Move IC code into a subdir and move ic-compilation related code from stub-cache into...
[platform/upstream/v8.git] / src / ic / ic.cc
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/v8.h"
6
7 #include "src/accessors.h"
8 #include "src/api.h"
9 #include "src/arguments.h"
10 #include "src/codegen.h"
11 #include "src/conversions.h"
12 #include "src/execution.h"
13 #include "src/ic/ic-inl.h"
14 #include "src/ic/ic-compiler.h"
15 #include "src/ic/stub-cache.h"
16 #include "src/prototype.h"
17 #include "src/runtime.h"
18
19 namespace v8 {
20 namespace internal {
21
22 char IC::TransitionMarkFromState(IC::State state) {
23   switch (state) {
24     case UNINITIALIZED:
25       return '0';
26     case PREMONOMORPHIC:
27       return '.';
28     case MONOMORPHIC:
29       return '1';
30     case PROTOTYPE_FAILURE:
31       return '^';
32     case POLYMORPHIC:
33       return 'P';
34     case MEGAMORPHIC:
35       return 'N';
36     case GENERIC:
37       return 'G';
38
39     // We never see the debugger states here, because the state is
40     // computed from the original code - not the patched code. Let
41     // these cases fall through to the unreachable code below.
42     case DEBUG_STUB:
43       break;
44     // Type-vector-based ICs resolve state to one of the above.
45     case DEFAULT:
46       break;
47   }
48   UNREACHABLE();
49   return 0;
50 }
51
52
53 const char* GetTransitionMarkModifier(KeyedAccessStoreMode mode) {
54   if (mode == STORE_NO_TRANSITION_HANDLE_COW) return ".COW";
55   if (mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) {
56     return ".IGNORE_OOB";
57   }
58   if (IsGrowStoreMode(mode)) return ".GROW";
59   return "";
60 }
61
62
63 #ifdef DEBUG
64
65 #define TRACE_GENERIC_IC(isolate, type, reason)                \
66   do {                                                         \
67     if (FLAG_trace_ic) {                                       \
68       PrintF("[%s patching generic stub in ", type);           \
69       JavaScriptFrame::PrintTop(isolate, stdout, false, true); \
70       PrintF(" (%s)]\n", reason);                              \
71     }                                                          \
72   } while (false)
73
74 #else
75
76 #define TRACE_GENERIC_IC(isolate, type, reason)
77
78 #endif  // DEBUG
79
80
81 void IC::TraceIC(const char* type, Handle<Object> name) {
82   if (FLAG_trace_ic) {
83     Code* new_target = raw_target();
84     State new_state = new_target->ic_state();
85     TraceIC(type, name, state(), new_state);
86   }
87 }
88
89
90 void IC::TraceIC(const char* type, Handle<Object> name, State old_state,
91                  State new_state) {
92   if (FLAG_trace_ic) {
93     Code* new_target = raw_target();
94     PrintF("[%s%s in ", new_target->is_keyed_stub() ? "Keyed" : "", type);
95
96     // TODO(jkummerow): Add support for "apply". The logic is roughly:
97     // marker = [fp_ + kMarkerOffset];
98     // if marker is smi and marker.value == INTERNAL and
99     //     the frame's code == builtin(Builtins::kFunctionApply):
100     // then print "apply from" and advance one frame
101
102     Object* maybe_function =
103         Memory::Object_at(fp_ + JavaScriptFrameConstants::kFunctionOffset);
104     if (maybe_function->IsJSFunction()) {
105       JSFunction* function = JSFunction::cast(maybe_function);
106       JavaScriptFrame::PrintFunctionAndOffset(function, function->code(), pc(),
107                                               stdout, true);
108     }
109
110     ExtraICState extra_state = new_target->extra_ic_state();
111     const char* modifier = "";
112     if (new_target->kind() == Code::KEYED_STORE_IC) {
113       modifier = GetTransitionMarkModifier(
114           KeyedStoreIC::GetKeyedAccessStoreMode(extra_state));
115     }
116     PrintF(" (%c->%c%s)", TransitionMarkFromState(old_state),
117            TransitionMarkFromState(new_state), modifier);
118 #ifdef OBJECT_PRINT
119     OFStream os(stdout);
120     name->Print(os);
121 #else
122     name->ShortPrint(stdout);
123 #endif
124     PrintF("]\n");
125   }
126 }
127
128 #define TRACE_IC(type, name) TraceIC(type, name)
129 #define TRACE_VECTOR_IC(type, name, old_state, new_state) \
130   TraceIC(type, name, old_state, new_state)
131
132 IC::IC(FrameDepth depth, Isolate* isolate)
133     : isolate_(isolate), target_set_(false), target_maps_set_(false) {
134   // To improve the performance of the (much used) IC code, we unfold a few
135   // levels of the stack frame iteration code. This yields a ~35% speedup when
136   // running DeltaBlue and a ~25% speedup of gbemu with the '--nouse-ic' flag.
137   const Address entry = Isolate::c_entry_fp(isolate->thread_local_top());
138   Address constant_pool = NULL;
139   if (FLAG_enable_ool_constant_pool) {
140     constant_pool =
141         Memory::Address_at(entry + ExitFrameConstants::kConstantPoolOffset);
142   }
143   Address* pc_address =
144       reinterpret_cast<Address*>(entry + ExitFrameConstants::kCallerPCOffset);
145   Address fp = Memory::Address_at(entry + ExitFrameConstants::kCallerFPOffset);
146   // If there's another JavaScript frame on the stack or a
147   // StubFailureTrampoline, we need to look one frame further down the stack to
148   // find the frame pointer and the return address stack slot.
149   if (depth == EXTRA_CALL_FRAME) {
150     if (FLAG_enable_ool_constant_pool) {
151       constant_pool =
152           Memory::Address_at(fp + StandardFrameConstants::kConstantPoolOffset);
153     }
154     const int kCallerPCOffset = StandardFrameConstants::kCallerPCOffset;
155     pc_address = reinterpret_cast<Address*>(fp + kCallerPCOffset);
156     fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset);
157   }
158 #ifdef DEBUG
159   StackFrameIterator it(isolate);
160   for (int i = 0; i < depth + 1; i++) it.Advance();
161   StackFrame* frame = it.frame();
162   DCHECK(fp == frame->fp() && pc_address == frame->pc_address());
163 #endif
164   fp_ = fp;
165   if (FLAG_enable_ool_constant_pool) {
166     raw_constant_pool_ = handle(
167         ConstantPoolArray::cast(reinterpret_cast<Object*>(constant_pool)),
168         isolate);
169   }
170   pc_address_ = StackFrame::ResolveReturnAddressLocation(pc_address);
171   target_ = handle(raw_target(), isolate);
172   state_ = target_->ic_state();
173   kind_ = target_->kind();
174   extra_ic_state_ = target_->extra_ic_state();
175 }
176
177
178 SharedFunctionInfo* IC::GetSharedFunctionInfo() const {
179   // Compute the JavaScript frame for the frame pointer of this IC
180   // structure. We need this to be able to find the function
181   // corresponding to the frame.
182   StackFrameIterator it(isolate());
183   while (it.frame()->fp() != this->fp()) it.Advance();
184   JavaScriptFrame* frame = JavaScriptFrame::cast(it.frame());
185   // Find the function on the stack and both the active code for the
186   // function and the original code.
187   JSFunction* function = frame->function();
188   return function->shared();
189 }
190
191
192 Code* IC::GetCode() const {
193   HandleScope scope(isolate());
194   Handle<SharedFunctionInfo> shared(GetSharedFunctionInfo(), isolate());
195   Code* code = shared->code();
196   return code;
197 }
198
199
200 Code* IC::GetOriginalCode() const {
201   HandleScope scope(isolate());
202   Handle<SharedFunctionInfo> shared(GetSharedFunctionInfo(), isolate());
203   DCHECK(Debug::HasDebugInfo(shared));
204   Code* original_code = Debug::GetDebugInfo(shared)->original_code();
205   DCHECK(original_code->IsCode());
206   return original_code;
207 }
208
209
210 static void LookupForRead(LookupIterator* it) {
211   for (; it->IsFound(); it->Next()) {
212     switch (it->state()) {
213       case LookupIterator::NOT_FOUND:
214       case LookupIterator::TRANSITION:
215         UNREACHABLE();
216       case LookupIterator::JSPROXY:
217         return;
218       case LookupIterator::INTERCEPTOR: {
219         // If there is a getter, return; otherwise loop to perform the lookup.
220         Handle<JSObject> holder = it->GetHolder<JSObject>();
221         if (!holder->GetNamedInterceptor()->getter()->IsUndefined()) {
222           return;
223         }
224         break;
225       }
226       case LookupIterator::ACCESS_CHECK:
227         // PropertyHandlerCompiler::CheckPrototypes() knows how to emit
228         // access checks for global proxies.
229         if (it->GetHolder<JSObject>()->IsJSGlobalProxy() &&
230             it->HasAccess(v8::ACCESS_GET)) {
231           break;
232         }
233         return;
234       case LookupIterator::PROPERTY:
235         if (it->HasProperty()) return;  // Yay!
236         break;
237     }
238   }
239 }
240
241
242 bool IC::TryRemoveInvalidPrototypeDependentStub(Handle<Object> receiver,
243                                                 Handle<String> name) {
244   if (!IsNameCompatibleWithPrototypeFailure(name)) return false;
245   Handle<Map> receiver_map = TypeToMap(*receiver_type(), isolate());
246   maybe_handler_ = target()->FindHandlerForMap(*receiver_map);
247
248   // The current map wasn't handled yet. There's no reason to stay monomorphic,
249   // *unless* we're moving from a deprecated map to its replacement, or
250   // to a more general elements kind.
251   // TODO(verwaest): Check if the current map is actually what the old map
252   // would transition to.
253   if (maybe_handler_.is_null()) {
254     if (!receiver_map->IsJSObjectMap()) return false;
255     Map* first_map = FirstTargetMap();
256     if (first_map == NULL) return false;
257     Handle<Map> old_map(first_map);
258     if (old_map->is_deprecated()) return true;
259     if (IsMoreGeneralElementsKindTransition(old_map->elements_kind(),
260                                             receiver_map->elements_kind())) {
261       return true;
262     }
263     return false;
264   }
265
266   CacheHolderFlag flag;
267   Handle<Map> ic_holder_map(
268       GetICCacheHolder(*receiver_type(), isolate(), &flag));
269
270   DCHECK(flag != kCacheOnReceiver || receiver->IsJSObject());
271   DCHECK(flag != kCacheOnPrototype || !receiver->IsJSReceiver());
272   DCHECK(flag != kCacheOnPrototypeReceiverIsDictionary);
273
274   if (state() == MONOMORPHIC) {
275     int index = ic_holder_map->IndexInCodeCache(*name, *target());
276     if (index >= 0) {
277       ic_holder_map->RemoveFromCodeCache(*name, *target(), index);
278     }
279   }
280
281   if (receiver->IsGlobalObject()) {
282     Handle<GlobalObject> global = Handle<GlobalObject>::cast(receiver);
283     LookupIterator it(global, name, LookupIterator::CHECK_PROPERTY);
284     if (!it.IsFound() || !it.HasProperty()) return false;
285     Handle<PropertyCell> cell = it.GetPropertyCell();
286     return cell->type()->IsConstant();
287   }
288
289   return true;
290 }
291
292
293 bool IC::IsNameCompatibleWithPrototypeFailure(Handle<Object> name) {
294   if (target()->is_keyed_stub()) {
295     // Determine whether the failure is due to a name failure.
296     if (!name->IsName()) return false;
297     Name* stub_name = target()->FindFirstName();
298     if (*name != stub_name) return false;
299   }
300
301   return true;
302 }
303
304
305 void IC::UpdateState(Handle<Object> receiver, Handle<Object> name) {
306   update_receiver_type(receiver);
307   if (!name->IsString()) return;
308   if (state() != MONOMORPHIC && state() != POLYMORPHIC) return;
309   if (receiver->IsUndefined() || receiver->IsNull()) return;
310
311   // Remove the target from the code cache if it became invalid
312   // because of changes in the prototype chain to avoid hitting it
313   // again.
314   if (TryRemoveInvalidPrototypeDependentStub(receiver,
315                                              Handle<String>::cast(name))) {
316     MarkPrototypeFailure(name);
317     return;
318   }
319
320   // The builtins object is special.  It only changes when JavaScript
321   // builtins are loaded lazily.  It is important to keep inline
322   // caches for the builtins object monomorphic.  Therefore, if we get
323   // an inline cache miss for the builtins object after lazily loading
324   // JavaScript builtins, we return uninitialized as the state to
325   // force the inline cache back to monomorphic state.
326   if (receiver->IsJSBuiltinsObject()) state_ = UNINITIALIZED;
327 }
328
329
330 MaybeHandle<Object> IC::TypeError(const char* type, Handle<Object> object,
331                                   Handle<Object> key) {
332   HandleScope scope(isolate());
333   Handle<Object> args[2] = {key, object};
334   Handle<Object> error =
335       isolate()->factory()->NewTypeError(type, HandleVector(args, 2));
336   return isolate()->Throw<Object>(error);
337 }
338
339
340 MaybeHandle<Object> IC::ReferenceError(const char* type, Handle<Name> name) {
341   HandleScope scope(isolate());
342   Handle<Object> error =
343       isolate()->factory()->NewReferenceError(type, HandleVector(&name, 1));
344   return isolate()->Throw<Object>(error);
345 }
346
347
348 static void ComputeTypeInfoCountDelta(IC::State old_state, IC::State new_state,
349                                       int* polymorphic_delta,
350                                       int* generic_delta) {
351   switch (old_state) {
352     case UNINITIALIZED:
353     case PREMONOMORPHIC:
354       if (new_state == UNINITIALIZED || new_state == PREMONOMORPHIC) break;
355       if (new_state == MONOMORPHIC || new_state == POLYMORPHIC) {
356         *polymorphic_delta = 1;
357       } else if (new_state == MEGAMORPHIC || new_state == GENERIC) {
358         *generic_delta = 1;
359       }
360       break;
361     case MONOMORPHIC:
362     case POLYMORPHIC:
363       if (new_state == MONOMORPHIC || new_state == POLYMORPHIC) break;
364       *polymorphic_delta = -1;
365       if (new_state == MEGAMORPHIC || new_state == GENERIC) {
366         *generic_delta = 1;
367       }
368       break;
369     case MEGAMORPHIC:
370     case GENERIC:
371       if (new_state == MEGAMORPHIC || new_state == GENERIC) break;
372       *generic_delta = -1;
373       if (new_state == MONOMORPHIC || new_state == POLYMORPHIC) {
374         *polymorphic_delta = 1;
375       }
376       break;
377     case PROTOTYPE_FAILURE:
378     case DEBUG_STUB:
379     case DEFAULT:
380       UNREACHABLE();
381   }
382 }
383
384
385 void IC::OnTypeFeedbackChanged(Isolate* isolate, Address address,
386                                State old_state, State new_state,
387                                bool target_remains_ic_stub) {
388   Code* host =
389       isolate->inner_pointer_to_code_cache()->GetCacheEntry(address)->code;
390   if (host->kind() != Code::FUNCTION) return;
391
392   if (FLAG_type_info_threshold > 0 && target_remains_ic_stub &&
393       // Not all Code objects have TypeFeedbackInfo.
394       host->type_feedback_info()->IsTypeFeedbackInfo()) {
395     int polymorphic_delta = 0;  // "Polymorphic" here includes monomorphic.
396     int generic_delta = 0;      // "Generic" here includes megamorphic.
397     ComputeTypeInfoCountDelta(old_state, new_state, &polymorphic_delta,
398                               &generic_delta);
399     TypeFeedbackInfo* info = TypeFeedbackInfo::cast(host->type_feedback_info());
400     info->change_ic_with_type_info_count(polymorphic_delta);
401     info->change_ic_generic_count(generic_delta);
402   }
403   if (host->type_feedback_info()->IsTypeFeedbackInfo()) {
404     TypeFeedbackInfo* info = TypeFeedbackInfo::cast(host->type_feedback_info());
405     info->change_own_type_change_checksum();
406   }
407   host->set_profiler_ticks(0);
408   isolate->runtime_profiler()->NotifyICChanged();
409   // TODO(2029): When an optimized function is patched, it would
410   // be nice to propagate the corresponding type information to its
411   // unoptimized version for the benefit of later inlining.
412 }
413
414
415 void IC::PostPatching(Address address, Code* target, Code* old_target) {
416   // Type vector based ICs update these statistics at a different time because
417   // they don't always patch on state change.
418   if (target->kind() == Code::CALL_IC) return;
419
420   Isolate* isolate = target->GetHeap()->isolate();
421   State old_state = UNINITIALIZED;
422   State new_state = UNINITIALIZED;
423   bool target_remains_ic_stub = false;
424   if (old_target->is_inline_cache_stub() && target->is_inline_cache_stub()) {
425     old_state = old_target->ic_state();
426     new_state = target->ic_state();
427     target_remains_ic_stub = true;
428   }
429
430   OnTypeFeedbackChanged(isolate, address, old_state, new_state,
431                         target_remains_ic_stub);
432 }
433
434
435 void IC::RegisterWeakMapDependency(Handle<Code> stub) {
436   if (FLAG_collect_maps && FLAG_weak_embedded_maps_in_ic &&
437       stub->CanBeWeakStub()) {
438     DCHECK(!stub->is_weak_stub());
439     MapHandleList maps;
440     stub->FindAllMaps(&maps);
441     if (maps.length() == 1 && stub->IsWeakObjectInIC(*maps.at(0))) {
442       Map::AddDependentIC(maps.at(0), stub);
443       stub->mark_as_weak_stub();
444       if (FLAG_enable_ool_constant_pool) {
445         stub->constant_pool()->set_weak_object_state(
446             ConstantPoolArray::WEAK_OBJECTS_IN_IC);
447       }
448     }
449   }
450 }
451
452
453 void IC::InvalidateMaps(Code* stub) {
454   DCHECK(stub->is_weak_stub());
455   stub->mark_as_invalidated_weak_stub();
456   Isolate* isolate = stub->GetIsolate();
457   Heap* heap = isolate->heap();
458   Object* undefined = heap->undefined_value();
459   int mode_mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT);
460   for (RelocIterator it(stub, mode_mask); !it.done(); it.next()) {
461     RelocInfo::Mode mode = it.rinfo()->rmode();
462     if (mode == RelocInfo::EMBEDDED_OBJECT &&
463         it.rinfo()->target_object()->IsMap()) {
464       it.rinfo()->set_target_object(undefined, SKIP_WRITE_BARRIER);
465     }
466   }
467   CpuFeatures::FlushICache(stub->instruction_start(), stub->instruction_size());
468 }
469
470
471 void IC::Clear(Isolate* isolate, Address address,
472                ConstantPoolArray* constant_pool) {
473   Code* target = GetTargetAtAddress(address, constant_pool);
474
475   // Don't clear debug break inline cache as it will remove the break point.
476   if (target->is_debug_stub()) return;
477
478   switch (target->kind()) {
479     case Code::LOAD_IC:
480       return LoadIC::Clear(isolate, address, target, constant_pool);
481     case Code::KEYED_LOAD_IC:
482       return KeyedLoadIC::Clear(isolate, address, target, constant_pool);
483     case Code::STORE_IC:
484       return StoreIC::Clear(isolate, address, target, constant_pool);
485     case Code::KEYED_STORE_IC:
486       return KeyedStoreIC::Clear(isolate, address, target, constant_pool);
487     case Code::CALL_IC:
488       return CallIC::Clear(isolate, address, target, constant_pool);
489     case Code::COMPARE_IC:
490       return CompareIC::Clear(isolate, address, target, constant_pool);
491     case Code::COMPARE_NIL_IC:
492       return CompareNilIC::Clear(address, target, constant_pool);
493     case Code::BINARY_OP_IC:
494     case Code::TO_BOOLEAN_IC:
495       // Clearing these is tricky and does not
496       // make any performance difference.
497       return;
498     default:
499       UNREACHABLE();
500   }
501 }
502
503
504 void KeyedLoadIC::Clear(Isolate* isolate, Address address, Code* target,
505                         ConstantPoolArray* constant_pool) {
506   if (IsCleared(target)) return;
507   // Make sure to also clear the map used in inline fast cases.  If we
508   // do not clear these maps, cached code can keep objects alive
509   // through the embedded maps.
510   SetTargetAtAddress(address, *pre_monomorphic_stub(isolate), constant_pool);
511 }
512
513
514 void CallIC::Clear(Isolate* isolate, Address address, Code* target,
515                    ConstantPoolArray* constant_pool) {
516   // Currently, CallIC doesn't have state changes.
517 }
518
519
520 void LoadIC::Clear(Isolate* isolate, Address address, Code* target,
521                    ConstantPoolArray* constant_pool) {
522   if (IsCleared(target)) return;
523   Code* code = PropertyICCompiler::FindPreMonomorphic(isolate, Code::LOAD_IC,
524                                                       target->extra_ic_state());
525   SetTargetAtAddress(address, code, constant_pool);
526 }
527
528
529 void StoreIC::Clear(Isolate* isolate, Address address, Code* target,
530                     ConstantPoolArray* constant_pool) {
531   if (IsCleared(target)) return;
532   Code* code = PropertyICCompiler::FindPreMonomorphic(isolate, Code::STORE_IC,
533                                                       target->extra_ic_state());
534   SetTargetAtAddress(address, code, constant_pool);
535 }
536
537
538 void KeyedStoreIC::Clear(Isolate* isolate, Address address, Code* target,
539                          ConstantPoolArray* constant_pool) {
540   if (IsCleared(target)) return;
541   SetTargetAtAddress(
542       address, *pre_monomorphic_stub(
543                    isolate, StoreIC::GetStrictMode(target->extra_ic_state())),
544       constant_pool);
545 }
546
547
548 void CompareIC::Clear(Isolate* isolate, Address address, Code* target,
549                       ConstantPoolArray* constant_pool) {
550   DCHECK(CodeStub::GetMajorKey(target) == CodeStub::CompareIC);
551   CompareIC::State handler_state;
552   Token::Value op;
553   ICCompareStub::DecodeKey(target->stub_key(), NULL, NULL, &handler_state, &op);
554   // Only clear CompareICs that can retain objects.
555   if (handler_state != KNOWN_OBJECT) return;
556   SetTargetAtAddress(address, GetRawUninitialized(isolate, op), constant_pool);
557   PatchInlinedSmiCode(address, DISABLE_INLINED_SMI_CHECK);
558 }
559
560
561 // static
562 Handle<Code> KeyedLoadIC::generic_stub(Isolate* isolate) {
563   if (FLAG_compiled_keyed_generic_loads) {
564     return KeyedLoadGenericStub(isolate).GetCode();
565   } else {
566     return isolate->builtins()->KeyedLoadIC_Generic();
567   }
568 }
569
570
571 static bool MigrateDeprecated(Handle<Object> object) {
572   if (!object->IsJSObject()) return false;
573   Handle<JSObject> receiver = Handle<JSObject>::cast(object);
574   if (!receiver->map()->is_deprecated()) return false;
575   JSObject::MigrateInstance(Handle<JSObject>::cast(object));
576   return true;
577 }
578
579
580 MaybeHandle<Object> LoadIC::Load(Handle<Object> object, Handle<Name> name) {
581   // If the object is undefined or null it's illegal to try to get any
582   // of its properties; throw a TypeError in that case.
583   if (object->IsUndefined() || object->IsNull()) {
584     return TypeError("non_object_property_load", object, name);
585   }
586
587   // Check if the name is trivially convertible to an index and get
588   // the element or char if so.
589   uint32_t index;
590   if (kind() == Code::KEYED_LOAD_IC && name->AsArrayIndex(&index)) {
591     // Rewrite to the generic keyed load stub.
592     if (FLAG_use_ic) {
593       set_target(*KeyedLoadIC::generic_stub(isolate()));
594       TRACE_IC("LoadIC", name);
595       TRACE_GENERIC_IC(isolate(), "LoadIC", "name as array index");
596     }
597     Handle<Object> result;
598     ASSIGN_RETURN_ON_EXCEPTION(
599         isolate(), result,
600         Runtime::GetElementOrCharAt(isolate(), object, index), Object);
601     return result;
602   }
603
604   bool use_ic = MigrateDeprecated(object) ? false : FLAG_use_ic;
605
606   // Named lookup in the object.
607   LookupIterator it(object, name);
608   LookupForRead(&it);
609
610   if (it.IsFound() || !IsUndeclaredGlobal(object)) {
611     // Update inline cache and stub cache.
612     if (use_ic) UpdateCaches(&it);
613
614     // Get the property.
615     Handle<Object> result;
616     ASSIGN_RETURN_ON_EXCEPTION(isolate(), result, Object::GetProperty(&it),
617                                Object);
618     if (it.IsFound()) {
619       return result;
620     } else if (!IsUndeclaredGlobal(object)) {
621       LOG(isolate(), SuspectReadEvent(*name, *object));
622       return result;
623     }
624   }
625   return ReferenceError("not_defined", name);
626 }
627
628
629 static bool AddOneReceiverMapIfMissing(MapHandleList* receiver_maps,
630                                        Handle<Map> new_receiver_map) {
631   DCHECK(!new_receiver_map.is_null());
632   for (int current = 0; current < receiver_maps->length(); ++current) {
633     if (!receiver_maps->at(current).is_null() &&
634         receiver_maps->at(current).is_identical_to(new_receiver_map)) {
635       return false;
636     }
637   }
638   receiver_maps->Add(new_receiver_map);
639   return true;
640 }
641
642
643 bool IC::UpdatePolymorphicIC(Handle<Name> name, Handle<Code> code) {
644   if (!code->is_handler()) return false;
645   if (target()->is_keyed_stub() && state() != PROTOTYPE_FAILURE) return false;
646   Handle<HeapType> type = receiver_type();
647   TypeHandleList types;
648   CodeHandleList handlers;
649
650   TargetTypes(&types);
651   int number_of_types = types.length();
652   int deprecated_types = 0;
653   int handler_to_overwrite = -1;
654
655   for (int i = 0; i < number_of_types; i++) {
656     Handle<HeapType> current_type = types.at(i);
657     if (current_type->IsClass() &&
658         current_type->AsClass()->Map()->is_deprecated()) {
659       // Filter out deprecated maps to ensure their instances get migrated.
660       ++deprecated_types;
661     } else if (type->NowIs(current_type)) {
662       // If the receiver type is already in the polymorphic IC, this indicates
663       // there was a prototoype chain failure. In that case, just overwrite the
664       // handler.
665       handler_to_overwrite = i;
666     } else if (handler_to_overwrite == -1 && current_type->IsClass() &&
667                type->IsClass() &&
668                IsTransitionOfMonomorphicTarget(*current_type->AsClass()->Map(),
669                                                *type->AsClass()->Map())) {
670       handler_to_overwrite = i;
671     }
672   }
673
674   int number_of_valid_types =
675       number_of_types - deprecated_types - (handler_to_overwrite != -1);
676
677   if (number_of_valid_types >= 4) return false;
678   if (number_of_types == 0) return false;
679   if (!target()->FindHandlers(&handlers, types.length())) return false;
680
681   number_of_valid_types++;
682   if (number_of_valid_types > 1 && target()->is_keyed_stub()) return false;
683   Handle<Code> ic;
684   if (number_of_valid_types == 1) {
685     ic = PropertyICCompiler::ComputeMonomorphic(kind(), name, type, code,
686                                                 extra_ic_state());
687   } else {
688     if (handler_to_overwrite >= 0) {
689       handlers.Set(handler_to_overwrite, code);
690       if (!type->NowIs(types.at(handler_to_overwrite))) {
691         types.Set(handler_to_overwrite, type);
692       }
693     } else {
694       types.Add(type);
695       handlers.Add(code);
696     }
697     ic = PropertyICCompiler::ComputePolymorphic(kind(), &types, &handlers,
698                                                 number_of_valid_types, name,
699                                                 extra_ic_state());
700   }
701   set_target(*ic);
702   return true;
703 }
704
705
706 Handle<HeapType> IC::CurrentTypeOf(Handle<Object> object, Isolate* isolate) {
707   return object->IsJSGlobalObject()
708              ? HeapType::Constant(Handle<JSGlobalObject>::cast(object), isolate)
709              : HeapType::NowOf(object, isolate);
710 }
711
712
713 Handle<Map> IC::TypeToMap(HeapType* type, Isolate* isolate) {
714   if (type->Is(HeapType::Number()))
715     return isolate->factory()->heap_number_map();
716   if (type->Is(HeapType::Boolean())) return isolate->factory()->boolean_map();
717   if (type->IsConstant()) {
718     return handle(
719         Handle<JSGlobalObject>::cast(type->AsConstant()->Value())->map());
720   }
721   DCHECK(type->IsClass());
722   return type->AsClass()->Map();
723 }
724
725
726 template <class T>
727 typename T::TypeHandle IC::MapToType(Handle<Map> map,
728                                      typename T::Region* region) {
729   if (map->instance_type() == HEAP_NUMBER_TYPE) {
730     return T::Number(region);
731   } else if (map->instance_type() == ODDBALL_TYPE) {
732     // The only oddballs that can be recorded in ICs are booleans.
733     return T::Boolean(region);
734   } else {
735     return T::Class(map, region);
736   }
737 }
738
739
740 template Type* IC::MapToType<Type>(Handle<Map> map, Zone* zone);
741
742
743 template Handle<HeapType> IC::MapToType<HeapType>(Handle<Map> map,
744                                                   Isolate* region);
745
746
747 void IC::UpdateMonomorphicIC(Handle<Code> handler, Handle<Name> name) {
748   DCHECK(handler->is_handler());
749   Handle<Code> ic = PropertyICCompiler::ComputeMonomorphic(
750       kind(), name, receiver_type(), handler, extra_ic_state());
751   set_target(*ic);
752 }
753
754
755 void IC::CopyICToMegamorphicCache(Handle<Name> name) {
756   TypeHandleList types;
757   CodeHandleList handlers;
758   TargetTypes(&types);
759   if (!target()->FindHandlers(&handlers, types.length())) return;
760   for (int i = 0; i < types.length(); i++) {
761     UpdateMegamorphicCache(*types.at(i), *name, *handlers.at(i));
762   }
763 }
764
765
766 bool IC::IsTransitionOfMonomorphicTarget(Map* source_map, Map* target_map) {
767   if (source_map == NULL) return true;
768   if (target_map == NULL) return false;
769   ElementsKind target_elements_kind = target_map->elements_kind();
770   bool more_general_transition = IsMoreGeneralElementsKindTransition(
771       source_map->elements_kind(), target_elements_kind);
772   Map* transitioned_map =
773       more_general_transition
774           ? source_map->LookupElementsTransitionMap(target_elements_kind)
775           : NULL;
776
777   return transitioned_map == target_map;
778 }
779
780
781 void IC::PatchCache(Handle<Name> name, Handle<Code> code) {
782   switch (state()) {
783     case UNINITIALIZED:
784     case PREMONOMORPHIC:
785       UpdateMonomorphicIC(code, name);
786       break;
787     case PROTOTYPE_FAILURE:
788     case MONOMORPHIC:
789     case POLYMORPHIC:
790       if (!target()->is_keyed_stub() || state() == PROTOTYPE_FAILURE) {
791         if (UpdatePolymorphicIC(name, code)) break;
792         CopyICToMegamorphicCache(name);
793       }
794       set_target(*megamorphic_stub());
795     // Fall through.
796     case MEGAMORPHIC:
797       UpdateMegamorphicCache(*receiver_type(), *name, *code);
798       break;
799     case DEBUG_STUB:
800       break;
801     case DEFAULT:
802     case GENERIC:
803       UNREACHABLE();
804       break;
805   }
806 }
807
808
809 Handle<Code> LoadIC::initialize_stub(Isolate* isolate,
810                                      ExtraICState extra_state) {
811   return PropertyICCompiler::ComputeLoad(isolate, UNINITIALIZED, extra_state);
812 }
813
814
815 Handle<Code> LoadIC::megamorphic_stub() {
816   if (kind() == Code::LOAD_IC) {
817     return PropertyICCompiler::ComputeLoad(isolate(), MEGAMORPHIC,
818                                            extra_ic_state());
819   } else {
820     DCHECK_EQ(Code::KEYED_LOAD_IC, kind());
821     return KeyedLoadIC::generic_stub(isolate());
822   }
823 }
824
825
826 Handle<Code> LoadIC::pre_monomorphic_stub(Isolate* isolate,
827                                           ExtraICState extra_state) {
828   return PropertyICCompiler::ComputeLoad(isolate, PREMONOMORPHIC, extra_state);
829 }
830
831
832 Handle<Code> KeyedLoadIC::pre_monomorphic_stub(Isolate* isolate) {
833   return isolate->builtins()->KeyedLoadIC_PreMonomorphic();
834 }
835
836
837 Handle<Code> LoadIC::pre_monomorphic_stub() const {
838   if (kind() == Code::LOAD_IC) {
839     return LoadIC::pre_monomorphic_stub(isolate(), extra_ic_state());
840   } else {
841     DCHECK_EQ(Code::KEYED_LOAD_IC, kind());
842     return KeyedLoadIC::pre_monomorphic_stub(isolate());
843   }
844 }
845
846
847 Handle<Code> LoadIC::SimpleFieldLoad(FieldIndex index) {
848   LoadFieldStub stub(isolate(), index);
849   return stub.GetCode();
850 }
851
852
853 void LoadIC::UpdateCaches(LookupIterator* lookup) {
854   if (state() == UNINITIALIZED) {
855     // This is the first time we execute this inline cache. Set the target to
856     // the pre monomorphic stub to delay setting the monomorphic state.
857     set_target(*pre_monomorphic_stub());
858     TRACE_IC("LoadIC", lookup->name());
859     return;
860   }
861
862   Handle<Code> code;
863   if (lookup->state() == LookupIterator::JSPROXY ||
864       lookup->state() == LookupIterator::ACCESS_CHECK) {
865     code = slow_stub();
866   } else if (!lookup->IsFound()) {
867     if (kind() == Code::LOAD_IC) {
868       code = NamedLoadHandlerCompiler::ComputeLoadNonexistent(lookup->name(),
869                                                               receiver_type());
870       // TODO(jkummerow/verwaest): Introduce a builtin that handles this case.
871       if (code.is_null()) code = slow_stub();
872     } else {
873       code = slow_stub();
874     }
875   } else {
876     code = ComputeHandler(lookup);
877   }
878
879   PatchCache(lookup->name(), code);
880   TRACE_IC("LoadIC", lookup->name());
881 }
882
883
884 void IC::UpdateMegamorphicCache(HeapType* type, Name* name, Code* code) {
885   if (kind() == Code::KEYED_LOAD_IC || kind() == Code::KEYED_STORE_IC) return;
886   Map* map = *TypeToMap(type, isolate());
887   isolate()->stub_cache()->Set(name, map, code);
888 }
889
890
891 Handle<Code> IC::ComputeHandler(LookupIterator* lookup, Handle<Object> value) {
892   bool receiver_is_holder =
893       lookup->GetReceiver().is_identical_to(lookup->GetHolder<JSObject>());
894   CacheHolderFlag flag;
895   Handle<Map> stub_holder_map = IC::GetHandlerCacheHolder(
896       *receiver_type(), receiver_is_holder, isolate(), &flag);
897
898   Handle<Code> code = PropertyHandlerCompiler::Find(
899       lookup->name(), stub_holder_map, kind(), flag,
900       lookup->holder_map()->is_dictionary_map() ? Code::NORMAL : Code::FAST);
901   // Use the cached value if it exists, and if it is different from the
902   // handler that just missed.
903   if (!code.is_null()) {
904     if (!maybe_handler_.is_null() &&
905         !maybe_handler_.ToHandleChecked().is_identical_to(code)) {
906       return code;
907     }
908     if (maybe_handler_.is_null()) {
909       // maybe_handler_ is only populated for MONOMORPHIC and POLYMORPHIC ICs.
910       // In MEGAMORPHIC case, check if the handler in the megamorphic stub
911       // cache (which just missed) is different from the cached handler.
912       if (state() == MEGAMORPHIC && lookup->GetReceiver()->IsHeapObject()) {
913         Map* map = Handle<HeapObject>::cast(lookup->GetReceiver())->map();
914         Code* megamorphic_cached_code =
915             isolate()->stub_cache()->Get(*lookup->name(), map, code->flags());
916         if (megamorphic_cached_code != *code) return code;
917       } else {
918         return code;
919       }
920     }
921   }
922
923   code = CompileHandler(lookup, value, flag);
924   DCHECK(code->is_handler());
925
926   if (code->type() != Code::NORMAL) {
927     Map::UpdateCodeCache(stub_holder_map, lookup->name(), code);
928   }
929
930   return code;
931 }
932
933
934 Handle<Code> LoadIC::CompileHandler(LookupIterator* lookup,
935                                     Handle<Object> unused,
936                                     CacheHolderFlag cache_holder) {
937   Handle<Object> receiver = lookup->GetReceiver();
938   if (receiver->IsString() &&
939       Name::Equals(isolate()->factory()->length_string(), lookup->name())) {
940     FieldIndex index = FieldIndex::ForInObjectOffset(String::kLengthOffset);
941     return SimpleFieldLoad(index);
942   }
943
944   if (receiver->IsStringWrapper() &&
945       Name::Equals(isolate()->factory()->length_string(), lookup->name())) {
946     StringLengthStub string_length_stub(isolate());
947     return string_length_stub.GetCode();
948   }
949
950   // Use specialized code for getting prototype of functions.
951   if (receiver->IsJSFunction() &&
952       Name::Equals(isolate()->factory()->prototype_string(), lookup->name()) &&
953       Handle<JSFunction>::cast(receiver)->should_have_prototype() &&
954       !Handle<JSFunction>::cast(receiver)
955            ->map()
956            ->has_non_instance_prototype()) {
957     Handle<Code> stub;
958     FunctionPrototypeStub function_prototype_stub(isolate());
959     return function_prototype_stub.GetCode();
960   }
961
962   Handle<HeapType> type = receiver_type();
963   Handle<JSObject> holder = lookup->GetHolder<JSObject>();
964   bool receiver_is_holder = receiver.is_identical_to(holder);
965   // -------------- Interceptors --------------
966   if (lookup->state() == LookupIterator::INTERCEPTOR) {
967     DCHECK(!holder->GetNamedInterceptor()->getter()->IsUndefined());
968     NamedLoadHandlerCompiler compiler(isolate(), receiver_type(), holder,
969                                       cache_holder);
970     // Perform a lookup behind the interceptor. Copy the LookupIterator since
971     // the original iterator will be used to fetch the value.
972     LookupIterator it(lookup);
973     it.Next();
974     LookupForRead(&it);
975     return compiler.CompileLoadInterceptor(&it);
976   }
977
978   // -------------- Accessors --------------
979   DCHECK(lookup->state() == LookupIterator::PROPERTY);
980   if (lookup->property_kind() == LookupIterator::ACCESSOR) {
981     // Use simple field loads for some well-known callback properties.
982     if (receiver_is_holder) {
983       DCHECK(receiver->IsJSObject());
984       Handle<JSObject> js_receiver = Handle<JSObject>::cast(receiver);
985       int object_offset;
986       if (Accessors::IsJSObjectFieldAccessor<HeapType>(type, lookup->name(),
987                                                        &object_offset)) {
988         FieldIndex index =
989             FieldIndex::ForInObjectOffset(object_offset, js_receiver->map());
990         return SimpleFieldLoad(index);
991       }
992     }
993
994     Handle<Object> accessors = lookup->GetAccessors();
995     if (accessors->IsExecutableAccessorInfo()) {
996       Handle<ExecutableAccessorInfo> info =
997           Handle<ExecutableAccessorInfo>::cast(accessors);
998       if (v8::ToCData<Address>(info->getter()) == 0) return slow_stub();
999       if (!ExecutableAccessorInfo::IsCompatibleReceiverType(isolate(), info,
1000                                                             type)) {
1001         return slow_stub();
1002       }
1003       if (!holder->HasFastProperties()) return slow_stub();
1004       NamedLoadHandlerCompiler compiler(isolate(), receiver_type(), holder,
1005                                         cache_holder);
1006       return compiler.CompileLoadCallback(lookup->name(), info);
1007     }
1008     if (accessors->IsAccessorPair()) {
1009       Handle<Object> getter(Handle<AccessorPair>::cast(accessors)->getter(),
1010                             isolate());
1011       if (!getter->IsJSFunction()) return slow_stub();
1012       if (!holder->HasFastProperties()) return slow_stub();
1013       Handle<JSFunction> function = Handle<JSFunction>::cast(getter);
1014       if (!receiver->IsJSObject() && !function->IsBuiltin() &&
1015           function->shared()->strict_mode() == SLOPPY) {
1016         // Calling sloppy non-builtins with a value as the receiver
1017         // requires boxing.
1018         return slow_stub();
1019       }
1020       CallOptimization call_optimization(function);
1021       NamedLoadHandlerCompiler compiler(isolate(), receiver_type(), holder,
1022                                         cache_holder);
1023       if (call_optimization.is_simple_api_call() &&
1024           call_optimization.IsCompatibleReceiver(receiver, holder)) {
1025         return compiler.CompileLoadCallback(lookup->name(), call_optimization);
1026       }
1027       return compiler.CompileLoadViaGetter(lookup->name(), function);
1028     }
1029     // TODO(dcarney): Handle correctly.
1030     DCHECK(accessors->IsDeclaredAccessorInfo());
1031     return slow_stub();
1032   }
1033
1034   // -------------- Dictionary properties --------------
1035   DCHECK(lookup->property_kind() == LookupIterator::DATA);
1036   if (lookup->property_encoding() == LookupIterator::DICTIONARY) {
1037     if (kind() != Code::LOAD_IC) return slow_stub();
1038     if (holder->IsGlobalObject()) {
1039       NamedLoadHandlerCompiler compiler(isolate(), receiver_type(), holder,
1040                                         cache_holder);
1041       Handle<PropertyCell> cell = lookup->GetPropertyCell();
1042       Handle<Code> code = compiler.CompileLoadGlobal(cell, lookup->name(),
1043                                                      lookup->IsConfigurable());
1044       // TODO(verwaest): Move caching of these NORMAL stubs outside as well.
1045       CacheHolderFlag flag;
1046       Handle<Map> stub_holder_map =
1047           GetHandlerCacheHolder(*type, receiver_is_holder, isolate(), &flag);
1048       Map::UpdateCodeCache(stub_holder_map, lookup->name(), code);
1049       return code;
1050     }
1051     // There is only one shared stub for loading normalized
1052     // properties. It does not traverse the prototype chain, so the
1053     // property must be found in the object for the stub to be
1054     // applicable.
1055     if (!receiver_is_holder) return slow_stub();
1056     return isolate()->builtins()->LoadIC_Normal();
1057   }
1058
1059   // -------------- Fields --------------
1060   DCHECK(lookup->property_encoding() == LookupIterator::DESCRIPTOR);
1061   if (lookup->property_details().type() == FIELD) {
1062     FieldIndex field = lookup->GetFieldIndex();
1063     if (receiver_is_holder) {
1064       return SimpleFieldLoad(field);
1065     }
1066     NamedLoadHandlerCompiler compiler(isolate(), receiver_type(), holder,
1067                                       cache_holder);
1068     return compiler.CompileLoadField(lookup->name(), field);
1069   }
1070
1071   // -------------- Constant properties --------------
1072   DCHECK(lookup->property_details().type() == CONSTANT);
1073   if (receiver_is_holder) {
1074     LoadConstantStub stub(isolate(), lookup->GetConstantIndex());
1075     return stub.GetCode();
1076   }
1077   NamedLoadHandlerCompiler compiler(isolate(), receiver_type(), holder,
1078                                     cache_holder);
1079   return compiler.CompileLoadConstant(lookup->name(),
1080                                       lookup->GetConstantIndex());
1081 }
1082
1083
1084 static Handle<Object> TryConvertKey(Handle<Object> key, Isolate* isolate) {
1085   // This helper implements a few common fast cases for converting
1086   // non-smi keys of keyed loads/stores to a smi or a string.
1087   if (key->IsHeapNumber()) {
1088     double value = Handle<HeapNumber>::cast(key)->value();
1089     if (std::isnan(value)) {
1090       key = isolate->factory()->nan_string();
1091     } else {
1092       int int_value = FastD2I(value);
1093       if (value == int_value && Smi::IsValid(int_value)) {
1094         key = Handle<Smi>(Smi::FromInt(int_value), isolate);
1095       }
1096     }
1097   } else if (key->IsUndefined()) {
1098     key = isolate->factory()->undefined_string();
1099   }
1100   return key;
1101 }
1102
1103
1104 Handle<Code> KeyedLoadIC::LoadElementStub(Handle<JSObject> receiver) {
1105   // Don't handle megamorphic property accesses for INTERCEPTORS or CALLBACKS
1106   // via megamorphic stubs, since they don't have a map in their relocation info
1107   // and so the stubs can't be harvested for the object needed for a map check.
1108   if (target()->type() != Code::NORMAL) {
1109     TRACE_GENERIC_IC(isolate(), "KeyedIC", "non-NORMAL target type");
1110     return generic_stub();
1111   }
1112
1113   Handle<Map> receiver_map(receiver->map(), isolate());
1114   MapHandleList target_receiver_maps;
1115   if (target().is_identical_to(string_stub())) {
1116     target_receiver_maps.Add(isolate()->factory()->string_map());
1117   } else {
1118     TargetMaps(&target_receiver_maps);
1119   }
1120   if (target_receiver_maps.length() == 0) {
1121     return PropertyICCompiler::ComputeKeyedLoadMonomorphic(receiver_map);
1122   }
1123
1124   // The first time a receiver is seen that is a transitioned version of the
1125   // previous monomorphic receiver type, assume the new ElementsKind is the
1126   // monomorphic type. This benefits global arrays that only transition
1127   // once, and all call sites accessing them are faster if they remain
1128   // monomorphic. If this optimistic assumption is not true, the IC will
1129   // miss again and it will become polymorphic and support both the
1130   // untransitioned and transitioned maps.
1131   if (state() == MONOMORPHIC && IsMoreGeneralElementsKindTransition(
1132                                     target_receiver_maps.at(0)->elements_kind(),
1133                                     receiver->GetElementsKind())) {
1134     return PropertyICCompiler::ComputeKeyedLoadMonomorphic(receiver_map);
1135   }
1136
1137   DCHECK(state() != GENERIC);
1138
1139   // Determine the list of receiver maps that this call site has seen,
1140   // adding the map that was just encountered.
1141   if (!AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map)) {
1142     // If the miss wasn't due to an unseen map, a polymorphic stub
1143     // won't help, use the generic stub.
1144     TRACE_GENERIC_IC(isolate(), "KeyedIC", "same map added twice");
1145     return generic_stub();
1146   }
1147
1148   // If the maximum number of receiver maps has been exceeded, use the generic
1149   // version of the IC.
1150   if (target_receiver_maps.length() > kMaxKeyedPolymorphism) {
1151     TRACE_GENERIC_IC(isolate(), "KeyedIC", "max polymorph exceeded");
1152     return generic_stub();
1153   }
1154
1155   return PropertyICCompiler::ComputeKeyedLoadPolymorphic(&target_receiver_maps);
1156 }
1157
1158
1159 MaybeHandle<Object> KeyedLoadIC::Load(Handle<Object> object,
1160                                       Handle<Object> key) {
1161   if (MigrateDeprecated(object)) {
1162     Handle<Object> result;
1163     ASSIGN_RETURN_ON_EXCEPTION(
1164         isolate(), result, Runtime::GetObjectProperty(isolate(), object, key),
1165         Object);
1166     return result;
1167   }
1168
1169   Handle<Object> load_handle;
1170   Handle<Code> stub = generic_stub();
1171
1172   // Check for non-string values that can be converted into an
1173   // internalized string directly or is representable as a smi.
1174   key = TryConvertKey(key, isolate());
1175
1176   if (key->IsInternalizedString() || key->IsSymbol()) {
1177     ASSIGN_RETURN_ON_EXCEPTION(isolate(), load_handle,
1178                                LoadIC::Load(object, Handle<Name>::cast(key)),
1179                                Object);
1180   } else if (FLAG_use_ic && !object->IsAccessCheckNeeded()) {
1181     if (object->IsString() && key->IsNumber()) {
1182       if (state() == UNINITIALIZED) stub = string_stub();
1183     } else if (object->IsJSObject()) {
1184       Handle<JSObject> receiver = Handle<JSObject>::cast(object);
1185       if (receiver->elements()->map() ==
1186           isolate()->heap()->sloppy_arguments_elements_map()) {
1187         stub = sloppy_arguments_stub();
1188       } else if (receiver->HasIndexedInterceptor()) {
1189         stub = indexed_interceptor_stub();
1190       } else if (!Object::ToSmi(isolate(), key).is_null() &&
1191                  (!target().is_identical_to(sloppy_arguments_stub()))) {
1192         stub = LoadElementStub(receiver);
1193       }
1194     }
1195   }
1196
1197   if (!is_target_set()) {
1198     Code* generic = *generic_stub();
1199     if (*stub == generic) {
1200       TRACE_GENERIC_IC(isolate(), "KeyedLoadIC", "set generic");
1201     }
1202     set_target(*stub);
1203     TRACE_IC("LoadIC", key);
1204   }
1205
1206   if (!load_handle.is_null()) return load_handle;
1207   Handle<Object> result;
1208   ASSIGN_RETURN_ON_EXCEPTION(isolate(), result,
1209                              Runtime::GetObjectProperty(isolate(), object, key),
1210                              Object);
1211   return result;
1212 }
1213
1214
1215 bool StoreIC::LookupForWrite(LookupIterator* it, Handle<Object> value,
1216                              JSReceiver::StoreFromKeyed store_mode) {
1217   // Disable ICs for non-JSObjects for now.
1218   Handle<Object> receiver = it->GetReceiver();
1219   if (!receiver->IsJSObject()) return false;
1220   DCHECK(!Handle<JSObject>::cast(receiver)->map()->is_deprecated());
1221
1222   for (; it->IsFound(); it->Next()) {
1223     switch (it->state()) {
1224       case LookupIterator::NOT_FOUND:
1225       case LookupIterator::TRANSITION:
1226         UNREACHABLE();
1227       case LookupIterator::JSPROXY:
1228         return false;
1229       case LookupIterator::INTERCEPTOR: {
1230         Handle<JSObject> holder = it->GetHolder<JSObject>();
1231         InterceptorInfo* info = holder->GetNamedInterceptor();
1232         if (it->HolderIsReceiverOrHiddenPrototype()) {
1233           if (!info->setter()->IsUndefined()) return true;
1234         } else if (!info->getter()->IsUndefined() ||
1235                    !info->query()->IsUndefined()) {
1236           return false;
1237         }
1238         break;
1239       }
1240       case LookupIterator::ACCESS_CHECK:
1241         if (it->GetHolder<JSObject>()->IsAccessCheckNeeded()) return false;
1242         break;
1243       case LookupIterator::PROPERTY:
1244         if (!it->HasProperty()) break;
1245         if (it->IsReadOnly()) return false;
1246         if (it->property_kind() == LookupIterator::ACCESSOR) return true;
1247         if (it->GetHolder<Object>().is_identical_to(receiver)) {
1248           it->PrepareForDataProperty(value);
1249           // The previous receiver map might just have been deprecated,
1250           // so reload it.
1251           update_receiver_type(receiver);
1252           return true;
1253         }
1254
1255         // Receiver != holder.
1256         if (receiver->IsJSGlobalProxy()) {
1257           PrototypeIterator iter(it->isolate(), receiver);
1258           return it->GetHolder<Object>().is_identical_to(
1259               PrototypeIterator::GetCurrent(iter));
1260         }
1261
1262         it->PrepareTransitionToDataProperty(value, NONE, store_mode);
1263         return it->IsCacheableTransition();
1264     }
1265   }
1266
1267   it->PrepareTransitionToDataProperty(value, NONE, store_mode);
1268   return it->IsCacheableTransition();
1269 }
1270
1271
1272 MaybeHandle<Object> StoreIC::Store(Handle<Object> object, Handle<Name> name,
1273                                    Handle<Object> value,
1274                                    JSReceiver::StoreFromKeyed store_mode) {
1275   // TODO(verwaest): Let SetProperty do the migration, since storing a property
1276   // might deprecate the current map again, if value does not fit.
1277   if (MigrateDeprecated(object) || object->IsJSProxy()) {
1278     Handle<Object> result;
1279     ASSIGN_RETURN_ON_EXCEPTION(
1280         isolate(), result,
1281         Object::SetProperty(object, name, value, strict_mode()), Object);
1282     return result;
1283   }
1284
1285   // If the object is undefined or null it's illegal to try to set any
1286   // properties on it; throw a TypeError in that case.
1287   if (object->IsUndefined() || object->IsNull()) {
1288     return TypeError("non_object_property_store", object, name);
1289   }
1290
1291   // Check if the given name is an array index.
1292   uint32_t index;
1293   if (name->AsArrayIndex(&index)) {
1294     // Ignore other stores where the receiver is not a JSObject.
1295     // TODO(1475): Must check prototype chains of object wrappers.
1296     if (!object->IsJSObject()) return value;
1297     Handle<JSObject> receiver = Handle<JSObject>::cast(object);
1298
1299     Handle<Object> result;
1300     ASSIGN_RETURN_ON_EXCEPTION(
1301         isolate(), result,
1302         JSObject::SetElement(receiver, index, value, NONE, strict_mode()),
1303         Object);
1304     return value;
1305   }
1306
1307   // Observed objects are always modified through the runtime.
1308   if (object->IsHeapObject() &&
1309       Handle<HeapObject>::cast(object)->map()->is_observed()) {
1310     Handle<Object> result;
1311     ASSIGN_RETURN_ON_EXCEPTION(
1312         isolate(), result,
1313         Object::SetProperty(object, name, value, strict_mode(), store_mode),
1314         Object);
1315     return result;
1316   }
1317
1318   LookupIterator it(object, name);
1319   if (FLAG_use_ic) UpdateCaches(&it, value, store_mode);
1320
1321   // Set the property.
1322   Handle<Object> result;
1323   ASSIGN_RETURN_ON_EXCEPTION(
1324       isolate(), result,
1325       Object::SetProperty(&it, value, strict_mode(), store_mode), Object);
1326   return result;
1327 }
1328
1329
1330 OStream& operator<<(OStream& os, const CallIC::State& s) {
1331   return os << "(args(" << s.arg_count() << "), "
1332             << (s.call_type() == CallIC::METHOD ? "METHOD" : "FUNCTION")
1333             << ", ";
1334 }
1335
1336
1337 Handle<Code> CallIC::initialize_stub(Isolate* isolate, int argc,
1338                                      CallType call_type) {
1339   CallICStub stub(isolate, State(argc, call_type));
1340   Handle<Code> code = stub.GetCode();
1341   return code;
1342 }
1343
1344
1345 Handle<Code> StoreIC::initialize_stub(Isolate* isolate,
1346                                       StrictMode strict_mode) {
1347   ExtraICState extra_state = ComputeExtraICState(strict_mode);
1348   Handle<Code> ic =
1349       PropertyICCompiler::ComputeStore(isolate, UNINITIALIZED, extra_state);
1350   return ic;
1351 }
1352
1353
1354 Handle<Code> StoreIC::megamorphic_stub() {
1355   return PropertyICCompiler::ComputeStore(isolate(), MEGAMORPHIC,
1356                                           extra_ic_state());
1357 }
1358
1359
1360 Handle<Code> StoreIC::generic_stub() const {
1361   return PropertyICCompiler::ComputeStore(isolate(), GENERIC, extra_ic_state());
1362 }
1363
1364
1365 Handle<Code> StoreIC::pre_monomorphic_stub(Isolate* isolate,
1366                                            StrictMode strict_mode) {
1367   ExtraICState state = ComputeExtraICState(strict_mode);
1368   return PropertyICCompiler::ComputeStore(isolate, PREMONOMORPHIC, state);
1369 }
1370
1371
1372 void StoreIC::UpdateCaches(LookupIterator* lookup, Handle<Object> value,
1373                            JSReceiver::StoreFromKeyed store_mode) {
1374   if (state() == UNINITIALIZED) {
1375     // This is the first time we execute this inline cache. Set the target to
1376     // the pre monomorphic stub to delay setting the monomorphic state.
1377     set_target(*pre_monomorphic_stub());
1378     TRACE_IC("StoreIC", lookup->name());
1379     return;
1380   }
1381
1382   Handle<Code> code = LookupForWrite(lookup, value, store_mode)
1383                           ? ComputeHandler(lookup, value)
1384                           : slow_stub();
1385
1386   PatchCache(lookup->name(), code);
1387   TRACE_IC("StoreIC", lookup->name());
1388 }
1389
1390
1391 Handle<Code> StoreIC::CompileHandler(LookupIterator* lookup,
1392                                      Handle<Object> value,
1393                                      CacheHolderFlag cache_holder) {
1394   DCHECK_NE(LookupIterator::JSPROXY, lookup->state());
1395
1396   // This is currently guaranteed by checks in StoreIC::Store.
1397   Handle<JSObject> receiver = Handle<JSObject>::cast(lookup->GetReceiver());
1398   Handle<JSObject> holder = lookup->GetHolder<JSObject>();
1399   DCHECK(!receiver->IsAccessCheckNeeded());
1400
1401   // -------------- Transition --------------
1402   if (lookup->state() == LookupIterator::TRANSITION) {
1403     Handle<Map> transition = lookup->transition_map();
1404     // Currently not handled by CompileStoreTransition.
1405     if (!holder->HasFastProperties()) return slow_stub();
1406
1407     DCHECK(lookup->IsCacheableTransition());
1408     NamedStoreHandlerCompiler compiler(isolate(), receiver_type(), holder);
1409     return compiler.CompileStoreTransition(transition, lookup->name());
1410   }
1411
1412   // -------------- Interceptors --------------
1413   if (lookup->state() == LookupIterator::INTERCEPTOR) {
1414     DCHECK(!holder->GetNamedInterceptor()->setter()->IsUndefined());
1415     NamedStoreHandlerCompiler compiler(isolate(), receiver_type(), holder);
1416     return compiler.CompileStoreInterceptor(lookup->name());
1417   }
1418
1419   // -------------- Accessors --------------
1420   DCHECK(lookup->state() == LookupIterator::PROPERTY);
1421   if (lookup->property_kind() == LookupIterator::ACCESSOR) {
1422     if (!holder->HasFastProperties()) return slow_stub();
1423     Handle<Object> accessors = lookup->GetAccessors();
1424     if (accessors->IsExecutableAccessorInfo()) {
1425       Handle<ExecutableAccessorInfo> info =
1426           Handle<ExecutableAccessorInfo>::cast(accessors);
1427       if (v8::ToCData<Address>(info->setter()) == 0) return slow_stub();
1428       if (!ExecutableAccessorInfo::IsCompatibleReceiverType(isolate(), info,
1429                                                             receiver_type())) {
1430         return slow_stub();
1431       }
1432       NamedStoreHandlerCompiler compiler(isolate(), receiver_type(), holder);
1433       return compiler.CompileStoreCallback(receiver, lookup->name(), info);
1434     } else if (accessors->IsAccessorPair()) {
1435       Handle<Object> setter(Handle<AccessorPair>::cast(accessors)->setter(),
1436                             isolate());
1437       if (!setter->IsJSFunction()) return slow_stub();
1438       Handle<JSFunction> function = Handle<JSFunction>::cast(setter);
1439       CallOptimization call_optimization(function);
1440       NamedStoreHandlerCompiler compiler(isolate(), receiver_type(), holder);
1441       if (call_optimization.is_simple_api_call() &&
1442           call_optimization.IsCompatibleReceiver(receiver, holder)) {
1443         return compiler.CompileStoreCallback(receiver, lookup->name(),
1444                                              call_optimization);
1445       }
1446       return compiler.CompileStoreViaSetter(receiver, lookup->name(),
1447                                             Handle<JSFunction>::cast(setter));
1448     }
1449     // TODO(dcarney): Handle correctly.
1450     DCHECK(accessors->IsDeclaredAccessorInfo());
1451     return slow_stub();
1452   }
1453
1454   // -------------- Dictionary properties --------------
1455   DCHECK(lookup->property_kind() == LookupIterator::DATA);
1456   if (lookup->property_encoding() == LookupIterator::DICTIONARY) {
1457     if (holder->IsGlobalObject()) {
1458       Handle<PropertyCell> cell = lookup->GetPropertyCell();
1459       Handle<HeapType> union_type = PropertyCell::UpdatedType(cell, value);
1460       StoreGlobalStub stub(isolate(), union_type->IsConstant(),
1461                            receiver->IsJSGlobalProxy());
1462       Handle<Code> code = stub.GetCodeCopyFromTemplate(
1463           Handle<GlobalObject>::cast(holder), cell);
1464       // TODO(verwaest): Move caching of these NORMAL stubs outside as well.
1465       HeapObject::UpdateMapCodeCache(receiver, lookup->name(), code);
1466       return code;
1467     }
1468     DCHECK(holder.is_identical_to(receiver));
1469     return isolate()->builtins()->StoreIC_Normal();
1470   }
1471
1472   // -------------- Fields --------------
1473   DCHECK(lookup->property_encoding() == LookupIterator::DESCRIPTOR);
1474   if (lookup->property_details().type() == FIELD) {
1475     bool use_stub = true;
1476     if (lookup->representation().IsHeapObject()) {
1477       // Only use a generic stub if no types need to be tracked.
1478       Handle<HeapType> field_type = lookup->GetFieldType();
1479       HeapType::Iterator<Map> it = field_type->Classes();
1480       use_stub = it.Done();
1481     }
1482     if (use_stub) {
1483       StoreFieldStub stub(isolate(), lookup->GetFieldIndex(),
1484                           lookup->representation());
1485       return stub.GetCode();
1486     }
1487     NamedStoreHandlerCompiler compiler(isolate(), receiver_type(), holder);
1488     return compiler.CompileStoreField(lookup);
1489   }
1490
1491   // -------------- Constant properties --------------
1492   DCHECK(lookup->property_details().type() == CONSTANT);
1493   return slow_stub();
1494 }
1495
1496
1497 Handle<Code> KeyedStoreIC::StoreElementStub(Handle<JSObject> receiver,
1498                                             KeyedAccessStoreMode store_mode) {
1499   // Don't handle megamorphic property accesses for INTERCEPTORS or CALLBACKS
1500   // via megamorphic stubs, since they don't have a map in their relocation info
1501   // and so the stubs can't be harvested for the object needed for a map check.
1502   if (target()->type() != Code::NORMAL) {
1503     TRACE_GENERIC_IC(isolate(), "KeyedIC", "non-NORMAL target type");
1504     return generic_stub();
1505   }
1506
1507   Handle<Map> receiver_map(receiver->map(), isolate());
1508   MapHandleList target_receiver_maps;
1509   TargetMaps(&target_receiver_maps);
1510   if (target_receiver_maps.length() == 0) {
1511     Handle<Map> monomorphic_map =
1512         ComputeTransitionedMap(receiver_map, store_mode);
1513     store_mode = GetNonTransitioningStoreMode(store_mode);
1514     return PropertyICCompiler::ComputeKeyedStoreMonomorphic(
1515         monomorphic_map, strict_mode(), store_mode);
1516   }
1517
1518   // There are several special cases where an IC that is MONOMORPHIC can still
1519   // transition to a different GetNonTransitioningStoreMode IC that handles a
1520   // superset of the original IC. Handle those here if the receiver map hasn't
1521   // changed or it has transitioned to a more general kind.
1522   KeyedAccessStoreMode old_store_mode =
1523       KeyedStoreIC::GetKeyedAccessStoreMode(target()->extra_ic_state());
1524   Handle<Map> previous_receiver_map = target_receiver_maps.at(0);
1525   if (state() == MONOMORPHIC) {
1526     Handle<Map> transitioned_receiver_map = receiver_map;
1527     if (IsTransitionStoreMode(store_mode)) {
1528       transitioned_receiver_map =
1529           ComputeTransitionedMap(receiver_map, store_mode);
1530     }
1531     if ((receiver_map.is_identical_to(previous_receiver_map) &&
1532          IsTransitionStoreMode(store_mode)) ||
1533         IsTransitionOfMonomorphicTarget(*previous_receiver_map,
1534                                         *transitioned_receiver_map)) {
1535       // If the "old" and "new" maps are in the same elements map family, or
1536       // if they at least come from the same origin for a transitioning store,
1537       // stay MONOMORPHIC and use the map for the most generic ElementsKind.
1538       store_mode = GetNonTransitioningStoreMode(store_mode);
1539       return PropertyICCompiler::ComputeKeyedStoreMonomorphic(
1540           transitioned_receiver_map, strict_mode(), store_mode);
1541     } else if (*previous_receiver_map == receiver->map() &&
1542                old_store_mode == STANDARD_STORE &&
1543                (store_mode == STORE_AND_GROW_NO_TRANSITION ||
1544                 store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS ||
1545                 store_mode == STORE_NO_TRANSITION_HANDLE_COW)) {
1546       // A "normal" IC that handles stores can switch to a version that can
1547       // grow at the end of the array, handle OOB accesses or copy COW arrays
1548       // and still stay MONOMORPHIC.
1549       return PropertyICCompiler::ComputeKeyedStoreMonomorphic(
1550           receiver_map, strict_mode(), store_mode);
1551     }
1552   }
1553
1554   DCHECK(state() != GENERIC);
1555
1556   bool map_added =
1557       AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map);
1558
1559   if (IsTransitionStoreMode(store_mode)) {
1560     Handle<Map> transitioned_receiver_map =
1561         ComputeTransitionedMap(receiver_map, store_mode);
1562     map_added |= AddOneReceiverMapIfMissing(&target_receiver_maps,
1563                                             transitioned_receiver_map);
1564   }
1565
1566   if (!map_added) {
1567     // If the miss wasn't due to an unseen map, a polymorphic stub
1568     // won't help, use the generic stub.
1569     TRACE_GENERIC_IC(isolate(), "KeyedIC", "same map added twice");
1570     return generic_stub();
1571   }
1572
1573   // If the maximum number of receiver maps has been exceeded, use the generic
1574   // version of the IC.
1575   if (target_receiver_maps.length() > kMaxKeyedPolymorphism) {
1576     TRACE_GENERIC_IC(isolate(), "KeyedIC", "max polymorph exceeded");
1577     return generic_stub();
1578   }
1579
1580   // Make sure all polymorphic handlers have the same store mode, otherwise the
1581   // generic stub must be used.
1582   store_mode = GetNonTransitioningStoreMode(store_mode);
1583   if (old_store_mode != STANDARD_STORE) {
1584     if (store_mode == STANDARD_STORE) {
1585       store_mode = old_store_mode;
1586     } else if (store_mode != old_store_mode) {
1587       TRACE_GENERIC_IC(isolate(), "KeyedIC", "store mode mismatch");
1588       return generic_stub();
1589     }
1590   }
1591
1592   // If the store mode isn't the standard mode, make sure that all polymorphic
1593   // receivers are either external arrays, or all "normal" arrays. Otherwise,
1594   // use the generic stub.
1595   if (store_mode != STANDARD_STORE) {
1596     int external_arrays = 0;
1597     for (int i = 0; i < target_receiver_maps.length(); ++i) {
1598       if (target_receiver_maps[i]->has_external_array_elements() ||
1599           target_receiver_maps[i]->has_fixed_typed_array_elements()) {
1600         external_arrays++;
1601       }
1602     }
1603     if (external_arrays != 0 &&
1604         external_arrays != target_receiver_maps.length()) {
1605       TRACE_GENERIC_IC(isolate(), "KeyedIC",
1606                        "unsupported combination of external and normal arrays");
1607       return generic_stub();
1608     }
1609   }
1610
1611   return PropertyICCompiler::ComputeKeyedStorePolymorphic(
1612       &target_receiver_maps, store_mode, strict_mode());
1613 }
1614
1615
1616 Handle<Map> KeyedStoreIC::ComputeTransitionedMap(
1617     Handle<Map> map, KeyedAccessStoreMode store_mode) {
1618   switch (store_mode) {
1619     case STORE_TRANSITION_SMI_TO_OBJECT:
1620     case STORE_TRANSITION_DOUBLE_TO_OBJECT:
1621     case STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT:
1622     case STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT:
1623       return Map::TransitionElementsTo(map, FAST_ELEMENTS);
1624     case STORE_TRANSITION_SMI_TO_DOUBLE:
1625     case STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE:
1626       return Map::TransitionElementsTo(map, FAST_DOUBLE_ELEMENTS);
1627     case STORE_TRANSITION_HOLEY_SMI_TO_OBJECT:
1628     case STORE_TRANSITION_HOLEY_DOUBLE_TO_OBJECT:
1629     case STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_OBJECT:
1630     case STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT:
1631       return Map::TransitionElementsTo(map, FAST_HOLEY_ELEMENTS);
1632     case STORE_TRANSITION_HOLEY_SMI_TO_DOUBLE:
1633     case STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_DOUBLE:
1634       return Map::TransitionElementsTo(map, FAST_HOLEY_DOUBLE_ELEMENTS);
1635     case STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS:
1636       DCHECK(map->has_external_array_elements());
1637     // Fall through
1638     case STORE_NO_TRANSITION_HANDLE_COW:
1639     case STANDARD_STORE:
1640     case STORE_AND_GROW_NO_TRANSITION:
1641       return map;
1642   }
1643   UNREACHABLE();
1644   return MaybeHandle<Map>().ToHandleChecked();
1645 }
1646
1647
1648 bool IsOutOfBoundsAccess(Handle<JSObject> receiver, int index) {
1649   if (receiver->IsJSArray()) {
1650     return JSArray::cast(*receiver)->length()->IsSmi() &&
1651            index >= Smi::cast(JSArray::cast(*receiver)->length())->value();
1652   }
1653   return index >= receiver->elements()->length();
1654 }
1655
1656
1657 KeyedAccessStoreMode KeyedStoreIC::GetStoreMode(Handle<JSObject> receiver,
1658                                                 Handle<Object> key,
1659                                                 Handle<Object> value) {
1660   Handle<Smi> smi_key = Object::ToSmi(isolate(), key).ToHandleChecked();
1661   int index = smi_key->value();
1662   bool oob_access = IsOutOfBoundsAccess(receiver, index);
1663   // Don't consider this a growing store if the store would send the receiver to
1664   // dictionary mode.
1665   bool allow_growth = receiver->IsJSArray() && oob_access &&
1666                       !receiver->WouldConvertToSlowElements(key);
1667   if (allow_growth) {
1668     // Handle growing array in stub if necessary.
1669     if (receiver->HasFastSmiElements()) {
1670       if (value->IsHeapNumber()) {
1671         if (receiver->HasFastHoleyElements()) {
1672           return STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_DOUBLE;
1673         } else {
1674           return STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE;
1675         }
1676       }
1677       if (value->IsHeapObject()) {
1678         if (receiver->HasFastHoleyElements()) {
1679           return STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_OBJECT;
1680         } else {
1681           return STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT;
1682         }
1683       }
1684     } else if (receiver->HasFastDoubleElements()) {
1685       if (!value->IsSmi() && !value->IsHeapNumber()) {
1686         if (receiver->HasFastHoleyElements()) {
1687           return STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT;
1688         } else {
1689           return STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT;
1690         }
1691       }
1692     }
1693     return STORE_AND_GROW_NO_TRANSITION;
1694   } else {
1695     // Handle only in-bounds elements accesses.
1696     if (receiver->HasFastSmiElements()) {
1697       if (value->IsHeapNumber()) {
1698         if (receiver->HasFastHoleyElements()) {
1699           return STORE_TRANSITION_HOLEY_SMI_TO_DOUBLE;
1700         } else {
1701           return STORE_TRANSITION_SMI_TO_DOUBLE;
1702         }
1703       } else if (value->IsHeapObject()) {
1704         if (receiver->HasFastHoleyElements()) {
1705           return STORE_TRANSITION_HOLEY_SMI_TO_OBJECT;
1706         } else {
1707           return STORE_TRANSITION_SMI_TO_OBJECT;
1708         }
1709       }
1710     } else if (receiver->HasFastDoubleElements()) {
1711       if (!value->IsSmi() && !value->IsHeapNumber()) {
1712         if (receiver->HasFastHoleyElements()) {
1713           return STORE_TRANSITION_HOLEY_DOUBLE_TO_OBJECT;
1714         } else {
1715           return STORE_TRANSITION_DOUBLE_TO_OBJECT;
1716         }
1717       }
1718     }
1719     if (!FLAG_trace_external_array_abuse &&
1720         receiver->map()->has_external_array_elements() && oob_access) {
1721       return STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS;
1722     }
1723     Heap* heap = receiver->GetHeap();
1724     if (receiver->elements()->map() == heap->fixed_cow_array_map()) {
1725       return STORE_NO_TRANSITION_HANDLE_COW;
1726     } else {
1727       return STANDARD_STORE;
1728     }
1729   }
1730 }
1731
1732
1733 MaybeHandle<Object> KeyedStoreIC::Store(Handle<Object> object,
1734                                         Handle<Object> key,
1735                                         Handle<Object> value) {
1736   // TODO(verwaest): Let SetProperty do the migration, since storing a property
1737   // might deprecate the current map again, if value does not fit.
1738   if (MigrateDeprecated(object)) {
1739     Handle<Object> result;
1740     ASSIGN_RETURN_ON_EXCEPTION(
1741         isolate(), result, Runtime::SetObjectProperty(isolate(), object, key,
1742                                                       value, strict_mode()),
1743         Object);
1744     return result;
1745   }
1746
1747   // Check for non-string values that can be converted into an
1748   // internalized string directly or is representable as a smi.
1749   key = TryConvertKey(key, isolate());
1750
1751   Handle<Object> store_handle;
1752   Handle<Code> stub = generic_stub();
1753
1754   if (key->IsInternalizedString()) {
1755     ASSIGN_RETURN_ON_EXCEPTION(
1756         isolate(), store_handle,
1757         StoreIC::Store(object, Handle<String>::cast(key), value,
1758                        JSReceiver::MAY_BE_STORE_FROM_KEYED),
1759         Object);
1760     TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "set generic");
1761     set_target(*stub);
1762     return store_handle;
1763   }
1764
1765   bool use_ic =
1766       FLAG_use_ic && !object->IsStringWrapper() &&
1767       !object->IsAccessCheckNeeded() && !object->IsJSGlobalProxy() &&
1768       !(object->IsJSObject() && JSObject::cast(*object)->map()->is_observed());
1769   if (use_ic && !object->IsSmi()) {
1770     // Don't use ICs for maps of the objects in Array's prototype chain. We
1771     // expect to be able to trap element sets to objects with those maps in
1772     // the runtime to enable optimization of element hole access.
1773     Handle<HeapObject> heap_object = Handle<HeapObject>::cast(object);
1774     if (heap_object->map()->IsMapInArrayPrototypeChain()) use_ic = false;
1775   }
1776
1777   if (use_ic) {
1778     DCHECK(!object->IsAccessCheckNeeded());
1779
1780     if (object->IsJSObject()) {
1781       Handle<JSObject> receiver = Handle<JSObject>::cast(object);
1782       bool key_is_smi_like = !Object::ToSmi(isolate(), key).is_null();
1783       if (receiver->elements()->map() ==
1784           isolate()->heap()->sloppy_arguments_elements_map()) {
1785         if (strict_mode() == SLOPPY) {
1786           stub = sloppy_arguments_stub();
1787         }
1788       } else if (key_is_smi_like &&
1789                  !(target().is_identical_to(sloppy_arguments_stub()))) {
1790         // We should go generic if receiver isn't a dictionary, but our
1791         // prototype chain does have dictionary elements. This ensures that
1792         // other non-dictionary receivers in the polymorphic case benefit
1793         // from fast path keyed stores.
1794         if (!(receiver->map()->DictionaryElementsInPrototypeChainOnly())) {
1795           KeyedAccessStoreMode store_mode = GetStoreMode(receiver, key, value);
1796           stub = StoreElementStub(receiver, store_mode);
1797         }
1798       }
1799     }
1800   }
1801
1802   if (store_handle.is_null()) {
1803     ASSIGN_RETURN_ON_EXCEPTION(
1804         isolate(), store_handle,
1805         Runtime::SetObjectProperty(isolate(), object, key, value,
1806                                    strict_mode()),
1807         Object);
1808   }
1809
1810   DCHECK(!is_target_set());
1811   Code* generic = *generic_stub();
1812   if (*stub == generic) {
1813     TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "set generic");
1814   }
1815   DCHECK(!stub.is_null());
1816   set_target(*stub);
1817   TRACE_IC("StoreIC", key);
1818
1819   return store_handle;
1820 }
1821
1822
1823 CallIC::State::State(ExtraICState extra_ic_state)
1824     : argc_(ArgcBits::decode(extra_ic_state)),
1825       call_type_(CallTypeBits::decode(extra_ic_state)) {}
1826
1827
1828 ExtraICState CallIC::State::GetExtraICState() const {
1829   ExtraICState extra_ic_state =
1830       ArgcBits::encode(argc_) | CallTypeBits::encode(call_type_);
1831   return extra_ic_state;
1832 }
1833
1834
1835 bool CallIC::DoCustomHandler(Handle<Object> receiver, Handle<Object> function,
1836                              Handle<FixedArray> vector, Handle<Smi> slot,
1837                              const State& state) {
1838   DCHECK(FLAG_use_ic && function->IsJSFunction());
1839
1840   // Are we the array function?
1841   Handle<JSFunction> array_function =
1842       Handle<JSFunction>(isolate()->native_context()->array_function());
1843   if (array_function.is_identical_to(Handle<JSFunction>::cast(function))) {
1844     // Alter the slot.
1845     IC::State old_state = FeedbackToState(vector, slot);
1846     Object* feedback = vector->get(slot->value());
1847     if (!feedback->IsAllocationSite()) {
1848       Handle<AllocationSite> new_site =
1849           isolate()->factory()->NewAllocationSite();
1850       vector->set(slot->value(), *new_site);
1851     }
1852
1853     CallIC_ArrayStub stub(isolate(), state);
1854     set_target(*stub.GetCode());
1855     Handle<String> name;
1856     if (array_function->shared()->name()->IsString()) {
1857       name = Handle<String>(String::cast(array_function->shared()->name()),
1858                             isolate());
1859     }
1860
1861     IC::State new_state = FeedbackToState(vector, slot);
1862     OnTypeFeedbackChanged(isolate(), address(), old_state, new_state, true);
1863     TRACE_VECTOR_IC("CallIC (custom handler)", name, old_state, new_state);
1864     return true;
1865   }
1866   return false;
1867 }
1868
1869
1870 void CallIC::PatchMegamorphic(Handle<Object> function,
1871                               Handle<FixedArray> vector, Handle<Smi> slot) {
1872   State state(target()->extra_ic_state());
1873   IC::State old_state = FeedbackToState(vector, slot);
1874
1875   // We are going generic.
1876   vector->set(slot->value(), *TypeFeedbackInfo::MegamorphicSentinel(isolate()),
1877               SKIP_WRITE_BARRIER);
1878
1879   CallICStub stub(isolate(), state);
1880   Handle<Code> code = stub.GetCode();
1881   set_target(*code);
1882
1883   Handle<Object> name = isolate()->factory()->empty_string();
1884   if (function->IsJSFunction()) {
1885     Handle<JSFunction> js_function = Handle<JSFunction>::cast(function);
1886     name = handle(js_function->shared()->name(), isolate());
1887   }
1888
1889   IC::State new_state = FeedbackToState(vector, slot);
1890   OnTypeFeedbackChanged(isolate(), address(), old_state, new_state, true);
1891   TRACE_VECTOR_IC("CallIC", name, old_state, new_state);
1892 }
1893
1894
1895 void CallIC::HandleMiss(Handle<Object> receiver, Handle<Object> function,
1896                         Handle<FixedArray> vector, Handle<Smi> slot) {
1897   State state(target()->extra_ic_state());
1898   IC::State old_state = FeedbackToState(vector, slot);
1899   Handle<Object> name = isolate()->factory()->empty_string();
1900   Object* feedback = vector->get(slot->value());
1901
1902   // Hand-coded MISS handling is easier if CallIC slots don't contain smis.
1903   DCHECK(!feedback->IsSmi());
1904
1905   if (feedback->IsJSFunction() || !function->IsJSFunction()) {
1906     // We are going generic.
1907     vector->set(slot->value(),
1908                 *TypeFeedbackInfo::MegamorphicSentinel(isolate()),
1909                 SKIP_WRITE_BARRIER);
1910   } else {
1911     // The feedback is either uninitialized or an allocation site.
1912     // It might be an allocation site because if we re-compile the full code
1913     // to add deoptimization support, we call with the default call-ic, and
1914     // merely need to patch the target to match the feedback.
1915     // TODO(mvstanton): the better approach is to dispense with patching
1916     // altogether, which is in progress.
1917     DCHECK(feedback == *TypeFeedbackInfo::UninitializedSentinel(isolate()) ||
1918            feedback->IsAllocationSite());
1919
1920     // Do we want to install a custom handler?
1921     if (FLAG_use_ic &&
1922         DoCustomHandler(receiver, function, vector, slot, state)) {
1923       return;
1924     }
1925
1926     vector->set(slot->value(), *function);
1927   }
1928
1929   if (function->IsJSFunction()) {
1930     Handle<JSFunction> js_function = Handle<JSFunction>::cast(function);
1931     name = handle(js_function->shared()->name(), isolate());
1932   }
1933
1934   IC::State new_state = FeedbackToState(vector, slot);
1935   OnTypeFeedbackChanged(isolate(), address(), old_state, new_state, true);
1936   TRACE_VECTOR_IC("CallIC", name, old_state, new_state);
1937 }
1938
1939
1940 #undef TRACE_IC
1941
1942
1943 // ----------------------------------------------------------------------------
1944 // Static IC stub generators.
1945 //
1946
1947 // Used from ic-<arch>.cc.
1948 RUNTIME_FUNCTION(CallIC_Miss) {
1949   TimerEventScope<TimerEventIcMiss> timer(isolate);
1950   HandleScope scope(isolate);
1951   DCHECK(args.length() == 4);
1952   CallIC ic(isolate);
1953   Handle<Object> receiver = args.at<Object>(0);
1954   Handle<Object> function = args.at<Object>(1);
1955   Handle<FixedArray> vector = args.at<FixedArray>(2);
1956   Handle<Smi> slot = args.at<Smi>(3);
1957   ic.HandleMiss(receiver, function, vector, slot);
1958   return *function;
1959 }
1960
1961
1962 RUNTIME_FUNCTION(CallIC_Customization_Miss) {
1963   TimerEventScope<TimerEventIcMiss> timer(isolate);
1964   HandleScope scope(isolate);
1965   DCHECK(args.length() == 4);
1966   // A miss on a custom call ic always results in going megamorphic.
1967   CallIC ic(isolate);
1968   Handle<Object> function = args.at<Object>(1);
1969   Handle<FixedArray> vector = args.at<FixedArray>(2);
1970   Handle<Smi> slot = args.at<Smi>(3);
1971   ic.PatchMegamorphic(function, vector, slot);
1972   return *function;
1973 }
1974
1975
1976 // Used from ic-<arch>.cc.
1977 RUNTIME_FUNCTION(LoadIC_Miss) {
1978   TimerEventScope<TimerEventIcMiss> timer(isolate);
1979   HandleScope scope(isolate);
1980   DCHECK(args.length() == 2);
1981   LoadIC ic(IC::NO_EXTRA_FRAME, isolate);
1982   Handle<Object> receiver = args.at<Object>(0);
1983   Handle<Name> key = args.at<Name>(1);
1984   ic.UpdateState(receiver, key);
1985   Handle<Object> result;
1986   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, ic.Load(receiver, key));
1987   return *result;
1988 }
1989
1990
1991 // Used from ic-<arch>.cc
1992 RUNTIME_FUNCTION(KeyedLoadIC_Miss) {
1993   TimerEventScope<TimerEventIcMiss> timer(isolate);
1994   HandleScope scope(isolate);
1995   DCHECK(args.length() == 2);
1996   KeyedLoadIC ic(IC::NO_EXTRA_FRAME, isolate);
1997   Handle<Object> receiver = args.at<Object>(0);
1998   Handle<Object> key = args.at<Object>(1);
1999   ic.UpdateState(receiver, key);
2000   Handle<Object> result;
2001   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, ic.Load(receiver, key));
2002   return *result;
2003 }
2004
2005
2006 RUNTIME_FUNCTION(KeyedLoadIC_MissFromStubFailure) {
2007   TimerEventScope<TimerEventIcMiss> timer(isolate);
2008   HandleScope scope(isolate);
2009   DCHECK(args.length() == 2);
2010   KeyedLoadIC ic(IC::EXTRA_CALL_FRAME, isolate);
2011   Handle<Object> receiver = args.at<Object>(0);
2012   Handle<Object> key = args.at<Object>(1);
2013   ic.UpdateState(receiver, key);
2014   Handle<Object> result;
2015   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, ic.Load(receiver, key));
2016   return *result;
2017 }
2018
2019
2020 // Used from ic-<arch>.cc.
2021 RUNTIME_FUNCTION(StoreIC_Miss) {
2022   TimerEventScope<TimerEventIcMiss> timer(isolate);
2023   HandleScope scope(isolate);
2024   DCHECK(args.length() == 3);
2025   StoreIC ic(IC::NO_EXTRA_FRAME, isolate);
2026   Handle<Object> receiver = args.at<Object>(0);
2027   Handle<String> key = args.at<String>(1);
2028   ic.UpdateState(receiver, key);
2029   Handle<Object> result;
2030   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2031       isolate, result, ic.Store(receiver, key, args.at<Object>(2)));
2032   return *result;
2033 }
2034
2035
2036 RUNTIME_FUNCTION(StoreIC_MissFromStubFailure) {
2037   TimerEventScope<TimerEventIcMiss> timer(isolate);
2038   HandleScope scope(isolate);
2039   DCHECK(args.length() == 3);
2040   StoreIC ic(IC::EXTRA_CALL_FRAME, isolate);
2041   Handle<Object> receiver = args.at<Object>(0);
2042   Handle<String> key = args.at<String>(1);
2043   ic.UpdateState(receiver, key);
2044   Handle<Object> result;
2045   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2046       isolate, result, ic.Store(receiver, key, args.at<Object>(2)));
2047   return *result;
2048 }
2049
2050
2051 // Extend storage is called in a store inline cache when
2052 // it is necessary to extend the properties array of a
2053 // JSObject.
2054 RUNTIME_FUNCTION(SharedStoreIC_ExtendStorage) {
2055   TimerEventScope<TimerEventIcMiss> timer(isolate);
2056   HandleScope shs(isolate);
2057   DCHECK(args.length() == 3);
2058
2059   // Convert the parameters
2060   Handle<JSObject> object = args.at<JSObject>(0);
2061   Handle<Map> transition = args.at<Map>(1);
2062   Handle<Object> value = args.at<Object>(2);
2063
2064   // Check the object has run out out property space.
2065   DCHECK(object->HasFastProperties());
2066   DCHECK(object->map()->unused_property_fields() == 0);
2067
2068   JSObject::MigrateToNewProperty(object, transition, value);
2069
2070   // Return the stored value.
2071   return *value;
2072 }
2073
2074
2075 // Used from ic-<arch>.cc.
2076 RUNTIME_FUNCTION(KeyedStoreIC_Miss) {
2077   TimerEventScope<TimerEventIcMiss> timer(isolate);
2078   HandleScope scope(isolate);
2079   DCHECK(args.length() == 3);
2080   KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate);
2081   Handle<Object> receiver = args.at<Object>(0);
2082   Handle<Object> key = args.at<Object>(1);
2083   ic.UpdateState(receiver, key);
2084   Handle<Object> result;
2085   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2086       isolate, result, ic.Store(receiver, key, args.at<Object>(2)));
2087   return *result;
2088 }
2089
2090
2091 RUNTIME_FUNCTION(KeyedStoreIC_MissFromStubFailure) {
2092   TimerEventScope<TimerEventIcMiss> timer(isolate);
2093   HandleScope scope(isolate);
2094   DCHECK(args.length() == 3);
2095   KeyedStoreIC ic(IC::EXTRA_CALL_FRAME, isolate);
2096   Handle<Object> receiver = args.at<Object>(0);
2097   Handle<Object> key = args.at<Object>(1);
2098   ic.UpdateState(receiver, key);
2099   Handle<Object> result;
2100   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2101       isolate, result, ic.Store(receiver, key, args.at<Object>(2)));
2102   return *result;
2103 }
2104
2105
2106 RUNTIME_FUNCTION(StoreIC_Slow) {
2107   HandleScope scope(isolate);
2108   DCHECK(args.length() == 3);
2109   StoreIC ic(IC::NO_EXTRA_FRAME, isolate);
2110   Handle<Object> object = args.at<Object>(0);
2111   Handle<Object> key = args.at<Object>(1);
2112   Handle<Object> value = args.at<Object>(2);
2113   StrictMode strict_mode = ic.strict_mode();
2114   Handle<Object> result;
2115   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2116       isolate, result,
2117       Runtime::SetObjectProperty(isolate, object, key, value, strict_mode));
2118   return *result;
2119 }
2120
2121
2122 RUNTIME_FUNCTION(KeyedStoreIC_Slow) {
2123   HandleScope scope(isolate);
2124   DCHECK(args.length() == 3);
2125   KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate);
2126   Handle<Object> object = args.at<Object>(0);
2127   Handle<Object> key = args.at<Object>(1);
2128   Handle<Object> value = args.at<Object>(2);
2129   StrictMode strict_mode = ic.strict_mode();
2130   Handle<Object> result;
2131   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2132       isolate, result,
2133       Runtime::SetObjectProperty(isolate, object, key, value, strict_mode));
2134   return *result;
2135 }
2136
2137
2138 RUNTIME_FUNCTION(ElementsTransitionAndStoreIC_Miss) {
2139   TimerEventScope<TimerEventIcMiss> timer(isolate);
2140   HandleScope scope(isolate);
2141   DCHECK(args.length() == 4);
2142   KeyedStoreIC ic(IC::EXTRA_CALL_FRAME, isolate);
2143   Handle<Object> value = args.at<Object>(0);
2144   Handle<Map> map = args.at<Map>(1);
2145   Handle<Object> key = args.at<Object>(2);
2146   Handle<Object> object = args.at<Object>(3);
2147   StrictMode strict_mode = ic.strict_mode();
2148   if (object->IsJSObject()) {
2149     JSObject::TransitionElementsKind(Handle<JSObject>::cast(object),
2150                                      map->elements_kind());
2151   }
2152   Handle<Object> result;
2153   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2154       isolate, result,
2155       Runtime::SetObjectProperty(isolate, object, key, value, strict_mode));
2156   return *result;
2157 }
2158
2159
2160 BinaryOpIC::State::State(Isolate* isolate, ExtraICState extra_ic_state)
2161     : isolate_(isolate) {
2162   op_ =
2163       static_cast<Token::Value>(FIRST_TOKEN + OpField::decode(extra_ic_state));
2164   mode_ = OverwriteModeField::decode(extra_ic_state);
2165   fixed_right_arg_ =
2166       Maybe<int>(HasFixedRightArgField::decode(extra_ic_state),
2167                  1 << FixedRightArgValueField::decode(extra_ic_state));
2168   left_kind_ = LeftKindField::decode(extra_ic_state);
2169   if (fixed_right_arg_.has_value) {
2170     right_kind_ = Smi::IsValid(fixed_right_arg_.value) ? SMI : INT32;
2171   } else {
2172     right_kind_ = RightKindField::decode(extra_ic_state);
2173   }
2174   result_kind_ = ResultKindField::decode(extra_ic_state);
2175   DCHECK_LE(FIRST_TOKEN, op_);
2176   DCHECK_LE(op_, LAST_TOKEN);
2177 }
2178
2179
2180 ExtraICState BinaryOpIC::State::GetExtraICState() const {
2181   ExtraICState extra_ic_state =
2182       OpField::encode(op_ - FIRST_TOKEN) | OverwriteModeField::encode(mode_) |
2183       LeftKindField::encode(left_kind_) |
2184       ResultKindField::encode(result_kind_) |
2185       HasFixedRightArgField::encode(fixed_right_arg_.has_value);
2186   if (fixed_right_arg_.has_value) {
2187     extra_ic_state = FixedRightArgValueField::update(
2188         extra_ic_state, WhichPowerOf2(fixed_right_arg_.value));
2189   } else {
2190     extra_ic_state = RightKindField::update(extra_ic_state, right_kind_);
2191   }
2192   return extra_ic_state;
2193 }
2194
2195
2196 // static
2197 void BinaryOpIC::State::GenerateAheadOfTime(Isolate* isolate,
2198                                             void (*Generate)(Isolate*,
2199                                                              const State&)) {
2200 // TODO(olivf) We should investigate why adding stubs to the snapshot is so
2201 // expensive at runtime. When solved we should be able to add most binops to
2202 // the snapshot instead of hand-picking them.
2203 // Generated list of commonly used stubs
2204 #define GENERATE(op, left_kind, right_kind, result_kind, mode) \
2205   do {                                                         \
2206     State state(isolate, op, mode);                            \
2207     state.left_kind_ = left_kind;                              \
2208     state.fixed_right_arg_.has_value = false;                  \
2209     state.right_kind_ = right_kind;                            \
2210     state.result_kind_ = result_kind;                          \
2211     Generate(isolate, state);                                  \
2212   } while (false)
2213   GENERATE(Token::ADD, INT32, INT32, INT32, NO_OVERWRITE);
2214   GENERATE(Token::ADD, INT32, INT32, INT32, OVERWRITE_LEFT);
2215   GENERATE(Token::ADD, INT32, INT32, NUMBER, NO_OVERWRITE);
2216   GENERATE(Token::ADD, INT32, INT32, NUMBER, OVERWRITE_LEFT);
2217   GENERATE(Token::ADD, INT32, NUMBER, NUMBER, NO_OVERWRITE);
2218   GENERATE(Token::ADD, INT32, NUMBER, NUMBER, OVERWRITE_LEFT);
2219   GENERATE(Token::ADD, INT32, NUMBER, NUMBER, OVERWRITE_RIGHT);
2220   GENERATE(Token::ADD, INT32, SMI, INT32, NO_OVERWRITE);
2221   GENERATE(Token::ADD, INT32, SMI, INT32, OVERWRITE_LEFT);
2222   GENERATE(Token::ADD, INT32, SMI, INT32, OVERWRITE_RIGHT);
2223   GENERATE(Token::ADD, NUMBER, INT32, NUMBER, NO_OVERWRITE);
2224   GENERATE(Token::ADD, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
2225   GENERATE(Token::ADD, NUMBER, INT32, NUMBER, OVERWRITE_RIGHT);
2226   GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
2227   GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
2228   GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT);
2229   GENERATE(Token::ADD, NUMBER, SMI, NUMBER, NO_OVERWRITE);
2230   GENERATE(Token::ADD, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
2231   GENERATE(Token::ADD, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT);
2232   GENERATE(Token::ADD, SMI, INT32, INT32, NO_OVERWRITE);
2233   GENERATE(Token::ADD, SMI, INT32, INT32, OVERWRITE_LEFT);
2234   GENERATE(Token::ADD, SMI, INT32, NUMBER, NO_OVERWRITE);
2235   GENERATE(Token::ADD, SMI, NUMBER, NUMBER, NO_OVERWRITE);
2236   GENERATE(Token::ADD, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
2237   GENERATE(Token::ADD, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
2238   GENERATE(Token::ADD, SMI, SMI, INT32, OVERWRITE_LEFT);
2239   GENERATE(Token::ADD, SMI, SMI, SMI, OVERWRITE_RIGHT);
2240   GENERATE(Token::BIT_AND, INT32, INT32, INT32, NO_OVERWRITE);
2241   GENERATE(Token::BIT_AND, INT32, INT32, INT32, OVERWRITE_LEFT);
2242   GENERATE(Token::BIT_AND, INT32, INT32, INT32, OVERWRITE_RIGHT);
2243   GENERATE(Token::BIT_AND, INT32, INT32, SMI, NO_OVERWRITE);
2244   GENERATE(Token::BIT_AND, INT32, INT32, SMI, OVERWRITE_RIGHT);
2245   GENERATE(Token::BIT_AND, INT32, SMI, INT32, NO_OVERWRITE);
2246   GENERATE(Token::BIT_AND, INT32, SMI, INT32, OVERWRITE_RIGHT);
2247   GENERATE(Token::BIT_AND, INT32, SMI, SMI, NO_OVERWRITE);
2248   GENERATE(Token::BIT_AND, INT32, SMI, SMI, OVERWRITE_LEFT);
2249   GENERATE(Token::BIT_AND, INT32, SMI, SMI, OVERWRITE_RIGHT);
2250   GENERATE(Token::BIT_AND, NUMBER, INT32, INT32, OVERWRITE_RIGHT);
2251   GENERATE(Token::BIT_AND, NUMBER, SMI, SMI, NO_OVERWRITE);
2252   GENERATE(Token::BIT_AND, NUMBER, SMI, SMI, OVERWRITE_RIGHT);
2253   GENERATE(Token::BIT_AND, SMI, INT32, INT32, NO_OVERWRITE);
2254   GENERATE(Token::BIT_AND, SMI, INT32, SMI, OVERWRITE_RIGHT);
2255   GENERATE(Token::BIT_AND, SMI, NUMBER, SMI, OVERWRITE_RIGHT);
2256   GENERATE(Token::BIT_AND, SMI, SMI, SMI, NO_OVERWRITE);
2257   GENERATE(Token::BIT_AND, SMI, SMI, SMI, OVERWRITE_LEFT);
2258   GENERATE(Token::BIT_AND, SMI, SMI, SMI, OVERWRITE_RIGHT);
2259   GENERATE(Token::BIT_OR, INT32, INT32, INT32, OVERWRITE_LEFT);
2260   GENERATE(Token::BIT_OR, INT32, INT32, INT32, OVERWRITE_RIGHT);
2261   GENERATE(Token::BIT_OR, INT32, INT32, SMI, OVERWRITE_LEFT);
2262   GENERATE(Token::BIT_OR, INT32, SMI, INT32, NO_OVERWRITE);
2263   GENERATE(Token::BIT_OR, INT32, SMI, INT32, OVERWRITE_LEFT);
2264   GENERATE(Token::BIT_OR, INT32, SMI, INT32, OVERWRITE_RIGHT);
2265   GENERATE(Token::BIT_OR, INT32, SMI, SMI, NO_OVERWRITE);
2266   GENERATE(Token::BIT_OR, INT32, SMI, SMI, OVERWRITE_RIGHT);
2267   GENERATE(Token::BIT_OR, NUMBER, SMI, INT32, NO_OVERWRITE);
2268   GENERATE(Token::BIT_OR, NUMBER, SMI, INT32, OVERWRITE_LEFT);
2269   GENERATE(Token::BIT_OR, NUMBER, SMI, INT32, OVERWRITE_RIGHT);
2270   GENERATE(Token::BIT_OR, NUMBER, SMI, SMI, NO_OVERWRITE);
2271   GENERATE(Token::BIT_OR, NUMBER, SMI, SMI, OVERWRITE_LEFT);
2272   GENERATE(Token::BIT_OR, SMI, INT32, INT32, OVERWRITE_LEFT);
2273   GENERATE(Token::BIT_OR, SMI, INT32, INT32, OVERWRITE_RIGHT);
2274   GENERATE(Token::BIT_OR, SMI, INT32, SMI, OVERWRITE_RIGHT);
2275   GENERATE(Token::BIT_OR, SMI, SMI, SMI, OVERWRITE_LEFT);
2276   GENERATE(Token::BIT_OR, SMI, SMI, SMI, OVERWRITE_RIGHT);
2277   GENERATE(Token::BIT_XOR, INT32, INT32, INT32, NO_OVERWRITE);
2278   GENERATE(Token::BIT_XOR, INT32, INT32, INT32, OVERWRITE_LEFT);
2279   GENERATE(Token::BIT_XOR, INT32, INT32, INT32, OVERWRITE_RIGHT);
2280   GENERATE(Token::BIT_XOR, INT32, INT32, SMI, NO_OVERWRITE);
2281   GENERATE(Token::BIT_XOR, INT32, INT32, SMI, OVERWRITE_LEFT);
2282   GENERATE(Token::BIT_XOR, INT32, NUMBER, SMI, NO_OVERWRITE);
2283   GENERATE(Token::BIT_XOR, INT32, SMI, INT32, NO_OVERWRITE);
2284   GENERATE(Token::BIT_XOR, INT32, SMI, INT32, OVERWRITE_LEFT);
2285   GENERATE(Token::BIT_XOR, INT32, SMI, INT32, OVERWRITE_RIGHT);
2286   GENERATE(Token::BIT_XOR, NUMBER, INT32, INT32, NO_OVERWRITE);
2287   GENERATE(Token::BIT_XOR, NUMBER, SMI, INT32, NO_OVERWRITE);
2288   GENERATE(Token::BIT_XOR, NUMBER, SMI, SMI, NO_OVERWRITE);
2289   GENERATE(Token::BIT_XOR, SMI, INT32, INT32, NO_OVERWRITE);
2290   GENERATE(Token::BIT_XOR, SMI, INT32, INT32, OVERWRITE_LEFT);
2291   GENERATE(Token::BIT_XOR, SMI, INT32, SMI, OVERWRITE_LEFT);
2292   GENERATE(Token::BIT_XOR, SMI, SMI, SMI, NO_OVERWRITE);
2293   GENERATE(Token::BIT_XOR, SMI, SMI, SMI, OVERWRITE_LEFT);
2294   GENERATE(Token::BIT_XOR, SMI, SMI, SMI, OVERWRITE_RIGHT);
2295   GENERATE(Token::DIV, INT32, INT32, INT32, NO_OVERWRITE);
2296   GENERATE(Token::DIV, INT32, INT32, NUMBER, NO_OVERWRITE);
2297   GENERATE(Token::DIV, INT32, NUMBER, NUMBER, NO_OVERWRITE);
2298   GENERATE(Token::DIV, INT32, NUMBER, NUMBER, OVERWRITE_LEFT);
2299   GENERATE(Token::DIV, INT32, SMI, INT32, NO_OVERWRITE);
2300   GENERATE(Token::DIV, INT32, SMI, NUMBER, NO_OVERWRITE);
2301   GENERATE(Token::DIV, NUMBER, INT32, NUMBER, NO_OVERWRITE);
2302   GENERATE(Token::DIV, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
2303   GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
2304   GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
2305   GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT);
2306   GENERATE(Token::DIV, NUMBER, SMI, NUMBER, NO_OVERWRITE);
2307   GENERATE(Token::DIV, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
2308   GENERATE(Token::DIV, SMI, INT32, INT32, NO_OVERWRITE);
2309   GENERATE(Token::DIV, SMI, INT32, NUMBER, NO_OVERWRITE);
2310   GENERATE(Token::DIV, SMI, INT32, NUMBER, OVERWRITE_LEFT);
2311   GENERATE(Token::DIV, SMI, NUMBER, NUMBER, NO_OVERWRITE);
2312   GENERATE(Token::DIV, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
2313   GENERATE(Token::DIV, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
2314   GENERATE(Token::DIV, SMI, SMI, NUMBER, NO_OVERWRITE);
2315   GENERATE(Token::DIV, SMI, SMI, NUMBER, OVERWRITE_LEFT);
2316   GENERATE(Token::DIV, SMI, SMI, NUMBER, OVERWRITE_RIGHT);
2317   GENERATE(Token::DIV, SMI, SMI, SMI, NO_OVERWRITE);
2318   GENERATE(Token::DIV, SMI, SMI, SMI, OVERWRITE_LEFT);
2319   GENERATE(Token::DIV, SMI, SMI, SMI, OVERWRITE_RIGHT);
2320   GENERATE(Token::MOD, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
2321   GENERATE(Token::MOD, SMI, SMI, SMI, NO_OVERWRITE);
2322   GENERATE(Token::MOD, SMI, SMI, SMI, OVERWRITE_LEFT);
2323   GENERATE(Token::MUL, INT32, INT32, INT32, NO_OVERWRITE);
2324   GENERATE(Token::MUL, INT32, INT32, NUMBER, NO_OVERWRITE);
2325   GENERATE(Token::MUL, INT32, NUMBER, NUMBER, NO_OVERWRITE);
2326   GENERATE(Token::MUL, INT32, NUMBER, NUMBER, OVERWRITE_LEFT);
2327   GENERATE(Token::MUL, INT32, SMI, INT32, NO_OVERWRITE);
2328   GENERATE(Token::MUL, INT32, SMI, INT32, OVERWRITE_LEFT);
2329   GENERATE(Token::MUL, INT32, SMI, NUMBER, NO_OVERWRITE);
2330   GENERATE(Token::MUL, NUMBER, INT32, NUMBER, NO_OVERWRITE);
2331   GENERATE(Token::MUL, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
2332   GENERATE(Token::MUL, NUMBER, INT32, NUMBER, OVERWRITE_RIGHT);
2333   GENERATE(Token::MUL, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
2334   GENERATE(Token::MUL, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
2335   GENERATE(Token::MUL, NUMBER, SMI, NUMBER, NO_OVERWRITE);
2336   GENERATE(Token::MUL, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
2337   GENERATE(Token::MUL, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT);
2338   GENERATE(Token::MUL, SMI, INT32, INT32, NO_OVERWRITE);
2339   GENERATE(Token::MUL, SMI, INT32, INT32, OVERWRITE_LEFT);
2340   GENERATE(Token::MUL, SMI, INT32, NUMBER, NO_OVERWRITE);
2341   GENERATE(Token::MUL, SMI, NUMBER, NUMBER, NO_OVERWRITE);
2342   GENERATE(Token::MUL, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
2343   GENERATE(Token::MUL, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
2344   GENERATE(Token::MUL, SMI, SMI, INT32, NO_OVERWRITE);
2345   GENERATE(Token::MUL, SMI, SMI, NUMBER, NO_OVERWRITE);
2346   GENERATE(Token::MUL, SMI, SMI, NUMBER, OVERWRITE_LEFT);
2347   GENERATE(Token::MUL, SMI, SMI, SMI, NO_OVERWRITE);
2348   GENERATE(Token::MUL, SMI, SMI, SMI, OVERWRITE_LEFT);
2349   GENERATE(Token::MUL, SMI, SMI, SMI, OVERWRITE_RIGHT);
2350   GENERATE(Token::SAR, INT32, SMI, INT32, OVERWRITE_RIGHT);
2351   GENERATE(Token::SAR, INT32, SMI, SMI, NO_OVERWRITE);
2352   GENERATE(Token::SAR, INT32, SMI, SMI, OVERWRITE_RIGHT);
2353   GENERATE(Token::SAR, NUMBER, SMI, SMI, NO_OVERWRITE);
2354   GENERATE(Token::SAR, NUMBER, SMI, SMI, OVERWRITE_RIGHT);
2355   GENERATE(Token::SAR, SMI, SMI, SMI, OVERWRITE_LEFT);
2356   GENERATE(Token::SAR, SMI, SMI, SMI, OVERWRITE_RIGHT);
2357   GENERATE(Token::SHL, INT32, SMI, INT32, NO_OVERWRITE);
2358   GENERATE(Token::SHL, INT32, SMI, INT32, OVERWRITE_RIGHT);
2359   GENERATE(Token::SHL, INT32, SMI, SMI, NO_OVERWRITE);
2360   GENERATE(Token::SHL, INT32, SMI, SMI, OVERWRITE_RIGHT);
2361   GENERATE(Token::SHL, NUMBER, SMI, SMI, OVERWRITE_RIGHT);
2362   GENERATE(Token::SHL, SMI, SMI, INT32, NO_OVERWRITE);
2363   GENERATE(Token::SHL, SMI, SMI, INT32, OVERWRITE_LEFT);
2364   GENERATE(Token::SHL, SMI, SMI, INT32, OVERWRITE_RIGHT);
2365   GENERATE(Token::SHL, SMI, SMI, SMI, NO_OVERWRITE);
2366   GENERATE(Token::SHL, SMI, SMI, SMI, OVERWRITE_LEFT);
2367   GENERATE(Token::SHL, SMI, SMI, SMI, OVERWRITE_RIGHT);
2368   GENERATE(Token::SHR, INT32, SMI, SMI, NO_OVERWRITE);
2369   GENERATE(Token::SHR, INT32, SMI, SMI, OVERWRITE_LEFT);
2370   GENERATE(Token::SHR, INT32, SMI, SMI, OVERWRITE_RIGHT);
2371   GENERATE(Token::SHR, NUMBER, SMI, SMI, NO_OVERWRITE);
2372   GENERATE(Token::SHR, NUMBER, SMI, SMI, OVERWRITE_LEFT);
2373   GENERATE(Token::SHR, NUMBER, SMI, INT32, OVERWRITE_RIGHT);
2374   GENERATE(Token::SHR, SMI, SMI, SMI, NO_OVERWRITE);
2375   GENERATE(Token::SHR, SMI, SMI, SMI, OVERWRITE_LEFT);
2376   GENERATE(Token::SHR, SMI, SMI, SMI, OVERWRITE_RIGHT);
2377   GENERATE(Token::SUB, INT32, INT32, INT32, NO_OVERWRITE);
2378   GENERATE(Token::SUB, INT32, INT32, INT32, OVERWRITE_LEFT);
2379   GENERATE(Token::SUB, INT32, NUMBER, NUMBER, NO_OVERWRITE);
2380   GENERATE(Token::SUB, INT32, NUMBER, NUMBER, OVERWRITE_RIGHT);
2381   GENERATE(Token::SUB, INT32, SMI, INT32, OVERWRITE_LEFT);
2382   GENERATE(Token::SUB, INT32, SMI, INT32, OVERWRITE_RIGHT);
2383   GENERATE(Token::SUB, NUMBER, INT32, NUMBER, NO_OVERWRITE);
2384   GENERATE(Token::SUB, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
2385   GENERATE(Token::SUB, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
2386   GENERATE(Token::SUB, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
2387   GENERATE(Token::SUB, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT);
2388   GENERATE(Token::SUB, NUMBER, SMI, NUMBER, NO_OVERWRITE);
2389   GENERATE(Token::SUB, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
2390   GENERATE(Token::SUB, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT);
2391   GENERATE(Token::SUB, SMI, INT32, INT32, NO_OVERWRITE);
2392   GENERATE(Token::SUB, SMI, NUMBER, NUMBER, NO_OVERWRITE);
2393   GENERATE(Token::SUB, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
2394   GENERATE(Token::SUB, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
2395   GENERATE(Token::SUB, SMI, SMI, SMI, NO_OVERWRITE);
2396   GENERATE(Token::SUB, SMI, SMI, SMI, OVERWRITE_LEFT);
2397   GENERATE(Token::SUB, SMI, SMI, SMI, OVERWRITE_RIGHT);
2398 #undef GENERATE
2399 #define GENERATE(op, left_kind, fixed_right_arg_value, result_kind, mode) \
2400   do {                                                                    \
2401     State state(isolate, op, mode);                                       \
2402     state.left_kind_ = left_kind;                                         \
2403     state.fixed_right_arg_.has_value = true;                              \
2404     state.fixed_right_arg_.value = fixed_right_arg_value;                 \
2405     state.right_kind_ = SMI;                                              \
2406     state.result_kind_ = result_kind;                                     \
2407     Generate(isolate, state);                                             \
2408   } while (false)
2409   GENERATE(Token::MOD, SMI, 2, SMI, NO_OVERWRITE);
2410   GENERATE(Token::MOD, SMI, 4, SMI, NO_OVERWRITE);
2411   GENERATE(Token::MOD, SMI, 4, SMI, OVERWRITE_LEFT);
2412   GENERATE(Token::MOD, SMI, 8, SMI, NO_OVERWRITE);
2413   GENERATE(Token::MOD, SMI, 16, SMI, OVERWRITE_LEFT);
2414   GENERATE(Token::MOD, SMI, 32, SMI, NO_OVERWRITE);
2415   GENERATE(Token::MOD, SMI, 2048, SMI, NO_OVERWRITE);
2416 #undef GENERATE
2417 }
2418
2419
2420 Type* BinaryOpIC::State::GetResultType(Zone* zone) const {
2421   Kind result_kind = result_kind_;
2422   if (HasSideEffects()) {
2423     result_kind = NONE;
2424   } else if (result_kind == GENERIC && op_ == Token::ADD) {
2425     return Type::Union(Type::Number(zone), Type::String(zone), zone);
2426   } else if (result_kind == NUMBER && op_ == Token::SHR) {
2427     return Type::Unsigned32(zone);
2428   }
2429   DCHECK_NE(GENERIC, result_kind);
2430   return KindToType(result_kind, zone);
2431 }
2432
2433
2434 OStream& operator<<(OStream& os, const BinaryOpIC::State& s) {
2435   os << "(" << Token::Name(s.op_);
2436   if (s.mode_ == OVERWRITE_LEFT)
2437     os << "_ReuseLeft";
2438   else if (s.mode_ == OVERWRITE_RIGHT)
2439     os << "_ReuseRight";
2440   if (s.CouldCreateAllocationMementos()) os << "_CreateAllocationMementos";
2441   os << ":" << BinaryOpIC::State::KindToString(s.left_kind_) << "*";
2442   if (s.fixed_right_arg_.has_value) {
2443     os << s.fixed_right_arg_.value;
2444   } else {
2445     os << BinaryOpIC::State::KindToString(s.right_kind_);
2446   }
2447   return os << "->" << BinaryOpIC::State::KindToString(s.result_kind_) << ")";
2448 }
2449
2450
2451 void BinaryOpIC::State::Update(Handle<Object> left, Handle<Object> right,
2452                                Handle<Object> result) {
2453   ExtraICState old_extra_ic_state = GetExtraICState();
2454
2455   left_kind_ = UpdateKind(left, left_kind_);
2456   right_kind_ = UpdateKind(right, right_kind_);
2457
2458   int32_t fixed_right_arg_value = 0;
2459   bool has_fixed_right_arg =
2460       op_ == Token::MOD && right->ToInt32(&fixed_right_arg_value) &&
2461       fixed_right_arg_value > 0 && IsPowerOf2(fixed_right_arg_value) &&
2462       FixedRightArgValueField::is_valid(WhichPowerOf2(fixed_right_arg_value)) &&
2463       (left_kind_ == SMI || left_kind_ == INT32) &&
2464       (result_kind_ == NONE || !fixed_right_arg_.has_value);
2465   fixed_right_arg_ = Maybe<int32_t>(has_fixed_right_arg, fixed_right_arg_value);
2466
2467   result_kind_ = UpdateKind(result, result_kind_);
2468
2469   if (!Token::IsTruncatingBinaryOp(op_)) {
2470     Kind input_kind = Max(left_kind_, right_kind_);
2471     if (result_kind_ < input_kind && input_kind <= NUMBER) {
2472       result_kind_ = input_kind;
2473     }
2474   }
2475
2476   // We don't want to distinguish INT32 and NUMBER for string add (because
2477   // NumberToString can't make use of this anyway).
2478   if (left_kind_ == STRING && right_kind_ == INT32) {
2479     DCHECK_EQ(STRING, result_kind_);
2480     DCHECK_EQ(Token::ADD, op_);
2481     right_kind_ = NUMBER;
2482   } else if (right_kind_ == STRING && left_kind_ == INT32) {
2483     DCHECK_EQ(STRING, result_kind_);
2484     DCHECK_EQ(Token::ADD, op_);
2485     left_kind_ = NUMBER;
2486   }
2487
2488   // Reset overwrite mode unless we can actually make use of it, or may be able
2489   // to make use of it at some point in the future.
2490   if ((mode_ == OVERWRITE_LEFT && left_kind_ > NUMBER) ||
2491       (mode_ == OVERWRITE_RIGHT && right_kind_ > NUMBER) ||
2492       result_kind_ > NUMBER) {
2493     mode_ = NO_OVERWRITE;
2494   }
2495
2496   if (old_extra_ic_state == GetExtraICState()) {
2497     // Tagged operations can lead to non-truncating HChanges
2498     if (left->IsUndefined() || left->IsBoolean()) {
2499       left_kind_ = GENERIC;
2500     } else {
2501       DCHECK(right->IsUndefined() || right->IsBoolean());
2502       right_kind_ = GENERIC;
2503     }
2504   }
2505 }
2506
2507
2508 BinaryOpIC::State::Kind BinaryOpIC::State::UpdateKind(Handle<Object> object,
2509                                                       Kind kind) const {
2510   Kind new_kind = GENERIC;
2511   bool is_truncating = Token::IsTruncatingBinaryOp(op());
2512   if (object->IsBoolean() && is_truncating) {
2513     // Booleans will be automatically truncated by HChange.
2514     new_kind = INT32;
2515   } else if (object->IsUndefined()) {
2516     // Undefined will be automatically truncated by HChange.
2517     new_kind = is_truncating ? INT32 : NUMBER;
2518   } else if (object->IsSmi()) {
2519     new_kind = SMI;
2520   } else if (object->IsHeapNumber()) {
2521     double value = Handle<HeapNumber>::cast(object)->value();
2522     new_kind = IsInt32Double(value) ? INT32 : NUMBER;
2523   } else if (object->IsString() && op() == Token::ADD) {
2524     new_kind = STRING;
2525   }
2526   if (new_kind == INT32 && SmiValuesAre32Bits()) {
2527     new_kind = NUMBER;
2528   }
2529   if (kind != NONE && ((new_kind <= NUMBER && kind > NUMBER) ||
2530                        (new_kind > NUMBER && kind <= NUMBER))) {
2531     new_kind = GENERIC;
2532   }
2533   return Max(kind, new_kind);
2534 }
2535
2536
2537 // static
2538 const char* BinaryOpIC::State::KindToString(Kind kind) {
2539   switch (kind) {
2540     case NONE:
2541       return "None";
2542     case SMI:
2543       return "Smi";
2544     case INT32:
2545       return "Int32";
2546     case NUMBER:
2547       return "Number";
2548     case STRING:
2549       return "String";
2550     case GENERIC:
2551       return "Generic";
2552   }
2553   UNREACHABLE();
2554   return NULL;
2555 }
2556
2557
2558 // static
2559 Type* BinaryOpIC::State::KindToType(Kind kind, Zone* zone) {
2560   switch (kind) {
2561     case NONE:
2562       return Type::None(zone);
2563     case SMI:
2564       return Type::SignedSmall(zone);
2565     case INT32:
2566       return Type::Signed32(zone);
2567     case NUMBER:
2568       return Type::Number(zone);
2569     case STRING:
2570       return Type::String(zone);
2571     case GENERIC:
2572       return Type::Any(zone);
2573   }
2574   UNREACHABLE();
2575   return NULL;
2576 }
2577
2578
2579 MaybeHandle<Object> BinaryOpIC::Transition(
2580     Handle<AllocationSite> allocation_site, Handle<Object> left,
2581     Handle<Object> right) {
2582   State state(isolate(), target()->extra_ic_state());
2583
2584   // Compute the actual result using the builtin for the binary operation.
2585   Object* builtin = isolate()->js_builtins_object()->javascript_builtin(
2586       TokenToJSBuiltin(state.op()));
2587   Handle<JSFunction> function = handle(JSFunction::cast(builtin), isolate());
2588   Handle<Object> result;
2589   ASSIGN_RETURN_ON_EXCEPTION(
2590       isolate(), result, Execution::Call(isolate(), function, left, 1, &right),
2591       Object);
2592
2593   // Execution::Call can execute arbitrary JavaScript, hence potentially
2594   // update the state of this very IC, so we must update the stored state.
2595   UpdateTarget();
2596   // Compute the new state.
2597   State old_state(isolate(), target()->extra_ic_state());
2598   state.Update(left, right, result);
2599
2600   // Check if we have a string operation here.
2601   Handle<Code> target;
2602   if (!allocation_site.is_null() || state.ShouldCreateAllocationMementos()) {
2603     // Setup the allocation site on-demand.
2604     if (allocation_site.is_null()) {
2605       allocation_site = isolate()->factory()->NewAllocationSite();
2606     }
2607
2608     // Install the stub with an allocation site.
2609     BinaryOpICWithAllocationSiteStub stub(isolate(), state);
2610     target = stub.GetCodeCopyFromTemplate(allocation_site);
2611
2612     // Sanity check the trampoline stub.
2613     DCHECK_EQ(*allocation_site, target->FindFirstAllocationSite());
2614   } else {
2615     // Install the generic stub.
2616     BinaryOpICStub stub(isolate(), state);
2617     target = stub.GetCode();
2618
2619     // Sanity check the generic stub.
2620     DCHECK_EQ(NULL, target->FindFirstAllocationSite());
2621   }
2622   set_target(*target);
2623
2624   if (FLAG_trace_ic) {
2625     OFStream os(stdout);
2626     os << "[BinaryOpIC" << old_state << " => " << state << " @ "
2627        << static_cast<void*>(*target) << " <- ";
2628     JavaScriptFrame::PrintTop(isolate(), stdout, false, true);
2629     if (!allocation_site.is_null()) {
2630       os << " using allocation site " << static_cast<void*>(*allocation_site);
2631     }
2632     os << "]" << endl;
2633   }
2634
2635   // Patch the inlined smi code as necessary.
2636   if (!old_state.UseInlinedSmiCode() && state.UseInlinedSmiCode()) {
2637     PatchInlinedSmiCode(address(), ENABLE_INLINED_SMI_CHECK);
2638   } else if (old_state.UseInlinedSmiCode() && !state.UseInlinedSmiCode()) {
2639     PatchInlinedSmiCode(address(), DISABLE_INLINED_SMI_CHECK);
2640   }
2641
2642   return result;
2643 }
2644
2645
2646 RUNTIME_FUNCTION(BinaryOpIC_Miss) {
2647   TimerEventScope<TimerEventIcMiss> timer(isolate);
2648   HandleScope scope(isolate);
2649   DCHECK_EQ(2, args.length());
2650   Handle<Object> left = args.at<Object>(BinaryOpICStub::kLeft);
2651   Handle<Object> right = args.at<Object>(BinaryOpICStub::kRight);
2652   BinaryOpIC ic(isolate);
2653   Handle<Object> result;
2654   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2655       isolate, result,
2656       ic.Transition(Handle<AllocationSite>::null(), left, right));
2657   return *result;
2658 }
2659
2660
2661 RUNTIME_FUNCTION(BinaryOpIC_MissWithAllocationSite) {
2662   TimerEventScope<TimerEventIcMiss> timer(isolate);
2663   HandleScope scope(isolate);
2664   DCHECK_EQ(3, args.length());
2665   Handle<AllocationSite> allocation_site =
2666       args.at<AllocationSite>(BinaryOpWithAllocationSiteStub::kAllocationSite);
2667   Handle<Object> left = args.at<Object>(BinaryOpWithAllocationSiteStub::kLeft);
2668   Handle<Object> right =
2669       args.at<Object>(BinaryOpWithAllocationSiteStub::kRight);
2670   BinaryOpIC ic(isolate);
2671   Handle<Object> result;
2672   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2673       isolate, result, ic.Transition(allocation_site, left, right));
2674   return *result;
2675 }
2676
2677
2678 Code* CompareIC::GetRawUninitialized(Isolate* isolate, Token::Value op) {
2679   ICCompareStub stub(isolate, op, UNINITIALIZED, UNINITIALIZED, UNINITIALIZED);
2680   Code* code = NULL;
2681   CHECK(stub.FindCodeInCache(&code));
2682   return code;
2683 }
2684
2685
2686 Handle<Code> CompareIC::GetUninitialized(Isolate* isolate, Token::Value op) {
2687   ICCompareStub stub(isolate, op, UNINITIALIZED, UNINITIALIZED, UNINITIALIZED);
2688   return stub.GetCode();
2689 }
2690
2691
2692 const char* CompareIC::GetStateName(State state) {
2693   switch (state) {
2694     case UNINITIALIZED:
2695       return "UNINITIALIZED";
2696     case SMI:
2697       return "SMI";
2698     case NUMBER:
2699       return "NUMBER";
2700     case INTERNALIZED_STRING:
2701       return "INTERNALIZED_STRING";
2702     case STRING:
2703       return "STRING";
2704     case UNIQUE_NAME:
2705       return "UNIQUE_NAME";
2706     case OBJECT:
2707       return "OBJECT";
2708     case KNOWN_OBJECT:
2709       return "KNOWN_OBJECT";
2710     case GENERIC:
2711       return "GENERIC";
2712   }
2713   UNREACHABLE();
2714   return NULL;
2715 }
2716
2717
2718 Type* CompareIC::StateToType(Zone* zone, CompareIC::State state,
2719                              Handle<Map> map) {
2720   switch (state) {
2721     case CompareIC::UNINITIALIZED:
2722       return Type::None(zone);
2723     case CompareIC::SMI:
2724       return Type::SignedSmall(zone);
2725     case CompareIC::NUMBER:
2726       return Type::Number(zone);
2727     case CompareIC::STRING:
2728       return Type::String(zone);
2729     case CompareIC::INTERNALIZED_STRING:
2730       return Type::InternalizedString(zone);
2731     case CompareIC::UNIQUE_NAME:
2732       return Type::UniqueName(zone);
2733     case CompareIC::OBJECT:
2734       return Type::Receiver(zone);
2735     case CompareIC::KNOWN_OBJECT:
2736       return map.is_null() ? Type::Receiver(zone) : Type::Class(map, zone);
2737     case CompareIC::GENERIC:
2738       return Type::Any(zone);
2739   }
2740   UNREACHABLE();
2741   return NULL;
2742 }
2743
2744
2745 void CompareIC::StubInfoToType(uint32_t stub_key, Type** left_type,
2746                                Type** right_type, Type** overall_type,
2747                                Handle<Map> map, Zone* zone) {
2748   State left_state, right_state, handler_state;
2749   ICCompareStub::DecodeKey(stub_key, &left_state, &right_state, &handler_state,
2750                            NULL);
2751   *left_type = StateToType(zone, left_state);
2752   *right_type = StateToType(zone, right_state);
2753   *overall_type = StateToType(zone, handler_state, map);
2754 }
2755
2756
2757 CompareIC::State CompareIC::NewInputState(State old_state,
2758                                           Handle<Object> value) {
2759   switch (old_state) {
2760     case UNINITIALIZED:
2761       if (value->IsSmi()) return SMI;
2762       if (value->IsHeapNumber()) return NUMBER;
2763       if (value->IsInternalizedString()) return INTERNALIZED_STRING;
2764       if (value->IsString()) return STRING;
2765       if (value->IsSymbol()) return UNIQUE_NAME;
2766       if (value->IsJSObject()) return OBJECT;
2767       break;
2768     case SMI:
2769       if (value->IsSmi()) return SMI;
2770       if (value->IsHeapNumber()) return NUMBER;
2771       break;
2772     case NUMBER:
2773       if (value->IsNumber()) return NUMBER;
2774       break;
2775     case INTERNALIZED_STRING:
2776       if (value->IsInternalizedString()) return INTERNALIZED_STRING;
2777       if (value->IsString()) return STRING;
2778       if (value->IsSymbol()) return UNIQUE_NAME;
2779       break;
2780     case STRING:
2781       if (value->IsString()) return STRING;
2782       break;
2783     case UNIQUE_NAME:
2784       if (value->IsUniqueName()) return UNIQUE_NAME;
2785       break;
2786     case OBJECT:
2787       if (value->IsJSObject()) return OBJECT;
2788       break;
2789     case GENERIC:
2790       break;
2791     case KNOWN_OBJECT:
2792       UNREACHABLE();
2793       break;
2794   }
2795   return GENERIC;
2796 }
2797
2798
2799 CompareIC::State CompareIC::TargetState(State old_state, State old_left,
2800                                         State old_right,
2801                                         bool has_inlined_smi_code,
2802                                         Handle<Object> x, Handle<Object> y) {
2803   switch (old_state) {
2804     case UNINITIALIZED:
2805       if (x->IsSmi() && y->IsSmi()) return SMI;
2806       if (x->IsNumber() && y->IsNumber()) return NUMBER;
2807       if (Token::IsOrderedRelationalCompareOp(op_)) {
2808         // Ordered comparisons treat undefined as NaN, so the
2809         // NUMBER stub will do the right thing.
2810         if ((x->IsNumber() && y->IsUndefined()) ||
2811             (y->IsNumber() && x->IsUndefined())) {
2812           return NUMBER;
2813         }
2814       }
2815       if (x->IsInternalizedString() && y->IsInternalizedString()) {
2816         // We compare internalized strings as plain ones if we need to determine
2817         // the order in a non-equality compare.
2818         return Token::IsEqualityOp(op_) ? INTERNALIZED_STRING : STRING;
2819       }
2820       if (x->IsString() && y->IsString()) return STRING;
2821       if (!Token::IsEqualityOp(op_)) return GENERIC;
2822       if (x->IsUniqueName() && y->IsUniqueName()) return UNIQUE_NAME;
2823       if (x->IsJSObject() && y->IsJSObject()) {
2824         if (Handle<JSObject>::cast(x)->map() ==
2825             Handle<JSObject>::cast(y)->map()) {
2826           return KNOWN_OBJECT;
2827         } else {
2828           return OBJECT;
2829         }
2830       }
2831       return GENERIC;
2832     case SMI:
2833       return x->IsNumber() && y->IsNumber() ? NUMBER : GENERIC;
2834     case INTERNALIZED_STRING:
2835       DCHECK(Token::IsEqualityOp(op_));
2836       if (x->IsString() && y->IsString()) return STRING;
2837       if (x->IsUniqueName() && y->IsUniqueName()) return UNIQUE_NAME;
2838       return GENERIC;
2839     case NUMBER:
2840       // If the failure was due to one side changing from smi to heap number,
2841       // then keep the state (if other changed at the same time, we will get
2842       // a second miss and then go to generic).
2843       if (old_left == SMI && x->IsHeapNumber()) return NUMBER;
2844       if (old_right == SMI && y->IsHeapNumber()) return NUMBER;
2845       return GENERIC;
2846     case KNOWN_OBJECT:
2847       DCHECK(Token::IsEqualityOp(op_));
2848       if (x->IsJSObject() && y->IsJSObject()) return OBJECT;
2849       return GENERIC;
2850     case STRING:
2851     case UNIQUE_NAME:
2852     case OBJECT:
2853     case GENERIC:
2854       return GENERIC;
2855   }
2856   UNREACHABLE();
2857   return GENERIC;  // Make the compiler happy.
2858 }
2859
2860
2861 Code* CompareIC::UpdateCaches(Handle<Object> x, Handle<Object> y) {
2862   HandleScope scope(isolate());
2863   State previous_left, previous_right, previous_state;
2864   ICCompareStub::DecodeKey(target()->stub_key(), &previous_left,
2865                            &previous_right, &previous_state, NULL);
2866   State new_left = NewInputState(previous_left, x);
2867   State new_right = NewInputState(previous_right, y);
2868   State state = TargetState(previous_state, previous_left, previous_right,
2869                             HasInlinedSmiCode(address()), x, y);
2870   ICCompareStub stub(isolate(), op_, new_left, new_right, state);
2871   if (state == KNOWN_OBJECT) {
2872     stub.set_known_map(
2873         Handle<Map>(Handle<JSObject>::cast(x)->map(), isolate()));
2874   }
2875   Handle<Code> new_target = stub.GetCode();
2876   set_target(*new_target);
2877
2878   if (FLAG_trace_ic) {
2879     PrintF("[CompareIC in ");
2880     JavaScriptFrame::PrintTop(isolate(), stdout, false, true);
2881     PrintF(" ((%s+%s=%s)->(%s+%s=%s))#%s @ %p]\n", GetStateName(previous_left),
2882            GetStateName(previous_right), GetStateName(previous_state),
2883            GetStateName(new_left), GetStateName(new_right), GetStateName(state),
2884            Token::Name(op_), static_cast<void*>(*stub.GetCode()));
2885   }
2886
2887   // Activate inlined smi code.
2888   if (previous_state == UNINITIALIZED) {
2889     PatchInlinedSmiCode(address(), ENABLE_INLINED_SMI_CHECK);
2890   }
2891
2892   return *new_target;
2893 }
2894
2895
2896 // Used from ICCompareStub::GenerateMiss in code-stubs-<arch>.cc.
2897 RUNTIME_FUNCTION(CompareIC_Miss) {
2898   TimerEventScope<TimerEventIcMiss> timer(isolate);
2899   HandleScope scope(isolate);
2900   DCHECK(args.length() == 3);
2901   CompareIC ic(isolate, static_cast<Token::Value>(args.smi_at(2)));
2902   return ic.UpdateCaches(args.at<Object>(0), args.at<Object>(1));
2903 }
2904
2905
2906 void CompareNilIC::Clear(Address address, Code* target,
2907                          ConstantPoolArray* constant_pool) {
2908   if (IsCleared(target)) return;
2909   ExtraICState state = target->extra_ic_state();
2910
2911   CompareNilICStub stub(target->GetIsolate(), state,
2912                         HydrogenCodeStub::UNINITIALIZED);
2913   stub.ClearState();
2914
2915   Code* code = NULL;
2916   CHECK(stub.FindCodeInCache(&code));
2917
2918   SetTargetAtAddress(address, code, constant_pool);
2919 }
2920
2921
2922 Handle<Object> CompareNilIC::DoCompareNilSlow(Isolate* isolate, NilValue nil,
2923                                               Handle<Object> object) {
2924   if (object->IsNull() || object->IsUndefined()) {
2925     return handle(Smi::FromInt(true), isolate);
2926   }
2927   return handle(Smi::FromInt(object->IsUndetectableObject()), isolate);
2928 }
2929
2930
2931 Handle<Object> CompareNilIC::CompareNil(Handle<Object> object) {
2932   ExtraICState extra_ic_state = target()->extra_ic_state();
2933
2934   CompareNilICStub stub(isolate(), extra_ic_state);
2935
2936   // Extract the current supported types from the patched IC and calculate what
2937   // types must be supported as a result of the miss.
2938   bool already_monomorphic = stub.IsMonomorphic();
2939
2940   stub.UpdateStatus(object);
2941
2942   NilValue nil = stub.GetNilValue();
2943
2944   // Find or create the specialized stub to support the new set of types.
2945   Handle<Code> code;
2946   if (stub.IsMonomorphic()) {
2947     Handle<Map> monomorphic_map(already_monomorphic && FirstTargetMap() != NULL
2948                                     ? FirstTargetMap()
2949                                     : HeapObject::cast(*object)->map());
2950     code = PropertyICCompiler::ComputeCompareNil(monomorphic_map, &stub);
2951   } else {
2952     code = stub.GetCode();
2953   }
2954   set_target(*code);
2955   return DoCompareNilSlow(isolate(), nil, object);
2956 }
2957
2958
2959 RUNTIME_FUNCTION(CompareNilIC_Miss) {
2960   TimerEventScope<TimerEventIcMiss> timer(isolate);
2961   HandleScope scope(isolate);
2962   Handle<Object> object = args.at<Object>(0);
2963   CompareNilIC ic(isolate);
2964   return *ic.CompareNil(object);
2965 }
2966
2967
2968 RUNTIME_FUNCTION(Unreachable) {
2969   UNREACHABLE();
2970   CHECK(false);
2971   return isolate->heap()->undefined_value();
2972 }
2973
2974
2975 Builtins::JavaScript BinaryOpIC::TokenToJSBuiltin(Token::Value op) {
2976   switch (op) {
2977     default:
2978       UNREACHABLE();
2979     case Token::ADD:
2980       return Builtins::ADD;
2981       break;
2982     case Token::SUB:
2983       return Builtins::SUB;
2984       break;
2985     case Token::MUL:
2986       return Builtins::MUL;
2987       break;
2988     case Token::DIV:
2989       return Builtins::DIV;
2990       break;
2991     case Token::MOD:
2992       return Builtins::MOD;
2993       break;
2994     case Token::BIT_OR:
2995       return Builtins::BIT_OR;
2996       break;
2997     case Token::BIT_AND:
2998       return Builtins::BIT_AND;
2999       break;
3000     case Token::BIT_XOR:
3001       return Builtins::BIT_XOR;
3002       break;
3003     case Token::SAR:
3004       return Builtins::SAR;
3005       break;
3006     case Token::SHR:
3007       return Builtins::SHR;
3008       break;
3009     case Token::SHL:
3010       return Builtins::SHL;
3011       break;
3012   }
3013 }
3014
3015
3016 Handle<Object> ToBooleanIC::ToBoolean(Handle<Object> object) {
3017   ToBooleanStub stub(isolate(), target()->extra_ic_state());
3018   bool to_boolean_value = stub.UpdateStatus(object);
3019   Handle<Code> code = stub.GetCode();
3020   set_target(*code);
3021   return handle(Smi::FromInt(to_boolean_value ? 1 : 0), isolate());
3022 }
3023
3024
3025 RUNTIME_FUNCTION(ToBooleanIC_Miss) {
3026   TimerEventScope<TimerEventIcMiss> timer(isolate);
3027   DCHECK(args.length() == 1);
3028   HandleScope scope(isolate);
3029   Handle<Object> object = args.at<Object>(0);
3030   ToBooleanIC ic(isolate);
3031   return *ic.ToBoolean(object);
3032 }
3033
3034
3035 RUNTIME_FUNCTION(StoreCallbackProperty) {
3036   Handle<JSObject> receiver = args.at<JSObject>(0);
3037   Handle<JSObject> holder = args.at<JSObject>(1);
3038   Handle<ExecutableAccessorInfo> callback = args.at<ExecutableAccessorInfo>(2);
3039   Handle<Name> name = args.at<Name>(3);
3040   Handle<Object> value = args.at<Object>(4);
3041   HandleScope scope(isolate);
3042
3043   DCHECK(callback->IsCompatibleReceiver(*receiver));
3044
3045   Address setter_address = v8::ToCData<Address>(callback->setter());
3046   v8::AccessorNameSetterCallback fun =
3047       FUNCTION_CAST<v8::AccessorNameSetterCallback>(setter_address);
3048   DCHECK(fun != NULL);
3049
3050   LOG(isolate, ApiNamedPropertyAccess("store", *receiver, *name));
3051   PropertyCallbackArguments custom_args(isolate, callback->data(), *receiver,
3052                                         *holder);
3053   custom_args.Call(fun, v8::Utils::ToLocal(name), v8::Utils::ToLocal(value));
3054   RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
3055   return *value;
3056 }
3057
3058
3059 /**
3060  * Attempts to load a property with an interceptor (which must be present),
3061  * but doesn't search the prototype chain.
3062  *
3063  * Returns |Heap::no_interceptor_result_sentinel()| if interceptor doesn't
3064  * provide any value for the given name.
3065  */
3066 RUNTIME_FUNCTION(LoadPropertyWithInterceptorOnly) {
3067   DCHECK(args.length() == NamedLoadHandlerCompiler::kInterceptorArgsLength);
3068   Handle<Name> name_handle =
3069       args.at<Name>(NamedLoadHandlerCompiler::kInterceptorArgsNameIndex);
3070   Handle<InterceptorInfo> interceptor_info = args.at<InterceptorInfo>(
3071       NamedLoadHandlerCompiler::kInterceptorArgsInfoIndex);
3072
3073   // TODO(rossberg): Support symbols in the API.
3074   if (name_handle->IsSymbol())
3075     return isolate->heap()->no_interceptor_result_sentinel();
3076   Handle<String> name = Handle<String>::cast(name_handle);
3077
3078   Address getter_address = v8::ToCData<Address>(interceptor_info->getter());
3079   v8::NamedPropertyGetterCallback getter =
3080       FUNCTION_CAST<v8::NamedPropertyGetterCallback>(getter_address);
3081   DCHECK(getter != NULL);
3082
3083   Handle<JSObject> receiver =
3084       args.at<JSObject>(NamedLoadHandlerCompiler::kInterceptorArgsThisIndex);
3085   Handle<JSObject> holder =
3086       args.at<JSObject>(NamedLoadHandlerCompiler::kInterceptorArgsHolderIndex);
3087   PropertyCallbackArguments callback_args(isolate, interceptor_info->data(),
3088                                           *receiver, *holder);
3089   {
3090     // Use the interceptor getter.
3091     HandleScope scope(isolate);
3092     v8::Handle<v8::Value> r =
3093         callback_args.Call(getter, v8::Utils::ToLocal(name));
3094     RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
3095     if (!r.IsEmpty()) {
3096       Handle<Object> result = v8::Utils::OpenHandle(*r);
3097       result->VerifyApiCallResultType();
3098       return *v8::Utils::OpenHandle(*r);
3099     }
3100   }
3101
3102   return isolate->heap()->no_interceptor_result_sentinel();
3103 }
3104
3105
3106 static Object* ThrowReferenceError(Isolate* isolate, Name* name) {
3107   // If the load is non-contextual, just return the undefined result.
3108   // Note that both keyed and non-keyed loads may end up here.
3109   HandleScope scope(isolate);
3110   LoadIC ic(IC::NO_EXTRA_FRAME, isolate);
3111   if (ic.contextual_mode() != CONTEXTUAL) {
3112     return isolate->heap()->undefined_value();
3113   }
3114
3115   // Throw a reference error.
3116   Handle<Name> name_handle(name);
3117   Handle<Object> error = isolate->factory()->NewReferenceError(
3118       "not_defined", HandleVector(&name_handle, 1));
3119   return isolate->Throw(*error);
3120 }
3121
3122
3123 /**
3124  * Loads a property with an interceptor performing post interceptor
3125  * lookup if interceptor failed.
3126  */
3127 RUNTIME_FUNCTION(LoadPropertyWithInterceptor) {
3128   HandleScope scope(isolate);
3129   DCHECK(args.length() == NamedLoadHandlerCompiler::kInterceptorArgsLength);
3130   Handle<Name> name =
3131       args.at<Name>(NamedLoadHandlerCompiler::kInterceptorArgsNameIndex);
3132   Handle<JSObject> receiver =
3133       args.at<JSObject>(NamedLoadHandlerCompiler::kInterceptorArgsThisIndex);
3134   Handle<JSObject> holder =
3135       args.at<JSObject>(NamedLoadHandlerCompiler::kInterceptorArgsHolderIndex);
3136
3137   Handle<Object> result;
3138   LookupIterator it(receiver, name, holder);
3139   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result,
3140                                      JSObject::GetProperty(&it));
3141
3142   if (it.IsFound()) return *result;
3143
3144   return ThrowReferenceError(isolate, Name::cast(args[0]));
3145 }
3146
3147
3148 RUNTIME_FUNCTION(StorePropertyWithInterceptor) {
3149   HandleScope scope(isolate);
3150   DCHECK(args.length() == 3);
3151   StoreIC ic(IC::NO_EXTRA_FRAME, isolate);
3152   Handle<JSObject> receiver = args.at<JSObject>(0);
3153   Handle<Name> name = args.at<Name>(1);
3154   Handle<Object> value = args.at<Object>(2);
3155 #ifdef DEBUG
3156   PrototypeIterator iter(isolate, receiver,
3157                          PrototypeIterator::START_AT_RECEIVER);
3158   bool found = false;
3159   while (!iter.IsAtEnd(PrototypeIterator::END_AT_NON_HIDDEN)) {
3160     Handle<Object> current = PrototypeIterator::GetCurrent(iter);
3161     if (current->IsJSObject() &&
3162         Handle<JSObject>::cast(current)->HasNamedInterceptor()) {
3163       found = true;
3164       break;
3165     }
3166   }
3167   DCHECK(found);
3168 #endif
3169   Handle<Object> result;
3170   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
3171       isolate, result,
3172       JSObject::SetProperty(receiver, name, value, ic.strict_mode()));
3173   return *result;
3174 }
3175
3176
3177 RUNTIME_FUNCTION(LoadElementWithInterceptor) {
3178   HandleScope scope(isolate);
3179   Handle<JSObject> receiver = args.at<JSObject>(0);
3180   DCHECK(args.smi_at(1) >= 0);
3181   uint32_t index = args.smi_at(1);
3182   Handle<Object> result;
3183   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
3184       isolate, result,
3185       JSObject::GetElementWithInterceptor(receiver, receiver, index));
3186   return *result;
3187 }
3188
3189
3190 static const Address IC_utilities[] = {
3191 #define ADDR(name) FUNCTION_ADDR(name),
3192     IC_UTIL_LIST(ADDR) NULL
3193 #undef ADDR
3194 };
3195
3196
3197 Address IC::AddressFromUtilityId(IC::UtilityId id) { return IC_utilities[id]; }
3198 }
3199 }  // namespace v8::internal