1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #ifndef V8_IA32_MACRO_ASSEMBLER_IA32_H_
6 #define V8_IA32_MACRO_ASSEMBLER_IA32_H_
8 #include "src/assembler.h"
9 #include "src/bailout-reason.h"
10 #include "src/frames.h"
11 #include "src/globals.h"
16 // Convenience for platform-independent signatures. We do not normally
17 // distinguish memory operands from other operands on ia32.
18 typedef Operand MemOperand;
20 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
21 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
22 enum PointersToHereCheck {
23 kPointersToHereMaybeInteresting,
24 kPointersToHereAreAlwaysInteresting
28 enum RegisterValueType {
29 REGISTER_VALUE_IS_SMI,
30 REGISTER_VALUE_IS_INT32
35 bool AreAliased(Register reg1,
37 Register reg3 = no_reg,
38 Register reg4 = no_reg,
39 Register reg5 = no_reg,
40 Register reg6 = no_reg,
41 Register reg7 = no_reg,
42 Register reg8 = no_reg);
46 // MacroAssembler implements a collection of frequently used macros.
47 class MacroAssembler: public Assembler {
49 // The isolate parameter can be NULL if the macro assembler should
50 // not use isolate-dependent functionality. In this case, it's the
51 // responsibility of the caller to never invoke such function on the
53 MacroAssembler(Isolate* isolate, void* buffer, int size);
55 void Load(Register dst, const Operand& src, Representation r);
56 void Store(Register src, const Operand& dst, Representation r);
58 // Operations on roots in the root-array.
59 void LoadRoot(Register destination, Heap::RootListIndex index);
60 void StoreRoot(Register source, Register scratch, Heap::RootListIndex index);
61 void CompareRoot(Register with, Register scratch, Heap::RootListIndex index);
62 // These methods can only be used with constant roots (i.e. non-writable
63 // and not in new space).
64 void CompareRoot(Register with, Heap::RootListIndex index);
65 void CompareRoot(const Operand& with, Heap::RootListIndex index);
67 // ---------------------------------------------------------------------------
69 enum RememberedSetFinalAction {
74 // Record in the remembered set the fact that we have a pointer to new space
75 // at the address pointed to by the addr register. Only works if addr is not
77 void RememberedSetHelper(Register object, // Used for debug code.
80 SaveFPRegsMode save_fp,
81 RememberedSetFinalAction and_then);
83 void CheckPageFlag(Register object,
88 Label::Distance condition_met_distance = Label::kFar);
90 void CheckPageFlagForMap(
95 Label::Distance condition_met_distance = Label::kFar);
97 // Check if object is in new space. Jumps if the object is not in new space.
98 // The register scratch can be object itself, but scratch will be clobbered.
99 void JumpIfNotInNewSpace(Register object,
102 Label::Distance distance = Label::kFar) {
103 InNewSpace(object, scratch, zero, branch, distance);
106 // Check if object is in new space. Jumps if the object is in new space.
107 // The register scratch can be object itself, but it will be clobbered.
108 void JumpIfInNewSpace(Register object,
111 Label::Distance distance = Label::kFar) {
112 InNewSpace(object, scratch, not_zero, branch, distance);
115 // Check if an object has a given incremental marking color. Also uses ecx!
116 void HasColor(Register object,
120 Label::Distance has_color_distance,
124 void JumpIfBlack(Register object,
128 Label::Distance on_black_distance = Label::kFar);
130 // Checks the color of an object. If the object is already grey or black
131 // then we just fall through, since it is already live. If it is white and
132 // we can determine that it doesn't need to be scanned, then we just mark it
133 // black and fall through. For the rest we jump to the label so the
134 // incremental marker can fix its assumptions.
135 void EnsureNotWhite(Register object,
138 Label* object_is_white_and_not_data,
139 Label::Distance distance);
141 // Notify the garbage collector that we wrote a pointer into an object.
142 // |object| is the object being stored into, |value| is the object being
143 // stored. value and scratch registers are clobbered by the operation.
144 // The offset is the offset from the start of the object, not the offset from
145 // the tagged HeapObject pointer. For use with FieldOperand(reg, off).
146 void RecordWriteField(
151 SaveFPRegsMode save_fp,
152 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
153 SmiCheck smi_check = INLINE_SMI_CHECK,
154 PointersToHereCheck pointers_to_here_check_for_value =
155 kPointersToHereMaybeInteresting);
157 // As above, but the offset has the tag presubtracted. For use with
158 // Operand(reg, off).
159 void RecordWriteContextSlot(
164 SaveFPRegsMode save_fp,
165 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
166 SmiCheck smi_check = INLINE_SMI_CHECK,
167 PointersToHereCheck pointers_to_here_check_for_value =
168 kPointersToHereMaybeInteresting) {
169 RecordWriteField(context,
170 offset + kHeapObjectTag,
174 remembered_set_action,
176 pointers_to_here_check_for_value);
179 // Notify the garbage collector that we wrote a pointer into a fixed array.
180 // |array| is the array being stored into, |value| is the
181 // object being stored. |index| is the array index represented as a
182 // Smi. All registers are clobbered by the operation RecordWriteArray
183 // filters out smis so it does not update the write barrier if the
185 void RecordWriteArray(
189 SaveFPRegsMode save_fp,
190 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
191 SmiCheck smi_check = INLINE_SMI_CHECK,
192 PointersToHereCheck pointers_to_here_check_for_value =
193 kPointersToHereMaybeInteresting);
195 // For page containing |object| mark region covering |address|
196 // dirty. |object| is the object being stored into, |value| is the
197 // object being stored. The address and value registers are clobbered by the
198 // operation. RecordWrite filters out smis so it does not update the
199 // write barrier if the value is a smi.
204 SaveFPRegsMode save_fp,
205 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
206 SmiCheck smi_check = INLINE_SMI_CHECK,
207 PointersToHereCheck pointers_to_here_check_for_value =
208 kPointersToHereMaybeInteresting);
210 // For page containing |object| mark the region covering the object's map
211 // dirty. |object| is the object being stored into, |map| is the Map object
213 void RecordWriteForMap(
218 SaveFPRegsMode save_fp);
220 // ---------------------------------------------------------------------------
225 // Generates function and stub prologue code.
227 void Prologue(bool code_pre_aging);
229 // Enter specific kind of exit frame. Expects the number of
230 // arguments in register eax and sets up the number of arguments in
231 // register edi and the pointer to the first argument in register
233 void EnterExitFrame(bool save_doubles);
235 void EnterApiExitFrame(int argc);
237 // Leave the current exit frame. Expects the return value in
238 // register eax:edx (untouched) and the pointer to the first
239 // argument in register esi.
240 void LeaveExitFrame(bool save_doubles);
242 // Leave the current exit frame. Expects the return value in
243 // register eax (untouched).
244 void LeaveApiExitFrame(bool restore_context);
246 // Find the function context up the context chain.
247 void LoadContext(Register dst, int context_chain_length);
249 // Conditionally load the cached Array transitioned map of type
250 // transitioned_kind from the native context if the map in register
251 // map_in_out is the cached Array map in the native context of
253 void LoadTransitionedArrayMapConditional(
254 ElementsKind expected_kind,
255 ElementsKind transitioned_kind,
258 Label* no_map_match);
260 // Load the global function with the given index.
261 void LoadGlobalFunction(int index, Register function);
263 // Load the initial map from the global function. The registers
264 // function and map can be the same.
265 void LoadGlobalFunctionInitialMap(Register function, Register map);
267 // Push and pop the registers that can hold pointers.
268 void PushSafepointRegisters() { pushad(); }
269 void PopSafepointRegisters() { popad(); }
270 // Store the value in register/immediate src in the safepoint
271 // register stack slot for register dst.
272 void StoreToSafepointRegisterSlot(Register dst, Register src);
273 void StoreToSafepointRegisterSlot(Register dst, Immediate src);
274 void LoadFromSafepointRegisterSlot(Register dst, Register src);
276 void LoadHeapObject(Register result, Handle<HeapObject> object);
277 void CmpHeapObject(Register reg, Handle<HeapObject> object);
278 void PushHeapObject(Handle<HeapObject> object);
280 void LoadObject(Register result, Handle<Object> object) {
281 AllowDeferredHandleDereference heap_object_check;
282 if (object->IsHeapObject()) {
283 LoadHeapObject(result, Handle<HeapObject>::cast(object));
285 Move(result, Immediate(object));
289 void CmpObject(Register reg, Handle<Object> object) {
290 AllowDeferredHandleDereference heap_object_check;
291 if (object->IsHeapObject()) {
292 CmpHeapObject(reg, Handle<HeapObject>::cast(object));
294 cmp(reg, Immediate(object));
298 // Compare the given value and the value of weak cell.
299 void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch);
301 void GetWeakValue(Register value, Handle<WeakCell> cell);
303 // Load the value of the weak cell in the value register. Branch to the given
304 // miss label if the weak cell was cleared.
305 void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
307 // ---------------------------------------------------------------------------
308 // JavaScript invokes
310 // Invoke the JavaScript function code by either calling or jumping.
311 void InvokeCode(Register code,
312 const ParameterCount& expected,
313 const ParameterCount& actual,
315 const CallWrapper& call_wrapper) {
316 InvokeCode(Operand(code), expected, actual, flag, call_wrapper);
319 void InvokeCode(const Operand& code,
320 const ParameterCount& expected,
321 const ParameterCount& actual,
323 const CallWrapper& call_wrapper);
325 // Invoke the JavaScript function in the given register. Changes the
326 // current context to the context in the function before invoking.
327 void InvokeFunction(Register function,
328 const ParameterCount& actual,
330 const CallWrapper& call_wrapper);
332 void InvokeFunction(Register function,
333 const ParameterCount& expected,
334 const ParameterCount& actual,
336 const CallWrapper& call_wrapper);
338 void InvokeFunction(Handle<JSFunction> function,
339 const ParameterCount& expected,
340 const ParameterCount& actual,
342 const CallWrapper& call_wrapper);
344 // Invoke specified builtin JavaScript function. Adds an entry to
345 // the unresolved list if the name does not resolve.
346 void InvokeBuiltin(Builtins::JavaScript id,
348 const CallWrapper& call_wrapper = NullCallWrapper());
350 // Store the function for the given builtin in the target register.
351 void GetBuiltinFunction(Register target, Builtins::JavaScript id);
353 // Store the code object for the given builtin in the target register.
354 void GetBuiltinEntry(Register target, Builtins::JavaScript id);
356 // Expression support
357 // cvtsi2sd instruction only writes to the low 64-bit of dst register, which
358 // hinders register renaming and makes dependence chains longer. So we use
359 // xorps to clear the dst register before cvtsi2sd to solve this issue.
360 void Cvtsi2sd(XMMRegister dst, Register src) { Cvtsi2sd(dst, Operand(src)); }
361 void Cvtsi2sd(XMMRegister dst, const Operand& src);
363 // Support for constant splitting.
364 bool IsUnsafeImmediate(const Immediate& x);
365 void SafeMove(Register dst, const Immediate& x);
366 void SafePush(const Immediate& x);
368 // Compare object type for heap object.
369 // Incoming register is heap_object and outgoing register is map.
370 void CmpObjectType(Register heap_object, InstanceType type, Register map);
372 // Compare instance type for map.
373 void CmpInstanceType(Register map, InstanceType type);
375 // Check if a map for a JSObject indicates that the object has fast elements.
376 // Jump to the specified label if it does not.
377 void CheckFastElements(Register map,
379 Label::Distance distance = Label::kFar);
381 // Check if a map for a JSObject indicates that the object can have both smi
382 // and HeapObject elements. Jump to the specified label if it does not.
383 void CheckFastObjectElements(Register map,
385 Label::Distance distance = Label::kFar);
387 // Check if a map for a JSObject indicates that the object has fast smi only
388 // elements. Jump to the specified label if it does not.
389 void CheckFastSmiElements(Register map,
391 Label::Distance distance = Label::kFar);
393 // Check to see if maybe_number can be stored as a double in
394 // FastDoubleElements. If it can, store it at the index specified by key in
395 // the FastDoubleElements array elements, otherwise jump to fail.
396 void StoreNumberToDoubleElements(Register maybe_number,
400 XMMRegister scratch2,
404 // Compare an object's map with the specified map.
405 void CompareMap(Register obj, Handle<Map> map);
407 // Check if the map of an object is equal to a specified map and branch to
408 // label if not. Skip the smi check if not required (object is known to be a
409 // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
410 // against maps that are ElementsKind transition maps of the specified map.
411 void CheckMap(Register obj,
414 SmiCheckType smi_check_type);
416 // Check if the map of an object is equal to a specified weak map and branch
417 // to a specified target if equal. Skip the smi check if not required
418 // (object is known to be a heap object)
419 void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
420 Handle<WeakCell> cell, Handle<Code> success,
421 SmiCheckType smi_check_type);
423 // Check if the object in register heap_object is a string. Afterwards the
424 // register map contains the object map and the register instance_type
425 // contains the instance_type. The registers map and instance_type can be the
426 // same in which case it contains the instance type afterwards. Either of the
427 // registers map and instance_type can be the same as heap_object.
428 Condition IsObjectStringType(Register heap_object,
430 Register instance_type);
432 // Check if the object in register heap_object is a name. Afterwards the
433 // register map contains the object map and the register instance_type
434 // contains the instance_type. The registers map and instance_type can be the
435 // same in which case it contains the instance type afterwards. Either of the
436 // registers map and instance_type can be the same as heap_object.
437 Condition IsObjectNameType(Register heap_object,
439 Register instance_type);
441 // Check if a heap object's type is in the JSObject range, not including
442 // JSFunction. The object's map will be loaded in the map register.
443 // Any or all of the three registers may be the same.
444 // The contents of the scratch register will always be overwritten.
445 void IsObjectJSObjectType(Register heap_object,
450 // The contents of the scratch register will be overwritten.
451 void IsInstanceJSObjectType(Register map, Register scratch, Label* fail);
453 // FCmp is similar to integer cmp, but requires unsigned
454 // jcc instructions (je, ja, jae, jb, jbe, je, and jz).
457 void ClampUint8(Register reg);
459 void ClampDoubleToUint8(XMMRegister input_reg,
460 XMMRegister scratch_reg,
461 Register result_reg);
463 void SlowTruncateToI(Register result_reg, Register input_reg,
464 int offset = HeapNumber::kValueOffset - kHeapObjectTag);
466 void TruncateHeapNumberToI(Register result_reg, Register input_reg);
467 void TruncateDoubleToI(Register result_reg, XMMRegister input_reg);
469 void DoubleToI(Register result_reg, XMMRegister input_reg,
470 XMMRegister scratch, MinusZeroMode minus_zero_mode,
471 Label* lost_precision, Label* is_nan, Label* minus_zero,
472 Label::Distance dst = Label::kFar);
474 // Smi tagging support.
475 void SmiTag(Register reg) {
476 STATIC_ASSERT(kSmiTag == 0);
477 STATIC_ASSERT(kSmiTagSize == 1);
480 void SmiUntag(Register reg) {
481 sar(reg, kSmiTagSize);
484 // Modifies the register even if it does not contain a Smi!
485 void SmiUntag(Register reg, Label* is_smi) {
486 STATIC_ASSERT(kSmiTagSize == 1);
487 sar(reg, kSmiTagSize);
488 STATIC_ASSERT(kSmiTag == 0);
489 j(not_carry, is_smi);
492 void LoadUint32(XMMRegister dst, Register src) {
493 LoadUint32(dst, Operand(src));
495 void LoadUint32(XMMRegister dst, const Operand& src);
497 // Jump the register contains a smi.
498 inline void JumpIfSmi(Register value,
500 Label::Distance distance = Label::kFar) {
501 test(value, Immediate(kSmiTagMask));
502 j(zero, smi_label, distance);
504 // Jump if the operand is a smi.
505 inline void JumpIfSmi(Operand value,
507 Label::Distance distance = Label::kFar) {
508 test(value, Immediate(kSmiTagMask));
509 j(zero, smi_label, distance);
511 // Jump if register contain a non-smi.
512 inline void JumpIfNotSmi(Register value,
513 Label* not_smi_label,
514 Label::Distance distance = Label::kFar) {
515 test(value, Immediate(kSmiTagMask));
516 j(not_zero, not_smi_label, distance);
519 void LoadInstanceDescriptors(Register map, Register descriptors);
520 void EnumLength(Register dst, Register map);
521 void NumberOfOwnDescriptors(Register dst, Register map);
522 void LoadAccessor(Register dst, Register holder, int accessor_index,
523 AccessorComponent accessor);
525 template<typename Field>
526 void DecodeField(Register reg) {
527 static const int shift = Field::kShift;
528 static const int mask = Field::kMask >> Field::kShift;
532 and_(reg, Immediate(mask));
535 template<typename Field>
536 void DecodeFieldToSmi(Register reg) {
537 static const int shift = Field::kShift;
538 static const int mask = (Field::kMask >> Field::kShift) << kSmiTagSize;
539 STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
540 STATIC_ASSERT(kSmiTag == 0);
541 if (shift < kSmiTagSize) {
542 shl(reg, kSmiTagSize - shift);
543 } else if (shift > kSmiTagSize) {
544 sar(reg, shift - kSmiTagSize);
546 and_(reg, Immediate(mask));
549 void LoadPowerOf2(XMMRegister dst, Register scratch, int power);
551 // Abort execution if argument is not a number, enabled via --debug-code.
552 void AssertNumber(Register object);
554 // Abort execution if argument is not a smi, enabled via --debug-code.
555 void AssertSmi(Register object);
557 // Abort execution if argument is a smi, enabled via --debug-code.
558 void AssertNotSmi(Register object);
560 // Abort execution if argument is not a string, enabled via --debug-code.
561 void AssertString(Register object);
563 // Abort execution if argument is not a name, enabled via --debug-code.
564 void AssertName(Register object);
566 // Abort execution if argument is not undefined or an AllocationSite, enabled
568 void AssertUndefinedOrAllocationSite(Register object);
570 // ---------------------------------------------------------------------------
571 // Exception handling
573 // Push a new stack handler and link it into stack handler chain.
574 void PushStackHandler();
576 // Unlink the stack handler on top of the stack from the stack handler chain.
577 void PopStackHandler();
579 // ---------------------------------------------------------------------------
580 // Inline caching support
582 // Generate code for checking access rights - used for security checks
583 // on access to global objects across environments. The holder register
584 // is left untouched, but the scratch register is clobbered.
585 void CheckAccessGlobalProxy(Register holder_reg,
590 void GetNumberHash(Register r0, Register scratch);
592 void LoadFromNumberDictionary(Label* miss,
601 // ---------------------------------------------------------------------------
602 // Allocation support
604 // Allocate an object in new space or old space. If the given space
605 // is exhausted control continues at the gc_required label. The allocated
606 // object is returned in result and end of the new object is returned in
607 // result_end. The register scratch can be passed as no_reg in which case
608 // an additional object reference will be added to the reloc info. The
609 // returned pointers in result and result_end have not yet been tagged as
610 // heap objects. If result_contains_top_on_entry is true the content of
611 // result is known to be the allocation top on entry (could be result_end
612 // from a previous call). If result_contains_top_on_entry is true scratch
613 // should be no_reg as it is never used.
614 void Allocate(int object_size,
619 AllocationFlags flags);
621 void Allocate(int header_size,
622 ScaleFactor element_size,
623 Register element_count,
624 RegisterValueType element_count_type,
629 AllocationFlags flags);
631 void Allocate(Register object_size,
636 AllocationFlags flags);
638 // Allocate a heap number in new space with undefined value. The
639 // register scratch2 can be passed as no_reg; the others must be
640 // valid registers. Returns tagged pointer in result register, or
641 // jumps to gc_required if new space is full.
642 void AllocateHeapNumber(Register result,
646 MutableMode mode = IMMUTABLE);
648 // Allocate a sequential string. All the header fields of the string object
650 void AllocateTwoByteString(Register result,
656 void AllocateOneByteString(Register result, Register length,
657 Register scratch1, Register scratch2,
658 Register scratch3, Label* gc_required);
659 void AllocateOneByteString(Register result, int length, Register scratch1,
660 Register scratch2, Label* gc_required);
662 // Allocate a raw cons string object. Only the map field of the result is
664 void AllocateTwoByteConsString(Register result,
668 void AllocateOneByteConsString(Register result, Register scratch1,
669 Register scratch2, Label* gc_required);
671 // Allocate a raw sliced string object. Only the map field of the result is
673 void AllocateTwoByteSlicedString(Register result,
677 void AllocateOneByteSlicedString(Register result, Register scratch1,
678 Register scratch2, Label* gc_required);
680 // Copy memory, byte-by-byte, from source to destination. Not optimized for
681 // long or aligned copies.
682 // The contents of index and scratch are destroyed.
683 void CopyBytes(Register source,
684 Register destination,
688 // Initialize fields with filler values. Fields starting at |start_offset|
689 // not including end_offset are overwritten with the value in |filler|. At
690 // the end the loop, |start_offset| takes the value of |end_offset|.
691 void InitializeFieldsWithFiller(Register start_offset,
695 // ---------------------------------------------------------------------------
696 // Support functions.
698 // Check a boolean-bit of a Smi field.
699 void BooleanBitTest(Register object, int field_offset, int bit_index);
701 // Check if result is zero and op is negative.
702 void NegativeZeroTest(Register result, Register op, Label* then_label);
704 // Check if result is zero and any of op1 and op2 are negative.
705 // Register scratch is destroyed, and it must be different from op2.
706 void NegativeZeroTest(Register result, Register op1, Register op2,
707 Register scratch, Label* then_label);
709 // Machine code version of Map::GetConstructor().
710 // |temp| holds |result|'s map when done.
711 void GetMapConstructor(Register result, Register map, Register temp);
713 // Try to get function prototype of a function and puts the value in
714 // the result register. Checks that the function really is a
715 // function and jumps to the miss label if the fast checks fail. The
716 // function register will be untouched; the other registers may be
718 void TryGetFunctionPrototype(Register function,
722 bool miss_on_bound_function = false);
724 // Picks out an array index from the hash field.
726 // hash - holds the index's hash. Clobbered.
727 // index - holds the overwritten index on exit.
728 void IndexFromHash(Register hash, Register index);
730 // ---------------------------------------------------------------------------
733 // Call a code stub. Generate the code if necessary.
734 void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
736 // Tail call a code stub (jump). Generate the code if necessary.
737 void TailCallStub(CodeStub* stub);
739 // Return from a code stub after popping its arguments.
740 void StubReturn(int argc);
742 // Call a runtime routine.
743 void CallRuntime(const Runtime::Function* f,
745 SaveFPRegsMode save_doubles = kDontSaveFPRegs);
746 void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
747 const Runtime::Function* function = Runtime::FunctionForId(id);
748 CallRuntime(function, function->nargs, kSaveFPRegs);
751 // Convenience function: Same as above, but takes the fid instead.
752 void CallRuntime(Runtime::FunctionId id,
754 SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
755 CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles);
758 // Convenience function: call an external reference.
759 void CallExternalReference(ExternalReference ref, int num_arguments);
761 // Tail call of a runtime routine (jump).
762 // Like JumpToExternalReference, but also takes care of passing the number
764 void TailCallExternalReference(const ExternalReference& ext,
768 // Convenience function: tail call a runtime routine (jump).
769 void TailCallRuntime(Runtime::FunctionId fid,
773 // Before calling a C-function from generated code, align arguments on stack.
774 // After aligning the frame, arguments must be stored in esp[0], esp[4],
775 // etc., not pushed. The argument count assumes all arguments are word sized.
776 // Some compilers/platforms require the stack to be aligned when calling
778 // Needs a scratch register to do some arithmetic. This register will be
780 void PrepareCallCFunction(int num_arguments, Register scratch);
782 // Calls a C function and cleans up the space for arguments allocated
783 // by PrepareCallCFunction. The called function is not allowed to trigger a
784 // garbage collection, since that might move the code and invalidate the
785 // return address (unless this is somehow accounted for by the called
787 void CallCFunction(ExternalReference function, int num_arguments);
788 void CallCFunction(Register function, int num_arguments);
790 // Jump to a runtime routine.
791 void JumpToExternalReference(const ExternalReference& ext);
793 // ---------------------------------------------------------------------------
798 // Return and drop arguments from stack, where the number of arguments
799 // may be bigger than 2^16 - 1. Requires a scratch register.
800 void Ret(int bytes_dropped, Register scratch);
802 // Emit code to discard a non-negative number of pointer-sized elements
803 // from the stack, clobbering only the esp register.
804 void Drop(int element_count);
806 void Call(Label* target) { call(target); }
807 void Push(Register src) { push(src); }
808 void Pop(Register dst) { pop(dst); }
810 // Non-SSE2 instructions.
811 void Pextrd(Register dst, XMMRegister src, int8_t imm8);
812 void Pinsrd(XMMRegister dst, Register src, int8_t imm8) {
813 Pinsrd(dst, Operand(src), imm8);
815 void Pinsrd(XMMRegister dst, const Operand& src, int8_t imm8);
817 void Lzcnt(Register dst, Register src) { Lzcnt(dst, Operand(src)); }
818 void Lzcnt(Register dst, const Operand& src);
820 // Emit call to the code we are currently generating.
822 Handle<Code> self(reinterpret_cast<Code**>(CodeObject().location()));
823 call(self, RelocInfo::CODE_TARGET);
826 // Move if the registers are not identical.
827 void Move(Register target, Register source);
829 // Move a constant into a destination using the most efficient encoding.
830 void Move(Register dst, const Immediate& x);
831 void Move(const Operand& dst, const Immediate& x);
833 // Move an immediate into an XMM register.
834 void Move(XMMRegister dst, uint32_t src);
835 void Move(XMMRegister dst, uint64_t src);
836 void Move(XMMRegister dst, double src) { Move(dst, bit_cast<uint64_t>(src)); }
838 // Push a handle value.
839 void Push(Handle<Object> handle) { push(Immediate(handle)); }
840 void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
842 Handle<Object> CodeObject() {
843 DCHECK(!code_object_.is_null());
847 // Emit code for a truncating division by a constant. The dividend register is
848 // unchanged, the result is in edx, and eax gets clobbered.
849 void TruncatingDiv(Register dividend, int32_t divisor);
851 // ---------------------------------------------------------------------------
852 // StatsCounter support
854 void SetCounter(StatsCounter* counter, int value);
855 void IncrementCounter(StatsCounter* counter, int value);
856 void DecrementCounter(StatsCounter* counter, int value);
857 void IncrementCounter(Condition cc, StatsCounter* counter, int value);
858 void DecrementCounter(Condition cc, StatsCounter* counter, int value);
861 // ---------------------------------------------------------------------------
864 // Calls Abort(msg) if the condition cc is not satisfied.
865 // Use --debug_code to enable.
866 void Assert(Condition cc, BailoutReason reason);
868 void AssertFastElements(Register elements);
870 // Like Assert(), but always enabled.
871 void Check(Condition cc, BailoutReason reason);
873 // Print a message to stdout and abort execution.
874 void Abort(BailoutReason reason);
876 // Check that the stack is aligned.
877 void CheckStackAlignment();
879 // Verify restrictions about code generated in stubs.
880 void set_generating_stub(bool value) { generating_stub_ = value; }
881 bool generating_stub() { return generating_stub_; }
882 void set_has_frame(bool value) { has_frame_ = value; }
883 bool has_frame() { return has_frame_; }
884 inline bool AllowThisStubCall(CodeStub* stub);
886 // ---------------------------------------------------------------------------
889 // Generate code to do a lookup in the number string cache. If the number in
890 // the register object is found in the cache the generated code falls through
891 // with the result in the result register. The object and the result register
892 // can be the same. If the number is not found in the cache the code jumps to
893 // the label not_found with only the content of register object unchanged.
894 void LookupNumberStringCache(Register object,
900 // Check whether the instance type represents a flat one-byte string. Jump to
901 // the label if not. If the instance type can be scratched specify same
902 // register for both instance type and scratch.
903 void JumpIfInstanceTypeIsNotSequentialOneByte(
904 Register instance_type, Register scratch,
905 Label* on_not_flat_one_byte_string);
907 // Checks if both objects are sequential one-byte strings, and jumps to label
909 void JumpIfNotBothSequentialOneByteStrings(
910 Register object1, Register object2, Register scratch1, Register scratch2,
911 Label* on_not_flat_one_byte_strings);
913 // Checks if the given register or operand is a unique name
914 void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name,
915 Label::Distance distance = Label::kFar) {
916 JumpIfNotUniqueNameInstanceType(Operand(reg), not_unique_name, distance);
919 void JumpIfNotUniqueNameInstanceType(Operand operand, Label* not_unique_name,
920 Label::Distance distance = Label::kFar);
922 void EmitSeqStringSetCharCheck(Register string,
925 uint32_t encoding_mask);
927 static int SafepointRegisterStackIndex(Register reg) {
928 return SafepointRegisterStackIndex(reg.code());
931 // Activation support.
932 void EnterFrame(StackFrame::Type type);
933 void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg);
934 void LeaveFrame(StackFrame::Type type);
936 // Expects object in eax and returns map with validated enum cache
937 // in eax. Assumes that any other register can be used as a scratch.
938 void CheckEnumCache(Label* call_runtime);
940 // AllocationMemento support. Arrays may have an associated
941 // AllocationMemento object that can be checked for in order to pretransition
943 // On entry, receiver_reg should point to the array object.
944 // scratch_reg gets clobbered.
945 // If allocation info is present, conditional code is set to equal.
946 void TestJSArrayForAllocationMemento(Register receiver_reg,
947 Register scratch_reg,
948 Label* no_memento_found);
950 void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
951 Register scratch_reg,
952 Label* memento_found) {
953 Label no_memento_found;
954 TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
956 j(equal, memento_found);
957 bind(&no_memento_found);
960 // Jumps to found label if a prototype map has dictionary elements.
961 void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
962 Register scratch1, Label* found);
965 bool generating_stub_;
967 // This handle will be patched with the code object on installation.
968 Handle<Object> code_object_;
970 // Helper functions for generating invokes.
971 void InvokePrologue(const ParameterCount& expected,
972 const ParameterCount& actual,
973 Handle<Code> code_constant,
974 const Operand& code_operand,
976 bool* definitely_mismatches,
978 Label::Distance done_distance,
979 const CallWrapper& call_wrapper = NullCallWrapper());
981 void EnterExitFramePrologue();
982 void EnterExitFrameEpilogue(int argc, bool save_doubles);
984 void LeaveExitFrameEpilogue(bool restore_context);
986 // Allocation support helpers.
987 void LoadAllocationTopHelper(Register result,
989 AllocationFlags flags);
991 void UpdateAllocationTopHelper(Register result_end,
993 AllocationFlags flags);
995 // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
996 void InNewSpace(Register object,
999 Label* condition_met,
1000 Label::Distance condition_met_distance = Label::kFar);
1002 // Helper for finding the mark bits for an address. Afterwards, the
1003 // bitmap register points at the word with the mark bits and the mask
1004 // the position of the first bit. Uses ecx as scratch and leaves addr_reg
1006 inline void GetMarkBits(Register addr_reg,
1007 Register bitmap_reg,
1010 // Compute memory operands for safepoint stack slots.
1011 Operand SafepointRegisterSlot(Register reg);
1012 static int SafepointRegisterStackIndex(int reg_code);
1014 // Needs access to SafepointRegisterStackIndex for compiled frame
1016 friend class StandardFrame;
1020 // The code patcher is used to patch (typically) small parts of code e.g. for
1021 // debugging and other types of instrumentation. When using the code patcher
1022 // the exact number of bytes specified must be emitted. Is not legal to emit
1023 // relocation information. If any of these constraints are violated it causes
1027 CodePatcher(byte* address, int size);
1030 // Macro assembler to emit code.
1031 MacroAssembler* masm() { return &masm_; }
1034 byte* address_; // The address of the code being patched.
1035 int size_; // Number of bytes of the expected patch size.
1036 MacroAssembler masm_; // Macro assembler used to generate the code.
1040 // -----------------------------------------------------------------------------
1041 // Static helper functions.
1043 // Generate an Operand for loading a field from an object.
1044 inline Operand FieldOperand(Register object, int offset) {
1045 return Operand(object, offset - kHeapObjectTag);
1049 // Generate an Operand for loading an indexed field from an object.
1050 inline Operand FieldOperand(Register object,
1054 return Operand(object, index, scale, offset - kHeapObjectTag);
1058 inline Operand FixedArrayElementOperand(Register array,
1059 Register index_as_smi,
1060 int additional_offset = 0) {
1061 int offset = FixedArray::kHeaderSize + additional_offset * kPointerSize;
1062 return FieldOperand(array, index_as_smi, times_half_pointer_size, offset);
1066 inline Operand ContextOperand(Register context, int index) {
1067 return Operand(context, Context::SlotOffset(index));
1071 inline Operand GlobalObjectOperand() {
1072 return ContextOperand(esi, Context::GLOBAL_OBJECT_INDEX);
1076 #ifdef GENERATED_CODE_COVERAGE
1077 extern void LogGeneratedCodeCoverage(const char* file_line);
1078 #define CODE_COVERAGE_STRINGIFY(x) #x
1079 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
1080 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
1081 #define ACCESS_MASM(masm) { \
1082 byte* ia32_coverage_function = \
1083 reinterpret_cast<byte*>(FUNCTION_ADDR(LogGeneratedCodeCoverage)); \
1086 masm->push(Immediate(reinterpret_cast<int>(&__FILE_LINE__))); \
1087 masm->call(ia32_coverage_function, RelocInfo::RUNTIME_ENTRY); \
1094 #define ACCESS_MASM(masm) masm->
1098 } } // namespace v8::internal
1100 #endif // V8_IA32_MACRO_ASSEMBLER_IA32_H_