313 Isolate* previous_isolate = item->previous_isolate;
2317 // Reinit the current thread for the isolate it was running before this one.
2318 SetIsolateThreadLocals(previous_isolate, previous_thread_data);
2322 void Isolate::LinkDeferredHandles(DeferredHandles* deferred) {
2323 deferred->next_ = deferred_handles_head_;
2324 if (deferred_handles_head_ != NULL) {
2325 deferred_handles_head_->previous_ = deferred;
2327 deferred_handles_head_ = deferred;
2331 void Isolate::UnlinkDeferredHandles(DeferredHandles* deferred) {
2333 // In debug mode assert that the linked list is well-formed.
2334 DeferredHandles* deferred_iterator = deferred;
2335 while (deferred_iterator->previous_ != NULL) {
2336 deferred_iterator = deferred_iterator->previous_;
2338 DCHECK(deferred_handles_head_ == deferred_iterator);
2340 if (deferred_handles_head_ == deferred) {
2341 deferred_handles_head_ = deferred_handles_head_->next_;
2343 if (deferred->next_ != NULL) {
2344 deferred->next_->previous_ = deferred->previous_;
2346 if (deferred->previous_ != NULL) {
2347 deferred->previous_->next_ = deferred->next_;
2352 void Isolate::DumpAndResetCompilationStats() {
2353 if (turbo_statistics() != nullptr) {
2354 OFStream os(stdout);
2355 os << *turbo_statistics() << std::endl;
2357 if (hstatistics() != nullptr) hstatistics()->Print();
2358 delete turbo_statistics_;
2359 turbo_statistics_ = nullptr;
2360 delete hstatistics_;
2361 hstatistics_ = nullptr;
2365 HStatistics* Isolate::GetHStatistics() {
2366 if (hstatistics() == NULL) set_hstatistics(new HStatistics());
2367 return hstatistics();
2371 CompilationStatistics* Isolate::GetTurboStatistics() {
2372 if (turbo_statistics() == NULL)
2373 set_turbo_statistics(new CompilationStatistics());
2374 return turbo_statistics();
2378 HTracer* Isolate::GetHTracer() {
2379 if (htracer() == NULL) set_htracer(new HTracer(id()));
2384 CodeTracer* Isolate::GetCodeTracer() {
2385 if (code_tracer() == NULL) set_code_tracer(new CodeTracer(id()));
2386 return code_tracer();
2390 Map* Isolate::get_initial_js_array_map(ElementsKind kind, Strength strength) {
2391 Context* native_context = context()->native_context();
2392 Object* maybe_map_array = is_strong(strength)
2393 ? native_context->js_array_strong_maps()
2394 : native_context->js_array_maps();
2395 if (!maybe_map_array->IsUndefined()) {
2396 Object* maybe_transitioned_map =
2397 FixedArray::cast(maybe_map_array)->get(kind);
2398 if (!maybe_transitioned_map->IsUndefined()) {
2399 return Map::cast(maybe_transitioned_map);
2406 bool Isolate::use_crankshaft() const {
2407 return FLAG_crankshaft &&
2408 !serializer_enabled_ &&
2409 CpuFeatures::SupportsCrankshaft();
2413 bool Isolate::IsFastArrayConstructorPrototypeChainIntact() {
2414 PropertyCell* no_elements_cell = heap()->array_protector();
2415 bool cell_reports_intact =
2416 no_elements_cell->value()->IsSmi() &&
2417 Smi::cast(no_elements_cell->value())->value() == kArrayProtectorValid;
2420 Map* root_array_map =
2421 get_initial_js_array_map(GetInitialFastElementsKind());
2422 Context* native_context = context()->native_context();
2423 JSObject* initial_array_proto = JSObject::cast(
2424 native_context->get(Context::INITIAL_ARRAY_PROTOTYPE_INDEX));
2425 JSObject* initial_object_proto = JSObject::cast(
2426 native_context->get(Context::INITIAL_OBJECT_PROTOTYPE_INDEX));
2428 if (root_array_map == NULL || initial_array_proto == initial_object_proto) {
2429 // We are in the bootstrapping process, and the entire check sequence
2430 // shouldn't be performed.
2431 return cell_reports_intact;
2434 // Check that the array prototype hasn't been altered WRT empty elements.
2435 if (root_array_map->prototype() != initial_array_proto) {
2436 DCHECK_EQ(false, cell_reports_intact);
2437 return cell_reports_intact;
2440 FixedArrayBase* elements = initial_array_proto->elements();
2441 if (elements != heap()->empty_fixed_array() &&
2442 elements != heap()->empty_slow_element_dictionary()) {
2443 DCHECK_EQ(false, cell_reports_intact);
2444 return cell_reports_intact;
2447 // Check that the object prototype hasn't been altered WRT empty elements.
2448 PrototypeIterator iter(this, initial_array_proto);
2449 if (iter.IsAtEnd() || iter.GetCurrent() != initial_object_proto) {
2450 DCHECK_EQ(false, cell_reports_intact);
2451 return cell_reports_intact;
2454 elements = initial_object_proto->elements();
2455 if (elements != heap()->empty_fixed_array() &&
2456 elements != heap()->empty_slow_element_dictionary()) {
2457 DCHECK_EQ(false, cell_reports_intact);
2458 return cell_reports_intact;
2462 if (!iter.IsAtEnd()) {
2463 DCHECK_EQ(false, cell_reports_intact);
2464 return cell_reports_intact;
2469 return cell_reports_intact;
2473 void Isolate::UpdateArrayProtectorOnSetElement(Handle<JSObject> object) {
2474 if (IsFastArrayConstructorPrototypeChainIntact() &&
2475 object->map()->is_prototype_map()) {
2476 Object* context = heap()->native_contexts_list();
2477 while (!context->IsUndefined()) {
2478 Context* current_context = Context::cast(context);
2479 if (current_context->get(Context::INITIAL_OBJECT_PROTOTYPE_INDEX) ==
2481 current_context->get(Context::INITIAL_ARRAY_PROTOTYPE_INDEX) ==
2483 PropertyCell::SetValueWithInvalidation(
2484 factory()->array_protector(),
2485 handle(Smi::FromInt(kArrayProtectorInvalid), this));
2488 context = current_context->get(Context::NEXT_CONTEXT_LINK);
2494 bool Isolate::IsAnyInitialArrayPrototype(Handle<JSArray> array) {
2495 if (array->map()->is_prototype_map()) {
2496 Object* context = heap()->native_contexts_list();
2497 while (!context->IsUndefined()) {
2498 Context* current_context = Context::cast(context);
2499 if (current_context->get(Context::INITIAL_ARRAY_PROTOTYPE_INDEX) ==
2503 context = current_context->get(Context::NEXT_CONTEXT_LINK);
2510 CallInterfaceDescriptorData* Isolate::call_descriptor_data(int index) {
2511 DCHECK(0 <= index && index < CallDescriptors::NUMBER_OF_DESCRIPTORS);
2512 return &call_descriptor_data_[index];
2516 base::RandomNumberGenerator* Isolate::random_number_generator() {
2517 if (random_number_generator_ == NULL) {
2518 if (FLAG_random_seed != 0) {
2519 random_number_generator_ =
2520 new base::RandomNumberGenerator(FLAG_random_seed);
2522 random_number_generator_ = new base::RandomNumberGenerator();
2525 return random_number_generator_;
2529 Object* Isolate::FindCodeObject(Address a) {
2530 return inner_pointer_to_code_cache()->GcSafeFindCodeForInnerPointer(a);
2535 #define ISOLATE_FIELD_OFFSET(type, name, ignored) \
2536 const intptr_t Isolate::name##_debug_offset_ = OFFSET_OF(Isolate, name##_);
2537 ISOLATE_INIT_LIST(ISOLATE_FIELD_OFFSET)
2538 ISOLATE_INIT_ARRAY_LIST(ISOLATE_FIELD_OFFSET)
2539 #undef ISOLATE_FIELD_OFFSET
2543 Handle<JSObject> Isolate::SetUpSubregistry(Handle<JSObject> registry,
2544 Handle<Map> map, const char* cname) {
2545 Handle<String> name = factory()->InternalizeUtf8String(cname);
2546 Handle<JSObject> obj = factory()->NewJSObjectFromMap(map);
2547 JSObject::NormalizeProperties(obj, CLEAR_INOBJECT_PROPERTIES, 0,
2548 "SetupSymbolRegistry");
2549 JSObject::AddProperty(registry, name, obj, NONE);
2554 Handle<JSObject> Isolate::GetSymbolRegistry() {
2555 if (heap()->symbol_registry()->IsSmi()) {
2556 Handle<Map> map = factory()->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
2557 Handle<JSObject> registry = factory()->NewJSObjectFromMap(map);
2558 heap()->set_symbol_registry(*registry);
2560 SetUpSubregistry(registry, map, "for");
2561 SetUpSubregistry(registry, map, "for_api");
2562 SetUpSubregistry(registry, map, "keyFor");
2563 SetUpSubregistry(registry, map, "private_api");
2564 heap()->AddPrivateGlobalSymbols(
2565 SetUpSubregistry(registry, map, "private_intern"));
2567 return Handle<JSObject>::cast(factory()->symbol_registry());
2571 void Isolate::AddCallCompletedCallback(CallCompletedCallback callback) {
2572 for (int i = 0; i < call_completed_callbacks_.length(); i++) {
2573 if (callback == call_completed_callbacks_.at(i)) return;
2575 call_completed_callbacks_.Add(callback);
2579 void Isolate::RemoveCallCompletedCallback(CallCompletedCallback callback) {
2580 for (int i = 0; i < call_completed_callbacks_.length(); i++) {
2581 if (callback == call_completed_callbacks_.at(i)) {
2582 call_completed_callbacks_.Remove(i);
2588 void Isolate::FireCallCompletedCallback() {
2589 bool has_call_completed_callbacks = !call_completed_callbacks_.is_empty();
2590 bool run_microtasks = autorun_microtasks() && pending_microtask_count();
2591 if (!has_call_completed_callbacks && !run_microtasks) return;
2593 if (!handle_scope_implementer()->CallDepthIsZero()) return;
2594 if (run_microtasks) RunMicrotasks();
2595 // Fire callbacks. Increase call depth to prevent recursive callbacks.
2596 v8::Isolate::SuppressMicrotaskExecutionScope suppress(
2597 reinterpret_cast<v8::Isolate*>(this));
2598 for (int i = 0; i < call_completed_callbacks_.length(); i++) {
2599 call_completed_callbacks_.at(i)();
2604 void Isolate::SetPromiseRejectCallback(PromiseRejectCallback callback) {
2605 promise_reject_callback_ = callback;
2609 void Isolate::ReportPromiseReject(Handle<JSObject> promise,
2610 Handle<Object> value,
2611 v8::PromiseRejectEvent event) {
2612 if (promise_reject_callback_ == NULL) return;
2613 Handle<JSArray> stack_trace;
2614 if (event == v8::kPromiseRejectWithNoHandler && value->IsJSObject()) {
2615 stack_trace = GetDetailedStackTrace(Handle<JSObject>::cast(value));
2617 promise_reject_callback_(v8::PromiseRejectMessage(
2618 v8::Utils::PromiseToLocal(promise), event, v8::Utils::ToLocal(value),
2619 v8::Utils::StackTraceToLocal(stack_trace)));
2623 void Isolate::EnqueueMicrotask(Handle<Object> microtask) {
2624 DCHECK(microtask->IsJSFunction() || microtask->IsCallHandlerInfo());
2625 Handle<FixedArray> queue(heap()->microtask_queue(), this);
2626 int num_tasks = pending_microtask_count();
2627 DCHECK(num_tasks <= queue->length());
2628 if (num_tasks == 0) {
2629 queue = factory()->NewFixedArray(8);
2630 heap()->set_microtask_queue(*queue);
2631 } else if (num_tasks == queue->length()) {
2632 queue = factory()->CopyFixedArrayAndGrow(queue, num_tasks);
2633 heap()->set_microtask_queue(*queue);
2635 DCHECK(queue->get(num_tasks)->IsUndefined());
2636 queue->set(num_tasks, *microtask);
2637 set_pending_microtask_count(num_tasks + 1);
2641 void Isolate::RunMicrotasks() {
2642 // Increase call depth to prevent recursive callbacks.
2643 v8::Isolate::SuppressMicrotaskExecutionScope suppress(
2644 reinterpret_cast<v8::Isolate*>(this));
2646 while (pending_microtask_count() > 0) {
2647 HandleScope scope(this);
2648 int num_tasks = pending_microtask_count();
2649 Handle<FixedArray> queue(heap()->microtask_queue(), this);
2650 DCHECK(num_tasks <= queue->length());
2651 set_pending_microtask_count(0);
2652 heap()->set_microtask_queue(heap()->empty_fixed_array());
2654 for (int i = 0; i < num_tasks; i++) {
2655 HandleScope scope(this);
2656 Handle<Object> microtask(queue->get(i), this);
2657 if (microtask->IsJSFunction()) {
2658 Handle<JSFunction> microtask_function =
2659 Handle<JSFunction>::cast(microtask);
2660 SaveContext save(this);
2661 set_context(microtask_function->context()->native_context());
2662 MaybeHandle<Object> maybe_exception;
2663 MaybeHandle<Object> result =
2664 Execution::TryCall(microtask_function, factory()->undefined_value(),
2665 0, NULL, &maybe_exception);
2666 // If execution is terminating, just bail out.
2667 Handle<Object> exception;
2668 if (result.is_null() && maybe_exception.is_null()) {
2669 // Clear out any remaining callbacks in the queue.
2670 heap()->set_microtask_queue(heap()->empty_fixed_array());
2671 set_pending_microtask_count(0);
2675 Handle<CallHandlerInfo> callback_info =
2676 Handle<CallHandlerInfo>::cast(microtask);
2677 v8::MicrotaskCallback callback =
2678 v8::ToCData<v8::MicrotaskCallback>(callback_info->callback());
2679 void* data = v8::ToCData<void*>(callback_info->data());
2687 void Isolate::SetUseCounterCallback(v8::Isolate::UseCounterCallback callback) {
2688 DCHECK(!use_counter_callback_);
2689 use_counter_callback_ = callback;
2693 void Isolate::CountUsage(v8::Isolate::UseCounterFeature feature) {
2694 // The counter callback may cause the embedder to call into V8, which is not
2695 // generally possible during GC.
2696 if (heap_.gc_state() == Heap::NOT_IN_GC) {
2697 if (use_counter_callback_) {
2698 HandleScope handle_scope(this);
2699 use_counter_callback_(reinterpret_cast<v8::Isolate*>(this), feature);
2702 heap_.IncrementDeferredCount(feature);
2707 BasicBlockProfiler* Isolate::GetOrCreateBasicBlockProfiler() {
2708 if (basic_block_profiler_ == NULL) {
2709 basic_block_profiler_ = new BasicBlockProfiler();
2711 return basic_block_profiler_;
2715 std::string Isolate::GetTurboCfgFileName() {
2716 if (FLAG_trace_turbo_cfg_file == NULL) {
2717 std::ostringstream os;
2718 os << "turbo-" << base::OS::GetCurrentProcessId() << "-" << id() << ".cfg";
2721 return FLAG_trace_turbo_cfg_file;
2726 // Heap::detached_contexts tracks detached contexts as pairs
2727 // (number of GC since the context was detached, the context).
2728 void Isolate::AddDetachedContext(Handle<Context> context) {
2729 HandleScope scope(this);
2730 Handle<WeakCell> cell = factory()->NewWeakCell(context);
2731 Handle<FixedArray> detached_contexts(heap()->detached_contexts());
2732 int length = detached_contexts->length();
2733 detached_contexts = factory()->CopyFixedArrayAndGrow(detached_contexts, 2);
2734 detached_contexts->set(length, Smi::FromInt(0));
2735 detached_contexts->set(length + 1, *cell);
2736 heap()->set_detached_contexts(*detached_contexts);
2740 void Isolate::CheckDetachedContextsAfterGC() {
2741 HandleScope scope(this);
2742 Handle<FixedArray> detached_contexts(heap()->detached_contexts());
2743 int length = detached_contexts->length();
2744 if (length == 0) return;
2746 for (int i = 0; i < length; i += 2) {
2747 int mark_sweeps = Smi::cast(detached_contexts->get(i))->value();
2748 DCHECK(detached_contexts->get(i + 1)->IsWeakCell());
2749 WeakCell* cell = WeakCell::cast(detached_contexts->get(i + 1));
2750 if (!cell->cleared()) {
2751 detached_contexts->set(new_length, Smi::FromInt(mark_sweeps + 1));
2752 detached_contexts->set(new_length + 1, cell);
2755 counters()->detached_context_age_in_gc()->AddSample(mark_sweeps + 1);
2757 if (FLAG_trace_detached_contexts) {
2758 PrintF("%d detached contexts are collected out of %d\n",
2759 length - new_length, length);
2760 for (int i = 0; i < new_length; i += 2) {
2761 int mark_sweeps = Smi::cast(detached_contexts->get(i))->value();
2762 DCHECK(detached_contexts->get(i + 1)->IsWeakCell());
2763 WeakCell* cell = WeakCell::cast(detached_contexts->get(i + 1));
2764 if (mark_sweeps > 3) {
2765 PrintF("detached context 0x%p\n survived %d GCs (leak?)\n",
2766 static_cast<void*>(cell->value()), mark_sweeps);
2770 if (new_length == 0) {
2771 heap()->set_detached_contexts(heap()->empty_fixed_array());
2772 } else if (new_length < length) {
2773 heap()->RightTrimFixedArray<Heap::CONCURRENT_TO_SWEEPER>(
2774 *detached_contexts, length - new_length);
2779 void Isolate::RegisterCancelableTask(Cancelable* task) {
2780 cancelable_tasks_.insert(task);
2784 void Isolate::RemoveCancelableTask(Cancelable* task) {
2785 auto removed = cancelable_tasks_.erase(task);
2787 DCHECK(removed == 1);
2791 bool StackLimitCheck::JsHasOverflowed(uintptr_t gap) const {
2792 StackGuard* stack_guard = isolate_->stack_guard();
2793 #ifdef USE_SIMULATOR
2794 // The simulator uses a separate JS stack.
2795 Address jssp_address = Simulator::current(isolate_)->get_sp();
2796 uintptr_t jssp = reinterpret_cast<uintptr_t>(jssp_address);
2797 if (jssp - gap < stack_guard->real_jslimit()) return true;
2798 #endif // USE_SIMULATOR
2799 return GetCurrentStackPosition() - gap < stack_guard->real_climit();
2803 SaveContext::SaveContext(Isolate* isolate)
2804 : isolate_(isolate), prev_(isolate->save_context()) {
2805 if (isolate->context() != NULL) {
2806 context_ = Handle<Context>(isolate->context());
2808 isolate->set_save_context(this);
2810 c_entry_fp_ = isolate->c_entry_fp(isolate->thread_local_top());
2814 bool PostponeInterruptsScope::Intercept(StackGuard::InterruptFlag flag) {
2815 // First check whether the previous scope intercepts.
2816 if (prev_ && prev_->Intercept(flag)) return true;
2817 // Then check whether this scope intercepts.
2818 if ((flag & intercept_mask_)) {
2819 intercepted_flags_ |= flag;
2825 } // namespace internal