1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
7 #include "src/accessors.h"
9 #include "src/arguments.h"
10 #include "src/codegen.h"
11 #include "src/conversions.h"
12 #include "src/execution.h"
13 #include "src/ic/ic-inl.h"
14 #include "src/ic/ic-compiler.h"
15 #include "src/ic/stub-cache.h"
16 #include "src/prototype.h"
17 #include "src/runtime.h"
22 char IC::TransitionMarkFromState(IC::State state) {
30 case PROTOTYPE_FAILURE:
39 // We never see the debugger states here, because the state is
40 // computed from the original code - not the patched code. Let
41 // these cases fall through to the unreachable code below.
44 // Type-vector-based ICs resolve state to one of the above.
53 const char* GetTransitionMarkModifier(KeyedAccessStoreMode mode) {
54 if (mode == STORE_NO_TRANSITION_HANDLE_COW) return ".COW";
55 if (mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) {
58 if (IsGrowStoreMode(mode)) return ".GROW";
65 #define TRACE_GENERIC_IC(isolate, type, reason) \
67 if (FLAG_trace_ic) { \
68 PrintF("[%s patching generic stub in ", type); \
69 JavaScriptFrame::PrintTop(isolate, stdout, false, true); \
70 PrintF(" (%s)]\n", reason); \
76 #define TRACE_GENERIC_IC(isolate, type, reason)
81 void IC::TraceIC(const char* type, Handle<Object> name) {
83 Code* new_target = raw_target();
84 State new_state = new_target->ic_state();
85 TraceIC(type, name, state(), new_state);
90 void IC::TraceIC(const char* type, Handle<Object> name, State old_state,
93 Code* new_target = raw_target();
94 PrintF("[%s%s in ", new_target->is_keyed_stub() ? "Keyed" : "", type);
96 // TODO(jkummerow): Add support for "apply". The logic is roughly:
97 // marker = [fp_ + kMarkerOffset];
98 // if marker is smi and marker.value == INTERNAL and
99 // the frame's code == builtin(Builtins::kFunctionApply):
100 // then print "apply from" and advance one frame
102 Object* maybe_function =
103 Memory::Object_at(fp_ + JavaScriptFrameConstants::kFunctionOffset);
104 if (maybe_function->IsJSFunction()) {
105 JSFunction* function = JSFunction::cast(maybe_function);
106 JavaScriptFrame::PrintFunctionAndOffset(function, function->code(), pc(),
110 ExtraICState extra_state = new_target->extra_ic_state();
111 const char* modifier = "";
112 if (new_target->kind() == Code::KEYED_STORE_IC) {
113 modifier = GetTransitionMarkModifier(
114 KeyedStoreIC::GetKeyedAccessStoreMode(extra_state));
116 PrintF(" (%c->%c%s)", TransitionMarkFromState(old_state),
117 TransitionMarkFromState(new_state), modifier);
122 name->ShortPrint(stdout);
128 #define TRACE_IC(type, name) TraceIC(type, name)
129 #define TRACE_VECTOR_IC(type, name, old_state, new_state) \
130 TraceIC(type, name, old_state, new_state)
132 IC::IC(FrameDepth depth, Isolate* isolate)
133 : isolate_(isolate), target_set_(false), target_maps_set_(false) {
134 // To improve the performance of the (much used) IC code, we unfold a few
135 // levels of the stack frame iteration code. This yields a ~35% speedup when
136 // running DeltaBlue and a ~25% speedup of gbemu with the '--nouse-ic' flag.
137 const Address entry = Isolate::c_entry_fp(isolate->thread_local_top());
138 Address constant_pool = NULL;
139 if (FLAG_enable_ool_constant_pool) {
141 Memory::Address_at(entry + ExitFrameConstants::kConstantPoolOffset);
143 Address* pc_address =
144 reinterpret_cast<Address*>(entry + ExitFrameConstants::kCallerPCOffset);
145 Address fp = Memory::Address_at(entry + ExitFrameConstants::kCallerFPOffset);
146 // If there's another JavaScript frame on the stack or a
147 // StubFailureTrampoline, we need to look one frame further down the stack to
148 // find the frame pointer and the return address stack slot.
149 if (depth == EXTRA_CALL_FRAME) {
150 if (FLAG_enable_ool_constant_pool) {
152 Memory::Address_at(fp + StandardFrameConstants::kConstantPoolOffset);
154 const int kCallerPCOffset = StandardFrameConstants::kCallerPCOffset;
155 pc_address = reinterpret_cast<Address*>(fp + kCallerPCOffset);
156 fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset);
159 StackFrameIterator it(isolate);
160 for (int i = 0; i < depth + 1; i++) it.Advance();
161 StackFrame* frame = it.frame();
162 DCHECK(fp == frame->fp() && pc_address == frame->pc_address());
165 if (FLAG_enable_ool_constant_pool) {
166 raw_constant_pool_ = handle(
167 ConstantPoolArray::cast(reinterpret_cast<Object*>(constant_pool)),
170 pc_address_ = StackFrame::ResolveReturnAddressLocation(pc_address);
171 target_ = handle(raw_target(), isolate);
172 state_ = target_->ic_state();
173 kind_ = target_->kind();
174 extra_ic_state_ = target_->extra_ic_state();
178 SharedFunctionInfo* IC::GetSharedFunctionInfo() const {
179 // Compute the JavaScript frame for the frame pointer of this IC
180 // structure. We need this to be able to find the function
181 // corresponding to the frame.
182 StackFrameIterator it(isolate());
183 while (it.frame()->fp() != this->fp()) it.Advance();
184 JavaScriptFrame* frame = JavaScriptFrame::cast(it.frame());
185 // Find the function on the stack and both the active code for the
186 // function and the original code.
187 JSFunction* function = frame->function();
188 return function->shared();
192 Code* IC::GetCode() const {
193 HandleScope scope(isolate());
194 Handle<SharedFunctionInfo> shared(GetSharedFunctionInfo(), isolate());
195 Code* code = shared->code();
200 Code* IC::GetOriginalCode() const {
201 HandleScope scope(isolate());
202 Handle<SharedFunctionInfo> shared(GetSharedFunctionInfo(), isolate());
203 DCHECK(Debug::HasDebugInfo(shared));
204 Code* original_code = Debug::GetDebugInfo(shared)->original_code();
205 DCHECK(original_code->IsCode());
206 return original_code;
210 static void LookupForRead(LookupIterator* it) {
211 for (; it->IsFound(); it->Next()) {
212 switch (it->state()) {
213 case LookupIterator::NOT_FOUND:
214 case LookupIterator::TRANSITION:
216 case LookupIterator::JSPROXY:
218 case LookupIterator::INTERCEPTOR: {
219 // If there is a getter, return; otherwise loop to perform the lookup.
220 Handle<JSObject> holder = it->GetHolder<JSObject>();
221 if (!holder->GetNamedInterceptor()->getter()->IsUndefined()) {
226 case LookupIterator::ACCESS_CHECK:
227 // PropertyHandlerCompiler::CheckPrototypes() knows how to emit
228 // access checks for global proxies.
229 if (it->GetHolder<JSObject>()->IsJSGlobalProxy() &&
230 it->HasAccess(v8::ACCESS_GET)) {
234 case LookupIterator::PROPERTY:
235 if (it->HasProperty()) return; // Yay!
242 bool IC::TryRemoveInvalidPrototypeDependentStub(Handle<Object> receiver,
243 Handle<String> name) {
244 if (!IsNameCompatibleWithPrototypeFailure(name)) return false;
245 Handle<Map> receiver_map = TypeToMap(*receiver_type(), isolate());
246 maybe_handler_ = target()->FindHandlerForMap(*receiver_map);
248 // The current map wasn't handled yet. There's no reason to stay monomorphic,
249 // *unless* we're moving from a deprecated map to its replacement, or
250 // to a more general elements kind.
251 // TODO(verwaest): Check if the current map is actually what the old map
252 // would transition to.
253 if (maybe_handler_.is_null()) {
254 if (!receiver_map->IsJSObjectMap()) return false;
255 Map* first_map = FirstTargetMap();
256 if (first_map == NULL) return false;
257 Handle<Map> old_map(first_map);
258 if (old_map->is_deprecated()) return true;
259 if (IsMoreGeneralElementsKindTransition(old_map->elements_kind(),
260 receiver_map->elements_kind())) {
266 CacheHolderFlag flag;
267 Handle<Map> ic_holder_map(
268 GetICCacheHolder(*receiver_type(), isolate(), &flag));
270 DCHECK(flag != kCacheOnReceiver || receiver->IsJSObject());
271 DCHECK(flag != kCacheOnPrototype || !receiver->IsJSReceiver());
272 DCHECK(flag != kCacheOnPrototypeReceiverIsDictionary);
274 if (state() == MONOMORPHIC) {
275 int index = ic_holder_map->IndexInCodeCache(*name, *target());
277 ic_holder_map->RemoveFromCodeCache(*name, *target(), index);
281 if (receiver->IsGlobalObject()) {
282 Handle<GlobalObject> global = Handle<GlobalObject>::cast(receiver);
283 LookupIterator it(global, name, LookupIterator::CHECK_PROPERTY);
284 if (!it.IsFound() || !it.HasProperty()) return false;
285 Handle<PropertyCell> cell = it.GetPropertyCell();
286 return cell->type()->IsConstant();
293 bool IC::IsNameCompatibleWithPrototypeFailure(Handle<Object> name) {
294 if (target()->is_keyed_stub()) {
295 // Determine whether the failure is due to a name failure.
296 if (!name->IsName()) return false;
297 Name* stub_name = target()->FindFirstName();
298 if (*name != stub_name) return false;
305 void IC::UpdateState(Handle<Object> receiver, Handle<Object> name) {
306 update_receiver_type(receiver);
307 if (!name->IsString()) return;
308 if (state() != MONOMORPHIC && state() != POLYMORPHIC) return;
309 if (receiver->IsUndefined() || receiver->IsNull()) return;
311 // Remove the target from the code cache if it became invalid
312 // because of changes in the prototype chain to avoid hitting it
314 if (TryRemoveInvalidPrototypeDependentStub(receiver,
315 Handle<String>::cast(name))) {
316 MarkPrototypeFailure(name);
320 // The builtins object is special. It only changes when JavaScript
321 // builtins are loaded lazily. It is important to keep inline
322 // caches for the builtins object monomorphic. Therefore, if we get
323 // an inline cache miss for the builtins object after lazily loading
324 // JavaScript builtins, we return uninitialized as the state to
325 // force the inline cache back to monomorphic state.
326 if (receiver->IsJSBuiltinsObject()) state_ = UNINITIALIZED;
330 MaybeHandle<Object> IC::TypeError(const char* type, Handle<Object> object,
331 Handle<Object> key) {
332 HandleScope scope(isolate());
333 Handle<Object> args[2] = {key, object};
334 Handle<Object> error =
335 isolate()->factory()->NewTypeError(type, HandleVector(args, 2));
336 return isolate()->Throw<Object>(error);
340 MaybeHandle<Object> IC::ReferenceError(const char* type, Handle<Name> name) {
341 HandleScope scope(isolate());
342 Handle<Object> error =
343 isolate()->factory()->NewReferenceError(type, HandleVector(&name, 1));
344 return isolate()->Throw<Object>(error);
348 static void ComputeTypeInfoCountDelta(IC::State old_state, IC::State new_state,
349 int* polymorphic_delta,
350 int* generic_delta) {
354 if (new_state == UNINITIALIZED || new_state == PREMONOMORPHIC) break;
355 if (new_state == MONOMORPHIC || new_state == POLYMORPHIC) {
356 *polymorphic_delta = 1;
357 } else if (new_state == MEGAMORPHIC || new_state == GENERIC) {
363 if (new_state == MONOMORPHIC || new_state == POLYMORPHIC) break;
364 *polymorphic_delta = -1;
365 if (new_state == MEGAMORPHIC || new_state == GENERIC) {
371 if (new_state == MEGAMORPHIC || new_state == GENERIC) break;
373 if (new_state == MONOMORPHIC || new_state == POLYMORPHIC) {
374 *polymorphic_delta = 1;
377 case PROTOTYPE_FAILURE:
385 void IC::OnTypeFeedbackChanged(Isolate* isolate, Address address,
386 State old_state, State new_state,
387 bool target_remains_ic_stub) {
389 isolate->inner_pointer_to_code_cache()->GetCacheEntry(address)->code;
390 if (host->kind() != Code::FUNCTION) return;
392 if (FLAG_type_info_threshold > 0 && target_remains_ic_stub &&
393 // Not all Code objects have TypeFeedbackInfo.
394 host->type_feedback_info()->IsTypeFeedbackInfo()) {
395 int polymorphic_delta = 0; // "Polymorphic" here includes monomorphic.
396 int generic_delta = 0; // "Generic" here includes megamorphic.
397 ComputeTypeInfoCountDelta(old_state, new_state, &polymorphic_delta,
399 TypeFeedbackInfo* info = TypeFeedbackInfo::cast(host->type_feedback_info());
400 info->change_ic_with_type_info_count(polymorphic_delta);
401 info->change_ic_generic_count(generic_delta);
403 if (host->type_feedback_info()->IsTypeFeedbackInfo()) {
404 TypeFeedbackInfo* info = TypeFeedbackInfo::cast(host->type_feedback_info());
405 info->change_own_type_change_checksum();
407 host->set_profiler_ticks(0);
408 isolate->runtime_profiler()->NotifyICChanged();
409 // TODO(2029): When an optimized function is patched, it would
410 // be nice to propagate the corresponding type information to its
411 // unoptimized version for the benefit of later inlining.
415 void IC::PostPatching(Address address, Code* target, Code* old_target) {
416 // Type vector based ICs update these statistics at a different time because
417 // they don't always patch on state change.
418 if (target->kind() == Code::CALL_IC) return;
420 Isolate* isolate = target->GetHeap()->isolate();
421 State old_state = UNINITIALIZED;
422 State new_state = UNINITIALIZED;
423 bool target_remains_ic_stub = false;
424 if (old_target->is_inline_cache_stub() && target->is_inline_cache_stub()) {
425 old_state = old_target->ic_state();
426 new_state = target->ic_state();
427 target_remains_ic_stub = true;
430 OnTypeFeedbackChanged(isolate, address, old_state, new_state,
431 target_remains_ic_stub);
435 void IC::RegisterWeakMapDependency(Handle<Code> stub) {
436 if (FLAG_collect_maps && FLAG_weak_embedded_maps_in_ic &&
437 stub->CanBeWeakStub()) {
438 DCHECK(!stub->is_weak_stub());
440 stub->FindAllMaps(&maps);
441 if (maps.length() == 1 && stub->IsWeakObjectInIC(*maps.at(0))) {
442 Map::AddDependentIC(maps.at(0), stub);
443 stub->mark_as_weak_stub();
444 if (FLAG_enable_ool_constant_pool) {
445 stub->constant_pool()->set_weak_object_state(
446 ConstantPoolArray::WEAK_OBJECTS_IN_IC);
453 void IC::InvalidateMaps(Code* stub) {
454 DCHECK(stub->is_weak_stub());
455 stub->mark_as_invalidated_weak_stub();
456 Isolate* isolate = stub->GetIsolate();
457 Heap* heap = isolate->heap();
458 Object* undefined = heap->undefined_value();
459 int mode_mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT);
460 for (RelocIterator it(stub, mode_mask); !it.done(); it.next()) {
461 RelocInfo::Mode mode = it.rinfo()->rmode();
462 if (mode == RelocInfo::EMBEDDED_OBJECT &&
463 it.rinfo()->target_object()->IsMap()) {
464 it.rinfo()->set_target_object(undefined, SKIP_WRITE_BARRIER);
467 CpuFeatures::FlushICache(stub->instruction_start(), stub->instruction_size());
471 void IC::Clear(Isolate* isolate, Address address,
472 ConstantPoolArray* constant_pool) {
473 Code* target = GetTargetAtAddress(address, constant_pool);
475 // Don't clear debug break inline cache as it will remove the break point.
476 if (target->is_debug_stub()) return;
478 switch (target->kind()) {
480 return LoadIC::Clear(isolate, address, target, constant_pool);
481 case Code::KEYED_LOAD_IC:
482 return KeyedLoadIC::Clear(isolate, address, target, constant_pool);
484 return StoreIC::Clear(isolate, address, target, constant_pool);
485 case Code::KEYED_STORE_IC:
486 return KeyedStoreIC::Clear(isolate, address, target, constant_pool);
488 return CallIC::Clear(isolate, address, target, constant_pool);
489 case Code::COMPARE_IC:
490 return CompareIC::Clear(isolate, address, target, constant_pool);
491 case Code::COMPARE_NIL_IC:
492 return CompareNilIC::Clear(address, target, constant_pool);
493 case Code::BINARY_OP_IC:
494 case Code::TO_BOOLEAN_IC:
495 // Clearing these is tricky and does not
496 // make any performance difference.
504 void KeyedLoadIC::Clear(Isolate* isolate, Address address, Code* target,
505 ConstantPoolArray* constant_pool) {
506 if (IsCleared(target)) return;
507 // Make sure to also clear the map used in inline fast cases. If we
508 // do not clear these maps, cached code can keep objects alive
509 // through the embedded maps.
510 SetTargetAtAddress(address, *pre_monomorphic_stub(isolate), constant_pool);
514 void CallIC::Clear(Isolate* isolate, Address address, Code* target,
515 ConstantPoolArray* constant_pool) {
516 // Currently, CallIC doesn't have state changes.
520 void LoadIC::Clear(Isolate* isolate, Address address, Code* target,
521 ConstantPoolArray* constant_pool) {
522 if (IsCleared(target)) return;
523 Code* code = PropertyICCompiler::FindPreMonomorphic(isolate, Code::LOAD_IC,
524 target->extra_ic_state());
525 SetTargetAtAddress(address, code, constant_pool);
529 void StoreIC::Clear(Isolate* isolate, Address address, Code* target,
530 ConstantPoolArray* constant_pool) {
531 if (IsCleared(target)) return;
532 Code* code = PropertyICCompiler::FindPreMonomorphic(isolate, Code::STORE_IC,
533 target->extra_ic_state());
534 SetTargetAtAddress(address, code, constant_pool);
538 void KeyedStoreIC::Clear(Isolate* isolate, Address address, Code* target,
539 ConstantPoolArray* constant_pool) {
540 if (IsCleared(target)) return;
542 address, *pre_monomorphic_stub(
543 isolate, StoreIC::GetStrictMode(target->extra_ic_state())),
548 void CompareIC::Clear(Isolate* isolate, Address address, Code* target,
549 ConstantPoolArray* constant_pool) {
550 DCHECK(CodeStub::GetMajorKey(target) == CodeStub::CompareIC);
551 CompareIC::State handler_state;
553 ICCompareStub::DecodeKey(target->stub_key(), NULL, NULL, &handler_state, &op);
554 // Only clear CompareICs that can retain objects.
555 if (handler_state != KNOWN_OBJECT) return;
556 SetTargetAtAddress(address, GetRawUninitialized(isolate, op), constant_pool);
557 PatchInlinedSmiCode(address, DISABLE_INLINED_SMI_CHECK);
562 Handle<Code> KeyedLoadIC::generic_stub(Isolate* isolate) {
563 if (FLAG_compiled_keyed_generic_loads) {
564 return KeyedLoadGenericStub(isolate).GetCode();
566 return isolate->builtins()->KeyedLoadIC_Generic();
571 static bool MigrateDeprecated(Handle<Object> object) {
572 if (!object->IsJSObject()) return false;
573 Handle<JSObject> receiver = Handle<JSObject>::cast(object);
574 if (!receiver->map()->is_deprecated()) return false;
575 JSObject::MigrateInstance(Handle<JSObject>::cast(object));
580 MaybeHandle<Object> LoadIC::Load(Handle<Object> object, Handle<Name> name) {
581 // If the object is undefined or null it's illegal to try to get any
582 // of its properties; throw a TypeError in that case.
583 if (object->IsUndefined() || object->IsNull()) {
584 return TypeError("non_object_property_load", object, name);
587 // Check if the name is trivially convertible to an index and get
588 // the element or char if so.
590 if (kind() == Code::KEYED_LOAD_IC && name->AsArrayIndex(&index)) {
591 // Rewrite to the generic keyed load stub.
593 set_target(*KeyedLoadIC::generic_stub(isolate()));
594 TRACE_IC("LoadIC", name);
595 TRACE_GENERIC_IC(isolate(), "LoadIC", "name as array index");
597 Handle<Object> result;
598 ASSIGN_RETURN_ON_EXCEPTION(
600 Runtime::GetElementOrCharAt(isolate(), object, index), Object);
604 bool use_ic = MigrateDeprecated(object) ? false : FLAG_use_ic;
606 // Named lookup in the object.
607 LookupIterator it(object, name);
610 if (it.IsFound() || !IsUndeclaredGlobal(object)) {
611 // Update inline cache and stub cache.
612 if (use_ic) UpdateCaches(&it);
615 Handle<Object> result;
616 ASSIGN_RETURN_ON_EXCEPTION(isolate(), result, Object::GetProperty(&it),
620 } else if (!IsUndeclaredGlobal(object)) {
621 LOG(isolate(), SuspectReadEvent(*name, *object));
625 return ReferenceError("not_defined", name);
629 static bool AddOneReceiverMapIfMissing(MapHandleList* receiver_maps,
630 Handle<Map> new_receiver_map) {
631 DCHECK(!new_receiver_map.is_null());
632 for (int current = 0; current < receiver_maps->length(); ++current) {
633 if (!receiver_maps->at(current).is_null() &&
634 receiver_maps->at(current).is_identical_to(new_receiver_map)) {
638 receiver_maps->Add(new_receiver_map);
643 bool IC::UpdatePolymorphicIC(Handle<Name> name, Handle<Code> code) {
644 if (!code->is_handler()) return false;
645 if (target()->is_keyed_stub() && state() != PROTOTYPE_FAILURE) return false;
646 Handle<HeapType> type = receiver_type();
647 TypeHandleList types;
648 CodeHandleList handlers;
651 int number_of_types = types.length();
652 int deprecated_types = 0;
653 int handler_to_overwrite = -1;
655 for (int i = 0; i < number_of_types; i++) {
656 Handle<HeapType> current_type = types.at(i);
657 if (current_type->IsClass() &&
658 current_type->AsClass()->Map()->is_deprecated()) {
659 // Filter out deprecated maps to ensure their instances get migrated.
661 } else if (type->NowIs(current_type)) {
662 // If the receiver type is already in the polymorphic IC, this indicates
663 // there was a prototoype chain failure. In that case, just overwrite the
665 handler_to_overwrite = i;
666 } else if (handler_to_overwrite == -1 && current_type->IsClass() &&
668 IsTransitionOfMonomorphicTarget(*current_type->AsClass()->Map(),
669 *type->AsClass()->Map())) {
670 handler_to_overwrite = i;
674 int number_of_valid_types =
675 number_of_types - deprecated_types - (handler_to_overwrite != -1);
677 if (number_of_valid_types >= 4) return false;
678 if (number_of_types == 0) return false;
679 if (!target()->FindHandlers(&handlers, types.length())) return false;
681 number_of_valid_types++;
682 if (number_of_valid_types > 1 && target()->is_keyed_stub()) return false;
684 if (number_of_valid_types == 1) {
685 ic = PropertyICCompiler::ComputeMonomorphic(kind(), name, type, code,
688 if (handler_to_overwrite >= 0) {
689 handlers.Set(handler_to_overwrite, code);
690 if (!type->NowIs(types.at(handler_to_overwrite))) {
691 types.Set(handler_to_overwrite, type);
697 ic = PropertyICCompiler::ComputePolymorphic(kind(), &types, &handlers,
698 number_of_valid_types, name,
706 Handle<HeapType> IC::CurrentTypeOf(Handle<Object> object, Isolate* isolate) {
707 return object->IsJSGlobalObject()
708 ? HeapType::Constant(Handle<JSGlobalObject>::cast(object), isolate)
709 : HeapType::NowOf(object, isolate);
713 Handle<Map> IC::TypeToMap(HeapType* type, Isolate* isolate) {
714 if (type->Is(HeapType::Number()))
715 return isolate->factory()->heap_number_map();
716 if (type->Is(HeapType::Boolean())) return isolate->factory()->boolean_map();
717 if (type->IsConstant()) {
719 Handle<JSGlobalObject>::cast(type->AsConstant()->Value())->map());
721 DCHECK(type->IsClass());
722 return type->AsClass()->Map();
727 typename T::TypeHandle IC::MapToType(Handle<Map> map,
728 typename T::Region* region) {
729 if (map->instance_type() == HEAP_NUMBER_TYPE) {
730 return T::Number(region);
731 } else if (map->instance_type() == ODDBALL_TYPE) {
732 // The only oddballs that can be recorded in ICs are booleans.
733 return T::Boolean(region);
735 return T::Class(map, region);
740 template Type* IC::MapToType<Type>(Handle<Map> map, Zone* zone);
743 template Handle<HeapType> IC::MapToType<HeapType>(Handle<Map> map,
747 void IC::UpdateMonomorphicIC(Handle<Code> handler, Handle<Name> name) {
748 DCHECK(handler->is_handler());
749 Handle<Code> ic = PropertyICCompiler::ComputeMonomorphic(
750 kind(), name, receiver_type(), handler, extra_ic_state());
755 void IC::CopyICToMegamorphicCache(Handle<Name> name) {
756 TypeHandleList types;
757 CodeHandleList handlers;
759 if (!target()->FindHandlers(&handlers, types.length())) return;
760 for (int i = 0; i < types.length(); i++) {
761 UpdateMegamorphicCache(*types.at(i), *name, *handlers.at(i));
766 bool IC::IsTransitionOfMonomorphicTarget(Map* source_map, Map* target_map) {
767 if (source_map == NULL) return true;
768 if (target_map == NULL) return false;
769 ElementsKind target_elements_kind = target_map->elements_kind();
770 bool more_general_transition = IsMoreGeneralElementsKindTransition(
771 source_map->elements_kind(), target_elements_kind);
772 Map* transitioned_map =
773 more_general_transition
774 ? source_map->LookupElementsTransitionMap(target_elements_kind)
777 return transitioned_map == target_map;
781 void IC::PatchCache(Handle<Name> name, Handle<Code> code) {
785 UpdateMonomorphicIC(code, name);
787 case PROTOTYPE_FAILURE:
790 if (!target()->is_keyed_stub() || state() == PROTOTYPE_FAILURE) {
791 if (UpdatePolymorphicIC(name, code)) break;
792 CopyICToMegamorphicCache(name);
794 set_target(*megamorphic_stub());
797 UpdateMegamorphicCache(*receiver_type(), *name, *code);
809 Handle<Code> LoadIC::initialize_stub(Isolate* isolate,
810 ExtraICState extra_state) {
811 return PropertyICCompiler::ComputeLoad(isolate, UNINITIALIZED, extra_state);
815 Handle<Code> LoadIC::megamorphic_stub() {
816 if (kind() == Code::LOAD_IC) {
817 return PropertyICCompiler::ComputeLoad(isolate(), MEGAMORPHIC,
820 DCHECK_EQ(Code::KEYED_LOAD_IC, kind());
821 return KeyedLoadIC::generic_stub(isolate());
826 Handle<Code> LoadIC::pre_monomorphic_stub(Isolate* isolate,
827 ExtraICState extra_state) {
828 return PropertyICCompiler::ComputeLoad(isolate, PREMONOMORPHIC, extra_state);
832 Handle<Code> KeyedLoadIC::pre_monomorphic_stub(Isolate* isolate) {
833 return isolate->builtins()->KeyedLoadIC_PreMonomorphic();
837 Handle<Code> LoadIC::pre_monomorphic_stub() const {
838 if (kind() == Code::LOAD_IC) {
839 return LoadIC::pre_monomorphic_stub(isolate(), extra_ic_state());
841 DCHECK_EQ(Code::KEYED_LOAD_IC, kind());
842 return KeyedLoadIC::pre_monomorphic_stub(isolate());
847 Handle<Code> LoadIC::SimpleFieldLoad(FieldIndex index) {
848 LoadFieldStub stub(isolate(), index);
849 return stub.GetCode();
853 void LoadIC::UpdateCaches(LookupIterator* lookup) {
854 if (state() == UNINITIALIZED) {
855 // This is the first time we execute this inline cache. Set the target to
856 // the pre monomorphic stub to delay setting the monomorphic state.
857 set_target(*pre_monomorphic_stub());
858 TRACE_IC("LoadIC", lookup->name());
863 if (lookup->state() == LookupIterator::JSPROXY ||
864 lookup->state() == LookupIterator::ACCESS_CHECK) {
866 } else if (!lookup->IsFound()) {
867 if (kind() == Code::LOAD_IC) {
868 code = NamedLoadHandlerCompiler::ComputeLoadNonexistent(lookup->name(),
870 // TODO(jkummerow/verwaest): Introduce a builtin that handles this case.
871 if (code.is_null()) code = slow_stub();
876 code = ComputeHandler(lookup);
879 PatchCache(lookup->name(), code);
880 TRACE_IC("LoadIC", lookup->name());
884 void IC::UpdateMegamorphicCache(HeapType* type, Name* name, Code* code) {
885 if (kind() == Code::KEYED_LOAD_IC || kind() == Code::KEYED_STORE_IC) return;
886 Map* map = *TypeToMap(type, isolate());
887 isolate()->stub_cache()->Set(name, map, code);
891 Handle<Code> IC::ComputeHandler(LookupIterator* lookup, Handle<Object> value) {
892 bool receiver_is_holder =
893 lookup->GetReceiver().is_identical_to(lookup->GetHolder<JSObject>());
894 CacheHolderFlag flag;
895 Handle<Map> stub_holder_map = IC::GetHandlerCacheHolder(
896 *receiver_type(), receiver_is_holder, isolate(), &flag);
898 Handle<Code> code = PropertyHandlerCompiler::Find(
899 lookup->name(), stub_holder_map, kind(), flag,
900 lookup->holder_map()->is_dictionary_map() ? Code::NORMAL : Code::FAST);
901 // Use the cached value if it exists, and if it is different from the
902 // handler that just missed.
903 if (!code.is_null()) {
904 if (!maybe_handler_.is_null() &&
905 !maybe_handler_.ToHandleChecked().is_identical_to(code)) {
908 if (maybe_handler_.is_null()) {
909 // maybe_handler_ is only populated for MONOMORPHIC and POLYMORPHIC ICs.
910 // In MEGAMORPHIC case, check if the handler in the megamorphic stub
911 // cache (which just missed) is different from the cached handler.
912 if (state() == MEGAMORPHIC && lookup->GetReceiver()->IsHeapObject()) {
913 Map* map = Handle<HeapObject>::cast(lookup->GetReceiver())->map();
914 Code* megamorphic_cached_code =
915 isolate()->stub_cache()->Get(*lookup->name(), map, code->flags());
916 if (megamorphic_cached_code != *code) return code;
923 code = CompileHandler(lookup, value, flag);
924 DCHECK(code->is_handler());
926 if (code->type() != Code::NORMAL) {
927 Map::UpdateCodeCache(stub_holder_map, lookup->name(), code);
934 Handle<Code> LoadIC::CompileHandler(LookupIterator* lookup,
935 Handle<Object> unused,
936 CacheHolderFlag cache_holder) {
937 Handle<Object> receiver = lookup->GetReceiver();
938 if (receiver->IsString() &&
939 Name::Equals(isolate()->factory()->length_string(), lookup->name())) {
940 FieldIndex index = FieldIndex::ForInObjectOffset(String::kLengthOffset);
941 return SimpleFieldLoad(index);
944 if (receiver->IsStringWrapper() &&
945 Name::Equals(isolate()->factory()->length_string(), lookup->name())) {
946 StringLengthStub string_length_stub(isolate());
947 return string_length_stub.GetCode();
950 // Use specialized code for getting prototype of functions.
951 if (receiver->IsJSFunction() &&
952 Name::Equals(isolate()->factory()->prototype_string(), lookup->name()) &&
953 Handle<JSFunction>::cast(receiver)->should_have_prototype() &&
954 !Handle<JSFunction>::cast(receiver)
956 ->has_non_instance_prototype()) {
958 FunctionPrototypeStub function_prototype_stub(isolate());
959 return function_prototype_stub.GetCode();
962 Handle<HeapType> type = receiver_type();
963 Handle<JSObject> holder = lookup->GetHolder<JSObject>();
964 bool receiver_is_holder = receiver.is_identical_to(holder);
965 // -------------- Interceptors --------------
966 if (lookup->state() == LookupIterator::INTERCEPTOR) {
967 DCHECK(!holder->GetNamedInterceptor()->getter()->IsUndefined());
968 NamedLoadHandlerCompiler compiler(isolate(), receiver_type(), holder,
970 // Perform a lookup behind the interceptor. Copy the LookupIterator since
971 // the original iterator will be used to fetch the value.
972 LookupIterator it(lookup);
975 return compiler.CompileLoadInterceptor(&it);
978 // -------------- Accessors --------------
979 DCHECK(lookup->state() == LookupIterator::PROPERTY);
980 if (lookup->property_kind() == LookupIterator::ACCESSOR) {
981 // Use simple field loads for some well-known callback properties.
982 if (receiver_is_holder) {
983 DCHECK(receiver->IsJSObject());
984 Handle<JSObject> js_receiver = Handle<JSObject>::cast(receiver);
986 if (Accessors::IsJSObjectFieldAccessor<HeapType>(type, lookup->name(),
989 FieldIndex::ForInObjectOffset(object_offset, js_receiver->map());
990 return SimpleFieldLoad(index);
994 Handle<Object> accessors = lookup->GetAccessors();
995 if (accessors->IsExecutableAccessorInfo()) {
996 Handle<ExecutableAccessorInfo> info =
997 Handle<ExecutableAccessorInfo>::cast(accessors);
998 if (v8::ToCData<Address>(info->getter()) == 0) return slow_stub();
999 if (!ExecutableAccessorInfo::IsCompatibleReceiverType(isolate(), info,
1003 if (!holder->HasFastProperties()) return slow_stub();
1004 NamedLoadHandlerCompiler compiler(isolate(), receiver_type(), holder,
1006 return compiler.CompileLoadCallback(lookup->name(), info);
1008 if (accessors->IsAccessorPair()) {
1009 Handle<Object> getter(Handle<AccessorPair>::cast(accessors)->getter(),
1011 if (!getter->IsJSFunction()) return slow_stub();
1012 if (!holder->HasFastProperties()) return slow_stub();
1013 Handle<JSFunction> function = Handle<JSFunction>::cast(getter);
1014 if (!receiver->IsJSObject() && !function->IsBuiltin() &&
1015 function->shared()->strict_mode() == SLOPPY) {
1016 // Calling sloppy non-builtins with a value as the receiver
1020 CallOptimization call_optimization(function);
1021 NamedLoadHandlerCompiler compiler(isolate(), receiver_type(), holder,
1023 if (call_optimization.is_simple_api_call() &&
1024 call_optimization.IsCompatibleReceiver(receiver, holder)) {
1025 return compiler.CompileLoadCallback(lookup->name(), call_optimization);
1027 return compiler.CompileLoadViaGetter(lookup->name(), function);
1029 // TODO(dcarney): Handle correctly.
1030 DCHECK(accessors->IsDeclaredAccessorInfo());
1034 // -------------- Dictionary properties --------------
1035 DCHECK(lookup->property_kind() == LookupIterator::DATA);
1036 if (lookup->property_encoding() == LookupIterator::DICTIONARY) {
1037 if (kind() != Code::LOAD_IC) return slow_stub();
1038 if (holder->IsGlobalObject()) {
1039 NamedLoadHandlerCompiler compiler(isolate(), receiver_type(), holder,
1041 Handle<PropertyCell> cell = lookup->GetPropertyCell();
1042 Handle<Code> code = compiler.CompileLoadGlobal(cell, lookup->name(),
1043 lookup->IsConfigurable());
1044 // TODO(verwaest): Move caching of these NORMAL stubs outside as well.
1045 CacheHolderFlag flag;
1046 Handle<Map> stub_holder_map =
1047 GetHandlerCacheHolder(*type, receiver_is_holder, isolate(), &flag);
1048 Map::UpdateCodeCache(stub_holder_map, lookup->name(), code);
1051 // There is only one shared stub for loading normalized
1052 // properties. It does not traverse the prototype chain, so the
1053 // property must be found in the object for the stub to be
1055 if (!receiver_is_holder) return slow_stub();
1056 return isolate()->builtins()->LoadIC_Normal();
1059 // -------------- Fields --------------
1060 DCHECK(lookup->property_encoding() == LookupIterator::DESCRIPTOR);
1061 if (lookup->property_details().type() == FIELD) {
1062 FieldIndex field = lookup->GetFieldIndex();
1063 if (receiver_is_holder) {
1064 return SimpleFieldLoad(field);
1066 NamedLoadHandlerCompiler compiler(isolate(), receiver_type(), holder,
1068 return compiler.CompileLoadField(lookup->name(), field);
1071 // -------------- Constant properties --------------
1072 DCHECK(lookup->property_details().type() == CONSTANT);
1073 if (receiver_is_holder) {
1074 LoadConstantStub stub(isolate(), lookup->GetConstantIndex());
1075 return stub.GetCode();
1077 NamedLoadHandlerCompiler compiler(isolate(), receiver_type(), holder,
1079 return compiler.CompileLoadConstant(lookup->name(),
1080 lookup->GetConstantIndex());
1084 static Handle<Object> TryConvertKey(Handle<Object> key, Isolate* isolate) {
1085 // This helper implements a few common fast cases for converting
1086 // non-smi keys of keyed loads/stores to a smi or a string.
1087 if (key->IsHeapNumber()) {
1088 double value = Handle<HeapNumber>::cast(key)->value();
1089 if (std::isnan(value)) {
1090 key = isolate->factory()->nan_string();
1092 int int_value = FastD2I(value);
1093 if (value == int_value && Smi::IsValid(int_value)) {
1094 key = Handle<Smi>(Smi::FromInt(int_value), isolate);
1097 } else if (key->IsUndefined()) {
1098 key = isolate->factory()->undefined_string();
1104 Handle<Code> KeyedLoadIC::LoadElementStub(Handle<JSObject> receiver) {
1105 // Don't handle megamorphic property accesses for INTERCEPTORS or CALLBACKS
1106 // via megamorphic stubs, since they don't have a map in their relocation info
1107 // and so the stubs can't be harvested for the object needed for a map check.
1108 if (target()->type() != Code::NORMAL) {
1109 TRACE_GENERIC_IC(isolate(), "KeyedIC", "non-NORMAL target type");
1110 return generic_stub();
1113 Handle<Map> receiver_map(receiver->map(), isolate());
1114 MapHandleList target_receiver_maps;
1115 if (target().is_identical_to(string_stub())) {
1116 target_receiver_maps.Add(isolate()->factory()->string_map());
1118 TargetMaps(&target_receiver_maps);
1120 if (target_receiver_maps.length() == 0) {
1121 return PropertyICCompiler::ComputeKeyedLoadMonomorphic(receiver_map);
1124 // The first time a receiver is seen that is a transitioned version of the
1125 // previous monomorphic receiver type, assume the new ElementsKind is the
1126 // monomorphic type. This benefits global arrays that only transition
1127 // once, and all call sites accessing them are faster if they remain
1128 // monomorphic. If this optimistic assumption is not true, the IC will
1129 // miss again and it will become polymorphic and support both the
1130 // untransitioned and transitioned maps.
1131 if (state() == MONOMORPHIC && IsMoreGeneralElementsKindTransition(
1132 target_receiver_maps.at(0)->elements_kind(),
1133 receiver->GetElementsKind())) {
1134 return PropertyICCompiler::ComputeKeyedLoadMonomorphic(receiver_map);
1137 DCHECK(state() != GENERIC);
1139 // Determine the list of receiver maps that this call site has seen,
1140 // adding the map that was just encountered.
1141 if (!AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map)) {
1142 // If the miss wasn't due to an unseen map, a polymorphic stub
1143 // won't help, use the generic stub.
1144 TRACE_GENERIC_IC(isolate(), "KeyedIC", "same map added twice");
1145 return generic_stub();
1148 // If the maximum number of receiver maps has been exceeded, use the generic
1149 // version of the IC.
1150 if (target_receiver_maps.length() > kMaxKeyedPolymorphism) {
1151 TRACE_GENERIC_IC(isolate(), "KeyedIC", "max polymorph exceeded");
1152 return generic_stub();
1155 return PropertyICCompiler::ComputeKeyedLoadPolymorphic(&target_receiver_maps);
1159 MaybeHandle<Object> KeyedLoadIC::Load(Handle<Object> object,
1160 Handle<Object> key) {
1161 if (MigrateDeprecated(object)) {
1162 Handle<Object> result;
1163 ASSIGN_RETURN_ON_EXCEPTION(
1164 isolate(), result, Runtime::GetObjectProperty(isolate(), object, key),
1169 Handle<Object> load_handle;
1170 Handle<Code> stub = generic_stub();
1172 // Check for non-string values that can be converted into an
1173 // internalized string directly or is representable as a smi.
1174 key = TryConvertKey(key, isolate());
1176 if (key->IsInternalizedString() || key->IsSymbol()) {
1177 ASSIGN_RETURN_ON_EXCEPTION(isolate(), load_handle,
1178 LoadIC::Load(object, Handle<Name>::cast(key)),
1180 } else if (FLAG_use_ic && !object->IsAccessCheckNeeded()) {
1181 if (object->IsString() && key->IsNumber()) {
1182 if (state() == UNINITIALIZED) stub = string_stub();
1183 } else if (object->IsJSObject()) {
1184 Handle<JSObject> receiver = Handle<JSObject>::cast(object);
1185 if (receiver->elements()->map() ==
1186 isolate()->heap()->sloppy_arguments_elements_map()) {
1187 stub = sloppy_arguments_stub();
1188 } else if (receiver->HasIndexedInterceptor()) {
1189 stub = indexed_interceptor_stub();
1190 } else if (!Object::ToSmi(isolate(), key).is_null() &&
1191 (!target().is_identical_to(sloppy_arguments_stub()))) {
1192 stub = LoadElementStub(receiver);
1197 if (!is_target_set()) {
1198 Code* generic = *generic_stub();
1199 if (*stub == generic) {
1200 TRACE_GENERIC_IC(isolate(), "KeyedLoadIC", "set generic");
1203 TRACE_IC("LoadIC", key);
1206 if (!load_handle.is_null()) return load_handle;
1207 Handle<Object> result;
1208 ASSIGN_RETURN_ON_EXCEPTION(isolate(), result,
1209 Runtime::GetObjectProperty(isolate(), object, key),
1215 bool StoreIC::LookupForWrite(LookupIterator* it, Handle<Object> value,
1216 JSReceiver::StoreFromKeyed store_mode) {
1217 // Disable ICs for non-JSObjects for now.
1218 Handle<Object> receiver = it->GetReceiver();
1219 if (!receiver->IsJSObject()) return false;
1220 DCHECK(!Handle<JSObject>::cast(receiver)->map()->is_deprecated());
1222 for (; it->IsFound(); it->Next()) {
1223 switch (it->state()) {
1224 case LookupIterator::NOT_FOUND:
1225 case LookupIterator::TRANSITION:
1227 case LookupIterator::JSPROXY:
1229 case LookupIterator::INTERCEPTOR: {
1230 Handle<JSObject> holder = it->GetHolder<JSObject>();
1231 InterceptorInfo* info = holder->GetNamedInterceptor();
1232 if (it->HolderIsReceiverOrHiddenPrototype()) {
1233 if (!info->setter()->IsUndefined()) return true;
1234 } else if (!info->getter()->IsUndefined() ||
1235 !info->query()->IsUndefined()) {
1240 case LookupIterator::ACCESS_CHECK:
1241 if (it->GetHolder<JSObject>()->IsAccessCheckNeeded()) return false;
1243 case LookupIterator::PROPERTY:
1244 if (!it->HasProperty()) break;
1245 if (it->IsReadOnly()) return false;
1246 if (it->property_kind() == LookupIterator::ACCESSOR) return true;
1247 if (it->GetHolder<Object>().is_identical_to(receiver)) {
1248 it->PrepareForDataProperty(value);
1249 // The previous receiver map might just have been deprecated,
1251 update_receiver_type(receiver);
1255 // Receiver != holder.
1256 if (receiver->IsJSGlobalProxy()) {
1257 PrototypeIterator iter(it->isolate(), receiver);
1258 return it->GetHolder<Object>().is_identical_to(
1259 PrototypeIterator::GetCurrent(iter));
1262 it->PrepareTransitionToDataProperty(value, NONE, store_mode);
1263 return it->IsCacheableTransition();
1267 it->PrepareTransitionToDataProperty(value, NONE, store_mode);
1268 return it->IsCacheableTransition();
1272 MaybeHandle<Object> StoreIC::Store(Handle<Object> object, Handle<Name> name,
1273 Handle<Object> value,
1274 JSReceiver::StoreFromKeyed store_mode) {
1275 // TODO(verwaest): Let SetProperty do the migration, since storing a property
1276 // might deprecate the current map again, if value does not fit.
1277 if (MigrateDeprecated(object) || object->IsJSProxy()) {
1278 Handle<Object> result;
1279 ASSIGN_RETURN_ON_EXCEPTION(
1281 Object::SetProperty(object, name, value, strict_mode()), Object);
1285 // If the object is undefined or null it's illegal to try to set any
1286 // properties on it; throw a TypeError in that case.
1287 if (object->IsUndefined() || object->IsNull()) {
1288 return TypeError("non_object_property_store", object, name);
1291 // Check if the given name is an array index.
1293 if (name->AsArrayIndex(&index)) {
1294 // Ignore other stores where the receiver is not a JSObject.
1295 // TODO(1475): Must check prototype chains of object wrappers.
1296 if (!object->IsJSObject()) return value;
1297 Handle<JSObject> receiver = Handle<JSObject>::cast(object);
1299 Handle<Object> result;
1300 ASSIGN_RETURN_ON_EXCEPTION(
1302 JSObject::SetElement(receiver, index, value, NONE, strict_mode()),
1307 // Observed objects are always modified through the runtime.
1308 if (object->IsHeapObject() &&
1309 Handle<HeapObject>::cast(object)->map()->is_observed()) {
1310 Handle<Object> result;
1311 ASSIGN_RETURN_ON_EXCEPTION(
1313 Object::SetProperty(object, name, value, strict_mode(), store_mode),
1318 LookupIterator it(object, name);
1319 if (FLAG_use_ic) UpdateCaches(&it, value, store_mode);
1321 // Set the property.
1322 Handle<Object> result;
1323 ASSIGN_RETURN_ON_EXCEPTION(
1325 Object::SetProperty(&it, value, strict_mode(), store_mode), Object);
1330 OStream& operator<<(OStream& os, const CallIC::State& s) {
1331 return os << "(args(" << s.arg_count() << "), "
1332 << (s.call_type() == CallIC::METHOD ? "METHOD" : "FUNCTION")
1337 Handle<Code> CallIC::initialize_stub(Isolate* isolate, int argc,
1338 CallType call_type) {
1339 CallICStub stub(isolate, State(argc, call_type));
1340 Handle<Code> code = stub.GetCode();
1345 Handle<Code> StoreIC::initialize_stub(Isolate* isolate,
1346 StrictMode strict_mode) {
1347 ExtraICState extra_state = ComputeExtraICState(strict_mode);
1349 PropertyICCompiler::ComputeStore(isolate, UNINITIALIZED, extra_state);
1354 Handle<Code> StoreIC::megamorphic_stub() {
1355 return PropertyICCompiler::ComputeStore(isolate(), MEGAMORPHIC,
1360 Handle<Code> StoreIC::generic_stub() const {
1361 return PropertyICCompiler::ComputeStore(isolate(), GENERIC, extra_ic_state());
1365 Handle<Code> StoreIC::pre_monomorphic_stub(Isolate* isolate,
1366 StrictMode strict_mode) {
1367 ExtraICState state = ComputeExtraICState(strict_mode);
1368 return PropertyICCompiler::ComputeStore(isolate, PREMONOMORPHIC, state);
1372 void StoreIC::UpdateCaches(LookupIterator* lookup, Handle<Object> value,
1373 JSReceiver::StoreFromKeyed store_mode) {
1374 if (state() == UNINITIALIZED) {
1375 // This is the first time we execute this inline cache. Set the target to
1376 // the pre monomorphic stub to delay setting the monomorphic state.
1377 set_target(*pre_monomorphic_stub());
1378 TRACE_IC("StoreIC", lookup->name());
1382 Handle<Code> code = LookupForWrite(lookup, value, store_mode)
1383 ? ComputeHandler(lookup, value)
1386 PatchCache(lookup->name(), code);
1387 TRACE_IC("StoreIC", lookup->name());
1391 Handle<Code> StoreIC::CompileHandler(LookupIterator* lookup,
1392 Handle<Object> value,
1393 CacheHolderFlag cache_holder) {
1394 DCHECK_NE(LookupIterator::JSPROXY, lookup->state());
1396 // This is currently guaranteed by checks in StoreIC::Store.
1397 Handle<JSObject> receiver = Handle<JSObject>::cast(lookup->GetReceiver());
1398 Handle<JSObject> holder = lookup->GetHolder<JSObject>();
1399 DCHECK(!receiver->IsAccessCheckNeeded());
1401 // -------------- Transition --------------
1402 if (lookup->state() == LookupIterator::TRANSITION) {
1403 Handle<Map> transition = lookup->transition_map();
1404 // Currently not handled by CompileStoreTransition.
1405 if (!holder->HasFastProperties()) return slow_stub();
1407 DCHECK(lookup->IsCacheableTransition());
1408 NamedStoreHandlerCompiler compiler(isolate(), receiver_type(), holder);
1409 return compiler.CompileStoreTransition(transition, lookup->name());
1412 // -------------- Interceptors --------------
1413 if (lookup->state() == LookupIterator::INTERCEPTOR) {
1414 DCHECK(!holder->GetNamedInterceptor()->setter()->IsUndefined());
1415 NamedStoreHandlerCompiler compiler(isolate(), receiver_type(), holder);
1416 return compiler.CompileStoreInterceptor(lookup->name());
1419 // -------------- Accessors --------------
1420 DCHECK(lookup->state() == LookupIterator::PROPERTY);
1421 if (lookup->property_kind() == LookupIterator::ACCESSOR) {
1422 if (!holder->HasFastProperties()) return slow_stub();
1423 Handle<Object> accessors = lookup->GetAccessors();
1424 if (accessors->IsExecutableAccessorInfo()) {
1425 Handle<ExecutableAccessorInfo> info =
1426 Handle<ExecutableAccessorInfo>::cast(accessors);
1427 if (v8::ToCData<Address>(info->setter()) == 0) return slow_stub();
1428 if (!ExecutableAccessorInfo::IsCompatibleReceiverType(isolate(), info,
1432 NamedStoreHandlerCompiler compiler(isolate(), receiver_type(), holder);
1433 return compiler.CompileStoreCallback(receiver, lookup->name(), info);
1434 } else if (accessors->IsAccessorPair()) {
1435 Handle<Object> setter(Handle<AccessorPair>::cast(accessors)->setter(),
1437 if (!setter->IsJSFunction()) return slow_stub();
1438 Handle<JSFunction> function = Handle<JSFunction>::cast(setter);
1439 CallOptimization call_optimization(function);
1440 NamedStoreHandlerCompiler compiler(isolate(), receiver_type(), holder);
1441 if (call_optimization.is_simple_api_call() &&
1442 call_optimization.IsCompatibleReceiver(receiver, holder)) {
1443 return compiler.CompileStoreCallback(receiver, lookup->name(),
1446 return compiler.CompileStoreViaSetter(receiver, lookup->name(),
1447 Handle<JSFunction>::cast(setter));
1449 // TODO(dcarney): Handle correctly.
1450 DCHECK(accessors->IsDeclaredAccessorInfo());
1454 // -------------- Dictionary properties --------------
1455 DCHECK(lookup->property_kind() == LookupIterator::DATA);
1456 if (lookup->property_encoding() == LookupIterator::DICTIONARY) {
1457 if (holder->IsGlobalObject()) {
1458 Handle<PropertyCell> cell = lookup->GetPropertyCell();
1459 Handle<HeapType> union_type = PropertyCell::UpdatedType(cell, value);
1460 StoreGlobalStub stub(isolate(), union_type->IsConstant(),
1461 receiver->IsJSGlobalProxy());
1462 Handle<Code> code = stub.GetCodeCopyFromTemplate(
1463 Handle<GlobalObject>::cast(holder), cell);
1464 // TODO(verwaest): Move caching of these NORMAL stubs outside as well.
1465 HeapObject::UpdateMapCodeCache(receiver, lookup->name(), code);
1468 DCHECK(holder.is_identical_to(receiver));
1469 return isolate()->builtins()->StoreIC_Normal();
1472 // -------------- Fields --------------
1473 DCHECK(lookup->property_encoding() == LookupIterator::DESCRIPTOR);
1474 if (lookup->property_details().type() == FIELD) {
1475 bool use_stub = true;
1476 if (lookup->representation().IsHeapObject()) {
1477 // Only use a generic stub if no types need to be tracked.
1478 Handle<HeapType> field_type = lookup->GetFieldType();
1479 HeapType::Iterator<Map> it = field_type->Classes();
1480 use_stub = it.Done();
1483 StoreFieldStub stub(isolate(), lookup->GetFieldIndex(),
1484 lookup->representation());
1485 return stub.GetCode();
1487 NamedStoreHandlerCompiler compiler(isolate(), receiver_type(), holder);
1488 return compiler.CompileStoreField(lookup);
1491 // -------------- Constant properties --------------
1492 DCHECK(lookup->property_details().type() == CONSTANT);
1497 Handle<Code> KeyedStoreIC::StoreElementStub(Handle<JSObject> receiver,
1498 KeyedAccessStoreMode store_mode) {
1499 // Don't handle megamorphic property accesses for INTERCEPTORS or CALLBACKS
1500 // via megamorphic stubs, since they don't have a map in their relocation info
1501 // and so the stubs can't be harvested for the object needed for a map check.
1502 if (target()->type() != Code::NORMAL) {
1503 TRACE_GENERIC_IC(isolate(), "KeyedIC", "non-NORMAL target type");
1504 return generic_stub();
1507 Handle<Map> receiver_map(receiver->map(), isolate());
1508 MapHandleList target_receiver_maps;
1509 TargetMaps(&target_receiver_maps);
1510 if (target_receiver_maps.length() == 0) {
1511 Handle<Map> monomorphic_map =
1512 ComputeTransitionedMap(receiver_map, store_mode);
1513 store_mode = GetNonTransitioningStoreMode(store_mode);
1514 return PropertyICCompiler::ComputeKeyedStoreMonomorphic(
1515 monomorphic_map, strict_mode(), store_mode);
1518 // There are several special cases where an IC that is MONOMORPHIC can still
1519 // transition to a different GetNonTransitioningStoreMode IC that handles a
1520 // superset of the original IC. Handle those here if the receiver map hasn't
1521 // changed or it has transitioned to a more general kind.
1522 KeyedAccessStoreMode old_store_mode =
1523 KeyedStoreIC::GetKeyedAccessStoreMode(target()->extra_ic_state());
1524 Handle<Map> previous_receiver_map = target_receiver_maps.at(0);
1525 if (state() == MONOMORPHIC) {
1526 Handle<Map> transitioned_receiver_map = receiver_map;
1527 if (IsTransitionStoreMode(store_mode)) {
1528 transitioned_receiver_map =
1529 ComputeTransitionedMap(receiver_map, store_mode);
1531 if ((receiver_map.is_identical_to(previous_receiver_map) &&
1532 IsTransitionStoreMode(store_mode)) ||
1533 IsTransitionOfMonomorphicTarget(*previous_receiver_map,
1534 *transitioned_receiver_map)) {
1535 // If the "old" and "new" maps are in the same elements map family, or
1536 // if they at least come from the same origin for a transitioning store,
1537 // stay MONOMORPHIC and use the map for the most generic ElementsKind.
1538 store_mode = GetNonTransitioningStoreMode(store_mode);
1539 return PropertyICCompiler::ComputeKeyedStoreMonomorphic(
1540 transitioned_receiver_map, strict_mode(), store_mode);
1541 } else if (*previous_receiver_map == receiver->map() &&
1542 old_store_mode == STANDARD_STORE &&
1543 (store_mode == STORE_AND_GROW_NO_TRANSITION ||
1544 store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS ||
1545 store_mode == STORE_NO_TRANSITION_HANDLE_COW)) {
1546 // A "normal" IC that handles stores can switch to a version that can
1547 // grow at the end of the array, handle OOB accesses or copy COW arrays
1548 // and still stay MONOMORPHIC.
1549 return PropertyICCompiler::ComputeKeyedStoreMonomorphic(
1550 receiver_map, strict_mode(), store_mode);
1554 DCHECK(state() != GENERIC);
1557 AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map);
1559 if (IsTransitionStoreMode(store_mode)) {
1560 Handle<Map> transitioned_receiver_map =
1561 ComputeTransitionedMap(receiver_map, store_mode);
1562 map_added |= AddOneReceiverMapIfMissing(&target_receiver_maps,
1563 transitioned_receiver_map);
1567 // If the miss wasn't due to an unseen map, a polymorphic stub
1568 // won't help, use the generic stub.
1569 TRACE_GENERIC_IC(isolate(), "KeyedIC", "same map added twice");
1570 return generic_stub();
1573 // If the maximum number of receiver maps has been exceeded, use the generic
1574 // version of the IC.
1575 if (target_receiver_maps.length() > kMaxKeyedPolymorphism) {
1576 TRACE_GENERIC_IC(isolate(), "KeyedIC", "max polymorph exceeded");
1577 return generic_stub();
1580 // Make sure all polymorphic handlers have the same store mode, otherwise the
1581 // generic stub must be used.
1582 store_mode = GetNonTransitioningStoreMode(store_mode);
1583 if (old_store_mode != STANDARD_STORE) {
1584 if (store_mode == STANDARD_STORE) {
1585 store_mode = old_store_mode;
1586 } else if (store_mode != old_store_mode) {
1587 TRACE_GENERIC_IC(isolate(), "KeyedIC", "store mode mismatch");
1588 return generic_stub();
1592 // If the store mode isn't the standard mode, make sure that all polymorphic
1593 // receivers are either external arrays, or all "normal" arrays. Otherwise,
1594 // use the generic stub.
1595 if (store_mode != STANDARD_STORE) {
1596 int external_arrays = 0;
1597 for (int i = 0; i < target_receiver_maps.length(); ++i) {
1598 if (target_receiver_maps[i]->has_external_array_elements() ||
1599 target_receiver_maps[i]->has_fixed_typed_array_elements()) {
1603 if (external_arrays != 0 &&
1604 external_arrays != target_receiver_maps.length()) {
1605 TRACE_GENERIC_IC(isolate(), "KeyedIC",
1606 "unsupported combination of external and normal arrays");
1607 return generic_stub();
1611 return PropertyICCompiler::ComputeKeyedStorePolymorphic(
1612 &target_receiver_maps, store_mode, strict_mode());
1616 Handle<Map> KeyedStoreIC::ComputeTransitionedMap(
1617 Handle<Map> map, KeyedAccessStoreMode store_mode) {
1618 switch (store_mode) {
1619 case STORE_TRANSITION_SMI_TO_OBJECT:
1620 case STORE_TRANSITION_DOUBLE_TO_OBJECT:
1621 case STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT:
1622 case STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT:
1623 return Map::TransitionElementsTo(map, FAST_ELEMENTS);
1624 case STORE_TRANSITION_SMI_TO_DOUBLE:
1625 case STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE:
1626 return Map::TransitionElementsTo(map, FAST_DOUBLE_ELEMENTS);
1627 case STORE_TRANSITION_HOLEY_SMI_TO_OBJECT:
1628 case STORE_TRANSITION_HOLEY_DOUBLE_TO_OBJECT:
1629 case STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_OBJECT:
1630 case STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT:
1631 return Map::TransitionElementsTo(map, FAST_HOLEY_ELEMENTS);
1632 case STORE_TRANSITION_HOLEY_SMI_TO_DOUBLE:
1633 case STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_DOUBLE:
1634 return Map::TransitionElementsTo(map, FAST_HOLEY_DOUBLE_ELEMENTS);
1635 case STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS:
1636 DCHECK(map->has_external_array_elements());
1638 case STORE_NO_TRANSITION_HANDLE_COW:
1639 case STANDARD_STORE:
1640 case STORE_AND_GROW_NO_TRANSITION:
1644 return MaybeHandle<Map>().ToHandleChecked();
1648 bool IsOutOfBoundsAccess(Handle<JSObject> receiver, int index) {
1649 if (receiver->IsJSArray()) {
1650 return JSArray::cast(*receiver)->length()->IsSmi() &&
1651 index >= Smi::cast(JSArray::cast(*receiver)->length())->value();
1653 return index >= receiver->elements()->length();
1657 KeyedAccessStoreMode KeyedStoreIC::GetStoreMode(Handle<JSObject> receiver,
1659 Handle<Object> value) {
1660 Handle<Smi> smi_key = Object::ToSmi(isolate(), key).ToHandleChecked();
1661 int index = smi_key->value();
1662 bool oob_access = IsOutOfBoundsAccess(receiver, index);
1663 // Don't consider this a growing store if the store would send the receiver to
1665 bool allow_growth = receiver->IsJSArray() && oob_access &&
1666 !receiver->WouldConvertToSlowElements(key);
1668 // Handle growing array in stub if necessary.
1669 if (receiver->HasFastSmiElements()) {
1670 if (value->IsHeapNumber()) {
1671 if (receiver->HasFastHoleyElements()) {
1672 return STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_DOUBLE;
1674 return STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE;
1677 if (value->IsHeapObject()) {
1678 if (receiver->HasFastHoleyElements()) {
1679 return STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_OBJECT;
1681 return STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT;
1684 } else if (receiver->HasFastDoubleElements()) {
1685 if (!value->IsSmi() && !value->IsHeapNumber()) {
1686 if (receiver->HasFastHoleyElements()) {
1687 return STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT;
1689 return STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT;
1693 return STORE_AND_GROW_NO_TRANSITION;
1695 // Handle only in-bounds elements accesses.
1696 if (receiver->HasFastSmiElements()) {
1697 if (value->IsHeapNumber()) {
1698 if (receiver->HasFastHoleyElements()) {
1699 return STORE_TRANSITION_HOLEY_SMI_TO_DOUBLE;
1701 return STORE_TRANSITION_SMI_TO_DOUBLE;
1703 } else if (value->IsHeapObject()) {
1704 if (receiver->HasFastHoleyElements()) {
1705 return STORE_TRANSITION_HOLEY_SMI_TO_OBJECT;
1707 return STORE_TRANSITION_SMI_TO_OBJECT;
1710 } else if (receiver->HasFastDoubleElements()) {
1711 if (!value->IsSmi() && !value->IsHeapNumber()) {
1712 if (receiver->HasFastHoleyElements()) {
1713 return STORE_TRANSITION_HOLEY_DOUBLE_TO_OBJECT;
1715 return STORE_TRANSITION_DOUBLE_TO_OBJECT;
1719 if (!FLAG_trace_external_array_abuse &&
1720 receiver->map()->has_external_array_elements() && oob_access) {
1721 return STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS;
1723 Heap* heap = receiver->GetHeap();
1724 if (receiver->elements()->map() == heap->fixed_cow_array_map()) {
1725 return STORE_NO_TRANSITION_HANDLE_COW;
1727 return STANDARD_STORE;
1733 MaybeHandle<Object> KeyedStoreIC::Store(Handle<Object> object,
1735 Handle<Object> value) {
1736 // TODO(verwaest): Let SetProperty do the migration, since storing a property
1737 // might deprecate the current map again, if value does not fit.
1738 if (MigrateDeprecated(object)) {
1739 Handle<Object> result;
1740 ASSIGN_RETURN_ON_EXCEPTION(
1741 isolate(), result, Runtime::SetObjectProperty(isolate(), object, key,
1742 value, strict_mode()),
1747 // Check for non-string values that can be converted into an
1748 // internalized string directly or is representable as a smi.
1749 key = TryConvertKey(key, isolate());
1751 Handle<Object> store_handle;
1752 Handle<Code> stub = generic_stub();
1754 if (key->IsInternalizedString()) {
1755 ASSIGN_RETURN_ON_EXCEPTION(
1756 isolate(), store_handle,
1757 StoreIC::Store(object, Handle<String>::cast(key), value,
1758 JSReceiver::MAY_BE_STORE_FROM_KEYED),
1760 TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "set generic");
1762 return store_handle;
1766 FLAG_use_ic && !object->IsStringWrapper() &&
1767 !object->IsAccessCheckNeeded() && !object->IsJSGlobalProxy() &&
1768 !(object->IsJSObject() && JSObject::cast(*object)->map()->is_observed());
1769 if (use_ic && !object->IsSmi()) {
1770 // Don't use ICs for maps of the objects in Array's prototype chain. We
1771 // expect to be able to trap element sets to objects with those maps in
1772 // the runtime to enable optimization of element hole access.
1773 Handle<HeapObject> heap_object = Handle<HeapObject>::cast(object);
1774 if (heap_object->map()->IsMapInArrayPrototypeChain()) use_ic = false;
1778 DCHECK(!object->IsAccessCheckNeeded());
1780 if (object->IsJSObject()) {
1781 Handle<JSObject> receiver = Handle<JSObject>::cast(object);
1782 bool key_is_smi_like = !Object::ToSmi(isolate(), key).is_null();
1783 if (receiver->elements()->map() ==
1784 isolate()->heap()->sloppy_arguments_elements_map()) {
1785 if (strict_mode() == SLOPPY) {
1786 stub = sloppy_arguments_stub();
1788 } else if (key_is_smi_like &&
1789 !(target().is_identical_to(sloppy_arguments_stub()))) {
1790 // We should go generic if receiver isn't a dictionary, but our
1791 // prototype chain does have dictionary elements. This ensures that
1792 // other non-dictionary receivers in the polymorphic case benefit
1793 // from fast path keyed stores.
1794 if (!(receiver->map()->DictionaryElementsInPrototypeChainOnly())) {
1795 KeyedAccessStoreMode store_mode = GetStoreMode(receiver, key, value);
1796 stub = StoreElementStub(receiver, store_mode);
1802 if (store_handle.is_null()) {
1803 ASSIGN_RETURN_ON_EXCEPTION(
1804 isolate(), store_handle,
1805 Runtime::SetObjectProperty(isolate(), object, key, value,
1810 DCHECK(!is_target_set());
1811 Code* generic = *generic_stub();
1812 if (*stub == generic) {
1813 TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "set generic");
1815 DCHECK(!stub.is_null());
1817 TRACE_IC("StoreIC", key);
1819 return store_handle;
1823 CallIC::State::State(ExtraICState extra_ic_state)
1824 : argc_(ArgcBits::decode(extra_ic_state)),
1825 call_type_(CallTypeBits::decode(extra_ic_state)) {}
1828 ExtraICState CallIC::State::GetExtraICState() const {
1829 ExtraICState extra_ic_state =
1830 ArgcBits::encode(argc_) | CallTypeBits::encode(call_type_);
1831 return extra_ic_state;
1835 bool CallIC::DoCustomHandler(Handle<Object> receiver, Handle<Object> function,
1836 Handle<FixedArray> vector, Handle<Smi> slot,
1837 const State& state) {
1838 DCHECK(FLAG_use_ic && function->IsJSFunction());
1840 // Are we the array function?
1841 Handle<JSFunction> array_function =
1842 Handle<JSFunction>(isolate()->native_context()->array_function());
1843 if (array_function.is_identical_to(Handle<JSFunction>::cast(function))) {
1845 IC::State old_state = FeedbackToState(vector, slot);
1846 Object* feedback = vector->get(slot->value());
1847 if (!feedback->IsAllocationSite()) {
1848 Handle<AllocationSite> new_site =
1849 isolate()->factory()->NewAllocationSite();
1850 vector->set(slot->value(), *new_site);
1853 CallIC_ArrayStub stub(isolate(), state);
1854 set_target(*stub.GetCode());
1855 Handle<String> name;
1856 if (array_function->shared()->name()->IsString()) {
1857 name = Handle<String>(String::cast(array_function->shared()->name()),
1861 IC::State new_state = FeedbackToState(vector, slot);
1862 OnTypeFeedbackChanged(isolate(), address(), old_state, new_state, true);
1863 TRACE_VECTOR_IC("CallIC (custom handler)", name, old_state, new_state);
1870 void CallIC::PatchMegamorphic(Handle<Object> function,
1871 Handle<FixedArray> vector, Handle<Smi> slot) {
1872 State state(target()->extra_ic_state());
1873 IC::State old_state = FeedbackToState(vector, slot);
1875 // We are going generic.
1876 vector->set(slot->value(), *TypeFeedbackInfo::MegamorphicSentinel(isolate()),
1877 SKIP_WRITE_BARRIER);
1879 CallICStub stub(isolate(), state);
1880 Handle<Code> code = stub.GetCode();
1883 Handle<Object> name = isolate()->factory()->empty_string();
1884 if (function->IsJSFunction()) {
1885 Handle<JSFunction> js_function = Handle<JSFunction>::cast(function);
1886 name = handle(js_function->shared()->name(), isolate());
1889 IC::State new_state = FeedbackToState(vector, slot);
1890 OnTypeFeedbackChanged(isolate(), address(), old_state, new_state, true);
1891 TRACE_VECTOR_IC("CallIC", name, old_state, new_state);
1895 void CallIC::HandleMiss(Handle<Object> receiver, Handle<Object> function,
1896 Handle<FixedArray> vector, Handle<Smi> slot) {
1897 State state(target()->extra_ic_state());
1898 IC::State old_state = FeedbackToState(vector, slot);
1899 Handle<Object> name = isolate()->factory()->empty_string();
1900 Object* feedback = vector->get(slot->value());
1902 // Hand-coded MISS handling is easier if CallIC slots don't contain smis.
1903 DCHECK(!feedback->IsSmi());
1905 if (feedback->IsJSFunction() || !function->IsJSFunction()) {
1906 // We are going generic.
1907 vector->set(slot->value(),
1908 *TypeFeedbackInfo::MegamorphicSentinel(isolate()),
1909 SKIP_WRITE_BARRIER);
1911 // The feedback is either uninitialized or an allocation site.
1912 // It might be an allocation site because if we re-compile the full code
1913 // to add deoptimization support, we call with the default call-ic, and
1914 // merely need to patch the target to match the feedback.
1915 // TODO(mvstanton): the better approach is to dispense with patching
1916 // altogether, which is in progress.
1917 DCHECK(feedback == *TypeFeedbackInfo::UninitializedSentinel(isolate()) ||
1918 feedback->IsAllocationSite());
1920 // Do we want to install a custom handler?
1922 DoCustomHandler(receiver, function, vector, slot, state)) {
1926 vector->set(slot->value(), *function);
1929 if (function->IsJSFunction()) {
1930 Handle<JSFunction> js_function = Handle<JSFunction>::cast(function);
1931 name = handle(js_function->shared()->name(), isolate());
1934 IC::State new_state = FeedbackToState(vector, slot);
1935 OnTypeFeedbackChanged(isolate(), address(), old_state, new_state, true);
1936 TRACE_VECTOR_IC("CallIC", name, old_state, new_state);
1943 // ----------------------------------------------------------------------------
1944 // Static IC stub generators.
1947 // Used from ic-<arch>.cc.
1948 RUNTIME_FUNCTION(CallIC_Miss) {
1949 TimerEventScope<TimerEventIcMiss> timer(isolate);
1950 HandleScope scope(isolate);
1951 DCHECK(args.length() == 4);
1953 Handle<Object> receiver = args.at<Object>(0);
1954 Handle<Object> function = args.at<Object>(1);
1955 Handle<FixedArray> vector = args.at<FixedArray>(2);
1956 Handle<Smi> slot = args.at<Smi>(3);
1957 ic.HandleMiss(receiver, function, vector, slot);
1962 RUNTIME_FUNCTION(CallIC_Customization_Miss) {
1963 TimerEventScope<TimerEventIcMiss> timer(isolate);
1964 HandleScope scope(isolate);
1965 DCHECK(args.length() == 4);
1966 // A miss on a custom call ic always results in going megamorphic.
1968 Handle<Object> function = args.at<Object>(1);
1969 Handle<FixedArray> vector = args.at<FixedArray>(2);
1970 Handle<Smi> slot = args.at<Smi>(3);
1971 ic.PatchMegamorphic(function, vector, slot);
1976 // Used from ic-<arch>.cc.
1977 RUNTIME_FUNCTION(LoadIC_Miss) {
1978 TimerEventScope<TimerEventIcMiss> timer(isolate);
1979 HandleScope scope(isolate);
1980 DCHECK(args.length() == 2);
1981 LoadIC ic(IC::NO_EXTRA_FRAME, isolate);
1982 Handle<Object> receiver = args.at<Object>(0);
1983 Handle<Name> key = args.at<Name>(1);
1984 ic.UpdateState(receiver, key);
1985 Handle<Object> result;
1986 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, ic.Load(receiver, key));
1991 // Used from ic-<arch>.cc
1992 RUNTIME_FUNCTION(KeyedLoadIC_Miss) {
1993 TimerEventScope<TimerEventIcMiss> timer(isolate);
1994 HandleScope scope(isolate);
1995 DCHECK(args.length() == 2);
1996 KeyedLoadIC ic(IC::NO_EXTRA_FRAME, isolate);
1997 Handle<Object> receiver = args.at<Object>(0);
1998 Handle<Object> key = args.at<Object>(1);
1999 ic.UpdateState(receiver, key);
2000 Handle<Object> result;
2001 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, ic.Load(receiver, key));
2006 RUNTIME_FUNCTION(KeyedLoadIC_MissFromStubFailure) {
2007 TimerEventScope<TimerEventIcMiss> timer(isolate);
2008 HandleScope scope(isolate);
2009 DCHECK(args.length() == 2);
2010 KeyedLoadIC ic(IC::EXTRA_CALL_FRAME, isolate);
2011 Handle<Object> receiver = args.at<Object>(0);
2012 Handle<Object> key = args.at<Object>(1);
2013 ic.UpdateState(receiver, key);
2014 Handle<Object> result;
2015 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, ic.Load(receiver, key));
2020 // Used from ic-<arch>.cc.
2021 RUNTIME_FUNCTION(StoreIC_Miss) {
2022 TimerEventScope<TimerEventIcMiss> timer(isolate);
2023 HandleScope scope(isolate);
2024 DCHECK(args.length() == 3);
2025 StoreIC ic(IC::NO_EXTRA_FRAME, isolate);
2026 Handle<Object> receiver = args.at<Object>(0);
2027 Handle<String> key = args.at<String>(1);
2028 ic.UpdateState(receiver, key);
2029 Handle<Object> result;
2030 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2031 isolate, result, ic.Store(receiver, key, args.at<Object>(2)));
2036 RUNTIME_FUNCTION(StoreIC_MissFromStubFailure) {
2037 TimerEventScope<TimerEventIcMiss> timer(isolate);
2038 HandleScope scope(isolate);
2039 DCHECK(args.length() == 3);
2040 StoreIC ic(IC::EXTRA_CALL_FRAME, isolate);
2041 Handle<Object> receiver = args.at<Object>(0);
2042 Handle<String> key = args.at<String>(1);
2043 ic.UpdateState(receiver, key);
2044 Handle<Object> result;
2045 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2046 isolate, result, ic.Store(receiver, key, args.at<Object>(2)));
2051 // Extend storage is called in a store inline cache when
2052 // it is necessary to extend the properties array of a
2054 RUNTIME_FUNCTION(SharedStoreIC_ExtendStorage) {
2055 TimerEventScope<TimerEventIcMiss> timer(isolate);
2056 HandleScope shs(isolate);
2057 DCHECK(args.length() == 3);
2059 // Convert the parameters
2060 Handle<JSObject> object = args.at<JSObject>(0);
2061 Handle<Map> transition = args.at<Map>(1);
2062 Handle<Object> value = args.at<Object>(2);
2064 // Check the object has run out out property space.
2065 DCHECK(object->HasFastProperties());
2066 DCHECK(object->map()->unused_property_fields() == 0);
2068 JSObject::MigrateToNewProperty(object, transition, value);
2070 // Return the stored value.
2075 // Used from ic-<arch>.cc.
2076 RUNTIME_FUNCTION(KeyedStoreIC_Miss) {
2077 TimerEventScope<TimerEventIcMiss> timer(isolate);
2078 HandleScope scope(isolate);
2079 DCHECK(args.length() == 3);
2080 KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate);
2081 Handle<Object> receiver = args.at<Object>(0);
2082 Handle<Object> key = args.at<Object>(1);
2083 ic.UpdateState(receiver, key);
2084 Handle<Object> result;
2085 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2086 isolate, result, ic.Store(receiver, key, args.at<Object>(2)));
2091 RUNTIME_FUNCTION(KeyedStoreIC_MissFromStubFailure) {
2092 TimerEventScope<TimerEventIcMiss> timer(isolate);
2093 HandleScope scope(isolate);
2094 DCHECK(args.length() == 3);
2095 KeyedStoreIC ic(IC::EXTRA_CALL_FRAME, isolate);
2096 Handle<Object> receiver = args.at<Object>(0);
2097 Handle<Object> key = args.at<Object>(1);
2098 ic.UpdateState(receiver, key);
2099 Handle<Object> result;
2100 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2101 isolate, result, ic.Store(receiver, key, args.at<Object>(2)));
2106 RUNTIME_FUNCTION(StoreIC_Slow) {
2107 HandleScope scope(isolate);
2108 DCHECK(args.length() == 3);
2109 StoreIC ic(IC::NO_EXTRA_FRAME, isolate);
2110 Handle<Object> object = args.at<Object>(0);
2111 Handle<Object> key = args.at<Object>(1);
2112 Handle<Object> value = args.at<Object>(2);
2113 StrictMode strict_mode = ic.strict_mode();
2114 Handle<Object> result;
2115 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2117 Runtime::SetObjectProperty(isolate, object, key, value, strict_mode));
2122 RUNTIME_FUNCTION(KeyedStoreIC_Slow) {
2123 HandleScope scope(isolate);
2124 DCHECK(args.length() == 3);
2125 KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate);
2126 Handle<Object> object = args.at<Object>(0);
2127 Handle<Object> key = args.at<Object>(1);
2128 Handle<Object> value = args.at<Object>(2);
2129 StrictMode strict_mode = ic.strict_mode();
2130 Handle<Object> result;
2131 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2133 Runtime::SetObjectProperty(isolate, object, key, value, strict_mode));
2138 RUNTIME_FUNCTION(ElementsTransitionAndStoreIC_Miss) {
2139 TimerEventScope<TimerEventIcMiss> timer(isolate);
2140 HandleScope scope(isolate);
2141 DCHECK(args.length() == 4);
2142 KeyedStoreIC ic(IC::EXTRA_CALL_FRAME, isolate);
2143 Handle<Object> value = args.at<Object>(0);
2144 Handle<Map> map = args.at<Map>(1);
2145 Handle<Object> key = args.at<Object>(2);
2146 Handle<Object> object = args.at<Object>(3);
2147 StrictMode strict_mode = ic.strict_mode();
2148 if (object->IsJSObject()) {
2149 JSObject::TransitionElementsKind(Handle<JSObject>::cast(object),
2150 map->elements_kind());
2152 Handle<Object> result;
2153 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2155 Runtime::SetObjectProperty(isolate, object, key, value, strict_mode));
2160 BinaryOpIC::State::State(Isolate* isolate, ExtraICState extra_ic_state)
2161 : isolate_(isolate) {
2163 static_cast<Token::Value>(FIRST_TOKEN + OpField::decode(extra_ic_state));
2164 mode_ = OverwriteModeField::decode(extra_ic_state);
2166 Maybe<int>(HasFixedRightArgField::decode(extra_ic_state),
2167 1 << FixedRightArgValueField::decode(extra_ic_state));
2168 left_kind_ = LeftKindField::decode(extra_ic_state);
2169 if (fixed_right_arg_.has_value) {
2170 right_kind_ = Smi::IsValid(fixed_right_arg_.value) ? SMI : INT32;
2172 right_kind_ = RightKindField::decode(extra_ic_state);
2174 result_kind_ = ResultKindField::decode(extra_ic_state);
2175 DCHECK_LE(FIRST_TOKEN, op_);
2176 DCHECK_LE(op_, LAST_TOKEN);
2180 ExtraICState BinaryOpIC::State::GetExtraICState() const {
2181 ExtraICState extra_ic_state =
2182 OpField::encode(op_ - FIRST_TOKEN) | OverwriteModeField::encode(mode_) |
2183 LeftKindField::encode(left_kind_) |
2184 ResultKindField::encode(result_kind_) |
2185 HasFixedRightArgField::encode(fixed_right_arg_.has_value);
2186 if (fixed_right_arg_.has_value) {
2187 extra_ic_state = FixedRightArgValueField::update(
2188 extra_ic_state, WhichPowerOf2(fixed_right_arg_.value));
2190 extra_ic_state = RightKindField::update(extra_ic_state, right_kind_);
2192 return extra_ic_state;
2197 void BinaryOpIC::State::GenerateAheadOfTime(Isolate* isolate,
2198 void (*Generate)(Isolate*,
2200 // TODO(olivf) We should investigate why adding stubs to the snapshot is so
2201 // expensive at runtime. When solved we should be able to add most binops to
2202 // the snapshot instead of hand-picking them.
2203 // Generated list of commonly used stubs
2204 #define GENERATE(op, left_kind, right_kind, result_kind, mode) \
2206 State state(isolate, op, mode); \
2207 state.left_kind_ = left_kind; \
2208 state.fixed_right_arg_.has_value = false; \
2209 state.right_kind_ = right_kind; \
2210 state.result_kind_ = result_kind; \
2211 Generate(isolate, state); \
2213 GENERATE(Token::ADD, INT32, INT32, INT32, NO_OVERWRITE);
2214 GENERATE(Token::ADD, INT32, INT32, INT32, OVERWRITE_LEFT);
2215 GENERATE(Token::ADD, INT32, INT32, NUMBER, NO_OVERWRITE);
2216 GENERATE(Token::ADD, INT32, INT32, NUMBER, OVERWRITE_LEFT);
2217 GENERATE(Token::ADD, INT32, NUMBER, NUMBER, NO_OVERWRITE);
2218 GENERATE(Token::ADD, INT32, NUMBER, NUMBER, OVERWRITE_LEFT);
2219 GENERATE(Token::ADD, INT32, NUMBER, NUMBER, OVERWRITE_RIGHT);
2220 GENERATE(Token::ADD, INT32, SMI, INT32, NO_OVERWRITE);
2221 GENERATE(Token::ADD, INT32, SMI, INT32, OVERWRITE_LEFT);
2222 GENERATE(Token::ADD, INT32, SMI, INT32, OVERWRITE_RIGHT);
2223 GENERATE(Token::ADD, NUMBER, INT32, NUMBER, NO_OVERWRITE);
2224 GENERATE(Token::ADD, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
2225 GENERATE(Token::ADD, NUMBER, INT32, NUMBER, OVERWRITE_RIGHT);
2226 GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
2227 GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
2228 GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT);
2229 GENERATE(Token::ADD, NUMBER, SMI, NUMBER, NO_OVERWRITE);
2230 GENERATE(Token::ADD, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
2231 GENERATE(Token::ADD, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT);
2232 GENERATE(Token::ADD, SMI, INT32, INT32, NO_OVERWRITE);
2233 GENERATE(Token::ADD, SMI, INT32, INT32, OVERWRITE_LEFT);
2234 GENERATE(Token::ADD, SMI, INT32, NUMBER, NO_OVERWRITE);
2235 GENERATE(Token::ADD, SMI, NUMBER, NUMBER, NO_OVERWRITE);
2236 GENERATE(Token::ADD, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
2237 GENERATE(Token::ADD, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
2238 GENERATE(Token::ADD, SMI, SMI, INT32, OVERWRITE_LEFT);
2239 GENERATE(Token::ADD, SMI, SMI, SMI, OVERWRITE_RIGHT);
2240 GENERATE(Token::BIT_AND, INT32, INT32, INT32, NO_OVERWRITE);
2241 GENERATE(Token::BIT_AND, INT32, INT32, INT32, OVERWRITE_LEFT);
2242 GENERATE(Token::BIT_AND, INT32, INT32, INT32, OVERWRITE_RIGHT);
2243 GENERATE(Token::BIT_AND, INT32, INT32, SMI, NO_OVERWRITE);
2244 GENERATE(Token::BIT_AND, INT32, INT32, SMI, OVERWRITE_RIGHT);
2245 GENERATE(Token::BIT_AND, INT32, SMI, INT32, NO_OVERWRITE);
2246 GENERATE(Token::BIT_AND, INT32, SMI, INT32, OVERWRITE_RIGHT);
2247 GENERATE(Token::BIT_AND, INT32, SMI, SMI, NO_OVERWRITE);
2248 GENERATE(Token::BIT_AND, INT32, SMI, SMI, OVERWRITE_LEFT);
2249 GENERATE(Token::BIT_AND, INT32, SMI, SMI, OVERWRITE_RIGHT);
2250 GENERATE(Token::BIT_AND, NUMBER, INT32, INT32, OVERWRITE_RIGHT);
2251 GENERATE(Token::BIT_AND, NUMBER, SMI, SMI, NO_OVERWRITE);
2252 GENERATE(Token::BIT_AND, NUMBER, SMI, SMI, OVERWRITE_RIGHT);
2253 GENERATE(Token::BIT_AND, SMI, INT32, INT32, NO_OVERWRITE);
2254 GENERATE(Token::BIT_AND, SMI, INT32, SMI, OVERWRITE_RIGHT);
2255 GENERATE(Token::BIT_AND, SMI, NUMBER, SMI, OVERWRITE_RIGHT);
2256 GENERATE(Token::BIT_AND, SMI, SMI, SMI, NO_OVERWRITE);
2257 GENERATE(Token::BIT_AND, SMI, SMI, SMI, OVERWRITE_LEFT);
2258 GENERATE(Token::BIT_AND, SMI, SMI, SMI, OVERWRITE_RIGHT);
2259 GENERATE(Token::BIT_OR, INT32, INT32, INT32, OVERWRITE_LEFT);
2260 GENERATE(Token::BIT_OR, INT32, INT32, INT32, OVERWRITE_RIGHT);
2261 GENERATE(Token::BIT_OR, INT32, INT32, SMI, OVERWRITE_LEFT);
2262 GENERATE(Token::BIT_OR, INT32, SMI, INT32, NO_OVERWRITE);
2263 GENERATE(Token::BIT_OR, INT32, SMI, INT32, OVERWRITE_LEFT);
2264 GENERATE(Token::BIT_OR, INT32, SMI, INT32, OVERWRITE_RIGHT);
2265 GENERATE(Token::BIT_OR, INT32, SMI, SMI, NO_OVERWRITE);
2266 GENERATE(Token::BIT_OR, INT32, SMI, SMI, OVERWRITE_RIGHT);
2267 GENERATE(Token::BIT_OR, NUMBER, SMI, INT32, NO_OVERWRITE);
2268 GENERATE(Token::BIT_OR, NUMBER, SMI, INT32, OVERWRITE_LEFT);
2269 GENERATE(Token::BIT_OR, NUMBER, SMI, INT32, OVERWRITE_RIGHT);
2270 GENERATE(Token::BIT_OR, NUMBER, SMI, SMI, NO_OVERWRITE);
2271 GENERATE(Token::BIT_OR, NUMBER, SMI, SMI, OVERWRITE_LEFT);
2272 GENERATE(Token::BIT_OR, SMI, INT32, INT32, OVERWRITE_LEFT);
2273 GENERATE(Token::BIT_OR, SMI, INT32, INT32, OVERWRITE_RIGHT);
2274 GENERATE(Token::BIT_OR, SMI, INT32, SMI, OVERWRITE_RIGHT);
2275 GENERATE(Token::BIT_OR, SMI, SMI, SMI, OVERWRITE_LEFT);
2276 GENERATE(Token::BIT_OR, SMI, SMI, SMI, OVERWRITE_RIGHT);
2277 GENERATE(Token::BIT_XOR, INT32, INT32, INT32, NO_OVERWRITE);
2278 GENERATE(Token::BIT_XOR, INT32, INT32, INT32, OVERWRITE_LEFT);
2279 GENERATE(Token::BIT_XOR, INT32, INT32, INT32, OVERWRITE_RIGHT);
2280 GENERATE(Token::BIT_XOR, INT32, INT32, SMI, NO_OVERWRITE);
2281 GENERATE(Token::BIT_XOR, INT32, INT32, SMI, OVERWRITE_LEFT);
2282 GENERATE(Token::BIT_XOR, INT32, NUMBER, SMI, NO_OVERWRITE);
2283 GENERATE(Token::BIT_XOR, INT32, SMI, INT32, NO_OVERWRITE);
2284 GENERATE(Token::BIT_XOR, INT32, SMI, INT32, OVERWRITE_LEFT);
2285 GENERATE(Token::BIT_XOR, INT32, SMI, INT32, OVERWRITE_RIGHT);
2286 GENERATE(Token::BIT_XOR, NUMBER, INT32, INT32, NO_OVERWRITE);
2287 GENERATE(Token::BIT_XOR, NUMBER, SMI, INT32, NO_OVERWRITE);
2288 GENERATE(Token::BIT_XOR, NUMBER, SMI, SMI, NO_OVERWRITE);
2289 GENERATE(Token::BIT_XOR, SMI, INT32, INT32, NO_OVERWRITE);
2290 GENERATE(Token::BIT_XOR, SMI, INT32, INT32, OVERWRITE_LEFT);
2291 GENERATE(Token::BIT_XOR, SMI, INT32, SMI, OVERWRITE_LEFT);
2292 GENERATE(Token::BIT_XOR, SMI, SMI, SMI, NO_OVERWRITE);
2293 GENERATE(Token::BIT_XOR, SMI, SMI, SMI, OVERWRITE_LEFT);
2294 GENERATE(Token::BIT_XOR, SMI, SMI, SMI, OVERWRITE_RIGHT);
2295 GENERATE(Token::DIV, INT32, INT32, INT32, NO_OVERWRITE);
2296 GENERATE(Token::DIV, INT32, INT32, NUMBER, NO_OVERWRITE);
2297 GENERATE(Token::DIV, INT32, NUMBER, NUMBER, NO_OVERWRITE);
2298 GENERATE(Token::DIV, INT32, NUMBER, NUMBER, OVERWRITE_LEFT);
2299 GENERATE(Token::DIV, INT32, SMI, INT32, NO_OVERWRITE);
2300 GENERATE(Token::DIV, INT32, SMI, NUMBER, NO_OVERWRITE);
2301 GENERATE(Token::DIV, NUMBER, INT32, NUMBER, NO_OVERWRITE);
2302 GENERATE(Token::DIV, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
2303 GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
2304 GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
2305 GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT);
2306 GENERATE(Token::DIV, NUMBER, SMI, NUMBER, NO_OVERWRITE);
2307 GENERATE(Token::DIV, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
2308 GENERATE(Token::DIV, SMI, INT32, INT32, NO_OVERWRITE);
2309 GENERATE(Token::DIV, SMI, INT32, NUMBER, NO_OVERWRITE);
2310 GENERATE(Token::DIV, SMI, INT32, NUMBER, OVERWRITE_LEFT);
2311 GENERATE(Token::DIV, SMI, NUMBER, NUMBER, NO_OVERWRITE);
2312 GENERATE(Token::DIV, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
2313 GENERATE(Token::DIV, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
2314 GENERATE(Token::DIV, SMI, SMI, NUMBER, NO_OVERWRITE);
2315 GENERATE(Token::DIV, SMI, SMI, NUMBER, OVERWRITE_LEFT);
2316 GENERATE(Token::DIV, SMI, SMI, NUMBER, OVERWRITE_RIGHT);
2317 GENERATE(Token::DIV, SMI, SMI, SMI, NO_OVERWRITE);
2318 GENERATE(Token::DIV, SMI, SMI, SMI, OVERWRITE_LEFT);
2319 GENERATE(Token::DIV, SMI, SMI, SMI, OVERWRITE_RIGHT);
2320 GENERATE(Token::MOD, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
2321 GENERATE(Token::MOD, SMI, SMI, SMI, NO_OVERWRITE);
2322 GENERATE(Token::MOD, SMI, SMI, SMI, OVERWRITE_LEFT);
2323 GENERATE(Token::MUL, INT32, INT32, INT32, NO_OVERWRITE);
2324 GENERATE(Token::MUL, INT32, INT32, NUMBER, NO_OVERWRITE);
2325 GENERATE(Token::MUL, INT32, NUMBER, NUMBER, NO_OVERWRITE);
2326 GENERATE(Token::MUL, INT32, NUMBER, NUMBER, OVERWRITE_LEFT);
2327 GENERATE(Token::MUL, INT32, SMI, INT32, NO_OVERWRITE);
2328 GENERATE(Token::MUL, INT32, SMI, INT32, OVERWRITE_LEFT);
2329 GENERATE(Token::MUL, INT32, SMI, NUMBER, NO_OVERWRITE);
2330 GENERATE(Token::MUL, NUMBER, INT32, NUMBER, NO_OVERWRITE);
2331 GENERATE(Token::MUL, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
2332 GENERATE(Token::MUL, NUMBER, INT32, NUMBER, OVERWRITE_RIGHT);
2333 GENERATE(Token::MUL, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
2334 GENERATE(Token::MUL, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
2335 GENERATE(Token::MUL, NUMBER, SMI, NUMBER, NO_OVERWRITE);
2336 GENERATE(Token::MUL, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
2337 GENERATE(Token::MUL, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT);
2338 GENERATE(Token::MUL, SMI, INT32, INT32, NO_OVERWRITE);
2339 GENERATE(Token::MUL, SMI, INT32, INT32, OVERWRITE_LEFT);
2340 GENERATE(Token::MUL, SMI, INT32, NUMBER, NO_OVERWRITE);
2341 GENERATE(Token::MUL, SMI, NUMBER, NUMBER, NO_OVERWRITE);
2342 GENERATE(Token::MUL, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
2343 GENERATE(Token::MUL, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
2344 GENERATE(Token::MUL, SMI, SMI, INT32, NO_OVERWRITE);
2345 GENERATE(Token::MUL, SMI, SMI, NUMBER, NO_OVERWRITE);
2346 GENERATE(Token::MUL, SMI, SMI, NUMBER, OVERWRITE_LEFT);
2347 GENERATE(Token::MUL, SMI, SMI, SMI, NO_OVERWRITE);
2348 GENERATE(Token::MUL, SMI, SMI, SMI, OVERWRITE_LEFT);
2349 GENERATE(Token::MUL, SMI, SMI, SMI, OVERWRITE_RIGHT);
2350 GENERATE(Token::SAR, INT32, SMI, INT32, OVERWRITE_RIGHT);
2351 GENERATE(Token::SAR, INT32, SMI, SMI, NO_OVERWRITE);
2352 GENERATE(Token::SAR, INT32, SMI, SMI, OVERWRITE_RIGHT);
2353 GENERATE(Token::SAR, NUMBER, SMI, SMI, NO_OVERWRITE);
2354 GENERATE(Token::SAR, NUMBER, SMI, SMI, OVERWRITE_RIGHT);
2355 GENERATE(Token::SAR, SMI, SMI, SMI, OVERWRITE_LEFT);
2356 GENERATE(Token::SAR, SMI, SMI, SMI, OVERWRITE_RIGHT);
2357 GENERATE(Token::SHL, INT32, SMI, INT32, NO_OVERWRITE);
2358 GENERATE(Token::SHL, INT32, SMI, INT32, OVERWRITE_RIGHT);
2359 GENERATE(Token::SHL, INT32, SMI, SMI, NO_OVERWRITE);
2360 GENERATE(Token::SHL, INT32, SMI, SMI, OVERWRITE_RIGHT);
2361 GENERATE(Token::SHL, NUMBER, SMI, SMI, OVERWRITE_RIGHT);
2362 GENERATE(Token::SHL, SMI, SMI, INT32, NO_OVERWRITE);
2363 GENERATE(Token::SHL, SMI, SMI, INT32, OVERWRITE_LEFT);
2364 GENERATE(Token::SHL, SMI, SMI, INT32, OVERWRITE_RIGHT);
2365 GENERATE(Token::SHL, SMI, SMI, SMI, NO_OVERWRITE);
2366 GENERATE(Token::SHL, SMI, SMI, SMI, OVERWRITE_LEFT);
2367 GENERATE(Token::SHL, SMI, SMI, SMI, OVERWRITE_RIGHT);
2368 GENERATE(Token::SHR, INT32, SMI, SMI, NO_OVERWRITE);
2369 GENERATE(Token::SHR, INT32, SMI, SMI, OVERWRITE_LEFT);
2370 GENERATE(Token::SHR, INT32, SMI, SMI, OVERWRITE_RIGHT);
2371 GENERATE(Token::SHR, NUMBER, SMI, SMI, NO_OVERWRITE);
2372 GENERATE(Token::SHR, NUMBER, SMI, SMI, OVERWRITE_LEFT);
2373 GENERATE(Token::SHR, NUMBER, SMI, INT32, OVERWRITE_RIGHT);
2374 GENERATE(Token::SHR, SMI, SMI, SMI, NO_OVERWRITE);
2375 GENERATE(Token::SHR, SMI, SMI, SMI, OVERWRITE_LEFT);
2376 GENERATE(Token::SHR, SMI, SMI, SMI, OVERWRITE_RIGHT);
2377 GENERATE(Token::SUB, INT32, INT32, INT32, NO_OVERWRITE);
2378 GENERATE(Token::SUB, INT32, INT32, INT32, OVERWRITE_LEFT);
2379 GENERATE(Token::SUB, INT32, NUMBER, NUMBER, NO_OVERWRITE);
2380 GENERATE(Token::SUB, INT32, NUMBER, NUMBER, OVERWRITE_RIGHT);
2381 GENERATE(Token::SUB, INT32, SMI, INT32, OVERWRITE_LEFT);
2382 GENERATE(Token::SUB, INT32, SMI, INT32, OVERWRITE_RIGHT);
2383 GENERATE(Token::SUB, NUMBER, INT32, NUMBER, NO_OVERWRITE);
2384 GENERATE(Token::SUB, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
2385 GENERATE(Token::SUB, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
2386 GENERATE(Token::SUB, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
2387 GENERATE(Token::SUB, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT);
2388 GENERATE(Token::SUB, NUMBER, SMI, NUMBER, NO_OVERWRITE);
2389 GENERATE(Token::SUB, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
2390 GENERATE(Token::SUB, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT);
2391 GENERATE(Token::SUB, SMI, INT32, INT32, NO_OVERWRITE);
2392 GENERATE(Token::SUB, SMI, NUMBER, NUMBER, NO_OVERWRITE);
2393 GENERATE(Token::SUB, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
2394 GENERATE(Token::SUB, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
2395 GENERATE(Token::SUB, SMI, SMI, SMI, NO_OVERWRITE);
2396 GENERATE(Token::SUB, SMI, SMI, SMI, OVERWRITE_LEFT);
2397 GENERATE(Token::SUB, SMI, SMI, SMI, OVERWRITE_RIGHT);
2399 #define GENERATE(op, left_kind, fixed_right_arg_value, result_kind, mode) \
2401 State state(isolate, op, mode); \
2402 state.left_kind_ = left_kind; \
2403 state.fixed_right_arg_.has_value = true; \
2404 state.fixed_right_arg_.value = fixed_right_arg_value; \
2405 state.right_kind_ = SMI; \
2406 state.result_kind_ = result_kind; \
2407 Generate(isolate, state); \
2409 GENERATE(Token::MOD, SMI, 2, SMI, NO_OVERWRITE);
2410 GENERATE(Token::MOD, SMI, 4, SMI, NO_OVERWRITE);
2411 GENERATE(Token::MOD, SMI, 4, SMI, OVERWRITE_LEFT);
2412 GENERATE(Token::MOD, SMI, 8, SMI, NO_OVERWRITE);
2413 GENERATE(Token::MOD, SMI, 16, SMI, OVERWRITE_LEFT);
2414 GENERATE(Token::MOD, SMI, 32, SMI, NO_OVERWRITE);
2415 GENERATE(Token::MOD, SMI, 2048, SMI, NO_OVERWRITE);
2420 Type* BinaryOpIC::State::GetResultType(Zone* zone) const {
2421 Kind result_kind = result_kind_;
2422 if (HasSideEffects()) {
2424 } else if (result_kind == GENERIC && op_ == Token::ADD) {
2425 return Type::Union(Type::Number(zone), Type::String(zone), zone);
2426 } else if (result_kind == NUMBER && op_ == Token::SHR) {
2427 return Type::Unsigned32(zone);
2429 DCHECK_NE(GENERIC, result_kind);
2430 return KindToType(result_kind, zone);
2434 OStream& operator<<(OStream& os, const BinaryOpIC::State& s) {
2435 os << "(" << Token::Name(s.op_);
2436 if (s.mode_ == OVERWRITE_LEFT)
2438 else if (s.mode_ == OVERWRITE_RIGHT)
2439 os << "_ReuseRight";
2440 if (s.CouldCreateAllocationMementos()) os << "_CreateAllocationMementos";
2441 os << ":" << BinaryOpIC::State::KindToString(s.left_kind_) << "*";
2442 if (s.fixed_right_arg_.has_value) {
2443 os << s.fixed_right_arg_.value;
2445 os << BinaryOpIC::State::KindToString(s.right_kind_);
2447 return os << "->" << BinaryOpIC::State::KindToString(s.result_kind_) << ")";
2451 void BinaryOpIC::State::Update(Handle<Object> left, Handle<Object> right,
2452 Handle<Object> result) {
2453 ExtraICState old_extra_ic_state = GetExtraICState();
2455 left_kind_ = UpdateKind(left, left_kind_);
2456 right_kind_ = UpdateKind(right, right_kind_);
2458 int32_t fixed_right_arg_value = 0;
2459 bool has_fixed_right_arg =
2460 op_ == Token::MOD && right->ToInt32(&fixed_right_arg_value) &&
2461 fixed_right_arg_value > 0 && IsPowerOf2(fixed_right_arg_value) &&
2462 FixedRightArgValueField::is_valid(WhichPowerOf2(fixed_right_arg_value)) &&
2463 (left_kind_ == SMI || left_kind_ == INT32) &&
2464 (result_kind_ == NONE || !fixed_right_arg_.has_value);
2465 fixed_right_arg_ = Maybe<int32_t>(has_fixed_right_arg, fixed_right_arg_value);
2467 result_kind_ = UpdateKind(result, result_kind_);
2469 if (!Token::IsTruncatingBinaryOp(op_)) {
2470 Kind input_kind = Max(left_kind_, right_kind_);
2471 if (result_kind_ < input_kind && input_kind <= NUMBER) {
2472 result_kind_ = input_kind;
2476 // We don't want to distinguish INT32 and NUMBER for string add (because
2477 // NumberToString can't make use of this anyway).
2478 if (left_kind_ == STRING && right_kind_ == INT32) {
2479 DCHECK_EQ(STRING, result_kind_);
2480 DCHECK_EQ(Token::ADD, op_);
2481 right_kind_ = NUMBER;
2482 } else if (right_kind_ == STRING && left_kind_ == INT32) {
2483 DCHECK_EQ(STRING, result_kind_);
2484 DCHECK_EQ(Token::ADD, op_);
2485 left_kind_ = NUMBER;
2488 // Reset overwrite mode unless we can actually make use of it, or may be able
2489 // to make use of it at some point in the future.
2490 if ((mode_ == OVERWRITE_LEFT && left_kind_ > NUMBER) ||
2491 (mode_ == OVERWRITE_RIGHT && right_kind_ > NUMBER) ||
2492 result_kind_ > NUMBER) {
2493 mode_ = NO_OVERWRITE;
2496 if (old_extra_ic_state == GetExtraICState()) {
2497 // Tagged operations can lead to non-truncating HChanges
2498 if (left->IsUndefined() || left->IsBoolean()) {
2499 left_kind_ = GENERIC;
2501 DCHECK(right->IsUndefined() || right->IsBoolean());
2502 right_kind_ = GENERIC;
2508 BinaryOpIC::State::Kind BinaryOpIC::State::UpdateKind(Handle<Object> object,
2510 Kind new_kind = GENERIC;
2511 bool is_truncating = Token::IsTruncatingBinaryOp(op());
2512 if (object->IsBoolean() && is_truncating) {
2513 // Booleans will be automatically truncated by HChange.
2515 } else if (object->IsUndefined()) {
2516 // Undefined will be automatically truncated by HChange.
2517 new_kind = is_truncating ? INT32 : NUMBER;
2518 } else if (object->IsSmi()) {
2520 } else if (object->IsHeapNumber()) {
2521 double value = Handle<HeapNumber>::cast(object)->value();
2522 new_kind = IsInt32Double(value) ? INT32 : NUMBER;
2523 } else if (object->IsString() && op() == Token::ADD) {
2526 if (new_kind == INT32 && SmiValuesAre32Bits()) {
2529 if (kind != NONE && ((new_kind <= NUMBER && kind > NUMBER) ||
2530 (new_kind > NUMBER && kind <= NUMBER))) {
2533 return Max(kind, new_kind);
2538 const char* BinaryOpIC::State::KindToString(Kind kind) {
2559 Type* BinaryOpIC::State::KindToType(Kind kind, Zone* zone) {
2562 return Type::None(zone);
2564 return Type::SignedSmall(zone);
2566 return Type::Signed32(zone);
2568 return Type::Number(zone);
2570 return Type::String(zone);
2572 return Type::Any(zone);
2579 MaybeHandle<Object> BinaryOpIC::Transition(
2580 Handle<AllocationSite> allocation_site, Handle<Object> left,
2581 Handle<Object> right) {
2582 State state(isolate(), target()->extra_ic_state());
2584 // Compute the actual result using the builtin for the binary operation.
2585 Object* builtin = isolate()->js_builtins_object()->javascript_builtin(
2586 TokenToJSBuiltin(state.op()));
2587 Handle<JSFunction> function = handle(JSFunction::cast(builtin), isolate());
2588 Handle<Object> result;
2589 ASSIGN_RETURN_ON_EXCEPTION(
2590 isolate(), result, Execution::Call(isolate(), function, left, 1, &right),
2593 // Execution::Call can execute arbitrary JavaScript, hence potentially
2594 // update the state of this very IC, so we must update the stored state.
2596 // Compute the new state.
2597 State old_state(isolate(), target()->extra_ic_state());
2598 state.Update(left, right, result);
2600 // Check if we have a string operation here.
2601 Handle<Code> target;
2602 if (!allocation_site.is_null() || state.ShouldCreateAllocationMementos()) {
2603 // Setup the allocation site on-demand.
2604 if (allocation_site.is_null()) {
2605 allocation_site = isolate()->factory()->NewAllocationSite();
2608 // Install the stub with an allocation site.
2609 BinaryOpICWithAllocationSiteStub stub(isolate(), state);
2610 target = stub.GetCodeCopyFromTemplate(allocation_site);
2612 // Sanity check the trampoline stub.
2613 DCHECK_EQ(*allocation_site, target->FindFirstAllocationSite());
2615 // Install the generic stub.
2616 BinaryOpICStub stub(isolate(), state);
2617 target = stub.GetCode();
2619 // Sanity check the generic stub.
2620 DCHECK_EQ(NULL, target->FindFirstAllocationSite());
2622 set_target(*target);
2624 if (FLAG_trace_ic) {
2625 OFStream os(stdout);
2626 os << "[BinaryOpIC" << old_state << " => " << state << " @ "
2627 << static_cast<void*>(*target) << " <- ";
2628 JavaScriptFrame::PrintTop(isolate(), stdout, false, true);
2629 if (!allocation_site.is_null()) {
2630 os << " using allocation site " << static_cast<void*>(*allocation_site);
2635 // Patch the inlined smi code as necessary.
2636 if (!old_state.UseInlinedSmiCode() && state.UseInlinedSmiCode()) {
2637 PatchInlinedSmiCode(address(), ENABLE_INLINED_SMI_CHECK);
2638 } else if (old_state.UseInlinedSmiCode() && !state.UseInlinedSmiCode()) {
2639 PatchInlinedSmiCode(address(), DISABLE_INLINED_SMI_CHECK);
2646 RUNTIME_FUNCTION(BinaryOpIC_Miss) {
2647 TimerEventScope<TimerEventIcMiss> timer(isolate);
2648 HandleScope scope(isolate);
2649 DCHECK_EQ(2, args.length());
2650 Handle<Object> left = args.at<Object>(BinaryOpICStub::kLeft);
2651 Handle<Object> right = args.at<Object>(BinaryOpICStub::kRight);
2652 BinaryOpIC ic(isolate);
2653 Handle<Object> result;
2654 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2656 ic.Transition(Handle<AllocationSite>::null(), left, right));
2661 RUNTIME_FUNCTION(BinaryOpIC_MissWithAllocationSite) {
2662 TimerEventScope<TimerEventIcMiss> timer(isolate);
2663 HandleScope scope(isolate);
2664 DCHECK_EQ(3, args.length());
2665 Handle<AllocationSite> allocation_site =
2666 args.at<AllocationSite>(BinaryOpWithAllocationSiteStub::kAllocationSite);
2667 Handle<Object> left = args.at<Object>(BinaryOpWithAllocationSiteStub::kLeft);
2668 Handle<Object> right =
2669 args.at<Object>(BinaryOpWithAllocationSiteStub::kRight);
2670 BinaryOpIC ic(isolate);
2671 Handle<Object> result;
2672 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2673 isolate, result, ic.Transition(allocation_site, left, right));
2678 Code* CompareIC::GetRawUninitialized(Isolate* isolate, Token::Value op) {
2679 ICCompareStub stub(isolate, op, UNINITIALIZED, UNINITIALIZED, UNINITIALIZED);
2681 CHECK(stub.FindCodeInCache(&code));
2686 Handle<Code> CompareIC::GetUninitialized(Isolate* isolate, Token::Value op) {
2687 ICCompareStub stub(isolate, op, UNINITIALIZED, UNINITIALIZED, UNINITIALIZED);
2688 return stub.GetCode();
2692 const char* CompareIC::GetStateName(State state) {
2695 return "UNINITIALIZED";
2700 case INTERNALIZED_STRING:
2701 return "INTERNALIZED_STRING";
2705 return "UNIQUE_NAME";
2709 return "KNOWN_OBJECT";
2718 Type* CompareIC::StateToType(Zone* zone, CompareIC::State state,
2721 case CompareIC::UNINITIALIZED:
2722 return Type::None(zone);
2723 case CompareIC::SMI:
2724 return Type::SignedSmall(zone);
2725 case CompareIC::NUMBER:
2726 return Type::Number(zone);
2727 case CompareIC::STRING:
2728 return Type::String(zone);
2729 case CompareIC::INTERNALIZED_STRING:
2730 return Type::InternalizedString(zone);
2731 case CompareIC::UNIQUE_NAME:
2732 return Type::UniqueName(zone);
2733 case CompareIC::OBJECT:
2734 return Type::Receiver(zone);
2735 case CompareIC::KNOWN_OBJECT:
2736 return map.is_null() ? Type::Receiver(zone) : Type::Class(map, zone);
2737 case CompareIC::GENERIC:
2738 return Type::Any(zone);
2745 void CompareIC::StubInfoToType(uint32_t stub_key, Type** left_type,
2746 Type** right_type, Type** overall_type,
2747 Handle<Map> map, Zone* zone) {
2748 State left_state, right_state, handler_state;
2749 ICCompareStub::DecodeKey(stub_key, &left_state, &right_state, &handler_state,
2751 *left_type = StateToType(zone, left_state);
2752 *right_type = StateToType(zone, right_state);
2753 *overall_type = StateToType(zone, handler_state, map);
2757 CompareIC::State CompareIC::NewInputState(State old_state,
2758 Handle<Object> value) {
2759 switch (old_state) {
2761 if (value->IsSmi()) return SMI;
2762 if (value->IsHeapNumber()) return NUMBER;
2763 if (value->IsInternalizedString()) return INTERNALIZED_STRING;
2764 if (value->IsString()) return STRING;
2765 if (value->IsSymbol()) return UNIQUE_NAME;
2766 if (value->IsJSObject()) return OBJECT;
2769 if (value->IsSmi()) return SMI;
2770 if (value->IsHeapNumber()) return NUMBER;
2773 if (value->IsNumber()) return NUMBER;
2775 case INTERNALIZED_STRING:
2776 if (value->IsInternalizedString()) return INTERNALIZED_STRING;
2777 if (value->IsString()) return STRING;
2778 if (value->IsSymbol()) return UNIQUE_NAME;
2781 if (value->IsString()) return STRING;
2784 if (value->IsUniqueName()) return UNIQUE_NAME;
2787 if (value->IsJSObject()) return OBJECT;
2799 CompareIC::State CompareIC::TargetState(State old_state, State old_left,
2801 bool has_inlined_smi_code,
2802 Handle<Object> x, Handle<Object> y) {
2803 switch (old_state) {
2805 if (x->IsSmi() && y->IsSmi()) return SMI;
2806 if (x->IsNumber() && y->IsNumber()) return NUMBER;
2807 if (Token::IsOrderedRelationalCompareOp(op_)) {
2808 // Ordered comparisons treat undefined as NaN, so the
2809 // NUMBER stub will do the right thing.
2810 if ((x->IsNumber() && y->IsUndefined()) ||
2811 (y->IsNumber() && x->IsUndefined())) {
2815 if (x->IsInternalizedString() && y->IsInternalizedString()) {
2816 // We compare internalized strings as plain ones if we need to determine
2817 // the order in a non-equality compare.
2818 return Token::IsEqualityOp(op_) ? INTERNALIZED_STRING : STRING;
2820 if (x->IsString() && y->IsString()) return STRING;
2821 if (!Token::IsEqualityOp(op_)) return GENERIC;
2822 if (x->IsUniqueName() && y->IsUniqueName()) return UNIQUE_NAME;
2823 if (x->IsJSObject() && y->IsJSObject()) {
2824 if (Handle<JSObject>::cast(x)->map() ==
2825 Handle<JSObject>::cast(y)->map()) {
2826 return KNOWN_OBJECT;
2833 return x->IsNumber() && y->IsNumber() ? NUMBER : GENERIC;
2834 case INTERNALIZED_STRING:
2835 DCHECK(Token::IsEqualityOp(op_));
2836 if (x->IsString() && y->IsString()) return STRING;
2837 if (x->IsUniqueName() && y->IsUniqueName()) return UNIQUE_NAME;
2840 // If the failure was due to one side changing from smi to heap number,
2841 // then keep the state (if other changed at the same time, we will get
2842 // a second miss and then go to generic).
2843 if (old_left == SMI && x->IsHeapNumber()) return NUMBER;
2844 if (old_right == SMI && y->IsHeapNumber()) return NUMBER;
2847 DCHECK(Token::IsEqualityOp(op_));
2848 if (x->IsJSObject() && y->IsJSObject()) return OBJECT;
2857 return GENERIC; // Make the compiler happy.
2861 Code* CompareIC::UpdateCaches(Handle<Object> x, Handle<Object> y) {
2862 HandleScope scope(isolate());
2863 State previous_left, previous_right, previous_state;
2864 ICCompareStub::DecodeKey(target()->stub_key(), &previous_left,
2865 &previous_right, &previous_state, NULL);
2866 State new_left = NewInputState(previous_left, x);
2867 State new_right = NewInputState(previous_right, y);
2868 State state = TargetState(previous_state, previous_left, previous_right,
2869 HasInlinedSmiCode(address()), x, y);
2870 ICCompareStub stub(isolate(), op_, new_left, new_right, state);
2871 if (state == KNOWN_OBJECT) {
2873 Handle<Map>(Handle<JSObject>::cast(x)->map(), isolate()));
2875 Handle<Code> new_target = stub.GetCode();
2876 set_target(*new_target);
2878 if (FLAG_trace_ic) {
2879 PrintF("[CompareIC in ");
2880 JavaScriptFrame::PrintTop(isolate(), stdout, false, true);
2881 PrintF(" ((%s+%s=%s)->(%s+%s=%s))#%s @ %p]\n", GetStateName(previous_left),
2882 GetStateName(previous_right), GetStateName(previous_state),
2883 GetStateName(new_left), GetStateName(new_right), GetStateName(state),
2884 Token::Name(op_), static_cast<void*>(*stub.GetCode()));
2887 // Activate inlined smi code.
2888 if (previous_state == UNINITIALIZED) {
2889 PatchInlinedSmiCode(address(), ENABLE_INLINED_SMI_CHECK);
2896 // Used from ICCompareStub::GenerateMiss in code-stubs-<arch>.cc.
2897 RUNTIME_FUNCTION(CompareIC_Miss) {
2898 TimerEventScope<TimerEventIcMiss> timer(isolate);
2899 HandleScope scope(isolate);
2900 DCHECK(args.length() == 3);
2901 CompareIC ic(isolate, static_cast<Token::Value>(args.smi_at(2)));
2902 return ic.UpdateCaches(args.at<Object>(0), args.at<Object>(1));
2906 void CompareNilIC::Clear(Address address, Code* target,
2907 ConstantPoolArray* constant_pool) {
2908 if (IsCleared(target)) return;
2909 ExtraICState state = target->extra_ic_state();
2911 CompareNilICStub stub(target->GetIsolate(), state,
2912 HydrogenCodeStub::UNINITIALIZED);
2916 CHECK(stub.FindCodeInCache(&code));
2918 SetTargetAtAddress(address, code, constant_pool);
2922 Handle<Object> CompareNilIC::DoCompareNilSlow(Isolate* isolate, NilValue nil,
2923 Handle<Object> object) {
2924 if (object->IsNull() || object->IsUndefined()) {
2925 return handle(Smi::FromInt(true), isolate);
2927 return handle(Smi::FromInt(object->IsUndetectableObject()), isolate);
2931 Handle<Object> CompareNilIC::CompareNil(Handle<Object> object) {
2932 ExtraICState extra_ic_state = target()->extra_ic_state();
2934 CompareNilICStub stub(isolate(), extra_ic_state);
2936 // Extract the current supported types from the patched IC and calculate what
2937 // types must be supported as a result of the miss.
2938 bool already_monomorphic = stub.IsMonomorphic();
2940 stub.UpdateStatus(object);
2942 NilValue nil = stub.GetNilValue();
2944 // Find or create the specialized stub to support the new set of types.
2946 if (stub.IsMonomorphic()) {
2947 Handle<Map> monomorphic_map(already_monomorphic && FirstTargetMap() != NULL
2949 : HeapObject::cast(*object)->map());
2950 code = PropertyICCompiler::ComputeCompareNil(monomorphic_map, &stub);
2952 code = stub.GetCode();
2955 return DoCompareNilSlow(isolate(), nil, object);
2959 RUNTIME_FUNCTION(CompareNilIC_Miss) {
2960 TimerEventScope<TimerEventIcMiss> timer(isolate);
2961 HandleScope scope(isolate);
2962 Handle<Object> object = args.at<Object>(0);
2963 CompareNilIC ic(isolate);
2964 return *ic.CompareNil(object);
2968 RUNTIME_FUNCTION(Unreachable) {
2971 return isolate->heap()->undefined_value();
2975 Builtins::JavaScript BinaryOpIC::TokenToJSBuiltin(Token::Value op) {
2980 return Builtins::ADD;
2983 return Builtins::SUB;
2986 return Builtins::MUL;
2989 return Builtins::DIV;
2992 return Builtins::MOD;
2995 return Builtins::BIT_OR;
2997 case Token::BIT_AND:
2998 return Builtins::BIT_AND;
3000 case Token::BIT_XOR:
3001 return Builtins::BIT_XOR;
3004 return Builtins::SAR;
3007 return Builtins::SHR;
3010 return Builtins::SHL;
3016 Handle<Object> ToBooleanIC::ToBoolean(Handle<Object> object) {
3017 ToBooleanStub stub(isolate(), target()->extra_ic_state());
3018 bool to_boolean_value = stub.UpdateStatus(object);
3019 Handle<Code> code = stub.GetCode();
3021 return handle(Smi::FromInt(to_boolean_value ? 1 : 0), isolate());
3025 RUNTIME_FUNCTION(ToBooleanIC_Miss) {
3026 TimerEventScope<TimerEventIcMiss> timer(isolate);
3027 DCHECK(args.length() == 1);
3028 HandleScope scope(isolate);
3029 Handle<Object> object = args.at<Object>(0);
3030 ToBooleanIC ic(isolate);
3031 return *ic.ToBoolean(object);
3035 RUNTIME_FUNCTION(StoreCallbackProperty) {
3036 Handle<JSObject> receiver = args.at<JSObject>(0);
3037 Handle<JSObject> holder = args.at<JSObject>(1);
3038 Handle<ExecutableAccessorInfo> callback = args.at<ExecutableAccessorInfo>(2);
3039 Handle<Name> name = args.at<Name>(3);
3040 Handle<Object> value = args.at<Object>(4);
3041 HandleScope scope(isolate);
3043 DCHECK(callback->IsCompatibleReceiver(*receiver));
3045 Address setter_address = v8::ToCData<Address>(callback->setter());
3046 v8::AccessorNameSetterCallback fun =
3047 FUNCTION_CAST<v8::AccessorNameSetterCallback>(setter_address);
3048 DCHECK(fun != NULL);
3050 LOG(isolate, ApiNamedPropertyAccess("store", *receiver, *name));
3051 PropertyCallbackArguments custom_args(isolate, callback->data(), *receiver,
3053 custom_args.Call(fun, v8::Utils::ToLocal(name), v8::Utils::ToLocal(value));
3054 RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
3060 * Attempts to load a property with an interceptor (which must be present),
3061 * but doesn't search the prototype chain.
3063 * Returns |Heap::no_interceptor_result_sentinel()| if interceptor doesn't
3064 * provide any value for the given name.
3066 RUNTIME_FUNCTION(LoadPropertyWithInterceptorOnly) {
3067 DCHECK(args.length() == NamedLoadHandlerCompiler::kInterceptorArgsLength);
3068 Handle<Name> name_handle =
3069 args.at<Name>(NamedLoadHandlerCompiler::kInterceptorArgsNameIndex);
3070 Handle<InterceptorInfo> interceptor_info = args.at<InterceptorInfo>(
3071 NamedLoadHandlerCompiler::kInterceptorArgsInfoIndex);
3073 // TODO(rossberg): Support symbols in the API.
3074 if (name_handle->IsSymbol())
3075 return isolate->heap()->no_interceptor_result_sentinel();
3076 Handle<String> name = Handle<String>::cast(name_handle);
3078 Address getter_address = v8::ToCData<Address>(interceptor_info->getter());
3079 v8::NamedPropertyGetterCallback getter =
3080 FUNCTION_CAST<v8::NamedPropertyGetterCallback>(getter_address);
3081 DCHECK(getter != NULL);
3083 Handle<JSObject> receiver =
3084 args.at<JSObject>(NamedLoadHandlerCompiler::kInterceptorArgsThisIndex);
3085 Handle<JSObject> holder =
3086 args.at<JSObject>(NamedLoadHandlerCompiler::kInterceptorArgsHolderIndex);
3087 PropertyCallbackArguments callback_args(isolate, interceptor_info->data(),
3088 *receiver, *holder);
3090 // Use the interceptor getter.
3091 HandleScope scope(isolate);
3092 v8::Handle<v8::Value> r =
3093 callback_args.Call(getter, v8::Utils::ToLocal(name));
3094 RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
3096 Handle<Object> result = v8::Utils::OpenHandle(*r);
3097 result->VerifyApiCallResultType();
3098 return *v8::Utils::OpenHandle(*r);
3102 return isolate->heap()->no_interceptor_result_sentinel();
3106 static Object* ThrowReferenceError(Isolate* isolate, Name* name) {
3107 // If the load is non-contextual, just return the undefined result.
3108 // Note that both keyed and non-keyed loads may end up here.
3109 HandleScope scope(isolate);
3110 LoadIC ic(IC::NO_EXTRA_FRAME, isolate);
3111 if (ic.contextual_mode() != CONTEXTUAL) {
3112 return isolate->heap()->undefined_value();
3115 // Throw a reference error.
3116 Handle<Name> name_handle(name);
3117 Handle<Object> error = isolate->factory()->NewReferenceError(
3118 "not_defined", HandleVector(&name_handle, 1));
3119 return isolate->Throw(*error);
3124 * Loads a property with an interceptor performing post interceptor
3125 * lookup if interceptor failed.
3127 RUNTIME_FUNCTION(LoadPropertyWithInterceptor) {
3128 HandleScope scope(isolate);
3129 DCHECK(args.length() == NamedLoadHandlerCompiler::kInterceptorArgsLength);
3131 args.at<Name>(NamedLoadHandlerCompiler::kInterceptorArgsNameIndex);
3132 Handle<JSObject> receiver =
3133 args.at<JSObject>(NamedLoadHandlerCompiler::kInterceptorArgsThisIndex);
3134 Handle<JSObject> holder =
3135 args.at<JSObject>(NamedLoadHandlerCompiler::kInterceptorArgsHolderIndex);
3137 Handle<Object> result;
3138 LookupIterator it(receiver, name, holder);
3139 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result,
3140 JSObject::GetProperty(&it));
3142 if (it.IsFound()) return *result;
3144 return ThrowReferenceError(isolate, Name::cast(args[0]));
3148 RUNTIME_FUNCTION(StorePropertyWithInterceptor) {
3149 HandleScope scope(isolate);
3150 DCHECK(args.length() == 3);
3151 StoreIC ic(IC::NO_EXTRA_FRAME, isolate);
3152 Handle<JSObject> receiver = args.at<JSObject>(0);
3153 Handle<Name> name = args.at<Name>(1);
3154 Handle<Object> value = args.at<Object>(2);
3156 PrototypeIterator iter(isolate, receiver,
3157 PrototypeIterator::START_AT_RECEIVER);
3159 while (!iter.IsAtEnd(PrototypeIterator::END_AT_NON_HIDDEN)) {
3160 Handle<Object> current = PrototypeIterator::GetCurrent(iter);
3161 if (current->IsJSObject() &&
3162 Handle<JSObject>::cast(current)->HasNamedInterceptor()) {
3169 Handle<Object> result;
3170 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
3172 JSObject::SetProperty(receiver, name, value, ic.strict_mode()));
3177 RUNTIME_FUNCTION(LoadElementWithInterceptor) {
3178 HandleScope scope(isolate);
3179 Handle<JSObject> receiver = args.at<JSObject>(0);
3180 DCHECK(args.smi_at(1) >= 0);
3181 uint32_t index = args.smi_at(1);
3182 Handle<Object> result;
3183 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
3185 JSObject::GetElementWithInterceptor(receiver, receiver, index));
3190 static const Address IC_utilities[] = {
3191 #define ADDR(name) FUNCTION_ADDR(name),
3192 IC_UTIL_LIST(ADDR) NULL
3197 Address IC::AddressFromUtilityId(IC::UtilityId id) { return IC_utilities[id]; }
3199 } // namespace v8::internal