Rewrite StoreIC handling using the LookupIterator. Continued from patch 494153002
[platform/upstream/v8.git] / src / ic.cc
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/v8.h"
6
7 #include "src/accessors.h"
8 #include "src/api.h"
9 #include "src/arguments.h"
10 #include "src/codegen.h"
11 #include "src/conversions.h"
12 #include "src/execution.h"
13 #include "src/ic-inl.h"
14 #include "src/prototype.h"
15 #include "src/runtime.h"
16 #include "src/stub-cache.h"
17
18 namespace v8 {
19 namespace internal {
20
21 char IC::TransitionMarkFromState(IC::State state) {
22   switch (state) {
23     case UNINITIALIZED: return '0';
24     case PREMONOMORPHIC: return '.';
25     case MONOMORPHIC: return '1';
26     case PROTOTYPE_FAILURE:
27       return '^';
28     case POLYMORPHIC: return 'P';
29     case MEGAMORPHIC: return 'N';
30     case GENERIC: return 'G';
31
32     // We never see the debugger states here, because the state is
33     // computed from the original code - not the patched code. Let
34     // these cases fall through to the unreachable code below.
35     case DEBUG_STUB: break;
36     // Type-vector-based ICs resolve state to one of the above.
37     case DEFAULT:
38       break;
39   }
40   UNREACHABLE();
41   return 0;
42 }
43
44
45 const char* GetTransitionMarkModifier(KeyedAccessStoreMode mode) {
46   if (mode == STORE_NO_TRANSITION_HANDLE_COW) return ".COW";
47   if (mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) {
48     return ".IGNORE_OOB";
49   }
50   if (IsGrowStoreMode(mode)) return ".GROW";
51   return "";
52 }
53
54
55 #ifdef DEBUG
56
57 #define TRACE_GENERIC_IC(isolate, type, reason)                \
58   do {                                                         \
59     if (FLAG_trace_ic) {                                       \
60       PrintF("[%s patching generic stub in ", type);           \
61       JavaScriptFrame::PrintTop(isolate, stdout, false, true); \
62       PrintF(" (%s)]\n", reason);                              \
63     }                                                          \
64   } while (false)
65
66 #else
67
68 #define TRACE_GENERIC_IC(isolate, type, reason)
69
70 #endif  // DEBUG
71
72
73 void IC::TraceIC(const char* type, Handle<Object> name) {
74   if (FLAG_trace_ic) {
75     Code* new_target = raw_target();
76     State new_state = new_target->ic_state();
77     TraceIC(type, name, state(), new_state);
78   }
79 }
80
81
82 void IC::TraceIC(const char* type, Handle<Object> name, State old_state,
83                  State new_state) {
84   if (FLAG_trace_ic) {
85     Code* new_target = raw_target();
86     PrintF("[%s%s in ", new_target->is_keyed_stub() ? "Keyed" : "", type);
87
88     // TODO(jkummerow): Add support for "apply". The logic is roughly:
89     // marker = [fp_ + kMarkerOffset];
90     // if marker is smi and marker.value == INTERNAL and
91     //     the frame's code == builtin(Builtins::kFunctionApply):
92     // then print "apply from" and advance one frame
93
94     Object* maybe_function =
95         Memory::Object_at(fp_ + JavaScriptFrameConstants::kFunctionOffset);
96     if (maybe_function->IsJSFunction()) {
97       JSFunction* function = JSFunction::cast(maybe_function);
98       JavaScriptFrame::PrintFunctionAndOffset(function, function->code(), pc(),
99                                               stdout, true);
100     }
101
102     ExtraICState extra_state = new_target->extra_ic_state();
103     const char* modifier = "";
104     if (new_target->kind() == Code::KEYED_STORE_IC) {
105       modifier = GetTransitionMarkModifier(
106           KeyedStoreIC::GetKeyedAccessStoreMode(extra_state));
107     }
108     PrintF(" (%c->%c%s)", TransitionMarkFromState(old_state),
109            TransitionMarkFromState(new_state), modifier);
110 #ifdef OBJECT_PRINT
111     OFStream os(stdout);
112     name->Print(os);
113 #else
114     name->ShortPrint(stdout);
115 #endif
116     PrintF("]\n");
117   }
118 }
119
120 #define TRACE_IC(type, name) TraceIC(type, name)
121 #define TRACE_VECTOR_IC(type, name, old_state, new_state) \
122   TraceIC(type, name, old_state, new_state)
123
124 IC::IC(FrameDepth depth, Isolate* isolate)
125     : isolate_(isolate),
126       target_set_(false),
127       target_maps_set_(false) {
128   // To improve the performance of the (much used) IC code, we unfold a few
129   // levels of the stack frame iteration code. This yields a ~35% speedup when
130   // running DeltaBlue and a ~25% speedup of gbemu with the '--nouse-ic' flag.
131   const Address entry =
132       Isolate::c_entry_fp(isolate->thread_local_top());
133   Address constant_pool = NULL;
134   if (FLAG_enable_ool_constant_pool) {
135     constant_pool = Memory::Address_at(
136         entry + ExitFrameConstants::kConstantPoolOffset);
137   }
138   Address* pc_address =
139       reinterpret_cast<Address*>(entry + ExitFrameConstants::kCallerPCOffset);
140   Address fp = Memory::Address_at(entry + ExitFrameConstants::kCallerFPOffset);
141   // If there's another JavaScript frame on the stack or a
142   // StubFailureTrampoline, we need to look one frame further down the stack to
143   // find the frame pointer and the return address stack slot.
144   if (depth == EXTRA_CALL_FRAME) {
145     if (FLAG_enable_ool_constant_pool) {
146       constant_pool = Memory::Address_at(
147           fp + StandardFrameConstants::kConstantPoolOffset);
148     }
149     const int kCallerPCOffset = StandardFrameConstants::kCallerPCOffset;
150     pc_address = reinterpret_cast<Address*>(fp + kCallerPCOffset);
151     fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset);
152   }
153 #ifdef DEBUG
154   StackFrameIterator it(isolate);
155   for (int i = 0; i < depth + 1; i++) it.Advance();
156   StackFrame* frame = it.frame();
157   DCHECK(fp == frame->fp() && pc_address == frame->pc_address());
158 #endif
159   fp_ = fp;
160   if (FLAG_enable_ool_constant_pool) {
161     raw_constant_pool_ = handle(
162         ConstantPoolArray::cast(reinterpret_cast<Object*>(constant_pool)),
163         isolate);
164   }
165   pc_address_ = StackFrame::ResolveReturnAddressLocation(pc_address);
166   target_ = handle(raw_target(), isolate);
167   state_ = target_->ic_state();
168   kind_ = target_->kind();
169   extra_ic_state_ = target_->extra_ic_state();
170 }
171
172
173 SharedFunctionInfo* IC::GetSharedFunctionInfo() const {
174   // Compute the JavaScript frame for the frame pointer of this IC
175   // structure. We need this to be able to find the function
176   // corresponding to the frame.
177   StackFrameIterator it(isolate());
178   while (it.frame()->fp() != this->fp()) it.Advance();
179   JavaScriptFrame* frame = JavaScriptFrame::cast(it.frame());
180   // Find the function on the stack and both the active code for the
181   // function and the original code.
182   JSFunction* function = frame->function();
183   return function->shared();
184 }
185
186
187 Code* IC::GetCode() const {
188   HandleScope scope(isolate());
189   Handle<SharedFunctionInfo> shared(GetSharedFunctionInfo(), isolate());
190   Code* code = shared->code();
191   return code;
192 }
193
194
195 Code* IC::GetOriginalCode() const {
196   HandleScope scope(isolate());
197   Handle<SharedFunctionInfo> shared(GetSharedFunctionInfo(), isolate());
198   DCHECK(Debug::HasDebugInfo(shared));
199   Code* original_code = Debug::GetDebugInfo(shared)->original_code();
200   DCHECK(original_code->IsCode());
201   return original_code;
202 }
203
204
205 static void LookupForRead(LookupIterator* it) {
206   for (; it->IsFound(); it->Next()) {
207     switch (it->state()) {
208       case LookupIterator::NOT_FOUND:
209       case LookupIterator::TRANSITION:
210         UNREACHABLE();
211       case LookupIterator::JSPROXY:
212         return;
213       case LookupIterator::INTERCEPTOR: {
214         // If there is a getter, return; otherwise loop to perform the lookup.
215         Handle<JSObject> holder = it->GetHolder<JSObject>();
216         if (!holder->GetNamedInterceptor()->getter()->IsUndefined()) {
217           return;
218         }
219         break;
220       }
221       case LookupIterator::ACCESS_CHECK:
222         // PropertyHandlerCompiler::CheckPrototypes() knows how to emit
223         // access checks for global proxies.
224         if (it->GetHolder<JSObject>()->IsJSGlobalProxy() &&
225             it->HasAccess(v8::ACCESS_GET)) {
226           break;
227         }
228         return;
229       case LookupIterator::PROPERTY:
230         if (it->HasProperty()) return;  // Yay!
231         break;
232     }
233   }
234 }
235
236
237 bool IC::TryRemoveInvalidPrototypeDependentStub(Handle<Object> receiver,
238                                                 Handle<String> name) {
239   if (!IsNameCompatibleWithPrototypeFailure(name)) return false;
240   Handle<Map> receiver_map = TypeToMap(*receiver_type(), isolate());
241   maybe_handler_ = target()->FindHandlerForMap(*receiver_map);
242
243   // The current map wasn't handled yet. There's no reason to stay monomorphic,
244   // *unless* we're moving from a deprecated map to its replacement, or
245   // to a more general elements kind.
246   // TODO(verwaest): Check if the current map is actually what the old map
247   // would transition to.
248   if (maybe_handler_.is_null()) {
249     if (!receiver_map->IsJSObjectMap()) return false;
250     Map* first_map = FirstTargetMap();
251     if (first_map == NULL) return false;
252     Handle<Map> old_map(first_map);
253     if (old_map->is_deprecated()) return true;
254     if (IsMoreGeneralElementsKindTransition(old_map->elements_kind(),
255                                             receiver_map->elements_kind())) {
256       return true;
257     }
258     return false;
259   }
260
261   CacheHolderFlag flag;
262   Handle<Map> ic_holder_map(
263       GetICCacheHolder(*receiver_type(), isolate(), &flag));
264
265   DCHECK(flag != kCacheOnReceiver || receiver->IsJSObject());
266   DCHECK(flag != kCacheOnPrototype || !receiver->IsJSReceiver());
267   DCHECK(flag != kCacheOnPrototypeReceiverIsDictionary);
268
269   if (state() == MONOMORPHIC) {
270     int index = ic_holder_map->IndexInCodeCache(*name, *target());
271     if (index >= 0) {
272       ic_holder_map->RemoveFromCodeCache(*name, *target(), index);
273     }
274   }
275
276   if (receiver->IsGlobalObject()) {
277     Handle<GlobalObject> global = Handle<GlobalObject>::cast(receiver);
278     LookupIterator it(global, name, LookupIterator::CHECK_PROPERTY);
279     if (!it.IsFound() || !it.HasProperty()) return false;
280     Handle<PropertyCell> cell = it.GetPropertyCell();
281     return cell->type()->IsConstant();
282   }
283
284   return true;
285 }
286
287
288 bool IC::IsNameCompatibleWithPrototypeFailure(Handle<Object> name) {
289   if (target()->is_keyed_stub()) {
290     // Determine whether the failure is due to a name failure.
291     if (!name->IsName()) return false;
292     Name* stub_name = target()->FindFirstName();
293     if (*name != stub_name) return false;
294   }
295
296   return true;
297 }
298
299
300 void IC::UpdateState(Handle<Object> receiver, Handle<Object> name) {
301   update_receiver_type(receiver);
302   if (!name->IsString()) return;
303   if (state() != MONOMORPHIC && state() != POLYMORPHIC) return;
304   if (receiver->IsUndefined() || receiver->IsNull()) return;
305
306   // Remove the target from the code cache if it became invalid
307   // because of changes in the prototype chain to avoid hitting it
308   // again.
309   if (TryRemoveInvalidPrototypeDependentStub(receiver,
310                                              Handle<String>::cast(name))) {
311     MarkPrototypeFailure(name);
312     return;
313   }
314
315   // The builtins object is special.  It only changes when JavaScript
316   // builtins are loaded lazily.  It is important to keep inline
317   // caches for the builtins object monomorphic.  Therefore, if we get
318   // an inline cache miss for the builtins object after lazily loading
319   // JavaScript builtins, we return uninitialized as the state to
320   // force the inline cache back to monomorphic state.
321   if (receiver->IsJSBuiltinsObject()) state_ = UNINITIALIZED;
322 }
323
324
325 MaybeHandle<Object> IC::TypeError(const char* type,
326                                   Handle<Object> object,
327                                   Handle<Object> key) {
328   HandleScope scope(isolate());
329   Handle<Object> args[2] = { key, object };
330   Handle<Object> error = isolate()->factory()->NewTypeError(
331       type, HandleVector(args, 2));
332   return isolate()->Throw<Object>(error);
333 }
334
335
336 MaybeHandle<Object> IC::ReferenceError(const char* type, Handle<Name> name) {
337   HandleScope scope(isolate());
338   Handle<Object> error = isolate()->factory()->NewReferenceError(
339       type, HandleVector(&name, 1));
340   return isolate()->Throw<Object>(error);
341 }
342
343
344 static void ComputeTypeInfoCountDelta(IC::State old_state, IC::State new_state,
345                                       int* polymorphic_delta,
346                                       int* generic_delta) {
347   switch (old_state) {
348     case UNINITIALIZED:
349     case PREMONOMORPHIC:
350       if (new_state == UNINITIALIZED || new_state == PREMONOMORPHIC) break;
351       if (new_state == MONOMORPHIC || new_state == POLYMORPHIC) {
352         *polymorphic_delta = 1;
353       } else if (new_state == MEGAMORPHIC || new_state == GENERIC) {
354         *generic_delta = 1;
355       }
356       break;
357     case MONOMORPHIC:
358     case POLYMORPHIC:
359       if (new_state == MONOMORPHIC || new_state == POLYMORPHIC) break;
360       *polymorphic_delta = -1;
361       if (new_state == MEGAMORPHIC || new_state == GENERIC) {
362         *generic_delta = 1;
363       }
364       break;
365     case MEGAMORPHIC:
366     case GENERIC:
367       if (new_state == MEGAMORPHIC || new_state == GENERIC) break;
368       *generic_delta = -1;
369       if (new_state == MONOMORPHIC || new_state == POLYMORPHIC) {
370         *polymorphic_delta = 1;
371       }
372       break;
373     case PROTOTYPE_FAILURE:
374     case DEBUG_STUB:
375     case DEFAULT:
376       UNREACHABLE();
377   }
378 }
379
380
381 void IC::OnTypeFeedbackChanged(Isolate* isolate, Address address,
382                                State old_state, State new_state,
383                                bool target_remains_ic_stub) {
384   Code* host = isolate->
385       inner_pointer_to_code_cache()->GetCacheEntry(address)->code;
386   if (host->kind() != Code::FUNCTION) return;
387
388   if (FLAG_type_info_threshold > 0 && target_remains_ic_stub &&
389       // Not all Code objects have TypeFeedbackInfo.
390       host->type_feedback_info()->IsTypeFeedbackInfo()) {
391     int polymorphic_delta = 0;  // "Polymorphic" here includes monomorphic.
392     int generic_delta = 0;      // "Generic" here includes megamorphic.
393     ComputeTypeInfoCountDelta(old_state, new_state, &polymorphic_delta,
394                               &generic_delta);
395     TypeFeedbackInfo* info = TypeFeedbackInfo::cast(host->type_feedback_info());
396     info->change_ic_with_type_info_count(polymorphic_delta);
397     info->change_ic_generic_count(generic_delta);
398   }
399   if (host->type_feedback_info()->IsTypeFeedbackInfo()) {
400     TypeFeedbackInfo* info =
401         TypeFeedbackInfo::cast(host->type_feedback_info());
402     info->change_own_type_change_checksum();
403   }
404   host->set_profiler_ticks(0);
405   isolate->runtime_profiler()->NotifyICChanged();
406   // TODO(2029): When an optimized function is patched, it would
407   // be nice to propagate the corresponding type information to its
408   // unoptimized version for the benefit of later inlining.
409 }
410
411
412 void IC::PostPatching(Address address, Code* target, Code* old_target) {
413   // Type vector based ICs update these statistics at a different time because
414   // they don't always patch on state change.
415   if (target->kind() == Code::CALL_IC) return;
416
417   Isolate* isolate = target->GetHeap()->isolate();
418   State old_state = UNINITIALIZED;
419   State new_state = UNINITIALIZED;
420   bool target_remains_ic_stub = false;
421   if (old_target->is_inline_cache_stub() && target->is_inline_cache_stub()) {
422     old_state = old_target->ic_state();
423     new_state = target->ic_state();
424     target_remains_ic_stub = true;
425   }
426
427   OnTypeFeedbackChanged(isolate, address, old_state, new_state,
428                         target_remains_ic_stub);
429 }
430
431
432 void IC::RegisterWeakMapDependency(Handle<Code> stub) {
433   if (FLAG_collect_maps && FLAG_weak_embedded_maps_in_ic &&
434       stub->CanBeWeakStub()) {
435     DCHECK(!stub->is_weak_stub());
436     MapHandleList maps;
437     stub->FindAllMaps(&maps);
438     if (maps.length() == 1 && stub->IsWeakObjectInIC(*maps.at(0))) {
439       Map::AddDependentIC(maps.at(0), stub);
440       stub->mark_as_weak_stub();
441       if (FLAG_enable_ool_constant_pool) {
442         stub->constant_pool()->set_weak_object_state(
443             ConstantPoolArray::WEAK_OBJECTS_IN_IC);
444       }
445     }
446   }
447 }
448
449
450 void IC::InvalidateMaps(Code* stub) {
451   DCHECK(stub->is_weak_stub());
452   stub->mark_as_invalidated_weak_stub();
453   Isolate* isolate = stub->GetIsolate();
454   Heap* heap = isolate->heap();
455   Object* undefined = heap->undefined_value();
456   int mode_mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT);
457   for (RelocIterator it(stub, mode_mask); !it.done(); it.next()) {
458     RelocInfo::Mode mode = it.rinfo()->rmode();
459     if (mode == RelocInfo::EMBEDDED_OBJECT &&
460         it.rinfo()->target_object()->IsMap()) {
461       it.rinfo()->set_target_object(undefined, SKIP_WRITE_BARRIER);
462     }
463   }
464   CpuFeatures::FlushICache(stub->instruction_start(), stub->instruction_size());
465 }
466
467
468 void IC::Clear(Isolate* isolate, Address address,
469     ConstantPoolArray* constant_pool) {
470   Code* target = GetTargetAtAddress(address, constant_pool);
471
472   // Don't clear debug break inline cache as it will remove the break point.
473   if (target->is_debug_stub()) return;
474
475   switch (target->kind()) {
476     case Code::LOAD_IC:
477       return LoadIC::Clear(isolate, address, target, constant_pool);
478     case Code::KEYED_LOAD_IC:
479       return KeyedLoadIC::Clear(isolate, address, target, constant_pool);
480     case Code::STORE_IC:
481       return StoreIC::Clear(isolate, address, target, constant_pool);
482     case Code::KEYED_STORE_IC:
483       return KeyedStoreIC::Clear(isolate, address, target, constant_pool);
484     case Code::CALL_IC:
485       return CallIC::Clear(isolate, address, target, constant_pool);
486     case Code::COMPARE_IC:
487       return CompareIC::Clear(isolate, address, target, constant_pool);
488     case Code::COMPARE_NIL_IC:
489       return CompareNilIC::Clear(address, target, constant_pool);
490     case Code::BINARY_OP_IC:
491     case Code::TO_BOOLEAN_IC:
492       // Clearing these is tricky and does not
493       // make any performance difference.
494       return;
495     default: UNREACHABLE();
496   }
497 }
498
499
500 void KeyedLoadIC::Clear(Isolate* isolate,
501                         Address address,
502                         Code* target,
503                         ConstantPoolArray* constant_pool) {
504   if (IsCleared(target)) return;
505   // Make sure to also clear the map used in inline fast cases.  If we
506   // do not clear these maps, cached code can keep objects alive
507   // through the embedded maps.
508   SetTargetAtAddress(address, *pre_monomorphic_stub(isolate), constant_pool);
509 }
510
511
512 void CallIC::Clear(Isolate* isolate,
513                    Address address,
514                    Code* target,
515                    ConstantPoolArray* constant_pool) {
516   // Currently, CallIC doesn't have state changes.
517 }
518
519
520 void LoadIC::Clear(Isolate* isolate,
521                    Address address,
522                    Code* target,
523                    ConstantPoolArray* constant_pool) {
524   if (IsCleared(target)) return;
525   Code* code = PropertyICCompiler::FindPreMonomorphic(isolate, Code::LOAD_IC,
526                                                       target->extra_ic_state());
527   SetTargetAtAddress(address, code, constant_pool);
528 }
529
530
531 void StoreIC::Clear(Isolate* isolate,
532                     Address address,
533                     Code* target,
534                     ConstantPoolArray* constant_pool) {
535   if (IsCleared(target)) return;
536   Code* code = PropertyICCompiler::FindPreMonomorphic(isolate, Code::STORE_IC,
537                                                       target->extra_ic_state());
538   SetTargetAtAddress(address, code, constant_pool);
539 }
540
541
542 void KeyedStoreIC::Clear(Isolate* isolate,
543                          Address address,
544                          Code* target,
545                          ConstantPoolArray* constant_pool) {
546   if (IsCleared(target)) return;
547   SetTargetAtAddress(address,
548       *pre_monomorphic_stub(
549           isolate, StoreIC::GetStrictMode(target->extra_ic_state())),
550       constant_pool);
551 }
552
553
554 void CompareIC::Clear(Isolate* isolate,
555                       Address address,
556                       Code* target,
557                       ConstantPoolArray* constant_pool) {
558   DCHECK(CodeStub::GetMajorKey(target) == CodeStub::CompareIC);
559   CompareIC::State handler_state;
560   Token::Value op;
561   ICCompareStub::DecodeKey(target->stub_key(), NULL, NULL, &handler_state, &op);
562   // Only clear CompareICs that can retain objects.
563   if (handler_state != KNOWN_OBJECT) return;
564   SetTargetAtAddress(address, GetRawUninitialized(isolate, op), constant_pool);
565   PatchInlinedSmiCode(address, DISABLE_INLINED_SMI_CHECK);
566 }
567
568
569 // static
570 Handle<Code> KeyedLoadIC::generic_stub(Isolate* isolate) {
571   if (FLAG_compiled_keyed_generic_loads) {
572     return KeyedLoadGenericStub(isolate).GetCode();
573   } else {
574     return isolate->builtins()->KeyedLoadIC_Generic();
575   }
576 }
577
578
579 static bool MigrateDeprecated(Handle<Object> object) {
580   if (!object->IsJSObject()) return false;
581   Handle<JSObject> receiver = Handle<JSObject>::cast(object);
582   if (!receiver->map()->is_deprecated()) return false;
583   JSObject::MigrateInstance(Handle<JSObject>::cast(object));
584   return true;
585 }
586
587
588 MaybeHandle<Object> LoadIC::Load(Handle<Object> object, Handle<Name> name) {
589   // If the object is undefined or null it's illegal to try to get any
590   // of its properties; throw a TypeError in that case.
591   if (object->IsUndefined() || object->IsNull()) {
592     return TypeError("non_object_property_load", object, name);
593   }
594
595   // Check if the name is trivially convertible to an index and get
596   // the element or char if so.
597   uint32_t index;
598   if (kind() == Code::KEYED_LOAD_IC && name->AsArrayIndex(&index)) {
599     // Rewrite to the generic keyed load stub.
600     if (FLAG_use_ic) {
601       set_target(*KeyedLoadIC::generic_stub(isolate()));
602       TRACE_IC("LoadIC", name);
603       TRACE_GENERIC_IC(isolate(), "LoadIC", "name as array index");
604     }
605     Handle<Object> result;
606     ASSIGN_RETURN_ON_EXCEPTION(
607         isolate(),
608         result,
609         Runtime::GetElementOrCharAt(isolate(), object, index),
610         Object);
611     return result;
612   }
613
614   bool use_ic = MigrateDeprecated(object) ? false : FLAG_use_ic;
615
616   // Named lookup in the object.
617   LookupIterator it(object, name);
618   LookupForRead(&it);
619
620   if (it.IsFound() || !IsUndeclaredGlobal(object)) {
621     // Update inline cache and stub cache.
622     if (use_ic) UpdateCaches(&it);
623
624     // Get the property.
625     Handle<Object> result;
626     ASSIGN_RETURN_ON_EXCEPTION(isolate(), result, Object::GetProperty(&it),
627                                Object);
628     if (it.IsFound()) {
629       return result;
630     } else if (!IsUndeclaredGlobal(object)) {
631       LOG(isolate(), SuspectReadEvent(*name, *object));
632       return result;
633     }
634   }
635   return ReferenceError("not_defined", name);
636 }
637
638
639 static bool AddOneReceiverMapIfMissing(MapHandleList* receiver_maps,
640                                        Handle<Map> new_receiver_map) {
641   DCHECK(!new_receiver_map.is_null());
642   for (int current = 0; current < receiver_maps->length(); ++current) {
643     if (!receiver_maps->at(current).is_null() &&
644         receiver_maps->at(current).is_identical_to(new_receiver_map)) {
645       return false;
646     }
647   }
648   receiver_maps->Add(new_receiver_map);
649   return true;
650 }
651
652
653 bool IC::UpdatePolymorphicIC(Handle<Name> name, Handle<Code> code) {
654   if (!code->is_handler()) return false;
655   if (target()->is_keyed_stub() && state() != PROTOTYPE_FAILURE) return false;
656   Handle<HeapType> type = receiver_type();
657   TypeHandleList types;
658   CodeHandleList handlers;
659
660   TargetTypes(&types);
661   int number_of_types = types.length();
662   int deprecated_types = 0;
663   int handler_to_overwrite = -1;
664
665   for (int i = 0; i < number_of_types; i++) {
666     Handle<HeapType> current_type = types.at(i);
667     if (current_type->IsClass() &&
668         current_type->AsClass()->Map()->is_deprecated()) {
669       // Filter out deprecated maps to ensure their instances get migrated.
670       ++deprecated_types;
671     } else if (type->NowIs(current_type)) {
672       // If the receiver type is already in the polymorphic IC, this indicates
673       // there was a prototoype chain failure. In that case, just overwrite the
674       // handler.
675       handler_to_overwrite = i;
676     } else if (handler_to_overwrite == -1 &&
677                current_type->IsClass() &&
678                type->IsClass() &&
679                IsTransitionOfMonomorphicTarget(*current_type->AsClass()->Map(),
680                                                *type->AsClass()->Map())) {
681       handler_to_overwrite = i;
682     }
683   }
684
685   int number_of_valid_types =
686     number_of_types - deprecated_types - (handler_to_overwrite != -1);
687
688   if (number_of_valid_types >= 4) return false;
689   if (number_of_types == 0) return false;
690   if (!target()->FindHandlers(&handlers, types.length())) return false;
691
692   number_of_valid_types++;
693   if (number_of_valid_types > 1 && target()->is_keyed_stub()) return false;
694   Handle<Code> ic;
695   if (number_of_valid_types == 1) {
696     ic = PropertyICCompiler::ComputeMonomorphic(kind(), name, type, code,
697                                                 extra_ic_state());
698   } else {
699     if (handler_to_overwrite >= 0) {
700       handlers.Set(handler_to_overwrite, code);
701       if (!type->NowIs(types.at(handler_to_overwrite))) {
702         types.Set(handler_to_overwrite, type);
703       }
704     } else {
705       types.Add(type);
706       handlers.Add(code);
707     }
708     ic = PropertyICCompiler::ComputePolymorphic(kind(), &types, &handlers,
709                                                 number_of_valid_types, name,
710                                                 extra_ic_state());
711   }
712   set_target(*ic);
713   return true;
714 }
715
716
717 Handle<HeapType> IC::CurrentTypeOf(Handle<Object> object, Isolate* isolate) {
718   return object->IsJSGlobalObject()
719       ? HeapType::Constant(Handle<JSGlobalObject>::cast(object), isolate)
720       : HeapType::NowOf(object, isolate);
721 }
722
723
724 Handle<Map> IC::TypeToMap(HeapType* type, Isolate* isolate) {
725   if (type->Is(HeapType::Number()))
726     return isolate->factory()->heap_number_map();
727   if (type->Is(HeapType::Boolean())) return isolate->factory()->boolean_map();
728   if (type->IsConstant()) {
729     return handle(
730         Handle<JSGlobalObject>::cast(type->AsConstant()->Value())->map());
731   }
732   DCHECK(type->IsClass());
733   return type->AsClass()->Map();
734 }
735
736
737 template <class T>
738 typename T::TypeHandle IC::MapToType(Handle<Map> map,
739                                      typename T::Region* region) {
740   if (map->instance_type() == HEAP_NUMBER_TYPE) {
741     return T::Number(region);
742   } else if (map->instance_type() == ODDBALL_TYPE) {
743     // The only oddballs that can be recorded in ICs are booleans.
744     return T::Boolean(region);
745   } else {
746     return T::Class(map, region);
747   }
748 }
749
750
751 template
752 Type* IC::MapToType<Type>(Handle<Map> map, Zone* zone);
753
754
755 template
756 Handle<HeapType> IC::MapToType<HeapType>(Handle<Map> map, Isolate* region);
757
758
759 void IC::UpdateMonomorphicIC(Handle<Code> handler, Handle<Name> name) {
760   DCHECK(handler->is_handler());
761   Handle<Code> ic = PropertyICCompiler::ComputeMonomorphic(
762       kind(), name, receiver_type(), handler, extra_ic_state());
763   set_target(*ic);
764 }
765
766
767 void IC::CopyICToMegamorphicCache(Handle<Name> name) {
768   TypeHandleList types;
769   CodeHandleList handlers;
770   TargetTypes(&types);
771   if (!target()->FindHandlers(&handlers, types.length())) return;
772   for (int i = 0; i < types.length(); i++) {
773     UpdateMegamorphicCache(*types.at(i), *name, *handlers.at(i));
774   }
775 }
776
777
778 bool IC::IsTransitionOfMonomorphicTarget(Map* source_map, Map* target_map) {
779   if (source_map == NULL) return true;
780   if (target_map == NULL) return false;
781   ElementsKind target_elements_kind = target_map->elements_kind();
782   bool more_general_transition =
783       IsMoreGeneralElementsKindTransition(
784         source_map->elements_kind(), target_elements_kind);
785   Map* transitioned_map = more_general_transition
786       ? source_map->LookupElementsTransitionMap(target_elements_kind)
787       : NULL;
788
789   return transitioned_map == target_map;
790 }
791
792
793 void IC::PatchCache(Handle<Name> name, Handle<Code> code) {
794   switch (state()) {
795     case UNINITIALIZED:
796     case PREMONOMORPHIC:
797       UpdateMonomorphicIC(code, name);
798       break;
799     case PROTOTYPE_FAILURE:
800     case MONOMORPHIC:
801     case POLYMORPHIC:
802       if (!target()->is_keyed_stub() || state() == PROTOTYPE_FAILURE) {
803         if (UpdatePolymorphicIC(name, code)) break;
804         CopyICToMegamorphicCache(name);
805       }
806       set_target(*megamorphic_stub());
807       // Fall through.
808     case MEGAMORPHIC:
809       UpdateMegamorphicCache(*receiver_type(), *name, *code);
810       break;
811     case DEBUG_STUB:
812       break;
813     case DEFAULT:
814     case GENERIC:
815       UNREACHABLE();
816       break;
817   }
818 }
819
820
821 Handle<Code> LoadIC::initialize_stub(Isolate* isolate,
822                                      ExtraICState extra_state) {
823   return PropertyICCompiler::ComputeLoad(isolate, UNINITIALIZED, extra_state);
824 }
825
826
827 Handle<Code> LoadIC::megamorphic_stub() {
828   if (kind() == Code::LOAD_IC) {
829     return PropertyICCompiler::ComputeLoad(isolate(), MEGAMORPHIC,
830                                            extra_ic_state());
831   } else {
832     DCHECK_EQ(Code::KEYED_LOAD_IC, kind());
833     return KeyedLoadIC::generic_stub(isolate());
834   }
835 }
836
837
838 Handle<Code> LoadIC::pre_monomorphic_stub(Isolate* isolate,
839                                           ExtraICState extra_state) {
840   return PropertyICCompiler::ComputeLoad(isolate, PREMONOMORPHIC, extra_state);
841 }
842
843
844 Handle<Code> KeyedLoadIC::pre_monomorphic_stub(Isolate* isolate) {
845   return isolate->builtins()->KeyedLoadIC_PreMonomorphic();
846 }
847
848
849 Handle<Code> LoadIC::pre_monomorphic_stub() const {
850   if (kind() == Code::LOAD_IC) {
851     return LoadIC::pre_monomorphic_stub(isolate(), extra_ic_state());
852   } else {
853     DCHECK_EQ(Code::KEYED_LOAD_IC, kind());
854     return KeyedLoadIC::pre_monomorphic_stub(isolate());
855   }
856 }
857
858
859 Handle<Code> LoadIC::SimpleFieldLoad(FieldIndex index) {
860   LoadFieldStub stub(isolate(), index);
861   return stub.GetCode();
862 }
863
864
865 void LoadIC::UpdateCaches(LookupIterator* lookup) {
866   if (state() == UNINITIALIZED) {
867     // This is the first time we execute this inline cache. Set the target to
868     // the pre monomorphic stub to delay setting the monomorphic state.
869     set_target(*pre_monomorphic_stub());
870     TRACE_IC("LoadIC", lookup->name());
871     return;
872   }
873
874   Handle<Code> code;
875   if (lookup->state() == LookupIterator::JSPROXY ||
876       lookup->state() == LookupIterator::ACCESS_CHECK) {
877     code = slow_stub();
878   } else if (!lookup->IsFound()) {
879     if (kind() == Code::LOAD_IC) {
880       code = NamedLoadHandlerCompiler::ComputeLoadNonexistent(lookup->name(),
881                                                               receiver_type());
882       // TODO(jkummerow/verwaest): Introduce a builtin that handles this case.
883       if (code.is_null()) code = slow_stub();
884     } else {
885       code = slow_stub();
886     }
887   } else {
888     code = ComputeHandler(lookup);
889   }
890
891   PatchCache(lookup->name(), code);
892   TRACE_IC("LoadIC", lookup->name());
893 }
894
895
896 void IC::UpdateMegamorphicCache(HeapType* type, Name* name, Code* code) {
897   if (kind() == Code::KEYED_LOAD_IC || kind() == Code::KEYED_STORE_IC) return;
898   Map* map = *TypeToMap(type, isolate());
899   isolate()->stub_cache()->Set(name, map, code);
900 }
901
902
903 Handle<Code> IC::ComputeHandler(LookupIterator* lookup, Handle<Object> value) {
904   bool receiver_is_holder =
905       lookup->GetReceiver().is_identical_to(lookup->GetHolder<JSObject>());
906   CacheHolderFlag flag;
907   Handle<Map> stub_holder_map = IC::GetHandlerCacheHolder(
908       *receiver_type(), receiver_is_holder, isolate(), &flag);
909
910   Handle<Code> code = PropertyHandlerCompiler::Find(
911       lookup->name(), stub_holder_map, kind(), flag,
912       lookup->holder_map()->is_dictionary_map() ? Code::NORMAL : Code::FAST);
913   // Use the cached value if it exists, and if it is different from the
914   // handler that just missed.
915   if (!code.is_null()) {
916     if (!maybe_handler_.is_null() &&
917         !maybe_handler_.ToHandleChecked().is_identical_to(code)) {
918       return code;
919     }
920     if (maybe_handler_.is_null()) {
921       // maybe_handler_ is only populated for MONOMORPHIC and POLYMORPHIC ICs.
922       // In MEGAMORPHIC case, check if the handler in the megamorphic stub
923       // cache (which just missed) is different from the cached handler.
924       if (state() == MEGAMORPHIC && lookup->GetReceiver()->IsHeapObject()) {
925         Map* map = Handle<HeapObject>::cast(lookup->GetReceiver())->map();
926         Code* megamorphic_cached_code =
927             isolate()->stub_cache()->Get(*lookup->name(), map, code->flags());
928         if (megamorphic_cached_code != *code) return code;
929       } else {
930         return code;
931       }
932     }
933   }
934
935   code = CompileHandler(lookup, value, flag);
936   DCHECK(code->is_handler());
937
938   if (code->type() != Code::NORMAL) {
939     Map::UpdateCodeCache(stub_holder_map, lookup->name(), code);
940   }
941
942   return code;
943 }
944
945
946 Handle<Code> LoadIC::CompileHandler(LookupIterator* lookup,
947                                     Handle<Object> unused,
948                                     CacheHolderFlag cache_holder) {
949   Handle<Object> receiver = lookup->GetReceiver();
950   if (receiver->IsString() &&
951       Name::Equals(isolate()->factory()->length_string(), lookup->name())) {
952     FieldIndex index = FieldIndex::ForInObjectOffset(String::kLengthOffset);
953     return SimpleFieldLoad(index);
954   }
955
956   if (receiver->IsStringWrapper() &&
957       Name::Equals(isolate()->factory()->length_string(), lookup->name())) {
958     StringLengthStub string_length_stub(isolate());
959     return string_length_stub.GetCode();
960   }
961
962   // Use specialized code for getting prototype of functions.
963   if (receiver->IsJSFunction() &&
964       Name::Equals(isolate()->factory()->prototype_string(), lookup->name()) &&
965       Handle<JSFunction>::cast(receiver)->should_have_prototype() &&
966       !Handle<JSFunction>::cast(receiver)
967            ->map()
968            ->has_non_instance_prototype()) {
969     Handle<Code> stub;
970     FunctionPrototypeStub function_prototype_stub(isolate());
971     return function_prototype_stub.GetCode();
972   }
973
974   Handle<HeapType> type = receiver_type();
975   Handle<JSObject> holder = lookup->GetHolder<JSObject>();
976   bool receiver_is_holder = receiver.is_identical_to(holder);
977   // -------------- Interceptors --------------
978   if (lookup->state() == LookupIterator::INTERCEPTOR) {
979     DCHECK(!holder->GetNamedInterceptor()->getter()->IsUndefined());
980     NamedLoadHandlerCompiler compiler(isolate(), receiver_type(), holder,
981                                       cache_holder);
982     // Perform a lookup behind the interceptor. Copy the LookupIterator since
983     // the original iterator will be used to fetch the value.
984     LookupIterator it(lookup);
985     it.Next();
986     LookupForRead(&it);
987     return compiler.CompileLoadInterceptor(&it);
988   }
989
990   // -------------- Accessors --------------
991   DCHECK(lookup->state() == LookupIterator::PROPERTY);
992   if (lookup->property_kind() == LookupIterator::ACCESSOR) {
993     // Use simple field loads for some well-known callback properties.
994     if (receiver_is_holder) {
995       DCHECK(receiver->IsJSObject());
996       Handle<JSObject> js_receiver = Handle<JSObject>::cast(receiver);
997       int object_offset;
998       if (Accessors::IsJSObjectFieldAccessor<HeapType>(type, lookup->name(),
999                                                        &object_offset)) {
1000         FieldIndex index =
1001             FieldIndex::ForInObjectOffset(object_offset, js_receiver->map());
1002         return SimpleFieldLoad(index);
1003       }
1004     }
1005
1006     Handle<Object> accessors = lookup->GetAccessors();
1007     if (accessors->IsExecutableAccessorInfo()) {
1008       Handle<ExecutableAccessorInfo> info =
1009           Handle<ExecutableAccessorInfo>::cast(accessors);
1010       if (v8::ToCData<Address>(info->getter()) == 0) return slow_stub();
1011       if (!ExecutableAccessorInfo::IsCompatibleReceiverType(isolate(), info,
1012                                                             type)) {
1013         return slow_stub();
1014       }
1015       if (!holder->HasFastProperties()) return slow_stub();
1016       NamedLoadHandlerCompiler compiler(isolate(), receiver_type(), holder,
1017                                         cache_holder);
1018       return compiler.CompileLoadCallback(lookup->name(), info);
1019     }
1020     if (accessors->IsAccessorPair()) {
1021       Handle<Object> getter(Handle<AccessorPair>::cast(accessors)->getter(),
1022                             isolate());
1023       if (!getter->IsJSFunction()) return slow_stub();
1024       if (!holder->HasFastProperties()) return slow_stub();
1025       Handle<JSFunction> function = Handle<JSFunction>::cast(getter);
1026       if (!receiver->IsJSObject() && !function->IsBuiltin() &&
1027           function->shared()->strict_mode() == SLOPPY) {
1028         // Calling sloppy non-builtins with a value as the receiver
1029         // requires boxing.
1030         return slow_stub();
1031       }
1032       CallOptimization call_optimization(function);
1033       NamedLoadHandlerCompiler compiler(isolate(), receiver_type(), holder,
1034                                         cache_holder);
1035       if (call_optimization.is_simple_api_call() &&
1036           call_optimization.IsCompatibleReceiver(receiver, holder)) {
1037         return compiler.CompileLoadCallback(lookup->name(), call_optimization);
1038       }
1039       return compiler.CompileLoadViaGetter(lookup->name(), function);
1040     }
1041     // TODO(dcarney): Handle correctly.
1042     DCHECK(accessors->IsDeclaredAccessorInfo());
1043     return slow_stub();
1044   }
1045
1046   // -------------- Dictionary properties --------------
1047   DCHECK(lookup->property_kind() == LookupIterator::DATA);
1048   if (lookup->property_encoding() == LookupIterator::DICTIONARY) {
1049     if (kind() != Code::LOAD_IC) return slow_stub();
1050     if (holder->IsGlobalObject()) {
1051       NamedLoadHandlerCompiler compiler(isolate(), receiver_type(), holder,
1052                                         cache_holder);
1053       Handle<PropertyCell> cell = lookup->GetPropertyCell();
1054       Handle<Code> code = compiler.CompileLoadGlobal(cell, lookup->name(),
1055                                                      lookup->IsConfigurable());
1056       // TODO(verwaest): Move caching of these NORMAL stubs outside as well.
1057       CacheHolderFlag flag;
1058       Handle<Map> stub_holder_map =
1059           GetHandlerCacheHolder(*type, receiver_is_holder, isolate(), &flag);
1060       Map::UpdateCodeCache(stub_holder_map, lookup->name(), code);
1061       return code;
1062     }
1063     // There is only one shared stub for loading normalized
1064     // properties. It does not traverse the prototype chain, so the
1065     // property must be found in the object for the stub to be
1066     // applicable.
1067     if (!receiver_is_holder) return slow_stub();
1068     return isolate()->builtins()->LoadIC_Normal();
1069   }
1070
1071   // -------------- Fields --------------
1072   DCHECK(lookup->property_encoding() == LookupIterator::DESCRIPTOR);
1073   if (lookup->property_details().type() == FIELD) {
1074     FieldIndex field = lookup->GetFieldIndex();
1075     if (receiver_is_holder) {
1076       return SimpleFieldLoad(field);
1077     }
1078     NamedLoadHandlerCompiler compiler(isolate(), receiver_type(), holder,
1079                                       cache_holder);
1080     return compiler.CompileLoadField(lookup->name(), field);
1081   }
1082
1083   // -------------- Constant properties --------------
1084   DCHECK(lookup->property_details().type() == CONSTANT);
1085   if (receiver_is_holder) {
1086     LoadConstantStub stub(isolate(), lookup->GetConstantIndex());
1087     return stub.GetCode();
1088   }
1089   NamedLoadHandlerCompiler compiler(isolate(), receiver_type(), holder,
1090                                     cache_holder);
1091   return compiler.CompileLoadConstant(lookup->name(),
1092                                       lookup->GetConstantIndex());
1093 }
1094
1095
1096 static Handle<Object> TryConvertKey(Handle<Object> key, Isolate* isolate) {
1097   // This helper implements a few common fast cases for converting
1098   // non-smi keys of keyed loads/stores to a smi or a string.
1099   if (key->IsHeapNumber()) {
1100     double value = Handle<HeapNumber>::cast(key)->value();
1101     if (std::isnan(value)) {
1102       key = isolate->factory()->nan_string();
1103     } else {
1104       int int_value = FastD2I(value);
1105       if (value == int_value && Smi::IsValid(int_value)) {
1106         key = Handle<Smi>(Smi::FromInt(int_value), isolate);
1107       }
1108     }
1109   } else if (key->IsUndefined()) {
1110     key = isolate->factory()->undefined_string();
1111   }
1112   return key;
1113 }
1114
1115
1116 Handle<Code> KeyedLoadIC::LoadElementStub(Handle<JSObject> receiver) {
1117   // Don't handle megamorphic property accesses for INTERCEPTORS or CALLBACKS
1118   // via megamorphic stubs, since they don't have a map in their relocation info
1119   // and so the stubs can't be harvested for the object needed for a map check.
1120   if (target()->type() != Code::NORMAL) {
1121     TRACE_GENERIC_IC(isolate(), "KeyedIC", "non-NORMAL target type");
1122     return generic_stub();
1123   }
1124
1125   Handle<Map> receiver_map(receiver->map(), isolate());
1126   MapHandleList target_receiver_maps;
1127   if (target().is_identical_to(string_stub())) {
1128     target_receiver_maps.Add(isolate()->factory()->string_map());
1129   } else {
1130     TargetMaps(&target_receiver_maps);
1131   }
1132   if (target_receiver_maps.length() == 0) {
1133     return PropertyICCompiler::ComputeKeyedLoadMonomorphic(receiver_map);
1134   }
1135
1136   // The first time a receiver is seen that is a transitioned version of the
1137   // previous monomorphic receiver type, assume the new ElementsKind is the
1138   // monomorphic type. This benefits global arrays that only transition
1139   // once, and all call sites accessing them are faster if they remain
1140   // monomorphic. If this optimistic assumption is not true, the IC will
1141   // miss again and it will become polymorphic and support both the
1142   // untransitioned and transitioned maps.
1143   if (state() == MONOMORPHIC &&
1144       IsMoreGeneralElementsKindTransition(
1145           target_receiver_maps.at(0)->elements_kind(),
1146           receiver->GetElementsKind())) {
1147     return PropertyICCompiler::ComputeKeyedLoadMonomorphic(receiver_map);
1148   }
1149
1150   DCHECK(state() != GENERIC);
1151
1152   // Determine the list of receiver maps that this call site has seen,
1153   // adding the map that was just encountered.
1154   if (!AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map)) {
1155     // If the miss wasn't due to an unseen map, a polymorphic stub
1156     // won't help, use the generic stub.
1157     TRACE_GENERIC_IC(isolate(), "KeyedIC", "same map added twice");
1158     return generic_stub();
1159   }
1160
1161   // If the maximum number of receiver maps has been exceeded, use the generic
1162   // version of the IC.
1163   if (target_receiver_maps.length() > kMaxKeyedPolymorphism) {
1164     TRACE_GENERIC_IC(isolate(), "KeyedIC", "max polymorph exceeded");
1165     return generic_stub();
1166   }
1167
1168   return PropertyICCompiler::ComputeKeyedLoadPolymorphic(&target_receiver_maps);
1169 }
1170
1171
1172 MaybeHandle<Object> KeyedLoadIC::Load(Handle<Object> object,
1173                                       Handle<Object> key) {
1174   if (MigrateDeprecated(object)) {
1175     Handle<Object> result;
1176     ASSIGN_RETURN_ON_EXCEPTION(
1177         isolate(),
1178         result,
1179         Runtime::GetObjectProperty(isolate(), object, key),
1180         Object);
1181     return result;
1182   }
1183
1184   Handle<Object> load_handle;
1185   Handle<Code> stub = generic_stub();
1186
1187   // Check for non-string values that can be converted into an
1188   // internalized string directly or is representable as a smi.
1189   key = TryConvertKey(key, isolate());
1190
1191   if (key->IsInternalizedString() || key->IsSymbol()) {
1192     ASSIGN_RETURN_ON_EXCEPTION(
1193         isolate(),
1194         load_handle,
1195         LoadIC::Load(object, Handle<Name>::cast(key)),
1196         Object);
1197   } else if (FLAG_use_ic && !object->IsAccessCheckNeeded()) {
1198     if (object->IsString() && key->IsNumber()) {
1199       if (state() == UNINITIALIZED) stub = string_stub();
1200     } else if (object->IsJSObject()) {
1201       Handle<JSObject> receiver = Handle<JSObject>::cast(object);
1202       if (receiver->elements()->map() ==
1203           isolate()->heap()->sloppy_arguments_elements_map()) {
1204         stub = sloppy_arguments_stub();
1205       } else if (receiver->HasIndexedInterceptor()) {
1206         stub = indexed_interceptor_stub();
1207       } else if (!Object::ToSmi(isolate(), key).is_null() &&
1208                  (!target().is_identical_to(sloppy_arguments_stub()))) {
1209         stub = LoadElementStub(receiver);
1210       }
1211     }
1212   }
1213
1214   if (!is_target_set()) {
1215     Code* generic = *generic_stub();
1216     if (*stub == generic) {
1217       TRACE_GENERIC_IC(isolate(), "KeyedLoadIC", "set generic");
1218     }
1219     set_target(*stub);
1220     TRACE_IC("LoadIC", key);
1221   }
1222
1223   if (!load_handle.is_null()) return load_handle;
1224   Handle<Object> result;
1225   ASSIGN_RETURN_ON_EXCEPTION(
1226       isolate(),
1227       result,
1228       Runtime::GetObjectProperty(isolate(), object, key),
1229       Object);
1230   return result;
1231 }
1232
1233
1234 bool StoreIC::LookupForWrite(LookupIterator* it, Handle<Object> value,
1235                              JSReceiver::StoreFromKeyed store_mode) {
1236   // Disable ICs for non-JSObjects for now.
1237   Handle<Object> receiver = it->GetReceiver();
1238   if (!receiver->IsJSObject()) return false;
1239   DCHECK(!Handle<JSObject>::cast(receiver)->map()->is_deprecated());
1240
1241   for (; it->IsFound(); it->Next()) {
1242     switch (it->state()) {
1243       case LookupIterator::NOT_FOUND:
1244       case LookupIterator::TRANSITION:
1245         UNREACHABLE();
1246       case LookupIterator::JSPROXY:
1247         return false;
1248       case LookupIterator::INTERCEPTOR: {
1249         Handle<JSObject> holder = it->GetHolder<JSObject>();
1250         InterceptorInfo* info = holder->GetNamedInterceptor();
1251         if (it->HolderIsReceiverOrHiddenPrototype()) {
1252           if (!info->setter()->IsUndefined()) return true;
1253         } else if (!info->getter()->IsUndefined() ||
1254                    !info->query()->IsUndefined()) {
1255           return false;
1256         }
1257         break;
1258       }
1259       case LookupIterator::ACCESS_CHECK:
1260         if (it->GetHolder<JSObject>()->IsAccessCheckNeeded()) return false;
1261         break;
1262       case LookupIterator::PROPERTY:
1263         if (!it->HasProperty()) break;
1264         if (it->IsReadOnly()) return false;
1265         if (it->property_kind() == LookupIterator::ACCESSOR) return true;
1266         if (it->GetHolder<Object>().is_identical_to(receiver)) {
1267           it->PrepareForDataProperty(value);
1268           // The previous receiver map might just have been deprecated,
1269           // so reload it.
1270           update_receiver_type(receiver);
1271           return true;
1272         }
1273
1274         // Receiver != holder.
1275         if (receiver->IsJSGlobalProxy()) {
1276           PrototypeIterator iter(it->isolate(), receiver);
1277           return it->GetHolder<Object>().is_identical_to(
1278               PrototypeIterator::GetCurrent(iter));
1279         }
1280
1281         it->PrepareTransitionToDataProperty(value, NONE, store_mode);
1282         return it->IsCacheableTransition();
1283     }
1284   }
1285
1286   it->PrepareTransitionToDataProperty(value, NONE, store_mode);
1287   return it->IsCacheableTransition();
1288 }
1289
1290
1291 MaybeHandle<Object> StoreIC::Store(Handle<Object> object,
1292                                    Handle<Name> name,
1293                                    Handle<Object> value,
1294                                    JSReceiver::StoreFromKeyed store_mode) {
1295   // TODO(verwaest): Let SetProperty do the migration, since storing a property
1296   // might deprecate the current map again, if value does not fit.
1297   if (MigrateDeprecated(object) || object->IsJSProxy()) {
1298     Handle<Object> result;
1299     ASSIGN_RETURN_ON_EXCEPTION(
1300         isolate(), result,
1301         Object::SetProperty(object, name, value, strict_mode()), Object);
1302     return result;
1303   }
1304
1305   // If the object is undefined or null it's illegal to try to set any
1306   // properties on it; throw a TypeError in that case.
1307   if (object->IsUndefined() || object->IsNull()) {
1308     return TypeError("non_object_property_store", object, name);
1309   }
1310
1311   // Check if the given name is an array index.
1312   uint32_t index;
1313   if (name->AsArrayIndex(&index)) {
1314     // Ignore other stores where the receiver is not a JSObject.
1315     // TODO(1475): Must check prototype chains of object wrappers.
1316     if (!object->IsJSObject()) return value;
1317     Handle<JSObject> receiver = Handle<JSObject>::cast(object);
1318
1319     Handle<Object> result;
1320     ASSIGN_RETURN_ON_EXCEPTION(
1321         isolate(),
1322         result,
1323         JSObject::SetElement(receiver, index, value, NONE, strict_mode()),
1324         Object);
1325     return value;
1326   }
1327
1328   // Observed objects are always modified through the runtime.
1329   if (object->IsHeapObject() &&
1330       Handle<HeapObject>::cast(object)->map()->is_observed()) {
1331     Handle<Object> result;
1332     ASSIGN_RETURN_ON_EXCEPTION(
1333         isolate(), result,
1334         Object::SetProperty(object, name, value, strict_mode(), store_mode),
1335         Object);
1336     return result;
1337   }
1338
1339   LookupIterator it(object, name);
1340   if (FLAG_use_ic) UpdateCaches(&it, value, store_mode);
1341
1342   // Set the property.
1343   Handle<Object> result;
1344   ASSIGN_RETURN_ON_EXCEPTION(
1345       isolate(), result,
1346       Object::SetProperty(&it, value, strict_mode(), store_mode), Object);
1347   return result;
1348 }
1349
1350
1351 OStream& operator<<(OStream& os, const CallIC::State& s) {
1352   return os << "(args(" << s.arg_count() << "), "
1353             << (s.call_type() == CallIC::METHOD ? "METHOD" : "FUNCTION")
1354             << ", ";
1355 }
1356
1357
1358 Handle<Code> CallIC::initialize_stub(Isolate* isolate,
1359                                      int argc,
1360                                      CallType call_type) {
1361   CallICStub stub(isolate, State(argc, call_type));
1362   Handle<Code> code = stub.GetCode();
1363   return code;
1364 }
1365
1366
1367 Handle<Code> StoreIC::initialize_stub(Isolate* isolate,
1368                                       StrictMode strict_mode) {
1369   ExtraICState extra_state = ComputeExtraICState(strict_mode);
1370   Handle<Code> ic =
1371       PropertyICCompiler::ComputeStore(isolate, UNINITIALIZED, extra_state);
1372   return ic;
1373 }
1374
1375
1376 Handle<Code> StoreIC::megamorphic_stub() {
1377   return PropertyICCompiler::ComputeStore(isolate(), MEGAMORPHIC,
1378                                           extra_ic_state());
1379 }
1380
1381
1382 Handle<Code> StoreIC::generic_stub() const {
1383   return PropertyICCompiler::ComputeStore(isolate(), GENERIC, extra_ic_state());
1384 }
1385
1386
1387 Handle<Code> StoreIC::pre_monomorphic_stub(Isolate* isolate,
1388                                            StrictMode strict_mode) {
1389   ExtraICState state = ComputeExtraICState(strict_mode);
1390   return PropertyICCompiler::ComputeStore(isolate, PREMONOMORPHIC, state);
1391 }
1392
1393
1394 void StoreIC::UpdateCaches(LookupIterator* lookup, Handle<Object> value,
1395                            JSReceiver::StoreFromKeyed store_mode) {
1396   if (state() == UNINITIALIZED) {
1397     // This is the first time we execute this inline cache. Set the target to
1398     // the pre monomorphic stub to delay setting the monomorphic state.
1399     set_target(*pre_monomorphic_stub());
1400     TRACE_IC("StoreIC", lookup->name());
1401     return;
1402   }
1403
1404   Handle<Code> code = LookupForWrite(lookup, value, store_mode)
1405                           ? ComputeHandler(lookup, value)
1406                           : slow_stub();
1407
1408   PatchCache(lookup->name(), code);
1409   TRACE_IC("StoreIC", lookup->name());
1410 }
1411
1412
1413 Handle<Code> StoreIC::CompileHandler(LookupIterator* lookup,
1414                                      Handle<Object> value,
1415                                      CacheHolderFlag cache_holder) {
1416   DCHECK_NE(LookupIterator::JSPROXY, lookup->state());
1417
1418   // This is currently guaranteed by checks in StoreIC::Store.
1419   Handle<JSObject> receiver = Handle<JSObject>::cast(lookup->GetReceiver());
1420   Handle<JSObject> holder = lookup->GetHolder<JSObject>();
1421   DCHECK(!receiver->IsAccessCheckNeeded());
1422
1423   // -------------- Transition --------------
1424   if (lookup->state() == LookupIterator::TRANSITION) {
1425     Handle<Map> transition = lookup->transition_map();
1426     // Currently not handled by CompileStoreTransition.
1427     if (!holder->HasFastProperties()) return slow_stub();
1428
1429     DCHECK(lookup->IsCacheableTransition());
1430     NamedStoreHandlerCompiler compiler(isolate(), receiver_type(), holder);
1431     return compiler.CompileStoreTransition(transition, lookup->name());
1432   }
1433
1434   // -------------- Interceptors --------------
1435   if (lookup->state() == LookupIterator::INTERCEPTOR) {
1436     DCHECK(!holder->GetNamedInterceptor()->setter()->IsUndefined());
1437     NamedStoreHandlerCompiler compiler(isolate(), receiver_type(), holder);
1438     return compiler.CompileStoreInterceptor(lookup->name());
1439   }
1440
1441   // -------------- Accessors --------------
1442   DCHECK(lookup->state() == LookupIterator::PROPERTY);
1443   if (lookup->property_kind() == LookupIterator::ACCESSOR) {
1444     if (!holder->HasFastProperties()) return slow_stub();
1445     Handle<Object> accessors = lookup->GetAccessors();
1446     if (accessors->IsExecutableAccessorInfo()) {
1447       Handle<ExecutableAccessorInfo> info =
1448           Handle<ExecutableAccessorInfo>::cast(accessors);
1449       if (v8::ToCData<Address>(info->setter()) == 0) return slow_stub();
1450       if (!ExecutableAccessorInfo::IsCompatibleReceiverType(isolate(), info,
1451                                                             receiver_type())) {
1452         return slow_stub();
1453       }
1454       NamedStoreHandlerCompiler compiler(isolate(), receiver_type(), holder);
1455       return compiler.CompileStoreCallback(receiver, lookup->name(), info);
1456     } else if (accessors->IsAccessorPair()) {
1457       Handle<Object> setter(Handle<AccessorPair>::cast(accessors)->setter(),
1458                             isolate());
1459       if (!setter->IsJSFunction()) return slow_stub();
1460       Handle<JSFunction> function = Handle<JSFunction>::cast(setter);
1461       CallOptimization call_optimization(function);
1462       NamedStoreHandlerCompiler compiler(isolate(), receiver_type(), holder);
1463       if (call_optimization.is_simple_api_call() &&
1464           call_optimization.IsCompatibleReceiver(receiver, holder)) {
1465         return compiler.CompileStoreCallback(receiver, lookup->name(),
1466                                              call_optimization);
1467       }
1468       return compiler.CompileStoreViaSetter(receiver, lookup->name(),
1469                                             Handle<JSFunction>::cast(setter));
1470     }
1471     // TODO(dcarney): Handle correctly.
1472     DCHECK(accessors->IsDeclaredAccessorInfo());
1473     return slow_stub();
1474   }
1475
1476   // -------------- Dictionary properties --------------
1477   DCHECK(lookup->property_kind() == LookupIterator::DATA);
1478   if (lookup->property_encoding() == LookupIterator::DICTIONARY) {
1479     if (holder->IsGlobalObject()) {
1480       Handle<PropertyCell> cell = lookup->GetPropertyCell();
1481       Handle<HeapType> union_type = PropertyCell::UpdatedType(cell, value);
1482       StoreGlobalStub stub(isolate(), union_type->IsConstant(),
1483                            receiver->IsJSGlobalProxy());
1484       Handle<Code> code = stub.GetCodeCopyFromTemplate(
1485           Handle<GlobalObject>::cast(holder), cell);
1486       // TODO(verwaest): Move caching of these NORMAL stubs outside as well.
1487       HeapObject::UpdateMapCodeCache(receiver, lookup->name(), code);
1488       return code;
1489     }
1490     DCHECK(holder.is_identical_to(receiver));
1491     return isolate()->builtins()->StoreIC_Normal();
1492   }
1493
1494   // -------------- Fields --------------
1495   DCHECK(lookup->property_encoding() == LookupIterator::DESCRIPTOR);
1496   if (lookup->property_details().type() == FIELD) {
1497     bool use_stub = true;
1498     if (lookup->representation().IsHeapObject()) {
1499       // Only use a generic stub if no types need to be tracked.
1500       Handle<HeapType> field_type = lookup->GetFieldType();
1501       HeapType::Iterator<Map> it = field_type->Classes();
1502       use_stub = it.Done();
1503     }
1504     if (use_stub) {
1505       StoreFieldStub stub(isolate(), lookup->GetFieldIndex(),
1506                           lookup->representation());
1507       return stub.GetCode();
1508     }
1509     NamedStoreHandlerCompiler compiler(isolate(), receiver_type(), holder);
1510     return compiler.CompileStoreField(lookup);
1511   }
1512
1513   // -------------- Constant properties --------------
1514   DCHECK(lookup->property_details().type() == CONSTANT);
1515   return slow_stub();
1516 }
1517
1518
1519 Handle<Code> KeyedStoreIC::StoreElementStub(Handle<JSObject> receiver,
1520                                             KeyedAccessStoreMode store_mode) {
1521   // Don't handle megamorphic property accesses for INTERCEPTORS or CALLBACKS
1522   // via megamorphic stubs, since they don't have a map in their relocation info
1523   // and so the stubs can't be harvested for the object needed for a map check.
1524   if (target()->type() != Code::NORMAL) {
1525     TRACE_GENERIC_IC(isolate(), "KeyedIC", "non-NORMAL target type");
1526     return generic_stub();
1527   }
1528
1529   Handle<Map> receiver_map(receiver->map(), isolate());
1530   MapHandleList target_receiver_maps;
1531   TargetMaps(&target_receiver_maps);
1532   if (target_receiver_maps.length() == 0) {
1533     Handle<Map> monomorphic_map =
1534         ComputeTransitionedMap(receiver_map, store_mode);
1535     store_mode = GetNonTransitioningStoreMode(store_mode);
1536     return PropertyICCompiler::ComputeKeyedStoreMonomorphic(
1537         monomorphic_map, strict_mode(), store_mode);
1538   }
1539
1540   // There are several special cases where an IC that is MONOMORPHIC can still
1541   // transition to a different GetNonTransitioningStoreMode IC that handles a
1542   // superset of the original IC. Handle those here if the receiver map hasn't
1543   // changed or it has transitioned to a more general kind.
1544   KeyedAccessStoreMode old_store_mode =
1545       KeyedStoreIC::GetKeyedAccessStoreMode(target()->extra_ic_state());
1546   Handle<Map> previous_receiver_map = target_receiver_maps.at(0);
1547   if (state() == MONOMORPHIC) {
1548     Handle<Map> transitioned_receiver_map = receiver_map;
1549     if (IsTransitionStoreMode(store_mode)) {
1550       transitioned_receiver_map =
1551           ComputeTransitionedMap(receiver_map, store_mode);
1552     }
1553     if ((receiver_map.is_identical_to(previous_receiver_map) &&
1554          IsTransitionStoreMode(store_mode)) ||
1555         IsTransitionOfMonomorphicTarget(*previous_receiver_map,
1556                                         *transitioned_receiver_map)) {
1557       // If the "old" and "new" maps are in the same elements map family, or
1558       // if they at least come from the same origin for a transitioning store,
1559       // stay MONOMORPHIC and use the map for the most generic ElementsKind.
1560       store_mode = GetNonTransitioningStoreMode(store_mode);
1561       return PropertyICCompiler::ComputeKeyedStoreMonomorphic(
1562           transitioned_receiver_map, strict_mode(), store_mode);
1563     } else if (*previous_receiver_map == receiver->map() &&
1564                old_store_mode == STANDARD_STORE &&
1565                (store_mode == STORE_AND_GROW_NO_TRANSITION ||
1566                 store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS ||
1567                 store_mode == STORE_NO_TRANSITION_HANDLE_COW)) {
1568       // A "normal" IC that handles stores can switch to a version that can
1569       // grow at the end of the array, handle OOB accesses or copy COW arrays
1570       // and still stay MONOMORPHIC.
1571       return PropertyICCompiler::ComputeKeyedStoreMonomorphic(
1572           receiver_map, strict_mode(), store_mode);
1573     }
1574   }
1575
1576   DCHECK(state() != GENERIC);
1577
1578   bool map_added =
1579       AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map);
1580
1581   if (IsTransitionStoreMode(store_mode)) {
1582     Handle<Map> transitioned_receiver_map =
1583         ComputeTransitionedMap(receiver_map, store_mode);
1584     map_added |= AddOneReceiverMapIfMissing(&target_receiver_maps,
1585                                             transitioned_receiver_map);
1586   }
1587
1588   if (!map_added) {
1589     // If the miss wasn't due to an unseen map, a polymorphic stub
1590     // won't help, use the generic stub.
1591     TRACE_GENERIC_IC(isolate(), "KeyedIC", "same map added twice");
1592     return generic_stub();
1593   }
1594
1595   // If the maximum number of receiver maps has been exceeded, use the generic
1596   // version of the IC.
1597   if (target_receiver_maps.length() > kMaxKeyedPolymorphism) {
1598     TRACE_GENERIC_IC(isolate(), "KeyedIC", "max polymorph exceeded");
1599     return generic_stub();
1600   }
1601
1602   // Make sure all polymorphic handlers have the same store mode, otherwise the
1603   // generic stub must be used.
1604   store_mode = GetNonTransitioningStoreMode(store_mode);
1605   if (old_store_mode != STANDARD_STORE) {
1606     if (store_mode == STANDARD_STORE) {
1607       store_mode = old_store_mode;
1608     } else if (store_mode != old_store_mode) {
1609       TRACE_GENERIC_IC(isolate(), "KeyedIC", "store mode mismatch");
1610       return generic_stub();
1611     }
1612   }
1613
1614   // If the store mode isn't the standard mode, make sure that all polymorphic
1615   // receivers are either external arrays, or all "normal" arrays. Otherwise,
1616   // use the generic stub.
1617   if (store_mode != STANDARD_STORE) {
1618     int external_arrays = 0;
1619     for (int i = 0; i < target_receiver_maps.length(); ++i) {
1620       if (target_receiver_maps[i]->has_external_array_elements() ||
1621           target_receiver_maps[i]->has_fixed_typed_array_elements()) {
1622         external_arrays++;
1623       }
1624     }
1625     if (external_arrays != 0 &&
1626         external_arrays != target_receiver_maps.length()) {
1627       TRACE_GENERIC_IC(isolate(), "KeyedIC",
1628           "unsupported combination of external and normal arrays");
1629       return generic_stub();
1630     }
1631   }
1632
1633   return PropertyICCompiler::ComputeKeyedStorePolymorphic(
1634       &target_receiver_maps, store_mode, strict_mode());
1635 }
1636
1637
1638 Handle<Map> KeyedStoreIC::ComputeTransitionedMap(
1639     Handle<Map> map,
1640     KeyedAccessStoreMode store_mode) {
1641   switch (store_mode) {
1642     case STORE_TRANSITION_SMI_TO_OBJECT:
1643     case STORE_TRANSITION_DOUBLE_TO_OBJECT:
1644     case STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT:
1645     case STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT:
1646       return Map::TransitionElementsTo(map, FAST_ELEMENTS);
1647     case STORE_TRANSITION_SMI_TO_DOUBLE:
1648     case STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE:
1649       return Map::TransitionElementsTo(map, FAST_DOUBLE_ELEMENTS);
1650     case STORE_TRANSITION_HOLEY_SMI_TO_OBJECT:
1651     case STORE_TRANSITION_HOLEY_DOUBLE_TO_OBJECT:
1652     case STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_OBJECT:
1653     case STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT:
1654       return Map::TransitionElementsTo(map, FAST_HOLEY_ELEMENTS);
1655     case STORE_TRANSITION_HOLEY_SMI_TO_DOUBLE:
1656     case STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_DOUBLE:
1657       return Map::TransitionElementsTo(map, FAST_HOLEY_DOUBLE_ELEMENTS);
1658     case STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS:
1659       DCHECK(map->has_external_array_elements());
1660       // Fall through
1661     case STORE_NO_TRANSITION_HANDLE_COW:
1662     case STANDARD_STORE:
1663     case STORE_AND_GROW_NO_TRANSITION:
1664       return map;
1665   }
1666   UNREACHABLE();
1667   return MaybeHandle<Map>().ToHandleChecked();
1668 }
1669
1670
1671 bool IsOutOfBoundsAccess(Handle<JSObject> receiver,
1672                          int index) {
1673   if (receiver->IsJSArray()) {
1674     return JSArray::cast(*receiver)->length()->IsSmi() &&
1675         index >= Smi::cast(JSArray::cast(*receiver)->length())->value();
1676   }
1677   return index >= receiver->elements()->length();
1678 }
1679
1680
1681 KeyedAccessStoreMode KeyedStoreIC::GetStoreMode(Handle<JSObject> receiver,
1682                                                 Handle<Object> key,
1683                                                 Handle<Object> value) {
1684   Handle<Smi> smi_key = Object::ToSmi(isolate(), key).ToHandleChecked();
1685   int index = smi_key->value();
1686   bool oob_access = IsOutOfBoundsAccess(receiver, index);
1687   // Don't consider this a growing store if the store would send the receiver to
1688   // dictionary mode.
1689   bool allow_growth = receiver->IsJSArray() && oob_access &&
1690       !receiver->WouldConvertToSlowElements(key);
1691   if (allow_growth) {
1692     // Handle growing array in stub if necessary.
1693     if (receiver->HasFastSmiElements()) {
1694       if (value->IsHeapNumber()) {
1695         if (receiver->HasFastHoleyElements()) {
1696           return STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_DOUBLE;
1697         } else {
1698           return STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE;
1699         }
1700       }
1701       if (value->IsHeapObject()) {
1702         if (receiver->HasFastHoleyElements()) {
1703           return STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_OBJECT;
1704         } else {
1705           return STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT;
1706         }
1707       }
1708     } else if (receiver->HasFastDoubleElements()) {
1709       if (!value->IsSmi() && !value->IsHeapNumber()) {
1710         if (receiver->HasFastHoleyElements()) {
1711           return STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT;
1712         } else {
1713           return STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT;
1714         }
1715       }
1716     }
1717     return STORE_AND_GROW_NO_TRANSITION;
1718   } else {
1719     // Handle only in-bounds elements accesses.
1720     if (receiver->HasFastSmiElements()) {
1721       if (value->IsHeapNumber()) {
1722         if (receiver->HasFastHoleyElements()) {
1723           return STORE_TRANSITION_HOLEY_SMI_TO_DOUBLE;
1724         } else {
1725           return STORE_TRANSITION_SMI_TO_DOUBLE;
1726         }
1727       } else if (value->IsHeapObject()) {
1728         if (receiver->HasFastHoleyElements()) {
1729           return STORE_TRANSITION_HOLEY_SMI_TO_OBJECT;
1730         } else {
1731           return STORE_TRANSITION_SMI_TO_OBJECT;
1732         }
1733       }
1734     } else if (receiver->HasFastDoubleElements()) {
1735       if (!value->IsSmi() && !value->IsHeapNumber()) {
1736         if (receiver->HasFastHoleyElements()) {
1737           return STORE_TRANSITION_HOLEY_DOUBLE_TO_OBJECT;
1738         } else {
1739           return STORE_TRANSITION_DOUBLE_TO_OBJECT;
1740         }
1741       }
1742     }
1743     if (!FLAG_trace_external_array_abuse &&
1744         receiver->map()->has_external_array_elements() && oob_access) {
1745       return STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS;
1746     }
1747     Heap* heap = receiver->GetHeap();
1748     if (receiver->elements()->map() == heap->fixed_cow_array_map()) {
1749       return STORE_NO_TRANSITION_HANDLE_COW;
1750     } else {
1751       return STANDARD_STORE;
1752     }
1753   }
1754 }
1755
1756
1757 MaybeHandle<Object> KeyedStoreIC::Store(Handle<Object> object,
1758                                         Handle<Object> key,
1759                                         Handle<Object> value) {
1760   // TODO(verwaest): Let SetProperty do the migration, since storing a property
1761   // might deprecate the current map again, if value does not fit.
1762   if (MigrateDeprecated(object)) {
1763     Handle<Object> result;
1764     ASSIGN_RETURN_ON_EXCEPTION(
1765         isolate(),
1766         result,
1767         Runtime::SetObjectProperty(
1768             isolate(), object, key, value, strict_mode()),
1769         Object);
1770     return result;
1771   }
1772
1773   // Check for non-string values that can be converted into an
1774   // internalized string directly or is representable as a smi.
1775   key = TryConvertKey(key, isolate());
1776
1777   Handle<Object> store_handle;
1778   Handle<Code> stub = generic_stub();
1779
1780   if (key->IsInternalizedString()) {
1781     ASSIGN_RETURN_ON_EXCEPTION(
1782         isolate(),
1783         store_handle,
1784         StoreIC::Store(object,
1785                        Handle<String>::cast(key),
1786                        value,
1787                        JSReceiver::MAY_BE_STORE_FROM_KEYED),
1788         Object);
1789     TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "set generic");
1790     set_target(*stub);
1791     return store_handle;
1792   }
1793
1794   bool use_ic =
1795       FLAG_use_ic && !object->IsStringWrapper() &&
1796       !object->IsAccessCheckNeeded() && !object->IsJSGlobalProxy() &&
1797       !(object->IsJSObject() && JSObject::cast(*object)->map()->is_observed());
1798   if (use_ic && !object->IsSmi()) {
1799     // Don't use ICs for maps of the objects in Array's prototype chain. We
1800     // expect to be able to trap element sets to objects with those maps in
1801     // the runtime to enable optimization of element hole access.
1802     Handle<HeapObject> heap_object = Handle<HeapObject>::cast(object);
1803     if (heap_object->map()->IsMapInArrayPrototypeChain()) use_ic = false;
1804   }
1805
1806   if (use_ic) {
1807     DCHECK(!object->IsAccessCheckNeeded());
1808
1809     if (object->IsJSObject()) {
1810       Handle<JSObject> receiver = Handle<JSObject>::cast(object);
1811       bool key_is_smi_like = !Object::ToSmi(isolate(), key).is_null();
1812       if (receiver->elements()->map() ==
1813           isolate()->heap()->sloppy_arguments_elements_map()) {
1814         if (strict_mode() == SLOPPY) {
1815           stub = sloppy_arguments_stub();
1816         }
1817       } else if (key_is_smi_like &&
1818                  !(target().is_identical_to(sloppy_arguments_stub()))) {
1819         // We should go generic if receiver isn't a dictionary, but our
1820         // prototype chain does have dictionary elements. This ensures that
1821         // other non-dictionary receivers in the polymorphic case benefit
1822         // from fast path keyed stores.
1823         if (!(receiver->map()->DictionaryElementsInPrototypeChainOnly())) {
1824           KeyedAccessStoreMode store_mode = GetStoreMode(receiver, key, value);
1825           stub = StoreElementStub(receiver, store_mode);
1826         }
1827       }
1828     }
1829   }
1830
1831   if (store_handle.is_null()) {
1832     ASSIGN_RETURN_ON_EXCEPTION(
1833         isolate(),
1834         store_handle,
1835         Runtime::SetObjectProperty(
1836             isolate(), object, key, value, strict_mode()),
1837         Object);
1838   }
1839
1840   DCHECK(!is_target_set());
1841   Code* generic = *generic_stub();
1842   if (*stub == generic) {
1843     TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "set generic");
1844   }
1845   DCHECK(!stub.is_null());
1846   set_target(*stub);
1847   TRACE_IC("StoreIC", key);
1848
1849   return store_handle;
1850 }
1851
1852
1853 CallIC::State::State(ExtraICState extra_ic_state)
1854     : argc_(ArgcBits::decode(extra_ic_state)),
1855       call_type_(CallTypeBits::decode(extra_ic_state)) {
1856 }
1857
1858
1859 ExtraICState CallIC::State::GetExtraICState() const {
1860   ExtraICState extra_ic_state =
1861       ArgcBits::encode(argc_) |
1862       CallTypeBits::encode(call_type_);
1863   return extra_ic_state;
1864 }
1865
1866
1867 bool CallIC::DoCustomHandler(Handle<Object> receiver,
1868                              Handle<Object> function,
1869                              Handle<FixedArray> vector,
1870                              Handle<Smi> slot,
1871                              const State& state) {
1872   DCHECK(FLAG_use_ic && function->IsJSFunction());
1873
1874   // Are we the array function?
1875   Handle<JSFunction> array_function = Handle<JSFunction>(
1876       isolate()->native_context()->array_function());
1877   if (array_function.is_identical_to(Handle<JSFunction>::cast(function))) {
1878     // Alter the slot.
1879     IC::State old_state = FeedbackToState(vector, slot);
1880     Object* feedback = vector->get(slot->value());
1881     if (!feedback->IsAllocationSite()) {
1882       Handle<AllocationSite> new_site =
1883           isolate()->factory()->NewAllocationSite();
1884       vector->set(slot->value(), *new_site);
1885     }
1886
1887     CallIC_ArrayStub stub(isolate(), state);
1888     set_target(*stub.GetCode());
1889     Handle<String> name;
1890     if (array_function->shared()->name()->IsString()) {
1891       name = Handle<String>(String::cast(array_function->shared()->name()),
1892                             isolate());
1893     }
1894
1895     IC::State new_state = FeedbackToState(vector, slot);
1896     OnTypeFeedbackChanged(isolate(), address(), old_state, new_state, true);
1897     TRACE_VECTOR_IC("CallIC (custom handler)", name, old_state, new_state);
1898     return true;
1899   }
1900   return false;
1901 }
1902
1903
1904 void CallIC::PatchMegamorphic(Handle<Object> function,
1905                               Handle<FixedArray> vector, Handle<Smi> slot) {
1906   State state(target()->extra_ic_state());
1907   IC::State old_state = FeedbackToState(vector, slot);
1908
1909   // We are going generic.
1910   vector->set(slot->value(),
1911               *TypeFeedbackInfo::MegamorphicSentinel(isolate()),
1912               SKIP_WRITE_BARRIER);
1913
1914   CallICStub stub(isolate(), state);
1915   Handle<Code> code = stub.GetCode();
1916   set_target(*code);
1917
1918   Handle<Object> name = isolate()->factory()->empty_string();
1919   if (function->IsJSFunction()) {
1920     Handle<JSFunction> js_function = Handle<JSFunction>::cast(function);
1921     name = handle(js_function->shared()->name(), isolate());
1922   }
1923
1924   IC::State new_state = FeedbackToState(vector, slot);
1925   OnTypeFeedbackChanged(isolate(), address(), old_state, new_state, true);
1926   TRACE_VECTOR_IC("CallIC", name, old_state, new_state);
1927 }
1928
1929
1930 void CallIC::HandleMiss(Handle<Object> receiver,
1931                         Handle<Object> function,
1932                         Handle<FixedArray> vector,
1933                         Handle<Smi> slot) {
1934   State state(target()->extra_ic_state());
1935   IC::State old_state = FeedbackToState(vector, slot);
1936   Handle<Object> name = isolate()->factory()->empty_string();
1937   Object* feedback = vector->get(slot->value());
1938
1939   // Hand-coded MISS handling is easier if CallIC slots don't contain smis.
1940   DCHECK(!feedback->IsSmi());
1941
1942   if (feedback->IsJSFunction() || !function->IsJSFunction()) {
1943     // We are going generic.
1944     vector->set(slot->value(),
1945                 *TypeFeedbackInfo::MegamorphicSentinel(isolate()),
1946                 SKIP_WRITE_BARRIER);
1947   } else {
1948     // The feedback is either uninitialized or an allocation site.
1949     // It might be an allocation site because if we re-compile the full code
1950     // to add deoptimization support, we call with the default call-ic, and
1951     // merely need to patch the target to match the feedback.
1952     // TODO(mvstanton): the better approach is to dispense with patching
1953     // altogether, which is in progress.
1954     DCHECK(feedback == *TypeFeedbackInfo::UninitializedSentinel(isolate()) ||
1955            feedback->IsAllocationSite());
1956
1957     // Do we want to install a custom handler?
1958     if (FLAG_use_ic &&
1959         DoCustomHandler(receiver, function, vector, slot, state)) {
1960       return;
1961     }
1962
1963     vector->set(slot->value(), *function);
1964   }
1965
1966   if (function->IsJSFunction()) {
1967     Handle<JSFunction> js_function = Handle<JSFunction>::cast(function);
1968     name = handle(js_function->shared()->name(), isolate());
1969   }
1970
1971   IC::State new_state = FeedbackToState(vector, slot);
1972   OnTypeFeedbackChanged(isolate(), address(), old_state, new_state, true);
1973   TRACE_VECTOR_IC("CallIC", name, old_state, new_state);
1974 }
1975
1976
1977 #undef TRACE_IC
1978
1979
1980 // ----------------------------------------------------------------------------
1981 // Static IC stub generators.
1982 //
1983
1984 // Used from ic-<arch>.cc.
1985 RUNTIME_FUNCTION(CallIC_Miss) {
1986   TimerEventScope<TimerEventIcMiss> timer(isolate);
1987   HandleScope scope(isolate);
1988   DCHECK(args.length() == 4);
1989   CallIC ic(isolate);
1990   Handle<Object> receiver = args.at<Object>(0);
1991   Handle<Object> function = args.at<Object>(1);
1992   Handle<FixedArray> vector = args.at<FixedArray>(2);
1993   Handle<Smi> slot = args.at<Smi>(3);
1994   ic.HandleMiss(receiver, function, vector, slot);
1995   return *function;
1996 }
1997
1998
1999 RUNTIME_FUNCTION(CallIC_Customization_Miss) {
2000   TimerEventScope<TimerEventIcMiss> timer(isolate);
2001   HandleScope scope(isolate);
2002   DCHECK(args.length() == 4);
2003   // A miss on a custom call ic always results in going megamorphic.
2004   CallIC ic(isolate);
2005   Handle<Object> function = args.at<Object>(1);
2006   Handle<FixedArray> vector = args.at<FixedArray>(2);
2007   Handle<Smi> slot = args.at<Smi>(3);
2008   ic.PatchMegamorphic(function, vector, slot);
2009   return *function;
2010 }
2011
2012
2013 // Used from ic-<arch>.cc.
2014 RUNTIME_FUNCTION(LoadIC_Miss) {
2015   TimerEventScope<TimerEventIcMiss> timer(isolate);
2016   HandleScope scope(isolate);
2017   DCHECK(args.length() == 2);
2018   LoadIC ic(IC::NO_EXTRA_FRAME, isolate);
2019   Handle<Object> receiver = args.at<Object>(0);
2020   Handle<Name> key = args.at<Name>(1);
2021   ic.UpdateState(receiver, key);
2022   Handle<Object> result;
2023   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, ic.Load(receiver, key));
2024   return *result;
2025 }
2026
2027
2028 // Used from ic-<arch>.cc
2029 RUNTIME_FUNCTION(KeyedLoadIC_Miss) {
2030   TimerEventScope<TimerEventIcMiss> timer(isolate);
2031   HandleScope scope(isolate);
2032   DCHECK(args.length() == 2);
2033   KeyedLoadIC ic(IC::NO_EXTRA_FRAME, isolate);
2034   Handle<Object> receiver = args.at<Object>(0);
2035   Handle<Object> key = args.at<Object>(1);
2036   ic.UpdateState(receiver, key);
2037   Handle<Object> result;
2038   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, ic.Load(receiver, key));
2039   return *result;
2040 }
2041
2042
2043 RUNTIME_FUNCTION(KeyedLoadIC_MissFromStubFailure) {
2044   TimerEventScope<TimerEventIcMiss> timer(isolate);
2045   HandleScope scope(isolate);
2046   DCHECK(args.length() == 2);
2047   KeyedLoadIC ic(IC::EXTRA_CALL_FRAME, isolate);
2048   Handle<Object> receiver = args.at<Object>(0);
2049   Handle<Object> key = args.at<Object>(1);
2050   ic.UpdateState(receiver, key);
2051   Handle<Object> result;
2052   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, ic.Load(receiver, key));
2053   return *result;
2054 }
2055
2056
2057 // Used from ic-<arch>.cc.
2058 RUNTIME_FUNCTION(StoreIC_Miss) {
2059   TimerEventScope<TimerEventIcMiss> timer(isolate);
2060   HandleScope scope(isolate);
2061   DCHECK(args.length() == 3);
2062   StoreIC ic(IC::NO_EXTRA_FRAME, isolate);
2063   Handle<Object> receiver = args.at<Object>(0);
2064   Handle<String> key = args.at<String>(1);
2065   ic.UpdateState(receiver, key);
2066   Handle<Object> result;
2067   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2068       isolate,
2069       result,
2070       ic.Store(receiver, key, args.at<Object>(2)));
2071   return *result;
2072 }
2073
2074
2075 RUNTIME_FUNCTION(StoreIC_MissFromStubFailure) {
2076   TimerEventScope<TimerEventIcMiss> timer(isolate);
2077   HandleScope scope(isolate);
2078   DCHECK(args.length() == 3);
2079   StoreIC ic(IC::EXTRA_CALL_FRAME, isolate);
2080   Handle<Object> receiver = args.at<Object>(0);
2081   Handle<String> key = args.at<String>(1);
2082   ic.UpdateState(receiver, key);
2083   Handle<Object> result;
2084   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2085       isolate,
2086       result,
2087       ic.Store(receiver, key, args.at<Object>(2)));
2088   return *result;
2089 }
2090
2091
2092 // Extend storage is called in a store inline cache when
2093 // it is necessary to extend the properties array of a
2094 // JSObject.
2095 RUNTIME_FUNCTION(SharedStoreIC_ExtendStorage) {
2096   TimerEventScope<TimerEventIcMiss> timer(isolate);
2097   HandleScope shs(isolate);
2098   DCHECK(args.length() == 3);
2099
2100   // Convert the parameters
2101   Handle<JSObject> object = args.at<JSObject>(0);
2102   Handle<Map> transition = args.at<Map>(1);
2103   Handle<Object> value = args.at<Object>(2);
2104
2105   // Check the object has run out out property space.
2106   DCHECK(object->HasFastProperties());
2107   DCHECK(object->map()->unused_property_fields() == 0);
2108
2109   JSObject::MigrateToNewProperty(object, transition, value);
2110
2111   // Return the stored value.
2112   return *value;
2113 }
2114
2115
2116 // Used from ic-<arch>.cc.
2117 RUNTIME_FUNCTION(KeyedStoreIC_Miss) {
2118   TimerEventScope<TimerEventIcMiss> timer(isolate);
2119   HandleScope scope(isolate);
2120   DCHECK(args.length() == 3);
2121   KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate);
2122   Handle<Object> receiver = args.at<Object>(0);
2123   Handle<Object> key = args.at<Object>(1);
2124   ic.UpdateState(receiver, key);
2125   Handle<Object> result;
2126   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2127       isolate,
2128       result,
2129       ic.Store(receiver, key, args.at<Object>(2)));
2130   return *result;
2131 }
2132
2133
2134 RUNTIME_FUNCTION(KeyedStoreIC_MissFromStubFailure) {
2135   TimerEventScope<TimerEventIcMiss> timer(isolate);
2136   HandleScope scope(isolate);
2137   DCHECK(args.length() == 3);
2138   KeyedStoreIC ic(IC::EXTRA_CALL_FRAME, isolate);
2139   Handle<Object> receiver = args.at<Object>(0);
2140   Handle<Object> key = args.at<Object>(1);
2141   ic.UpdateState(receiver, key);
2142   Handle<Object> result;
2143   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2144       isolate,
2145       result,
2146       ic.Store(receiver, key, args.at<Object>(2)));
2147   return *result;
2148 }
2149
2150
2151 RUNTIME_FUNCTION(StoreIC_Slow) {
2152   HandleScope scope(isolate);
2153   DCHECK(args.length() == 3);
2154   StoreIC ic(IC::NO_EXTRA_FRAME, isolate);
2155   Handle<Object> object = args.at<Object>(0);
2156   Handle<Object> key = args.at<Object>(1);
2157   Handle<Object> value = args.at<Object>(2);
2158   StrictMode strict_mode = ic.strict_mode();
2159   Handle<Object> result;
2160   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2161       isolate, result,
2162       Runtime::SetObjectProperty(
2163           isolate, object, key, value, strict_mode));
2164   return *result;
2165 }
2166
2167
2168 RUNTIME_FUNCTION(KeyedStoreIC_Slow) {
2169   HandleScope scope(isolate);
2170   DCHECK(args.length() == 3);
2171   KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate);
2172   Handle<Object> object = args.at<Object>(0);
2173   Handle<Object> key = args.at<Object>(1);
2174   Handle<Object> value = args.at<Object>(2);
2175   StrictMode strict_mode = ic.strict_mode();
2176   Handle<Object> result;
2177   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2178       isolate, result,
2179       Runtime::SetObjectProperty(
2180           isolate, object, key, value, strict_mode));
2181   return *result;
2182 }
2183
2184
2185 RUNTIME_FUNCTION(ElementsTransitionAndStoreIC_Miss) {
2186   TimerEventScope<TimerEventIcMiss> timer(isolate);
2187   HandleScope scope(isolate);
2188   DCHECK(args.length() == 4);
2189   KeyedStoreIC ic(IC::EXTRA_CALL_FRAME, isolate);
2190   Handle<Object> value = args.at<Object>(0);
2191   Handle<Map> map = args.at<Map>(1);
2192   Handle<Object> key = args.at<Object>(2);
2193   Handle<Object> object = args.at<Object>(3);
2194   StrictMode strict_mode = ic.strict_mode();
2195   if (object->IsJSObject()) {
2196     JSObject::TransitionElementsKind(Handle<JSObject>::cast(object),
2197                                      map->elements_kind());
2198   }
2199   Handle<Object> result;
2200   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2201       isolate, result,
2202       Runtime::SetObjectProperty(
2203           isolate, object, key, value, strict_mode));
2204   return *result;
2205 }
2206
2207
2208 BinaryOpIC::State::State(Isolate* isolate, ExtraICState extra_ic_state)
2209     : isolate_(isolate) {
2210   op_ = static_cast<Token::Value>(
2211       FIRST_TOKEN + OpField::decode(extra_ic_state));
2212   mode_ = OverwriteModeField::decode(extra_ic_state);
2213   fixed_right_arg_ = Maybe<int>(
2214       HasFixedRightArgField::decode(extra_ic_state),
2215       1 << FixedRightArgValueField::decode(extra_ic_state));
2216   left_kind_ = LeftKindField::decode(extra_ic_state);
2217   if (fixed_right_arg_.has_value) {
2218     right_kind_ = Smi::IsValid(fixed_right_arg_.value) ? SMI : INT32;
2219   } else {
2220     right_kind_ = RightKindField::decode(extra_ic_state);
2221   }
2222   result_kind_ = ResultKindField::decode(extra_ic_state);
2223   DCHECK_LE(FIRST_TOKEN, op_);
2224   DCHECK_LE(op_, LAST_TOKEN);
2225 }
2226
2227
2228 ExtraICState BinaryOpIC::State::GetExtraICState() const {
2229   ExtraICState extra_ic_state =
2230       OpField::encode(op_ - FIRST_TOKEN) |
2231       OverwriteModeField::encode(mode_) |
2232       LeftKindField::encode(left_kind_) |
2233       ResultKindField::encode(result_kind_) |
2234       HasFixedRightArgField::encode(fixed_right_arg_.has_value);
2235   if (fixed_right_arg_.has_value) {
2236     extra_ic_state = FixedRightArgValueField::update(
2237         extra_ic_state, WhichPowerOf2(fixed_right_arg_.value));
2238   } else {
2239     extra_ic_state = RightKindField::update(extra_ic_state, right_kind_);
2240   }
2241   return extra_ic_state;
2242 }
2243
2244
2245 // static
2246 void BinaryOpIC::State::GenerateAheadOfTime(
2247     Isolate* isolate, void (*Generate)(Isolate*, const State&)) {
2248   // TODO(olivf) We should investigate why adding stubs to the snapshot is so
2249   // expensive at runtime. When solved we should be able to add most binops to
2250   // the snapshot instead of hand-picking them.
2251   // Generated list of commonly used stubs
2252 #define GENERATE(op, left_kind, right_kind, result_kind, mode)  \
2253   do {                                                          \
2254     State state(isolate, op, mode);                             \
2255     state.left_kind_ = left_kind;                               \
2256     state.fixed_right_arg_.has_value = false;                   \
2257     state.right_kind_ = right_kind;                             \
2258     state.result_kind_ = result_kind;                           \
2259     Generate(isolate, state);                                   \
2260   } while (false)
2261   GENERATE(Token::ADD, INT32, INT32, INT32, NO_OVERWRITE);
2262   GENERATE(Token::ADD, INT32, INT32, INT32, OVERWRITE_LEFT);
2263   GENERATE(Token::ADD, INT32, INT32, NUMBER, NO_OVERWRITE);
2264   GENERATE(Token::ADD, INT32, INT32, NUMBER, OVERWRITE_LEFT);
2265   GENERATE(Token::ADD, INT32, NUMBER, NUMBER, NO_OVERWRITE);
2266   GENERATE(Token::ADD, INT32, NUMBER, NUMBER, OVERWRITE_LEFT);
2267   GENERATE(Token::ADD, INT32, NUMBER, NUMBER, OVERWRITE_RIGHT);
2268   GENERATE(Token::ADD, INT32, SMI, INT32, NO_OVERWRITE);
2269   GENERATE(Token::ADD, INT32, SMI, INT32, OVERWRITE_LEFT);
2270   GENERATE(Token::ADD, INT32, SMI, INT32, OVERWRITE_RIGHT);
2271   GENERATE(Token::ADD, NUMBER, INT32, NUMBER, NO_OVERWRITE);
2272   GENERATE(Token::ADD, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
2273   GENERATE(Token::ADD, NUMBER, INT32, NUMBER, OVERWRITE_RIGHT);
2274   GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
2275   GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
2276   GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT);
2277   GENERATE(Token::ADD, NUMBER, SMI, NUMBER, NO_OVERWRITE);
2278   GENERATE(Token::ADD, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
2279   GENERATE(Token::ADD, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT);
2280   GENERATE(Token::ADD, SMI, INT32, INT32, NO_OVERWRITE);
2281   GENERATE(Token::ADD, SMI, INT32, INT32, OVERWRITE_LEFT);
2282   GENERATE(Token::ADD, SMI, INT32, NUMBER, NO_OVERWRITE);
2283   GENERATE(Token::ADD, SMI, NUMBER, NUMBER, NO_OVERWRITE);
2284   GENERATE(Token::ADD, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
2285   GENERATE(Token::ADD, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
2286   GENERATE(Token::ADD, SMI, SMI, INT32, OVERWRITE_LEFT);
2287   GENERATE(Token::ADD, SMI, SMI, SMI, OVERWRITE_RIGHT);
2288   GENERATE(Token::BIT_AND, INT32, INT32, INT32, NO_OVERWRITE);
2289   GENERATE(Token::BIT_AND, INT32, INT32, INT32, OVERWRITE_LEFT);
2290   GENERATE(Token::BIT_AND, INT32, INT32, INT32, OVERWRITE_RIGHT);
2291   GENERATE(Token::BIT_AND, INT32, INT32, SMI, NO_OVERWRITE);
2292   GENERATE(Token::BIT_AND, INT32, INT32, SMI, OVERWRITE_RIGHT);
2293   GENERATE(Token::BIT_AND, INT32, SMI, INT32, NO_OVERWRITE);
2294   GENERATE(Token::BIT_AND, INT32, SMI, INT32, OVERWRITE_RIGHT);
2295   GENERATE(Token::BIT_AND, INT32, SMI, SMI, NO_OVERWRITE);
2296   GENERATE(Token::BIT_AND, INT32, SMI, SMI, OVERWRITE_LEFT);
2297   GENERATE(Token::BIT_AND, INT32, SMI, SMI, OVERWRITE_RIGHT);
2298   GENERATE(Token::BIT_AND, NUMBER, INT32, INT32, OVERWRITE_RIGHT);
2299   GENERATE(Token::BIT_AND, NUMBER, SMI, SMI, NO_OVERWRITE);
2300   GENERATE(Token::BIT_AND, NUMBER, SMI, SMI, OVERWRITE_RIGHT);
2301   GENERATE(Token::BIT_AND, SMI, INT32, INT32, NO_OVERWRITE);
2302   GENERATE(Token::BIT_AND, SMI, INT32, SMI, OVERWRITE_RIGHT);
2303   GENERATE(Token::BIT_AND, SMI, NUMBER, SMI, OVERWRITE_RIGHT);
2304   GENERATE(Token::BIT_AND, SMI, SMI, SMI, NO_OVERWRITE);
2305   GENERATE(Token::BIT_AND, SMI, SMI, SMI, OVERWRITE_LEFT);
2306   GENERATE(Token::BIT_AND, SMI, SMI, SMI, OVERWRITE_RIGHT);
2307   GENERATE(Token::BIT_OR, INT32, INT32, INT32, OVERWRITE_LEFT);
2308   GENERATE(Token::BIT_OR, INT32, INT32, INT32, OVERWRITE_RIGHT);
2309   GENERATE(Token::BIT_OR, INT32, INT32, SMI, OVERWRITE_LEFT);
2310   GENERATE(Token::BIT_OR, INT32, SMI, INT32, NO_OVERWRITE);
2311   GENERATE(Token::BIT_OR, INT32, SMI, INT32, OVERWRITE_LEFT);
2312   GENERATE(Token::BIT_OR, INT32, SMI, INT32, OVERWRITE_RIGHT);
2313   GENERATE(Token::BIT_OR, INT32, SMI, SMI, NO_OVERWRITE);
2314   GENERATE(Token::BIT_OR, INT32, SMI, SMI, OVERWRITE_RIGHT);
2315   GENERATE(Token::BIT_OR, NUMBER, SMI, INT32, NO_OVERWRITE);
2316   GENERATE(Token::BIT_OR, NUMBER, SMI, INT32, OVERWRITE_LEFT);
2317   GENERATE(Token::BIT_OR, NUMBER, SMI, INT32, OVERWRITE_RIGHT);
2318   GENERATE(Token::BIT_OR, NUMBER, SMI, SMI, NO_OVERWRITE);
2319   GENERATE(Token::BIT_OR, NUMBER, SMI, SMI, OVERWRITE_LEFT);
2320   GENERATE(Token::BIT_OR, SMI, INT32, INT32, OVERWRITE_LEFT);
2321   GENERATE(Token::BIT_OR, SMI, INT32, INT32, OVERWRITE_RIGHT);
2322   GENERATE(Token::BIT_OR, SMI, INT32, SMI, OVERWRITE_RIGHT);
2323   GENERATE(Token::BIT_OR, SMI, SMI, SMI, OVERWRITE_LEFT);
2324   GENERATE(Token::BIT_OR, SMI, SMI, SMI, OVERWRITE_RIGHT);
2325   GENERATE(Token::BIT_XOR, INT32, INT32, INT32, NO_OVERWRITE);
2326   GENERATE(Token::BIT_XOR, INT32, INT32, INT32, OVERWRITE_LEFT);
2327   GENERATE(Token::BIT_XOR, INT32, INT32, INT32, OVERWRITE_RIGHT);
2328   GENERATE(Token::BIT_XOR, INT32, INT32, SMI, NO_OVERWRITE);
2329   GENERATE(Token::BIT_XOR, INT32, INT32, SMI, OVERWRITE_LEFT);
2330   GENERATE(Token::BIT_XOR, INT32, NUMBER, SMI, NO_OVERWRITE);
2331   GENERATE(Token::BIT_XOR, INT32, SMI, INT32, NO_OVERWRITE);
2332   GENERATE(Token::BIT_XOR, INT32, SMI, INT32, OVERWRITE_LEFT);
2333   GENERATE(Token::BIT_XOR, INT32, SMI, INT32, OVERWRITE_RIGHT);
2334   GENERATE(Token::BIT_XOR, NUMBER, INT32, INT32, NO_OVERWRITE);
2335   GENERATE(Token::BIT_XOR, NUMBER, SMI, INT32, NO_OVERWRITE);
2336   GENERATE(Token::BIT_XOR, NUMBER, SMI, SMI, NO_OVERWRITE);
2337   GENERATE(Token::BIT_XOR, SMI, INT32, INT32, NO_OVERWRITE);
2338   GENERATE(Token::BIT_XOR, SMI, INT32, INT32, OVERWRITE_LEFT);
2339   GENERATE(Token::BIT_XOR, SMI, INT32, SMI, OVERWRITE_LEFT);
2340   GENERATE(Token::BIT_XOR, SMI, SMI, SMI, NO_OVERWRITE);
2341   GENERATE(Token::BIT_XOR, SMI, SMI, SMI, OVERWRITE_LEFT);
2342   GENERATE(Token::BIT_XOR, SMI, SMI, SMI, OVERWRITE_RIGHT);
2343   GENERATE(Token::DIV, INT32, INT32, INT32, NO_OVERWRITE);
2344   GENERATE(Token::DIV, INT32, INT32, NUMBER, NO_OVERWRITE);
2345   GENERATE(Token::DIV, INT32, NUMBER, NUMBER, NO_OVERWRITE);
2346   GENERATE(Token::DIV, INT32, NUMBER, NUMBER, OVERWRITE_LEFT);
2347   GENERATE(Token::DIV, INT32, SMI, INT32, NO_OVERWRITE);
2348   GENERATE(Token::DIV, INT32, SMI, NUMBER, NO_OVERWRITE);
2349   GENERATE(Token::DIV, NUMBER, INT32, NUMBER, NO_OVERWRITE);
2350   GENERATE(Token::DIV, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
2351   GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
2352   GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
2353   GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT);
2354   GENERATE(Token::DIV, NUMBER, SMI, NUMBER, NO_OVERWRITE);
2355   GENERATE(Token::DIV, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
2356   GENERATE(Token::DIV, SMI, INT32, INT32, NO_OVERWRITE);
2357   GENERATE(Token::DIV, SMI, INT32, NUMBER, NO_OVERWRITE);
2358   GENERATE(Token::DIV, SMI, INT32, NUMBER, OVERWRITE_LEFT);
2359   GENERATE(Token::DIV, SMI, NUMBER, NUMBER, NO_OVERWRITE);
2360   GENERATE(Token::DIV, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
2361   GENERATE(Token::DIV, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
2362   GENERATE(Token::DIV, SMI, SMI, NUMBER, NO_OVERWRITE);
2363   GENERATE(Token::DIV, SMI, SMI, NUMBER, OVERWRITE_LEFT);
2364   GENERATE(Token::DIV, SMI, SMI, NUMBER, OVERWRITE_RIGHT);
2365   GENERATE(Token::DIV, SMI, SMI, SMI, NO_OVERWRITE);
2366   GENERATE(Token::DIV, SMI, SMI, SMI, OVERWRITE_LEFT);
2367   GENERATE(Token::DIV, SMI, SMI, SMI, OVERWRITE_RIGHT);
2368   GENERATE(Token::MOD, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
2369   GENERATE(Token::MOD, SMI, SMI, SMI, NO_OVERWRITE);
2370   GENERATE(Token::MOD, SMI, SMI, SMI, OVERWRITE_LEFT);
2371   GENERATE(Token::MUL, INT32, INT32, INT32, NO_OVERWRITE);
2372   GENERATE(Token::MUL, INT32, INT32, NUMBER, NO_OVERWRITE);
2373   GENERATE(Token::MUL, INT32, NUMBER, NUMBER, NO_OVERWRITE);
2374   GENERATE(Token::MUL, INT32, NUMBER, NUMBER, OVERWRITE_LEFT);
2375   GENERATE(Token::MUL, INT32, SMI, INT32, NO_OVERWRITE);
2376   GENERATE(Token::MUL, INT32, SMI, INT32, OVERWRITE_LEFT);
2377   GENERATE(Token::MUL, INT32, SMI, NUMBER, NO_OVERWRITE);
2378   GENERATE(Token::MUL, NUMBER, INT32, NUMBER, NO_OVERWRITE);
2379   GENERATE(Token::MUL, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
2380   GENERATE(Token::MUL, NUMBER, INT32, NUMBER, OVERWRITE_RIGHT);
2381   GENERATE(Token::MUL, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
2382   GENERATE(Token::MUL, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
2383   GENERATE(Token::MUL, NUMBER, SMI, NUMBER, NO_OVERWRITE);
2384   GENERATE(Token::MUL, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
2385   GENERATE(Token::MUL, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT);
2386   GENERATE(Token::MUL, SMI, INT32, INT32, NO_OVERWRITE);
2387   GENERATE(Token::MUL, SMI, INT32, INT32, OVERWRITE_LEFT);
2388   GENERATE(Token::MUL, SMI, INT32, NUMBER, NO_OVERWRITE);
2389   GENERATE(Token::MUL, SMI, NUMBER, NUMBER, NO_OVERWRITE);
2390   GENERATE(Token::MUL, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
2391   GENERATE(Token::MUL, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
2392   GENERATE(Token::MUL, SMI, SMI, INT32, NO_OVERWRITE);
2393   GENERATE(Token::MUL, SMI, SMI, NUMBER, NO_OVERWRITE);
2394   GENERATE(Token::MUL, SMI, SMI, NUMBER, OVERWRITE_LEFT);
2395   GENERATE(Token::MUL, SMI, SMI, SMI, NO_OVERWRITE);
2396   GENERATE(Token::MUL, SMI, SMI, SMI, OVERWRITE_LEFT);
2397   GENERATE(Token::MUL, SMI, SMI, SMI, OVERWRITE_RIGHT);
2398   GENERATE(Token::SAR, INT32, SMI, INT32, OVERWRITE_RIGHT);
2399   GENERATE(Token::SAR, INT32, SMI, SMI, NO_OVERWRITE);
2400   GENERATE(Token::SAR, INT32, SMI, SMI, OVERWRITE_RIGHT);
2401   GENERATE(Token::SAR, NUMBER, SMI, SMI, NO_OVERWRITE);
2402   GENERATE(Token::SAR, NUMBER, SMI, SMI, OVERWRITE_RIGHT);
2403   GENERATE(Token::SAR, SMI, SMI, SMI, OVERWRITE_LEFT);
2404   GENERATE(Token::SAR, SMI, SMI, SMI, OVERWRITE_RIGHT);
2405   GENERATE(Token::SHL, INT32, SMI, INT32, NO_OVERWRITE);
2406   GENERATE(Token::SHL, INT32, SMI, INT32, OVERWRITE_RIGHT);
2407   GENERATE(Token::SHL, INT32, SMI, SMI, NO_OVERWRITE);
2408   GENERATE(Token::SHL, INT32, SMI, SMI, OVERWRITE_RIGHT);
2409   GENERATE(Token::SHL, NUMBER, SMI, SMI, OVERWRITE_RIGHT);
2410   GENERATE(Token::SHL, SMI, SMI, INT32, NO_OVERWRITE);
2411   GENERATE(Token::SHL, SMI, SMI, INT32, OVERWRITE_LEFT);
2412   GENERATE(Token::SHL, SMI, SMI, INT32, OVERWRITE_RIGHT);
2413   GENERATE(Token::SHL, SMI, SMI, SMI, NO_OVERWRITE);
2414   GENERATE(Token::SHL, SMI, SMI, SMI, OVERWRITE_LEFT);
2415   GENERATE(Token::SHL, SMI, SMI, SMI, OVERWRITE_RIGHT);
2416   GENERATE(Token::SHR, INT32, SMI, SMI, NO_OVERWRITE);
2417   GENERATE(Token::SHR, INT32, SMI, SMI, OVERWRITE_LEFT);
2418   GENERATE(Token::SHR, INT32, SMI, SMI, OVERWRITE_RIGHT);
2419   GENERATE(Token::SHR, NUMBER, SMI, SMI, NO_OVERWRITE);
2420   GENERATE(Token::SHR, NUMBER, SMI, SMI, OVERWRITE_LEFT);
2421   GENERATE(Token::SHR, NUMBER, SMI, INT32, OVERWRITE_RIGHT);
2422   GENERATE(Token::SHR, SMI, SMI, SMI, NO_OVERWRITE);
2423   GENERATE(Token::SHR, SMI, SMI, SMI, OVERWRITE_LEFT);
2424   GENERATE(Token::SHR, SMI, SMI, SMI, OVERWRITE_RIGHT);
2425   GENERATE(Token::SUB, INT32, INT32, INT32, NO_OVERWRITE);
2426   GENERATE(Token::SUB, INT32, INT32, INT32, OVERWRITE_LEFT);
2427   GENERATE(Token::SUB, INT32, NUMBER, NUMBER, NO_OVERWRITE);
2428   GENERATE(Token::SUB, INT32, NUMBER, NUMBER, OVERWRITE_RIGHT);
2429   GENERATE(Token::SUB, INT32, SMI, INT32, OVERWRITE_LEFT);
2430   GENERATE(Token::SUB, INT32, SMI, INT32, OVERWRITE_RIGHT);
2431   GENERATE(Token::SUB, NUMBER, INT32, NUMBER, NO_OVERWRITE);
2432   GENERATE(Token::SUB, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
2433   GENERATE(Token::SUB, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
2434   GENERATE(Token::SUB, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
2435   GENERATE(Token::SUB, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT);
2436   GENERATE(Token::SUB, NUMBER, SMI, NUMBER, NO_OVERWRITE);
2437   GENERATE(Token::SUB, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
2438   GENERATE(Token::SUB, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT);
2439   GENERATE(Token::SUB, SMI, INT32, INT32, NO_OVERWRITE);
2440   GENERATE(Token::SUB, SMI, NUMBER, NUMBER, NO_OVERWRITE);
2441   GENERATE(Token::SUB, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
2442   GENERATE(Token::SUB, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
2443   GENERATE(Token::SUB, SMI, SMI, SMI, NO_OVERWRITE);
2444   GENERATE(Token::SUB, SMI, SMI, SMI, OVERWRITE_LEFT);
2445   GENERATE(Token::SUB, SMI, SMI, SMI, OVERWRITE_RIGHT);
2446 #undef GENERATE
2447 #define GENERATE(op, left_kind, fixed_right_arg_value, result_kind, mode) \
2448   do {                                                                    \
2449     State state(isolate, op, mode);                                       \
2450     state.left_kind_ = left_kind;                                         \
2451     state.fixed_right_arg_.has_value = true;                              \
2452     state.fixed_right_arg_.value = fixed_right_arg_value;                 \
2453     state.right_kind_ = SMI;                                              \
2454     state.result_kind_ = result_kind;                                     \
2455     Generate(isolate, state);                                             \
2456   } while (false)
2457   GENERATE(Token::MOD, SMI, 2, SMI, NO_OVERWRITE);
2458   GENERATE(Token::MOD, SMI, 4, SMI, NO_OVERWRITE);
2459   GENERATE(Token::MOD, SMI, 4, SMI, OVERWRITE_LEFT);
2460   GENERATE(Token::MOD, SMI, 8, SMI, NO_OVERWRITE);
2461   GENERATE(Token::MOD, SMI, 16, SMI, OVERWRITE_LEFT);
2462   GENERATE(Token::MOD, SMI, 32, SMI, NO_OVERWRITE);
2463   GENERATE(Token::MOD, SMI, 2048, SMI, NO_OVERWRITE);
2464 #undef GENERATE
2465 }
2466
2467
2468 Type* BinaryOpIC::State::GetResultType(Zone* zone) const {
2469   Kind result_kind = result_kind_;
2470   if (HasSideEffects()) {
2471     result_kind = NONE;
2472   } else if (result_kind == GENERIC && op_ == Token::ADD) {
2473     return Type::Union(Type::Number(zone), Type::String(zone), zone);
2474   } else if (result_kind == NUMBER && op_ == Token::SHR) {
2475     return Type::Unsigned32(zone);
2476   }
2477   DCHECK_NE(GENERIC, result_kind);
2478   return KindToType(result_kind, zone);
2479 }
2480
2481
2482 OStream& operator<<(OStream& os, const BinaryOpIC::State& s) {
2483   os << "(" << Token::Name(s.op_);
2484   if (s.mode_ == OVERWRITE_LEFT)
2485     os << "_ReuseLeft";
2486   else if (s.mode_ == OVERWRITE_RIGHT)
2487     os << "_ReuseRight";
2488   if (s.CouldCreateAllocationMementos()) os << "_CreateAllocationMementos";
2489   os << ":" << BinaryOpIC::State::KindToString(s.left_kind_) << "*";
2490   if (s.fixed_right_arg_.has_value) {
2491     os << s.fixed_right_arg_.value;
2492   } else {
2493     os << BinaryOpIC::State::KindToString(s.right_kind_);
2494   }
2495   return os << "->" << BinaryOpIC::State::KindToString(s.result_kind_) << ")";
2496 }
2497
2498
2499 void BinaryOpIC::State::Update(Handle<Object> left,
2500                                Handle<Object> right,
2501                                Handle<Object> result) {
2502   ExtraICState old_extra_ic_state = GetExtraICState();
2503
2504   left_kind_ = UpdateKind(left, left_kind_);
2505   right_kind_ = UpdateKind(right, right_kind_);
2506
2507   int32_t fixed_right_arg_value = 0;
2508   bool has_fixed_right_arg =
2509       op_ == Token::MOD &&
2510       right->ToInt32(&fixed_right_arg_value) &&
2511       fixed_right_arg_value > 0 &&
2512       IsPowerOf2(fixed_right_arg_value) &&
2513       FixedRightArgValueField::is_valid(WhichPowerOf2(fixed_right_arg_value)) &&
2514       (left_kind_ == SMI || left_kind_ == INT32) &&
2515       (result_kind_ == NONE || !fixed_right_arg_.has_value);
2516   fixed_right_arg_ = Maybe<int32_t>(has_fixed_right_arg,
2517                                     fixed_right_arg_value);
2518
2519   result_kind_ = UpdateKind(result, result_kind_);
2520
2521   if (!Token::IsTruncatingBinaryOp(op_)) {
2522     Kind input_kind = Max(left_kind_, right_kind_);
2523     if (result_kind_ < input_kind && input_kind <= NUMBER) {
2524       result_kind_ = input_kind;
2525     }
2526   }
2527
2528   // We don't want to distinguish INT32 and NUMBER for string add (because
2529   // NumberToString can't make use of this anyway).
2530   if (left_kind_ == STRING && right_kind_ == INT32) {
2531     DCHECK_EQ(STRING, result_kind_);
2532     DCHECK_EQ(Token::ADD, op_);
2533     right_kind_ = NUMBER;
2534   } else if (right_kind_ == STRING && left_kind_ == INT32) {
2535     DCHECK_EQ(STRING, result_kind_);
2536     DCHECK_EQ(Token::ADD, op_);
2537     left_kind_ = NUMBER;
2538   }
2539
2540   // Reset overwrite mode unless we can actually make use of it, or may be able
2541   // to make use of it at some point in the future.
2542   if ((mode_ == OVERWRITE_LEFT && left_kind_ > NUMBER) ||
2543       (mode_ == OVERWRITE_RIGHT && right_kind_ > NUMBER) ||
2544       result_kind_ > NUMBER) {
2545     mode_ = NO_OVERWRITE;
2546   }
2547
2548   if (old_extra_ic_state == GetExtraICState()) {
2549     // Tagged operations can lead to non-truncating HChanges
2550     if (left->IsUndefined() || left->IsBoolean()) {
2551       left_kind_ = GENERIC;
2552     } else {
2553       DCHECK(right->IsUndefined() || right->IsBoolean());
2554       right_kind_ = GENERIC;
2555     }
2556   }
2557 }
2558
2559
2560 BinaryOpIC::State::Kind BinaryOpIC::State::UpdateKind(Handle<Object> object,
2561                                                       Kind kind) const {
2562   Kind new_kind = GENERIC;
2563   bool is_truncating = Token::IsTruncatingBinaryOp(op());
2564   if (object->IsBoolean() && is_truncating) {
2565     // Booleans will be automatically truncated by HChange.
2566     new_kind = INT32;
2567   } else if (object->IsUndefined()) {
2568     // Undefined will be automatically truncated by HChange.
2569     new_kind = is_truncating ? INT32 : NUMBER;
2570   } else if (object->IsSmi()) {
2571     new_kind = SMI;
2572   } else if (object->IsHeapNumber()) {
2573     double value = Handle<HeapNumber>::cast(object)->value();
2574     new_kind = IsInt32Double(value) ? INT32 : NUMBER;
2575   } else if (object->IsString() && op() == Token::ADD) {
2576     new_kind = STRING;
2577   }
2578   if (new_kind == INT32 && SmiValuesAre32Bits()) {
2579     new_kind = NUMBER;
2580   }
2581   if (kind != NONE &&
2582       ((new_kind <= NUMBER && kind > NUMBER) ||
2583        (new_kind > NUMBER && kind <= NUMBER))) {
2584     new_kind = GENERIC;
2585   }
2586   return Max(kind, new_kind);
2587 }
2588
2589
2590 // static
2591 const char* BinaryOpIC::State::KindToString(Kind kind) {
2592   switch (kind) {
2593     case NONE: return "None";
2594     case SMI: return "Smi";
2595     case INT32: return "Int32";
2596     case NUMBER: return "Number";
2597     case STRING: return "String";
2598     case GENERIC: return "Generic";
2599   }
2600   UNREACHABLE();
2601   return NULL;
2602 }
2603
2604
2605 // static
2606 Type* BinaryOpIC::State::KindToType(Kind kind, Zone* zone) {
2607   switch (kind) {
2608     case NONE: return Type::None(zone);
2609     case SMI: return Type::SignedSmall(zone);
2610     case INT32: return Type::Signed32(zone);
2611     case NUMBER: return Type::Number(zone);
2612     case STRING: return Type::String(zone);
2613     case GENERIC: return Type::Any(zone);
2614   }
2615   UNREACHABLE();
2616   return NULL;
2617 }
2618
2619
2620 MaybeHandle<Object> BinaryOpIC::Transition(
2621     Handle<AllocationSite> allocation_site,
2622     Handle<Object> left,
2623     Handle<Object> right) {
2624   State state(isolate(), target()->extra_ic_state());
2625
2626   // Compute the actual result using the builtin for the binary operation.
2627   Object* builtin = isolate()->js_builtins_object()->javascript_builtin(
2628       TokenToJSBuiltin(state.op()));
2629   Handle<JSFunction> function = handle(JSFunction::cast(builtin), isolate());
2630   Handle<Object> result;
2631   ASSIGN_RETURN_ON_EXCEPTION(
2632       isolate(),
2633       result,
2634       Execution::Call(isolate(), function, left, 1, &right),
2635       Object);
2636
2637   // Execution::Call can execute arbitrary JavaScript, hence potentially
2638   // update the state of this very IC, so we must update the stored state.
2639   UpdateTarget();
2640   // Compute the new state.
2641   State old_state(isolate(), target()->extra_ic_state());
2642   state.Update(left, right, result);
2643
2644   // Check if we have a string operation here.
2645   Handle<Code> target;
2646   if (!allocation_site.is_null() || state.ShouldCreateAllocationMementos()) {
2647     // Setup the allocation site on-demand.
2648     if (allocation_site.is_null()) {
2649       allocation_site = isolate()->factory()->NewAllocationSite();
2650     }
2651
2652     // Install the stub with an allocation site.
2653     BinaryOpICWithAllocationSiteStub stub(isolate(), state);
2654     target = stub.GetCodeCopyFromTemplate(allocation_site);
2655
2656     // Sanity check the trampoline stub.
2657     DCHECK_EQ(*allocation_site, target->FindFirstAllocationSite());
2658   } else {
2659     // Install the generic stub.
2660     BinaryOpICStub stub(isolate(), state);
2661     target = stub.GetCode();
2662
2663     // Sanity check the generic stub.
2664     DCHECK_EQ(NULL, target->FindFirstAllocationSite());
2665   }
2666   set_target(*target);
2667
2668   if (FLAG_trace_ic) {
2669     OFStream os(stdout);
2670     os << "[BinaryOpIC" << old_state << " => " << state << " @ "
2671        << static_cast<void*>(*target) << " <- ";
2672     JavaScriptFrame::PrintTop(isolate(), stdout, false, true);
2673     if (!allocation_site.is_null()) {
2674       os << " using allocation site " << static_cast<void*>(*allocation_site);
2675     }
2676     os << "]" << endl;
2677   }
2678
2679   // Patch the inlined smi code as necessary.
2680   if (!old_state.UseInlinedSmiCode() && state.UseInlinedSmiCode()) {
2681     PatchInlinedSmiCode(address(), ENABLE_INLINED_SMI_CHECK);
2682   } else if (old_state.UseInlinedSmiCode() && !state.UseInlinedSmiCode()) {
2683     PatchInlinedSmiCode(address(), DISABLE_INLINED_SMI_CHECK);
2684   }
2685
2686   return result;
2687 }
2688
2689
2690 RUNTIME_FUNCTION(BinaryOpIC_Miss) {
2691   TimerEventScope<TimerEventIcMiss> timer(isolate);
2692   HandleScope scope(isolate);
2693   DCHECK_EQ(2, args.length());
2694   Handle<Object> left = args.at<Object>(BinaryOpICStub::kLeft);
2695   Handle<Object> right = args.at<Object>(BinaryOpICStub::kRight);
2696   BinaryOpIC ic(isolate);
2697   Handle<Object> result;
2698   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2699       isolate,
2700       result,
2701       ic.Transition(Handle<AllocationSite>::null(), left, right));
2702   return *result;
2703 }
2704
2705
2706 RUNTIME_FUNCTION(BinaryOpIC_MissWithAllocationSite) {
2707   TimerEventScope<TimerEventIcMiss> timer(isolate);
2708   HandleScope scope(isolate);
2709   DCHECK_EQ(3, args.length());
2710   Handle<AllocationSite> allocation_site = args.at<AllocationSite>(
2711       BinaryOpWithAllocationSiteStub::kAllocationSite);
2712   Handle<Object> left = args.at<Object>(
2713       BinaryOpWithAllocationSiteStub::kLeft);
2714   Handle<Object> right = args.at<Object>(
2715       BinaryOpWithAllocationSiteStub::kRight);
2716   BinaryOpIC ic(isolate);
2717   Handle<Object> result;
2718   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2719       isolate,
2720       result,
2721       ic.Transition(allocation_site, left, right));
2722   return *result;
2723 }
2724
2725
2726 Code* CompareIC::GetRawUninitialized(Isolate* isolate, Token::Value op) {
2727   ICCompareStub stub(isolate, op, UNINITIALIZED, UNINITIALIZED, UNINITIALIZED);
2728   Code* code = NULL;
2729   CHECK(stub.FindCodeInCache(&code));
2730   return code;
2731 }
2732
2733
2734 Handle<Code> CompareIC::GetUninitialized(Isolate* isolate, Token::Value op) {
2735   ICCompareStub stub(isolate, op, UNINITIALIZED, UNINITIALIZED, UNINITIALIZED);
2736   return stub.GetCode();
2737 }
2738
2739
2740 const char* CompareIC::GetStateName(State state) {
2741   switch (state) {
2742     case UNINITIALIZED: return "UNINITIALIZED";
2743     case SMI: return "SMI";
2744     case NUMBER: return "NUMBER";
2745     case INTERNALIZED_STRING: return "INTERNALIZED_STRING";
2746     case STRING: return "STRING";
2747     case UNIQUE_NAME: return "UNIQUE_NAME";
2748     case OBJECT: return "OBJECT";
2749     case KNOWN_OBJECT: return "KNOWN_OBJECT";
2750     case GENERIC: return "GENERIC";
2751   }
2752   UNREACHABLE();
2753   return NULL;
2754 }
2755
2756
2757 Type* CompareIC::StateToType(
2758     Zone* zone,
2759     CompareIC::State state,
2760     Handle<Map> map) {
2761   switch (state) {
2762     case CompareIC::UNINITIALIZED: return Type::None(zone);
2763     case CompareIC::SMI: return Type::SignedSmall(zone);
2764     case CompareIC::NUMBER: return Type::Number(zone);
2765     case CompareIC::STRING: return Type::String(zone);
2766     case CompareIC::INTERNALIZED_STRING: return Type::InternalizedString(zone);
2767     case CompareIC::UNIQUE_NAME: return Type::UniqueName(zone);
2768     case CompareIC::OBJECT: return Type::Receiver(zone);
2769     case CompareIC::KNOWN_OBJECT:
2770       return map.is_null() ? Type::Receiver(zone) : Type::Class(map, zone);
2771     case CompareIC::GENERIC: return Type::Any(zone);
2772   }
2773   UNREACHABLE();
2774   return NULL;
2775 }
2776
2777
2778 void CompareIC::StubInfoToType(uint32_t stub_key, Type** left_type,
2779                                Type** right_type, Type** overall_type,
2780                                Handle<Map> map, Zone* zone) {
2781   State left_state, right_state, handler_state;
2782   ICCompareStub::DecodeKey(stub_key, &left_state, &right_state, &handler_state,
2783                            NULL);
2784   *left_type = StateToType(zone, left_state);
2785   *right_type = StateToType(zone, right_state);
2786   *overall_type = StateToType(zone, handler_state, map);
2787 }
2788
2789
2790 CompareIC::State CompareIC::NewInputState(State old_state,
2791                                           Handle<Object> value) {
2792   switch (old_state) {
2793     case UNINITIALIZED:
2794       if (value->IsSmi()) return SMI;
2795       if (value->IsHeapNumber()) return NUMBER;
2796       if (value->IsInternalizedString()) return INTERNALIZED_STRING;
2797       if (value->IsString()) return STRING;
2798       if (value->IsSymbol()) return UNIQUE_NAME;
2799       if (value->IsJSObject()) return OBJECT;
2800       break;
2801     case SMI:
2802       if (value->IsSmi()) return SMI;
2803       if (value->IsHeapNumber()) return NUMBER;
2804       break;
2805     case NUMBER:
2806       if (value->IsNumber()) return NUMBER;
2807       break;
2808     case INTERNALIZED_STRING:
2809       if (value->IsInternalizedString()) return INTERNALIZED_STRING;
2810       if (value->IsString()) return STRING;
2811       if (value->IsSymbol()) return UNIQUE_NAME;
2812       break;
2813     case STRING:
2814       if (value->IsString()) return STRING;
2815       break;
2816     case UNIQUE_NAME:
2817       if (value->IsUniqueName()) return UNIQUE_NAME;
2818       break;
2819     case OBJECT:
2820       if (value->IsJSObject()) return OBJECT;
2821       break;
2822     case GENERIC:
2823       break;
2824     case KNOWN_OBJECT:
2825       UNREACHABLE();
2826       break;
2827   }
2828   return GENERIC;
2829 }
2830
2831
2832 CompareIC::State CompareIC::TargetState(State old_state,
2833                                         State old_left,
2834                                         State old_right,
2835                                         bool has_inlined_smi_code,
2836                                         Handle<Object> x,
2837                                         Handle<Object> y) {
2838   switch (old_state) {
2839     case UNINITIALIZED:
2840       if (x->IsSmi() && y->IsSmi()) return SMI;
2841       if (x->IsNumber() && y->IsNumber()) return NUMBER;
2842       if (Token::IsOrderedRelationalCompareOp(op_)) {
2843         // Ordered comparisons treat undefined as NaN, so the
2844         // NUMBER stub will do the right thing.
2845         if ((x->IsNumber() && y->IsUndefined()) ||
2846             (y->IsNumber() && x->IsUndefined())) {
2847           return NUMBER;
2848         }
2849       }
2850       if (x->IsInternalizedString() && y->IsInternalizedString()) {
2851         // We compare internalized strings as plain ones if we need to determine
2852         // the order in a non-equality compare.
2853         return Token::IsEqualityOp(op_) ? INTERNALIZED_STRING : STRING;
2854       }
2855       if (x->IsString() && y->IsString()) return STRING;
2856       if (!Token::IsEqualityOp(op_)) return GENERIC;
2857       if (x->IsUniqueName() && y->IsUniqueName()) return UNIQUE_NAME;
2858       if (x->IsJSObject() && y->IsJSObject()) {
2859         if (Handle<JSObject>::cast(x)->map() ==
2860             Handle<JSObject>::cast(y)->map()) {
2861           return KNOWN_OBJECT;
2862         } else {
2863           return OBJECT;
2864         }
2865       }
2866       return GENERIC;
2867     case SMI:
2868       return x->IsNumber() && y->IsNumber() ? NUMBER : GENERIC;
2869     case INTERNALIZED_STRING:
2870       DCHECK(Token::IsEqualityOp(op_));
2871       if (x->IsString() && y->IsString()) return STRING;
2872       if (x->IsUniqueName() && y->IsUniqueName()) return UNIQUE_NAME;
2873       return GENERIC;
2874     case NUMBER:
2875       // If the failure was due to one side changing from smi to heap number,
2876       // then keep the state (if other changed at the same time, we will get
2877       // a second miss and then go to generic).
2878       if (old_left == SMI && x->IsHeapNumber()) return NUMBER;
2879       if (old_right == SMI && y->IsHeapNumber()) return NUMBER;
2880       return GENERIC;
2881     case KNOWN_OBJECT:
2882       DCHECK(Token::IsEqualityOp(op_));
2883       if (x->IsJSObject() && y->IsJSObject()) return OBJECT;
2884       return GENERIC;
2885     case STRING:
2886     case UNIQUE_NAME:
2887     case OBJECT:
2888     case GENERIC:
2889       return GENERIC;
2890   }
2891   UNREACHABLE();
2892   return GENERIC;  // Make the compiler happy.
2893 }
2894
2895
2896 Code* CompareIC::UpdateCaches(Handle<Object> x, Handle<Object> y) {
2897   HandleScope scope(isolate());
2898   State previous_left, previous_right, previous_state;
2899   ICCompareStub::DecodeKey(target()->stub_key(), &previous_left,
2900                            &previous_right, &previous_state, NULL);
2901   State new_left = NewInputState(previous_left, x);
2902   State new_right = NewInputState(previous_right, y);
2903   State state = TargetState(previous_state, previous_left, previous_right,
2904                             HasInlinedSmiCode(address()), x, y);
2905   ICCompareStub stub(isolate(), op_, new_left, new_right, state);
2906   if (state == KNOWN_OBJECT) {
2907     stub.set_known_map(
2908         Handle<Map>(Handle<JSObject>::cast(x)->map(), isolate()));
2909   }
2910   Handle<Code> new_target = stub.GetCode();
2911   set_target(*new_target);
2912
2913   if (FLAG_trace_ic) {
2914     PrintF("[CompareIC in ");
2915     JavaScriptFrame::PrintTop(isolate(), stdout, false, true);
2916     PrintF(" ((%s+%s=%s)->(%s+%s=%s))#%s @ %p]\n",
2917            GetStateName(previous_left),
2918            GetStateName(previous_right),
2919            GetStateName(previous_state),
2920            GetStateName(new_left),
2921            GetStateName(new_right),
2922            GetStateName(state),
2923            Token::Name(op_),
2924            static_cast<void*>(*stub.GetCode()));
2925   }
2926
2927   // Activate inlined smi code.
2928   if (previous_state == UNINITIALIZED) {
2929     PatchInlinedSmiCode(address(), ENABLE_INLINED_SMI_CHECK);
2930   }
2931
2932   return *new_target;
2933 }
2934
2935
2936 // Used from ICCompareStub::GenerateMiss in code-stubs-<arch>.cc.
2937 RUNTIME_FUNCTION(CompareIC_Miss) {
2938   TimerEventScope<TimerEventIcMiss> timer(isolate);
2939   HandleScope scope(isolate);
2940   DCHECK(args.length() == 3);
2941   CompareIC ic(isolate, static_cast<Token::Value>(args.smi_at(2)));
2942   return ic.UpdateCaches(args.at<Object>(0), args.at<Object>(1));
2943 }
2944
2945
2946 void CompareNilIC::Clear(Address address,
2947                          Code* target,
2948                          ConstantPoolArray* constant_pool) {
2949   if (IsCleared(target)) return;
2950   ExtraICState state = target->extra_ic_state();
2951
2952   CompareNilICStub stub(target->GetIsolate(),
2953                         state,
2954                         HydrogenCodeStub::UNINITIALIZED);
2955   stub.ClearState();
2956
2957   Code* code = NULL;
2958   CHECK(stub.FindCodeInCache(&code));
2959
2960   SetTargetAtAddress(address, code, constant_pool);
2961 }
2962
2963
2964 Handle<Object> CompareNilIC::DoCompareNilSlow(Isolate* isolate,
2965                                               NilValue nil,
2966                                               Handle<Object> object) {
2967   if (object->IsNull() || object->IsUndefined()) {
2968     return handle(Smi::FromInt(true), isolate);
2969   }
2970   return handle(Smi::FromInt(object->IsUndetectableObject()), isolate);
2971 }
2972
2973
2974 Handle<Object> CompareNilIC::CompareNil(Handle<Object> object) {
2975   ExtraICState extra_ic_state = target()->extra_ic_state();
2976
2977   CompareNilICStub stub(isolate(), extra_ic_state);
2978
2979   // Extract the current supported types from the patched IC and calculate what
2980   // types must be supported as a result of the miss.
2981   bool already_monomorphic = stub.IsMonomorphic();
2982
2983   stub.UpdateStatus(object);
2984
2985   NilValue nil = stub.GetNilValue();
2986
2987   // Find or create the specialized stub to support the new set of types.
2988   Handle<Code> code;
2989   if (stub.IsMonomorphic()) {
2990     Handle<Map> monomorphic_map(already_monomorphic && FirstTargetMap() != NULL
2991                                 ? FirstTargetMap()
2992                                 : HeapObject::cast(*object)->map());
2993     code = PropertyICCompiler::ComputeCompareNil(monomorphic_map, &stub);
2994   } else {
2995     code = stub.GetCode();
2996   }
2997   set_target(*code);
2998   return DoCompareNilSlow(isolate(), nil, object);
2999 }
3000
3001
3002 RUNTIME_FUNCTION(CompareNilIC_Miss) {
3003   TimerEventScope<TimerEventIcMiss> timer(isolate);
3004   HandleScope scope(isolate);
3005   Handle<Object> object = args.at<Object>(0);
3006   CompareNilIC ic(isolate);
3007   return *ic.CompareNil(object);
3008 }
3009
3010
3011 RUNTIME_FUNCTION(Unreachable) {
3012   UNREACHABLE();
3013   CHECK(false);
3014   return isolate->heap()->undefined_value();
3015 }
3016
3017
3018 Builtins::JavaScript BinaryOpIC::TokenToJSBuiltin(Token::Value op) {
3019   switch (op) {
3020     default:
3021       UNREACHABLE();
3022     case Token::ADD:
3023       return Builtins::ADD;
3024       break;
3025     case Token::SUB:
3026       return Builtins::SUB;
3027       break;
3028     case Token::MUL:
3029       return Builtins::MUL;
3030       break;
3031     case Token::DIV:
3032       return Builtins::DIV;
3033       break;
3034     case Token::MOD:
3035       return Builtins::MOD;
3036       break;
3037     case Token::BIT_OR:
3038       return Builtins::BIT_OR;
3039       break;
3040     case Token::BIT_AND:
3041       return Builtins::BIT_AND;
3042       break;
3043     case Token::BIT_XOR:
3044       return Builtins::BIT_XOR;
3045       break;
3046     case Token::SAR:
3047       return Builtins::SAR;
3048       break;
3049     case Token::SHR:
3050       return Builtins::SHR;
3051       break;
3052     case Token::SHL:
3053       return Builtins::SHL;
3054       break;
3055   }
3056 }
3057
3058
3059 Handle<Object> ToBooleanIC::ToBoolean(Handle<Object> object) {
3060   ToBooleanStub stub(isolate(), target()->extra_ic_state());
3061   bool to_boolean_value = stub.UpdateStatus(object);
3062   Handle<Code> code = stub.GetCode();
3063   set_target(*code);
3064   return handle(Smi::FromInt(to_boolean_value ? 1 : 0), isolate());
3065 }
3066
3067
3068 RUNTIME_FUNCTION(ToBooleanIC_Miss) {
3069   TimerEventScope<TimerEventIcMiss> timer(isolate);
3070   DCHECK(args.length() == 1);
3071   HandleScope scope(isolate);
3072   Handle<Object> object = args.at<Object>(0);
3073   ToBooleanIC ic(isolate);
3074   return *ic.ToBoolean(object);
3075 }
3076
3077
3078 static const Address IC_utilities[] = {
3079 #define ADDR(name) FUNCTION_ADDR(name),
3080     IC_UTIL_LIST(ADDR)
3081     NULL
3082 #undef ADDR
3083 };
3084
3085
3086 Address IC::AddressFromUtilityId(IC::UtilityId id) {
3087   return IC_utilities[id];
3088 }
3089
3090
3091 } }  // namespace v8::internal