1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
7 #if V8_TARGET_ARCH_IA32
9 #include "src/base/bits.h"
10 #include "src/bootstrapper.h"
11 #include "src/code-stubs.h"
12 #include "src/codegen.h"
13 #include "src/ic/handler-compiler.h"
14 #include "src/ic/ic.h"
15 #include "src/ic/stub-cache.h"
16 #include "src/isolate.h"
17 #include "src/jsregexp.h"
18 #include "src/regexp-macro-assembler.h"
19 #include "src/runtime/runtime.h"
25 static void InitializeArrayConstructorDescriptor(
26 Isolate* isolate, CodeStubDescriptor* descriptor,
27 int constant_stack_parameter_count) {
29 // eax -- number of arguments
31 // ebx -- allocation site with elements kind
32 Address deopt_handler = Runtime::FunctionForId(
33 Runtime::kArrayConstructor)->entry;
35 if (constant_stack_parameter_count == 0) {
36 descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
37 JS_FUNCTION_STUB_MODE);
39 descriptor->Initialize(eax, deopt_handler, constant_stack_parameter_count,
40 JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
45 static void InitializeInternalArrayConstructorDescriptor(
46 Isolate* isolate, CodeStubDescriptor* descriptor,
47 int constant_stack_parameter_count) {
49 // eax -- number of arguments
50 // edi -- constructor function
51 Address deopt_handler = Runtime::FunctionForId(
52 Runtime::kInternalArrayConstructor)->entry;
54 if (constant_stack_parameter_count == 0) {
55 descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
56 JS_FUNCTION_STUB_MODE);
58 descriptor->Initialize(eax, deopt_handler, constant_stack_parameter_count,
59 JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
64 void ArrayNoArgumentConstructorStub::InitializeDescriptor(
65 CodeStubDescriptor* descriptor) {
66 InitializeArrayConstructorDescriptor(isolate(), descriptor, 0);
70 void ArraySingleArgumentConstructorStub::InitializeDescriptor(
71 CodeStubDescriptor* descriptor) {
72 InitializeArrayConstructorDescriptor(isolate(), descriptor, 1);
76 void ArrayNArgumentsConstructorStub::InitializeDescriptor(
77 CodeStubDescriptor* descriptor) {
78 InitializeArrayConstructorDescriptor(isolate(), descriptor, -1);
82 void InternalArrayNoArgumentConstructorStub::InitializeDescriptor(
83 CodeStubDescriptor* descriptor) {
84 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 0);
88 void InternalArraySingleArgumentConstructorStub::InitializeDescriptor(
89 CodeStubDescriptor* descriptor) {
90 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 1);
94 void InternalArrayNArgumentsConstructorStub::InitializeDescriptor(
95 CodeStubDescriptor* descriptor) {
96 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1);
100 #define __ ACCESS_MASM(masm)
103 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
104 ExternalReference miss) {
105 // Update the static counter each time a new code stub is generated.
106 isolate()->counters()->code_stubs()->Increment();
108 CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
109 int param_count = descriptor.GetRegisterParameterCount();
111 // Call the runtime system in a fresh internal frame.
112 FrameScope scope(masm, StackFrame::INTERNAL);
113 DCHECK(param_count == 0 ||
114 eax.is(descriptor.GetRegisterParameter(param_count - 1)));
116 for (int i = 0; i < param_count; ++i) {
117 __ push(descriptor.GetRegisterParameter(i));
119 __ CallExternalReference(miss, param_count);
126 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
127 // We don't allow a GC during a store buffer overflow so there is no need to
128 // store the registers in any particular way, but we do have to store and
131 if (save_doubles()) {
132 __ sub(esp, Immediate(kDoubleSize * XMMRegister::kMaxNumRegisters));
133 for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
134 XMMRegister reg = XMMRegister::from_code(i);
135 __ movsd(Operand(esp, i * kDoubleSize), reg);
138 const int argument_count = 1;
140 AllowExternalCallThatCantCauseGC scope(masm);
141 __ PrepareCallCFunction(argument_count, ecx);
142 __ mov(Operand(esp, 0 * kPointerSize),
143 Immediate(ExternalReference::isolate_address(isolate())));
145 ExternalReference::store_buffer_overflow_function(isolate()),
147 if (save_doubles()) {
148 for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
149 XMMRegister reg = XMMRegister::from_code(i);
150 __ movsd(reg, Operand(esp, i * kDoubleSize));
152 __ add(esp, Immediate(kDoubleSize * XMMRegister::kMaxNumRegisters));
159 class FloatingPointHelper : public AllStatic {
166 // Code pattern for loading a floating point value. Input value must
167 // be either a smi or a heap number object (fp value). Requirements:
168 // operand in register number. Returns operand as floating point number
170 static void LoadFloatOperand(MacroAssembler* masm, Register number);
172 // Test if operands are smi or number objects (fp). Requirements:
173 // operand_1 in eax, operand_2 in edx; falls through on float
174 // operands, jumps to the non_float label otherwise.
175 static void CheckFloatOperands(MacroAssembler* masm,
179 // Test if operands are numbers (smi or HeapNumber objects), and load
180 // them into xmm0 and xmm1 if they are. Jump to label not_numbers if
181 // either operand is not a number. Operands are in edx and eax.
182 // Leaves operands unchanged.
183 static void LoadSSE2Operands(MacroAssembler* masm, Label* not_numbers);
187 void DoubleToIStub::Generate(MacroAssembler* masm) {
188 Register input_reg = this->source();
189 Register final_result_reg = this->destination();
190 DCHECK(is_truncating());
192 Label check_negative, process_64_bits, done, done_no_stash;
194 int double_offset = offset();
196 // Account for return address and saved regs if input is esp.
197 if (input_reg.is(esp)) double_offset += 3 * kPointerSize;
199 MemOperand mantissa_operand(MemOperand(input_reg, double_offset));
200 MemOperand exponent_operand(MemOperand(input_reg,
201 double_offset + kDoubleSize / 2));
205 Register scratch_candidates[3] = { ebx, edx, edi };
206 for (int i = 0; i < 3; i++) {
207 scratch1 = scratch_candidates[i];
208 if (!final_result_reg.is(scratch1) && !input_reg.is(scratch1)) break;
211 // Since we must use ecx for shifts below, use some other register (eax)
212 // to calculate the result if ecx is the requested return register.
213 Register result_reg = final_result_reg.is(ecx) ? eax : final_result_reg;
214 // Save ecx if it isn't the return register and therefore volatile, or if it
215 // is the return register, then save the temp register we use in its stead for
217 Register save_reg = final_result_reg.is(ecx) ? eax : ecx;
221 bool stash_exponent_copy = !input_reg.is(esp);
222 __ mov(scratch1, mantissa_operand);
223 if (CpuFeatures::IsSupported(SSE3)) {
224 CpuFeatureScope scope(masm, SSE3);
225 // Load x87 register with heap number.
226 __ fld_d(mantissa_operand);
228 __ mov(ecx, exponent_operand);
229 if (stash_exponent_copy) __ push(ecx);
231 __ and_(ecx, HeapNumber::kExponentMask);
232 __ shr(ecx, HeapNumber::kExponentShift);
233 __ lea(result_reg, MemOperand(ecx, -HeapNumber::kExponentBias));
234 __ cmp(result_reg, Immediate(HeapNumber::kMantissaBits));
235 __ j(below, &process_64_bits);
237 // Result is entirely in lower 32-bits of mantissa
238 int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize;
239 if (CpuFeatures::IsSupported(SSE3)) {
242 __ sub(ecx, Immediate(delta));
243 __ xor_(result_reg, result_reg);
244 __ cmp(ecx, Immediate(31));
247 __ jmp(&check_negative);
249 __ bind(&process_64_bits);
250 if (CpuFeatures::IsSupported(SSE3)) {
251 CpuFeatureScope scope(masm, SSE3);
252 if (stash_exponent_copy) {
253 // Already a copy of the exponent on the stack, overwrite it.
254 STATIC_ASSERT(kDoubleSize == 2 * kPointerSize);
255 __ sub(esp, Immediate(kDoubleSize / 2));
257 // Reserve space for 64 bit answer.
258 __ sub(esp, Immediate(kDoubleSize)); // Nolint.
260 // Do conversion, which cannot fail because we checked the exponent.
261 __ fisttp_d(Operand(esp, 0));
262 __ mov(result_reg, Operand(esp, 0)); // Load low word of answer as result
263 __ add(esp, Immediate(kDoubleSize));
264 __ jmp(&done_no_stash);
266 // Result must be extracted from shifted 32-bit mantissa
267 __ sub(ecx, Immediate(delta));
269 if (stash_exponent_copy) {
270 __ mov(result_reg, MemOperand(esp, 0));
272 __ mov(result_reg, exponent_operand);
275 Immediate(static_cast<uint32_t>(Double::kSignificandMask >> 32)));
277 Immediate(static_cast<uint32_t>(Double::kHiddenBit >> 32)));
278 __ shrd(result_reg, scratch1);
279 __ shr_cl(result_reg);
280 __ test(ecx, Immediate(32));
281 __ cmov(not_equal, scratch1, result_reg);
284 // If the double was negative, negate the integer result.
285 __ bind(&check_negative);
286 __ mov(result_reg, scratch1);
288 if (stash_exponent_copy) {
289 __ cmp(MemOperand(esp, 0), Immediate(0));
291 __ cmp(exponent_operand, Immediate(0));
293 __ cmov(greater, result_reg, scratch1);
297 if (stash_exponent_copy) {
298 __ add(esp, Immediate(kDoubleSize / 2));
300 __ bind(&done_no_stash);
301 if (!final_result_reg.is(result_reg)) {
302 DCHECK(final_result_reg.is(ecx));
303 __ mov(final_result_reg, result_reg);
311 void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm,
313 Label load_smi, done;
315 __ JumpIfSmi(number, &load_smi, Label::kNear);
316 __ fld_d(FieldOperand(number, HeapNumber::kValueOffset));
317 __ jmp(&done, Label::kNear);
322 __ fild_s(Operand(esp, 0));
329 void FloatingPointHelper::LoadSSE2Operands(MacroAssembler* masm,
330 Label* not_numbers) {
331 Label load_smi_edx, load_eax, load_smi_eax, load_float_eax, done;
332 // Load operand in edx into xmm0, or branch to not_numbers.
333 __ JumpIfSmi(edx, &load_smi_edx, Label::kNear);
334 Factory* factory = masm->isolate()->factory();
335 __ cmp(FieldOperand(edx, HeapObject::kMapOffset), factory->heap_number_map());
336 __ j(not_equal, not_numbers); // Argument in edx is not a number.
337 __ movsd(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
339 // Load operand in eax into xmm1, or branch to not_numbers.
340 __ JumpIfSmi(eax, &load_smi_eax, Label::kNear);
341 __ cmp(FieldOperand(eax, HeapObject::kMapOffset), factory->heap_number_map());
342 __ j(equal, &load_float_eax, Label::kNear);
343 __ jmp(not_numbers); // Argument in eax is not a number.
344 __ bind(&load_smi_edx);
345 __ SmiUntag(edx); // Untag smi before converting to float.
346 __ Cvtsi2sd(xmm0, edx);
347 __ SmiTag(edx); // Retag smi for heap number overwriting test.
349 __ bind(&load_smi_eax);
350 __ SmiUntag(eax); // Untag smi before converting to float.
351 __ Cvtsi2sd(xmm1, eax);
352 __ SmiTag(eax); // Retag smi for heap number overwriting test.
353 __ jmp(&done, Label::kNear);
354 __ bind(&load_float_eax);
355 __ movsd(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
360 void FloatingPointHelper::CheckFloatOperands(MacroAssembler* masm,
363 Label test_other, done;
364 // Test if both operands are floats or smi -> scratch=k_is_float;
365 // Otherwise scratch = k_not_float.
366 __ JumpIfSmi(edx, &test_other, Label::kNear);
367 __ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset));
368 Factory* factory = masm->isolate()->factory();
369 __ cmp(scratch, factory->heap_number_map());
370 __ j(not_equal, non_float); // argument in edx is not a number -> NaN
372 __ bind(&test_other);
373 __ JumpIfSmi(eax, &done, Label::kNear);
374 __ mov(scratch, FieldOperand(eax, HeapObject::kMapOffset));
375 __ cmp(scratch, factory->heap_number_map());
376 __ j(not_equal, non_float); // argument in eax is not a number -> NaN
378 // Fall-through: Both operands are numbers.
383 void MathPowStub::Generate(MacroAssembler* masm) {
384 Factory* factory = isolate()->factory();
385 const Register exponent = MathPowTaggedDescriptor::exponent();
386 DCHECK(exponent.is(eax));
387 const Register base = edx;
388 const Register scratch = ecx;
389 const XMMRegister double_result = xmm3;
390 const XMMRegister double_base = xmm2;
391 const XMMRegister double_exponent = xmm1;
392 const XMMRegister double_scratch = xmm4;
394 Label call_runtime, done, exponent_not_smi, int_exponent;
396 // Save 1 in double_result - we need this several times later on.
397 __ mov(scratch, Immediate(1));
398 __ Cvtsi2sd(double_result, scratch);
400 if (exponent_type() == ON_STACK) {
401 Label base_is_smi, unpack_exponent;
402 // The exponent and base are supplied as arguments on the stack.
403 // This can only happen if the stub is called from non-optimized code.
404 // Load input parameters from stack.
405 __ mov(base, Operand(esp, 2 * kPointerSize));
406 __ mov(exponent, Operand(esp, 1 * kPointerSize));
408 __ JumpIfSmi(base, &base_is_smi, Label::kNear);
409 __ cmp(FieldOperand(base, HeapObject::kMapOffset),
410 factory->heap_number_map());
411 __ j(not_equal, &call_runtime);
413 __ movsd(double_base, FieldOperand(base, HeapNumber::kValueOffset));
414 __ jmp(&unpack_exponent, Label::kNear);
416 __ bind(&base_is_smi);
418 __ Cvtsi2sd(double_base, base);
420 __ bind(&unpack_exponent);
421 __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
422 __ SmiUntag(exponent);
423 __ jmp(&int_exponent);
425 __ bind(&exponent_not_smi);
426 __ cmp(FieldOperand(exponent, HeapObject::kMapOffset),
427 factory->heap_number_map());
428 __ j(not_equal, &call_runtime);
429 __ movsd(double_exponent,
430 FieldOperand(exponent, HeapNumber::kValueOffset));
431 } else if (exponent_type() == TAGGED) {
432 __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
433 __ SmiUntag(exponent);
434 __ jmp(&int_exponent);
436 __ bind(&exponent_not_smi);
437 __ movsd(double_exponent,
438 FieldOperand(exponent, HeapNumber::kValueOffset));
441 if (exponent_type() != INTEGER) {
442 Label fast_power, try_arithmetic_simplification;
443 __ DoubleToI(exponent, double_exponent, double_scratch,
444 TREAT_MINUS_ZERO_AS_ZERO, &try_arithmetic_simplification,
445 &try_arithmetic_simplification,
446 &try_arithmetic_simplification);
447 __ jmp(&int_exponent);
449 __ bind(&try_arithmetic_simplification);
450 // Skip to runtime if possibly NaN (indicated by the indefinite integer).
451 __ cvttsd2si(exponent, Operand(double_exponent));
452 __ cmp(exponent, Immediate(0x1));
453 __ j(overflow, &call_runtime);
455 if (exponent_type() == ON_STACK) {
456 // Detect square root case. Crankshaft detects constant +/-0.5 at
457 // compile time and uses DoMathPowHalf instead. We then skip this check
458 // for non-constant cases of +/-0.5 as these hardly occur.
459 Label continue_sqrt, continue_rsqrt, not_plus_half;
461 // Load double_scratch with 0.5.
462 __ mov(scratch, Immediate(0x3F000000u));
463 __ movd(double_scratch, scratch);
464 __ cvtss2sd(double_scratch, double_scratch);
465 // Already ruled out NaNs for exponent.
466 __ ucomisd(double_scratch, double_exponent);
467 __ j(not_equal, ¬_plus_half, Label::kNear);
469 // Calculates square root of base. Check for the special case of
470 // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
471 // According to IEEE-754, single-precision -Infinity has the highest
472 // 9 bits set and the lowest 23 bits cleared.
473 __ mov(scratch, 0xFF800000u);
474 __ movd(double_scratch, scratch);
475 __ cvtss2sd(double_scratch, double_scratch);
476 __ ucomisd(double_base, double_scratch);
477 // Comparing -Infinity with NaN results in "unordered", which sets the
478 // zero flag as if both were equal. However, it also sets the carry flag.
479 __ j(not_equal, &continue_sqrt, Label::kNear);
480 __ j(carry, &continue_sqrt, Label::kNear);
482 // Set result to Infinity in the special case.
483 __ xorps(double_result, double_result);
484 __ subsd(double_result, double_scratch);
487 __ bind(&continue_sqrt);
488 // sqrtsd returns -0 when input is -0. ECMA spec requires +0.
489 __ xorps(double_scratch, double_scratch);
490 __ addsd(double_scratch, double_base); // Convert -0 to +0.
491 __ sqrtsd(double_result, double_scratch);
495 __ bind(¬_plus_half);
496 // Load double_exponent with -0.5 by substracting 1.
497 __ subsd(double_scratch, double_result);
498 // Already ruled out NaNs for exponent.
499 __ ucomisd(double_scratch, double_exponent);
500 __ j(not_equal, &fast_power, Label::kNear);
502 // Calculates reciprocal of square root of base. Check for the special
503 // case of Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
504 // According to IEEE-754, single-precision -Infinity has the highest
505 // 9 bits set and the lowest 23 bits cleared.
506 __ mov(scratch, 0xFF800000u);
507 __ movd(double_scratch, scratch);
508 __ cvtss2sd(double_scratch, double_scratch);
509 __ ucomisd(double_base, double_scratch);
510 // Comparing -Infinity with NaN results in "unordered", which sets the
511 // zero flag as if both were equal. However, it also sets the carry flag.
512 __ j(not_equal, &continue_rsqrt, Label::kNear);
513 __ j(carry, &continue_rsqrt, Label::kNear);
515 // Set result to 0 in the special case.
516 __ xorps(double_result, double_result);
519 __ bind(&continue_rsqrt);
520 // sqrtsd returns -0 when input is -0. ECMA spec requires +0.
521 __ xorps(double_exponent, double_exponent);
522 __ addsd(double_exponent, double_base); // Convert -0 to +0.
523 __ sqrtsd(double_exponent, double_exponent);
524 __ divsd(double_result, double_exponent);
528 // Using FPU instructions to calculate power.
529 Label fast_power_failed;
530 __ bind(&fast_power);
531 __ fnclex(); // Clear flags to catch exceptions later.
532 // Transfer (B)ase and (E)xponent onto the FPU register stack.
533 __ sub(esp, Immediate(kDoubleSize));
534 __ movsd(Operand(esp, 0), double_exponent);
535 __ fld_d(Operand(esp, 0)); // E
536 __ movsd(Operand(esp, 0), double_base);
537 __ fld_d(Operand(esp, 0)); // B, E
539 // Exponent is in st(1) and base is in st(0)
540 // B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B)
541 // FYL2X calculates st(1) * log2(st(0))
544 __ frndint(); // rnd(X), X
545 __ fsub(1); // rnd(X), X-rnd(X)
546 __ fxch(1); // X - rnd(X), rnd(X)
547 // F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1
548 __ f2xm1(); // 2^(X-rnd(X)) - 1, rnd(X)
549 __ fld1(); // 1, 2^(X-rnd(X)) - 1, rnd(X)
550 __ faddp(1); // 2^(X-rnd(X)), rnd(X)
551 // FSCALE calculates st(0) * 2^st(1)
552 __ fscale(); // 2^X, rnd(X)
554 // Bail out to runtime in case of exceptions in the status word.
556 __ test_b(eax, 0x5F); // We check for all but precision exception.
557 __ j(not_zero, &fast_power_failed, Label::kNear);
558 __ fstp_d(Operand(esp, 0));
559 __ movsd(double_result, Operand(esp, 0));
560 __ add(esp, Immediate(kDoubleSize));
563 __ bind(&fast_power_failed);
565 __ add(esp, Immediate(kDoubleSize));
566 __ jmp(&call_runtime);
569 // Calculate power with integer exponent.
570 __ bind(&int_exponent);
571 const XMMRegister double_scratch2 = double_exponent;
572 __ mov(scratch, exponent); // Back up exponent.
573 __ movsd(double_scratch, double_base); // Back up base.
574 __ movsd(double_scratch2, double_result); // Load double_exponent with 1.
576 // Get absolute value of exponent.
577 Label no_neg, while_true, while_false;
578 __ test(scratch, scratch);
579 __ j(positive, &no_neg, Label::kNear);
583 __ j(zero, &while_false, Label::kNear);
585 // Above condition means CF==0 && ZF==0. This means that the
586 // bit that has been shifted out is 0 and the result is not 0.
587 __ j(above, &while_true, Label::kNear);
588 __ movsd(double_result, double_scratch);
589 __ j(zero, &while_false, Label::kNear);
591 __ bind(&while_true);
593 __ mulsd(double_scratch, double_scratch);
594 __ j(above, &while_true, Label::kNear);
595 __ mulsd(double_result, double_scratch);
596 __ j(not_zero, &while_true);
598 __ bind(&while_false);
599 // scratch has the original value of the exponent - if the exponent is
600 // negative, return 1/result.
601 __ test(exponent, exponent);
602 __ j(positive, &done);
603 __ divsd(double_scratch2, double_result);
604 __ movsd(double_result, double_scratch2);
605 // Test whether result is zero. Bail out to check for subnormal result.
606 // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
607 __ xorps(double_scratch2, double_scratch2);
608 __ ucomisd(double_scratch2, double_result); // Result cannot be NaN.
609 // double_exponent aliased as double_scratch2 has already been overwritten
610 // and may not have contained the exponent value in the first place when the
611 // exponent is a smi. We reset it with exponent value before bailing out.
612 __ j(not_equal, &done);
613 __ Cvtsi2sd(double_exponent, exponent);
615 // Returning or bailing out.
616 Counters* counters = isolate()->counters();
617 if (exponent_type() == ON_STACK) {
618 // The arguments are still on the stack.
619 __ bind(&call_runtime);
620 __ TailCallRuntime(Runtime::kMathPowRT, 2, 1);
622 // The stub is called from non-optimized code, which expects the result
623 // as heap number in exponent.
625 __ AllocateHeapNumber(eax, scratch, base, &call_runtime);
626 __ movsd(FieldOperand(eax, HeapNumber::kValueOffset), double_result);
627 __ IncrementCounter(counters->math_pow(), 1);
628 __ ret(2 * kPointerSize);
630 __ bind(&call_runtime);
632 AllowExternalCallThatCantCauseGC scope(masm);
633 __ PrepareCallCFunction(4, scratch);
634 __ movsd(Operand(esp, 0 * kDoubleSize), double_base);
635 __ movsd(Operand(esp, 1 * kDoubleSize), double_exponent);
637 ExternalReference::power_double_double_function(isolate()), 4);
639 // Return value is in st(0) on ia32.
640 // Store it into the (fixed) result register.
641 __ sub(esp, Immediate(kDoubleSize));
642 __ fstp_d(Operand(esp, 0));
643 __ movsd(double_result, Operand(esp, 0));
644 __ add(esp, Immediate(kDoubleSize));
647 __ IncrementCounter(counters->math_pow(), 1);
653 void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
655 Register receiver = LoadDescriptor::ReceiverRegister();
656 // With careful management, we won't have to save slot and vector on
657 // the stack. Simply handle the possibly missing case first.
658 // TODO(mvstanton): this code can be more efficient.
659 __ cmp(FieldOperand(receiver, JSFunction::kPrototypeOrInitialMapOffset),
660 Immediate(isolate()->factory()->the_hole_value()));
662 __ TryGetFunctionPrototype(receiver, eax, ebx, &miss);
666 PropertyAccessCompiler::TailCallBuiltin(
667 masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
671 void LoadIndexedInterceptorStub::Generate(MacroAssembler* masm) {
672 // Return address is on the stack.
675 Register receiver = LoadDescriptor::ReceiverRegister();
676 Register key = LoadDescriptor::NameRegister();
677 Register scratch = eax;
678 DCHECK(!scratch.is(receiver) && !scratch.is(key));
680 // Check that the key is an array index, that is Uint32.
681 __ test(key, Immediate(kSmiTagMask | kSmiSignMask));
682 __ j(not_zero, &slow);
684 // Everything is fine, call runtime.
686 __ push(receiver); // receiver
688 __ push(scratch); // return address
690 // Perform tail call to the entry.
691 ExternalReference ref = ExternalReference(
692 IC_Utility(IC::kLoadElementWithInterceptor), masm->isolate());
693 __ TailCallExternalReference(ref, 2, 1);
696 PropertyAccessCompiler::TailCallBuiltin(
697 masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
701 void LoadIndexedStringStub::Generate(MacroAssembler* masm) {
702 // Return address is on the stack.
705 Register receiver = LoadDescriptor::ReceiverRegister();
706 Register index = LoadDescriptor::NameRegister();
707 Register scratch = edi;
708 DCHECK(!scratch.is(receiver) && !scratch.is(index));
709 Register result = eax;
710 DCHECK(!result.is(scratch));
711 DCHECK(!scratch.is(LoadWithVectorDescriptor::VectorRegister()) &&
712 result.is(LoadDescriptor::SlotRegister()));
714 // StringCharAtGenerator doesn't use the result register until it's passed
715 // the different miss possibilities. If it did, we would have a conflict
716 // when FLAG_vector_ics is true.
717 StringCharAtGenerator char_at_generator(receiver, index, scratch, result,
718 &miss, // When not a string.
719 &miss, // When not a number.
720 &miss, // When index out of range.
721 STRING_INDEX_IS_ARRAY_INDEX,
723 char_at_generator.GenerateFast(masm);
726 StubRuntimeCallHelper call_helper;
727 char_at_generator.GenerateSlow(masm, PART_OF_IC_HANDLER, call_helper);
730 PropertyAccessCompiler::TailCallBuiltin(
731 masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
735 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
736 // The key is in edx and the parameter count is in eax.
737 DCHECK(edx.is(ArgumentsAccessReadDescriptor::index()));
738 DCHECK(eax.is(ArgumentsAccessReadDescriptor::parameter_count()));
740 // The displacement is used for skipping the frame pointer on the
741 // stack. It is the offset of the last parameter (if any) relative
742 // to the frame pointer.
743 static const int kDisplacement = 1 * kPointerSize;
745 // Check that the key is a smi.
747 __ JumpIfNotSmi(edx, &slow, Label::kNear);
749 // Check if the calling frame is an arguments adaptor frame.
751 __ mov(ebx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
752 __ mov(ecx, Operand(ebx, StandardFrameConstants::kContextOffset));
753 __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
754 __ j(equal, &adaptor, Label::kNear);
756 // Check index against formal parameters count limit passed in
757 // through register eax. Use unsigned comparison to get negative
760 __ j(above_equal, &slow, Label::kNear);
762 // Read the argument from the stack and return it.
763 STATIC_ASSERT(kSmiTagSize == 1);
764 STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these.
765 __ lea(ebx, Operand(ebp, eax, times_2, 0));
767 __ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
770 // Arguments adaptor case: Check index against actual arguments
771 // limit found in the arguments adaptor frame. Use unsigned
772 // comparison to get negative check for free.
774 __ mov(ecx, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset));
776 __ j(above_equal, &slow, Label::kNear);
778 // Read the argument from the stack and return it.
779 STATIC_ASSERT(kSmiTagSize == 1);
780 STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these.
781 __ lea(ebx, Operand(ebx, ecx, times_2, 0));
783 __ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
786 // Slow-case: Handle non-smi or out-of-bounds access to arguments
787 // by calling the runtime system.
789 __ pop(ebx); // Return address.
792 __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
796 void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
797 // esp[0] : return address
798 // esp[4] : number of parameters
799 // esp[8] : receiver displacement
800 // esp[12] : function
802 // Check if the calling frame is an arguments adaptor frame.
804 __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
805 __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
806 __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
807 __ j(not_equal, &runtime, Label::kNear);
809 // Patch the arguments.length and the parameters pointer.
810 __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
811 __ mov(Operand(esp, 1 * kPointerSize), ecx);
812 __ lea(edx, Operand(edx, ecx, times_2,
813 StandardFrameConstants::kCallerSPOffset));
814 __ mov(Operand(esp, 2 * kPointerSize), edx);
817 __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
821 void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
822 // esp[0] : return address
823 // esp[4] : number of parameters (tagged)
824 // esp[8] : receiver displacement
825 // esp[12] : function
827 // ebx = parameter count (tagged)
828 __ mov(ebx, Operand(esp, 1 * kPointerSize));
830 // Check if the calling frame is an arguments adaptor frame.
831 // TODO(rossberg): Factor out some of the bits that are shared with the other
832 // Generate* functions.
834 Label adaptor_frame, try_allocate;
835 __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
836 __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
837 __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
838 __ j(equal, &adaptor_frame, Label::kNear);
840 // No adaptor, parameter count = argument count.
842 __ jmp(&try_allocate, Label::kNear);
844 // We have an adaptor frame. Patch the parameters pointer.
845 __ bind(&adaptor_frame);
846 __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
847 __ lea(edx, Operand(edx, ecx, times_2,
848 StandardFrameConstants::kCallerSPOffset));
849 __ mov(Operand(esp, 2 * kPointerSize), edx);
851 // ebx = parameter count (tagged)
852 // ecx = argument count (smi-tagged)
853 // esp[4] = parameter count (tagged)
854 // esp[8] = address of receiver argument
855 // Compute the mapped parameter count = min(ebx, ecx) in ebx.
857 __ j(less_equal, &try_allocate, Label::kNear);
860 __ bind(&try_allocate);
862 // Save mapped parameter count.
865 // Compute the sizes of backing store, parameter map, and arguments object.
866 // 1. Parameter map, has 2 extra words containing context and backing store.
867 const int kParameterMapHeaderSize =
868 FixedArray::kHeaderSize + 2 * kPointerSize;
869 Label no_parameter_map;
871 __ j(zero, &no_parameter_map, Label::kNear);
872 __ lea(ebx, Operand(ebx, times_2, kParameterMapHeaderSize));
873 __ bind(&no_parameter_map);
876 __ lea(ebx, Operand(ebx, ecx, times_2, FixedArray::kHeaderSize));
878 // 3. Arguments object.
879 __ add(ebx, Immediate(Heap::kSloppyArgumentsObjectSize));
881 // Do the allocation of all three objects in one go.
882 __ Allocate(ebx, eax, edx, edi, &runtime, TAG_OBJECT);
884 // eax = address of new object(s) (tagged)
885 // ecx = argument count (smi-tagged)
886 // esp[0] = mapped parameter count (tagged)
887 // esp[8] = parameter count (tagged)
888 // esp[12] = address of receiver argument
889 // Get the arguments map from the current native context into edi.
890 Label has_mapped_parameters, instantiate;
891 __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
892 __ mov(edi, FieldOperand(edi, GlobalObject::kNativeContextOffset));
893 __ mov(ebx, Operand(esp, 0 * kPointerSize));
895 __ j(not_zero, &has_mapped_parameters, Label::kNear);
898 Operand(edi, Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX)));
899 __ jmp(&instantiate, Label::kNear);
901 __ bind(&has_mapped_parameters);
902 __ mov(edi, Operand(edi, Context::SlotOffset(
903 Context::FAST_ALIASED_ARGUMENTS_MAP_INDEX)));
904 __ bind(&instantiate);
906 // eax = address of new object (tagged)
907 // ebx = mapped parameter count (tagged)
908 // ecx = argument count (smi-tagged)
909 // edi = address of arguments map (tagged)
910 // esp[0] = mapped parameter count (tagged)
911 // esp[8] = parameter count (tagged)
912 // esp[12] = address of receiver argument
913 // Copy the JS object part.
914 __ mov(FieldOperand(eax, JSObject::kMapOffset), edi);
915 __ mov(FieldOperand(eax, JSObject::kPropertiesOffset),
916 masm->isolate()->factory()->empty_fixed_array());
917 __ mov(FieldOperand(eax, JSObject::kElementsOffset),
918 masm->isolate()->factory()->empty_fixed_array());
920 // Set up the callee in-object property.
921 STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
922 __ mov(edx, Operand(esp, 4 * kPointerSize));
923 __ AssertNotSmi(edx);
924 __ mov(FieldOperand(eax, JSObject::kHeaderSize +
925 Heap::kArgumentsCalleeIndex * kPointerSize),
928 // Use the length (smi tagged) and set that as an in-object property too.
930 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
931 __ mov(FieldOperand(eax, JSObject::kHeaderSize +
932 Heap::kArgumentsLengthIndex * kPointerSize),
935 // Set up the elements pointer in the allocated arguments object.
936 // If we allocated a parameter map, edi will point there, otherwise to the
938 __ lea(edi, Operand(eax, Heap::kSloppyArgumentsObjectSize));
939 __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi);
941 // eax = address of new object (tagged)
942 // ebx = mapped parameter count (tagged)
943 // ecx = argument count (tagged)
944 // edi = address of parameter map or backing store (tagged)
945 // esp[0] = mapped parameter count (tagged)
946 // esp[8] = parameter count (tagged)
947 // esp[12] = address of receiver argument
951 // Initialize parameter map. If there are no mapped arguments, we're done.
952 Label skip_parameter_map;
954 __ j(zero, &skip_parameter_map);
956 __ mov(FieldOperand(edi, FixedArray::kMapOffset),
957 Immediate(isolate()->factory()->sloppy_arguments_elements_map()));
958 __ lea(eax, Operand(ebx, reinterpret_cast<intptr_t>(Smi::FromInt(2))));
959 __ mov(FieldOperand(edi, FixedArray::kLengthOffset), eax);
960 __ mov(FieldOperand(edi, FixedArray::kHeaderSize + 0 * kPointerSize), esi);
961 __ lea(eax, Operand(edi, ebx, times_2, kParameterMapHeaderSize));
962 __ mov(FieldOperand(edi, FixedArray::kHeaderSize + 1 * kPointerSize), eax);
964 // Copy the parameter slots and the holes in the arguments.
965 // We need to fill in mapped_parameter_count slots. They index the context,
966 // where parameters are stored in reverse order, at
967 // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
968 // The mapped parameter thus need to get indices
969 // MIN_CONTEXT_SLOTS+parameter_count-1 ..
970 // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
971 // We loop from right to left.
972 Label parameters_loop, parameters_test;
974 __ mov(eax, Operand(esp, 2 * kPointerSize));
975 __ mov(ebx, Immediate(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
976 __ add(ebx, Operand(esp, 4 * kPointerSize));
978 __ mov(ecx, isolate()->factory()->the_hole_value());
980 __ lea(edi, Operand(edi, eax, times_2, kParameterMapHeaderSize));
981 // eax = loop variable (tagged)
982 // ebx = mapping index (tagged)
983 // ecx = the hole value
984 // edx = address of parameter map (tagged)
985 // edi = address of backing store (tagged)
986 // esp[0] = argument count (tagged)
987 // esp[4] = address of new object (tagged)
988 // esp[8] = mapped parameter count (tagged)
989 // esp[16] = parameter count (tagged)
990 // esp[20] = address of receiver argument
991 __ jmp(¶meters_test, Label::kNear);
993 __ bind(¶meters_loop);
994 __ sub(eax, Immediate(Smi::FromInt(1)));
995 __ mov(FieldOperand(edx, eax, times_2, kParameterMapHeaderSize), ebx);
996 __ mov(FieldOperand(edi, eax, times_2, FixedArray::kHeaderSize), ecx);
997 __ add(ebx, Immediate(Smi::FromInt(1)));
998 __ bind(¶meters_test);
1000 __ j(not_zero, ¶meters_loop, Label::kNear);
1003 __ bind(&skip_parameter_map);
1005 // ecx = argument count (tagged)
1006 // edi = address of backing store (tagged)
1007 // esp[0] = address of new object (tagged)
1008 // esp[4] = mapped parameter count (tagged)
1009 // esp[12] = parameter count (tagged)
1010 // esp[16] = address of receiver argument
1011 // Copy arguments header and remaining slots (if there are any).
1012 __ mov(FieldOperand(edi, FixedArray::kMapOffset),
1013 Immediate(isolate()->factory()->fixed_array_map()));
1014 __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx);
1016 Label arguments_loop, arguments_test;
1017 __ mov(ebx, Operand(esp, 1 * kPointerSize));
1018 __ mov(edx, Operand(esp, 4 * kPointerSize));
1019 __ sub(edx, ebx); // Is there a smarter way to do negative scaling?
1021 __ jmp(&arguments_test, Label::kNear);
1023 __ bind(&arguments_loop);
1024 __ sub(edx, Immediate(kPointerSize));
1025 __ mov(eax, Operand(edx, 0));
1026 __ mov(FieldOperand(edi, ebx, times_2, FixedArray::kHeaderSize), eax);
1027 __ add(ebx, Immediate(Smi::FromInt(1)));
1029 __ bind(&arguments_test);
1031 __ j(less, &arguments_loop, Label::kNear);
1034 __ pop(eax); // Address of arguments object.
1035 __ pop(ebx); // Parameter count.
1037 // Return and remove the on-stack parameters.
1038 __ ret(3 * kPointerSize);
1040 // Do the runtime call to allocate the arguments object.
1042 __ pop(eax); // Remove saved parameter count.
1043 __ mov(Operand(esp, 1 * kPointerSize), ecx); // Patch argument count.
1044 __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
1048 void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
1049 // esp[0] : return address
1050 // esp[4] : number of parameters
1051 // esp[8] : receiver displacement
1052 // esp[12] : function
1054 // Check if the calling frame is an arguments adaptor frame.
1055 Label adaptor_frame, try_allocate, runtime;
1056 __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
1057 __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
1058 __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1059 __ j(equal, &adaptor_frame, Label::kNear);
1061 // Get the length from the frame.
1062 __ mov(ecx, Operand(esp, 1 * kPointerSize));
1063 __ jmp(&try_allocate, Label::kNear);
1065 // Patch the arguments.length and the parameters pointer.
1066 __ bind(&adaptor_frame);
1067 __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
1069 __ lea(edx, Operand(edx, ecx, times_2,
1070 StandardFrameConstants::kCallerSPOffset));
1071 __ mov(Operand(esp, 1 * kPointerSize), ecx);
1072 __ mov(Operand(esp, 2 * kPointerSize), edx);
1074 // Try the new space allocation. Start out with computing the size of
1075 // the arguments object and the elements array.
1076 Label add_arguments_object;
1077 __ bind(&try_allocate);
1079 __ j(zero, &add_arguments_object, Label::kNear);
1080 __ lea(ecx, Operand(ecx, times_2, FixedArray::kHeaderSize));
1081 __ bind(&add_arguments_object);
1082 __ add(ecx, Immediate(Heap::kStrictArgumentsObjectSize));
1084 // Do the allocation of both objects in one go.
1085 __ Allocate(ecx, eax, edx, ebx, &runtime, TAG_OBJECT);
1087 // Get the arguments map from the current native context.
1088 __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
1089 __ mov(edi, FieldOperand(edi, GlobalObject::kNativeContextOffset));
1090 const int offset = Context::SlotOffset(Context::STRICT_ARGUMENTS_MAP_INDEX);
1091 __ mov(edi, Operand(edi, offset));
1093 __ mov(FieldOperand(eax, JSObject::kMapOffset), edi);
1094 __ mov(FieldOperand(eax, JSObject::kPropertiesOffset),
1095 masm->isolate()->factory()->empty_fixed_array());
1096 __ mov(FieldOperand(eax, JSObject::kElementsOffset),
1097 masm->isolate()->factory()->empty_fixed_array());
1099 // Get the length (smi tagged) and set that as an in-object property too.
1100 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
1101 __ mov(ecx, Operand(esp, 1 * kPointerSize));
1103 __ mov(FieldOperand(eax, JSObject::kHeaderSize +
1104 Heap::kArgumentsLengthIndex * kPointerSize),
1107 // If there are no actual arguments, we're done.
1110 __ j(zero, &done, Label::kNear);
1112 // Get the parameters pointer from the stack.
1113 __ mov(edx, Operand(esp, 2 * kPointerSize));
1115 // Set up the elements pointer in the allocated arguments object and
1116 // initialize the header in the elements fixed array.
1117 __ lea(edi, Operand(eax, Heap::kStrictArgumentsObjectSize));
1118 __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi);
1119 __ mov(FieldOperand(edi, FixedArray::kMapOffset),
1120 Immediate(isolate()->factory()->fixed_array_map()));
1122 __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx);
1123 // Untag the length for the loop below.
1126 // Copy the fixed array slots.
1129 __ mov(ebx, Operand(edx, -1 * kPointerSize)); // Skip receiver.
1130 __ mov(FieldOperand(edi, FixedArray::kHeaderSize), ebx);
1131 __ add(edi, Immediate(kPointerSize));
1132 __ sub(edx, Immediate(kPointerSize));
1134 __ j(not_zero, &loop);
1136 // Return and remove the on-stack parameters.
1138 __ ret(3 * kPointerSize);
1140 // Do the runtime call to allocate the arguments object.
1142 __ TailCallRuntime(Runtime::kNewStrictArguments, 3, 1);
1146 void RestParamAccessStub::GenerateNew(MacroAssembler* masm) {
1147 // esp[0] : return address
1148 // esp[4] : language mode
1149 // esp[8] : index of rest parameter
1150 // esp[12] : number of parameters
1151 // esp[16] : receiver displacement
1153 // Check if the calling frame is an arguments adaptor frame.
1155 __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
1156 __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
1157 __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1158 __ j(not_equal, &runtime);
1160 // Patch the arguments.length and the parameters pointer.
1161 __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
1162 __ mov(Operand(esp, 3 * kPointerSize), ecx);
1163 __ lea(edx, Operand(edx, ecx, times_2,
1164 StandardFrameConstants::kCallerSPOffset));
1165 __ mov(Operand(esp, 4 * kPointerSize), edx);
1168 __ TailCallRuntime(Runtime::kNewRestParam, 4, 1);
1172 void RegExpExecStub::Generate(MacroAssembler* masm) {
1173 // Just jump directly to runtime if native RegExp is not selected at compile
1174 // time or if regexp entry in generated code is turned off runtime switch or
1176 #ifdef V8_INTERPRETED_REGEXP
1177 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
1178 #else // V8_INTERPRETED_REGEXP
1180 // Stack frame on entry.
1181 // esp[0]: return address
1182 // esp[4]: last_match_info (expected JSArray)
1183 // esp[8]: previous index
1184 // esp[12]: subject string
1185 // esp[16]: JSRegExp object
1187 static const int kLastMatchInfoOffset = 1 * kPointerSize;
1188 static const int kPreviousIndexOffset = 2 * kPointerSize;
1189 static const int kSubjectOffset = 3 * kPointerSize;
1190 static const int kJSRegExpOffset = 4 * kPointerSize;
1193 Factory* factory = isolate()->factory();
1195 // Ensure that a RegExp stack is allocated.
1196 ExternalReference address_of_regexp_stack_memory_address =
1197 ExternalReference::address_of_regexp_stack_memory_address(isolate());
1198 ExternalReference address_of_regexp_stack_memory_size =
1199 ExternalReference::address_of_regexp_stack_memory_size(isolate());
1200 __ mov(ebx, Operand::StaticVariable(address_of_regexp_stack_memory_size));
1202 __ j(zero, &runtime);
1204 // Check that the first argument is a JSRegExp object.
1205 __ mov(eax, Operand(esp, kJSRegExpOffset));
1206 STATIC_ASSERT(kSmiTag == 0);
1207 __ JumpIfSmi(eax, &runtime);
1208 __ CmpObjectType(eax, JS_REGEXP_TYPE, ecx);
1209 __ j(not_equal, &runtime);
1211 // Check that the RegExp has been compiled (data contains a fixed array).
1212 __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
1213 if (FLAG_debug_code) {
1214 __ test(ecx, Immediate(kSmiTagMask));
1215 __ Check(not_zero, kUnexpectedTypeForRegExpDataFixedArrayExpected);
1216 __ CmpObjectType(ecx, FIXED_ARRAY_TYPE, ebx);
1217 __ Check(equal, kUnexpectedTypeForRegExpDataFixedArrayExpected);
1220 // ecx: RegExp data (FixedArray)
1221 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
1222 __ mov(ebx, FieldOperand(ecx, JSRegExp::kDataTagOffset));
1223 __ cmp(ebx, Immediate(Smi::FromInt(JSRegExp::IRREGEXP)));
1224 __ j(not_equal, &runtime);
1226 // ecx: RegExp data (FixedArray)
1227 // Check that the number of captures fit in the static offsets vector buffer.
1228 __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
1229 // Check (number_of_captures + 1) * 2 <= offsets vector size
1230 // Or number_of_captures * 2 <= offsets vector size - 2
1231 // Multiplying by 2 comes for free since edx is smi-tagged.
1232 STATIC_ASSERT(kSmiTag == 0);
1233 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
1234 STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
1235 __ cmp(edx, Isolate::kJSRegexpStaticOffsetsVectorSize - 2);
1236 __ j(above, &runtime);
1238 // Reset offset for possibly sliced string.
1239 __ Move(edi, Immediate(0));
1240 __ mov(eax, Operand(esp, kSubjectOffset));
1241 __ JumpIfSmi(eax, &runtime);
1242 __ mov(edx, eax); // Make a copy of the original subject string.
1243 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
1244 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
1246 // eax: subject string
1247 // edx: subject string
1248 // ebx: subject string instance type
1249 // ecx: RegExp data (FixedArray)
1250 // Handle subject string according to its encoding and representation:
1251 // (1) Sequential two byte? If yes, go to (9).
1252 // (2) Sequential one byte? If yes, go to (6).
1253 // (3) Anything but sequential or cons? If yes, go to (7).
1254 // (4) Cons string. If the string is flat, replace subject with first string.
1255 // Otherwise bailout.
1256 // (5a) Is subject sequential two byte? If yes, go to (9).
1257 // (5b) Is subject external? If yes, go to (8).
1258 // (6) One byte sequential. Load regexp code for one byte.
1262 // Deferred code at the end of the stub:
1263 // (7) Not a long external string? If yes, go to (10).
1264 // (8) External string. Make it, offset-wise, look like a sequential string.
1265 // (8a) Is the external string one byte? If yes, go to (6).
1266 // (9) Two byte sequential. Load regexp code for one byte. Go to (E).
1267 // (10) Short external string or not a string? If yes, bail out to runtime.
1268 // (11) Sliced string. Replace subject with parent. Go to (5a).
1270 Label seq_one_byte_string /* 6 */, seq_two_byte_string /* 9 */,
1271 external_string /* 8 */, check_underlying /* 5a */,
1272 not_seq_nor_cons /* 7 */, check_code /* E */,
1273 not_long_external /* 10 */;
1275 // (1) Sequential two byte? If yes, go to (9).
1276 __ and_(ebx, kIsNotStringMask |
1277 kStringRepresentationMask |
1278 kStringEncodingMask |
1279 kShortExternalStringMask);
1280 STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
1281 __ j(zero, &seq_two_byte_string); // Go to (9).
1283 // (2) Sequential one byte? If yes, go to (6).
1284 // Any other sequential string must be one byte.
1285 __ and_(ebx, Immediate(kIsNotStringMask |
1286 kStringRepresentationMask |
1287 kShortExternalStringMask));
1288 __ j(zero, &seq_one_byte_string, Label::kNear); // Go to (6).
1290 // (3) Anything but sequential or cons? If yes, go to (7).
1291 // We check whether the subject string is a cons, since sequential strings
1292 // have already been covered.
1293 STATIC_ASSERT(kConsStringTag < kExternalStringTag);
1294 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
1295 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
1296 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
1297 __ cmp(ebx, Immediate(kExternalStringTag));
1298 __ j(greater_equal, ¬_seq_nor_cons); // Go to (7).
1300 // (4) Cons string. Check that it's flat.
1301 // Replace subject with first string and reload instance type.
1302 __ cmp(FieldOperand(eax, ConsString::kSecondOffset), factory->empty_string());
1303 __ j(not_equal, &runtime);
1304 __ mov(eax, FieldOperand(eax, ConsString::kFirstOffset));
1305 __ bind(&check_underlying);
1306 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
1307 __ mov(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
1309 // (5a) Is subject sequential two byte? If yes, go to (9).
1310 __ test_b(ebx, kStringRepresentationMask | kStringEncodingMask);
1311 STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0);
1312 __ j(zero, &seq_two_byte_string); // Go to (9).
1313 // (5b) Is subject external? If yes, go to (8).
1314 __ test_b(ebx, kStringRepresentationMask);
1315 // The underlying external string is never a short external string.
1316 STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength);
1317 STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength);
1318 __ j(not_zero, &external_string); // Go to (8).
1320 // eax: sequential subject string (or look-alike, external string)
1321 // edx: original subject string
1322 // ecx: RegExp data (FixedArray)
1323 // (6) One byte sequential. Load regexp code for one byte.
1324 __ bind(&seq_one_byte_string);
1325 // Load previous index and check range before edx is overwritten. We have
1326 // to use edx instead of eax here because it might have been only made to
1327 // look like a sequential string when it actually is an external string.
1328 __ mov(ebx, Operand(esp, kPreviousIndexOffset));
1329 __ JumpIfNotSmi(ebx, &runtime);
1330 __ cmp(ebx, FieldOperand(edx, String::kLengthOffset));
1331 __ j(above_equal, &runtime);
1332 __ mov(edx, FieldOperand(ecx, JSRegExp::kDataOneByteCodeOffset));
1333 __ Move(ecx, Immediate(1)); // Type is one byte.
1335 // (E) Carry on. String handling is done.
1336 __ bind(&check_code);
1337 // edx: irregexp code
1338 // Check that the irregexp code has been generated for the actual string
1339 // encoding. If it has, the field contains a code object otherwise it contains
1340 // a smi (code flushing support).
1341 __ JumpIfSmi(edx, &runtime);
1343 // eax: subject string
1344 // ebx: previous index (smi)
1346 // ecx: encoding of subject string (1 if one_byte, 0 if two_byte);
1347 // All checks done. Now push arguments for native regexp code.
1348 Counters* counters = isolate()->counters();
1349 __ IncrementCounter(counters->regexp_entry_native(), 1);
1351 // Isolates: note we add an additional parameter here (isolate pointer).
1352 static const int kRegExpExecuteArguments = 9;
1353 __ EnterApiExitFrame(kRegExpExecuteArguments);
1355 // Argument 9: Pass current isolate address.
1356 __ mov(Operand(esp, 8 * kPointerSize),
1357 Immediate(ExternalReference::isolate_address(isolate())));
1359 // Argument 8: Indicate that this is a direct call from JavaScript.
1360 __ mov(Operand(esp, 7 * kPointerSize), Immediate(1));
1362 // Argument 7: Start (high end) of backtracking stack memory area.
1363 __ mov(esi, Operand::StaticVariable(address_of_regexp_stack_memory_address));
1364 __ add(esi, Operand::StaticVariable(address_of_regexp_stack_memory_size));
1365 __ mov(Operand(esp, 6 * kPointerSize), esi);
1367 // Argument 6: Set the number of capture registers to zero to force global
1368 // regexps to behave as non-global. This does not affect non-global regexps.
1369 __ mov(Operand(esp, 5 * kPointerSize), Immediate(0));
1371 // Argument 5: static offsets vector buffer.
1372 __ mov(Operand(esp, 4 * kPointerSize),
1373 Immediate(ExternalReference::address_of_static_offsets_vector(
1376 // Argument 2: Previous index.
1378 __ mov(Operand(esp, 1 * kPointerSize), ebx);
1380 // Argument 1: Original subject string.
1381 // The original subject is in the previous stack frame. Therefore we have to
1382 // use ebp, which points exactly to one pointer size below the previous esp.
1383 // (Because creating a new stack frame pushes the previous ebp onto the stack
1384 // and thereby moves up esp by one kPointerSize.)
1385 __ mov(esi, Operand(ebp, kSubjectOffset + kPointerSize));
1386 __ mov(Operand(esp, 0 * kPointerSize), esi);
1388 // esi: original subject string
1389 // eax: underlying subject string
1390 // ebx: previous index
1391 // ecx: encoding of subject string (1 if one_byte 0 if two_byte);
1393 // Argument 4: End of string data
1394 // Argument 3: Start of string data
1395 // Prepare start and end index of the input.
1396 // Load the length from the original sliced string if that is the case.
1397 __ mov(esi, FieldOperand(esi, String::kLengthOffset));
1398 __ add(esi, edi); // Calculate input end wrt offset.
1400 __ add(ebx, edi); // Calculate input start wrt offset.
1402 // ebx: start index of the input string
1403 // esi: end index of the input string
1404 Label setup_two_byte, setup_rest;
1406 __ j(zero, &setup_two_byte, Label::kNear);
1408 __ lea(ecx, FieldOperand(eax, esi, times_1, SeqOneByteString::kHeaderSize));
1409 __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4.
1410 __ lea(ecx, FieldOperand(eax, ebx, times_1, SeqOneByteString::kHeaderSize));
1411 __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3.
1412 __ jmp(&setup_rest, Label::kNear);
1414 __ bind(&setup_two_byte);
1415 STATIC_ASSERT(kSmiTag == 0);
1416 STATIC_ASSERT(kSmiTagSize == 1); // esi is smi (powered by 2).
1417 __ lea(ecx, FieldOperand(eax, esi, times_1, SeqTwoByteString::kHeaderSize));
1418 __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4.
1419 __ lea(ecx, FieldOperand(eax, ebx, times_2, SeqTwoByteString::kHeaderSize));
1420 __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3.
1422 __ bind(&setup_rest);
1424 // Locate the code entry and call it.
1425 __ add(edx, Immediate(Code::kHeaderSize - kHeapObjectTag));
1428 // Drop arguments and come back to JS mode.
1429 __ LeaveApiExitFrame(true);
1431 // Check the result.
1434 // We expect exactly one result since we force the called regexp to behave
1436 __ j(equal, &success);
1438 __ cmp(eax, NativeRegExpMacroAssembler::FAILURE);
1439 __ j(equal, &failure);
1440 __ cmp(eax, NativeRegExpMacroAssembler::EXCEPTION);
1441 // If not exception it can only be retry. Handle that in the runtime system.
1442 __ j(not_equal, &runtime);
1443 // Result must now be exception. If there is no pending exception already a
1444 // stack overflow (on the backtrack stack) was detected in RegExp code but
1445 // haven't created the exception yet. Handle that in the runtime system.
1446 // TODO(592): Rerunning the RegExp to get the stack overflow exception.
1447 ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
1449 __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
1450 __ mov(eax, Operand::StaticVariable(pending_exception));
1452 __ j(equal, &runtime);
1454 // For exception, throw the exception again.
1455 __ TailCallRuntime(Runtime::kRegExpExecReThrow, 4, 1);
1458 // For failure to match, return null.
1459 __ mov(eax, factory->null_value());
1460 __ ret(4 * kPointerSize);
1462 // Load RegExp data.
1464 __ mov(eax, Operand(esp, kJSRegExpOffset));
1465 __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
1466 __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
1467 // Calculate number of capture registers (number_of_captures + 1) * 2.
1468 STATIC_ASSERT(kSmiTag == 0);
1469 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
1470 __ add(edx, Immediate(2)); // edx was a smi.
1472 // edx: Number of capture registers
1473 // Load last_match_info which is still known to be a fast case JSArray.
1474 // Check that the fourth object is a JSArray object.
1475 __ mov(eax, Operand(esp, kLastMatchInfoOffset));
1476 __ JumpIfSmi(eax, &runtime);
1477 __ CmpObjectType(eax, JS_ARRAY_TYPE, ebx);
1478 __ j(not_equal, &runtime);
1479 // Check that the JSArray is in fast case.
1480 __ mov(ebx, FieldOperand(eax, JSArray::kElementsOffset));
1481 __ mov(eax, FieldOperand(ebx, HeapObject::kMapOffset));
1482 __ cmp(eax, factory->fixed_array_map());
1483 __ j(not_equal, &runtime);
1484 // Check that the last match info has space for the capture registers and the
1485 // additional information.
1486 __ mov(eax, FieldOperand(ebx, FixedArray::kLengthOffset));
1488 __ sub(eax, Immediate(RegExpImpl::kLastMatchOverhead));
1490 __ j(greater, &runtime);
1492 // ebx: last_match_info backing store (FixedArray)
1493 // edx: number of capture registers
1494 // Store the capture count.
1495 __ SmiTag(edx); // Number of capture registers to smi.
1496 __ mov(FieldOperand(ebx, RegExpImpl::kLastCaptureCountOffset), edx);
1497 __ SmiUntag(edx); // Number of capture registers back from smi.
1498 // Store last subject and last input.
1499 __ mov(eax, Operand(esp, kSubjectOffset));
1501 __ mov(FieldOperand(ebx, RegExpImpl::kLastSubjectOffset), eax);
1502 __ RecordWriteField(ebx,
1503 RegExpImpl::kLastSubjectOffset,
1508 __ mov(FieldOperand(ebx, RegExpImpl::kLastInputOffset), eax);
1509 __ RecordWriteField(ebx,
1510 RegExpImpl::kLastInputOffset,
1515 // Get the static offsets vector filled by the native regexp code.
1516 ExternalReference address_of_static_offsets_vector =
1517 ExternalReference::address_of_static_offsets_vector(isolate());
1518 __ mov(ecx, Immediate(address_of_static_offsets_vector));
1520 // ebx: last_match_info backing store (FixedArray)
1521 // ecx: offsets vector
1522 // edx: number of capture registers
1523 Label next_capture, done;
1524 // Capture register counter starts from number of capture registers and
1525 // counts down until wraping after zero.
1526 __ bind(&next_capture);
1527 __ sub(edx, Immediate(1));
1528 __ j(negative, &done, Label::kNear);
1529 // Read the value from the static offsets vector buffer.
1530 __ mov(edi, Operand(ecx, edx, times_int_size, 0));
1532 // Store the smi value in the last match info.
1533 __ mov(FieldOperand(ebx,
1536 RegExpImpl::kFirstCaptureOffset),
1538 __ jmp(&next_capture);
1541 // Return last match info.
1542 __ mov(eax, Operand(esp, kLastMatchInfoOffset));
1543 __ ret(4 * kPointerSize);
1545 // Do the runtime call to execute the regexp.
1547 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
1549 // Deferred code for string handling.
1550 // (7) Not a long external string? If yes, go to (10).
1551 __ bind(¬_seq_nor_cons);
1552 // Compare flags are still set from (3).
1553 __ j(greater, ¬_long_external, Label::kNear); // Go to (10).
1555 // (8) External string. Short external strings have been ruled out.
1556 __ bind(&external_string);
1557 // Reload instance type.
1558 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
1559 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
1560 if (FLAG_debug_code) {
1561 // Assert that we do not have a cons or slice (indirect strings) here.
1562 // Sequential strings have already been ruled out.
1563 __ test_b(ebx, kIsIndirectStringMask);
1564 __ Assert(zero, kExternalStringExpectedButNotFound);
1566 __ mov(eax, FieldOperand(eax, ExternalString::kResourceDataOffset));
1567 // Move the pointer so that offset-wise, it looks like a sequential string.
1568 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
1569 __ sub(eax, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
1570 STATIC_ASSERT(kTwoByteStringTag == 0);
1571 // (8a) Is the external string one byte? If yes, go to (6).
1572 __ test_b(ebx, kStringEncodingMask);
1573 __ j(not_zero, &seq_one_byte_string); // Goto (6).
1575 // eax: sequential subject string (or look-alike, external string)
1576 // edx: original subject string
1577 // ecx: RegExp data (FixedArray)
1578 // (9) Two byte sequential. Load regexp code for one byte. Go to (E).
1579 __ bind(&seq_two_byte_string);
1580 // Load previous index and check range before edx is overwritten. We have
1581 // to use edx instead of eax here because it might have been only made to
1582 // look like a sequential string when it actually is an external string.
1583 __ mov(ebx, Operand(esp, kPreviousIndexOffset));
1584 __ JumpIfNotSmi(ebx, &runtime);
1585 __ cmp(ebx, FieldOperand(edx, String::kLengthOffset));
1586 __ j(above_equal, &runtime);
1587 __ mov(edx, FieldOperand(ecx, JSRegExp::kDataUC16CodeOffset));
1588 __ Move(ecx, Immediate(0)); // Type is two byte.
1589 __ jmp(&check_code); // Go to (E).
1591 // (10) Not a string or a short external string? If yes, bail out to runtime.
1592 __ bind(¬_long_external);
1593 // Catch non-string subject or short external string.
1594 STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
1595 __ test(ebx, Immediate(kIsNotStringMask | kShortExternalStringTag));
1596 __ j(not_zero, &runtime);
1598 // (11) Sliced string. Replace subject with parent. Go to (5a).
1599 // Load offset into edi and replace subject string with parent.
1600 __ mov(edi, FieldOperand(eax, SlicedString::kOffsetOffset));
1601 __ mov(eax, FieldOperand(eax, SlicedString::kParentOffset));
1602 __ jmp(&check_underlying); // Go to (5a).
1603 #endif // V8_INTERPRETED_REGEXP
1607 static int NegativeComparisonResult(Condition cc) {
1608 DCHECK(cc != equal);
1609 DCHECK((cc == less) || (cc == less_equal)
1610 || (cc == greater) || (cc == greater_equal));
1611 return (cc == greater || cc == greater_equal) ? LESS : GREATER;
1615 static void CheckInputType(MacroAssembler* masm, Register input,
1616 CompareICState::State expected, Label* fail) {
1618 if (expected == CompareICState::SMI) {
1619 __ JumpIfNotSmi(input, fail);
1620 } else if (expected == CompareICState::NUMBER) {
1621 __ JumpIfSmi(input, &ok);
1622 __ cmp(FieldOperand(input, HeapObject::kMapOffset),
1623 Immediate(masm->isolate()->factory()->heap_number_map()));
1624 __ j(not_equal, fail);
1626 // We could be strict about internalized/non-internalized here, but as long as
1627 // hydrogen doesn't care, the stub doesn't have to care either.
1632 static void BranchIfNotInternalizedString(MacroAssembler* masm,
1636 __ JumpIfSmi(object, label);
1637 __ mov(scratch, FieldOperand(object, HeapObject::kMapOffset));
1638 __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
1639 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
1640 __ test(scratch, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
1641 __ j(not_zero, label);
1645 void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
1646 Label runtime_call, check_unequal_objects;
1647 Condition cc = GetCondition();
1650 CheckInputType(masm, edx, left(), &miss);
1651 CheckInputType(masm, eax, right(), &miss);
1653 // Compare two smis.
1654 Label non_smi, smi_done;
1657 __ JumpIfNotSmi(ecx, &non_smi, Label::kNear);
1658 __ sub(edx, eax); // Return on the result of the subtraction.
1659 __ j(no_overflow, &smi_done, Label::kNear);
1660 __ not_(edx); // Correct sign in case of overflow. edx is never 0 here.
1666 // NOTICE! This code is only reached after a smi-fast-case check, so
1667 // it is certain that at least one operand isn't a smi.
1669 // Identical objects can be compared fast, but there are some tricky cases
1670 // for NaN and undefined.
1671 Label generic_heap_number_comparison;
1673 Label not_identical;
1675 __ j(not_equal, ¬_identical);
1678 // Check for undefined. undefined OP undefined is false even though
1679 // undefined == undefined.
1680 __ cmp(edx, isolate()->factory()->undefined_value());
1681 if (is_strong(strength())) {
1682 // In strong mode, this comparison must throw, so call the runtime.
1683 __ j(equal, &runtime_call, Label::kFar);
1685 Label check_for_nan;
1686 __ j(not_equal, &check_for_nan, Label::kNear);
1687 __ Move(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc))));
1689 __ bind(&check_for_nan);
1693 // Test for NaN. Compare heap numbers in a general way,
1694 // to hanlde NaNs correctly.
1695 __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
1696 Immediate(isolate()->factory()->heap_number_map()));
1697 __ j(equal, &generic_heap_number_comparison, Label::kNear);
1699 __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
1700 __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
1701 // Call runtime on identical JSObjects. Otherwise return equal.
1702 __ cmpb(ecx, static_cast<uint8_t>(FIRST_SPEC_OBJECT_TYPE));
1703 __ j(above_equal, &runtime_call, Label::kFar);
1704 // Call runtime on identical symbols since we need to throw a TypeError.
1705 __ cmpb(ecx, static_cast<uint8_t>(SYMBOL_TYPE));
1706 __ j(equal, &runtime_call, Label::kFar);
1707 // Call runtime on identical SIMD values since we must throw a TypeError.
1708 __ cmpb(ecx, static_cast<uint8_t>(FLOAT32X4_TYPE));
1709 __ j(equal, &runtime_call, Label::kFar);
1710 if (is_strong(strength())) {
1711 // We have already tested for smis and heap numbers, so if both
1712 // arguments are not strings we must proceed to the slow case.
1713 __ test(ecx, Immediate(kIsNotStringMask));
1714 __ j(not_zero, &runtime_call, Label::kFar);
1717 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
1721 __ bind(¬_identical);
1724 // Strict equality can quickly decide whether objects are equal.
1725 // Non-strict object equality is slower, so it is handled later in the stub.
1726 if (cc == equal && strict()) {
1727 Label slow; // Fallthrough label.
1729 // If we're doing a strict equality comparison, we don't have to do
1730 // type conversion, so we generate code to do fast comparison for objects
1731 // and oddballs. Non-smi numbers and strings still go through the usual
1733 // If either is a Smi (we know that not both are), then they can only
1734 // be equal if the other is a HeapNumber. If so, use the slow case.
1735 STATIC_ASSERT(kSmiTag == 0);
1736 DCHECK_EQ(static_cast<Smi*>(0), Smi::FromInt(0));
1737 __ mov(ecx, Immediate(kSmiTagMask));
1740 __ j(not_zero, ¬_smis, Label::kNear);
1741 // One operand is a smi.
1743 // Check whether the non-smi is a heap number.
1744 STATIC_ASSERT(kSmiTagMask == 1);
1745 // ecx still holds eax & kSmiTag, which is either zero or one.
1746 __ sub(ecx, Immediate(0x01));
1749 __ and_(ebx, ecx); // ebx holds either 0 or eax ^ edx.
1751 // if eax was smi, ebx is now edx, else eax.
1753 // Check if the non-smi operand is a heap number.
1754 __ cmp(FieldOperand(ebx, HeapObject::kMapOffset),
1755 Immediate(isolate()->factory()->heap_number_map()));
1756 // If heap number, handle it in the slow case.
1757 __ j(equal, &slow, Label::kNear);
1758 // Return non-equal (ebx is not zero)
1763 // If either operand is a JSObject or an oddball value, then they are not
1764 // equal since their pointers are different
1765 // There is no test for undetectability in strict equality.
1767 // Get the type of the first operand.
1768 // If the first object is a JS object, we have done pointer comparison.
1769 Label first_non_object;
1770 STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
1771 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
1772 __ j(below, &first_non_object, Label::kNear);
1774 // Return non-zero (eax is not zero)
1775 Label return_not_equal;
1776 STATIC_ASSERT(kHeapObjectTag != 0);
1777 __ bind(&return_not_equal);
1780 __ bind(&first_non_object);
1781 // Check for oddballs: true, false, null, undefined.
1782 __ CmpInstanceType(ecx, ODDBALL_TYPE);
1783 __ j(equal, &return_not_equal);
1785 __ CmpObjectType(edx, FIRST_SPEC_OBJECT_TYPE, ecx);
1786 __ j(above_equal, &return_not_equal);
1788 // Check for oddballs: true, false, null, undefined.
1789 __ CmpInstanceType(ecx, ODDBALL_TYPE);
1790 __ j(equal, &return_not_equal);
1792 // Fall through to the general case.
1796 // Generate the number comparison code.
1797 Label non_number_comparison;
1799 __ bind(&generic_heap_number_comparison);
1801 FloatingPointHelper::LoadSSE2Operands(masm, &non_number_comparison);
1802 __ ucomisd(xmm0, xmm1);
1803 // Don't base result on EFLAGS when a NaN is involved.
1804 __ j(parity_even, &unordered, Label::kNear);
1806 __ mov(eax, 0); // equal
1807 __ mov(ecx, Immediate(Smi::FromInt(1)));
1808 __ cmov(above, eax, ecx);
1809 __ mov(ecx, Immediate(Smi::FromInt(-1)));
1810 __ cmov(below, eax, ecx);
1813 // If one of the numbers was NaN, then the result is always false.
1814 // The cc is never not-equal.
1815 __ bind(&unordered);
1816 DCHECK(cc != not_equal);
1817 if (cc == less || cc == less_equal) {
1818 __ mov(eax, Immediate(Smi::FromInt(1)));
1820 __ mov(eax, Immediate(Smi::FromInt(-1)));
1824 // The number comparison code did not provide a valid result.
1825 __ bind(&non_number_comparison);
1827 // Fast negative check for internalized-to-internalized equality.
1828 Label check_for_strings;
1830 BranchIfNotInternalizedString(masm, &check_for_strings, eax, ecx);
1831 BranchIfNotInternalizedString(masm, &check_for_strings, edx, ecx);
1833 // We've already checked for object identity, so if both operands
1834 // are internalized they aren't equal. Register eax already holds a
1835 // non-zero value, which indicates not equal, so just return.
1839 __ bind(&check_for_strings);
1841 __ JumpIfNotBothSequentialOneByteStrings(edx, eax, ecx, ebx,
1842 &check_unequal_objects);
1844 // Inline comparison of one-byte strings.
1846 StringHelper::GenerateFlatOneByteStringEquals(masm, edx, eax, ecx, ebx);
1848 StringHelper::GenerateCompareFlatOneByteStrings(masm, edx, eax, ecx, ebx,
1852 __ Abort(kUnexpectedFallThroughFromStringComparison);
1855 __ bind(&check_unequal_objects);
1856 if (cc == equal && !strict()) {
1857 // Non-strict equality. Objects are unequal if
1858 // they are both JSObjects and not undetectable,
1859 // and their pointers are different.
1860 Label return_unequal;
1861 // At most one is a smi, so we can test for smi by adding the two.
1862 // A smi plus a heap object has the low bit set, a heap object plus
1863 // a heap object has the low bit clear.
1864 STATIC_ASSERT(kSmiTag == 0);
1865 STATIC_ASSERT(kSmiTagMask == 1);
1866 __ lea(ecx, Operand(eax, edx, times_1, 0));
1867 __ test(ecx, Immediate(kSmiTagMask));
1868 __ j(not_zero, &runtime_call, Label::kNear);
1869 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
1870 __ j(below, &runtime_call, Label::kNear);
1871 __ CmpObjectType(edx, FIRST_SPEC_OBJECT_TYPE, ebx);
1872 __ j(below, &runtime_call, Label::kNear);
1873 // We do not bail out after this point. Both are JSObjects, and
1874 // they are equal if and only if both are undetectable.
1875 // The and of the undetectable flags is 1 if and only if they are equal.
1876 __ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
1877 1 << Map::kIsUndetectable);
1878 __ j(zero, &return_unequal, Label::kNear);
1879 __ test_b(FieldOperand(ebx, Map::kBitFieldOffset),
1880 1 << Map::kIsUndetectable);
1881 __ j(zero, &return_unequal, Label::kNear);
1882 // The objects are both undetectable, so they both compare as the value
1883 // undefined, and are equal.
1884 __ Move(eax, Immediate(EQUAL));
1885 __ bind(&return_unequal);
1886 // Return non-equal by returning the non-zero object pointer in eax,
1887 // or return equal if we fell through to here.
1888 __ ret(0); // rax, rdx were pushed
1890 __ bind(&runtime_call);
1892 // Push arguments below the return address.
1897 // Figure out which native to call and setup the arguments.
1898 Builtins::JavaScript builtin;
1900 builtin = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
1903 is_strong(strength()) ? Builtins::COMPARE_STRONG : Builtins::COMPARE;
1904 __ push(Immediate(Smi::FromInt(NegativeComparisonResult(cc))));
1907 // Restore return address on the stack.
1910 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
1911 // tagged as a small integer.
1912 __ InvokeBuiltin(builtin, JUMP_FUNCTION);
1919 static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) {
1920 // eax : number of arguments to the construct function
1921 // ebx : Feedback vector
1922 // edx : slot in feedback vector (Smi)
1923 // edi : the function to call
1924 FrameScope scope(masm, StackFrame::INTERNAL);
1926 // Number-of-arguments register must be smi-tagged to call out.
1943 static void GenerateRecordCallTarget(MacroAssembler* masm) {
1944 // Cache the called function in a feedback vector slot. Cache states
1945 // are uninitialized, monomorphic (indicated by a JSFunction), and
1947 // eax : number of arguments to the construct function
1948 // ebx : Feedback vector
1949 // edx : slot in feedback vector (Smi)
1950 // edi : the function to call
1951 Isolate* isolate = masm->isolate();
1952 Label initialize, done, miss, megamorphic, not_array_function;
1954 // Load the cache state into ecx.
1955 __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
1956 FixedArray::kHeaderSize));
1958 // A monomorphic cache hit or an already megamorphic state: invoke the
1959 // function without changing the state.
1960 // We don't know if ecx is a WeakCell or a Symbol, but it's harmless to read
1961 // at this position in a symbol (see static asserts in
1962 // type-feedback-vector.h).
1963 Label check_allocation_site;
1964 __ cmp(edi, FieldOperand(ecx, WeakCell::kValueOffset));
1965 __ j(equal, &done, Label::kFar);
1966 __ CompareRoot(ecx, Heap::kmegamorphic_symbolRootIndex);
1967 __ j(equal, &done, Label::kFar);
1968 __ CompareRoot(FieldOperand(ecx, HeapObject::kMapOffset),
1969 Heap::kWeakCellMapRootIndex);
1970 __ j(not_equal, FLAG_pretenuring_call_new ? &miss : &check_allocation_site);
1972 // If the weak cell is cleared, we have a new chance to become monomorphic.
1973 __ JumpIfSmi(FieldOperand(ecx, WeakCell::kValueOffset), &initialize);
1974 __ jmp(&megamorphic);
1976 if (!FLAG_pretenuring_call_new) {
1977 __ bind(&check_allocation_site);
1978 // If we came here, we need to see if we are the array function.
1979 // If we didn't have a matching function, and we didn't find the megamorph
1980 // sentinel, then we have in the slot either some other function or an
1982 __ CompareRoot(FieldOperand(ecx, 0), Heap::kAllocationSiteMapRootIndex);
1983 __ j(not_equal, &miss);
1985 // Make sure the function is the Array() function
1986 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
1988 __ j(not_equal, &megamorphic);
1989 __ jmp(&done, Label::kFar);
1994 // A monomorphic miss (i.e, here the cache is not uninitialized) goes
1996 __ CompareRoot(ecx, Heap::kuninitialized_symbolRootIndex);
1997 __ j(equal, &initialize);
1998 // MegamorphicSentinel is an immortal immovable object (undefined) so no
1999 // write-barrier is needed.
2000 __ bind(&megamorphic);
2002 FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize),
2003 Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
2004 __ jmp(&done, Label::kFar);
2006 // An uninitialized cache is patched with the function or sentinel to
2007 // indicate the ElementsKind if function is the Array constructor.
2008 __ bind(&initialize);
2009 if (!FLAG_pretenuring_call_new) {
2010 // Make sure the function is the Array() function
2011 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
2013 __ j(not_equal, ¬_array_function);
2015 // The target function is the Array constructor,
2016 // Create an AllocationSite if we don't already have it, store it in the
2018 CreateAllocationSiteStub create_stub(isolate);
2019 CallStubInRecordCallTarget(masm, &create_stub);
2022 __ bind(¬_array_function);
2025 CreateWeakCellStub create_stub(isolate);
2026 CallStubInRecordCallTarget(masm, &create_stub);
2031 static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) {
2032 // Do not transform the receiver for strict mode functions.
2033 __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
2034 __ test_b(FieldOperand(ecx, SharedFunctionInfo::kStrictModeByteOffset),
2035 1 << SharedFunctionInfo::kStrictModeBitWithinByte);
2036 __ j(not_equal, cont);
2038 // Do not transform the receiver for natives (shared already in ecx).
2039 __ test_b(FieldOperand(ecx, SharedFunctionInfo::kNativeByteOffset),
2040 1 << SharedFunctionInfo::kNativeBitWithinByte);
2041 __ j(not_equal, cont);
2045 static void EmitSlowCase(Isolate* isolate,
2046 MacroAssembler* masm,
2048 Label* non_function) {
2049 // Check for function proxy.
2050 __ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE);
2051 __ j(not_equal, non_function);
2053 __ push(edi); // put proxy as additional argument under return address
2055 __ Move(eax, Immediate(argc + 1));
2056 __ Move(ebx, Immediate(0));
2057 __ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY);
2059 Handle<Code> adaptor = isolate->builtins()->ArgumentsAdaptorTrampoline();
2060 __ jmp(adaptor, RelocInfo::CODE_TARGET);
2063 // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
2064 // of the original receiver from the call site).
2065 __ bind(non_function);
2066 __ mov(Operand(esp, (argc + 1) * kPointerSize), edi);
2067 __ Move(eax, Immediate(argc));
2068 __ Move(ebx, Immediate(0));
2069 __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION);
2070 Handle<Code> adaptor = isolate->builtins()->ArgumentsAdaptorTrampoline();
2071 __ jmp(adaptor, RelocInfo::CODE_TARGET);
2075 static void EmitWrapCase(MacroAssembler* masm, int argc, Label* cont) {
2076 // Wrap the receiver and patch it back onto the stack.
2077 { FrameScope frame_scope(masm, StackFrame::INTERNAL);
2080 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
2083 __ mov(Operand(esp, (argc + 1) * kPointerSize), eax);
2088 static void CallFunctionNoFeedback(MacroAssembler* masm,
2089 int argc, bool needs_checks,
2090 bool call_as_method) {
2091 // edi : the function to call
2092 Label slow, non_function, wrap, cont;
2095 // Check that the function really is a JavaScript function.
2096 __ JumpIfSmi(edi, &non_function);
2098 // Goto slow case if we do not have a function.
2099 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
2100 __ j(not_equal, &slow);
2103 // Fast-case: Just invoke the function.
2104 ParameterCount actual(argc);
2106 if (call_as_method) {
2108 EmitContinueIfStrictOrNative(masm, &cont);
2111 // Load the receiver from the stack.
2112 __ mov(eax, Operand(esp, (argc + 1) * kPointerSize));
2115 __ JumpIfSmi(eax, &wrap);
2117 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
2126 __ InvokeFunction(edi, actual, JUMP_FUNCTION, NullCallWrapper());
2129 // Slow-case: Non-function called.
2131 // (non_function is bound in EmitSlowCase)
2132 EmitSlowCase(masm->isolate(), masm, argc, &non_function);
2135 if (call_as_method) {
2137 EmitWrapCase(masm, argc, &cont);
2142 void CallFunctionStub::Generate(MacroAssembler* masm) {
2143 CallFunctionNoFeedback(masm, argc(), NeedsChecks(), CallAsMethod());
2147 void CallConstructStub::Generate(MacroAssembler* masm) {
2148 // eax : number of arguments
2149 // ebx : feedback vector
2150 // ecx : original constructor (for IsSuperConstructorCall)
2151 // edx : slot in feedback vector (Smi, for RecordCallTarget)
2152 // edi : constructor function
2153 Label slow, non_function_call;
2155 if (IsSuperConstructorCall()) {
2159 // Check that function is not a smi.
2160 __ JumpIfSmi(edi, &non_function_call);
2161 // Check that function is a JSFunction.
2162 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
2163 __ j(not_equal, &slow);
2165 if (RecordCallTarget()) {
2166 GenerateRecordCallTarget(masm);
2168 if (FLAG_pretenuring_call_new) {
2169 // Put the AllocationSite from the feedback vector into ebx.
2170 // By adding kPointerSize we encode that we know the AllocationSite
2171 // entry is at the feedback vector slot given by edx + 1.
2172 __ mov(ebx, FieldOperand(ebx, edx, times_half_pointer_size,
2173 FixedArray::kHeaderSize + kPointerSize));
2175 Label feedback_register_initialized;
2176 // Put the AllocationSite from the feedback vector into ebx, or undefined.
2177 __ mov(ebx, FieldOperand(ebx, edx, times_half_pointer_size,
2178 FixedArray::kHeaderSize));
2179 Handle<Map> allocation_site_map =
2180 isolate()->factory()->allocation_site_map();
2181 __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map));
2182 __ j(equal, &feedback_register_initialized);
2183 __ mov(ebx, isolate()->factory()->undefined_value());
2184 __ bind(&feedback_register_initialized);
2187 __ AssertUndefinedOrAllocationSite(ebx);
2190 if (IsSuperConstructorCall()) {
2193 // Pass original constructor to construct stub.
2197 // Jump to the function-specific construct stub.
2198 Register jmp_reg = ecx;
2199 __ mov(jmp_reg, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
2200 __ mov(jmp_reg, FieldOperand(jmp_reg,
2201 SharedFunctionInfo::kConstructStubOffset));
2202 __ lea(jmp_reg, FieldOperand(jmp_reg, Code::kHeaderSize));
2205 // edi: called object
2206 // eax: number of arguments
2208 // esp[0]: original receiver
2211 __ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE);
2212 __ j(not_equal, &non_function_call);
2213 __ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
2216 __ bind(&non_function_call);
2217 __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
2219 if (IsSuperConstructorCall()) {
2222 // Set expected number of arguments to zero (not changing eax).
2223 __ Move(ebx, Immediate(0));
2224 Handle<Code> arguments_adaptor =
2225 isolate()->builtins()->ArgumentsAdaptorTrampoline();
2226 __ jmp(arguments_adaptor, RelocInfo::CODE_TARGET);
2230 static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) {
2231 __ mov(vector, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
2232 __ mov(vector, FieldOperand(vector, JSFunction::kSharedFunctionInfoOffset));
2233 __ mov(vector, FieldOperand(vector,
2234 SharedFunctionInfo::kFeedbackVectorOffset));
2238 void CallIC_ArrayStub::Generate(MacroAssembler* masm) {
2243 int argc = arg_count();
2244 ParameterCount actual(argc);
2246 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
2248 __ j(not_equal, &miss);
2250 __ mov(eax, arg_count());
2251 __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
2252 FixedArray::kHeaderSize));
2254 // Verify that ecx contains an AllocationSite
2255 Factory* factory = masm->isolate()->factory();
2256 __ cmp(FieldOperand(ecx, HeapObject::kMapOffset),
2257 factory->allocation_site_map());
2258 __ j(not_equal, &miss);
2260 // Increment the call count for monomorphic function calls.
2261 __ add(FieldOperand(ebx, edx, times_half_pointer_size,
2262 FixedArray::kHeaderSize + kPointerSize),
2263 Immediate(Smi::FromInt(CallICNexus::kCallCountIncrement)));
2267 ArrayConstructorStub stub(masm->isolate(), arg_count());
2268 __ TailCallStub(&stub);
2273 // The slow case, we need this no matter what to complete a call after a miss.
2274 CallFunctionNoFeedback(masm,
2284 void CallICStub::Generate(MacroAssembler* masm) {
2288 Isolate* isolate = masm->isolate();
2289 const int with_types_offset =
2290 FixedArray::OffsetOfElementAt(TypeFeedbackVector::kWithTypesIndex);
2291 const int generic_offset =
2292 FixedArray::OffsetOfElementAt(TypeFeedbackVector::kGenericCountIndex);
2293 Label extra_checks_or_miss, slow_start;
2294 Label slow, non_function, wrap, cont;
2295 Label have_js_function;
2296 int argc = arg_count();
2297 ParameterCount actual(argc);
2299 // The checks. First, does edi match the recorded monomorphic target?
2300 __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
2301 FixedArray::kHeaderSize));
2303 // We don't know that we have a weak cell. We might have a private symbol
2304 // or an AllocationSite, but the memory is safe to examine.
2305 // AllocationSite::kTransitionInfoOffset - contains a Smi or pointer to
2307 // WeakCell::kValueOffset - contains a JSFunction or Smi(0)
2308 // Symbol::kHashFieldSlot - if the low bit is 1, then the hash is not
2309 // computed, meaning that it can't appear to be a pointer. If the low bit is
2310 // 0, then hash is computed, but the 0 bit prevents the field from appearing
2312 STATIC_ASSERT(WeakCell::kSize >= kPointerSize);
2313 STATIC_ASSERT(AllocationSite::kTransitionInfoOffset ==
2314 WeakCell::kValueOffset &&
2315 WeakCell::kValueOffset == Symbol::kHashFieldSlot);
2317 __ cmp(edi, FieldOperand(ecx, WeakCell::kValueOffset));
2318 __ j(not_equal, &extra_checks_or_miss);
2320 // The compare above could have been a SMI/SMI comparison. Guard against this
2321 // convincing us that we have a monomorphic JSFunction.
2322 __ JumpIfSmi(edi, &extra_checks_or_miss);
2324 // Increment the call count for monomorphic function calls.
2325 __ add(FieldOperand(ebx, edx, times_half_pointer_size,
2326 FixedArray::kHeaderSize + kPointerSize),
2327 Immediate(Smi::FromInt(CallICNexus::kCallCountIncrement)));
2329 __ bind(&have_js_function);
2330 if (CallAsMethod()) {
2331 EmitContinueIfStrictOrNative(masm, &cont);
2333 // Load the receiver from the stack.
2334 __ mov(eax, Operand(esp, (argc + 1) * kPointerSize));
2336 __ JumpIfSmi(eax, &wrap);
2338 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
2344 __ InvokeFunction(edi, actual, JUMP_FUNCTION, NullCallWrapper());
2347 EmitSlowCase(isolate, masm, argc, &non_function);
2349 if (CallAsMethod()) {
2351 EmitWrapCase(masm, argc, &cont);
2354 __ bind(&extra_checks_or_miss);
2355 Label uninitialized, miss;
2357 __ cmp(ecx, Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
2358 __ j(equal, &slow_start);
2360 // The following cases attempt to handle MISS cases without going to the
2362 if (FLAG_trace_ic) {
2366 __ cmp(ecx, Immediate(TypeFeedbackVector::UninitializedSentinel(isolate)));
2367 __ j(equal, &uninitialized);
2369 // We are going megamorphic. If the feedback is a JSFunction, it is fine
2370 // to handle it here. More complex cases are dealt with in the runtime.
2371 __ AssertNotSmi(ecx);
2372 __ CmpObjectType(ecx, JS_FUNCTION_TYPE, ecx);
2373 __ j(not_equal, &miss);
2375 FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize),
2376 Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
2377 // We have to update statistics for runtime profiling.
2378 __ sub(FieldOperand(ebx, with_types_offset), Immediate(Smi::FromInt(1)));
2379 __ add(FieldOperand(ebx, generic_offset), Immediate(Smi::FromInt(1)));
2380 __ jmp(&slow_start);
2382 __ bind(&uninitialized);
2384 // We are going monomorphic, provided we actually have a JSFunction.
2385 __ JumpIfSmi(edi, &miss);
2387 // Goto miss case if we do not have a function.
2388 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
2389 __ j(not_equal, &miss);
2391 // Make sure the function is not the Array() function, which requires special
2392 // behavior on MISS.
2393 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
2398 __ add(FieldOperand(ebx, with_types_offset), Immediate(Smi::FromInt(1)));
2400 // Initialize the call counter.
2401 __ mov(FieldOperand(ebx, edx, times_half_pointer_size,
2402 FixedArray::kHeaderSize + kPointerSize),
2403 Immediate(Smi::FromInt(CallICNexus::kCallCountIncrement)));
2405 // Store the function. Use a stub since we need a frame for allocation.
2410 FrameScope scope(masm, StackFrame::INTERNAL);
2411 CreateWeakCellStub create_stub(isolate);
2413 __ CallStub(&create_stub);
2417 __ jmp(&have_js_function);
2419 // We are here because tracing is on or we encountered a MISS case we can't
2425 __ bind(&slow_start);
2427 // Check that the function really is a JavaScript function.
2428 __ JumpIfSmi(edi, &non_function);
2430 // Goto slow case if we do not have a function.
2431 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
2432 __ j(not_equal, &slow);
2433 __ jmp(&have_js_function);
2440 void CallICStub::GenerateMiss(MacroAssembler* masm) {
2441 FrameScope scope(masm, StackFrame::INTERNAL);
2443 // Push the function and feedback info.
2449 IC::UtilityId id = GetICState() == DEFAULT ? IC::kCallIC_Miss
2450 : IC::kCallIC_Customization_Miss;
2452 ExternalReference miss = ExternalReference(IC_Utility(id), masm->isolate());
2453 __ CallExternalReference(miss, 3);
2455 // Move result to edi and exit the internal frame.
2460 bool CEntryStub::NeedsImmovableCode() {
2465 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
2466 CEntryStub::GenerateAheadOfTime(isolate);
2467 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
2468 StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
2469 // It is important that the store buffer overflow stubs are generated first.
2470 ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
2471 CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
2472 CreateWeakCellStub::GenerateAheadOfTime(isolate);
2473 BinaryOpICStub::GenerateAheadOfTime(isolate);
2474 BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
2475 StoreFastElementStub::GenerateAheadOfTime(isolate);
2476 TypeofStub::GenerateAheadOfTime(isolate);
2480 void CodeStub::GenerateFPStubs(Isolate* isolate) {
2481 // Generate if not already in cache.
2482 CEntryStub(isolate, 1, kSaveFPRegs).GetCode();
2483 isolate->set_fp_stubs_generated(true);
2487 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
2488 CEntryStub stub(isolate, 1, kDontSaveFPRegs);
2493 void CEntryStub::Generate(MacroAssembler* masm) {
2494 // eax: number of arguments including receiver
2495 // ebx: pointer to C function (C callee-saved)
2496 // ebp: frame pointer (restored after C call)
2497 // esp: stack pointer (restored after C call)
2498 // esi: current context (C callee-saved)
2499 // edi: JS function of the caller (C callee-saved)
2501 ProfileEntryHookStub::MaybeCallEntryHook(masm);
2503 // Enter the exit frame that transitions from JavaScript to C++.
2504 __ EnterExitFrame(save_doubles());
2506 // ebx: pointer to C function (C callee-saved)
2507 // ebp: frame pointer (restored after C call)
2508 // esp: stack pointer (restored after C call)
2509 // edi: number of arguments including receiver (C callee-saved)
2510 // esi: pointer to the first argument (C callee-saved)
2512 // Result returned in eax, or eax+edx if result size is 2.
2514 // Check stack alignment.
2515 if (FLAG_debug_code) {
2516 __ CheckStackAlignment();
2520 __ mov(Operand(esp, 0 * kPointerSize), edi); // argc.
2521 __ mov(Operand(esp, 1 * kPointerSize), esi); // argv.
2522 __ mov(Operand(esp, 2 * kPointerSize),
2523 Immediate(ExternalReference::isolate_address(isolate())));
2525 // Result is in eax or edx:eax - do not destroy these registers!
2527 // Check result for exception sentinel.
2528 Label exception_returned;
2529 __ cmp(eax, isolate()->factory()->exception());
2530 __ j(equal, &exception_returned);
2532 // Check that there is no pending exception, otherwise we
2533 // should have returned the exception sentinel.
2534 if (FLAG_debug_code) {
2536 __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
2538 ExternalReference pending_exception_address(
2539 Isolate::kPendingExceptionAddress, isolate());
2540 __ cmp(edx, Operand::StaticVariable(pending_exception_address));
2541 // Cannot use check here as it attempts to generate call into runtime.
2542 __ j(equal, &okay, Label::kNear);
2548 // Exit the JavaScript to C++ exit frame.
2549 __ LeaveExitFrame(save_doubles());
2552 // Handling of exception.
2553 __ bind(&exception_returned);
2555 ExternalReference pending_handler_context_address(
2556 Isolate::kPendingHandlerContextAddress, isolate());
2557 ExternalReference pending_handler_code_address(
2558 Isolate::kPendingHandlerCodeAddress, isolate());
2559 ExternalReference pending_handler_offset_address(
2560 Isolate::kPendingHandlerOffsetAddress, isolate());
2561 ExternalReference pending_handler_fp_address(
2562 Isolate::kPendingHandlerFPAddress, isolate());
2563 ExternalReference pending_handler_sp_address(
2564 Isolate::kPendingHandlerSPAddress, isolate());
2566 // Ask the runtime for help to determine the handler. This will set eax to
2567 // contain the current pending exception, don't clobber it.
2568 ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
2571 FrameScope scope(masm, StackFrame::MANUAL);
2572 __ PrepareCallCFunction(3, eax);
2573 __ mov(Operand(esp, 0 * kPointerSize), Immediate(0)); // argc.
2574 __ mov(Operand(esp, 1 * kPointerSize), Immediate(0)); // argv.
2575 __ mov(Operand(esp, 2 * kPointerSize),
2576 Immediate(ExternalReference::isolate_address(isolate())));
2577 __ CallCFunction(find_handler, 3);
2580 // Retrieve the handler context, SP and FP.
2581 __ mov(esi, Operand::StaticVariable(pending_handler_context_address));
2582 __ mov(esp, Operand::StaticVariable(pending_handler_sp_address));
2583 __ mov(ebp, Operand::StaticVariable(pending_handler_fp_address));
2585 // If the handler is a JS frame, restore the context to the frame. Note that
2586 // the context will be set to (esi == 0) for non-JS frames.
2589 __ j(zero, &skip, Label::kNear);
2590 __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi);
2593 // Compute the handler entry address and jump to it.
2594 __ mov(edi, Operand::StaticVariable(pending_handler_code_address));
2595 __ mov(edx, Operand::StaticVariable(pending_handler_offset_address));
2596 __ lea(edi, FieldOperand(edi, edx, times_1, Code::kHeaderSize));
2601 void JSEntryStub::Generate(MacroAssembler* masm) {
2602 Label invoke, handler_entry, exit;
2603 Label not_outermost_js, not_outermost_js_2;
2605 ProfileEntryHookStub::MaybeCallEntryHook(masm);
2611 // Push marker in two places.
2612 int marker = type();
2613 __ push(Immediate(Smi::FromInt(marker))); // context slot
2614 __ push(Immediate(Smi::FromInt(marker))); // function slot
2615 // Save callee-saved registers (C calling conventions).
2620 // Save copies of the top frame descriptor on the stack.
2621 ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate());
2622 __ push(Operand::StaticVariable(c_entry_fp));
2624 // If this is the outermost JS call, set js_entry_sp value.
2625 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
2626 __ cmp(Operand::StaticVariable(js_entry_sp), Immediate(0));
2627 __ j(not_equal, ¬_outermost_js, Label::kNear);
2628 __ mov(Operand::StaticVariable(js_entry_sp), ebp);
2629 __ push(Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
2630 __ jmp(&invoke, Label::kNear);
2631 __ bind(¬_outermost_js);
2632 __ push(Immediate(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
2634 // Jump to a faked try block that does the invoke, with a faked catch
2635 // block that sets the pending exception.
2637 __ bind(&handler_entry);
2638 handler_offset_ = handler_entry.pos();
2639 // Caught exception: Store result (exception) in the pending exception
2640 // field in the JSEnv and return a failure sentinel.
2641 ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
2643 __ mov(Operand::StaticVariable(pending_exception), eax);
2644 __ mov(eax, Immediate(isolate()->factory()->exception()));
2647 // Invoke: Link this frame into the handler chain.
2649 __ PushStackHandler();
2651 // Clear any pending exceptions.
2652 __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
2653 __ mov(Operand::StaticVariable(pending_exception), edx);
2655 // Fake a receiver (NULL).
2656 __ push(Immediate(0)); // receiver
2658 // Invoke the function by calling through JS entry trampoline builtin and
2659 // pop the faked function when we return. Notice that we cannot store a
2660 // reference to the trampoline code directly in this stub, because the
2661 // builtin stubs may not have been generated yet.
2662 if (type() == StackFrame::ENTRY_CONSTRUCT) {
2663 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
2665 __ mov(edx, Immediate(construct_entry));
2667 ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
2668 __ mov(edx, Immediate(entry));
2670 __ mov(edx, Operand(edx, 0)); // deref address
2671 __ lea(edx, FieldOperand(edx, Code::kHeaderSize));
2674 // Unlink this frame from the handler chain.
2675 __ PopStackHandler();
2678 // Check if the current stack frame is marked as the outermost JS frame.
2680 __ cmp(ebx, Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
2681 __ j(not_equal, ¬_outermost_js_2);
2682 __ mov(Operand::StaticVariable(js_entry_sp), Immediate(0));
2683 __ bind(¬_outermost_js_2);
2685 // Restore the top frame descriptor from the stack.
2686 __ pop(Operand::StaticVariable(ExternalReference(
2687 Isolate::kCEntryFPAddress, isolate())));
2689 // Restore callee-saved registers (C calling conventions).
2693 __ add(esp, Immediate(2 * kPointerSize)); // remove markers
2695 // Restore frame pointer and return.
2701 // Generate stub code for instanceof.
2702 // This code can patch a call site inlined cache of the instance of check,
2703 // which looks like this.
2705 // 81 ff XX XX XX XX cmp edi, <the hole, patched to a map>
2706 // 75 0a jne <some near label>
2707 // b8 XX XX XX XX mov eax, <the hole, patched to either true or false>
2709 // If call site patching is requested the stack will have the delta from the
2710 // return address to the cmp instruction just below the return address. This
2711 // also means that call site patching can only take place with arguments in
2712 // registers. TOS looks like this when call site patching is requested
2714 // esp[0] : return address
2715 // esp[4] : delta from return address to cmp instruction
2717 void InstanceofStub::Generate(MacroAssembler* masm) {
2718 // Call site inlining and patching implies arguments in registers.
2719 DCHECK(HasArgsInRegisters() || !HasCallSiteInlineCheck());
2721 // Fixed register usage throughout the stub.
2722 Register object = eax; // Object (lhs).
2723 Register map = ebx; // Map of the object.
2724 Register function = edx; // Function (rhs).
2725 Register prototype = edi; // Prototype of the function.
2726 Register scratch = ecx;
2728 // Constants describing the call site code to patch.
2729 static const int kDeltaToCmpImmediate = 2;
2730 static const int kDeltaToMov = 8;
2731 static const int kDeltaToMovImmediate = 9;
2732 static const int8_t kCmpEdiOperandByte1 = bit_cast<int8_t, uint8_t>(0x3b);
2733 static const int8_t kCmpEdiOperandByte2 = bit_cast<int8_t, uint8_t>(0x3d);
2734 static const int8_t kMovEaxImmediateByte = bit_cast<int8_t, uint8_t>(0xb8);
2736 DCHECK_EQ(object.code(), InstanceofStub::left().code());
2737 DCHECK_EQ(function.code(), InstanceofStub::right().code());
2739 // Get the object and function - they are always both needed.
2740 Label slow, not_js_object;
2741 if (!HasArgsInRegisters()) {
2742 __ mov(object, Operand(esp, 2 * kPointerSize));
2743 __ mov(function, Operand(esp, 1 * kPointerSize));
2746 // Check that the left hand is a JS object.
2747 __ JumpIfSmi(object, ¬_js_object);
2748 __ IsObjectJSObjectType(object, map, scratch, ¬_js_object);
2750 // If there is a call site cache don't look in the global cache, but do the
2751 // real lookup and update the call site cache.
2752 if (!HasCallSiteInlineCheck() && !ReturnTrueFalseObject()) {
2753 // Look up the function and the map in the instanceof cache.
2755 __ CompareRoot(function, scratch, Heap::kInstanceofCacheFunctionRootIndex);
2756 __ j(not_equal, &miss, Label::kNear);
2757 __ CompareRoot(map, scratch, Heap::kInstanceofCacheMapRootIndex);
2758 __ j(not_equal, &miss, Label::kNear);
2759 __ LoadRoot(eax, Heap::kInstanceofCacheAnswerRootIndex);
2760 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2764 // Get the prototype of the function.
2765 __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true);
2767 // Check that the function prototype is a JS object.
2768 __ JumpIfSmi(prototype, &slow);
2769 __ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
2771 // Update the global instanceof or call site inlined cache with the current
2772 // map and function. The cached answer will be set when it is known below.
2773 if (!HasCallSiteInlineCheck()) {
2774 __ StoreRoot(map, scratch, Heap::kInstanceofCacheMapRootIndex);
2775 __ StoreRoot(function, scratch, Heap::kInstanceofCacheFunctionRootIndex);
2777 // The constants for the code patching are based on no push instructions
2778 // at the call site.
2779 DCHECK(HasArgsInRegisters());
2780 // Get return address and delta to inlined map check.
2781 __ mov(scratch, Operand(esp, 0 * kPointerSize));
2782 __ sub(scratch, Operand(esp, 1 * kPointerSize));
2783 if (FLAG_debug_code) {
2784 __ cmpb(Operand(scratch, 0), kCmpEdiOperandByte1);
2785 __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheCmp1);
2786 __ cmpb(Operand(scratch, 1), kCmpEdiOperandByte2);
2787 __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheCmp2);
2789 __ mov(scratch, Operand(scratch, kDeltaToCmpImmediate));
2790 __ mov(Operand(scratch, 0), map);
2792 // Scratch points at the cell payload. Calculate the start of the object.
2793 __ sub(scratch, Immediate(Cell::kValueOffset - 1));
2794 __ RecordWriteField(scratch, Cell::kValueOffset, map, function,
2795 kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
2799 // Loop through the prototype chain of the object looking for the function
2801 __ mov(scratch, FieldOperand(map, Map::kPrototypeOffset));
2802 Label loop, is_instance, is_not_instance;
2804 __ cmp(scratch, prototype);
2805 __ j(equal, &is_instance, Label::kNear);
2806 Factory* factory = isolate()->factory();
2807 __ cmp(scratch, Immediate(factory->null_value()));
2808 __ j(equal, &is_not_instance, Label::kNear);
2809 __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
2810 __ mov(scratch, FieldOperand(scratch, Map::kPrototypeOffset));
2813 __ bind(&is_instance);
2814 if (!HasCallSiteInlineCheck()) {
2815 __ mov(eax, Immediate(0));
2816 __ StoreRoot(eax, scratch, Heap::kInstanceofCacheAnswerRootIndex);
2817 if (ReturnTrueFalseObject()) {
2818 __ mov(eax, factory->true_value());
2821 // Get return address and delta to inlined map check.
2822 __ mov(eax, factory->true_value());
2823 __ mov(scratch, Operand(esp, 0 * kPointerSize));
2824 __ sub(scratch, Operand(esp, 1 * kPointerSize));
2825 if (FLAG_debug_code) {
2826 __ cmpb(Operand(scratch, kDeltaToMov), kMovEaxImmediateByte);
2827 __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheMov);
2829 __ mov(Operand(scratch, kDeltaToMovImmediate), eax);
2830 if (!ReturnTrueFalseObject()) {
2831 __ Move(eax, Immediate(0));
2834 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2836 __ bind(&is_not_instance);
2837 if (!HasCallSiteInlineCheck()) {
2838 __ mov(eax, Immediate(Smi::FromInt(1)));
2839 __ StoreRoot(eax, scratch, Heap::kInstanceofCacheAnswerRootIndex);
2840 if (ReturnTrueFalseObject()) {
2841 __ mov(eax, factory->false_value());
2844 // Get return address and delta to inlined map check.
2845 __ mov(eax, factory->false_value());
2846 __ mov(scratch, Operand(esp, 0 * kPointerSize));
2847 __ sub(scratch, Operand(esp, 1 * kPointerSize));
2848 if (FLAG_debug_code) {
2849 __ cmpb(Operand(scratch, kDeltaToMov), kMovEaxImmediateByte);
2850 __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheMov);
2852 __ mov(Operand(scratch, kDeltaToMovImmediate), eax);
2853 if (!ReturnTrueFalseObject()) {
2854 __ Move(eax, Immediate(Smi::FromInt(1)));
2857 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2859 Label object_not_null, object_not_null_or_smi;
2860 __ bind(¬_js_object);
2861 // Before null, smi and string value checks, check that the rhs is a function
2862 // as for a non-function rhs an exception needs to be thrown.
2863 __ JumpIfSmi(function, &slow, Label::kNear);
2864 __ CmpObjectType(function, JS_FUNCTION_TYPE, scratch);
2865 __ j(not_equal, &slow, Label::kNear);
2867 // Null is not instance of anything.
2868 __ cmp(object, factory->null_value());
2869 __ j(not_equal, &object_not_null, Label::kNear);
2870 if (ReturnTrueFalseObject()) {
2871 __ mov(eax, factory->false_value());
2873 __ Move(eax, Immediate(Smi::FromInt(1)));
2875 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2877 __ bind(&object_not_null);
2878 // Smi values is not instance of anything.
2879 __ JumpIfNotSmi(object, &object_not_null_or_smi, Label::kNear);
2880 if (ReturnTrueFalseObject()) {
2881 __ mov(eax, factory->false_value());
2883 __ Move(eax, Immediate(Smi::FromInt(1)));
2885 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2887 __ bind(&object_not_null_or_smi);
2888 // String values is not instance of anything.
2889 Condition is_string = masm->IsObjectStringType(object, scratch, scratch);
2890 __ j(NegateCondition(is_string), &slow, Label::kNear);
2891 if (ReturnTrueFalseObject()) {
2892 __ mov(eax, factory->false_value());
2894 __ Move(eax, Immediate(Smi::FromInt(1)));
2896 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2898 // Slow-case: Go through the JavaScript implementation.
2900 if (!ReturnTrueFalseObject()) {
2901 // Tail call the builtin which returns 0 or 1.
2902 if (HasArgsInRegisters()) {
2903 // Push arguments below return address.
2909 __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
2911 // Call the builtin and convert 0/1 to true/false.
2913 FrameScope scope(masm, StackFrame::INTERNAL);
2916 __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
2918 Label true_value, done;
2920 __ j(zero, &true_value, Label::kNear);
2921 __ mov(eax, factory->false_value());
2922 __ jmp(&done, Label::kNear);
2923 __ bind(&true_value);
2924 __ mov(eax, factory->true_value());
2926 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2931 // -------------------------------------------------------------------------
2932 // StringCharCodeAtGenerator
2934 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
2935 // If the receiver is a smi trigger the non-string case.
2936 STATIC_ASSERT(kSmiTag == 0);
2937 if (check_mode_ == RECEIVER_IS_UNKNOWN) {
2938 __ JumpIfSmi(object_, receiver_not_string_);
2940 // Fetch the instance type of the receiver into result register.
2941 __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
2942 __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
2943 // If the receiver is not a string trigger the non-string case.
2944 __ test(result_, Immediate(kIsNotStringMask));
2945 __ j(not_zero, receiver_not_string_);
2948 // If the index is non-smi trigger the non-smi case.
2949 STATIC_ASSERT(kSmiTag == 0);
2950 __ JumpIfNotSmi(index_, &index_not_smi_);
2951 __ bind(&got_smi_index_);
2953 // Check for index out of range.
2954 __ cmp(index_, FieldOperand(object_, String::kLengthOffset));
2955 __ j(above_equal, index_out_of_range_);
2957 __ SmiUntag(index_);
2959 Factory* factory = masm->isolate()->factory();
2960 StringCharLoadGenerator::Generate(
2961 masm, factory, object_, index_, result_, &call_runtime_);
2968 void StringCharCodeAtGenerator::GenerateSlow(
2969 MacroAssembler* masm, EmbedMode embed_mode,
2970 const RuntimeCallHelper& call_helper) {
2971 __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
2973 // Index is not a smi.
2974 __ bind(&index_not_smi_);
2975 // If index is a heap number, try converting it to an integer.
2977 masm->isolate()->factory()->heap_number_map(),
2980 call_helper.BeforeCall(masm);
2981 if (embed_mode == PART_OF_IC_HANDLER) {
2982 __ push(LoadWithVectorDescriptor::VectorRegister());
2983 __ push(LoadDescriptor::SlotRegister());
2986 __ push(index_); // Consumed by runtime conversion function.
2987 if (index_flags_ == STRING_INDEX_IS_NUMBER) {
2988 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
2990 DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
2991 // NumberToSmi discards numbers that are not exact integers.
2992 __ CallRuntime(Runtime::kNumberToSmi, 1);
2994 if (!index_.is(eax)) {
2995 // Save the conversion result before the pop instructions below
2996 // have a chance to overwrite it.
2997 __ mov(index_, eax);
3000 if (embed_mode == PART_OF_IC_HANDLER) {
3001 __ pop(LoadDescriptor::SlotRegister());
3002 __ pop(LoadWithVectorDescriptor::VectorRegister());
3004 // Reload the instance type.
3005 __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
3006 __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
3007 call_helper.AfterCall(masm);
3008 // If index is still not a smi, it must be out of range.
3009 STATIC_ASSERT(kSmiTag == 0);
3010 __ JumpIfNotSmi(index_, index_out_of_range_);
3011 // Otherwise, return to the fast path.
3012 __ jmp(&got_smi_index_);
3014 // Call runtime. We get here when the receiver is a string and the
3015 // index is a number, but the code of getting the actual character
3016 // is too complex (e.g., when the string needs to be flattened).
3017 __ bind(&call_runtime_);
3018 call_helper.BeforeCall(masm);
3022 __ CallRuntime(Runtime::kStringCharCodeAtRT, 2);
3023 if (!result_.is(eax)) {
3024 __ mov(result_, eax);
3026 call_helper.AfterCall(masm);
3029 __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
3033 // -------------------------------------------------------------------------
3034 // StringCharFromCodeGenerator
3036 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
3037 // Fast case of Heap::LookupSingleCharacterStringFromCode.
3038 STATIC_ASSERT(kSmiTag == 0);
3039 STATIC_ASSERT(kSmiShiftSize == 0);
3040 DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCodeU + 1));
3041 __ test(code_, Immediate(kSmiTagMask |
3042 ((~String::kMaxOneByteCharCodeU) << kSmiTagSize)));
3043 __ j(not_zero, &slow_case_);
3045 Factory* factory = masm->isolate()->factory();
3046 __ Move(result_, Immediate(factory->single_character_string_cache()));
3047 STATIC_ASSERT(kSmiTag == 0);
3048 STATIC_ASSERT(kSmiTagSize == 1);
3049 STATIC_ASSERT(kSmiShiftSize == 0);
3050 // At this point code register contains smi tagged one byte char code.
3051 __ mov(result_, FieldOperand(result_,
3052 code_, times_half_pointer_size,
3053 FixedArray::kHeaderSize));
3054 __ cmp(result_, factory->undefined_value());
3055 __ j(equal, &slow_case_);
3060 void StringCharFromCodeGenerator::GenerateSlow(
3061 MacroAssembler* masm,
3062 const RuntimeCallHelper& call_helper) {
3063 __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
3065 __ bind(&slow_case_);
3066 call_helper.BeforeCall(masm);
3068 __ CallRuntime(Runtime::kCharFromCode, 1);
3069 if (!result_.is(eax)) {
3070 __ mov(result_, eax);
3072 call_helper.AfterCall(masm);
3075 __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
3079 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
3084 String::Encoding encoding) {
3085 DCHECK(!scratch.is(dest));
3086 DCHECK(!scratch.is(src));
3087 DCHECK(!scratch.is(count));
3089 // Nothing to do for zero characters.
3091 __ test(count, count);
3094 // Make count the number of bytes to copy.
3095 if (encoding == String::TWO_BYTE_ENCODING) {
3101 __ mov_b(scratch, Operand(src, 0));
3102 __ mov_b(Operand(dest, 0), scratch);
3106 __ j(not_zero, &loop);
3112 void SubStringStub::Generate(MacroAssembler* masm) {
3115 // Stack frame on entry.
3116 // esp[0]: return address
3121 // Make sure first argument is a string.
3122 __ mov(eax, Operand(esp, 3 * kPointerSize));
3123 STATIC_ASSERT(kSmiTag == 0);
3124 __ JumpIfSmi(eax, &runtime);
3125 Condition is_string = masm->IsObjectStringType(eax, ebx, ebx);
3126 __ j(NegateCondition(is_string), &runtime);
3129 // ebx: instance type
3131 // Calculate length of sub string using the smi values.
3132 __ mov(ecx, Operand(esp, 1 * kPointerSize)); // To index.
3133 __ JumpIfNotSmi(ecx, &runtime);
3134 __ mov(edx, Operand(esp, 2 * kPointerSize)); // From index.
3135 __ JumpIfNotSmi(edx, &runtime);
3137 __ cmp(ecx, FieldOperand(eax, String::kLengthOffset));
3138 Label not_original_string;
3139 // Shorter than original string's length: an actual substring.
3140 __ j(below, ¬_original_string, Label::kNear);
3141 // Longer than original string's length or negative: unsafe arguments.
3142 __ j(above, &runtime);
3143 // Return original string.
3144 Counters* counters = isolate()->counters();
3145 __ IncrementCounter(counters->sub_string_native(), 1);
3146 __ ret(3 * kPointerSize);
3147 __ bind(¬_original_string);
3150 __ cmp(ecx, Immediate(Smi::FromInt(1)));
3151 __ j(equal, &single_char);
3154 // ebx: instance type
3155 // ecx: sub string length (smi)
3156 // edx: from index (smi)
3157 // Deal with different string types: update the index if necessary
3158 // and put the underlying string into edi.
3159 Label underlying_unpacked, sliced_string, seq_or_external_string;
3160 // If the string is not indirect, it can only be sequential or external.
3161 STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
3162 STATIC_ASSERT(kIsIndirectStringMask != 0);
3163 __ test(ebx, Immediate(kIsIndirectStringMask));
3164 __ j(zero, &seq_or_external_string, Label::kNear);
3166 Factory* factory = isolate()->factory();
3167 __ test(ebx, Immediate(kSlicedNotConsMask));
3168 __ j(not_zero, &sliced_string, Label::kNear);
3169 // Cons string. Check whether it is flat, then fetch first part.
3170 // Flat cons strings have an empty second part.
3171 __ cmp(FieldOperand(eax, ConsString::kSecondOffset),
3172 factory->empty_string());
3173 __ j(not_equal, &runtime);
3174 __ mov(edi, FieldOperand(eax, ConsString::kFirstOffset));
3175 // Update instance type.
3176 __ mov(ebx, FieldOperand(edi, HeapObject::kMapOffset));
3177 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
3178 __ jmp(&underlying_unpacked, Label::kNear);
3180 __ bind(&sliced_string);
3181 // Sliced string. Fetch parent and adjust start index by offset.
3182 __ add(edx, FieldOperand(eax, SlicedString::kOffsetOffset));
3183 __ mov(edi, FieldOperand(eax, SlicedString::kParentOffset));
3184 // Update instance type.
3185 __ mov(ebx, FieldOperand(edi, HeapObject::kMapOffset));
3186 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
3187 __ jmp(&underlying_unpacked, Label::kNear);
3189 __ bind(&seq_or_external_string);
3190 // Sequential or external string. Just move string to the expected register.
3193 __ bind(&underlying_unpacked);
3195 if (FLAG_string_slices) {
3197 // edi: underlying subject string
3198 // ebx: instance type of underlying subject string
3199 // edx: adjusted start index (smi)
3200 // ecx: length (smi)
3201 __ cmp(ecx, Immediate(Smi::FromInt(SlicedString::kMinLength)));
3202 // Short slice. Copy instead of slicing.
3203 __ j(less, ©_routine);
3204 // Allocate new sliced string. At this point we do not reload the instance
3205 // type including the string encoding because we simply rely on the info
3206 // provided by the original string. It does not matter if the original
3207 // string's encoding is wrong because we always have to recheck encoding of
3208 // the newly created string's parent anyways due to externalized strings.
3209 Label two_byte_slice, set_slice_header;
3210 STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
3211 STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
3212 __ test(ebx, Immediate(kStringEncodingMask));
3213 __ j(zero, &two_byte_slice, Label::kNear);
3214 __ AllocateOneByteSlicedString(eax, ebx, no_reg, &runtime);
3215 __ jmp(&set_slice_header, Label::kNear);
3216 __ bind(&two_byte_slice);
3217 __ AllocateTwoByteSlicedString(eax, ebx, no_reg, &runtime);
3218 __ bind(&set_slice_header);
3219 __ mov(FieldOperand(eax, SlicedString::kLengthOffset), ecx);
3220 __ mov(FieldOperand(eax, SlicedString::kHashFieldOffset),
3221 Immediate(String::kEmptyHashField));
3222 __ mov(FieldOperand(eax, SlicedString::kParentOffset), edi);
3223 __ mov(FieldOperand(eax, SlicedString::kOffsetOffset), edx);
3224 __ IncrementCounter(counters->sub_string_native(), 1);
3225 __ ret(3 * kPointerSize);
3227 __ bind(©_routine);
3230 // edi: underlying subject string
3231 // ebx: instance type of underlying subject string
3232 // edx: adjusted start index (smi)
3233 // ecx: length (smi)
3234 // The subject string can only be external or sequential string of either
3235 // encoding at this point.
3236 Label two_byte_sequential, runtime_drop_two, sequential_string;
3237 STATIC_ASSERT(kExternalStringTag != 0);
3238 STATIC_ASSERT(kSeqStringTag == 0);
3239 __ test_b(ebx, kExternalStringTag);
3240 __ j(zero, &sequential_string);
3242 // Handle external string.
3243 // Rule out short external strings.
3244 STATIC_ASSERT(kShortExternalStringTag != 0);
3245 __ test_b(ebx, kShortExternalStringMask);
3246 __ j(not_zero, &runtime);
3247 __ mov(edi, FieldOperand(edi, ExternalString::kResourceDataOffset));
3248 // Move the pointer so that offset-wise, it looks like a sequential string.
3249 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
3250 __ sub(edi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
3252 __ bind(&sequential_string);
3253 // Stash away (adjusted) index and (underlying) string.
3257 STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
3258 __ test_b(ebx, kStringEncodingMask);
3259 __ j(zero, &two_byte_sequential);
3261 // Sequential one byte string. Allocate the result.
3262 __ AllocateOneByteString(eax, ecx, ebx, edx, edi, &runtime_drop_two);
3264 // eax: result string
3265 // ecx: result string length
3266 // Locate first character of result.
3268 __ add(edi, Immediate(SeqOneByteString::kHeaderSize - kHeapObjectTag));
3269 // Load string argument and locate character of sub string start.
3273 __ lea(edx, FieldOperand(edx, ebx, times_1, SeqOneByteString::kHeaderSize));
3275 // eax: result string
3276 // ecx: result length
3277 // edi: first character of result
3278 // edx: character of sub string start
3279 StringHelper::GenerateCopyCharacters(
3280 masm, edi, edx, ecx, ebx, String::ONE_BYTE_ENCODING);
3281 __ IncrementCounter(counters->sub_string_native(), 1);
3282 __ ret(3 * kPointerSize);
3284 __ bind(&two_byte_sequential);
3285 // Sequential two-byte string. Allocate the result.
3286 __ AllocateTwoByteString(eax, ecx, ebx, edx, edi, &runtime_drop_two);
3288 // eax: result string
3289 // ecx: result string length
3290 // Locate first character of result.
3293 Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
3294 // Load string argument and locate character of sub string start.
3297 // As from is a smi it is 2 times the value which matches the size of a two
3299 STATIC_ASSERT(kSmiTag == 0);
3300 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
3301 __ lea(edx, FieldOperand(edx, ebx, times_1, SeqTwoByteString::kHeaderSize));
3303 // eax: result string
3304 // ecx: result length
3305 // edi: first character of result
3306 // edx: character of sub string start
3307 StringHelper::GenerateCopyCharacters(
3308 masm, edi, edx, ecx, ebx, String::TWO_BYTE_ENCODING);
3309 __ IncrementCounter(counters->sub_string_native(), 1);
3310 __ ret(3 * kPointerSize);
3312 // Drop pushed values on the stack before tail call.
3313 __ bind(&runtime_drop_two);
3316 // Just jump to runtime to create the sub string.
3318 __ TailCallRuntime(Runtime::kSubStringRT, 3, 1);
3320 __ bind(&single_char);
3322 // ebx: instance type
3323 // ecx: sub string length (smi)
3324 // edx: from index (smi)
3325 StringCharAtGenerator generator(eax, edx, ecx, eax, &runtime, &runtime,
3326 &runtime, STRING_INDEX_IS_NUMBER,
3327 RECEIVER_IS_STRING);
3328 generator.GenerateFast(masm);
3329 __ ret(3 * kPointerSize);
3330 generator.SkipSlow(masm, &runtime);
3334 void ToNumberStub::Generate(MacroAssembler* masm) {
3335 // The ToNumber stub takes one argument in eax.
3337 __ JumpIfNotSmi(eax, ¬_smi, Label::kNear);
3341 Label not_heap_number;
3342 __ CompareMap(eax, masm->isolate()->factory()->heap_number_map());
3343 __ j(not_equal, ¬_heap_number, Label::kNear);
3345 __ bind(¬_heap_number);
3347 Label not_string, slow_string;
3348 __ CmpObjectType(eax, FIRST_NONSTRING_TYPE, edi);
3351 __ j(above_equal, ¬_string, Label::kNear);
3352 // Check if string has a cached array index.
3353 __ test(FieldOperand(eax, String::kHashFieldOffset),
3354 Immediate(String::kContainsCachedArrayIndexMask));
3355 __ j(not_zero, &slow_string, Label::kNear);
3356 __ mov(eax, FieldOperand(eax, String::kHashFieldOffset));
3357 __ IndexFromHash(eax, eax);
3359 __ bind(&slow_string);
3360 __ pop(ecx); // Pop return address.
3361 __ push(eax); // Push argument.
3362 __ push(ecx); // Push return address.
3363 __ TailCallRuntime(Runtime::kStringToNumber, 1, 1);
3364 __ bind(¬_string);
3367 __ CmpInstanceType(edi, ODDBALL_TYPE);
3368 __ j(not_equal, ¬_oddball, Label::kNear);
3369 __ mov(eax, FieldOperand(eax, Oddball::kToNumberOffset));
3371 __ bind(¬_oddball);
3373 __ pop(ecx); // Pop return address.
3374 __ push(eax); // Push argument.
3375 __ push(ecx); // Push return address.
3376 __ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_FUNCTION);
3380 void StringHelper::GenerateFlatOneByteStringEquals(MacroAssembler* masm,
3384 Register scratch2) {
3385 Register length = scratch1;
3388 Label strings_not_equal, check_zero_length;
3389 __ mov(length, FieldOperand(left, String::kLengthOffset));
3390 __ cmp(length, FieldOperand(right, String::kLengthOffset));
3391 __ j(equal, &check_zero_length, Label::kNear);
3392 __ bind(&strings_not_equal);
3393 __ Move(eax, Immediate(Smi::FromInt(NOT_EQUAL)));
3396 // Check if the length is zero.
3397 Label compare_chars;
3398 __ bind(&check_zero_length);
3399 STATIC_ASSERT(kSmiTag == 0);
3400 __ test(length, length);
3401 __ j(not_zero, &compare_chars, Label::kNear);
3402 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3405 // Compare characters.
3406 __ bind(&compare_chars);
3407 GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2,
3408 &strings_not_equal, Label::kNear);
3410 // Characters are equal.
3411 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3416 void StringHelper::GenerateCompareFlatOneByteStrings(
3417 MacroAssembler* masm, Register left, Register right, Register scratch1,
3418 Register scratch2, Register scratch3) {
3419 Counters* counters = masm->isolate()->counters();
3420 __ IncrementCounter(counters->string_compare_native(), 1);
3422 // Find minimum length.
3424 __ mov(scratch1, FieldOperand(left, String::kLengthOffset));
3425 __ mov(scratch3, scratch1);
3426 __ sub(scratch3, FieldOperand(right, String::kLengthOffset));
3428 Register length_delta = scratch3;
3430 __ j(less_equal, &left_shorter, Label::kNear);
3431 // Right string is shorter. Change scratch1 to be length of right string.
3432 __ sub(scratch1, length_delta);
3433 __ bind(&left_shorter);
3435 Register min_length = scratch1;
3437 // If either length is zero, just compare lengths.
3438 Label compare_lengths;
3439 __ test(min_length, min_length);
3440 __ j(zero, &compare_lengths, Label::kNear);
3442 // Compare characters.
3443 Label result_not_equal;
3444 GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
3445 &result_not_equal, Label::kNear);
3447 // Compare lengths - strings up to min-length are equal.
3448 __ bind(&compare_lengths);
3449 __ test(length_delta, length_delta);
3450 Label length_not_equal;
3451 __ j(not_zero, &length_not_equal, Label::kNear);
3454 STATIC_ASSERT(EQUAL == 0);
3455 STATIC_ASSERT(kSmiTag == 0);
3456 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3459 Label result_greater;
3461 __ bind(&length_not_equal);
3462 __ j(greater, &result_greater, Label::kNear);
3463 __ jmp(&result_less, Label::kNear);
3464 __ bind(&result_not_equal);
3465 __ j(above, &result_greater, Label::kNear);
3466 __ bind(&result_less);
3469 __ Move(eax, Immediate(Smi::FromInt(LESS)));
3472 // Result is GREATER.
3473 __ bind(&result_greater);
3474 __ Move(eax, Immediate(Smi::FromInt(GREATER)));
3479 void StringHelper::GenerateOneByteCharsCompareLoop(
3480 MacroAssembler* masm, Register left, Register right, Register length,
3481 Register scratch, Label* chars_not_equal,
3482 Label::Distance chars_not_equal_near) {
3483 // Change index to run from -length to -1 by adding length to string
3484 // start. This means that loop ends when index reaches zero, which
3485 // doesn't need an additional compare.
3486 __ SmiUntag(length);
3488 FieldOperand(left, length, times_1, SeqOneByteString::kHeaderSize));
3490 FieldOperand(right, length, times_1, SeqOneByteString::kHeaderSize));
3492 Register index = length; // index = -length;
3497 __ mov_b(scratch, Operand(left, index, times_1, 0));
3498 __ cmpb(scratch, Operand(right, index, times_1, 0));
3499 __ j(not_equal, chars_not_equal, chars_not_equal_near);
3501 __ j(not_zero, &loop);
3505 void StringCompareStub::Generate(MacroAssembler* masm) {
3508 // Stack frame on entry.
3509 // esp[0]: return address
3510 // esp[4]: right string
3511 // esp[8]: left string
3513 __ mov(edx, Operand(esp, 2 * kPointerSize)); // left
3514 __ mov(eax, Operand(esp, 1 * kPointerSize)); // right
3518 __ j(not_equal, ¬_same, Label::kNear);
3519 STATIC_ASSERT(EQUAL == 0);
3520 STATIC_ASSERT(kSmiTag == 0);
3521 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3522 __ IncrementCounter(isolate()->counters()->string_compare_native(), 1);
3523 __ ret(2 * kPointerSize);
3527 // Check that both objects are sequential one-byte strings.
3528 __ JumpIfNotBothSequentialOneByteStrings(edx, eax, ecx, ebx, &runtime);
3530 // Compare flat one-byte strings.
3531 // Drop arguments from the stack.
3533 __ add(esp, Immediate(2 * kPointerSize));
3535 StringHelper::GenerateCompareFlatOneByteStrings(masm, edx, eax, ecx, ebx,
3538 // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
3539 // tagged as a small integer.
3541 __ TailCallRuntime(Runtime::kStringCompareRT, 2, 1);
3545 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
3546 // ----------- S t a t e -------------
3549 // -- esp[0] : return address
3550 // -----------------------------------
3552 // Load ecx with the allocation site. We stick an undefined dummy value here
3553 // and replace it with the real allocation site later when we instantiate this
3554 // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
3555 __ mov(ecx, handle(isolate()->heap()->undefined_value()));
3557 // Make sure that we actually patched the allocation site.
3558 if (FLAG_debug_code) {
3559 __ test(ecx, Immediate(kSmiTagMask));
3560 __ Assert(not_equal, kExpectedAllocationSite);
3561 __ cmp(FieldOperand(ecx, HeapObject::kMapOffset),
3562 isolate()->factory()->allocation_site_map());
3563 __ Assert(equal, kExpectedAllocationSite);
3566 // Tail call into the stub that handles binary operations with allocation
3568 BinaryOpWithAllocationSiteStub stub(isolate(), state());
3569 __ TailCallStub(&stub);
3573 void CompareICStub::GenerateSmis(MacroAssembler* masm) {
3574 DCHECK(state() == CompareICState::SMI);
3578 __ JumpIfNotSmi(ecx, &miss, Label::kNear);
3580 if (GetCondition() == equal) {
3581 // For equality we do not care about the sign of the result.
3586 __ j(no_overflow, &done, Label::kNear);
3587 // Correct sign of result in case of overflow.
3599 void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
3600 DCHECK(state() == CompareICState::NUMBER);
3603 Label unordered, maybe_undefined1, maybe_undefined2;
3606 if (left() == CompareICState::SMI) {
3607 __ JumpIfNotSmi(edx, &miss);
3609 if (right() == CompareICState::SMI) {
3610 __ JumpIfNotSmi(eax, &miss);
3613 // Load left and right operand.
3614 Label done, left, left_smi, right_smi;
3615 __ JumpIfSmi(eax, &right_smi, Label::kNear);
3616 __ cmp(FieldOperand(eax, HeapObject::kMapOffset),
3617 isolate()->factory()->heap_number_map());
3618 __ j(not_equal, &maybe_undefined1, Label::kNear);
3619 __ movsd(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
3620 __ jmp(&left, Label::kNear);
3621 __ bind(&right_smi);
3622 __ mov(ecx, eax); // Can't clobber eax because we can still jump away.
3624 __ Cvtsi2sd(xmm1, ecx);
3627 __ JumpIfSmi(edx, &left_smi, Label::kNear);
3628 __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
3629 isolate()->factory()->heap_number_map());
3630 __ j(not_equal, &maybe_undefined2, Label::kNear);
3631 __ movsd(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
3634 __ mov(ecx, edx); // Can't clobber edx because we can still jump away.
3636 __ Cvtsi2sd(xmm0, ecx);
3639 // Compare operands.
3640 __ ucomisd(xmm0, xmm1);
3642 // Don't base result on EFLAGS when a NaN is involved.
3643 __ j(parity_even, &unordered, Label::kNear);
3645 // Return a result of -1, 0, or 1, based on EFLAGS.
3646 // Performing mov, because xor would destroy the flag register.
3647 __ mov(eax, 0); // equal
3648 __ mov(ecx, Immediate(Smi::FromInt(1)));
3649 __ cmov(above, eax, ecx);
3650 __ mov(ecx, Immediate(Smi::FromInt(-1)));
3651 __ cmov(below, eax, ecx);
3654 __ bind(&unordered);
3655 __ bind(&generic_stub);
3656 CompareICStub stub(isolate(), op(), strength(), CompareICState::GENERIC,
3657 CompareICState::GENERIC, CompareICState::GENERIC);
3658 __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
3660 __ bind(&maybe_undefined1);
3661 if (Token::IsOrderedRelationalCompareOp(op())) {
3662 __ cmp(eax, Immediate(isolate()->factory()->undefined_value()));
3663 __ j(not_equal, &miss);
3664 __ JumpIfSmi(edx, &unordered);
3665 __ CmpObjectType(edx, HEAP_NUMBER_TYPE, ecx);
3666 __ j(not_equal, &maybe_undefined2, Label::kNear);
3670 __ bind(&maybe_undefined2);
3671 if (Token::IsOrderedRelationalCompareOp(op())) {
3672 __ cmp(edx, Immediate(isolate()->factory()->undefined_value()));
3673 __ j(equal, &unordered);
3681 void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
3682 DCHECK(state() == CompareICState::INTERNALIZED_STRING);
3683 DCHECK(GetCondition() == equal);
3685 // Registers containing left and right operands respectively.
3686 Register left = edx;
3687 Register right = eax;
3688 Register tmp1 = ecx;
3689 Register tmp2 = ebx;
3691 // Check that both operands are heap objects.
3694 STATIC_ASSERT(kSmiTag == 0);
3695 __ and_(tmp1, right);
3696 __ JumpIfSmi(tmp1, &miss, Label::kNear);
3698 // Check that both operands are internalized strings.
3699 __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
3700 __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
3701 __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
3702 __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
3703 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
3705 __ test(tmp1, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
3706 __ j(not_zero, &miss, Label::kNear);
3708 // Internalized strings are compared by identity.
3710 __ cmp(left, right);
3711 // Make sure eax is non-zero. At this point input operands are
3712 // guaranteed to be non-zero.
3713 DCHECK(right.is(eax));
3714 __ j(not_equal, &done, Label::kNear);
3715 STATIC_ASSERT(EQUAL == 0);
3716 STATIC_ASSERT(kSmiTag == 0);
3717 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3726 void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
3727 DCHECK(state() == CompareICState::UNIQUE_NAME);
3728 DCHECK(GetCondition() == equal);
3730 // Registers containing left and right operands respectively.
3731 Register left = edx;
3732 Register right = eax;
3733 Register tmp1 = ecx;
3734 Register tmp2 = ebx;
3736 // Check that both operands are heap objects.
3739 STATIC_ASSERT(kSmiTag == 0);
3740 __ and_(tmp1, right);
3741 __ JumpIfSmi(tmp1, &miss, Label::kNear);
3743 // Check that both operands are unique names. This leaves the instance
3744 // types loaded in tmp1 and tmp2.
3745 __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
3746 __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
3747 __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
3748 __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
3750 __ JumpIfNotUniqueNameInstanceType(tmp1, &miss, Label::kNear);
3751 __ JumpIfNotUniqueNameInstanceType(tmp2, &miss, Label::kNear);
3753 // Unique names are compared by identity.
3755 __ cmp(left, right);
3756 // Make sure eax is non-zero. At this point input operands are
3757 // guaranteed to be non-zero.
3758 DCHECK(right.is(eax));
3759 __ j(not_equal, &done, Label::kNear);
3760 STATIC_ASSERT(EQUAL == 0);
3761 STATIC_ASSERT(kSmiTag == 0);
3762 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3771 void CompareICStub::GenerateStrings(MacroAssembler* masm) {
3772 DCHECK(state() == CompareICState::STRING);
3775 bool equality = Token::IsEqualityOp(op());
3777 // Registers containing left and right operands respectively.
3778 Register left = edx;
3779 Register right = eax;
3780 Register tmp1 = ecx;
3781 Register tmp2 = ebx;
3782 Register tmp3 = edi;
3784 // Check that both operands are heap objects.
3786 STATIC_ASSERT(kSmiTag == 0);
3787 __ and_(tmp1, right);
3788 __ JumpIfSmi(tmp1, &miss);
3790 // Check that both operands are strings. This leaves the instance
3791 // types loaded in tmp1 and tmp2.
3792 __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
3793 __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
3794 __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
3795 __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
3797 STATIC_ASSERT(kNotStringTag != 0);
3799 __ test(tmp3, Immediate(kIsNotStringMask));
3800 __ j(not_zero, &miss);
3802 // Fast check for identical strings.
3804 __ cmp(left, right);
3805 __ j(not_equal, ¬_same, Label::kNear);
3806 STATIC_ASSERT(EQUAL == 0);
3807 STATIC_ASSERT(kSmiTag == 0);
3808 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3811 // Handle not identical strings.
3814 // Check that both strings are internalized. If they are, we're done
3815 // because we already know they are not identical. But in the case of
3816 // non-equality compare, we still need to determine the order. We
3817 // also know they are both strings.
3820 STATIC_ASSERT(kInternalizedTag == 0);
3822 __ test(tmp1, Immediate(kIsNotInternalizedMask));
3823 __ j(not_zero, &do_compare, Label::kNear);
3824 // Make sure eax is non-zero. At this point input operands are
3825 // guaranteed to be non-zero.
3826 DCHECK(right.is(eax));
3828 __ bind(&do_compare);
3831 // Check that both strings are sequential one-byte.
3833 __ JumpIfNotBothSequentialOneByteStrings(left, right, tmp1, tmp2, &runtime);
3835 // Compare flat one byte strings. Returns when done.
3837 StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1,
3840 StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
3844 // Handle more complex cases in runtime.
3846 __ pop(tmp1); // Return address.
3851 __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
3853 __ TailCallRuntime(Runtime::kStringCompareRT, 2, 1);
3861 void CompareICStub::GenerateObjects(MacroAssembler* masm) {
3862 DCHECK(state() == CompareICState::OBJECT);
3866 __ JumpIfSmi(ecx, &miss, Label::kNear);
3868 __ CmpObjectType(eax, JS_OBJECT_TYPE, ecx);
3869 __ j(not_equal, &miss, Label::kNear);
3870 __ CmpObjectType(edx, JS_OBJECT_TYPE, ecx);
3871 __ j(not_equal, &miss, Label::kNear);
3873 DCHECK(GetCondition() == equal);
3882 void CompareICStub::GenerateKnownObjects(MacroAssembler* masm) {
3884 Handle<WeakCell> cell = Map::WeakCellForMap(known_map_);
3887 __ JumpIfSmi(ecx, &miss, Label::kNear);
3889 __ GetWeakValue(edi, cell);
3890 __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
3891 __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset));
3893 __ j(not_equal, &miss, Label::kNear);
3895 __ j(not_equal, &miss, Label::kNear);
3905 void CompareICStub::GenerateMiss(MacroAssembler* masm) {
3907 // Call the runtime system in a fresh internal frame.
3908 ExternalReference miss = ExternalReference(IC_Utility(IC::kCompareIC_Miss),
3910 FrameScope scope(masm, StackFrame::INTERNAL);
3911 __ push(edx); // Preserve edx and eax.
3913 __ push(edx); // And also use them as the arguments.
3915 __ push(Immediate(Smi::FromInt(op())));
3916 __ CallExternalReference(miss, 3);
3917 // Compute the entry point of the rewritten stub.
3918 __ lea(edi, FieldOperand(eax, Code::kHeaderSize));
3923 // Do a tail call to the rewritten stub.
3928 // Helper function used to check that the dictionary doesn't contain
3929 // the property. This function may return false negatives, so miss_label
3930 // must always call a backup property check that is complete.
3931 // This function is safe to call if the receiver has fast properties.
3932 // Name must be a unique name and receiver must be a heap object.
3933 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
3936 Register properties,
3939 DCHECK(name->IsUniqueName());
3941 // If names of slots in range from 1 to kProbes - 1 for the hash value are
3942 // not equal to the name and kProbes-th slot is not used (its name is the
3943 // undefined value), it guarantees the hash table doesn't contain the
3944 // property. It's true even if some slots represent deleted properties
3945 // (their names are the hole value).
3946 for (int i = 0; i < kInlinedProbes; i++) {
3947 // Compute the masked index: (hash + i + i * i) & mask.
3948 Register index = r0;
3949 // Capacity is smi 2^n.
3950 __ mov(index, FieldOperand(properties, kCapacityOffset));
3953 Immediate(Smi::FromInt(name->Hash() +
3954 NameDictionary::GetProbeOffset(i))));
3956 // Scale the index by multiplying by the entry size.
3957 DCHECK(NameDictionary::kEntrySize == 3);
3958 __ lea(index, Operand(index, index, times_2, 0)); // index *= 3.
3959 Register entity_name = r0;
3960 // Having undefined at this place means the name is not contained.
3961 DCHECK_EQ(kSmiTagSize, 1);
3962 __ mov(entity_name, Operand(properties, index, times_half_pointer_size,
3963 kElementsStartOffset - kHeapObjectTag));
3964 __ cmp(entity_name, masm->isolate()->factory()->undefined_value());
3967 // Stop if found the property.
3968 __ cmp(entity_name, Handle<Name>(name));
3972 // Check for the hole and skip.
3973 __ cmp(entity_name, masm->isolate()->factory()->the_hole_value());
3974 __ j(equal, &good, Label::kNear);
3976 // Check if the entry name is not a unique name.
3977 __ mov(entity_name, FieldOperand(entity_name, HeapObject::kMapOffset));
3978 __ JumpIfNotUniqueNameInstanceType(
3979 FieldOperand(entity_name, Map::kInstanceTypeOffset), miss);
3983 NameDictionaryLookupStub stub(masm->isolate(), properties, r0, r0,
3985 __ push(Immediate(Handle<Object>(name)));
3986 __ push(Immediate(name->Hash()));
3989 __ j(not_zero, miss);
3994 // Probe the name dictionary in the |elements| register. Jump to the
3995 // |done| label if a property with the given name is found leaving the
3996 // index into the dictionary in |r0|. Jump to the |miss| label
3998 void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
4005 DCHECK(!elements.is(r0));
4006 DCHECK(!elements.is(r1));
4007 DCHECK(!name.is(r0));
4008 DCHECK(!name.is(r1));
4010 __ AssertName(name);
4012 __ mov(r1, FieldOperand(elements, kCapacityOffset));
4013 __ shr(r1, kSmiTagSize); // convert smi to int
4016 // Generate an unrolled loop that performs a few probes before
4017 // giving up. Measurements done on Gmail indicate that 2 probes
4018 // cover ~93% of loads from dictionaries.
4019 for (int i = 0; i < kInlinedProbes; i++) {
4020 // Compute the masked index: (hash + i + i * i) & mask.
4021 __ mov(r0, FieldOperand(name, Name::kHashFieldOffset));
4022 __ shr(r0, Name::kHashShift);
4024 __ add(r0, Immediate(NameDictionary::GetProbeOffset(i)));
4028 // Scale the index by multiplying by the entry size.
4029 DCHECK(NameDictionary::kEntrySize == 3);
4030 __ lea(r0, Operand(r0, r0, times_2, 0)); // r0 = r0 * 3
4032 // Check if the key is identical to the name.
4033 __ cmp(name, Operand(elements,
4036 kElementsStartOffset - kHeapObjectTag));
4040 NameDictionaryLookupStub stub(masm->isolate(), elements, r1, r0,
4043 __ mov(r0, FieldOperand(name, Name::kHashFieldOffset));
4044 __ shr(r0, Name::kHashShift);
4054 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
4055 // This stub overrides SometimesSetsUpAFrame() to return false. That means
4056 // we cannot call anything that could cause a GC from this stub.
4057 // Stack frame on entry:
4058 // esp[0 * kPointerSize]: return address.
4059 // esp[1 * kPointerSize]: key's hash.
4060 // esp[2 * kPointerSize]: key.
4062 // dictionary_: NameDictionary to probe.
4063 // result_: used as scratch.
4064 // index_: will hold an index of entry if lookup is successful.
4065 // might alias with result_.
4067 // result_ is zero if lookup failed, non zero otherwise.
4069 Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
4071 Register scratch = result();
4073 __ mov(scratch, FieldOperand(dictionary(), kCapacityOffset));
4075 __ SmiUntag(scratch);
4078 // If names of slots in range from 1 to kProbes - 1 for the hash value are
4079 // not equal to the name and kProbes-th slot is not used (its name is the
4080 // undefined value), it guarantees the hash table doesn't contain the
4081 // property. It's true even if some slots represent deleted properties
4082 // (their names are the null value).
4083 for (int i = kInlinedProbes; i < kTotalProbes; i++) {
4084 // Compute the masked index: (hash + i + i * i) & mask.
4085 __ mov(scratch, Operand(esp, 2 * kPointerSize));
4087 __ add(scratch, Immediate(NameDictionary::GetProbeOffset(i)));
4089 __ and_(scratch, Operand(esp, 0));
4091 // Scale the index by multiplying by the entry size.
4092 DCHECK(NameDictionary::kEntrySize == 3);
4093 __ lea(index(), Operand(scratch, scratch, times_2, 0)); // index *= 3.
4095 // Having undefined at this place means the name is not contained.
4096 DCHECK_EQ(kSmiTagSize, 1);
4097 __ mov(scratch, Operand(dictionary(), index(), times_pointer_size,
4098 kElementsStartOffset - kHeapObjectTag));
4099 __ cmp(scratch, isolate()->factory()->undefined_value());
4100 __ j(equal, ¬_in_dictionary);
4102 // Stop if found the property.
4103 __ cmp(scratch, Operand(esp, 3 * kPointerSize));
4104 __ j(equal, &in_dictionary);
4106 if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
4107 // If we hit a key that is not a unique name during negative
4108 // lookup we have to bailout as this key might be equal to the
4109 // key we are looking for.
4111 // Check if the entry name is not a unique name.
4112 __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
4113 __ JumpIfNotUniqueNameInstanceType(
4114 FieldOperand(scratch, Map::kInstanceTypeOffset),
4115 &maybe_in_dictionary);
4119 __ bind(&maybe_in_dictionary);
4120 // If we are doing negative lookup then probing failure should be
4121 // treated as a lookup success. For positive lookup probing failure
4122 // should be treated as lookup failure.
4123 if (mode() == POSITIVE_LOOKUP) {
4124 __ mov(result(), Immediate(0));
4126 __ ret(2 * kPointerSize);
4129 __ bind(&in_dictionary);
4130 __ mov(result(), Immediate(1));
4132 __ ret(2 * kPointerSize);
4134 __ bind(¬_in_dictionary);
4135 __ mov(result(), Immediate(0));
4137 __ ret(2 * kPointerSize);
4141 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
4143 StoreBufferOverflowStub stub(isolate, kDontSaveFPRegs);
4145 StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
4150 // Takes the input in 3 registers: address_ value_ and object_. A pointer to
4151 // the value has just been written into the object, now this stub makes sure
4152 // we keep the GC informed. The word in the object where the value has been
4153 // written is in the address register.
4154 void RecordWriteStub::Generate(MacroAssembler* masm) {
4155 Label skip_to_incremental_noncompacting;
4156 Label skip_to_incremental_compacting;
4158 // The first two instructions are generated with labels so as to get the
4159 // offset fixed up correctly by the bind(Label*) call. We patch it back and
4160 // forth between a compare instructions (a nop in this position) and the
4161 // real branch when we start and stop incremental heap marking.
4162 __ jmp(&skip_to_incremental_noncompacting, Label::kNear);
4163 __ jmp(&skip_to_incremental_compacting, Label::kFar);
4165 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
4166 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
4167 MacroAssembler::kReturnAtEnd);
4172 __ bind(&skip_to_incremental_noncompacting);
4173 GenerateIncremental(masm, INCREMENTAL);
4175 __ bind(&skip_to_incremental_compacting);
4176 GenerateIncremental(masm, INCREMENTAL_COMPACTION);
4178 // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
4179 // Will be checked in IncrementalMarking::ActivateGeneratedStub.
4180 masm->set_byte_at(0, kTwoByteNopInstruction);
4181 masm->set_byte_at(2, kFiveByteNopInstruction);
4185 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
4188 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
4189 Label dont_need_remembered_set;
4191 __ mov(regs_.scratch0(), Operand(regs_.address(), 0));
4192 __ JumpIfNotInNewSpace(regs_.scratch0(), // Value.
4194 &dont_need_remembered_set);
4196 __ CheckPageFlag(regs_.object(),
4198 1 << MemoryChunk::SCAN_ON_SCAVENGE,
4200 &dont_need_remembered_set);
4202 // First notify the incremental marker if necessary, then update the
4204 CheckNeedsToInformIncrementalMarker(
4206 kUpdateRememberedSetOnNoNeedToInformIncrementalMarker,
4208 InformIncrementalMarker(masm);
4209 regs_.Restore(masm);
4210 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
4211 MacroAssembler::kReturnAtEnd);
4213 __ bind(&dont_need_remembered_set);
4216 CheckNeedsToInformIncrementalMarker(
4218 kReturnOnNoNeedToInformIncrementalMarker,
4220 InformIncrementalMarker(masm);
4221 regs_.Restore(masm);
4226 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
4227 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
4228 int argument_count = 3;
4229 __ PrepareCallCFunction(argument_count, regs_.scratch0());
4230 __ mov(Operand(esp, 0 * kPointerSize), regs_.object());
4231 __ mov(Operand(esp, 1 * kPointerSize), regs_.address()); // Slot.
4232 __ mov(Operand(esp, 2 * kPointerSize),
4233 Immediate(ExternalReference::isolate_address(isolate())));
4235 AllowExternalCallThatCantCauseGC scope(masm);
4237 ExternalReference::incremental_marking_record_write_function(isolate()),
4240 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
4244 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
4245 MacroAssembler* masm,
4246 OnNoNeedToInformIncrementalMarker on_no_need,
4248 Label object_is_black, need_incremental, need_incremental_pop_object;
4250 __ mov(regs_.scratch0(), Immediate(~Page::kPageAlignmentMask));
4251 __ and_(regs_.scratch0(), regs_.object());
4252 __ mov(regs_.scratch1(),
4253 Operand(regs_.scratch0(),
4254 MemoryChunk::kWriteBarrierCounterOffset));
4255 __ sub(regs_.scratch1(), Immediate(1));
4256 __ mov(Operand(regs_.scratch0(),
4257 MemoryChunk::kWriteBarrierCounterOffset),
4259 __ j(negative, &need_incremental);
4261 // Let's look at the color of the object: If it is not black we don't have
4262 // to inform the incremental marker.
4263 __ JumpIfBlack(regs_.object(),
4269 regs_.Restore(masm);
4270 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
4271 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
4272 MacroAssembler::kReturnAtEnd);
4277 __ bind(&object_is_black);
4279 // Get the value from the slot.
4280 __ mov(regs_.scratch0(), Operand(regs_.address(), 0));
4282 if (mode == INCREMENTAL_COMPACTION) {
4283 Label ensure_not_white;
4285 __ CheckPageFlag(regs_.scratch0(), // Contains value.
4286 regs_.scratch1(), // Scratch.
4287 MemoryChunk::kEvacuationCandidateMask,
4292 __ CheckPageFlag(regs_.object(),
4293 regs_.scratch1(), // Scratch.
4294 MemoryChunk::kSkipEvacuationSlotsRecordingMask,
4299 __ jmp(&need_incremental);
4301 __ bind(&ensure_not_white);
4304 // We need an extra register for this, so we push the object register
4306 __ push(regs_.object());
4307 __ EnsureNotWhite(regs_.scratch0(), // The value.
4308 regs_.scratch1(), // Scratch.
4309 regs_.object(), // Scratch.
4310 &need_incremental_pop_object,
4312 __ pop(regs_.object());
4314 regs_.Restore(masm);
4315 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
4316 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
4317 MacroAssembler::kReturnAtEnd);
4322 __ bind(&need_incremental_pop_object);
4323 __ pop(regs_.object());
4325 __ bind(&need_incremental);
4327 // Fall through when we need to inform the incremental marker.
4331 void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
4332 // ----------- S t a t e -------------
4333 // -- eax : element value to store
4334 // -- ecx : element index as smi
4335 // -- esp[0] : return address
4336 // -- esp[4] : array literal index in function
4337 // -- esp[8] : array literal
4338 // clobbers ebx, edx, edi
4339 // -----------------------------------
4342 Label double_elements;
4344 Label slow_elements;
4345 Label slow_elements_from_double;
4346 Label fast_elements;
4348 // Get array literal index, array literal and its map.
4349 __ mov(edx, Operand(esp, 1 * kPointerSize));
4350 __ mov(ebx, Operand(esp, 2 * kPointerSize));
4351 __ mov(edi, FieldOperand(ebx, JSObject::kMapOffset));
4353 __ CheckFastElements(edi, &double_elements);
4355 // Check for FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS elements
4356 __ JumpIfSmi(eax, &smi_element);
4357 __ CheckFastSmiElements(edi, &fast_elements, Label::kNear);
4359 // Store into the array literal requires a elements transition. Call into
4362 __ bind(&slow_elements);
4363 __ pop(edi); // Pop return address and remember to put back later for tail
4368 __ mov(ebx, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
4369 __ push(FieldOperand(ebx, JSFunction::kLiteralsOffset));
4371 __ push(edi); // Return return address so that tail call returns to right
4373 __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
4375 __ bind(&slow_elements_from_double);
4377 __ jmp(&slow_elements);
4379 // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object.
4380 __ bind(&fast_elements);
4381 __ mov(ebx, FieldOperand(ebx, JSObject::kElementsOffset));
4382 __ lea(ecx, FieldOperand(ebx, ecx, times_half_pointer_size,
4383 FixedArrayBase::kHeaderSize));
4384 __ mov(Operand(ecx, 0), eax);
4385 // Update the write barrier for the array store.
4386 __ RecordWrite(ebx, ecx, eax,
4388 EMIT_REMEMBERED_SET,
4392 // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS,
4393 // and value is Smi.
4394 __ bind(&smi_element);
4395 __ mov(ebx, FieldOperand(ebx, JSObject::kElementsOffset));
4396 __ mov(FieldOperand(ebx, ecx, times_half_pointer_size,
4397 FixedArrayBase::kHeaderSize), eax);
4400 // Array literal has ElementsKind of FAST_*_DOUBLE_ELEMENTS.
4401 __ bind(&double_elements);
4404 __ mov(edx, FieldOperand(ebx, JSObject::kElementsOffset));
4405 __ StoreNumberToDoubleElements(eax,
4410 &slow_elements_from_double);
4416 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
4417 CEntryStub ces(isolate(), 1, kSaveFPRegs);
4418 __ call(ces.GetCode(), RelocInfo::CODE_TARGET);
4419 int parameter_count_offset =
4420 StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
4421 __ mov(ebx, MemOperand(ebp, parameter_count_offset));
4422 masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
4424 int additional_offset =
4425 function_mode() == JS_FUNCTION_STUB_MODE ? kPointerSize : 0;
4426 __ lea(esp, MemOperand(esp, ebx, times_pointer_size, additional_offset));
4427 __ jmp(ecx); // Return to IC Miss stub, continuation still on stack.
4431 void LoadICTrampolineStub::Generate(MacroAssembler* masm) {
4432 EmitLoadTypeFeedbackVector(masm, LoadWithVectorDescriptor::VectorRegister());
4433 LoadICStub stub(isolate(), state());
4434 stub.GenerateForTrampoline(masm);
4438 void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) {
4439 EmitLoadTypeFeedbackVector(masm, LoadWithVectorDescriptor::VectorRegister());
4440 KeyedLoadICStub stub(isolate(), state());
4441 stub.GenerateForTrampoline(masm);
4445 static void HandleArrayCases(MacroAssembler* masm, Register receiver,
4446 Register key, Register vector, Register slot,
4447 Register feedback, bool is_polymorphic,
4449 // feedback initially contains the feedback array
4450 Label next, next_loop, prepare_next;
4451 Label load_smi_map, compare_map;
4452 Label start_polymorphic;
4457 Register receiver_map = receiver;
4458 Register cached_map = vector;
4460 // Receiver might not be a heap object.
4461 __ JumpIfSmi(receiver, &load_smi_map);
4462 __ mov(receiver_map, FieldOperand(receiver, 0));
4463 __ bind(&compare_map);
4464 __ mov(cached_map, FieldOperand(feedback, FixedArray::OffsetOfElementAt(0)));
4466 // A named keyed load might have a 2 element array, all other cases can count
4467 // on an array with at least 2 {map, handler} pairs, so they can go right
4468 // into polymorphic array handling.
4469 __ cmp(receiver_map, FieldOperand(cached_map, WeakCell::kValueOffset));
4470 __ j(not_equal, is_polymorphic ? &start_polymorphic : &next);
4472 // found, now call handler.
4473 Register handler = feedback;
4474 __ mov(handler, FieldOperand(feedback, FixedArray::OffsetOfElementAt(1)));
4477 __ lea(handler, FieldOperand(handler, Code::kHeaderSize));
4480 if (!is_polymorphic) {
4482 __ cmp(FieldOperand(feedback, FixedArray::kLengthOffset),
4483 Immediate(Smi::FromInt(2)));
4484 __ j(not_equal, &start_polymorphic);
4490 // Polymorphic, we have to loop from 2 to N
4491 __ bind(&start_polymorphic);
4493 Register counter = key;
4494 __ mov(counter, Immediate(Smi::FromInt(2)));
4495 __ bind(&next_loop);
4496 __ mov(cached_map, FieldOperand(feedback, counter, times_half_pointer_size,
4497 FixedArray::kHeaderSize));
4498 __ cmp(receiver_map, FieldOperand(cached_map, WeakCell::kValueOffset));
4499 __ j(not_equal, &prepare_next);
4500 __ mov(handler, FieldOperand(feedback, counter, times_half_pointer_size,
4501 FixedArray::kHeaderSize + kPointerSize));
4505 __ lea(handler, FieldOperand(handler, Code::kHeaderSize));
4508 __ bind(&prepare_next);
4509 __ add(counter, Immediate(Smi::FromInt(2)));
4510 __ cmp(counter, FieldOperand(feedback, FixedArray::kLengthOffset));
4511 __ j(less, &next_loop);
4513 // We exhausted our array of map handler pairs.
4519 __ bind(&load_smi_map);
4520 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
4521 __ jmp(&compare_map);
4525 static void HandleMonomorphicCase(MacroAssembler* masm, Register receiver,
4526 Register key, Register vector, Register slot,
4527 Register weak_cell, Label* miss) {
4528 // feedback initially contains the feedback array
4529 Label compare_smi_map;
4531 // Move the weak map into the weak_cell register.
4532 Register ic_map = weak_cell;
4533 __ mov(ic_map, FieldOperand(weak_cell, WeakCell::kValueOffset));
4535 // Receiver might not be a heap object.
4536 __ JumpIfSmi(receiver, &compare_smi_map);
4537 __ cmp(ic_map, FieldOperand(receiver, 0));
4538 __ j(not_equal, miss);
4539 Register handler = weak_cell;
4540 __ mov(handler, FieldOperand(vector, slot, times_half_pointer_size,
4541 FixedArray::kHeaderSize + kPointerSize));
4542 __ lea(handler, FieldOperand(handler, Code::kHeaderSize));
4545 // In microbenchmarks, it made sense to unroll this code so that the call to
4546 // the handler is duplicated for a HeapObject receiver and a Smi receiver.
4547 __ bind(&compare_smi_map);
4548 __ CompareRoot(ic_map, Heap::kHeapNumberMapRootIndex);
4549 __ j(not_equal, miss);
4550 __ mov(handler, FieldOperand(vector, slot, times_half_pointer_size,
4551 FixedArray::kHeaderSize + kPointerSize));
4552 __ lea(handler, FieldOperand(handler, Code::kHeaderSize));
4557 void LoadICStub::Generate(MacroAssembler* masm) { GenerateImpl(masm, false); }
4560 void LoadICStub::GenerateForTrampoline(MacroAssembler* masm) {
4561 GenerateImpl(masm, true);
4565 void LoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4566 Register receiver = LoadWithVectorDescriptor::ReceiverRegister(); // edx
4567 Register name = LoadWithVectorDescriptor::NameRegister(); // ecx
4568 Register vector = LoadWithVectorDescriptor::VectorRegister(); // ebx
4569 Register slot = LoadWithVectorDescriptor::SlotRegister(); // eax
4570 Register scratch = edi;
4571 __ mov(scratch, FieldOperand(vector, slot, times_half_pointer_size,
4572 FixedArray::kHeaderSize));
4574 // Is it a weak cell?
4576 Label not_array, smi_key, key_okay, miss;
4577 __ CompareRoot(FieldOperand(scratch, 0), Heap::kWeakCellMapRootIndex);
4578 __ j(not_equal, &try_array);
4579 HandleMonomorphicCase(masm, receiver, name, vector, slot, scratch, &miss);
4581 // Is it a fixed array?
4582 __ bind(&try_array);
4583 __ CompareRoot(FieldOperand(scratch, 0), Heap::kFixedArrayMapRootIndex);
4584 __ j(not_equal, ¬_array);
4585 HandleArrayCases(masm, receiver, name, vector, slot, scratch, true, &miss);
4587 __ bind(¬_array);
4588 __ CompareRoot(scratch, Heap::kmegamorphic_symbolRootIndex);
4589 __ j(not_equal, &miss);
4592 Code::Flags code_flags = Code::RemoveTypeAndHolderFromFlags(
4593 Code::ComputeHandlerFlags(Code::LOAD_IC));
4594 masm->isolate()->stub_cache()->GenerateProbe(
4595 masm, Code::LOAD_IC, code_flags, false, receiver, name, vector, scratch);
4600 LoadIC::GenerateMiss(masm);
4604 void KeyedLoadICStub::Generate(MacroAssembler* masm) {
4605 GenerateImpl(masm, false);
4609 void KeyedLoadICStub::GenerateForTrampoline(MacroAssembler* masm) {
4610 GenerateImpl(masm, true);
4614 void KeyedLoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4615 Register receiver = LoadWithVectorDescriptor::ReceiverRegister(); // edx
4616 Register key = LoadWithVectorDescriptor::NameRegister(); // ecx
4617 Register vector = LoadWithVectorDescriptor::VectorRegister(); // ebx
4618 Register slot = LoadWithVectorDescriptor::SlotRegister(); // eax
4619 Register feedback = edi;
4620 __ mov(feedback, FieldOperand(vector, slot, times_half_pointer_size,
4621 FixedArray::kHeaderSize));
4622 // Is it a weak cell?
4624 Label not_array, smi_key, key_okay, miss;
4625 __ CompareRoot(FieldOperand(feedback, 0), Heap::kWeakCellMapRootIndex);
4626 __ j(not_equal, &try_array);
4627 HandleMonomorphicCase(masm, receiver, key, vector, slot, feedback, &miss);
4629 __ bind(&try_array);
4630 // Is it a fixed array?
4631 __ CompareRoot(FieldOperand(feedback, 0), Heap::kFixedArrayMapRootIndex);
4632 __ j(not_equal, ¬_array);
4634 // We have a polymorphic element handler.
4635 Label polymorphic, try_poly_name;
4636 __ bind(&polymorphic);
4637 HandleArrayCases(masm, receiver, key, vector, slot, feedback, true, &miss);
4639 __ bind(¬_array);
4641 __ CompareRoot(feedback, Heap::kmegamorphic_symbolRootIndex);
4642 __ j(not_equal, &try_poly_name);
4643 Handle<Code> megamorphic_stub =
4644 KeyedLoadIC::ChooseMegamorphicStub(masm->isolate(), GetExtraICState());
4645 __ jmp(megamorphic_stub, RelocInfo::CODE_TARGET);
4647 __ bind(&try_poly_name);
4648 // We might have a name in feedback, and a fixed array in the next slot.
4649 __ cmp(key, feedback);
4650 __ j(not_equal, &miss);
4651 // If the name comparison succeeded, we know we have a fixed array with
4652 // at least one map/handler pair.
4653 __ mov(feedback, FieldOperand(vector, slot, times_half_pointer_size,
4654 FixedArray::kHeaderSize + kPointerSize));
4655 HandleArrayCases(masm, receiver, key, vector, slot, feedback, false, &miss);
4658 KeyedLoadIC::GenerateMiss(masm);
4662 void VectorStoreICTrampolineStub::Generate(MacroAssembler* masm) {
4663 EmitLoadTypeFeedbackVector(masm, VectorStoreICDescriptor::VectorRegister());
4664 VectorStoreICStub stub(isolate(), state());
4665 stub.GenerateForTrampoline(masm);
4669 void VectorKeyedStoreICTrampolineStub::Generate(MacroAssembler* masm) {
4670 EmitLoadTypeFeedbackVector(masm, VectorStoreICDescriptor::VectorRegister());
4671 VectorKeyedStoreICStub stub(isolate(), state());
4672 stub.GenerateForTrampoline(masm);
4676 void VectorStoreICStub::Generate(MacroAssembler* masm) {
4677 GenerateImpl(masm, false);
4681 void VectorStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
4682 GenerateImpl(masm, true);
4686 void VectorStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4689 // TODO(mvstanton): Implement.
4691 StoreIC::GenerateMiss(masm);
4695 void VectorKeyedStoreICStub::Generate(MacroAssembler* masm) {
4696 GenerateImpl(masm, false);
4700 void VectorKeyedStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
4701 GenerateImpl(masm, true);
4705 void VectorKeyedStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4708 // TODO(mvstanton): Implement.
4710 KeyedStoreIC::GenerateMiss(masm);
4714 void CallICTrampolineStub::Generate(MacroAssembler* masm) {
4715 EmitLoadTypeFeedbackVector(masm, ebx);
4716 CallICStub stub(isolate(), state());
4717 __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
4721 void CallIC_ArrayTrampolineStub::Generate(MacroAssembler* masm) {
4722 EmitLoadTypeFeedbackVector(masm, ebx);
4723 CallIC_ArrayStub stub(isolate(), state());
4724 __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
4728 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
4729 if (masm->isolate()->function_entry_hook() != NULL) {
4730 ProfileEntryHookStub stub(masm->isolate());
4731 masm->CallStub(&stub);
4736 void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
4737 // Save volatile registers.
4738 const int kNumSavedRegisters = 3;
4743 // Calculate and push the original stack pointer.
4744 __ lea(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize));
4747 // Retrieve our return address and use it to calculate the calling
4748 // function's address.
4749 __ mov(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize));
4750 __ sub(eax, Immediate(Assembler::kCallInstructionLength));
4753 // Call the entry hook.
4754 DCHECK(isolate()->function_entry_hook() != NULL);
4755 __ call(FUNCTION_ADDR(isolate()->function_entry_hook()),
4756 RelocInfo::RUNTIME_ENTRY);
4757 __ add(esp, Immediate(2 * kPointerSize));
4769 static void CreateArrayDispatch(MacroAssembler* masm,
4770 AllocationSiteOverrideMode mode) {
4771 if (mode == DISABLE_ALLOCATION_SITES) {
4772 T stub(masm->isolate(),
4773 GetInitialFastElementsKind(),
4775 __ TailCallStub(&stub);
4776 } else if (mode == DONT_OVERRIDE) {
4777 int last_index = GetSequenceIndexFromFastElementsKind(
4778 TERMINAL_FAST_ELEMENTS_KIND);
4779 for (int i = 0; i <= last_index; ++i) {
4781 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4783 __ j(not_equal, &next);
4784 T stub(masm->isolate(), kind);
4785 __ TailCallStub(&stub);
4789 // If we reached this point there is a problem.
4790 __ Abort(kUnexpectedElementsKindInArrayConstructor);
4797 static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
4798 AllocationSiteOverrideMode mode) {
4799 // ebx - allocation site (if mode != DISABLE_ALLOCATION_SITES)
4800 // edx - kind (if mode != DISABLE_ALLOCATION_SITES)
4801 // eax - number of arguments
4802 // edi - constructor?
4803 // esp[0] - return address
4804 // esp[4] - last argument
4805 Label normal_sequence;
4806 if (mode == DONT_OVERRIDE) {
4807 DCHECK(FAST_SMI_ELEMENTS == 0);
4808 DCHECK(FAST_HOLEY_SMI_ELEMENTS == 1);
4809 DCHECK(FAST_ELEMENTS == 2);
4810 DCHECK(FAST_HOLEY_ELEMENTS == 3);
4811 DCHECK(FAST_DOUBLE_ELEMENTS == 4);
4812 DCHECK(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
4814 // is the low bit set? If so, we are holey and that is good.
4816 __ j(not_zero, &normal_sequence);
4819 // look at the first argument
4820 __ mov(ecx, Operand(esp, kPointerSize));
4822 __ j(zero, &normal_sequence);
4824 if (mode == DISABLE_ALLOCATION_SITES) {
4825 ElementsKind initial = GetInitialFastElementsKind();
4826 ElementsKind holey_initial = GetHoleyElementsKind(initial);
4828 ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
4830 DISABLE_ALLOCATION_SITES);
4831 __ TailCallStub(&stub_holey);
4833 __ bind(&normal_sequence);
4834 ArraySingleArgumentConstructorStub stub(masm->isolate(),
4836 DISABLE_ALLOCATION_SITES);
4837 __ TailCallStub(&stub);
4838 } else if (mode == DONT_OVERRIDE) {
4839 // We are going to create a holey array, but our kind is non-holey.
4840 // Fix kind and retry.
4843 if (FLAG_debug_code) {
4844 Handle<Map> allocation_site_map =
4845 masm->isolate()->factory()->allocation_site_map();
4846 __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map));
4847 __ Assert(equal, kExpectedAllocationSite);
4850 // Save the resulting elements kind in type info. We can't just store r3
4851 // in the AllocationSite::transition_info field because elements kind is
4852 // restricted to a portion of the field...upper bits need to be left alone.
4853 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4854 __ add(FieldOperand(ebx, AllocationSite::kTransitionInfoOffset),
4855 Immediate(Smi::FromInt(kFastElementsKindPackedToHoley)));
4857 __ bind(&normal_sequence);
4858 int last_index = GetSequenceIndexFromFastElementsKind(
4859 TERMINAL_FAST_ELEMENTS_KIND);
4860 for (int i = 0; i <= last_index; ++i) {
4862 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4864 __ j(not_equal, &next);
4865 ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
4866 __ TailCallStub(&stub);
4870 // If we reached this point there is a problem.
4871 __ Abort(kUnexpectedElementsKindInArrayConstructor);
4879 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
4880 int to_index = GetSequenceIndexFromFastElementsKind(
4881 TERMINAL_FAST_ELEMENTS_KIND);
4882 for (int i = 0; i <= to_index; ++i) {
4883 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4884 T stub(isolate, kind);
4886 if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
4887 T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
4894 void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
4895 ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
4897 ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
4899 ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
4904 void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
4906 ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
4907 for (int i = 0; i < 2; i++) {
4908 // For internal arrays we only need a few things
4909 InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
4911 InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
4913 InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]);
4919 void ArrayConstructorStub::GenerateDispatchToArrayStub(
4920 MacroAssembler* masm,
4921 AllocationSiteOverrideMode mode) {
4922 if (argument_count() == ANY) {
4923 Label not_zero_case, not_one_case;
4925 __ j(not_zero, ¬_zero_case);
4926 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4928 __ bind(¬_zero_case);
4930 __ j(greater, ¬_one_case);
4931 CreateArrayDispatchOneArgument(masm, mode);
4933 __ bind(¬_one_case);
4934 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4935 } else if (argument_count() == NONE) {
4936 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4937 } else if (argument_count() == ONE) {
4938 CreateArrayDispatchOneArgument(masm, mode);
4939 } else if (argument_count() == MORE_THAN_ONE) {
4940 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4947 void ArrayConstructorStub::Generate(MacroAssembler* masm) {
4948 // ----------- S t a t e -------------
4949 // -- eax : argc (only if argument_count() is ANY or MORE_THAN_ONE)
4950 // -- ebx : AllocationSite or undefined
4951 // -- edi : constructor
4952 // -- edx : Original constructor
4953 // -- esp[0] : return address
4954 // -- esp[4] : last argument
4955 // -----------------------------------
4956 if (FLAG_debug_code) {
4957 // The array construct code is only set for the global and natives
4958 // builtin Array functions which always have maps.
4960 // Initial map for the builtin Array function should be a map.
4961 __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
4962 // Will both indicate a NULL and a Smi.
4963 __ test(ecx, Immediate(kSmiTagMask));
4964 __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
4965 __ CmpObjectType(ecx, MAP_TYPE, ecx);
4966 __ Assert(equal, kUnexpectedInitialMapForArrayFunction);
4968 // We should either have undefined in ebx or a valid AllocationSite
4969 __ AssertUndefinedOrAllocationSite(ebx);
4975 __ j(not_equal, &subclassing);
4978 // If the feedback vector is the undefined value call an array constructor
4979 // that doesn't use AllocationSites.
4980 __ cmp(ebx, isolate()->factory()->undefined_value());
4981 __ j(equal, &no_info);
4983 // Only look at the lower 16 bits of the transition info.
4984 __ mov(edx, FieldOperand(ebx, AllocationSite::kTransitionInfoOffset));
4986 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4987 __ and_(edx, Immediate(AllocationSite::ElementsKindBits::kMask));
4988 GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
4991 GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
4994 __ bind(&subclassing);
4995 __ pop(ecx); // return address.
5000 switch (argument_count()) {
5003 __ add(eax, Immediate(2));
5006 __ mov(eax, Immediate(2));
5009 __ mov(eax, Immediate(3));
5014 __ JumpToExternalReference(
5015 ExternalReference(Runtime::kArrayConstructorWithSubclassing, isolate()));
5019 void InternalArrayConstructorStub::GenerateCase(
5020 MacroAssembler* masm, ElementsKind kind) {
5021 Label not_zero_case, not_one_case;
5022 Label normal_sequence;
5025 __ j(not_zero, ¬_zero_case);
5026 InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
5027 __ TailCallStub(&stub0);
5029 __ bind(¬_zero_case);
5031 __ j(greater, ¬_one_case);
5033 if (IsFastPackedElementsKind(kind)) {
5034 // We might need to create a holey array
5035 // look at the first argument
5036 __ mov(ecx, Operand(esp, kPointerSize));
5038 __ j(zero, &normal_sequence);
5040 InternalArraySingleArgumentConstructorStub
5041 stub1_holey(isolate(), GetHoleyElementsKind(kind));
5042 __ TailCallStub(&stub1_holey);
5045 __ bind(&normal_sequence);
5046 InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
5047 __ TailCallStub(&stub1);
5049 __ bind(¬_one_case);
5050 InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
5051 __ TailCallStub(&stubN);
5055 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
5056 // ----------- S t a t e -------------
5058 // -- edi : constructor
5059 // -- esp[0] : return address
5060 // -- esp[4] : last argument
5061 // -----------------------------------
5063 if (FLAG_debug_code) {
5064 // The array construct code is only set for the global and natives
5065 // builtin Array functions which always have maps.
5067 // Initial map for the builtin Array function should be a map.
5068 __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
5069 // Will both indicate a NULL and a Smi.
5070 __ test(ecx, Immediate(kSmiTagMask));
5071 __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
5072 __ CmpObjectType(ecx, MAP_TYPE, ecx);
5073 __ Assert(equal, kUnexpectedInitialMapForArrayFunction);
5076 // Figure out the right elements kind
5077 __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
5079 // Load the map's "bit field 2" into |result|. We only need the first byte,
5080 // but the following masking takes care of that anyway.
5081 __ mov(ecx, FieldOperand(ecx, Map::kBitField2Offset));
5082 // Retrieve elements_kind from bit field 2.
5083 __ DecodeField<Map::ElementsKindBits>(ecx);
5085 if (FLAG_debug_code) {
5087 __ cmp(ecx, Immediate(FAST_ELEMENTS));
5089 __ cmp(ecx, Immediate(FAST_HOLEY_ELEMENTS));
5091 kInvalidElementsKindForInternalArrayOrInternalPackedArray);
5095 Label fast_elements_case;
5096 __ cmp(ecx, Immediate(FAST_ELEMENTS));
5097 __ j(equal, &fast_elements_case);
5098 GenerateCase(masm, FAST_HOLEY_ELEMENTS);
5100 __ bind(&fast_elements_case);
5101 GenerateCase(masm, FAST_ELEMENTS);
5105 // Generates an Operand for saving parameters after PrepareCallApiFunction.
5106 static Operand ApiParameterOperand(int index) {
5107 return Operand(esp, index * kPointerSize);
5111 // Prepares stack to put arguments (aligns and so on). Reserves
5112 // space for return value if needed (assumes the return value is a handle).
5113 // Arguments must be stored in ApiParameterOperand(0), ApiParameterOperand(1)
5114 // etc. Saves context (esi). If space was reserved for return value then
5115 // stores the pointer to the reserved slot into esi.
5116 static void PrepareCallApiFunction(MacroAssembler* masm, int argc) {
5117 __ EnterApiExitFrame(argc);
5118 if (__ emit_debug_code()) {
5119 __ mov(esi, Immediate(bit_cast<int32_t>(kZapValue)));
5124 // Calls an API function. Allocates HandleScope, extracts returned value
5125 // from handle and propagates exceptions. Clobbers ebx, edi and
5126 // caller-save registers. Restores context. On return removes
5127 // stack_space * kPointerSize (GCed).
5128 static void CallApiFunctionAndReturn(MacroAssembler* masm,
5129 Register function_address,
5130 ExternalReference thunk_ref,
5131 Operand thunk_last_arg, int stack_space,
5132 Operand* stack_space_operand,
5133 Operand return_value_operand,
5134 Operand* context_restore_operand) {
5135 Isolate* isolate = masm->isolate();
5137 ExternalReference next_address =
5138 ExternalReference::handle_scope_next_address(isolate);
5139 ExternalReference limit_address =
5140 ExternalReference::handle_scope_limit_address(isolate);
5141 ExternalReference level_address =
5142 ExternalReference::handle_scope_level_address(isolate);
5144 DCHECK(edx.is(function_address));
5145 // Allocate HandleScope in callee-save registers.
5146 __ mov(ebx, Operand::StaticVariable(next_address));
5147 __ mov(edi, Operand::StaticVariable(limit_address));
5148 __ add(Operand::StaticVariable(level_address), Immediate(1));
5150 if (FLAG_log_timer_events) {
5151 FrameScope frame(masm, StackFrame::MANUAL);
5152 __ PushSafepointRegisters();
5153 __ PrepareCallCFunction(1, eax);
5154 __ mov(Operand(esp, 0),
5155 Immediate(ExternalReference::isolate_address(isolate)));
5156 __ CallCFunction(ExternalReference::log_enter_external_function(isolate),
5158 __ PopSafepointRegisters();
5162 Label profiler_disabled;
5163 Label end_profiler_check;
5164 __ mov(eax, Immediate(ExternalReference::is_profiling_address(isolate)));
5165 __ cmpb(Operand(eax, 0), 0);
5166 __ j(zero, &profiler_disabled);
5168 // Additional parameter is the address of the actual getter function.
5169 __ mov(thunk_last_arg, function_address);
5170 // Call the api function.
5171 __ mov(eax, Immediate(thunk_ref));
5173 __ jmp(&end_profiler_check);
5175 __ bind(&profiler_disabled);
5176 // Call the api function.
5177 __ call(function_address);
5178 __ bind(&end_profiler_check);
5180 if (FLAG_log_timer_events) {
5181 FrameScope frame(masm, StackFrame::MANUAL);
5182 __ PushSafepointRegisters();
5183 __ PrepareCallCFunction(1, eax);
5184 __ mov(Operand(esp, 0),
5185 Immediate(ExternalReference::isolate_address(isolate)));
5186 __ CallCFunction(ExternalReference::log_leave_external_function(isolate),
5188 __ PopSafepointRegisters();
5192 // Load the value from ReturnValue
5193 __ mov(eax, return_value_operand);
5195 Label promote_scheduled_exception;
5196 Label delete_allocated_handles;
5197 Label leave_exit_frame;
5200 // No more valid handles (the result handle was the last one). Restore
5201 // previous handle scope.
5202 __ mov(Operand::StaticVariable(next_address), ebx);
5203 __ sub(Operand::StaticVariable(level_address), Immediate(1));
5204 __ Assert(above_equal, kInvalidHandleScopeLevel);
5205 __ cmp(edi, Operand::StaticVariable(limit_address));
5206 __ j(not_equal, &delete_allocated_handles);
5208 // Leave the API exit frame.
5209 __ bind(&leave_exit_frame);
5210 bool restore_context = context_restore_operand != NULL;
5211 if (restore_context) {
5212 __ mov(esi, *context_restore_operand);
5214 if (stack_space_operand != nullptr) {
5215 __ mov(ebx, *stack_space_operand);
5217 __ LeaveApiExitFrame(!restore_context);
5219 // Check if the function scheduled an exception.
5220 ExternalReference scheduled_exception_address =
5221 ExternalReference::scheduled_exception_address(isolate);
5222 __ cmp(Operand::StaticVariable(scheduled_exception_address),
5223 Immediate(isolate->factory()->the_hole_value()));
5224 __ j(not_equal, &promote_scheduled_exception);
5227 // Check if the function returned a valid JavaScript value.
5229 Register return_value = eax;
5232 __ JumpIfSmi(return_value, &ok, Label::kNear);
5233 __ mov(map, FieldOperand(return_value, HeapObject::kMapOffset));
5235 __ CmpInstanceType(map, LAST_NAME_TYPE);
5236 __ j(below_equal, &ok, Label::kNear);
5238 __ CmpInstanceType(map, FIRST_SPEC_OBJECT_TYPE);
5239 __ j(above_equal, &ok, Label::kNear);
5241 __ cmp(map, isolate->factory()->heap_number_map());
5242 __ j(equal, &ok, Label::kNear);
5244 __ cmp(return_value, isolate->factory()->undefined_value());
5245 __ j(equal, &ok, Label::kNear);
5247 __ cmp(return_value, isolate->factory()->true_value());
5248 __ j(equal, &ok, Label::kNear);
5250 __ cmp(return_value, isolate->factory()->false_value());
5251 __ j(equal, &ok, Label::kNear);
5253 __ cmp(return_value, isolate->factory()->null_value());
5254 __ j(equal, &ok, Label::kNear);
5256 __ Abort(kAPICallReturnedInvalidObject);
5261 if (stack_space_operand != nullptr) {
5262 DCHECK_EQ(0, stack_space);
5267 __ ret(stack_space * kPointerSize);
5270 // Re-throw by promoting a scheduled exception.
5271 __ bind(&promote_scheduled_exception);
5272 __ TailCallRuntime(Runtime::kPromoteScheduledException, 0, 1);
5274 // HandleScope limit has changed. Delete allocated extensions.
5275 ExternalReference delete_extensions =
5276 ExternalReference::delete_handle_scope_extensions(isolate);
5277 __ bind(&delete_allocated_handles);
5278 __ mov(Operand::StaticVariable(limit_address), edi);
5280 __ mov(Operand(esp, 0),
5281 Immediate(ExternalReference::isolate_address(isolate)));
5282 __ mov(eax, Immediate(delete_extensions));
5285 __ jmp(&leave_exit_frame);
5289 static void CallApiFunctionStubHelper(MacroAssembler* masm,
5290 const ParameterCount& argc,
5291 bool return_first_arg,
5292 bool call_data_undefined) {
5293 // ----------- S t a t e -------------
5295 // -- ebx : call_data
5297 // -- edx : api_function_address
5299 // -- eax : number of arguments if argc is a register
5301 // -- esp[0] : return address
5302 // -- esp[4] : last argument
5304 // -- esp[argc * 4] : first argument
5305 // -- esp[(argc + 1) * 4] : receiver
5306 // -----------------------------------
5308 Register callee = edi;
5309 Register call_data = ebx;
5310 Register holder = ecx;
5311 Register api_function_address = edx;
5312 Register context = esi;
5313 Register return_address = eax;
5315 typedef FunctionCallbackArguments FCA;
5317 STATIC_ASSERT(FCA::kContextSaveIndex == 6);
5318 STATIC_ASSERT(FCA::kCalleeIndex == 5);
5319 STATIC_ASSERT(FCA::kDataIndex == 4);
5320 STATIC_ASSERT(FCA::kReturnValueOffset == 3);
5321 STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
5322 STATIC_ASSERT(FCA::kIsolateIndex == 1);
5323 STATIC_ASSERT(FCA::kHolderIndex == 0);
5324 STATIC_ASSERT(FCA::kArgsLength == 7);
5326 DCHECK(argc.is_immediate() || eax.is(argc.reg()));
5328 if (argc.is_immediate()) {
5329 __ pop(return_address);
5333 // pop return address and save context
5334 __ xchg(context, Operand(esp, 0));
5335 return_address = context;
5344 Register scratch = call_data;
5345 if (!call_data_undefined) {
5347 __ push(Immediate(masm->isolate()->factory()->undefined_value()));
5348 // return value default
5349 __ push(Immediate(masm->isolate()->factory()->undefined_value()));
5353 // return value default
5357 __ push(Immediate(reinterpret_cast<int>(masm->isolate())));
5361 __ mov(scratch, esp);
5363 // push return address
5364 __ push(return_address);
5366 // load context from callee
5367 __ mov(context, FieldOperand(callee, JSFunction::kContextOffset));
5369 // API function gets reference to the v8::Arguments. If CPU profiler
5370 // is enabled wrapper function will be called and we need to pass
5371 // address of the callback as additional parameter, always allocate
5373 const int kApiArgc = 1 + 1;
5375 // Allocate the v8::Arguments structure in the arguments' space since
5376 // it's not controlled by GC.
5377 const int kApiStackSpace = 4;
5379 PrepareCallApiFunction(masm, kApiArgc + kApiStackSpace);
5381 // FunctionCallbackInfo::implicit_args_.
5382 __ mov(ApiParameterOperand(2), scratch);
5383 if (argc.is_immediate()) {
5385 Immediate((argc.immediate() + FCA::kArgsLength - 1) * kPointerSize));
5386 // FunctionCallbackInfo::values_.
5387 __ mov(ApiParameterOperand(3), scratch);
5388 // FunctionCallbackInfo::length_.
5389 __ Move(ApiParameterOperand(4), Immediate(argc.immediate()));
5390 // FunctionCallbackInfo::is_construct_call_.
5391 __ Move(ApiParameterOperand(5), Immediate(0));
5393 __ lea(scratch, Operand(scratch, argc.reg(), times_pointer_size,
5394 (FCA::kArgsLength - 1) * kPointerSize));
5395 // FunctionCallbackInfo::values_.
5396 __ mov(ApiParameterOperand(3), scratch);
5397 // FunctionCallbackInfo::length_.
5398 __ mov(ApiParameterOperand(4), argc.reg());
5399 // FunctionCallbackInfo::is_construct_call_.
5400 __ lea(argc.reg(), Operand(argc.reg(), times_pointer_size,
5401 (FCA::kArgsLength + 1) * kPointerSize));
5402 __ mov(ApiParameterOperand(5), argc.reg());
5405 // v8::InvocationCallback's argument.
5406 __ lea(scratch, ApiParameterOperand(2));
5407 __ mov(ApiParameterOperand(0), scratch);
5409 ExternalReference thunk_ref =
5410 ExternalReference::invoke_function_callback(masm->isolate());
5412 Operand context_restore_operand(ebp,
5413 (2 + FCA::kContextSaveIndex) * kPointerSize);
5414 // Stores return the first js argument
5415 int return_value_offset = 0;
5416 if (return_first_arg) {
5417 return_value_offset = 2 + FCA::kArgsLength;
5419 return_value_offset = 2 + FCA::kReturnValueOffset;
5421 Operand return_value_operand(ebp, return_value_offset * kPointerSize);
5422 int stack_space = 0;
5423 Operand is_construct_call_operand = ApiParameterOperand(5);
5424 Operand* stack_space_operand = &is_construct_call_operand;
5425 if (argc.is_immediate()) {
5426 stack_space = argc.immediate() + FCA::kArgsLength + 1;
5427 stack_space_operand = nullptr;
5429 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
5430 ApiParameterOperand(1), stack_space,
5431 stack_space_operand, return_value_operand,
5432 &context_restore_operand);
5436 void CallApiFunctionStub::Generate(MacroAssembler* masm) {
5437 bool call_data_undefined = this->call_data_undefined();
5438 CallApiFunctionStubHelper(masm, ParameterCount(eax), false,
5439 call_data_undefined);
5443 void CallApiAccessorStub::Generate(MacroAssembler* masm) {
5444 bool is_store = this->is_store();
5445 int argc = this->argc();
5446 bool call_data_undefined = this->call_data_undefined();
5447 CallApiFunctionStubHelper(masm, ParameterCount(argc), is_store,
5448 call_data_undefined);
5452 void CallApiGetterStub::Generate(MacroAssembler* masm) {
5453 // ----------- S t a t e -------------
5454 // -- esp[0] : return address
5456 // -- esp[8 - kArgsLength*4] : PropertyCallbackArguments object
5458 // -- edx : api_function_address
5459 // -----------------------------------
5460 DCHECK(edx.is(ApiGetterDescriptor::function_address()));
5462 // array for v8::Arguments::values_, handler for name and pointer
5463 // to the values (it considered as smi in GC).
5464 const int kStackSpace = PropertyCallbackArguments::kArgsLength + 2;
5465 // Allocate space for opional callback address parameter in case
5466 // CPU profiler is active.
5467 const int kApiArgc = 2 + 1;
5469 Register api_function_address = edx;
5470 Register scratch = ebx;
5472 // load address of name
5473 __ lea(scratch, Operand(esp, 1 * kPointerSize));
5475 PrepareCallApiFunction(masm, kApiArgc);
5476 __ mov(ApiParameterOperand(0), scratch); // name.
5477 __ add(scratch, Immediate(kPointerSize));
5478 __ mov(ApiParameterOperand(1), scratch); // arguments pointer.
5480 ExternalReference thunk_ref =
5481 ExternalReference::invoke_accessor_getter_callback(isolate());
5483 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
5484 ApiParameterOperand(2), kStackSpace, nullptr,
5485 Operand(ebp, 7 * kPointerSize), NULL);
5491 } // namespace internal
5494 #endif // V8_TARGET_ARCH_IA32