1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
8 #include "src/ic/ic-state.h"
14 void ICUtility::Clear(Isolate* isolate, Address address,
15 Address constant_pool) {
16 IC::Clear(isolate, address, constant_pool);
20 CallICState::CallICState(ExtraICState extra_ic_state)
21 : argc_(ArgcBits::decode(extra_ic_state)),
22 call_type_(CallTypeBits::decode(extra_ic_state)) {}
25 ExtraICState CallICState::GetExtraICState() const {
26 ExtraICState extra_ic_state =
27 ArgcBits::encode(argc_) | CallTypeBits::encode(call_type_);
28 return extra_ic_state;
32 std::ostream& operator<<(std::ostream& os, const CallICState& s) {
33 return os << "(args(" << s.arg_count() << "), "
34 << (s.call_type() == CallICState::METHOD ? "METHOD" : "FUNCTION")
40 STATIC_CONST_MEMBER_DEFINITION const int BinaryOpICState::FIRST_TOKEN;
44 STATIC_CONST_MEMBER_DEFINITION const int BinaryOpICState::LAST_TOKEN;
47 BinaryOpICState::BinaryOpICState(Isolate* isolate, ExtraICState extra_ic_state)
49 HasFixedRightArgField::decode(extra_ic_state)
50 ? Just(1 << FixedRightArgValueField::decode(extra_ic_state))
54 static_cast<Token::Value>(FIRST_TOKEN + OpField::decode(extra_ic_state));
55 strong_ = StrongField::decode(extra_ic_state);
56 left_kind_ = LeftKindField::decode(extra_ic_state);
57 right_kind_ = fixed_right_arg_.IsJust()
58 ? (Smi::IsValid(fixed_right_arg_.FromJust()) ? SMI : INT32)
59 : RightKindField::decode(extra_ic_state);
60 result_kind_ = ResultKindField::decode(extra_ic_state);
61 DCHECK_LE(FIRST_TOKEN, op_);
62 DCHECK_LE(op_, LAST_TOKEN);
66 ExtraICState BinaryOpICState::GetExtraICState() const {
67 ExtraICState extra_ic_state =
68 OpField::encode(op_ - FIRST_TOKEN) | LeftKindField::encode(left_kind_) |
69 ResultKindField::encode(result_kind_) |
70 StrongField::encode(strong_) |
71 HasFixedRightArgField::encode(fixed_right_arg_.IsJust());
72 if (fixed_right_arg_.IsJust()) {
73 extra_ic_state = FixedRightArgValueField::update(
74 extra_ic_state, WhichPowerOf2(fixed_right_arg_.FromJust()));
76 extra_ic_state = RightKindField::update(extra_ic_state, right_kind_);
78 return extra_ic_state;
83 void BinaryOpICState::GenerateAheadOfTime(
84 Isolate* isolate, void (*Generate)(Isolate*, const BinaryOpICState&)) {
85 // TODO(olivf) We should investigate why adding stubs to the snapshot is so
86 // expensive at runtime. When solved we should be able to add most binops to
87 // the snapshot instead of hand-picking them.
88 // Generated list of commonly used stubs
89 #define GENERATE(op, left_kind, right_kind, result_kind) \
91 BinaryOpICState state(isolate, op, LanguageMode::SLOPPY); \
92 state.left_kind_ = left_kind; \
93 state.fixed_right_arg_ = Nothing<int>(); \
94 state.right_kind_ = right_kind; \
95 state.result_kind_ = result_kind; \
96 Generate(isolate, state); \
98 GENERATE(Token::ADD, INT32, INT32, INT32);
99 GENERATE(Token::ADD, INT32, INT32, NUMBER);
100 GENERATE(Token::ADD, INT32, NUMBER, NUMBER);
101 GENERATE(Token::ADD, INT32, SMI, INT32);
102 GENERATE(Token::ADD, NUMBER, INT32, NUMBER);
103 GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER);
104 GENERATE(Token::ADD, NUMBER, SMI, NUMBER);
105 GENERATE(Token::ADD, SMI, INT32, INT32);
106 GENERATE(Token::ADD, SMI, INT32, NUMBER);
107 GENERATE(Token::ADD, SMI, NUMBER, NUMBER);
108 GENERATE(Token::ADD, SMI, SMI, INT32);
109 GENERATE(Token::ADD, SMI, SMI, SMI);
110 GENERATE(Token::BIT_AND, INT32, INT32, INT32);
111 GENERATE(Token::BIT_AND, INT32, INT32, SMI);
112 GENERATE(Token::BIT_AND, INT32, SMI, INT32);
113 GENERATE(Token::BIT_AND, INT32, SMI, SMI);
114 GENERATE(Token::BIT_AND, NUMBER, INT32, INT32);
115 GENERATE(Token::BIT_AND, NUMBER, SMI, SMI);
116 GENERATE(Token::BIT_AND, SMI, INT32, INT32);
117 GENERATE(Token::BIT_AND, SMI, INT32, SMI);
118 GENERATE(Token::BIT_AND, SMI, NUMBER, SMI);
119 GENERATE(Token::BIT_AND, SMI, SMI, SMI);
120 GENERATE(Token::BIT_OR, INT32, INT32, INT32);
121 GENERATE(Token::BIT_OR, INT32, INT32, SMI);
122 GENERATE(Token::BIT_OR, INT32, SMI, INT32);
123 GENERATE(Token::BIT_OR, INT32, SMI, SMI);
124 GENERATE(Token::BIT_OR, NUMBER, SMI, INT32);
125 GENERATE(Token::BIT_OR, NUMBER, SMI, SMI);
126 GENERATE(Token::BIT_OR, SMI, INT32, INT32);
127 GENERATE(Token::BIT_OR, SMI, INT32, SMI);
128 GENERATE(Token::BIT_OR, SMI, SMI, SMI);
129 GENERATE(Token::BIT_XOR, INT32, INT32, INT32);
130 GENERATE(Token::BIT_XOR, INT32, INT32, SMI);
131 GENERATE(Token::BIT_XOR, INT32, NUMBER, SMI);
132 GENERATE(Token::BIT_XOR, INT32, SMI, INT32);
133 GENERATE(Token::BIT_XOR, NUMBER, INT32, INT32);
134 GENERATE(Token::BIT_XOR, NUMBER, SMI, INT32);
135 GENERATE(Token::BIT_XOR, NUMBER, SMI, SMI);
136 GENERATE(Token::BIT_XOR, SMI, INT32, INT32);
137 GENERATE(Token::BIT_XOR, SMI, INT32, SMI);
138 GENERATE(Token::BIT_XOR, SMI, SMI, SMI);
139 GENERATE(Token::DIV, INT32, INT32, INT32);
140 GENERATE(Token::DIV, INT32, INT32, NUMBER);
141 GENERATE(Token::DIV, INT32, NUMBER, NUMBER);
142 GENERATE(Token::DIV, INT32, SMI, INT32);
143 GENERATE(Token::DIV, INT32, SMI, NUMBER);
144 GENERATE(Token::DIV, NUMBER, INT32, NUMBER);
145 GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER);
146 GENERATE(Token::DIV, NUMBER, SMI, NUMBER);
147 GENERATE(Token::DIV, SMI, INT32, INT32);
148 GENERATE(Token::DIV, SMI, INT32, NUMBER);
149 GENERATE(Token::DIV, SMI, NUMBER, NUMBER);
150 GENERATE(Token::DIV, SMI, SMI, NUMBER);
151 GENERATE(Token::DIV, SMI, SMI, SMI);
152 GENERATE(Token::MOD, NUMBER, SMI, NUMBER);
153 GENERATE(Token::MOD, SMI, SMI, SMI);
154 GENERATE(Token::MUL, INT32, INT32, INT32);
155 GENERATE(Token::MUL, INT32, INT32, NUMBER);
156 GENERATE(Token::MUL, INT32, NUMBER, NUMBER);
157 GENERATE(Token::MUL, INT32, SMI, INT32);
158 GENERATE(Token::MUL, INT32, SMI, NUMBER);
159 GENERATE(Token::MUL, NUMBER, INT32, NUMBER);
160 GENERATE(Token::MUL, NUMBER, NUMBER, NUMBER);
161 GENERATE(Token::MUL, NUMBER, SMI, NUMBER);
162 GENERATE(Token::MUL, SMI, INT32, INT32);
163 GENERATE(Token::MUL, SMI, INT32, NUMBER);
164 GENERATE(Token::MUL, SMI, NUMBER, NUMBER);
165 GENERATE(Token::MUL, SMI, SMI, INT32);
166 GENERATE(Token::MUL, SMI, SMI, NUMBER);
167 GENERATE(Token::MUL, SMI, SMI, SMI);
168 GENERATE(Token::SAR, INT32, SMI, INT32);
169 GENERATE(Token::SAR, INT32, SMI, SMI);
170 GENERATE(Token::SAR, NUMBER, SMI, SMI);
171 GENERATE(Token::SAR, SMI, SMI, SMI);
172 GENERATE(Token::SHL, INT32, SMI, INT32);
173 GENERATE(Token::SHL, INT32, SMI, SMI);
174 GENERATE(Token::SHL, NUMBER, SMI, SMI);
175 GENERATE(Token::SHL, SMI, SMI, INT32);
176 GENERATE(Token::SHL, SMI, SMI, SMI);
177 GENERATE(Token::SHR, INT32, SMI, SMI);
178 GENERATE(Token::SHR, NUMBER, SMI, INT32);
179 GENERATE(Token::SHR, NUMBER, SMI, SMI);
180 GENERATE(Token::SHR, SMI, SMI, SMI);
181 GENERATE(Token::SUB, INT32, INT32, INT32);
182 GENERATE(Token::SUB, INT32, NUMBER, NUMBER);
183 GENERATE(Token::SUB, INT32, SMI, INT32);
184 GENERATE(Token::SUB, NUMBER, INT32, NUMBER);
185 GENERATE(Token::SUB, NUMBER, NUMBER, NUMBER);
186 GENERATE(Token::SUB, NUMBER, SMI, NUMBER);
187 GENERATE(Token::SUB, SMI, INT32, INT32);
188 GENERATE(Token::SUB, SMI, NUMBER, NUMBER);
189 GENERATE(Token::SUB, SMI, SMI, SMI);
191 #define GENERATE(op, left_kind, fixed_right_arg_value, result_kind) \
193 BinaryOpICState state(isolate, op, LanguageMode::SLOPPY); \
194 state.left_kind_ = left_kind; \
195 state.fixed_right_arg_ = Just(fixed_right_arg_value); \
196 state.right_kind_ = SMI; \
197 state.result_kind_ = result_kind; \
198 Generate(isolate, state); \
200 GENERATE(Token::MOD, SMI, 2, SMI);
201 GENERATE(Token::MOD, SMI, 4, SMI);
202 GENERATE(Token::MOD, SMI, 8, SMI);
203 GENERATE(Token::MOD, SMI, 16, SMI);
204 GENERATE(Token::MOD, SMI, 32, SMI);
205 GENERATE(Token::MOD, SMI, 2048, SMI);
210 Type* BinaryOpICState::GetResultType(Zone* zone) const {
211 Kind result_kind = result_kind_;
212 if (HasSideEffects()) {
214 } else if (result_kind == GENERIC && op_ == Token::ADD) {
215 return Type::Union(Type::Number(zone), Type::String(zone), zone);
216 } else if (result_kind == NUMBER && op_ == Token::SHR) {
217 return Type::Unsigned32(zone);
219 DCHECK_NE(GENERIC, result_kind);
220 return KindToType(result_kind, zone);
224 std::ostream& operator<<(std::ostream& os, const BinaryOpICState& s) {
225 os << "(" << Token::Name(s.op_);
226 if (s.CouldCreateAllocationMementos()) os << "_CreateAllocationMementos";
227 os << ":" << BinaryOpICState::KindToString(s.left_kind_) << "*";
228 if (s.fixed_right_arg_.IsJust()) {
229 os << s.fixed_right_arg_.FromJust();
231 os << BinaryOpICState::KindToString(s.right_kind_);
233 return os << "->" << BinaryOpICState::KindToString(s.result_kind_) << ")";
237 void BinaryOpICState::Update(Handle<Object> left, Handle<Object> right,
238 Handle<Object> result) {
239 ExtraICState old_extra_ic_state = GetExtraICState();
241 left_kind_ = UpdateKind(left, left_kind_);
242 right_kind_ = UpdateKind(right, right_kind_);
244 int32_t fixed_right_arg_value = 0;
245 bool has_fixed_right_arg =
246 op_ == Token::MOD && right->ToInt32(&fixed_right_arg_value) &&
247 fixed_right_arg_value > 0 &&
248 base::bits::IsPowerOfTwo32(fixed_right_arg_value) &&
249 FixedRightArgValueField::is_valid(WhichPowerOf2(fixed_right_arg_value)) &&
250 (left_kind_ == SMI || left_kind_ == INT32) &&
251 (result_kind_ == NONE || !fixed_right_arg_.IsJust());
253 has_fixed_right_arg ? Just(fixed_right_arg_value) : Nothing<int32_t>();
254 result_kind_ = UpdateKind(result, result_kind_);
256 if (!Token::IsTruncatingBinaryOp(op_)) {
257 Kind input_kind = Max(left_kind_, right_kind_);
258 if (result_kind_ < input_kind && input_kind <= NUMBER) {
259 result_kind_ = input_kind;
263 // We don't want to distinguish INT32 and NUMBER for string add (because
264 // NumberToString can't make use of this anyway).
265 if (left_kind_ == STRING && right_kind_ == INT32) {
266 DCHECK_EQ(STRING, result_kind_);
267 DCHECK_EQ(Token::ADD, op_);
268 right_kind_ = NUMBER;
269 } else if (right_kind_ == STRING && left_kind_ == INT32) {
270 DCHECK_EQ(STRING, result_kind_);
271 DCHECK_EQ(Token::ADD, op_);
275 if (old_extra_ic_state == GetExtraICState()) {
276 // Tagged operations can lead to non-truncating HChanges
277 if (left->IsUndefined() || left->IsBoolean()) {
278 left_kind_ = GENERIC;
280 DCHECK(right->IsUndefined() || right->IsBoolean());
281 right_kind_ = GENERIC;
287 BinaryOpICState::Kind BinaryOpICState::UpdateKind(Handle<Object> object,
289 Kind new_kind = GENERIC;
290 bool is_truncating = Token::IsTruncatingBinaryOp(op());
291 if (object->IsBoolean() && is_truncating) {
292 // Booleans will be automatically truncated by HChange.
294 } else if (object->IsUndefined()) {
295 // Undefined will be automatically truncated by HChange.
296 new_kind = is_truncating ? INT32 : NUMBER;
297 } else if (object->IsSmi()) {
299 } else if (object->IsHeapNumber()) {
300 double value = Handle<HeapNumber>::cast(object)->value();
301 new_kind = IsInt32Double(value) ? INT32 : NUMBER;
302 } else if (object->IsString() && op() == Token::ADD) {
305 if (new_kind == INT32 && SmiValuesAre32Bits()) {
308 if (kind != NONE && ((new_kind <= NUMBER && kind > NUMBER) ||
309 (new_kind > NUMBER && kind <= NUMBER))) {
312 return Max(kind, new_kind);
317 const char* BinaryOpICState::KindToString(Kind kind) {
338 Type* BinaryOpICState::KindToType(Kind kind, Zone* zone) {
341 return Type::None(zone);
343 return Type::SignedSmall(zone);
345 return Type::Signed32(zone);
347 return Type::Number(zone);
349 return Type::String(zone);
351 return Type::Any(zone);
358 const char* CompareICState::GetStateName(State state) {
361 return "UNINITIALIZED";
366 case INTERNALIZED_STRING:
367 return "INTERNALIZED_STRING";
371 return "UNIQUE_NAME";
375 return "KNOWN_OBJECT";
384 Type* CompareICState::StateToType(Zone* zone, State state, Handle<Map> map) {
387 return Type::None(zone);
389 return Type::SignedSmall(zone);
391 return Type::Number(zone);
393 return Type::String(zone);
394 case INTERNALIZED_STRING:
395 return Type::InternalizedString(zone);
397 return Type::UniqueName(zone);
399 return Type::Receiver(zone);
401 return map.is_null() ? Type::Receiver(zone) : Type::Class(map, zone);
403 return Type::Any(zone);
410 CompareICState::State CompareICState::NewInputState(State old_state,
411 Handle<Object> value) {
414 if (value->IsSmi()) return SMI;
415 if (value->IsHeapNumber()) return NUMBER;
416 if (value->IsInternalizedString()) return INTERNALIZED_STRING;
417 if (value->IsString()) return STRING;
418 if (value->IsSymbol()) return UNIQUE_NAME;
419 if (value->IsJSObject()) return OBJECT;
422 if (value->IsSmi()) return SMI;
423 if (value->IsHeapNumber()) return NUMBER;
426 if (value->IsNumber()) return NUMBER;
428 case INTERNALIZED_STRING:
429 if (value->IsInternalizedString()) return INTERNALIZED_STRING;
430 if (value->IsString()) return STRING;
431 if (value->IsSymbol()) return UNIQUE_NAME;
434 if (value->IsString()) return STRING;
437 if (value->IsUniqueName()) return UNIQUE_NAME;
440 if (value->IsJSObject()) return OBJECT;
453 CompareICState::State CompareICState::TargetState(
454 State old_state, State old_left, State old_right, Token::Value op,
455 bool has_inlined_smi_code, Handle<Object> x, Handle<Object> y) {
458 if (x->IsSmi() && y->IsSmi()) return SMI;
459 if (x->IsNumber() && y->IsNumber()) return NUMBER;
460 if (Token::IsOrderedRelationalCompareOp(op)) {
461 // Ordered comparisons treat undefined as NaN, so the
462 // NUMBER stub will do the right thing.
463 if ((x->IsNumber() && y->IsUndefined()) ||
464 (y->IsNumber() && x->IsUndefined())) {
468 if (x->IsInternalizedString() && y->IsInternalizedString()) {
469 // We compare internalized strings as plain ones if we need to determine
470 // the order in a non-equality compare.
471 return Token::IsEqualityOp(op) ? INTERNALIZED_STRING : STRING;
473 if (x->IsString() && y->IsString()) return STRING;
474 if (!Token::IsEqualityOp(op)) return GENERIC;
475 if (x->IsUniqueName() && y->IsUniqueName()) return UNIQUE_NAME;
476 if (x->IsJSObject() && y->IsJSObject()) {
477 if (Handle<JSObject>::cast(x)->map() ==
478 Handle<JSObject>::cast(y)->map()) {
486 return x->IsNumber() && y->IsNumber() ? NUMBER : GENERIC;
487 case INTERNALIZED_STRING:
488 DCHECK(Token::IsEqualityOp(op));
489 if (x->IsString() && y->IsString()) return STRING;
490 if (x->IsUniqueName() && y->IsUniqueName()) return UNIQUE_NAME;
493 // If the failure was due to one side changing from smi to heap number,
494 // then keep the state (if other changed at the same time, we will get
495 // a second miss and then go to generic).
496 if (old_left == SMI && x->IsHeapNumber()) return NUMBER;
497 if (old_right == SMI && y->IsHeapNumber()) return NUMBER;
500 DCHECK(Token::IsEqualityOp(op));
501 if (x->IsJSObject() && y->IsJSObject()) {
512 return GENERIC; // Make the compiler happy.
514 } // namespace internal