1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
7 #if V8_TARGET_ARCH_IA32
9 #include "src/base/bits.h"
10 #include "src/bootstrapper.h"
11 #include "src/code-stubs.h"
12 #include "src/codegen.h"
13 #include "src/ic/handler-compiler.h"
14 #include "src/ic/ic.h"
15 #include "src/ic/stub-cache.h"
16 #include "src/isolate.h"
17 #include "src/jsregexp.h"
18 #include "src/regexp-macro-assembler.h"
19 #include "src/runtime/runtime.h"
25 static void InitializeArrayConstructorDescriptor(
26 Isolate* isolate, CodeStubDescriptor* descriptor,
27 int constant_stack_parameter_count) {
29 // eax -- number of arguments
31 // ebx -- allocation site with elements kind
32 Address deopt_handler = Runtime::FunctionForId(
33 Runtime::kArrayConstructor)->entry;
35 if (constant_stack_parameter_count == 0) {
36 descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
37 JS_FUNCTION_STUB_MODE);
39 descriptor->Initialize(eax, deopt_handler, constant_stack_parameter_count,
40 JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
45 static void InitializeInternalArrayConstructorDescriptor(
46 Isolate* isolate, CodeStubDescriptor* descriptor,
47 int constant_stack_parameter_count) {
49 // eax -- number of arguments
50 // edi -- constructor function
51 Address deopt_handler = Runtime::FunctionForId(
52 Runtime::kInternalArrayConstructor)->entry;
54 if (constant_stack_parameter_count == 0) {
55 descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
56 JS_FUNCTION_STUB_MODE);
58 descriptor->Initialize(eax, deopt_handler, constant_stack_parameter_count,
59 JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
64 void ArrayNoArgumentConstructorStub::InitializeDescriptor(
65 CodeStubDescriptor* descriptor) {
66 InitializeArrayConstructorDescriptor(isolate(), descriptor, 0);
70 void ArraySingleArgumentConstructorStub::InitializeDescriptor(
71 CodeStubDescriptor* descriptor) {
72 InitializeArrayConstructorDescriptor(isolate(), descriptor, 1);
76 void ArrayNArgumentsConstructorStub::InitializeDescriptor(
77 CodeStubDescriptor* descriptor) {
78 InitializeArrayConstructorDescriptor(isolate(), descriptor, -1);
82 void InternalArrayNoArgumentConstructorStub::InitializeDescriptor(
83 CodeStubDescriptor* descriptor) {
84 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 0);
88 void InternalArraySingleArgumentConstructorStub::InitializeDescriptor(
89 CodeStubDescriptor* descriptor) {
90 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 1);
94 void InternalArrayNArgumentsConstructorStub::InitializeDescriptor(
95 CodeStubDescriptor* descriptor) {
96 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1);
100 #define __ ACCESS_MASM(masm)
103 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
104 ExternalReference miss) {
105 // Update the static counter each time a new code stub is generated.
106 isolate()->counters()->code_stubs()->Increment();
108 CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
109 int param_count = descriptor.GetEnvironmentParameterCount();
111 // Call the runtime system in a fresh internal frame.
112 FrameScope scope(masm, StackFrame::INTERNAL);
113 DCHECK(param_count == 0 ||
114 eax.is(descriptor.GetEnvironmentParameterRegister(param_count - 1)));
116 for (int i = 0; i < param_count; ++i) {
117 __ push(descriptor.GetEnvironmentParameterRegister(i));
119 __ CallExternalReference(miss, param_count);
126 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
127 // We don't allow a GC during a store buffer overflow so there is no need to
128 // store the registers in any particular way, but we do have to store and
131 if (save_doubles()) {
132 __ sub(esp, Immediate(kDoubleSize * XMMRegister::kMaxNumRegisters));
133 for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
134 XMMRegister reg = XMMRegister::from_code(i);
135 __ movsd(Operand(esp, i * kDoubleSize), reg);
138 const int argument_count = 1;
140 AllowExternalCallThatCantCauseGC scope(masm);
141 __ PrepareCallCFunction(argument_count, ecx);
142 __ mov(Operand(esp, 0 * kPointerSize),
143 Immediate(ExternalReference::isolate_address(isolate())));
145 ExternalReference::store_buffer_overflow_function(isolate()),
147 if (save_doubles()) {
148 for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
149 XMMRegister reg = XMMRegister::from_code(i);
150 __ movsd(reg, Operand(esp, i * kDoubleSize));
152 __ add(esp, Immediate(kDoubleSize * XMMRegister::kMaxNumRegisters));
159 class FloatingPointHelper : public AllStatic {
166 // Code pattern for loading a floating point value. Input value must
167 // be either a smi or a heap number object (fp value). Requirements:
168 // operand in register number. Returns operand as floating point number
170 static void LoadFloatOperand(MacroAssembler* masm, Register number);
172 // Test if operands are smi or number objects (fp). Requirements:
173 // operand_1 in eax, operand_2 in edx; falls through on float
174 // operands, jumps to the non_float label otherwise.
175 static void CheckFloatOperands(MacroAssembler* masm,
179 // Test if operands are numbers (smi or HeapNumber objects), and load
180 // them into xmm0 and xmm1 if they are. Jump to label not_numbers if
181 // either operand is not a number. Operands are in edx and eax.
182 // Leaves operands unchanged.
183 static void LoadSSE2Operands(MacroAssembler* masm, Label* not_numbers);
187 void DoubleToIStub::Generate(MacroAssembler* masm) {
188 Register input_reg = this->source();
189 Register final_result_reg = this->destination();
190 DCHECK(is_truncating());
192 Label check_negative, process_64_bits, done, done_no_stash;
194 int double_offset = offset();
196 // Account for return address and saved regs if input is esp.
197 if (input_reg.is(esp)) double_offset += 3 * kPointerSize;
199 MemOperand mantissa_operand(MemOperand(input_reg, double_offset));
200 MemOperand exponent_operand(MemOperand(input_reg,
201 double_offset + kDoubleSize / 2));
205 Register scratch_candidates[3] = { ebx, edx, edi };
206 for (int i = 0; i < 3; i++) {
207 scratch1 = scratch_candidates[i];
208 if (!final_result_reg.is(scratch1) && !input_reg.is(scratch1)) break;
211 // Since we must use ecx for shifts below, use some other register (eax)
212 // to calculate the result if ecx is the requested return register.
213 Register result_reg = final_result_reg.is(ecx) ? eax : final_result_reg;
214 // Save ecx if it isn't the return register and therefore volatile, or if it
215 // is the return register, then save the temp register we use in its stead for
217 Register save_reg = final_result_reg.is(ecx) ? eax : ecx;
221 bool stash_exponent_copy = !input_reg.is(esp);
222 __ mov(scratch1, mantissa_operand);
223 if (CpuFeatures::IsSupported(SSE3)) {
224 CpuFeatureScope scope(masm, SSE3);
225 // Load x87 register with heap number.
226 __ fld_d(mantissa_operand);
228 __ mov(ecx, exponent_operand);
229 if (stash_exponent_copy) __ push(ecx);
231 __ and_(ecx, HeapNumber::kExponentMask);
232 __ shr(ecx, HeapNumber::kExponentShift);
233 __ lea(result_reg, MemOperand(ecx, -HeapNumber::kExponentBias));
234 __ cmp(result_reg, Immediate(HeapNumber::kMantissaBits));
235 __ j(below, &process_64_bits);
237 // Result is entirely in lower 32-bits of mantissa
238 int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize;
239 if (CpuFeatures::IsSupported(SSE3)) {
242 __ sub(ecx, Immediate(delta));
243 __ xor_(result_reg, result_reg);
244 __ cmp(ecx, Immediate(31));
247 __ jmp(&check_negative);
249 __ bind(&process_64_bits);
250 if (CpuFeatures::IsSupported(SSE3)) {
251 CpuFeatureScope scope(masm, SSE3);
252 if (stash_exponent_copy) {
253 // Already a copy of the exponent on the stack, overwrite it.
254 STATIC_ASSERT(kDoubleSize == 2 * kPointerSize);
255 __ sub(esp, Immediate(kDoubleSize / 2));
257 // Reserve space for 64 bit answer.
258 __ sub(esp, Immediate(kDoubleSize)); // Nolint.
260 // Do conversion, which cannot fail because we checked the exponent.
261 __ fisttp_d(Operand(esp, 0));
262 __ mov(result_reg, Operand(esp, 0)); // Load low word of answer as result
263 __ add(esp, Immediate(kDoubleSize));
264 __ jmp(&done_no_stash);
266 // Result must be extracted from shifted 32-bit mantissa
267 __ sub(ecx, Immediate(delta));
269 if (stash_exponent_copy) {
270 __ mov(result_reg, MemOperand(esp, 0));
272 __ mov(result_reg, exponent_operand);
275 Immediate(static_cast<uint32_t>(Double::kSignificandMask >> 32)));
277 Immediate(static_cast<uint32_t>(Double::kHiddenBit >> 32)));
278 __ shrd(result_reg, scratch1);
279 __ shr_cl(result_reg);
280 __ test(ecx, Immediate(32));
281 __ cmov(not_equal, scratch1, result_reg);
284 // If the double was negative, negate the integer result.
285 __ bind(&check_negative);
286 __ mov(result_reg, scratch1);
288 if (stash_exponent_copy) {
289 __ cmp(MemOperand(esp, 0), Immediate(0));
291 __ cmp(exponent_operand, Immediate(0));
293 __ cmov(greater, result_reg, scratch1);
297 if (stash_exponent_copy) {
298 __ add(esp, Immediate(kDoubleSize / 2));
300 __ bind(&done_no_stash);
301 if (!final_result_reg.is(result_reg)) {
302 DCHECK(final_result_reg.is(ecx));
303 __ mov(final_result_reg, result_reg);
311 void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm,
313 Label load_smi, done;
315 __ JumpIfSmi(number, &load_smi, Label::kNear);
316 __ fld_d(FieldOperand(number, HeapNumber::kValueOffset));
317 __ jmp(&done, Label::kNear);
322 __ fild_s(Operand(esp, 0));
329 void FloatingPointHelper::LoadSSE2Operands(MacroAssembler* masm,
330 Label* not_numbers) {
331 Label load_smi_edx, load_eax, load_smi_eax, load_float_eax, done;
332 // Load operand in edx into xmm0, or branch to not_numbers.
333 __ JumpIfSmi(edx, &load_smi_edx, Label::kNear);
334 Factory* factory = masm->isolate()->factory();
335 __ cmp(FieldOperand(edx, HeapObject::kMapOffset), factory->heap_number_map());
336 __ j(not_equal, not_numbers); // Argument in edx is not a number.
337 __ movsd(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
339 // Load operand in eax into xmm1, or branch to not_numbers.
340 __ JumpIfSmi(eax, &load_smi_eax, Label::kNear);
341 __ cmp(FieldOperand(eax, HeapObject::kMapOffset), factory->heap_number_map());
342 __ j(equal, &load_float_eax, Label::kNear);
343 __ jmp(not_numbers); // Argument in eax is not a number.
344 __ bind(&load_smi_edx);
345 __ SmiUntag(edx); // Untag smi before converting to float.
346 __ Cvtsi2sd(xmm0, edx);
347 __ SmiTag(edx); // Retag smi for heap number overwriting test.
349 __ bind(&load_smi_eax);
350 __ SmiUntag(eax); // Untag smi before converting to float.
351 __ Cvtsi2sd(xmm1, eax);
352 __ SmiTag(eax); // Retag smi for heap number overwriting test.
353 __ jmp(&done, Label::kNear);
354 __ bind(&load_float_eax);
355 __ movsd(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
360 void FloatingPointHelper::CheckFloatOperands(MacroAssembler* masm,
363 Label test_other, done;
364 // Test if both operands are floats or smi -> scratch=k_is_float;
365 // Otherwise scratch = k_not_float.
366 __ JumpIfSmi(edx, &test_other, Label::kNear);
367 __ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset));
368 Factory* factory = masm->isolate()->factory();
369 __ cmp(scratch, factory->heap_number_map());
370 __ j(not_equal, non_float); // argument in edx is not a number -> NaN
372 __ bind(&test_other);
373 __ JumpIfSmi(eax, &done, Label::kNear);
374 __ mov(scratch, FieldOperand(eax, HeapObject::kMapOffset));
375 __ cmp(scratch, factory->heap_number_map());
376 __ j(not_equal, non_float); // argument in eax is not a number -> NaN
378 // Fall-through: Both operands are numbers.
383 void MathPowStub::Generate(MacroAssembler* masm) {
384 Factory* factory = isolate()->factory();
385 const Register exponent = MathPowTaggedDescriptor::exponent();
386 DCHECK(exponent.is(eax));
387 const Register base = edx;
388 const Register scratch = ecx;
389 const XMMRegister double_result = xmm3;
390 const XMMRegister double_base = xmm2;
391 const XMMRegister double_exponent = xmm1;
392 const XMMRegister double_scratch = xmm4;
394 Label call_runtime, done, exponent_not_smi, int_exponent;
396 // Save 1 in double_result - we need this several times later on.
397 __ mov(scratch, Immediate(1));
398 __ Cvtsi2sd(double_result, scratch);
400 if (exponent_type() == ON_STACK) {
401 Label base_is_smi, unpack_exponent;
402 // The exponent and base are supplied as arguments on the stack.
403 // This can only happen if the stub is called from non-optimized code.
404 // Load input parameters from stack.
405 __ mov(base, Operand(esp, 2 * kPointerSize));
406 __ mov(exponent, Operand(esp, 1 * kPointerSize));
408 __ JumpIfSmi(base, &base_is_smi, Label::kNear);
409 __ cmp(FieldOperand(base, HeapObject::kMapOffset),
410 factory->heap_number_map());
411 __ j(not_equal, &call_runtime);
413 __ movsd(double_base, FieldOperand(base, HeapNumber::kValueOffset));
414 __ jmp(&unpack_exponent, Label::kNear);
416 __ bind(&base_is_smi);
418 __ Cvtsi2sd(double_base, base);
420 __ bind(&unpack_exponent);
421 __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
422 __ SmiUntag(exponent);
423 __ jmp(&int_exponent);
425 __ bind(&exponent_not_smi);
426 __ cmp(FieldOperand(exponent, HeapObject::kMapOffset),
427 factory->heap_number_map());
428 __ j(not_equal, &call_runtime);
429 __ movsd(double_exponent,
430 FieldOperand(exponent, HeapNumber::kValueOffset));
431 } else if (exponent_type() == TAGGED) {
432 __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
433 __ SmiUntag(exponent);
434 __ jmp(&int_exponent);
436 __ bind(&exponent_not_smi);
437 __ movsd(double_exponent,
438 FieldOperand(exponent, HeapNumber::kValueOffset));
441 if (exponent_type() != INTEGER) {
442 Label fast_power, try_arithmetic_simplification;
443 __ DoubleToI(exponent, double_exponent, double_scratch,
444 TREAT_MINUS_ZERO_AS_ZERO, &try_arithmetic_simplification,
445 &try_arithmetic_simplification,
446 &try_arithmetic_simplification);
447 __ jmp(&int_exponent);
449 __ bind(&try_arithmetic_simplification);
450 // Skip to runtime if possibly NaN (indicated by the indefinite integer).
451 __ cvttsd2si(exponent, Operand(double_exponent));
452 __ cmp(exponent, Immediate(0x1));
453 __ j(overflow, &call_runtime);
455 if (exponent_type() == ON_STACK) {
456 // Detect square root case. Crankshaft detects constant +/-0.5 at
457 // compile time and uses DoMathPowHalf instead. We then skip this check
458 // for non-constant cases of +/-0.5 as these hardly occur.
459 Label continue_sqrt, continue_rsqrt, not_plus_half;
461 // Load double_scratch with 0.5.
462 __ mov(scratch, Immediate(0x3F000000u));
463 __ movd(double_scratch, scratch);
464 __ cvtss2sd(double_scratch, double_scratch);
465 // Already ruled out NaNs for exponent.
466 __ ucomisd(double_scratch, double_exponent);
467 __ j(not_equal, ¬_plus_half, Label::kNear);
469 // Calculates square root of base. Check for the special case of
470 // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
471 // According to IEEE-754, single-precision -Infinity has the highest
472 // 9 bits set and the lowest 23 bits cleared.
473 __ mov(scratch, 0xFF800000u);
474 __ movd(double_scratch, scratch);
475 __ cvtss2sd(double_scratch, double_scratch);
476 __ ucomisd(double_base, double_scratch);
477 // Comparing -Infinity with NaN results in "unordered", which sets the
478 // zero flag as if both were equal. However, it also sets the carry flag.
479 __ j(not_equal, &continue_sqrt, Label::kNear);
480 __ j(carry, &continue_sqrt, Label::kNear);
482 // Set result to Infinity in the special case.
483 __ xorps(double_result, double_result);
484 __ subsd(double_result, double_scratch);
487 __ bind(&continue_sqrt);
488 // sqrtsd returns -0 when input is -0. ECMA spec requires +0.
489 __ xorps(double_scratch, double_scratch);
490 __ addsd(double_scratch, double_base); // Convert -0 to +0.
491 __ sqrtsd(double_result, double_scratch);
495 __ bind(¬_plus_half);
496 // Load double_exponent with -0.5 by substracting 1.
497 __ subsd(double_scratch, double_result);
498 // Already ruled out NaNs for exponent.
499 __ ucomisd(double_scratch, double_exponent);
500 __ j(not_equal, &fast_power, Label::kNear);
502 // Calculates reciprocal of square root of base. Check for the special
503 // case of Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
504 // According to IEEE-754, single-precision -Infinity has the highest
505 // 9 bits set and the lowest 23 bits cleared.
506 __ mov(scratch, 0xFF800000u);
507 __ movd(double_scratch, scratch);
508 __ cvtss2sd(double_scratch, double_scratch);
509 __ ucomisd(double_base, double_scratch);
510 // Comparing -Infinity with NaN results in "unordered", which sets the
511 // zero flag as if both were equal. However, it also sets the carry flag.
512 __ j(not_equal, &continue_rsqrt, Label::kNear);
513 __ j(carry, &continue_rsqrt, Label::kNear);
515 // Set result to 0 in the special case.
516 __ xorps(double_result, double_result);
519 __ bind(&continue_rsqrt);
520 // sqrtsd returns -0 when input is -0. ECMA spec requires +0.
521 __ xorps(double_exponent, double_exponent);
522 __ addsd(double_exponent, double_base); // Convert -0 to +0.
523 __ sqrtsd(double_exponent, double_exponent);
524 __ divsd(double_result, double_exponent);
528 // Using FPU instructions to calculate power.
529 Label fast_power_failed;
530 __ bind(&fast_power);
531 __ fnclex(); // Clear flags to catch exceptions later.
532 // Transfer (B)ase and (E)xponent onto the FPU register stack.
533 __ sub(esp, Immediate(kDoubleSize));
534 __ movsd(Operand(esp, 0), double_exponent);
535 __ fld_d(Operand(esp, 0)); // E
536 __ movsd(Operand(esp, 0), double_base);
537 __ fld_d(Operand(esp, 0)); // B, E
539 // Exponent is in st(1) and base is in st(0)
540 // B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B)
541 // FYL2X calculates st(1) * log2(st(0))
544 __ frndint(); // rnd(X), X
545 __ fsub(1); // rnd(X), X-rnd(X)
546 __ fxch(1); // X - rnd(X), rnd(X)
547 // F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1
548 __ f2xm1(); // 2^(X-rnd(X)) - 1, rnd(X)
549 __ fld1(); // 1, 2^(X-rnd(X)) - 1, rnd(X)
550 __ faddp(1); // 2^(X-rnd(X)), rnd(X)
551 // FSCALE calculates st(0) * 2^st(1)
552 __ fscale(); // 2^X, rnd(X)
554 // Bail out to runtime in case of exceptions in the status word.
556 __ test_b(eax, 0x5F); // We check for all but precision exception.
557 __ j(not_zero, &fast_power_failed, Label::kNear);
558 __ fstp_d(Operand(esp, 0));
559 __ movsd(double_result, Operand(esp, 0));
560 __ add(esp, Immediate(kDoubleSize));
563 __ bind(&fast_power_failed);
565 __ add(esp, Immediate(kDoubleSize));
566 __ jmp(&call_runtime);
569 // Calculate power with integer exponent.
570 __ bind(&int_exponent);
571 const XMMRegister double_scratch2 = double_exponent;
572 __ mov(scratch, exponent); // Back up exponent.
573 __ movsd(double_scratch, double_base); // Back up base.
574 __ movsd(double_scratch2, double_result); // Load double_exponent with 1.
576 // Get absolute value of exponent.
577 Label no_neg, while_true, while_false;
578 __ test(scratch, scratch);
579 __ j(positive, &no_neg, Label::kNear);
583 __ j(zero, &while_false, Label::kNear);
585 // Above condition means CF==0 && ZF==0. This means that the
586 // bit that has been shifted out is 0 and the result is not 0.
587 __ j(above, &while_true, Label::kNear);
588 __ movsd(double_result, double_scratch);
589 __ j(zero, &while_false, Label::kNear);
591 __ bind(&while_true);
593 __ mulsd(double_scratch, double_scratch);
594 __ j(above, &while_true, Label::kNear);
595 __ mulsd(double_result, double_scratch);
596 __ j(not_zero, &while_true);
598 __ bind(&while_false);
599 // scratch has the original value of the exponent - if the exponent is
600 // negative, return 1/result.
601 __ test(exponent, exponent);
602 __ j(positive, &done);
603 __ divsd(double_scratch2, double_result);
604 __ movsd(double_result, double_scratch2);
605 // Test whether result is zero. Bail out to check for subnormal result.
606 // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
607 __ xorps(double_scratch2, double_scratch2);
608 __ ucomisd(double_scratch2, double_result); // Result cannot be NaN.
609 // double_exponent aliased as double_scratch2 has already been overwritten
610 // and may not have contained the exponent value in the first place when the
611 // exponent is a smi. We reset it with exponent value before bailing out.
612 __ j(not_equal, &done);
613 __ Cvtsi2sd(double_exponent, exponent);
615 // Returning or bailing out.
616 Counters* counters = isolate()->counters();
617 if (exponent_type() == ON_STACK) {
618 // The arguments are still on the stack.
619 __ bind(&call_runtime);
620 __ TailCallRuntime(Runtime::kMathPowRT, 2, 1);
622 // The stub is called from non-optimized code, which expects the result
623 // as heap number in exponent.
625 __ AllocateHeapNumber(eax, scratch, base, &call_runtime);
626 __ movsd(FieldOperand(eax, HeapNumber::kValueOffset), double_result);
627 __ IncrementCounter(counters->math_pow(), 1);
628 __ ret(2 * kPointerSize);
630 __ bind(&call_runtime);
632 AllowExternalCallThatCantCauseGC scope(masm);
633 __ PrepareCallCFunction(4, scratch);
634 __ movsd(Operand(esp, 0 * kDoubleSize), double_base);
635 __ movsd(Operand(esp, 1 * kDoubleSize), double_exponent);
637 ExternalReference::power_double_double_function(isolate()), 4);
639 // Return value is in st(0) on ia32.
640 // Store it into the (fixed) result register.
641 __ sub(esp, Immediate(kDoubleSize));
642 __ fstp_d(Operand(esp, 0));
643 __ movsd(double_result, Operand(esp, 0));
644 __ add(esp, Immediate(kDoubleSize));
647 __ IncrementCounter(counters->math_pow(), 1);
653 void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
655 Register receiver = LoadDescriptor::ReceiverRegister();
656 // With careful management, we won't have to save slot and vector on
657 // the stack. Simply handle the possibly missing case first.
658 // TODO(mvstanton): this code can be more efficient.
659 __ cmp(FieldOperand(receiver, JSFunction::kPrototypeOrInitialMapOffset),
660 Immediate(isolate()->factory()->the_hole_value()));
662 __ TryGetFunctionPrototype(receiver, eax, ebx, &miss);
666 PropertyAccessCompiler::TailCallBuiltin(
667 masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
671 void LoadIndexedInterceptorStub::Generate(MacroAssembler* masm) {
672 // Return address is on the stack.
675 Register receiver = LoadDescriptor::ReceiverRegister();
676 Register key = LoadDescriptor::NameRegister();
677 Register scratch = eax;
678 DCHECK(!scratch.is(receiver) && !scratch.is(key));
680 // Check that the key is an array index, that is Uint32.
681 __ test(key, Immediate(kSmiTagMask | kSmiSignMask));
682 __ j(not_zero, &slow);
684 // Everything is fine, call runtime.
686 __ push(receiver); // receiver
688 __ push(scratch); // return address
690 // Perform tail call to the entry.
691 ExternalReference ref = ExternalReference(
692 IC_Utility(IC::kLoadElementWithInterceptor), masm->isolate());
693 __ TailCallExternalReference(ref, 2, 1);
696 PropertyAccessCompiler::TailCallBuiltin(
697 masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
701 void LoadIndexedStringStub::Generate(MacroAssembler* masm) {
702 // Return address is on the stack.
705 Register receiver = LoadDescriptor::ReceiverRegister();
706 Register index = LoadDescriptor::NameRegister();
707 Register scratch = edi;
708 DCHECK(!scratch.is(receiver) && !scratch.is(index));
709 Register result = eax;
710 DCHECK(!result.is(scratch));
711 DCHECK(!scratch.is(LoadWithVectorDescriptor::VectorRegister()) &&
712 result.is(LoadDescriptor::SlotRegister()));
714 // StringCharAtGenerator doesn't use the result register until it's passed
715 // the different miss possibilities. If it did, we would have a conflict
716 // when FLAG_vector_ics is true.
717 StringCharAtGenerator char_at_generator(receiver, index, scratch, result,
718 &miss, // When not a string.
719 &miss, // When not a number.
720 &miss, // When index out of range.
721 STRING_INDEX_IS_ARRAY_INDEX,
723 char_at_generator.GenerateFast(masm);
726 StubRuntimeCallHelper call_helper;
727 char_at_generator.GenerateSlow(masm, PART_OF_IC_HANDLER, call_helper);
730 PropertyAccessCompiler::TailCallBuiltin(
731 masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
735 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
736 CHECK(!has_new_target());
737 // The key is in edx and the parameter count is in eax.
738 DCHECK(edx.is(ArgumentsAccessReadDescriptor::index()));
739 DCHECK(eax.is(ArgumentsAccessReadDescriptor::parameter_count()));
741 // The displacement is used for skipping the frame pointer on the
742 // stack. It is the offset of the last parameter (if any) relative
743 // to the frame pointer.
744 static const int kDisplacement = 1 * kPointerSize;
746 // Check that the key is a smi.
748 __ JumpIfNotSmi(edx, &slow, Label::kNear);
750 // Check if the calling frame is an arguments adaptor frame.
752 __ mov(ebx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
753 __ mov(ecx, Operand(ebx, StandardFrameConstants::kContextOffset));
754 __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
755 __ j(equal, &adaptor, Label::kNear);
757 // Check index against formal parameters count limit passed in
758 // through register eax. Use unsigned comparison to get negative
761 __ j(above_equal, &slow, Label::kNear);
763 // Read the argument from the stack and return it.
764 STATIC_ASSERT(kSmiTagSize == 1);
765 STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these.
766 __ lea(ebx, Operand(ebp, eax, times_2, 0));
768 __ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
771 // Arguments adaptor case: Check index against actual arguments
772 // limit found in the arguments adaptor frame. Use unsigned
773 // comparison to get negative check for free.
775 __ mov(ecx, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset));
777 __ j(above_equal, &slow, Label::kNear);
779 // Read the argument from the stack and return it.
780 STATIC_ASSERT(kSmiTagSize == 1);
781 STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these.
782 __ lea(ebx, Operand(ebx, ecx, times_2, 0));
784 __ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
787 // Slow-case: Handle non-smi or out-of-bounds access to arguments
788 // by calling the runtime system.
790 __ pop(ebx); // Return address.
793 __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
797 void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
798 // esp[0] : return address
799 // esp[4] : number of parameters
800 // esp[8] : receiver displacement
801 // esp[12] : function
803 CHECK(!has_new_target());
805 // Check if the calling frame is an arguments adaptor frame.
807 __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
808 __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
809 __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
810 __ j(not_equal, &runtime, Label::kNear);
812 // Patch the arguments.length and the parameters pointer.
813 __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
814 __ mov(Operand(esp, 1 * kPointerSize), ecx);
815 __ lea(edx, Operand(edx, ecx, times_2,
816 StandardFrameConstants::kCallerSPOffset));
817 __ mov(Operand(esp, 2 * kPointerSize), edx);
820 __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
824 void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
825 // esp[0] : return address
826 // esp[4] : number of parameters (tagged)
827 // esp[8] : receiver displacement
828 // esp[12] : function
830 // ebx = parameter count (tagged)
831 __ mov(ebx, Operand(esp, 1 * kPointerSize));
833 CHECK(!has_new_target());
835 // Check if the calling frame is an arguments adaptor frame.
836 // TODO(rossberg): Factor out some of the bits that are shared with the other
837 // Generate* functions.
839 Label adaptor_frame, try_allocate;
840 __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
841 __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
842 __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
843 __ j(equal, &adaptor_frame, Label::kNear);
845 // No adaptor, parameter count = argument count.
847 __ jmp(&try_allocate, Label::kNear);
849 // We have an adaptor frame. Patch the parameters pointer.
850 __ bind(&adaptor_frame);
851 __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
852 __ lea(edx, Operand(edx, ecx, times_2,
853 StandardFrameConstants::kCallerSPOffset));
854 __ mov(Operand(esp, 2 * kPointerSize), edx);
856 // ebx = parameter count (tagged)
857 // ecx = argument count (smi-tagged)
858 // esp[4] = parameter count (tagged)
859 // esp[8] = address of receiver argument
860 // Compute the mapped parameter count = min(ebx, ecx) in ebx.
862 __ j(less_equal, &try_allocate, Label::kNear);
865 __ bind(&try_allocate);
867 // Save mapped parameter count.
870 // Compute the sizes of backing store, parameter map, and arguments object.
871 // 1. Parameter map, has 2 extra words containing context and backing store.
872 const int kParameterMapHeaderSize =
873 FixedArray::kHeaderSize + 2 * kPointerSize;
874 Label no_parameter_map;
876 __ j(zero, &no_parameter_map, Label::kNear);
877 __ lea(ebx, Operand(ebx, times_2, kParameterMapHeaderSize));
878 __ bind(&no_parameter_map);
881 __ lea(ebx, Operand(ebx, ecx, times_2, FixedArray::kHeaderSize));
883 // 3. Arguments object.
884 __ add(ebx, Immediate(Heap::kSloppyArgumentsObjectSize));
886 // Do the allocation of all three objects in one go.
887 __ Allocate(ebx, eax, edx, edi, &runtime, TAG_OBJECT);
889 // eax = address of new object(s) (tagged)
890 // ecx = argument count (smi-tagged)
891 // esp[0] = mapped parameter count (tagged)
892 // esp[8] = parameter count (tagged)
893 // esp[12] = address of receiver argument
894 // Get the arguments map from the current native context into edi.
895 Label has_mapped_parameters, instantiate;
896 __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
897 __ mov(edi, FieldOperand(edi, GlobalObject::kNativeContextOffset));
898 __ mov(ebx, Operand(esp, 0 * kPointerSize));
900 __ j(not_zero, &has_mapped_parameters, Label::kNear);
903 Operand(edi, Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX)));
904 __ jmp(&instantiate, Label::kNear);
906 __ bind(&has_mapped_parameters);
909 Operand(edi, Context::SlotOffset(Context::ALIASED_ARGUMENTS_MAP_INDEX)));
910 __ bind(&instantiate);
912 // eax = address of new object (tagged)
913 // ebx = mapped parameter count (tagged)
914 // ecx = argument count (smi-tagged)
915 // edi = address of arguments map (tagged)
916 // esp[0] = mapped parameter count (tagged)
917 // esp[8] = parameter count (tagged)
918 // esp[12] = address of receiver argument
919 // Copy the JS object part.
920 __ mov(FieldOperand(eax, JSObject::kMapOffset), edi);
921 __ mov(FieldOperand(eax, JSObject::kPropertiesOffset),
922 masm->isolate()->factory()->empty_fixed_array());
923 __ mov(FieldOperand(eax, JSObject::kElementsOffset),
924 masm->isolate()->factory()->empty_fixed_array());
926 // Set up the callee in-object property.
927 STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
928 __ mov(edx, Operand(esp, 4 * kPointerSize));
929 __ AssertNotSmi(edx);
930 __ mov(FieldOperand(eax, JSObject::kHeaderSize +
931 Heap::kArgumentsCalleeIndex * kPointerSize),
934 // Use the length (smi tagged) and set that as an in-object property too.
936 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
937 __ mov(FieldOperand(eax, JSObject::kHeaderSize +
938 Heap::kArgumentsLengthIndex * kPointerSize),
941 // Set up the elements pointer in the allocated arguments object.
942 // If we allocated a parameter map, edi will point there, otherwise to the
944 __ lea(edi, Operand(eax, Heap::kSloppyArgumentsObjectSize));
945 __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi);
947 // eax = address of new object (tagged)
948 // ebx = mapped parameter count (tagged)
949 // ecx = argument count (tagged)
950 // edi = address of parameter map or backing store (tagged)
951 // esp[0] = mapped parameter count (tagged)
952 // esp[8] = parameter count (tagged)
953 // esp[12] = address of receiver argument
957 // Initialize parameter map. If there are no mapped arguments, we're done.
958 Label skip_parameter_map;
960 __ j(zero, &skip_parameter_map);
962 __ mov(FieldOperand(edi, FixedArray::kMapOffset),
963 Immediate(isolate()->factory()->sloppy_arguments_elements_map()));
964 __ lea(eax, Operand(ebx, reinterpret_cast<intptr_t>(Smi::FromInt(2))));
965 __ mov(FieldOperand(edi, FixedArray::kLengthOffset), eax);
966 __ mov(FieldOperand(edi, FixedArray::kHeaderSize + 0 * kPointerSize), esi);
967 __ lea(eax, Operand(edi, ebx, times_2, kParameterMapHeaderSize));
968 __ mov(FieldOperand(edi, FixedArray::kHeaderSize + 1 * kPointerSize), eax);
970 // Copy the parameter slots and the holes in the arguments.
971 // We need to fill in mapped_parameter_count slots. They index the context,
972 // where parameters are stored in reverse order, at
973 // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
974 // The mapped parameter thus need to get indices
975 // MIN_CONTEXT_SLOTS+parameter_count-1 ..
976 // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
977 // We loop from right to left.
978 Label parameters_loop, parameters_test;
980 __ mov(eax, Operand(esp, 2 * kPointerSize));
981 __ mov(ebx, Immediate(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
982 __ add(ebx, Operand(esp, 4 * kPointerSize));
984 __ mov(ecx, isolate()->factory()->the_hole_value());
986 __ lea(edi, Operand(edi, eax, times_2, kParameterMapHeaderSize));
987 // eax = loop variable (tagged)
988 // ebx = mapping index (tagged)
989 // ecx = the hole value
990 // edx = address of parameter map (tagged)
991 // edi = address of backing store (tagged)
992 // esp[0] = argument count (tagged)
993 // esp[4] = address of new object (tagged)
994 // esp[8] = mapped parameter count (tagged)
995 // esp[16] = parameter count (tagged)
996 // esp[20] = address of receiver argument
997 __ jmp(¶meters_test, Label::kNear);
999 __ bind(¶meters_loop);
1000 __ sub(eax, Immediate(Smi::FromInt(1)));
1001 __ mov(FieldOperand(edx, eax, times_2, kParameterMapHeaderSize), ebx);
1002 __ mov(FieldOperand(edi, eax, times_2, FixedArray::kHeaderSize), ecx);
1003 __ add(ebx, Immediate(Smi::FromInt(1)));
1004 __ bind(¶meters_test);
1006 __ j(not_zero, ¶meters_loop, Label::kNear);
1009 __ bind(&skip_parameter_map);
1011 // ecx = argument count (tagged)
1012 // edi = address of backing store (tagged)
1013 // esp[0] = address of new object (tagged)
1014 // esp[4] = mapped parameter count (tagged)
1015 // esp[12] = parameter count (tagged)
1016 // esp[16] = address of receiver argument
1017 // Copy arguments header and remaining slots (if there are any).
1018 __ mov(FieldOperand(edi, FixedArray::kMapOffset),
1019 Immediate(isolate()->factory()->fixed_array_map()));
1020 __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx);
1022 Label arguments_loop, arguments_test;
1023 __ mov(ebx, Operand(esp, 1 * kPointerSize));
1024 __ mov(edx, Operand(esp, 4 * kPointerSize));
1025 __ sub(edx, ebx); // Is there a smarter way to do negative scaling?
1027 __ jmp(&arguments_test, Label::kNear);
1029 __ bind(&arguments_loop);
1030 __ sub(edx, Immediate(kPointerSize));
1031 __ mov(eax, Operand(edx, 0));
1032 __ mov(FieldOperand(edi, ebx, times_2, FixedArray::kHeaderSize), eax);
1033 __ add(ebx, Immediate(Smi::FromInt(1)));
1035 __ bind(&arguments_test);
1037 __ j(less, &arguments_loop, Label::kNear);
1040 __ pop(eax); // Address of arguments object.
1041 __ pop(ebx); // Parameter count.
1043 // Return and remove the on-stack parameters.
1044 __ ret(3 * kPointerSize);
1046 // Do the runtime call to allocate the arguments object.
1048 __ pop(eax); // Remove saved parameter count.
1049 __ mov(Operand(esp, 1 * kPointerSize), ecx); // Patch argument count.
1050 __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
1054 void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
1055 // esp[0] : return address
1056 // esp[4] : number of parameters
1057 // esp[8] : receiver displacement
1058 // esp[12] : function
1060 // Check if the calling frame is an arguments adaptor frame.
1061 Label adaptor_frame, try_allocate, runtime;
1062 __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
1063 __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
1064 __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1065 __ j(equal, &adaptor_frame, Label::kNear);
1067 // Get the length from the frame.
1068 __ mov(ecx, Operand(esp, 1 * kPointerSize));
1069 __ jmp(&try_allocate, Label::kNear);
1071 // Patch the arguments.length and the parameters pointer.
1072 __ bind(&adaptor_frame);
1073 __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
1075 if (has_new_target()) {
1076 // If the constructor was [[Call]]ed, the call will not push a new.target
1077 // onto the stack. In that case the arguments array we construct is bogus,
1078 // bu we do not care as the constructor throws immediately.
1079 __ cmp(ecx, Immediate(Smi::FromInt(0)));
1080 Label skip_decrement;
1081 __ j(equal, &skip_decrement);
1082 // Subtract 1 from smi-tagged arguments count.
1083 __ sub(ecx, Immediate(2));
1084 __ bind(&skip_decrement);
1087 __ lea(edx, Operand(edx, ecx, times_2,
1088 StandardFrameConstants::kCallerSPOffset));
1089 __ mov(Operand(esp, 1 * kPointerSize), ecx);
1090 __ mov(Operand(esp, 2 * kPointerSize), edx);
1092 // Try the new space allocation. Start out with computing the size of
1093 // the arguments object and the elements array.
1094 Label add_arguments_object;
1095 __ bind(&try_allocate);
1097 __ j(zero, &add_arguments_object, Label::kNear);
1098 __ lea(ecx, Operand(ecx, times_2, FixedArray::kHeaderSize));
1099 __ bind(&add_arguments_object);
1100 __ add(ecx, Immediate(Heap::kStrictArgumentsObjectSize));
1102 // Do the allocation of both objects in one go.
1103 __ Allocate(ecx, eax, edx, ebx, &runtime, TAG_OBJECT);
1105 // Get the arguments map from the current native context.
1106 __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
1107 __ mov(edi, FieldOperand(edi, GlobalObject::kNativeContextOffset));
1108 const int offset = Context::SlotOffset(Context::STRICT_ARGUMENTS_MAP_INDEX);
1109 __ mov(edi, Operand(edi, offset));
1111 __ mov(FieldOperand(eax, JSObject::kMapOffset), edi);
1112 __ mov(FieldOperand(eax, JSObject::kPropertiesOffset),
1113 masm->isolate()->factory()->empty_fixed_array());
1114 __ mov(FieldOperand(eax, JSObject::kElementsOffset),
1115 masm->isolate()->factory()->empty_fixed_array());
1117 // Get the length (smi tagged) and set that as an in-object property too.
1118 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
1119 __ mov(ecx, Operand(esp, 1 * kPointerSize));
1121 __ mov(FieldOperand(eax, JSObject::kHeaderSize +
1122 Heap::kArgumentsLengthIndex * kPointerSize),
1125 // If there are no actual arguments, we're done.
1128 __ j(zero, &done, Label::kNear);
1130 // Get the parameters pointer from the stack.
1131 __ mov(edx, Operand(esp, 2 * kPointerSize));
1133 // Set up the elements pointer in the allocated arguments object and
1134 // initialize the header in the elements fixed array.
1135 __ lea(edi, Operand(eax, Heap::kStrictArgumentsObjectSize));
1136 __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi);
1137 __ mov(FieldOperand(edi, FixedArray::kMapOffset),
1138 Immediate(isolate()->factory()->fixed_array_map()));
1140 __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx);
1141 // Untag the length for the loop below.
1144 // Copy the fixed array slots.
1147 __ mov(ebx, Operand(edx, -1 * kPointerSize)); // Skip receiver.
1148 __ mov(FieldOperand(edi, FixedArray::kHeaderSize), ebx);
1149 __ add(edi, Immediate(kPointerSize));
1150 __ sub(edx, Immediate(kPointerSize));
1152 __ j(not_zero, &loop);
1154 // Return and remove the on-stack parameters.
1156 __ ret(3 * kPointerSize);
1158 // Do the runtime call to allocate the arguments object.
1160 __ TailCallRuntime(Runtime::kNewStrictArguments, 3, 1);
1164 void RestParamAccessStub::GenerateNew(MacroAssembler* masm) {
1165 // esp[0] : return address
1166 // esp[4] : language mode
1167 // esp[8] : index of rest parameter
1168 // esp[12] : number of parameters
1169 // esp[16] : receiver displacement
1171 // Check if the calling frame is an arguments adaptor frame.
1173 __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
1174 __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
1175 __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1176 __ j(not_equal, &runtime);
1178 // Patch the arguments.length and the parameters pointer.
1179 __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
1180 __ mov(Operand(esp, 3 * kPointerSize), ecx);
1181 __ lea(edx, Operand(edx, ecx, times_2,
1182 StandardFrameConstants::kCallerSPOffset));
1183 __ mov(Operand(esp, 4 * kPointerSize), edx);
1186 __ TailCallRuntime(Runtime::kNewRestParam, 4, 1);
1190 void RegExpExecStub::Generate(MacroAssembler* masm) {
1191 // Just jump directly to runtime if native RegExp is not selected at compile
1192 // time or if regexp entry in generated code is turned off runtime switch or
1194 #ifdef V8_INTERPRETED_REGEXP
1195 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
1196 #else // V8_INTERPRETED_REGEXP
1198 // Stack frame on entry.
1199 // esp[0]: return address
1200 // esp[4]: last_match_info (expected JSArray)
1201 // esp[8]: previous index
1202 // esp[12]: subject string
1203 // esp[16]: JSRegExp object
1205 static const int kLastMatchInfoOffset = 1 * kPointerSize;
1206 static const int kPreviousIndexOffset = 2 * kPointerSize;
1207 static const int kSubjectOffset = 3 * kPointerSize;
1208 static const int kJSRegExpOffset = 4 * kPointerSize;
1211 Factory* factory = isolate()->factory();
1213 // Ensure that a RegExp stack is allocated.
1214 ExternalReference address_of_regexp_stack_memory_address =
1215 ExternalReference::address_of_regexp_stack_memory_address(isolate());
1216 ExternalReference address_of_regexp_stack_memory_size =
1217 ExternalReference::address_of_regexp_stack_memory_size(isolate());
1218 __ mov(ebx, Operand::StaticVariable(address_of_regexp_stack_memory_size));
1220 __ j(zero, &runtime);
1222 // Check that the first argument is a JSRegExp object.
1223 __ mov(eax, Operand(esp, kJSRegExpOffset));
1224 STATIC_ASSERT(kSmiTag == 0);
1225 __ JumpIfSmi(eax, &runtime);
1226 __ CmpObjectType(eax, JS_REGEXP_TYPE, ecx);
1227 __ j(not_equal, &runtime);
1229 // Check that the RegExp has been compiled (data contains a fixed array).
1230 __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
1231 if (FLAG_debug_code) {
1232 __ test(ecx, Immediate(kSmiTagMask));
1233 __ Check(not_zero, kUnexpectedTypeForRegExpDataFixedArrayExpected);
1234 __ CmpObjectType(ecx, FIXED_ARRAY_TYPE, ebx);
1235 __ Check(equal, kUnexpectedTypeForRegExpDataFixedArrayExpected);
1238 // ecx: RegExp data (FixedArray)
1239 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
1240 __ mov(ebx, FieldOperand(ecx, JSRegExp::kDataTagOffset));
1241 __ cmp(ebx, Immediate(Smi::FromInt(JSRegExp::IRREGEXP)));
1242 __ j(not_equal, &runtime);
1244 // ecx: RegExp data (FixedArray)
1245 // Check that the number of captures fit in the static offsets vector buffer.
1246 __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
1247 // Check (number_of_captures + 1) * 2 <= offsets vector size
1248 // Or number_of_captures * 2 <= offsets vector size - 2
1249 // Multiplying by 2 comes for free since edx is smi-tagged.
1250 STATIC_ASSERT(kSmiTag == 0);
1251 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
1252 STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
1253 __ cmp(edx, Isolate::kJSRegexpStaticOffsetsVectorSize - 2);
1254 __ j(above, &runtime);
1256 // Reset offset for possibly sliced string.
1257 __ Move(edi, Immediate(0));
1258 __ mov(eax, Operand(esp, kSubjectOffset));
1259 __ JumpIfSmi(eax, &runtime);
1260 __ mov(edx, eax); // Make a copy of the original subject string.
1261 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
1262 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
1264 // eax: subject string
1265 // edx: subject string
1266 // ebx: subject string instance type
1267 // ecx: RegExp data (FixedArray)
1268 // Handle subject string according to its encoding and representation:
1269 // (1) Sequential two byte? If yes, go to (9).
1270 // (2) Sequential one byte? If yes, go to (6).
1271 // (3) Anything but sequential or cons? If yes, go to (7).
1272 // (4) Cons string. If the string is flat, replace subject with first string.
1273 // Otherwise bailout.
1274 // (5a) Is subject sequential two byte? If yes, go to (9).
1275 // (5b) Is subject external? If yes, go to (8).
1276 // (6) One byte sequential. Load regexp code for one byte.
1280 // Deferred code at the end of the stub:
1281 // (7) Not a long external string? If yes, go to (10).
1282 // (8) External string. Make it, offset-wise, look like a sequential string.
1283 // (8a) Is the external string one byte? If yes, go to (6).
1284 // (9) Two byte sequential. Load regexp code for one byte. Go to (E).
1285 // (10) Short external string or not a string? If yes, bail out to runtime.
1286 // (11) Sliced string. Replace subject with parent. Go to (5a).
1288 Label seq_one_byte_string /* 6 */, seq_two_byte_string /* 9 */,
1289 external_string /* 8 */, check_underlying /* 5a */,
1290 not_seq_nor_cons /* 7 */, check_code /* E */,
1291 not_long_external /* 10 */;
1293 // (1) Sequential two byte? If yes, go to (9).
1294 __ and_(ebx, kIsNotStringMask |
1295 kStringRepresentationMask |
1296 kStringEncodingMask |
1297 kShortExternalStringMask);
1298 STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
1299 __ j(zero, &seq_two_byte_string); // Go to (9).
1301 // (2) Sequential one byte? If yes, go to (6).
1302 // Any other sequential string must be one byte.
1303 __ and_(ebx, Immediate(kIsNotStringMask |
1304 kStringRepresentationMask |
1305 kShortExternalStringMask));
1306 __ j(zero, &seq_one_byte_string, Label::kNear); // Go to (6).
1308 // (3) Anything but sequential or cons? If yes, go to (7).
1309 // We check whether the subject string is a cons, since sequential strings
1310 // have already been covered.
1311 STATIC_ASSERT(kConsStringTag < kExternalStringTag);
1312 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
1313 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
1314 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
1315 __ cmp(ebx, Immediate(kExternalStringTag));
1316 __ j(greater_equal, ¬_seq_nor_cons); // Go to (7).
1318 // (4) Cons string. Check that it's flat.
1319 // Replace subject with first string and reload instance type.
1320 __ cmp(FieldOperand(eax, ConsString::kSecondOffset), factory->empty_string());
1321 __ j(not_equal, &runtime);
1322 __ mov(eax, FieldOperand(eax, ConsString::kFirstOffset));
1323 __ bind(&check_underlying);
1324 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
1325 __ mov(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
1327 // (5a) Is subject sequential two byte? If yes, go to (9).
1328 __ test_b(ebx, kStringRepresentationMask | kStringEncodingMask);
1329 STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0);
1330 __ j(zero, &seq_two_byte_string); // Go to (9).
1331 // (5b) Is subject external? If yes, go to (8).
1332 __ test_b(ebx, kStringRepresentationMask);
1333 // The underlying external string is never a short external string.
1334 STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength);
1335 STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength);
1336 __ j(not_zero, &external_string); // Go to (8).
1338 // eax: sequential subject string (or look-alike, external string)
1339 // edx: original subject string
1340 // ecx: RegExp data (FixedArray)
1341 // (6) One byte sequential. Load regexp code for one byte.
1342 __ bind(&seq_one_byte_string);
1343 // Load previous index and check range before edx is overwritten. We have
1344 // to use edx instead of eax here because it might have been only made to
1345 // look like a sequential string when it actually is an external string.
1346 __ mov(ebx, Operand(esp, kPreviousIndexOffset));
1347 __ JumpIfNotSmi(ebx, &runtime);
1348 __ cmp(ebx, FieldOperand(edx, String::kLengthOffset));
1349 __ j(above_equal, &runtime);
1350 __ mov(edx, FieldOperand(ecx, JSRegExp::kDataOneByteCodeOffset));
1351 __ Move(ecx, Immediate(1)); // Type is one byte.
1353 // (E) Carry on. String handling is done.
1354 __ bind(&check_code);
1355 // edx: irregexp code
1356 // Check that the irregexp code has been generated for the actual string
1357 // encoding. If it has, the field contains a code object otherwise it contains
1358 // a smi (code flushing support).
1359 __ JumpIfSmi(edx, &runtime);
1361 // eax: subject string
1362 // ebx: previous index (smi)
1364 // ecx: encoding of subject string (1 if one_byte, 0 if two_byte);
1365 // All checks done. Now push arguments for native regexp code.
1366 Counters* counters = isolate()->counters();
1367 __ IncrementCounter(counters->regexp_entry_native(), 1);
1369 // Isolates: note we add an additional parameter here (isolate pointer).
1370 static const int kRegExpExecuteArguments = 9;
1371 __ EnterApiExitFrame(kRegExpExecuteArguments);
1373 // Argument 9: Pass current isolate address.
1374 __ mov(Operand(esp, 8 * kPointerSize),
1375 Immediate(ExternalReference::isolate_address(isolate())));
1377 // Argument 8: Indicate that this is a direct call from JavaScript.
1378 __ mov(Operand(esp, 7 * kPointerSize), Immediate(1));
1380 // Argument 7: Start (high end) of backtracking stack memory area.
1381 __ mov(esi, Operand::StaticVariable(address_of_regexp_stack_memory_address));
1382 __ add(esi, Operand::StaticVariable(address_of_regexp_stack_memory_size));
1383 __ mov(Operand(esp, 6 * kPointerSize), esi);
1385 // Argument 6: Set the number of capture registers to zero to force global
1386 // regexps to behave as non-global. This does not affect non-global regexps.
1387 __ mov(Operand(esp, 5 * kPointerSize), Immediate(0));
1389 // Argument 5: static offsets vector buffer.
1390 __ mov(Operand(esp, 4 * kPointerSize),
1391 Immediate(ExternalReference::address_of_static_offsets_vector(
1394 // Argument 2: Previous index.
1396 __ mov(Operand(esp, 1 * kPointerSize), ebx);
1398 // Argument 1: Original subject string.
1399 // The original subject is in the previous stack frame. Therefore we have to
1400 // use ebp, which points exactly to one pointer size below the previous esp.
1401 // (Because creating a new stack frame pushes the previous ebp onto the stack
1402 // and thereby moves up esp by one kPointerSize.)
1403 __ mov(esi, Operand(ebp, kSubjectOffset + kPointerSize));
1404 __ mov(Operand(esp, 0 * kPointerSize), esi);
1406 // esi: original subject string
1407 // eax: underlying subject string
1408 // ebx: previous index
1409 // ecx: encoding of subject string (1 if one_byte 0 if two_byte);
1411 // Argument 4: End of string data
1412 // Argument 3: Start of string data
1413 // Prepare start and end index of the input.
1414 // Load the length from the original sliced string if that is the case.
1415 __ mov(esi, FieldOperand(esi, String::kLengthOffset));
1416 __ add(esi, edi); // Calculate input end wrt offset.
1418 __ add(ebx, edi); // Calculate input start wrt offset.
1420 // ebx: start index of the input string
1421 // esi: end index of the input string
1422 Label setup_two_byte, setup_rest;
1424 __ j(zero, &setup_two_byte, Label::kNear);
1426 __ lea(ecx, FieldOperand(eax, esi, times_1, SeqOneByteString::kHeaderSize));
1427 __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4.
1428 __ lea(ecx, FieldOperand(eax, ebx, times_1, SeqOneByteString::kHeaderSize));
1429 __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3.
1430 __ jmp(&setup_rest, Label::kNear);
1432 __ bind(&setup_two_byte);
1433 STATIC_ASSERT(kSmiTag == 0);
1434 STATIC_ASSERT(kSmiTagSize == 1); // esi is smi (powered by 2).
1435 __ lea(ecx, FieldOperand(eax, esi, times_1, SeqTwoByteString::kHeaderSize));
1436 __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4.
1437 __ lea(ecx, FieldOperand(eax, ebx, times_2, SeqTwoByteString::kHeaderSize));
1438 __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3.
1440 __ bind(&setup_rest);
1442 // Locate the code entry and call it.
1443 __ add(edx, Immediate(Code::kHeaderSize - kHeapObjectTag));
1446 // Drop arguments and come back to JS mode.
1447 __ LeaveApiExitFrame(true);
1449 // Check the result.
1452 // We expect exactly one result since we force the called regexp to behave
1454 __ j(equal, &success);
1456 __ cmp(eax, NativeRegExpMacroAssembler::FAILURE);
1457 __ j(equal, &failure);
1458 __ cmp(eax, NativeRegExpMacroAssembler::EXCEPTION);
1459 // If not exception it can only be retry. Handle that in the runtime system.
1460 __ j(not_equal, &runtime);
1461 // Result must now be exception. If there is no pending exception already a
1462 // stack overflow (on the backtrack stack) was detected in RegExp code but
1463 // haven't created the exception yet. Handle that in the runtime system.
1464 // TODO(592): Rerunning the RegExp to get the stack overflow exception.
1465 ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
1467 __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
1468 __ mov(eax, Operand::StaticVariable(pending_exception));
1470 __ j(equal, &runtime);
1472 // For exception, throw the exception again.
1473 __ TailCallRuntime(Runtime::kRegExpExecReThrow, 4, 1);
1476 // For failure to match, return null.
1477 __ mov(eax, factory->null_value());
1478 __ ret(4 * kPointerSize);
1480 // Load RegExp data.
1482 __ mov(eax, Operand(esp, kJSRegExpOffset));
1483 __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
1484 __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
1485 // Calculate number of capture registers (number_of_captures + 1) * 2.
1486 STATIC_ASSERT(kSmiTag == 0);
1487 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
1488 __ add(edx, Immediate(2)); // edx was a smi.
1490 // edx: Number of capture registers
1491 // Load last_match_info which is still known to be a fast case JSArray.
1492 // Check that the fourth object is a JSArray object.
1493 __ mov(eax, Operand(esp, kLastMatchInfoOffset));
1494 __ JumpIfSmi(eax, &runtime);
1495 __ CmpObjectType(eax, JS_ARRAY_TYPE, ebx);
1496 __ j(not_equal, &runtime);
1497 // Check that the JSArray is in fast case.
1498 __ mov(ebx, FieldOperand(eax, JSArray::kElementsOffset));
1499 __ mov(eax, FieldOperand(ebx, HeapObject::kMapOffset));
1500 __ cmp(eax, factory->fixed_array_map());
1501 __ j(not_equal, &runtime);
1502 // Check that the last match info has space for the capture registers and the
1503 // additional information.
1504 __ mov(eax, FieldOperand(ebx, FixedArray::kLengthOffset));
1506 __ sub(eax, Immediate(RegExpImpl::kLastMatchOverhead));
1508 __ j(greater, &runtime);
1510 // ebx: last_match_info backing store (FixedArray)
1511 // edx: number of capture registers
1512 // Store the capture count.
1513 __ SmiTag(edx); // Number of capture registers to smi.
1514 __ mov(FieldOperand(ebx, RegExpImpl::kLastCaptureCountOffset), edx);
1515 __ SmiUntag(edx); // Number of capture registers back from smi.
1516 // Store last subject and last input.
1517 __ mov(eax, Operand(esp, kSubjectOffset));
1519 __ mov(FieldOperand(ebx, RegExpImpl::kLastSubjectOffset), eax);
1520 __ RecordWriteField(ebx,
1521 RegExpImpl::kLastSubjectOffset,
1526 __ mov(FieldOperand(ebx, RegExpImpl::kLastInputOffset), eax);
1527 __ RecordWriteField(ebx,
1528 RegExpImpl::kLastInputOffset,
1533 // Get the static offsets vector filled by the native regexp code.
1534 ExternalReference address_of_static_offsets_vector =
1535 ExternalReference::address_of_static_offsets_vector(isolate());
1536 __ mov(ecx, Immediate(address_of_static_offsets_vector));
1538 // ebx: last_match_info backing store (FixedArray)
1539 // ecx: offsets vector
1540 // edx: number of capture registers
1541 Label next_capture, done;
1542 // Capture register counter starts from number of capture registers and
1543 // counts down until wraping after zero.
1544 __ bind(&next_capture);
1545 __ sub(edx, Immediate(1));
1546 __ j(negative, &done, Label::kNear);
1547 // Read the value from the static offsets vector buffer.
1548 __ mov(edi, Operand(ecx, edx, times_int_size, 0));
1550 // Store the smi value in the last match info.
1551 __ mov(FieldOperand(ebx,
1554 RegExpImpl::kFirstCaptureOffset),
1556 __ jmp(&next_capture);
1559 // Return last match info.
1560 __ mov(eax, Operand(esp, kLastMatchInfoOffset));
1561 __ ret(4 * kPointerSize);
1563 // Do the runtime call to execute the regexp.
1565 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
1567 // Deferred code for string handling.
1568 // (7) Not a long external string? If yes, go to (10).
1569 __ bind(¬_seq_nor_cons);
1570 // Compare flags are still set from (3).
1571 __ j(greater, ¬_long_external, Label::kNear); // Go to (10).
1573 // (8) External string. Short external strings have been ruled out.
1574 __ bind(&external_string);
1575 // Reload instance type.
1576 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
1577 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
1578 if (FLAG_debug_code) {
1579 // Assert that we do not have a cons or slice (indirect strings) here.
1580 // Sequential strings have already been ruled out.
1581 __ test_b(ebx, kIsIndirectStringMask);
1582 __ Assert(zero, kExternalStringExpectedButNotFound);
1584 __ mov(eax, FieldOperand(eax, ExternalString::kResourceDataOffset));
1585 // Move the pointer so that offset-wise, it looks like a sequential string.
1586 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
1587 __ sub(eax, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
1588 STATIC_ASSERT(kTwoByteStringTag == 0);
1589 // (8a) Is the external string one byte? If yes, go to (6).
1590 __ test_b(ebx, kStringEncodingMask);
1591 __ j(not_zero, &seq_one_byte_string); // Goto (6).
1593 // eax: sequential subject string (or look-alike, external string)
1594 // edx: original subject string
1595 // ecx: RegExp data (FixedArray)
1596 // (9) Two byte sequential. Load regexp code for one byte. Go to (E).
1597 __ bind(&seq_two_byte_string);
1598 // Load previous index and check range before edx is overwritten. We have
1599 // to use edx instead of eax here because it might have been only made to
1600 // look like a sequential string when it actually is an external string.
1601 __ mov(ebx, Operand(esp, kPreviousIndexOffset));
1602 __ JumpIfNotSmi(ebx, &runtime);
1603 __ cmp(ebx, FieldOperand(edx, String::kLengthOffset));
1604 __ j(above_equal, &runtime);
1605 __ mov(edx, FieldOperand(ecx, JSRegExp::kDataUC16CodeOffset));
1606 __ Move(ecx, Immediate(0)); // Type is two byte.
1607 __ jmp(&check_code); // Go to (E).
1609 // (10) Not a string or a short external string? If yes, bail out to runtime.
1610 __ bind(¬_long_external);
1611 // Catch non-string subject or short external string.
1612 STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
1613 __ test(ebx, Immediate(kIsNotStringMask | kShortExternalStringTag));
1614 __ j(not_zero, &runtime);
1616 // (11) Sliced string. Replace subject with parent. Go to (5a).
1617 // Load offset into edi and replace subject string with parent.
1618 __ mov(edi, FieldOperand(eax, SlicedString::kOffsetOffset));
1619 __ mov(eax, FieldOperand(eax, SlicedString::kParentOffset));
1620 __ jmp(&check_underlying); // Go to (5a).
1621 #endif // V8_INTERPRETED_REGEXP
1625 static int NegativeComparisonResult(Condition cc) {
1626 DCHECK(cc != equal);
1627 DCHECK((cc == less) || (cc == less_equal)
1628 || (cc == greater) || (cc == greater_equal));
1629 return (cc == greater || cc == greater_equal) ? LESS : GREATER;
1633 static void CheckInputType(MacroAssembler* masm, Register input,
1634 CompareICState::State expected, Label* fail) {
1636 if (expected == CompareICState::SMI) {
1637 __ JumpIfNotSmi(input, fail);
1638 } else if (expected == CompareICState::NUMBER) {
1639 __ JumpIfSmi(input, &ok);
1640 __ cmp(FieldOperand(input, HeapObject::kMapOffset),
1641 Immediate(masm->isolate()->factory()->heap_number_map()));
1642 __ j(not_equal, fail);
1644 // We could be strict about internalized/non-internalized here, but as long as
1645 // hydrogen doesn't care, the stub doesn't have to care either.
1650 static void BranchIfNotInternalizedString(MacroAssembler* masm,
1654 __ JumpIfSmi(object, label);
1655 __ mov(scratch, FieldOperand(object, HeapObject::kMapOffset));
1656 __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
1657 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
1658 __ test(scratch, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
1659 __ j(not_zero, label);
1663 void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
1664 Label runtime_call, check_unequal_objects;
1665 Condition cc = GetCondition();
1668 CheckInputType(masm, edx, left(), &miss);
1669 CheckInputType(masm, eax, right(), &miss);
1671 // Compare two smis.
1672 Label non_smi, smi_done;
1675 __ JumpIfNotSmi(ecx, &non_smi, Label::kNear);
1676 __ sub(edx, eax); // Return on the result of the subtraction.
1677 __ j(no_overflow, &smi_done, Label::kNear);
1678 __ not_(edx); // Correct sign in case of overflow. edx is never 0 here.
1684 // NOTICE! This code is only reached after a smi-fast-case check, so
1685 // it is certain that at least one operand isn't a smi.
1687 // Identical objects can be compared fast, but there are some tricky cases
1688 // for NaN and undefined.
1689 Label generic_heap_number_comparison;
1691 Label not_identical;
1693 __ j(not_equal, ¬_identical);
1696 // Check for undefined. undefined OP undefined is false even though
1697 // undefined == undefined.
1698 __ cmp(edx, isolate()->factory()->undefined_value());
1699 if (is_strong(strength())) {
1700 // In strong mode, this comparison must throw, so call the runtime.
1701 __ j(equal, &runtime_call, Label::kFar);
1703 Label check_for_nan;
1704 __ j(not_equal, &check_for_nan, Label::kNear);
1705 __ Move(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc))));
1707 __ bind(&check_for_nan);
1711 // Test for NaN. Compare heap numbers in a general way,
1712 // to hanlde NaNs correctly.
1713 __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
1714 Immediate(isolate()->factory()->heap_number_map()));
1715 __ j(equal, &generic_heap_number_comparison, Label::kNear);
1717 __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
1718 __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
1719 // Call runtime on identical JSObjects. Otherwise return equal.
1720 __ cmpb(ecx, static_cast<uint8_t>(FIRST_SPEC_OBJECT_TYPE));
1721 __ j(above_equal, &runtime_call, Label::kFar);
1722 // Call runtime on identical symbols since we need to throw a TypeError.
1723 __ cmpb(ecx, static_cast<uint8_t>(SYMBOL_TYPE));
1724 __ j(equal, &runtime_call, Label::kFar);
1725 if (is_strong(strength())) {
1726 // We have already tested for smis and heap numbers, so if both
1727 // arguments are not strings we must proceed to the slow case.
1728 __ test(ecx, Immediate(kIsNotStringMask));
1729 __ j(not_zero, &runtime_call, Label::kFar);
1732 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
1736 __ bind(¬_identical);
1739 // Strict equality can quickly decide whether objects are equal.
1740 // Non-strict object equality is slower, so it is handled later in the stub.
1741 if (cc == equal && strict()) {
1742 Label slow; // Fallthrough label.
1744 // If we're doing a strict equality comparison, we don't have to do
1745 // type conversion, so we generate code to do fast comparison for objects
1746 // and oddballs. Non-smi numbers and strings still go through the usual
1748 // If either is a Smi (we know that not both are), then they can only
1749 // be equal if the other is a HeapNumber. If so, use the slow case.
1750 STATIC_ASSERT(kSmiTag == 0);
1751 DCHECK_EQ(static_cast<Smi*>(0), Smi::FromInt(0));
1752 __ mov(ecx, Immediate(kSmiTagMask));
1755 __ j(not_zero, ¬_smis, Label::kNear);
1756 // One operand is a smi.
1758 // Check whether the non-smi is a heap number.
1759 STATIC_ASSERT(kSmiTagMask == 1);
1760 // ecx still holds eax & kSmiTag, which is either zero or one.
1761 __ sub(ecx, Immediate(0x01));
1764 __ and_(ebx, ecx); // ebx holds either 0 or eax ^ edx.
1766 // if eax was smi, ebx is now edx, else eax.
1768 // Check if the non-smi operand is a heap number.
1769 __ cmp(FieldOperand(ebx, HeapObject::kMapOffset),
1770 Immediate(isolate()->factory()->heap_number_map()));
1771 // If heap number, handle it in the slow case.
1772 __ j(equal, &slow, Label::kNear);
1773 // Return non-equal (ebx is not zero)
1778 // If either operand is a JSObject or an oddball value, then they are not
1779 // equal since their pointers are different
1780 // There is no test for undetectability in strict equality.
1782 // Get the type of the first operand.
1783 // If the first object is a JS object, we have done pointer comparison.
1784 Label first_non_object;
1785 STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
1786 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
1787 __ j(below, &first_non_object, Label::kNear);
1789 // Return non-zero (eax is not zero)
1790 Label return_not_equal;
1791 STATIC_ASSERT(kHeapObjectTag != 0);
1792 __ bind(&return_not_equal);
1795 __ bind(&first_non_object);
1796 // Check for oddballs: true, false, null, undefined.
1797 __ CmpInstanceType(ecx, ODDBALL_TYPE);
1798 __ j(equal, &return_not_equal);
1800 __ CmpObjectType(edx, FIRST_SPEC_OBJECT_TYPE, ecx);
1801 __ j(above_equal, &return_not_equal);
1803 // Check for oddballs: true, false, null, undefined.
1804 __ CmpInstanceType(ecx, ODDBALL_TYPE);
1805 __ j(equal, &return_not_equal);
1807 // Fall through to the general case.
1811 // Generate the number comparison code.
1812 Label non_number_comparison;
1814 __ bind(&generic_heap_number_comparison);
1816 FloatingPointHelper::LoadSSE2Operands(masm, &non_number_comparison);
1817 __ ucomisd(xmm0, xmm1);
1818 // Don't base result on EFLAGS when a NaN is involved.
1819 __ j(parity_even, &unordered, Label::kNear);
1821 __ mov(eax, 0); // equal
1822 __ mov(ecx, Immediate(Smi::FromInt(1)));
1823 __ cmov(above, eax, ecx);
1824 __ mov(ecx, Immediate(Smi::FromInt(-1)));
1825 __ cmov(below, eax, ecx);
1828 // If one of the numbers was NaN, then the result is always false.
1829 // The cc is never not-equal.
1830 __ bind(&unordered);
1831 DCHECK(cc != not_equal);
1832 if (cc == less || cc == less_equal) {
1833 __ mov(eax, Immediate(Smi::FromInt(1)));
1835 __ mov(eax, Immediate(Smi::FromInt(-1)));
1839 // The number comparison code did not provide a valid result.
1840 __ bind(&non_number_comparison);
1842 // Fast negative check for internalized-to-internalized equality.
1843 Label check_for_strings;
1845 BranchIfNotInternalizedString(masm, &check_for_strings, eax, ecx);
1846 BranchIfNotInternalizedString(masm, &check_for_strings, edx, ecx);
1848 // We've already checked for object identity, so if both operands
1849 // are internalized they aren't equal. Register eax already holds a
1850 // non-zero value, which indicates not equal, so just return.
1854 __ bind(&check_for_strings);
1856 __ JumpIfNotBothSequentialOneByteStrings(edx, eax, ecx, ebx,
1857 &check_unequal_objects);
1859 // Inline comparison of one-byte strings.
1861 StringHelper::GenerateFlatOneByteStringEquals(masm, edx, eax, ecx, ebx);
1863 StringHelper::GenerateCompareFlatOneByteStrings(masm, edx, eax, ecx, ebx,
1867 __ Abort(kUnexpectedFallThroughFromStringComparison);
1870 __ bind(&check_unequal_objects);
1871 if (cc == equal && !strict()) {
1872 // Non-strict equality. Objects are unequal if
1873 // they are both JSObjects and not undetectable,
1874 // and their pointers are different.
1875 Label return_unequal;
1876 // At most one is a smi, so we can test for smi by adding the two.
1877 // A smi plus a heap object has the low bit set, a heap object plus
1878 // a heap object has the low bit clear.
1879 STATIC_ASSERT(kSmiTag == 0);
1880 STATIC_ASSERT(kSmiTagMask == 1);
1881 __ lea(ecx, Operand(eax, edx, times_1, 0));
1882 __ test(ecx, Immediate(kSmiTagMask));
1883 __ j(not_zero, &runtime_call, Label::kNear);
1884 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
1885 __ j(below, &runtime_call, Label::kNear);
1886 __ CmpObjectType(edx, FIRST_SPEC_OBJECT_TYPE, ebx);
1887 __ j(below, &runtime_call, Label::kNear);
1888 // We do not bail out after this point. Both are JSObjects, and
1889 // they are equal if and only if both are undetectable.
1890 // The and of the undetectable flags is 1 if and only if they are equal.
1891 __ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
1892 1 << Map::kIsUndetectable);
1893 __ j(zero, &return_unequal, Label::kNear);
1894 __ test_b(FieldOperand(ebx, Map::kBitFieldOffset),
1895 1 << Map::kIsUndetectable);
1896 __ j(zero, &return_unequal, Label::kNear);
1897 // The objects are both undetectable, so they both compare as the value
1898 // undefined, and are equal.
1899 __ Move(eax, Immediate(EQUAL));
1900 __ bind(&return_unequal);
1901 // Return non-equal by returning the non-zero object pointer in eax,
1902 // or return equal if we fell through to here.
1903 __ ret(0); // rax, rdx were pushed
1905 __ bind(&runtime_call);
1907 // Push arguments below the return address.
1912 // Figure out which native to call and setup the arguments.
1913 Builtins::JavaScript builtin;
1915 builtin = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
1918 is_strong(strength()) ? Builtins::COMPARE_STRONG : Builtins::COMPARE;
1919 __ push(Immediate(Smi::FromInt(NegativeComparisonResult(cc))));
1922 // Restore return address on the stack.
1925 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
1926 // tagged as a small integer.
1927 __ InvokeBuiltin(builtin, JUMP_FUNCTION);
1934 static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) {
1935 // eax : number of arguments to the construct function
1936 // ebx : Feedback vector
1937 // edx : slot in feedback vector (Smi)
1938 // edi : the function to call
1939 FrameScope scope(masm, StackFrame::INTERNAL);
1941 // Number-of-arguments register must be smi-tagged to call out.
1958 static void GenerateRecordCallTarget(MacroAssembler* masm) {
1959 // Cache the called function in a feedback vector slot. Cache states
1960 // are uninitialized, monomorphic (indicated by a JSFunction), and
1962 // eax : number of arguments to the construct function
1963 // ebx : Feedback vector
1964 // edx : slot in feedback vector (Smi)
1965 // edi : the function to call
1966 Isolate* isolate = masm->isolate();
1967 Label initialize, done, miss, megamorphic, not_array_function;
1969 // Load the cache state into ecx.
1970 __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
1971 FixedArray::kHeaderSize));
1973 // A monomorphic cache hit or an already megamorphic state: invoke the
1974 // function without changing the state.
1975 // We don't know if ecx is a WeakCell or a Symbol, but it's harmless to read
1976 // at this position in a symbol (see static asserts in
1977 // type-feedback-vector.h).
1978 Label check_allocation_site;
1979 __ cmp(edi, FieldOperand(ecx, WeakCell::kValueOffset));
1980 __ j(equal, &done, Label::kFar);
1981 __ CompareRoot(ecx, Heap::kmegamorphic_symbolRootIndex);
1982 __ j(equal, &done, Label::kFar);
1983 __ CompareRoot(FieldOperand(ecx, HeapObject::kMapOffset),
1984 Heap::kWeakCellMapRootIndex);
1985 __ j(not_equal, FLAG_pretenuring_call_new ? &miss : &check_allocation_site);
1987 // If the weak cell is cleared, we have a new chance to become monomorphic.
1988 __ JumpIfSmi(FieldOperand(ecx, WeakCell::kValueOffset), &initialize);
1989 __ jmp(&megamorphic);
1991 if (!FLAG_pretenuring_call_new) {
1992 __ bind(&check_allocation_site);
1993 // If we came here, we need to see if we are the array function.
1994 // If we didn't have a matching function, and we didn't find the megamorph
1995 // sentinel, then we have in the slot either some other function or an
1997 __ CompareRoot(FieldOperand(ecx, 0), Heap::kAllocationSiteMapRootIndex);
1998 __ j(not_equal, &miss);
2000 // Make sure the function is the Array() function
2001 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
2003 __ j(not_equal, &megamorphic);
2004 __ jmp(&done, Label::kFar);
2009 // A monomorphic miss (i.e, here the cache is not uninitialized) goes
2011 __ CompareRoot(ecx, Heap::kuninitialized_symbolRootIndex);
2012 __ j(equal, &initialize);
2013 // MegamorphicSentinel is an immortal immovable object (undefined) so no
2014 // write-barrier is needed.
2015 __ bind(&megamorphic);
2017 FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize),
2018 Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
2019 __ jmp(&done, Label::kFar);
2021 // An uninitialized cache is patched with the function or sentinel to
2022 // indicate the ElementsKind if function is the Array constructor.
2023 __ bind(&initialize);
2024 if (!FLAG_pretenuring_call_new) {
2025 // Make sure the function is the Array() function
2026 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
2028 __ j(not_equal, ¬_array_function);
2030 // The target function is the Array constructor,
2031 // Create an AllocationSite if we don't already have it, store it in the
2033 CreateAllocationSiteStub create_stub(isolate);
2034 CallStubInRecordCallTarget(masm, &create_stub);
2037 __ bind(¬_array_function);
2040 CreateWeakCellStub create_stub(isolate);
2041 CallStubInRecordCallTarget(masm, &create_stub);
2046 static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) {
2047 // Do not transform the receiver for strict mode functions.
2048 __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
2049 __ test_b(FieldOperand(ecx, SharedFunctionInfo::kStrictModeByteOffset),
2050 1 << SharedFunctionInfo::kStrictModeBitWithinByte);
2051 __ j(not_equal, cont);
2053 // Do not transform the receiver for natives (shared already in ecx).
2054 __ test_b(FieldOperand(ecx, SharedFunctionInfo::kNativeByteOffset),
2055 1 << SharedFunctionInfo::kNativeBitWithinByte);
2056 __ j(not_equal, cont);
2060 static void EmitSlowCase(Isolate* isolate,
2061 MacroAssembler* masm,
2063 Label* non_function) {
2064 // Check for function proxy.
2065 __ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE);
2066 __ j(not_equal, non_function);
2068 __ push(edi); // put proxy as additional argument under return address
2070 __ Move(eax, Immediate(argc + 1));
2071 __ Move(ebx, Immediate(0));
2072 __ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY);
2074 Handle<Code> adaptor = isolate->builtins()->ArgumentsAdaptorTrampoline();
2075 __ jmp(adaptor, RelocInfo::CODE_TARGET);
2078 // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
2079 // of the original receiver from the call site).
2080 __ bind(non_function);
2081 __ mov(Operand(esp, (argc + 1) * kPointerSize), edi);
2082 __ Move(eax, Immediate(argc));
2083 __ Move(ebx, Immediate(0));
2084 __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION);
2085 Handle<Code> adaptor = isolate->builtins()->ArgumentsAdaptorTrampoline();
2086 __ jmp(adaptor, RelocInfo::CODE_TARGET);
2090 static void EmitWrapCase(MacroAssembler* masm, int argc, Label* cont) {
2091 // Wrap the receiver and patch it back onto the stack.
2092 { FrameScope frame_scope(masm, StackFrame::INTERNAL);
2095 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
2098 __ mov(Operand(esp, (argc + 1) * kPointerSize), eax);
2103 static void CallFunctionNoFeedback(MacroAssembler* masm,
2104 int argc, bool needs_checks,
2105 bool call_as_method) {
2106 // edi : the function to call
2107 Label slow, non_function, wrap, cont;
2110 // Check that the function really is a JavaScript function.
2111 __ JumpIfSmi(edi, &non_function);
2113 // Goto slow case if we do not have a function.
2114 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
2115 __ j(not_equal, &slow);
2118 // Fast-case: Just invoke the function.
2119 ParameterCount actual(argc);
2121 if (call_as_method) {
2123 EmitContinueIfStrictOrNative(masm, &cont);
2126 // Load the receiver from the stack.
2127 __ mov(eax, Operand(esp, (argc + 1) * kPointerSize));
2130 __ JumpIfSmi(eax, &wrap);
2132 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
2141 __ InvokeFunction(edi, actual, JUMP_FUNCTION, NullCallWrapper());
2144 // Slow-case: Non-function called.
2146 // (non_function is bound in EmitSlowCase)
2147 EmitSlowCase(masm->isolate(), masm, argc, &non_function);
2150 if (call_as_method) {
2152 EmitWrapCase(masm, argc, &cont);
2157 void CallFunctionStub::Generate(MacroAssembler* masm) {
2158 CallFunctionNoFeedback(masm, argc(), NeedsChecks(), CallAsMethod());
2162 void CallConstructStub::Generate(MacroAssembler* masm) {
2163 // eax : number of arguments
2164 // ebx : feedback vector
2165 // edx : (only if ebx is not the megamorphic symbol) slot in feedback
2167 // edi : constructor function
2168 Label slow, non_function_call;
2170 // Check that function is not a smi.
2171 __ JumpIfSmi(edi, &non_function_call);
2172 // Check that function is a JSFunction.
2173 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
2174 __ j(not_equal, &slow);
2176 if (RecordCallTarget()) {
2177 GenerateRecordCallTarget(masm);
2179 if (FLAG_pretenuring_call_new) {
2180 // Put the AllocationSite from the feedback vector into ebx.
2181 // By adding kPointerSize we encode that we know the AllocationSite
2182 // entry is at the feedback vector slot given by edx + 1.
2183 __ mov(ebx, FieldOperand(ebx, edx, times_half_pointer_size,
2184 FixedArray::kHeaderSize + kPointerSize));
2186 Label feedback_register_initialized;
2187 // Put the AllocationSite from the feedback vector into ebx, or undefined.
2188 __ mov(ebx, FieldOperand(ebx, edx, times_half_pointer_size,
2189 FixedArray::kHeaderSize));
2190 Handle<Map> allocation_site_map =
2191 isolate()->factory()->allocation_site_map();
2192 __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map));
2193 __ j(equal, &feedback_register_initialized);
2194 __ mov(ebx, isolate()->factory()->undefined_value());
2195 __ bind(&feedback_register_initialized);
2198 __ AssertUndefinedOrAllocationSite(ebx);
2201 if (IsSuperConstructorCall()) {
2202 __ mov(edx, Operand(esp, eax, times_pointer_size, 2 * kPointerSize));
2204 // Pass original constructor to construct stub.
2208 // Jump to the function-specific construct stub.
2209 Register jmp_reg = ecx;
2210 __ mov(jmp_reg, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
2211 __ mov(jmp_reg, FieldOperand(jmp_reg,
2212 SharedFunctionInfo::kConstructStubOffset));
2213 __ lea(jmp_reg, FieldOperand(jmp_reg, Code::kHeaderSize));
2216 // edi: called object
2217 // eax: number of arguments
2221 __ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE);
2222 __ j(not_equal, &non_function_call);
2223 __ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
2226 __ bind(&non_function_call);
2227 __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
2229 // Set expected number of arguments to zero (not changing eax).
2230 __ Move(ebx, Immediate(0));
2231 Handle<Code> arguments_adaptor =
2232 isolate()->builtins()->ArgumentsAdaptorTrampoline();
2233 __ jmp(arguments_adaptor, RelocInfo::CODE_TARGET);
2237 static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) {
2238 __ mov(vector, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
2239 __ mov(vector, FieldOperand(vector, JSFunction::kSharedFunctionInfoOffset));
2240 __ mov(vector, FieldOperand(vector,
2241 SharedFunctionInfo::kFeedbackVectorOffset));
2245 void CallIC_ArrayStub::Generate(MacroAssembler* masm) {
2250 int argc = arg_count();
2251 ParameterCount actual(argc);
2253 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
2255 __ j(not_equal, &miss);
2257 __ mov(eax, arg_count());
2258 __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
2259 FixedArray::kHeaderSize));
2261 // Verify that ecx contains an AllocationSite
2262 Factory* factory = masm->isolate()->factory();
2263 __ cmp(FieldOperand(ecx, HeapObject::kMapOffset),
2264 factory->allocation_site_map());
2265 __ j(not_equal, &miss);
2269 ArrayConstructorStub stub(masm->isolate(), arg_count());
2270 __ TailCallStub(&stub);
2275 // The slow case, we need this no matter what to complete a call after a miss.
2276 CallFunctionNoFeedback(masm,
2286 void CallICStub::Generate(MacroAssembler* masm) {
2290 Isolate* isolate = masm->isolate();
2291 const int with_types_offset =
2292 FixedArray::OffsetOfElementAt(TypeFeedbackVector::kWithTypesIndex);
2293 const int generic_offset =
2294 FixedArray::OffsetOfElementAt(TypeFeedbackVector::kGenericCountIndex);
2295 Label extra_checks_or_miss, slow_start;
2296 Label slow, non_function, wrap, cont;
2297 Label have_js_function;
2298 int argc = arg_count();
2299 ParameterCount actual(argc);
2301 // The checks. First, does edi match the recorded monomorphic target?
2302 __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
2303 FixedArray::kHeaderSize));
2305 // We don't know that we have a weak cell. We might have a private symbol
2306 // or an AllocationSite, but the memory is safe to examine.
2307 // AllocationSite::kTransitionInfoOffset - contains a Smi or pointer to
2309 // WeakCell::kValueOffset - contains a JSFunction or Smi(0)
2310 // Symbol::kHashFieldSlot - if the low bit is 1, then the hash is not
2311 // computed, meaning that it can't appear to be a pointer. If the low bit is
2312 // 0, then hash is computed, but the 0 bit prevents the field from appearing
2314 STATIC_ASSERT(WeakCell::kSize >= kPointerSize);
2315 STATIC_ASSERT(AllocationSite::kTransitionInfoOffset ==
2316 WeakCell::kValueOffset &&
2317 WeakCell::kValueOffset == Symbol::kHashFieldSlot);
2319 __ cmp(edi, FieldOperand(ecx, WeakCell::kValueOffset));
2320 __ j(not_equal, &extra_checks_or_miss);
2322 // The compare above could have been a SMI/SMI comparison. Guard against this
2323 // convincing us that we have a monomorphic JSFunction.
2324 __ JumpIfSmi(edi, &extra_checks_or_miss);
2326 __ bind(&have_js_function);
2327 if (CallAsMethod()) {
2328 EmitContinueIfStrictOrNative(masm, &cont);
2330 // Load the receiver from the stack.
2331 __ mov(eax, Operand(esp, (argc + 1) * kPointerSize));
2333 __ JumpIfSmi(eax, &wrap);
2335 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
2341 __ InvokeFunction(edi, actual, JUMP_FUNCTION, NullCallWrapper());
2344 EmitSlowCase(isolate, masm, argc, &non_function);
2346 if (CallAsMethod()) {
2348 EmitWrapCase(masm, argc, &cont);
2351 __ bind(&extra_checks_or_miss);
2352 Label uninitialized, miss;
2354 __ cmp(ecx, Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
2355 __ j(equal, &slow_start);
2357 // The following cases attempt to handle MISS cases without going to the
2359 if (FLAG_trace_ic) {
2363 __ cmp(ecx, Immediate(TypeFeedbackVector::UninitializedSentinel(isolate)));
2364 __ j(equal, &uninitialized);
2366 // We are going megamorphic. If the feedback is a JSFunction, it is fine
2367 // to handle it here. More complex cases are dealt with in the runtime.
2368 __ AssertNotSmi(ecx);
2369 __ CmpObjectType(ecx, JS_FUNCTION_TYPE, ecx);
2370 __ j(not_equal, &miss);
2372 FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize),
2373 Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
2374 // We have to update statistics for runtime profiling.
2375 __ sub(FieldOperand(ebx, with_types_offset), Immediate(Smi::FromInt(1)));
2376 __ add(FieldOperand(ebx, generic_offset), Immediate(Smi::FromInt(1)));
2377 __ jmp(&slow_start);
2379 __ bind(&uninitialized);
2381 // We are going monomorphic, provided we actually have a JSFunction.
2382 __ JumpIfSmi(edi, &miss);
2384 // Goto miss case if we do not have a function.
2385 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
2386 __ j(not_equal, &miss);
2388 // Make sure the function is not the Array() function, which requires special
2389 // behavior on MISS.
2390 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
2395 __ add(FieldOperand(ebx, with_types_offset), Immediate(Smi::FromInt(1)));
2397 // Store the function. Use a stub since we need a frame for allocation.
2402 FrameScope scope(masm, StackFrame::INTERNAL);
2403 CreateWeakCellStub create_stub(isolate);
2405 __ CallStub(&create_stub);
2409 __ jmp(&have_js_function);
2411 // We are here because tracing is on or we encountered a MISS case we can't
2417 __ bind(&slow_start);
2419 // Check that the function really is a JavaScript function.
2420 __ JumpIfSmi(edi, &non_function);
2422 // Goto slow case if we do not have a function.
2423 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
2424 __ j(not_equal, &slow);
2425 __ jmp(&have_js_function);
2432 void CallICStub::GenerateMiss(MacroAssembler* masm) {
2433 FrameScope scope(masm, StackFrame::INTERNAL);
2435 // Push the function and feedback info.
2441 IC::UtilityId id = GetICState() == DEFAULT ? IC::kCallIC_Miss
2442 : IC::kCallIC_Customization_Miss;
2444 ExternalReference miss = ExternalReference(IC_Utility(id), masm->isolate());
2445 __ CallExternalReference(miss, 3);
2447 // Move result to edi and exit the internal frame.
2452 bool CEntryStub::NeedsImmovableCode() {
2457 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
2458 CEntryStub::GenerateAheadOfTime(isolate);
2459 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
2460 StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
2461 // It is important that the store buffer overflow stubs are generated first.
2462 ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
2463 CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
2464 CreateWeakCellStub::GenerateAheadOfTime(isolate);
2465 BinaryOpICStub::GenerateAheadOfTime(isolate);
2466 BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
2467 StoreFastElementStub::GenerateAheadOfTime(isolate);
2468 TypeofStub::GenerateAheadOfTime(isolate);
2472 void CodeStub::GenerateFPStubs(Isolate* isolate) {
2473 // Generate if not already in cache.
2474 CEntryStub(isolate, 1, kSaveFPRegs).GetCode();
2475 isolate->set_fp_stubs_generated(true);
2479 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
2480 CEntryStub stub(isolate, 1, kDontSaveFPRegs);
2485 void CEntryStub::Generate(MacroAssembler* masm) {
2486 // eax: number of arguments including receiver
2487 // ebx: pointer to C function (C callee-saved)
2488 // ebp: frame pointer (restored after C call)
2489 // esp: stack pointer (restored after C call)
2490 // esi: current context (C callee-saved)
2491 // edi: JS function of the caller (C callee-saved)
2493 ProfileEntryHookStub::MaybeCallEntryHook(masm);
2495 // Enter the exit frame that transitions from JavaScript to C++.
2496 __ EnterExitFrame(save_doubles());
2498 // ebx: pointer to C function (C callee-saved)
2499 // ebp: frame pointer (restored after C call)
2500 // esp: stack pointer (restored after C call)
2501 // edi: number of arguments including receiver (C callee-saved)
2502 // esi: pointer to the first argument (C callee-saved)
2504 // Result returned in eax, or eax+edx if result size is 2.
2506 // Check stack alignment.
2507 if (FLAG_debug_code) {
2508 __ CheckStackAlignment();
2512 __ mov(Operand(esp, 0 * kPointerSize), edi); // argc.
2513 __ mov(Operand(esp, 1 * kPointerSize), esi); // argv.
2514 __ mov(Operand(esp, 2 * kPointerSize),
2515 Immediate(ExternalReference::isolate_address(isolate())));
2517 // Result is in eax or edx:eax - do not destroy these registers!
2519 // Check result for exception sentinel.
2520 Label exception_returned;
2521 __ cmp(eax, isolate()->factory()->exception());
2522 __ j(equal, &exception_returned);
2524 // Check that there is no pending exception, otherwise we
2525 // should have returned the exception sentinel.
2526 if (FLAG_debug_code) {
2528 __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
2530 ExternalReference pending_exception_address(
2531 Isolate::kPendingExceptionAddress, isolate());
2532 __ cmp(edx, Operand::StaticVariable(pending_exception_address));
2533 // Cannot use check here as it attempts to generate call into runtime.
2534 __ j(equal, &okay, Label::kNear);
2540 // Exit the JavaScript to C++ exit frame.
2541 __ LeaveExitFrame(save_doubles());
2544 // Handling of exception.
2545 __ bind(&exception_returned);
2547 ExternalReference pending_handler_context_address(
2548 Isolate::kPendingHandlerContextAddress, isolate());
2549 ExternalReference pending_handler_code_address(
2550 Isolate::kPendingHandlerCodeAddress, isolate());
2551 ExternalReference pending_handler_offset_address(
2552 Isolate::kPendingHandlerOffsetAddress, isolate());
2553 ExternalReference pending_handler_fp_address(
2554 Isolate::kPendingHandlerFPAddress, isolate());
2555 ExternalReference pending_handler_sp_address(
2556 Isolate::kPendingHandlerSPAddress, isolate());
2558 // Ask the runtime for help to determine the handler. This will set eax to
2559 // contain the current pending exception, don't clobber it.
2560 ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
2563 FrameScope scope(masm, StackFrame::MANUAL);
2564 __ PrepareCallCFunction(3, eax);
2565 __ mov(Operand(esp, 0 * kPointerSize), Immediate(0)); // argc.
2566 __ mov(Operand(esp, 1 * kPointerSize), Immediate(0)); // argv.
2567 __ mov(Operand(esp, 2 * kPointerSize),
2568 Immediate(ExternalReference::isolate_address(isolate())));
2569 __ CallCFunction(find_handler, 3);
2572 // Retrieve the handler context, SP and FP.
2573 __ mov(esi, Operand::StaticVariable(pending_handler_context_address));
2574 __ mov(esp, Operand::StaticVariable(pending_handler_sp_address));
2575 __ mov(ebp, Operand::StaticVariable(pending_handler_fp_address));
2577 // If the handler is a JS frame, restore the context to the frame. Note that
2578 // the context will be set to (esi == 0) for non-JS frames.
2581 __ j(zero, &skip, Label::kNear);
2582 __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi);
2585 // Compute the handler entry address and jump to it.
2586 __ mov(edi, Operand::StaticVariable(pending_handler_code_address));
2587 __ mov(edx, Operand::StaticVariable(pending_handler_offset_address));
2588 __ lea(edi, FieldOperand(edi, edx, times_1, Code::kHeaderSize));
2593 void JSEntryStub::Generate(MacroAssembler* masm) {
2594 Label invoke, handler_entry, exit;
2595 Label not_outermost_js, not_outermost_js_2;
2597 ProfileEntryHookStub::MaybeCallEntryHook(masm);
2603 // Push marker in two places.
2604 int marker = type();
2605 __ push(Immediate(Smi::FromInt(marker))); // context slot
2606 __ push(Immediate(Smi::FromInt(marker))); // function slot
2607 // Save callee-saved registers (C calling conventions).
2612 // Save copies of the top frame descriptor on the stack.
2613 ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate());
2614 __ push(Operand::StaticVariable(c_entry_fp));
2616 // If this is the outermost JS call, set js_entry_sp value.
2617 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
2618 __ cmp(Operand::StaticVariable(js_entry_sp), Immediate(0));
2619 __ j(not_equal, ¬_outermost_js, Label::kNear);
2620 __ mov(Operand::StaticVariable(js_entry_sp), ebp);
2621 __ push(Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
2622 __ jmp(&invoke, Label::kNear);
2623 __ bind(¬_outermost_js);
2624 __ push(Immediate(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
2626 // Jump to a faked try block that does the invoke, with a faked catch
2627 // block that sets the pending exception.
2629 __ bind(&handler_entry);
2630 handler_offset_ = handler_entry.pos();
2631 // Caught exception: Store result (exception) in the pending exception
2632 // field in the JSEnv and return a failure sentinel.
2633 ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
2635 __ mov(Operand::StaticVariable(pending_exception), eax);
2636 __ mov(eax, Immediate(isolate()->factory()->exception()));
2639 // Invoke: Link this frame into the handler chain.
2641 __ PushStackHandler();
2643 // Clear any pending exceptions.
2644 __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
2645 __ mov(Operand::StaticVariable(pending_exception), edx);
2647 // Fake a receiver (NULL).
2648 __ push(Immediate(0)); // receiver
2650 // Invoke the function by calling through JS entry trampoline builtin and
2651 // pop the faked function when we return. Notice that we cannot store a
2652 // reference to the trampoline code directly in this stub, because the
2653 // builtin stubs may not have been generated yet.
2654 if (type() == StackFrame::ENTRY_CONSTRUCT) {
2655 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
2657 __ mov(edx, Immediate(construct_entry));
2659 ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
2660 __ mov(edx, Immediate(entry));
2662 __ mov(edx, Operand(edx, 0)); // deref address
2663 __ lea(edx, FieldOperand(edx, Code::kHeaderSize));
2666 // Unlink this frame from the handler chain.
2667 __ PopStackHandler();
2670 // Check if the current stack frame is marked as the outermost JS frame.
2672 __ cmp(ebx, Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
2673 __ j(not_equal, ¬_outermost_js_2);
2674 __ mov(Operand::StaticVariable(js_entry_sp), Immediate(0));
2675 __ bind(¬_outermost_js_2);
2677 // Restore the top frame descriptor from the stack.
2678 __ pop(Operand::StaticVariable(ExternalReference(
2679 Isolate::kCEntryFPAddress, isolate())));
2681 // Restore callee-saved registers (C calling conventions).
2685 __ add(esp, Immediate(2 * kPointerSize)); // remove markers
2687 // Restore frame pointer and return.
2693 // Generate stub code for instanceof.
2694 // This code can patch a call site inlined cache of the instance of check,
2695 // which looks like this.
2697 // 81 ff XX XX XX XX cmp edi, <the hole, patched to a map>
2698 // 75 0a jne <some near label>
2699 // b8 XX XX XX XX mov eax, <the hole, patched to either true or false>
2701 // If call site patching is requested the stack will have the delta from the
2702 // return address to the cmp instruction just below the return address. This
2703 // also means that call site patching can only take place with arguments in
2704 // registers. TOS looks like this when call site patching is requested
2706 // esp[0] : return address
2707 // esp[4] : delta from return address to cmp instruction
2709 void InstanceofStub::Generate(MacroAssembler* masm) {
2710 // Call site inlining and patching implies arguments in registers.
2711 DCHECK(HasArgsInRegisters() || !HasCallSiteInlineCheck());
2713 // Fixed register usage throughout the stub.
2714 Register object = eax; // Object (lhs).
2715 Register map = ebx; // Map of the object.
2716 Register function = edx; // Function (rhs).
2717 Register prototype = edi; // Prototype of the function.
2718 Register scratch = ecx;
2720 // Constants describing the call site code to patch.
2721 static const int kDeltaToCmpImmediate = 2;
2722 static const int kDeltaToMov = 8;
2723 static const int kDeltaToMovImmediate = 9;
2724 static const int8_t kCmpEdiOperandByte1 = bit_cast<int8_t, uint8_t>(0x3b);
2725 static const int8_t kCmpEdiOperandByte2 = bit_cast<int8_t, uint8_t>(0x3d);
2726 static const int8_t kMovEaxImmediateByte = bit_cast<int8_t, uint8_t>(0xb8);
2728 DCHECK_EQ(object.code(), InstanceofStub::left().code());
2729 DCHECK_EQ(function.code(), InstanceofStub::right().code());
2731 // Get the object and function - they are always both needed.
2732 Label slow, not_js_object;
2733 if (!HasArgsInRegisters()) {
2734 __ mov(object, Operand(esp, 2 * kPointerSize));
2735 __ mov(function, Operand(esp, 1 * kPointerSize));
2738 // Check that the left hand is a JS object.
2739 __ JumpIfSmi(object, ¬_js_object);
2740 __ IsObjectJSObjectType(object, map, scratch, ¬_js_object);
2742 // If there is a call site cache don't look in the global cache, but do the
2743 // real lookup and update the call site cache.
2744 if (!HasCallSiteInlineCheck() && !ReturnTrueFalseObject()) {
2745 // Look up the function and the map in the instanceof cache.
2747 __ CompareRoot(function, scratch, Heap::kInstanceofCacheFunctionRootIndex);
2748 __ j(not_equal, &miss, Label::kNear);
2749 __ CompareRoot(map, scratch, Heap::kInstanceofCacheMapRootIndex);
2750 __ j(not_equal, &miss, Label::kNear);
2751 __ LoadRoot(eax, Heap::kInstanceofCacheAnswerRootIndex);
2752 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2756 // Get the prototype of the function.
2757 __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true);
2759 // Check that the function prototype is a JS object.
2760 __ JumpIfSmi(prototype, &slow);
2761 __ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
2763 // Update the global instanceof or call site inlined cache with the current
2764 // map and function. The cached answer will be set when it is known below.
2765 if (!HasCallSiteInlineCheck()) {
2766 __ StoreRoot(map, scratch, Heap::kInstanceofCacheMapRootIndex);
2767 __ StoreRoot(function, scratch, Heap::kInstanceofCacheFunctionRootIndex);
2769 // The constants for the code patching are based on no push instructions
2770 // at the call site.
2771 DCHECK(HasArgsInRegisters());
2772 // Get return address and delta to inlined map check.
2773 __ mov(scratch, Operand(esp, 0 * kPointerSize));
2774 __ sub(scratch, Operand(esp, 1 * kPointerSize));
2775 if (FLAG_debug_code) {
2776 __ cmpb(Operand(scratch, 0), kCmpEdiOperandByte1);
2777 __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheCmp1);
2778 __ cmpb(Operand(scratch, 1), kCmpEdiOperandByte2);
2779 __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheCmp2);
2781 __ mov(scratch, Operand(scratch, kDeltaToCmpImmediate));
2782 __ mov(Operand(scratch, 0), map);
2784 // Scratch points at the cell payload. Calculate the start of the object.
2785 __ sub(scratch, Immediate(Cell::kValueOffset - 1));
2786 __ RecordWriteField(scratch, Cell::kValueOffset, map, function,
2787 kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
2791 // Loop through the prototype chain of the object looking for the function
2793 __ mov(scratch, FieldOperand(map, Map::kPrototypeOffset));
2794 Label loop, is_instance, is_not_instance;
2796 __ cmp(scratch, prototype);
2797 __ j(equal, &is_instance, Label::kNear);
2798 Factory* factory = isolate()->factory();
2799 __ cmp(scratch, Immediate(factory->null_value()));
2800 __ j(equal, &is_not_instance, Label::kNear);
2801 __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
2802 __ mov(scratch, FieldOperand(scratch, Map::kPrototypeOffset));
2805 __ bind(&is_instance);
2806 if (!HasCallSiteInlineCheck()) {
2807 __ mov(eax, Immediate(0));
2808 __ StoreRoot(eax, scratch, Heap::kInstanceofCacheAnswerRootIndex);
2809 if (ReturnTrueFalseObject()) {
2810 __ mov(eax, factory->true_value());
2813 // Get return address and delta to inlined map check.
2814 __ mov(eax, factory->true_value());
2815 __ mov(scratch, Operand(esp, 0 * kPointerSize));
2816 __ sub(scratch, Operand(esp, 1 * kPointerSize));
2817 if (FLAG_debug_code) {
2818 __ cmpb(Operand(scratch, kDeltaToMov), kMovEaxImmediateByte);
2819 __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheMov);
2821 __ mov(Operand(scratch, kDeltaToMovImmediate), eax);
2822 if (!ReturnTrueFalseObject()) {
2823 __ Move(eax, Immediate(0));
2826 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2828 __ bind(&is_not_instance);
2829 if (!HasCallSiteInlineCheck()) {
2830 __ mov(eax, Immediate(Smi::FromInt(1)));
2831 __ StoreRoot(eax, scratch, Heap::kInstanceofCacheAnswerRootIndex);
2832 if (ReturnTrueFalseObject()) {
2833 __ mov(eax, factory->false_value());
2836 // Get return address and delta to inlined map check.
2837 __ mov(eax, factory->false_value());
2838 __ mov(scratch, Operand(esp, 0 * kPointerSize));
2839 __ sub(scratch, Operand(esp, 1 * kPointerSize));
2840 if (FLAG_debug_code) {
2841 __ cmpb(Operand(scratch, kDeltaToMov), kMovEaxImmediateByte);
2842 __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheMov);
2844 __ mov(Operand(scratch, kDeltaToMovImmediate), eax);
2845 if (!ReturnTrueFalseObject()) {
2846 __ Move(eax, Immediate(Smi::FromInt(1)));
2849 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2851 Label object_not_null, object_not_null_or_smi;
2852 __ bind(¬_js_object);
2853 // Before null, smi and string value checks, check that the rhs is a function
2854 // as for a non-function rhs an exception needs to be thrown.
2855 __ JumpIfSmi(function, &slow, Label::kNear);
2856 __ CmpObjectType(function, JS_FUNCTION_TYPE, scratch);
2857 __ j(not_equal, &slow, Label::kNear);
2859 // Null is not instance of anything.
2860 __ cmp(object, factory->null_value());
2861 __ j(not_equal, &object_not_null, Label::kNear);
2862 if (ReturnTrueFalseObject()) {
2863 __ mov(eax, factory->false_value());
2865 __ Move(eax, Immediate(Smi::FromInt(1)));
2867 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2869 __ bind(&object_not_null);
2870 // Smi values is not instance of anything.
2871 __ JumpIfNotSmi(object, &object_not_null_or_smi, Label::kNear);
2872 if (ReturnTrueFalseObject()) {
2873 __ mov(eax, factory->false_value());
2875 __ Move(eax, Immediate(Smi::FromInt(1)));
2877 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2879 __ bind(&object_not_null_or_smi);
2880 // String values is not instance of anything.
2881 Condition is_string = masm->IsObjectStringType(object, scratch, scratch);
2882 __ j(NegateCondition(is_string), &slow, Label::kNear);
2883 if (ReturnTrueFalseObject()) {
2884 __ mov(eax, factory->false_value());
2886 __ Move(eax, Immediate(Smi::FromInt(1)));
2888 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2890 // Slow-case: Go through the JavaScript implementation.
2892 if (!ReturnTrueFalseObject()) {
2893 // Tail call the builtin which returns 0 or 1.
2894 if (HasArgsInRegisters()) {
2895 // Push arguments below return address.
2901 __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
2903 // Call the builtin and convert 0/1 to true/false.
2905 FrameScope scope(masm, StackFrame::INTERNAL);
2908 __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
2910 Label true_value, done;
2912 __ j(zero, &true_value, Label::kNear);
2913 __ mov(eax, factory->false_value());
2914 __ jmp(&done, Label::kNear);
2915 __ bind(&true_value);
2916 __ mov(eax, factory->true_value());
2918 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2923 // -------------------------------------------------------------------------
2924 // StringCharCodeAtGenerator
2926 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
2927 // If the receiver is a smi trigger the non-string case.
2928 STATIC_ASSERT(kSmiTag == 0);
2929 if (check_mode_ == RECEIVER_IS_UNKNOWN) {
2930 __ JumpIfSmi(object_, receiver_not_string_);
2932 // Fetch the instance type of the receiver into result register.
2933 __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
2934 __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
2935 // If the receiver is not a string trigger the non-string case.
2936 __ test(result_, Immediate(kIsNotStringMask));
2937 __ j(not_zero, receiver_not_string_);
2940 // If the index is non-smi trigger the non-smi case.
2941 STATIC_ASSERT(kSmiTag == 0);
2942 __ JumpIfNotSmi(index_, &index_not_smi_);
2943 __ bind(&got_smi_index_);
2945 // Check for index out of range.
2946 __ cmp(index_, FieldOperand(object_, String::kLengthOffset));
2947 __ j(above_equal, index_out_of_range_);
2949 __ SmiUntag(index_);
2951 Factory* factory = masm->isolate()->factory();
2952 StringCharLoadGenerator::Generate(
2953 masm, factory, object_, index_, result_, &call_runtime_);
2960 void StringCharCodeAtGenerator::GenerateSlow(
2961 MacroAssembler* masm, EmbedMode embed_mode,
2962 const RuntimeCallHelper& call_helper) {
2963 __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
2965 // Index is not a smi.
2966 __ bind(&index_not_smi_);
2967 // If index is a heap number, try converting it to an integer.
2969 masm->isolate()->factory()->heap_number_map(),
2972 call_helper.BeforeCall(masm);
2973 if (embed_mode == PART_OF_IC_HANDLER) {
2974 __ push(LoadWithVectorDescriptor::VectorRegister());
2975 __ push(LoadDescriptor::SlotRegister());
2978 __ push(index_); // Consumed by runtime conversion function.
2979 if (index_flags_ == STRING_INDEX_IS_NUMBER) {
2980 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
2982 DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
2983 // NumberToSmi discards numbers that are not exact integers.
2984 __ CallRuntime(Runtime::kNumberToSmi, 1);
2986 if (!index_.is(eax)) {
2987 // Save the conversion result before the pop instructions below
2988 // have a chance to overwrite it.
2989 __ mov(index_, eax);
2992 if (embed_mode == PART_OF_IC_HANDLER) {
2993 __ pop(LoadDescriptor::SlotRegister());
2994 __ pop(LoadWithVectorDescriptor::VectorRegister());
2996 // Reload the instance type.
2997 __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
2998 __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
2999 call_helper.AfterCall(masm);
3000 // If index is still not a smi, it must be out of range.
3001 STATIC_ASSERT(kSmiTag == 0);
3002 __ JumpIfNotSmi(index_, index_out_of_range_);
3003 // Otherwise, return to the fast path.
3004 __ jmp(&got_smi_index_);
3006 // Call runtime. We get here when the receiver is a string and the
3007 // index is a number, but the code of getting the actual character
3008 // is too complex (e.g., when the string needs to be flattened).
3009 __ bind(&call_runtime_);
3010 call_helper.BeforeCall(masm);
3014 __ CallRuntime(Runtime::kStringCharCodeAtRT, 2);
3015 if (!result_.is(eax)) {
3016 __ mov(result_, eax);
3018 call_helper.AfterCall(masm);
3021 __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
3025 // -------------------------------------------------------------------------
3026 // StringCharFromCodeGenerator
3028 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
3029 // Fast case of Heap::LookupSingleCharacterStringFromCode.
3030 STATIC_ASSERT(kSmiTag == 0);
3031 STATIC_ASSERT(kSmiShiftSize == 0);
3032 DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCode + 1));
3034 Immediate(kSmiTagMask |
3035 ((~String::kMaxOneByteCharCode) << kSmiTagSize)));
3036 __ j(not_zero, &slow_case_);
3038 Factory* factory = masm->isolate()->factory();
3039 __ Move(result_, Immediate(factory->single_character_string_cache()));
3040 STATIC_ASSERT(kSmiTag == 0);
3041 STATIC_ASSERT(kSmiTagSize == 1);
3042 STATIC_ASSERT(kSmiShiftSize == 0);
3043 // At this point code register contains smi tagged one byte char code.
3044 __ mov(result_, FieldOperand(result_,
3045 code_, times_half_pointer_size,
3046 FixedArray::kHeaderSize));
3047 __ cmp(result_, factory->undefined_value());
3048 __ j(equal, &slow_case_);
3053 void StringCharFromCodeGenerator::GenerateSlow(
3054 MacroAssembler* masm,
3055 const RuntimeCallHelper& call_helper) {
3056 __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
3058 __ bind(&slow_case_);
3059 call_helper.BeforeCall(masm);
3061 __ CallRuntime(Runtime::kCharFromCode, 1);
3062 if (!result_.is(eax)) {
3063 __ mov(result_, eax);
3065 call_helper.AfterCall(masm);
3068 __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
3072 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
3077 String::Encoding encoding) {
3078 DCHECK(!scratch.is(dest));
3079 DCHECK(!scratch.is(src));
3080 DCHECK(!scratch.is(count));
3082 // Nothing to do for zero characters.
3084 __ test(count, count);
3087 // Make count the number of bytes to copy.
3088 if (encoding == String::TWO_BYTE_ENCODING) {
3094 __ mov_b(scratch, Operand(src, 0));
3095 __ mov_b(Operand(dest, 0), scratch);
3099 __ j(not_zero, &loop);
3105 void SubStringStub::Generate(MacroAssembler* masm) {
3108 // Stack frame on entry.
3109 // esp[0]: return address
3114 // Make sure first argument is a string.
3115 __ mov(eax, Operand(esp, 3 * kPointerSize));
3116 STATIC_ASSERT(kSmiTag == 0);
3117 __ JumpIfSmi(eax, &runtime);
3118 Condition is_string = masm->IsObjectStringType(eax, ebx, ebx);
3119 __ j(NegateCondition(is_string), &runtime);
3122 // ebx: instance type
3124 // Calculate length of sub string using the smi values.
3125 __ mov(ecx, Operand(esp, 1 * kPointerSize)); // To index.
3126 __ JumpIfNotSmi(ecx, &runtime);
3127 __ mov(edx, Operand(esp, 2 * kPointerSize)); // From index.
3128 __ JumpIfNotSmi(edx, &runtime);
3130 __ cmp(ecx, FieldOperand(eax, String::kLengthOffset));
3131 Label not_original_string;
3132 // Shorter than original string's length: an actual substring.
3133 __ j(below, ¬_original_string, Label::kNear);
3134 // Longer than original string's length or negative: unsafe arguments.
3135 __ j(above, &runtime);
3136 // Return original string.
3137 Counters* counters = isolate()->counters();
3138 __ IncrementCounter(counters->sub_string_native(), 1);
3139 __ ret(3 * kPointerSize);
3140 __ bind(¬_original_string);
3143 __ cmp(ecx, Immediate(Smi::FromInt(1)));
3144 __ j(equal, &single_char);
3147 // ebx: instance type
3148 // ecx: sub string length (smi)
3149 // edx: from index (smi)
3150 // Deal with different string types: update the index if necessary
3151 // and put the underlying string into edi.
3152 Label underlying_unpacked, sliced_string, seq_or_external_string;
3153 // If the string is not indirect, it can only be sequential or external.
3154 STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
3155 STATIC_ASSERT(kIsIndirectStringMask != 0);
3156 __ test(ebx, Immediate(kIsIndirectStringMask));
3157 __ j(zero, &seq_or_external_string, Label::kNear);
3159 Factory* factory = isolate()->factory();
3160 __ test(ebx, Immediate(kSlicedNotConsMask));
3161 __ j(not_zero, &sliced_string, Label::kNear);
3162 // Cons string. Check whether it is flat, then fetch first part.
3163 // Flat cons strings have an empty second part.
3164 __ cmp(FieldOperand(eax, ConsString::kSecondOffset),
3165 factory->empty_string());
3166 __ j(not_equal, &runtime);
3167 __ mov(edi, FieldOperand(eax, ConsString::kFirstOffset));
3168 // Update instance type.
3169 __ mov(ebx, FieldOperand(edi, HeapObject::kMapOffset));
3170 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
3171 __ jmp(&underlying_unpacked, Label::kNear);
3173 __ bind(&sliced_string);
3174 // Sliced string. Fetch parent and adjust start index by offset.
3175 __ add(edx, FieldOperand(eax, SlicedString::kOffsetOffset));
3176 __ mov(edi, FieldOperand(eax, SlicedString::kParentOffset));
3177 // Update instance type.
3178 __ mov(ebx, FieldOperand(edi, HeapObject::kMapOffset));
3179 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
3180 __ jmp(&underlying_unpacked, Label::kNear);
3182 __ bind(&seq_or_external_string);
3183 // Sequential or external string. Just move string to the expected register.
3186 __ bind(&underlying_unpacked);
3188 if (FLAG_string_slices) {
3190 // edi: underlying subject string
3191 // ebx: instance type of underlying subject string
3192 // edx: adjusted start index (smi)
3193 // ecx: length (smi)
3194 __ cmp(ecx, Immediate(Smi::FromInt(SlicedString::kMinLength)));
3195 // Short slice. Copy instead of slicing.
3196 __ j(less, ©_routine);
3197 // Allocate new sliced string. At this point we do not reload the instance
3198 // type including the string encoding because we simply rely on the info
3199 // provided by the original string. It does not matter if the original
3200 // string's encoding is wrong because we always have to recheck encoding of
3201 // the newly created string's parent anyways due to externalized strings.
3202 Label two_byte_slice, set_slice_header;
3203 STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
3204 STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
3205 __ test(ebx, Immediate(kStringEncodingMask));
3206 __ j(zero, &two_byte_slice, Label::kNear);
3207 __ AllocateOneByteSlicedString(eax, ebx, no_reg, &runtime);
3208 __ jmp(&set_slice_header, Label::kNear);
3209 __ bind(&two_byte_slice);
3210 __ AllocateTwoByteSlicedString(eax, ebx, no_reg, &runtime);
3211 __ bind(&set_slice_header);
3212 __ mov(FieldOperand(eax, SlicedString::kLengthOffset), ecx);
3213 __ mov(FieldOperand(eax, SlicedString::kHashFieldOffset),
3214 Immediate(String::kEmptyHashField));
3215 __ mov(FieldOperand(eax, SlicedString::kParentOffset), edi);
3216 __ mov(FieldOperand(eax, SlicedString::kOffsetOffset), edx);
3217 __ IncrementCounter(counters->sub_string_native(), 1);
3218 __ ret(3 * kPointerSize);
3220 __ bind(©_routine);
3223 // edi: underlying subject string
3224 // ebx: instance type of underlying subject string
3225 // edx: adjusted start index (smi)
3226 // ecx: length (smi)
3227 // The subject string can only be external or sequential string of either
3228 // encoding at this point.
3229 Label two_byte_sequential, runtime_drop_two, sequential_string;
3230 STATIC_ASSERT(kExternalStringTag != 0);
3231 STATIC_ASSERT(kSeqStringTag == 0);
3232 __ test_b(ebx, kExternalStringTag);
3233 __ j(zero, &sequential_string);
3235 // Handle external string.
3236 // Rule out short external strings.
3237 STATIC_ASSERT(kShortExternalStringTag != 0);
3238 __ test_b(ebx, kShortExternalStringMask);
3239 __ j(not_zero, &runtime);
3240 __ mov(edi, FieldOperand(edi, ExternalString::kResourceDataOffset));
3241 // Move the pointer so that offset-wise, it looks like a sequential string.
3242 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
3243 __ sub(edi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
3245 __ bind(&sequential_string);
3246 // Stash away (adjusted) index and (underlying) string.
3250 STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
3251 __ test_b(ebx, kStringEncodingMask);
3252 __ j(zero, &two_byte_sequential);
3254 // Sequential one byte string. Allocate the result.
3255 __ AllocateOneByteString(eax, ecx, ebx, edx, edi, &runtime_drop_two);
3257 // eax: result string
3258 // ecx: result string length
3259 // Locate first character of result.
3261 __ add(edi, Immediate(SeqOneByteString::kHeaderSize - kHeapObjectTag));
3262 // Load string argument and locate character of sub string start.
3266 __ lea(edx, FieldOperand(edx, ebx, times_1, SeqOneByteString::kHeaderSize));
3268 // eax: result string
3269 // ecx: result length
3270 // edi: first character of result
3271 // edx: character of sub string start
3272 StringHelper::GenerateCopyCharacters(
3273 masm, edi, edx, ecx, ebx, String::ONE_BYTE_ENCODING);
3274 __ IncrementCounter(counters->sub_string_native(), 1);
3275 __ ret(3 * kPointerSize);
3277 __ bind(&two_byte_sequential);
3278 // Sequential two-byte string. Allocate the result.
3279 __ AllocateTwoByteString(eax, ecx, ebx, edx, edi, &runtime_drop_two);
3281 // eax: result string
3282 // ecx: result string length
3283 // Locate first character of result.
3286 Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
3287 // Load string argument and locate character of sub string start.
3290 // As from is a smi it is 2 times the value which matches the size of a two
3292 STATIC_ASSERT(kSmiTag == 0);
3293 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
3294 __ lea(edx, FieldOperand(edx, ebx, times_1, SeqTwoByteString::kHeaderSize));
3296 // eax: result string
3297 // ecx: result length
3298 // edi: first character of result
3299 // edx: character of sub string start
3300 StringHelper::GenerateCopyCharacters(
3301 masm, edi, edx, ecx, ebx, String::TWO_BYTE_ENCODING);
3302 __ IncrementCounter(counters->sub_string_native(), 1);
3303 __ ret(3 * kPointerSize);
3305 // Drop pushed values on the stack before tail call.
3306 __ bind(&runtime_drop_two);
3309 // Just jump to runtime to create the sub string.
3311 __ TailCallRuntime(Runtime::kSubStringRT, 3, 1);
3313 __ bind(&single_char);
3315 // ebx: instance type
3316 // ecx: sub string length (smi)
3317 // edx: from index (smi)
3318 StringCharAtGenerator generator(eax, edx, ecx, eax, &runtime, &runtime,
3319 &runtime, STRING_INDEX_IS_NUMBER,
3320 RECEIVER_IS_STRING);
3321 generator.GenerateFast(masm);
3322 __ ret(3 * kPointerSize);
3323 generator.SkipSlow(masm, &runtime);
3327 void ToNumberStub::Generate(MacroAssembler* masm) {
3328 // The ToNumber stub takes one argument in eax.
3330 __ JumpIfNotSmi(eax, ¬_smi, Label::kNear);
3334 Label not_heap_number;
3335 __ CompareMap(eax, masm->isolate()->factory()->heap_number_map());
3336 __ j(not_equal, ¬_heap_number, Label::kNear);
3338 __ bind(¬_heap_number);
3340 Label not_string, slow_string;
3341 __ CmpObjectType(eax, FIRST_NONSTRING_TYPE, edi);
3344 __ j(above_equal, ¬_string, Label::kNear);
3345 // Check if string has a cached array index.
3346 __ test(FieldOperand(eax, String::kHashFieldOffset),
3347 Immediate(String::kContainsCachedArrayIndexMask));
3348 __ j(not_zero, &slow_string, Label::kNear);
3349 __ mov(eax, FieldOperand(eax, String::kHashFieldOffset));
3350 __ IndexFromHash(eax, eax);
3352 __ bind(&slow_string);
3353 __ pop(ecx); // Pop return address.
3354 __ push(eax); // Push argument.
3355 __ push(ecx); // Push return address.
3356 __ TailCallRuntime(Runtime::kStringToNumber, 1, 1);
3357 __ bind(¬_string);
3360 __ CmpInstanceType(edi, ODDBALL_TYPE);
3361 __ j(not_equal, ¬_oddball, Label::kNear);
3362 __ mov(eax, FieldOperand(eax, Oddball::kToNumberOffset));
3364 __ bind(¬_oddball);
3366 __ pop(ecx); // Pop return address.
3367 __ push(eax); // Push argument.
3368 __ push(ecx); // Push return address.
3369 __ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_FUNCTION);
3373 void StringHelper::GenerateFlatOneByteStringEquals(MacroAssembler* masm,
3377 Register scratch2) {
3378 Register length = scratch1;
3381 Label strings_not_equal, check_zero_length;
3382 __ mov(length, FieldOperand(left, String::kLengthOffset));
3383 __ cmp(length, FieldOperand(right, String::kLengthOffset));
3384 __ j(equal, &check_zero_length, Label::kNear);
3385 __ bind(&strings_not_equal);
3386 __ Move(eax, Immediate(Smi::FromInt(NOT_EQUAL)));
3389 // Check if the length is zero.
3390 Label compare_chars;
3391 __ bind(&check_zero_length);
3392 STATIC_ASSERT(kSmiTag == 0);
3393 __ test(length, length);
3394 __ j(not_zero, &compare_chars, Label::kNear);
3395 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3398 // Compare characters.
3399 __ bind(&compare_chars);
3400 GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2,
3401 &strings_not_equal, Label::kNear);
3403 // Characters are equal.
3404 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3409 void StringHelper::GenerateCompareFlatOneByteStrings(
3410 MacroAssembler* masm, Register left, Register right, Register scratch1,
3411 Register scratch2, Register scratch3) {
3412 Counters* counters = masm->isolate()->counters();
3413 __ IncrementCounter(counters->string_compare_native(), 1);
3415 // Find minimum length.
3417 __ mov(scratch1, FieldOperand(left, String::kLengthOffset));
3418 __ mov(scratch3, scratch1);
3419 __ sub(scratch3, FieldOperand(right, String::kLengthOffset));
3421 Register length_delta = scratch3;
3423 __ j(less_equal, &left_shorter, Label::kNear);
3424 // Right string is shorter. Change scratch1 to be length of right string.
3425 __ sub(scratch1, length_delta);
3426 __ bind(&left_shorter);
3428 Register min_length = scratch1;
3430 // If either length is zero, just compare lengths.
3431 Label compare_lengths;
3432 __ test(min_length, min_length);
3433 __ j(zero, &compare_lengths, Label::kNear);
3435 // Compare characters.
3436 Label result_not_equal;
3437 GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
3438 &result_not_equal, Label::kNear);
3440 // Compare lengths - strings up to min-length are equal.
3441 __ bind(&compare_lengths);
3442 __ test(length_delta, length_delta);
3443 Label length_not_equal;
3444 __ j(not_zero, &length_not_equal, Label::kNear);
3447 STATIC_ASSERT(EQUAL == 0);
3448 STATIC_ASSERT(kSmiTag == 0);
3449 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3452 Label result_greater;
3454 __ bind(&length_not_equal);
3455 __ j(greater, &result_greater, Label::kNear);
3456 __ jmp(&result_less, Label::kNear);
3457 __ bind(&result_not_equal);
3458 __ j(above, &result_greater, Label::kNear);
3459 __ bind(&result_less);
3462 __ Move(eax, Immediate(Smi::FromInt(LESS)));
3465 // Result is GREATER.
3466 __ bind(&result_greater);
3467 __ Move(eax, Immediate(Smi::FromInt(GREATER)));
3472 void StringHelper::GenerateOneByteCharsCompareLoop(
3473 MacroAssembler* masm, Register left, Register right, Register length,
3474 Register scratch, Label* chars_not_equal,
3475 Label::Distance chars_not_equal_near) {
3476 // Change index to run from -length to -1 by adding length to string
3477 // start. This means that loop ends when index reaches zero, which
3478 // doesn't need an additional compare.
3479 __ SmiUntag(length);
3481 FieldOperand(left, length, times_1, SeqOneByteString::kHeaderSize));
3483 FieldOperand(right, length, times_1, SeqOneByteString::kHeaderSize));
3485 Register index = length; // index = -length;
3490 __ mov_b(scratch, Operand(left, index, times_1, 0));
3491 __ cmpb(scratch, Operand(right, index, times_1, 0));
3492 __ j(not_equal, chars_not_equal, chars_not_equal_near);
3494 __ j(not_zero, &loop);
3498 void StringCompareStub::Generate(MacroAssembler* masm) {
3501 // Stack frame on entry.
3502 // esp[0]: return address
3503 // esp[4]: right string
3504 // esp[8]: left string
3506 __ mov(edx, Operand(esp, 2 * kPointerSize)); // left
3507 __ mov(eax, Operand(esp, 1 * kPointerSize)); // right
3511 __ j(not_equal, ¬_same, Label::kNear);
3512 STATIC_ASSERT(EQUAL == 0);
3513 STATIC_ASSERT(kSmiTag == 0);
3514 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3515 __ IncrementCounter(isolate()->counters()->string_compare_native(), 1);
3516 __ ret(2 * kPointerSize);
3520 // Check that both objects are sequential one-byte strings.
3521 __ JumpIfNotBothSequentialOneByteStrings(edx, eax, ecx, ebx, &runtime);
3523 // Compare flat one-byte strings.
3524 // Drop arguments from the stack.
3526 __ add(esp, Immediate(2 * kPointerSize));
3528 StringHelper::GenerateCompareFlatOneByteStrings(masm, edx, eax, ecx, ebx,
3531 // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
3532 // tagged as a small integer.
3534 __ TailCallRuntime(Runtime::kStringCompareRT, 2, 1);
3538 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
3539 // ----------- S t a t e -------------
3542 // -- esp[0] : return address
3543 // -----------------------------------
3545 // Load ecx with the allocation site. We stick an undefined dummy value here
3546 // and replace it with the real allocation site later when we instantiate this
3547 // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
3548 __ mov(ecx, handle(isolate()->heap()->undefined_value()));
3550 // Make sure that we actually patched the allocation site.
3551 if (FLAG_debug_code) {
3552 __ test(ecx, Immediate(kSmiTagMask));
3553 __ Assert(not_equal, kExpectedAllocationSite);
3554 __ cmp(FieldOperand(ecx, HeapObject::kMapOffset),
3555 isolate()->factory()->allocation_site_map());
3556 __ Assert(equal, kExpectedAllocationSite);
3559 // Tail call into the stub that handles binary operations with allocation
3561 BinaryOpWithAllocationSiteStub stub(isolate(), state());
3562 __ TailCallStub(&stub);
3566 void CompareICStub::GenerateSmis(MacroAssembler* masm) {
3567 DCHECK(state() == CompareICState::SMI);
3571 __ JumpIfNotSmi(ecx, &miss, Label::kNear);
3573 if (GetCondition() == equal) {
3574 // For equality we do not care about the sign of the result.
3579 __ j(no_overflow, &done, Label::kNear);
3580 // Correct sign of result in case of overflow.
3592 void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
3593 DCHECK(state() == CompareICState::NUMBER);
3596 Label unordered, maybe_undefined1, maybe_undefined2;
3599 if (left() == CompareICState::SMI) {
3600 __ JumpIfNotSmi(edx, &miss);
3602 if (right() == CompareICState::SMI) {
3603 __ JumpIfNotSmi(eax, &miss);
3606 // Load left and right operand.
3607 Label done, left, left_smi, right_smi;
3608 __ JumpIfSmi(eax, &right_smi, Label::kNear);
3609 __ cmp(FieldOperand(eax, HeapObject::kMapOffset),
3610 isolate()->factory()->heap_number_map());
3611 __ j(not_equal, &maybe_undefined1, Label::kNear);
3612 __ movsd(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
3613 __ jmp(&left, Label::kNear);
3614 __ bind(&right_smi);
3615 __ mov(ecx, eax); // Can't clobber eax because we can still jump away.
3617 __ Cvtsi2sd(xmm1, ecx);
3620 __ JumpIfSmi(edx, &left_smi, Label::kNear);
3621 __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
3622 isolate()->factory()->heap_number_map());
3623 __ j(not_equal, &maybe_undefined2, Label::kNear);
3624 __ movsd(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
3627 __ mov(ecx, edx); // Can't clobber edx because we can still jump away.
3629 __ Cvtsi2sd(xmm0, ecx);
3632 // Compare operands.
3633 __ ucomisd(xmm0, xmm1);
3635 // Don't base result on EFLAGS when a NaN is involved.
3636 __ j(parity_even, &unordered, Label::kNear);
3638 // Return a result of -1, 0, or 1, based on EFLAGS.
3639 // Performing mov, because xor would destroy the flag register.
3640 __ mov(eax, 0); // equal
3641 __ mov(ecx, Immediate(Smi::FromInt(1)));
3642 __ cmov(above, eax, ecx);
3643 __ mov(ecx, Immediate(Smi::FromInt(-1)));
3644 __ cmov(below, eax, ecx);
3647 __ bind(&unordered);
3648 __ bind(&generic_stub);
3649 CompareICStub stub(isolate(), op(), strength(), CompareICState::GENERIC,
3650 CompareICState::GENERIC, CompareICState::GENERIC);
3651 __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
3653 __ bind(&maybe_undefined1);
3654 if (Token::IsOrderedRelationalCompareOp(op())) {
3655 __ cmp(eax, Immediate(isolate()->factory()->undefined_value()));
3656 __ j(not_equal, &miss);
3657 __ JumpIfSmi(edx, &unordered);
3658 __ CmpObjectType(edx, HEAP_NUMBER_TYPE, ecx);
3659 __ j(not_equal, &maybe_undefined2, Label::kNear);
3663 __ bind(&maybe_undefined2);
3664 if (Token::IsOrderedRelationalCompareOp(op())) {
3665 __ cmp(edx, Immediate(isolate()->factory()->undefined_value()));
3666 __ j(equal, &unordered);
3674 void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
3675 DCHECK(state() == CompareICState::INTERNALIZED_STRING);
3676 DCHECK(GetCondition() == equal);
3678 // Registers containing left and right operands respectively.
3679 Register left = edx;
3680 Register right = eax;
3681 Register tmp1 = ecx;
3682 Register tmp2 = ebx;
3684 // Check that both operands are heap objects.
3687 STATIC_ASSERT(kSmiTag == 0);
3688 __ and_(tmp1, right);
3689 __ JumpIfSmi(tmp1, &miss, Label::kNear);
3691 // Check that both operands are internalized strings.
3692 __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
3693 __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
3694 __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
3695 __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
3696 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
3698 __ test(tmp1, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
3699 __ j(not_zero, &miss, Label::kNear);
3701 // Internalized strings are compared by identity.
3703 __ cmp(left, right);
3704 // Make sure eax is non-zero. At this point input operands are
3705 // guaranteed to be non-zero.
3706 DCHECK(right.is(eax));
3707 __ j(not_equal, &done, Label::kNear);
3708 STATIC_ASSERT(EQUAL == 0);
3709 STATIC_ASSERT(kSmiTag == 0);
3710 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3719 void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
3720 DCHECK(state() == CompareICState::UNIQUE_NAME);
3721 DCHECK(GetCondition() == equal);
3723 // Registers containing left and right operands respectively.
3724 Register left = edx;
3725 Register right = eax;
3726 Register tmp1 = ecx;
3727 Register tmp2 = ebx;
3729 // Check that both operands are heap objects.
3732 STATIC_ASSERT(kSmiTag == 0);
3733 __ and_(tmp1, right);
3734 __ JumpIfSmi(tmp1, &miss, Label::kNear);
3736 // Check that both operands are unique names. This leaves the instance
3737 // types loaded in tmp1 and tmp2.
3738 __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
3739 __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
3740 __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
3741 __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
3743 __ JumpIfNotUniqueNameInstanceType(tmp1, &miss, Label::kNear);
3744 __ JumpIfNotUniqueNameInstanceType(tmp2, &miss, Label::kNear);
3746 // Unique names are compared by identity.
3748 __ cmp(left, right);
3749 // Make sure eax is non-zero. At this point input operands are
3750 // guaranteed to be non-zero.
3751 DCHECK(right.is(eax));
3752 __ j(not_equal, &done, Label::kNear);
3753 STATIC_ASSERT(EQUAL == 0);
3754 STATIC_ASSERT(kSmiTag == 0);
3755 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3764 void CompareICStub::GenerateStrings(MacroAssembler* masm) {
3765 DCHECK(state() == CompareICState::STRING);
3768 bool equality = Token::IsEqualityOp(op());
3770 // Registers containing left and right operands respectively.
3771 Register left = edx;
3772 Register right = eax;
3773 Register tmp1 = ecx;
3774 Register tmp2 = ebx;
3775 Register tmp3 = edi;
3777 // Check that both operands are heap objects.
3779 STATIC_ASSERT(kSmiTag == 0);
3780 __ and_(tmp1, right);
3781 __ JumpIfSmi(tmp1, &miss);
3783 // Check that both operands are strings. This leaves the instance
3784 // types loaded in tmp1 and tmp2.
3785 __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
3786 __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
3787 __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
3788 __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
3790 STATIC_ASSERT(kNotStringTag != 0);
3792 __ test(tmp3, Immediate(kIsNotStringMask));
3793 __ j(not_zero, &miss);
3795 // Fast check for identical strings.
3797 __ cmp(left, right);
3798 __ j(not_equal, ¬_same, Label::kNear);
3799 STATIC_ASSERT(EQUAL == 0);
3800 STATIC_ASSERT(kSmiTag == 0);
3801 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3804 // Handle not identical strings.
3807 // Check that both strings are internalized. If they are, we're done
3808 // because we already know they are not identical. But in the case of
3809 // non-equality compare, we still need to determine the order. We
3810 // also know they are both strings.
3813 STATIC_ASSERT(kInternalizedTag == 0);
3815 __ test(tmp1, Immediate(kIsNotInternalizedMask));
3816 __ j(not_zero, &do_compare, Label::kNear);
3817 // Make sure eax is non-zero. At this point input operands are
3818 // guaranteed to be non-zero.
3819 DCHECK(right.is(eax));
3821 __ bind(&do_compare);
3824 // Check that both strings are sequential one-byte.
3826 __ JumpIfNotBothSequentialOneByteStrings(left, right, tmp1, tmp2, &runtime);
3828 // Compare flat one byte strings. Returns when done.
3830 StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1,
3833 StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
3837 // Handle more complex cases in runtime.
3839 __ pop(tmp1); // Return address.
3844 __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
3846 __ TailCallRuntime(Runtime::kStringCompareRT, 2, 1);
3854 void CompareICStub::GenerateObjects(MacroAssembler* masm) {
3855 DCHECK(state() == CompareICState::OBJECT);
3859 __ JumpIfSmi(ecx, &miss, Label::kNear);
3861 __ CmpObjectType(eax, JS_OBJECT_TYPE, ecx);
3862 __ j(not_equal, &miss, Label::kNear);
3863 __ CmpObjectType(edx, JS_OBJECT_TYPE, ecx);
3864 __ j(not_equal, &miss, Label::kNear);
3866 DCHECK(GetCondition() == equal);
3875 void CompareICStub::GenerateKnownObjects(MacroAssembler* masm) {
3877 Handle<WeakCell> cell = Map::WeakCellForMap(known_map_);
3880 __ JumpIfSmi(ecx, &miss, Label::kNear);
3882 __ GetWeakValue(edi, cell);
3883 __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
3884 __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset));
3886 __ j(not_equal, &miss, Label::kNear);
3888 __ j(not_equal, &miss, Label::kNear);
3898 void CompareICStub::GenerateMiss(MacroAssembler* masm) {
3900 // Call the runtime system in a fresh internal frame.
3901 ExternalReference miss = ExternalReference(IC_Utility(IC::kCompareIC_Miss),
3903 FrameScope scope(masm, StackFrame::INTERNAL);
3904 __ push(edx); // Preserve edx and eax.
3906 __ push(edx); // And also use them as the arguments.
3908 __ push(Immediate(Smi::FromInt(op())));
3909 __ CallExternalReference(miss, 3);
3910 // Compute the entry point of the rewritten stub.
3911 __ lea(edi, FieldOperand(eax, Code::kHeaderSize));
3916 // Do a tail call to the rewritten stub.
3921 // Helper function used to check that the dictionary doesn't contain
3922 // the property. This function may return false negatives, so miss_label
3923 // must always call a backup property check that is complete.
3924 // This function is safe to call if the receiver has fast properties.
3925 // Name must be a unique name and receiver must be a heap object.
3926 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
3929 Register properties,
3932 DCHECK(name->IsUniqueName());
3934 // If names of slots in range from 1 to kProbes - 1 for the hash value are
3935 // not equal to the name and kProbes-th slot is not used (its name is the
3936 // undefined value), it guarantees the hash table doesn't contain the
3937 // property. It's true even if some slots represent deleted properties
3938 // (their names are the hole value).
3939 for (int i = 0; i < kInlinedProbes; i++) {
3940 // Compute the masked index: (hash + i + i * i) & mask.
3941 Register index = r0;
3942 // Capacity is smi 2^n.
3943 __ mov(index, FieldOperand(properties, kCapacityOffset));
3946 Immediate(Smi::FromInt(name->Hash() +
3947 NameDictionary::GetProbeOffset(i))));
3949 // Scale the index by multiplying by the entry size.
3950 DCHECK(NameDictionary::kEntrySize == 3);
3951 __ lea(index, Operand(index, index, times_2, 0)); // index *= 3.
3952 Register entity_name = r0;
3953 // Having undefined at this place means the name is not contained.
3954 DCHECK_EQ(kSmiTagSize, 1);
3955 __ mov(entity_name, Operand(properties, index, times_half_pointer_size,
3956 kElementsStartOffset - kHeapObjectTag));
3957 __ cmp(entity_name, masm->isolate()->factory()->undefined_value());
3960 // Stop if found the property.
3961 __ cmp(entity_name, Handle<Name>(name));
3965 // Check for the hole and skip.
3966 __ cmp(entity_name, masm->isolate()->factory()->the_hole_value());
3967 __ j(equal, &good, Label::kNear);
3969 // Check if the entry name is not a unique name.
3970 __ mov(entity_name, FieldOperand(entity_name, HeapObject::kMapOffset));
3971 __ JumpIfNotUniqueNameInstanceType(
3972 FieldOperand(entity_name, Map::kInstanceTypeOffset), miss);
3976 NameDictionaryLookupStub stub(masm->isolate(), properties, r0, r0,
3978 __ push(Immediate(Handle<Object>(name)));
3979 __ push(Immediate(name->Hash()));
3982 __ j(not_zero, miss);
3987 // Probe the name dictionary in the |elements| register. Jump to the
3988 // |done| label if a property with the given name is found leaving the
3989 // index into the dictionary in |r0|. Jump to the |miss| label
3991 void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
3998 DCHECK(!elements.is(r0));
3999 DCHECK(!elements.is(r1));
4000 DCHECK(!name.is(r0));
4001 DCHECK(!name.is(r1));
4003 __ AssertName(name);
4005 __ mov(r1, FieldOperand(elements, kCapacityOffset));
4006 __ shr(r1, kSmiTagSize); // convert smi to int
4009 // Generate an unrolled loop that performs a few probes before
4010 // giving up. Measurements done on Gmail indicate that 2 probes
4011 // cover ~93% of loads from dictionaries.
4012 for (int i = 0; i < kInlinedProbes; i++) {
4013 // Compute the masked index: (hash + i + i * i) & mask.
4014 __ mov(r0, FieldOperand(name, Name::kHashFieldOffset));
4015 __ shr(r0, Name::kHashShift);
4017 __ add(r0, Immediate(NameDictionary::GetProbeOffset(i)));
4021 // Scale the index by multiplying by the entry size.
4022 DCHECK(NameDictionary::kEntrySize == 3);
4023 __ lea(r0, Operand(r0, r0, times_2, 0)); // r0 = r0 * 3
4025 // Check if the key is identical to the name.
4026 __ cmp(name, Operand(elements,
4029 kElementsStartOffset - kHeapObjectTag));
4033 NameDictionaryLookupStub stub(masm->isolate(), elements, r1, r0,
4036 __ mov(r0, FieldOperand(name, Name::kHashFieldOffset));
4037 __ shr(r0, Name::kHashShift);
4047 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
4048 // This stub overrides SometimesSetsUpAFrame() to return false. That means
4049 // we cannot call anything that could cause a GC from this stub.
4050 // Stack frame on entry:
4051 // esp[0 * kPointerSize]: return address.
4052 // esp[1 * kPointerSize]: key's hash.
4053 // esp[2 * kPointerSize]: key.
4055 // dictionary_: NameDictionary to probe.
4056 // result_: used as scratch.
4057 // index_: will hold an index of entry if lookup is successful.
4058 // might alias with result_.
4060 // result_ is zero if lookup failed, non zero otherwise.
4062 Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
4064 Register scratch = result();
4066 __ mov(scratch, FieldOperand(dictionary(), kCapacityOffset));
4068 __ SmiUntag(scratch);
4071 // If names of slots in range from 1 to kProbes - 1 for the hash value are
4072 // not equal to the name and kProbes-th slot is not used (its name is the
4073 // undefined value), it guarantees the hash table doesn't contain the
4074 // property. It's true even if some slots represent deleted properties
4075 // (their names are the null value).
4076 for (int i = kInlinedProbes; i < kTotalProbes; i++) {
4077 // Compute the masked index: (hash + i + i * i) & mask.
4078 __ mov(scratch, Operand(esp, 2 * kPointerSize));
4080 __ add(scratch, Immediate(NameDictionary::GetProbeOffset(i)));
4082 __ and_(scratch, Operand(esp, 0));
4084 // Scale the index by multiplying by the entry size.
4085 DCHECK(NameDictionary::kEntrySize == 3);
4086 __ lea(index(), Operand(scratch, scratch, times_2, 0)); // index *= 3.
4088 // Having undefined at this place means the name is not contained.
4089 DCHECK_EQ(kSmiTagSize, 1);
4090 __ mov(scratch, Operand(dictionary(), index(), times_pointer_size,
4091 kElementsStartOffset - kHeapObjectTag));
4092 __ cmp(scratch, isolate()->factory()->undefined_value());
4093 __ j(equal, ¬_in_dictionary);
4095 // Stop if found the property.
4096 __ cmp(scratch, Operand(esp, 3 * kPointerSize));
4097 __ j(equal, &in_dictionary);
4099 if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
4100 // If we hit a key that is not a unique name during negative
4101 // lookup we have to bailout as this key might be equal to the
4102 // key we are looking for.
4104 // Check if the entry name is not a unique name.
4105 __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
4106 __ JumpIfNotUniqueNameInstanceType(
4107 FieldOperand(scratch, Map::kInstanceTypeOffset),
4108 &maybe_in_dictionary);
4112 __ bind(&maybe_in_dictionary);
4113 // If we are doing negative lookup then probing failure should be
4114 // treated as a lookup success. For positive lookup probing failure
4115 // should be treated as lookup failure.
4116 if (mode() == POSITIVE_LOOKUP) {
4117 __ mov(result(), Immediate(0));
4119 __ ret(2 * kPointerSize);
4122 __ bind(&in_dictionary);
4123 __ mov(result(), Immediate(1));
4125 __ ret(2 * kPointerSize);
4127 __ bind(¬_in_dictionary);
4128 __ mov(result(), Immediate(0));
4130 __ ret(2 * kPointerSize);
4134 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
4136 StoreBufferOverflowStub stub(isolate, kDontSaveFPRegs);
4138 StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
4143 // Takes the input in 3 registers: address_ value_ and object_. A pointer to
4144 // the value has just been written into the object, now this stub makes sure
4145 // we keep the GC informed. The word in the object where the value has been
4146 // written is in the address register.
4147 void RecordWriteStub::Generate(MacroAssembler* masm) {
4148 Label skip_to_incremental_noncompacting;
4149 Label skip_to_incremental_compacting;
4151 // The first two instructions are generated with labels so as to get the
4152 // offset fixed up correctly by the bind(Label*) call. We patch it back and
4153 // forth between a compare instructions (a nop in this position) and the
4154 // real branch when we start and stop incremental heap marking.
4155 __ jmp(&skip_to_incremental_noncompacting, Label::kNear);
4156 __ jmp(&skip_to_incremental_compacting, Label::kFar);
4158 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
4159 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
4160 MacroAssembler::kReturnAtEnd);
4165 __ bind(&skip_to_incremental_noncompacting);
4166 GenerateIncremental(masm, INCREMENTAL);
4168 __ bind(&skip_to_incremental_compacting);
4169 GenerateIncremental(masm, INCREMENTAL_COMPACTION);
4171 // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
4172 // Will be checked in IncrementalMarking::ActivateGeneratedStub.
4173 masm->set_byte_at(0, kTwoByteNopInstruction);
4174 masm->set_byte_at(2, kFiveByteNopInstruction);
4178 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
4181 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
4182 Label dont_need_remembered_set;
4184 __ mov(regs_.scratch0(), Operand(regs_.address(), 0));
4185 __ JumpIfNotInNewSpace(regs_.scratch0(), // Value.
4187 &dont_need_remembered_set);
4189 __ CheckPageFlag(regs_.object(),
4191 1 << MemoryChunk::SCAN_ON_SCAVENGE,
4193 &dont_need_remembered_set);
4195 // First notify the incremental marker if necessary, then update the
4197 CheckNeedsToInformIncrementalMarker(
4199 kUpdateRememberedSetOnNoNeedToInformIncrementalMarker,
4201 InformIncrementalMarker(masm);
4202 regs_.Restore(masm);
4203 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
4204 MacroAssembler::kReturnAtEnd);
4206 __ bind(&dont_need_remembered_set);
4209 CheckNeedsToInformIncrementalMarker(
4211 kReturnOnNoNeedToInformIncrementalMarker,
4213 InformIncrementalMarker(masm);
4214 regs_.Restore(masm);
4219 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
4220 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
4221 int argument_count = 3;
4222 __ PrepareCallCFunction(argument_count, regs_.scratch0());
4223 __ mov(Operand(esp, 0 * kPointerSize), regs_.object());
4224 __ mov(Operand(esp, 1 * kPointerSize), regs_.address()); // Slot.
4225 __ mov(Operand(esp, 2 * kPointerSize),
4226 Immediate(ExternalReference::isolate_address(isolate())));
4228 AllowExternalCallThatCantCauseGC scope(masm);
4230 ExternalReference::incremental_marking_record_write_function(isolate()),
4233 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
4237 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
4238 MacroAssembler* masm,
4239 OnNoNeedToInformIncrementalMarker on_no_need,
4241 Label object_is_black, need_incremental, need_incremental_pop_object;
4243 __ mov(regs_.scratch0(), Immediate(~Page::kPageAlignmentMask));
4244 __ and_(regs_.scratch0(), regs_.object());
4245 __ mov(regs_.scratch1(),
4246 Operand(regs_.scratch0(),
4247 MemoryChunk::kWriteBarrierCounterOffset));
4248 __ sub(regs_.scratch1(), Immediate(1));
4249 __ mov(Operand(regs_.scratch0(),
4250 MemoryChunk::kWriteBarrierCounterOffset),
4252 __ j(negative, &need_incremental);
4254 // Let's look at the color of the object: If it is not black we don't have
4255 // to inform the incremental marker.
4256 __ JumpIfBlack(regs_.object(),
4262 regs_.Restore(masm);
4263 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
4264 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
4265 MacroAssembler::kReturnAtEnd);
4270 __ bind(&object_is_black);
4272 // Get the value from the slot.
4273 __ mov(regs_.scratch0(), Operand(regs_.address(), 0));
4275 if (mode == INCREMENTAL_COMPACTION) {
4276 Label ensure_not_white;
4278 __ CheckPageFlag(regs_.scratch0(), // Contains value.
4279 regs_.scratch1(), // Scratch.
4280 MemoryChunk::kEvacuationCandidateMask,
4285 __ CheckPageFlag(regs_.object(),
4286 regs_.scratch1(), // Scratch.
4287 MemoryChunk::kSkipEvacuationSlotsRecordingMask,
4292 __ jmp(&need_incremental);
4294 __ bind(&ensure_not_white);
4297 // We need an extra register for this, so we push the object register
4299 __ push(regs_.object());
4300 __ EnsureNotWhite(regs_.scratch0(), // The value.
4301 regs_.scratch1(), // Scratch.
4302 regs_.object(), // Scratch.
4303 &need_incremental_pop_object,
4305 __ pop(regs_.object());
4307 regs_.Restore(masm);
4308 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
4309 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
4310 MacroAssembler::kReturnAtEnd);
4315 __ bind(&need_incremental_pop_object);
4316 __ pop(regs_.object());
4318 __ bind(&need_incremental);
4320 // Fall through when we need to inform the incremental marker.
4324 void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
4325 // ----------- S t a t e -------------
4326 // -- eax : element value to store
4327 // -- ecx : element index as smi
4328 // -- esp[0] : return address
4329 // -- esp[4] : array literal index in function
4330 // -- esp[8] : array literal
4331 // clobbers ebx, edx, edi
4332 // -----------------------------------
4335 Label double_elements;
4337 Label slow_elements;
4338 Label slow_elements_from_double;
4339 Label fast_elements;
4341 // Get array literal index, array literal and its map.
4342 __ mov(edx, Operand(esp, 1 * kPointerSize));
4343 __ mov(ebx, Operand(esp, 2 * kPointerSize));
4344 __ mov(edi, FieldOperand(ebx, JSObject::kMapOffset));
4346 __ CheckFastElements(edi, &double_elements);
4348 // Check for FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS elements
4349 __ JumpIfSmi(eax, &smi_element);
4350 __ CheckFastSmiElements(edi, &fast_elements, Label::kNear);
4352 // Store into the array literal requires a elements transition. Call into
4355 __ bind(&slow_elements);
4356 __ pop(edi); // Pop return address and remember to put back later for tail
4361 __ mov(ebx, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
4362 __ push(FieldOperand(ebx, JSFunction::kLiteralsOffset));
4364 __ push(edi); // Return return address so that tail call returns to right
4366 __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
4368 __ bind(&slow_elements_from_double);
4370 __ jmp(&slow_elements);
4372 // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object.
4373 __ bind(&fast_elements);
4374 __ mov(ebx, FieldOperand(ebx, JSObject::kElementsOffset));
4375 __ lea(ecx, FieldOperand(ebx, ecx, times_half_pointer_size,
4376 FixedArrayBase::kHeaderSize));
4377 __ mov(Operand(ecx, 0), eax);
4378 // Update the write barrier for the array store.
4379 __ RecordWrite(ebx, ecx, eax,
4381 EMIT_REMEMBERED_SET,
4385 // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS,
4386 // and value is Smi.
4387 __ bind(&smi_element);
4388 __ mov(ebx, FieldOperand(ebx, JSObject::kElementsOffset));
4389 __ mov(FieldOperand(ebx, ecx, times_half_pointer_size,
4390 FixedArrayBase::kHeaderSize), eax);
4393 // Array literal has ElementsKind of FAST_*_DOUBLE_ELEMENTS.
4394 __ bind(&double_elements);
4397 __ mov(edx, FieldOperand(ebx, JSObject::kElementsOffset));
4398 __ StoreNumberToDoubleElements(eax,
4403 &slow_elements_from_double);
4409 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
4410 CEntryStub ces(isolate(), 1, kSaveFPRegs);
4411 __ call(ces.GetCode(), RelocInfo::CODE_TARGET);
4412 int parameter_count_offset =
4413 StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
4414 __ mov(ebx, MemOperand(ebp, parameter_count_offset));
4415 masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
4417 int additional_offset =
4418 function_mode() == JS_FUNCTION_STUB_MODE ? kPointerSize : 0;
4419 __ lea(esp, MemOperand(esp, ebx, times_pointer_size, additional_offset));
4420 __ jmp(ecx); // Return to IC Miss stub, continuation still on stack.
4424 void LoadICTrampolineStub::Generate(MacroAssembler* masm) {
4425 EmitLoadTypeFeedbackVector(masm, LoadWithVectorDescriptor::VectorRegister());
4426 LoadICStub stub(isolate(), state());
4427 stub.GenerateForTrampoline(masm);
4431 void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) {
4432 EmitLoadTypeFeedbackVector(masm, LoadWithVectorDescriptor::VectorRegister());
4433 KeyedLoadICStub stub(isolate());
4434 stub.GenerateForTrampoline(masm);
4438 static void HandleArrayCases(MacroAssembler* masm, Register receiver,
4439 Register key, Register vector, Register slot,
4440 Register feedback, bool is_polymorphic,
4442 // feedback initially contains the feedback array
4443 Label next, next_loop, prepare_next;
4444 Label load_smi_map, compare_map;
4445 Label start_polymorphic;
4450 Register receiver_map = receiver;
4451 Register cached_map = vector;
4453 // Receiver might not be a heap object.
4454 __ JumpIfSmi(receiver, &load_smi_map);
4455 __ mov(receiver_map, FieldOperand(receiver, 0));
4456 __ bind(&compare_map);
4457 __ mov(cached_map, FieldOperand(feedback, FixedArray::OffsetOfElementAt(0)));
4459 // A named keyed load might have a 2 element array, all other cases can count
4460 // on an array with at least 2 {map, handler} pairs, so they can go right
4461 // into polymorphic array handling.
4462 __ cmp(receiver_map, FieldOperand(cached_map, WeakCell::kValueOffset));
4463 __ j(not_equal, is_polymorphic ? &start_polymorphic : &next);
4465 // found, now call handler.
4466 Register handler = feedback;
4467 __ mov(handler, FieldOperand(feedback, FixedArray::OffsetOfElementAt(1)));
4470 __ lea(handler, FieldOperand(handler, Code::kHeaderSize));
4473 if (!is_polymorphic) {
4475 __ cmp(FieldOperand(feedback, FixedArray::kLengthOffset),
4476 Immediate(Smi::FromInt(2)));
4477 __ j(not_equal, &start_polymorphic);
4483 // Polymorphic, we have to loop from 2 to N
4484 __ bind(&start_polymorphic);
4486 Register counter = key;
4487 __ mov(counter, Immediate(Smi::FromInt(2)));
4488 __ bind(&next_loop);
4489 __ mov(cached_map, FieldOperand(feedback, counter, times_half_pointer_size,
4490 FixedArray::kHeaderSize));
4491 __ cmp(receiver_map, FieldOperand(cached_map, WeakCell::kValueOffset));
4492 __ j(not_equal, &prepare_next);
4493 __ mov(handler, FieldOperand(feedback, counter, times_half_pointer_size,
4494 FixedArray::kHeaderSize + kPointerSize));
4498 __ lea(handler, FieldOperand(handler, Code::kHeaderSize));
4501 __ bind(&prepare_next);
4502 __ add(counter, Immediate(Smi::FromInt(2)));
4503 __ cmp(counter, FieldOperand(feedback, FixedArray::kLengthOffset));
4504 __ j(less, &next_loop);
4506 // We exhausted our array of map handler pairs.
4512 __ bind(&load_smi_map);
4513 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
4514 __ jmp(&compare_map);
4518 static void HandleMonomorphicCase(MacroAssembler* masm, Register receiver,
4519 Register key, Register vector, Register slot,
4520 Register weak_cell, Label* miss) {
4521 // feedback initially contains the feedback array
4522 Label compare_smi_map;
4524 // Move the weak map into the weak_cell register.
4525 Register ic_map = weak_cell;
4526 __ mov(ic_map, FieldOperand(weak_cell, WeakCell::kValueOffset));
4528 // Receiver might not be a heap object.
4529 __ JumpIfSmi(receiver, &compare_smi_map);
4530 __ cmp(ic_map, FieldOperand(receiver, 0));
4531 __ j(not_equal, miss);
4532 Register handler = weak_cell;
4533 __ mov(handler, FieldOperand(vector, slot, times_half_pointer_size,
4534 FixedArray::kHeaderSize + kPointerSize));
4535 __ lea(handler, FieldOperand(handler, Code::kHeaderSize));
4538 // In microbenchmarks, it made sense to unroll this code so that the call to
4539 // the handler is duplicated for a HeapObject receiver and a Smi receiver.
4540 __ bind(&compare_smi_map);
4541 __ CompareRoot(ic_map, Heap::kHeapNumberMapRootIndex);
4542 __ j(not_equal, miss);
4543 __ mov(handler, FieldOperand(vector, slot, times_half_pointer_size,
4544 FixedArray::kHeaderSize + kPointerSize));
4545 __ lea(handler, FieldOperand(handler, Code::kHeaderSize));
4550 void LoadICStub::Generate(MacroAssembler* masm) { GenerateImpl(masm, false); }
4553 void LoadICStub::GenerateForTrampoline(MacroAssembler* masm) {
4554 GenerateImpl(masm, true);
4558 void LoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4559 Register receiver = LoadWithVectorDescriptor::ReceiverRegister(); // edx
4560 Register name = LoadWithVectorDescriptor::NameRegister(); // ecx
4561 Register vector = LoadWithVectorDescriptor::VectorRegister(); // ebx
4562 Register slot = LoadWithVectorDescriptor::SlotRegister(); // eax
4563 Register scratch = edi;
4564 __ mov(scratch, FieldOperand(vector, slot, times_half_pointer_size,
4565 FixedArray::kHeaderSize));
4567 // Is it a weak cell?
4569 Label not_array, smi_key, key_okay, miss;
4570 __ CompareRoot(FieldOperand(scratch, 0), Heap::kWeakCellMapRootIndex);
4571 __ j(not_equal, &try_array);
4572 HandleMonomorphicCase(masm, receiver, name, vector, slot, scratch, &miss);
4574 // Is it a fixed array?
4575 __ bind(&try_array);
4576 __ CompareRoot(FieldOperand(scratch, 0), Heap::kFixedArrayMapRootIndex);
4577 __ j(not_equal, ¬_array);
4578 HandleArrayCases(masm, receiver, name, vector, slot, scratch, true, &miss);
4580 __ bind(¬_array);
4581 __ CompareRoot(scratch, Heap::kmegamorphic_symbolRootIndex);
4582 __ j(not_equal, &miss);
4585 Code::Flags code_flags = Code::RemoveTypeAndHolderFromFlags(
4586 Code::ComputeHandlerFlags(Code::LOAD_IC));
4587 masm->isolate()->stub_cache()->GenerateProbe(
4588 masm, Code::LOAD_IC, code_flags, false, receiver, name, vector, scratch);
4593 LoadIC::GenerateMiss(masm);
4597 void KeyedLoadICStub::Generate(MacroAssembler* masm) {
4598 GenerateImpl(masm, false);
4602 void KeyedLoadICStub::GenerateForTrampoline(MacroAssembler* masm) {
4603 GenerateImpl(masm, true);
4607 void KeyedLoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4608 Register receiver = LoadWithVectorDescriptor::ReceiverRegister(); // edx
4609 Register key = LoadWithVectorDescriptor::NameRegister(); // ecx
4610 Register vector = LoadWithVectorDescriptor::VectorRegister(); // ebx
4611 Register slot = LoadWithVectorDescriptor::SlotRegister(); // eax
4612 Register feedback = edi;
4613 __ mov(feedback, FieldOperand(vector, slot, times_half_pointer_size,
4614 FixedArray::kHeaderSize));
4615 // Is it a weak cell?
4617 Label not_array, smi_key, key_okay, miss;
4618 __ CompareRoot(FieldOperand(feedback, 0), Heap::kWeakCellMapRootIndex);
4619 __ j(not_equal, &try_array);
4620 HandleMonomorphicCase(masm, receiver, key, vector, slot, feedback, &miss);
4622 __ bind(&try_array);
4623 // Is it a fixed array?
4624 __ CompareRoot(FieldOperand(feedback, 0), Heap::kFixedArrayMapRootIndex);
4625 __ j(not_equal, ¬_array);
4627 // We have a polymorphic element handler.
4628 Label polymorphic, try_poly_name;
4629 __ bind(&polymorphic);
4630 HandleArrayCases(masm, receiver, key, vector, slot, feedback, true, &miss);
4632 __ bind(¬_array);
4634 __ CompareRoot(feedback, Heap::kmegamorphic_symbolRootIndex);
4635 __ j(not_equal, &try_poly_name);
4636 Handle<Code> megamorphic_stub =
4637 KeyedLoadIC::ChooseMegamorphicStub(masm->isolate());
4638 __ jmp(megamorphic_stub, RelocInfo::CODE_TARGET);
4640 __ bind(&try_poly_name);
4641 // We might have a name in feedback, and a fixed array in the next slot.
4642 __ cmp(key, feedback);
4643 __ j(not_equal, &miss);
4644 // If the name comparison succeeded, we know we have a fixed array with
4645 // at least one map/handler pair.
4646 __ mov(feedback, FieldOperand(vector, slot, times_half_pointer_size,
4647 FixedArray::kHeaderSize + kPointerSize));
4648 HandleArrayCases(masm, receiver, key, vector, slot, feedback, false, &miss);
4651 KeyedLoadIC::GenerateMiss(masm);
4655 void VectorStoreICTrampolineStub::Generate(MacroAssembler* masm) {
4656 EmitLoadTypeFeedbackVector(masm, VectorStoreICDescriptor::VectorRegister());
4657 VectorStoreICStub stub(isolate(), state());
4658 stub.GenerateForTrampoline(masm);
4662 void VectorKeyedStoreICTrampolineStub::Generate(MacroAssembler* masm) {
4663 EmitLoadTypeFeedbackVector(masm, VectorStoreICDescriptor::VectorRegister());
4664 VectorKeyedStoreICStub stub(isolate(), state());
4665 stub.GenerateForTrampoline(masm);
4669 void VectorStoreICStub::Generate(MacroAssembler* masm) {
4670 GenerateImpl(masm, false);
4674 void VectorStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
4675 GenerateImpl(masm, true);
4679 void VectorStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4682 // TODO(mvstanton): Implement.
4684 StoreIC::GenerateMiss(masm);
4688 void VectorKeyedStoreICStub::Generate(MacroAssembler* masm) {
4689 GenerateImpl(masm, false);
4693 void VectorKeyedStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
4694 GenerateImpl(masm, true);
4698 void VectorKeyedStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4701 // TODO(mvstanton): Implement.
4703 KeyedStoreIC::GenerateMiss(masm);
4707 void CallICTrampolineStub::Generate(MacroAssembler* masm) {
4708 EmitLoadTypeFeedbackVector(masm, ebx);
4709 CallICStub stub(isolate(), state());
4710 __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
4714 void CallIC_ArrayTrampolineStub::Generate(MacroAssembler* masm) {
4715 EmitLoadTypeFeedbackVector(masm, ebx);
4716 CallIC_ArrayStub stub(isolate(), state());
4717 __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
4721 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
4722 if (masm->isolate()->function_entry_hook() != NULL) {
4723 ProfileEntryHookStub stub(masm->isolate());
4724 masm->CallStub(&stub);
4729 void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
4730 // Save volatile registers.
4731 const int kNumSavedRegisters = 3;
4736 // Calculate and push the original stack pointer.
4737 __ lea(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize));
4740 // Retrieve our return address and use it to calculate the calling
4741 // function's address.
4742 __ mov(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize));
4743 __ sub(eax, Immediate(Assembler::kCallInstructionLength));
4746 // Call the entry hook.
4747 DCHECK(isolate()->function_entry_hook() != NULL);
4748 __ call(FUNCTION_ADDR(isolate()->function_entry_hook()),
4749 RelocInfo::RUNTIME_ENTRY);
4750 __ add(esp, Immediate(2 * kPointerSize));
4762 static void CreateArrayDispatch(MacroAssembler* masm,
4763 AllocationSiteOverrideMode mode) {
4764 if (mode == DISABLE_ALLOCATION_SITES) {
4765 T stub(masm->isolate(),
4766 GetInitialFastElementsKind(),
4768 __ TailCallStub(&stub);
4769 } else if (mode == DONT_OVERRIDE) {
4770 int last_index = GetSequenceIndexFromFastElementsKind(
4771 TERMINAL_FAST_ELEMENTS_KIND);
4772 for (int i = 0; i <= last_index; ++i) {
4774 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4776 __ j(not_equal, &next);
4777 T stub(masm->isolate(), kind);
4778 __ TailCallStub(&stub);
4782 // If we reached this point there is a problem.
4783 __ Abort(kUnexpectedElementsKindInArrayConstructor);
4790 static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
4791 AllocationSiteOverrideMode mode) {
4792 // ebx - allocation site (if mode != DISABLE_ALLOCATION_SITES)
4793 // edx - kind (if mode != DISABLE_ALLOCATION_SITES)
4794 // eax - number of arguments
4795 // edi - constructor?
4796 // esp[0] - return address
4797 // esp[4] - last argument
4798 Label normal_sequence;
4799 if (mode == DONT_OVERRIDE) {
4800 DCHECK(FAST_SMI_ELEMENTS == 0);
4801 DCHECK(FAST_HOLEY_SMI_ELEMENTS == 1);
4802 DCHECK(FAST_ELEMENTS == 2);
4803 DCHECK(FAST_HOLEY_ELEMENTS == 3);
4804 DCHECK(FAST_DOUBLE_ELEMENTS == 4);
4805 DCHECK(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
4807 // is the low bit set? If so, we are holey and that is good.
4809 __ j(not_zero, &normal_sequence);
4812 // look at the first argument
4813 __ mov(ecx, Operand(esp, kPointerSize));
4815 __ j(zero, &normal_sequence);
4817 if (mode == DISABLE_ALLOCATION_SITES) {
4818 ElementsKind initial = GetInitialFastElementsKind();
4819 ElementsKind holey_initial = GetHoleyElementsKind(initial);
4821 ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
4823 DISABLE_ALLOCATION_SITES);
4824 __ TailCallStub(&stub_holey);
4826 __ bind(&normal_sequence);
4827 ArraySingleArgumentConstructorStub stub(masm->isolate(),
4829 DISABLE_ALLOCATION_SITES);
4830 __ TailCallStub(&stub);
4831 } else if (mode == DONT_OVERRIDE) {
4832 // We are going to create a holey array, but our kind is non-holey.
4833 // Fix kind and retry.
4836 if (FLAG_debug_code) {
4837 Handle<Map> allocation_site_map =
4838 masm->isolate()->factory()->allocation_site_map();
4839 __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map));
4840 __ Assert(equal, kExpectedAllocationSite);
4843 // Save the resulting elements kind in type info. We can't just store r3
4844 // in the AllocationSite::transition_info field because elements kind is
4845 // restricted to a portion of the field...upper bits need to be left alone.
4846 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4847 __ add(FieldOperand(ebx, AllocationSite::kTransitionInfoOffset),
4848 Immediate(Smi::FromInt(kFastElementsKindPackedToHoley)));
4850 __ bind(&normal_sequence);
4851 int last_index = GetSequenceIndexFromFastElementsKind(
4852 TERMINAL_FAST_ELEMENTS_KIND);
4853 for (int i = 0; i <= last_index; ++i) {
4855 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4857 __ j(not_equal, &next);
4858 ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
4859 __ TailCallStub(&stub);
4863 // If we reached this point there is a problem.
4864 __ Abort(kUnexpectedElementsKindInArrayConstructor);
4872 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
4873 int to_index = GetSequenceIndexFromFastElementsKind(
4874 TERMINAL_FAST_ELEMENTS_KIND);
4875 for (int i = 0; i <= to_index; ++i) {
4876 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4877 T stub(isolate, kind);
4879 if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
4880 T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
4887 void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
4888 ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
4890 ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
4892 ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
4897 void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
4899 ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
4900 for (int i = 0; i < 2; i++) {
4901 // For internal arrays we only need a few things
4902 InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
4904 InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
4906 InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]);
4912 void ArrayConstructorStub::GenerateDispatchToArrayStub(
4913 MacroAssembler* masm,
4914 AllocationSiteOverrideMode mode) {
4915 if (argument_count() == ANY) {
4916 Label not_zero_case, not_one_case;
4918 __ j(not_zero, ¬_zero_case);
4919 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4921 __ bind(¬_zero_case);
4923 __ j(greater, ¬_one_case);
4924 CreateArrayDispatchOneArgument(masm, mode);
4926 __ bind(¬_one_case);
4927 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4928 } else if (argument_count() == NONE) {
4929 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4930 } else if (argument_count() == ONE) {
4931 CreateArrayDispatchOneArgument(masm, mode);
4932 } else if (argument_count() == MORE_THAN_ONE) {
4933 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4940 void ArrayConstructorStub::Generate(MacroAssembler* masm) {
4941 // ----------- S t a t e -------------
4942 // -- eax : argc (only if argument_count() is ANY or MORE_THAN_ONE)
4943 // -- ebx : AllocationSite or undefined
4944 // -- edi : constructor
4945 // -- edx : Original constructor
4946 // -- esp[0] : return address
4947 // -- esp[4] : last argument
4948 // -----------------------------------
4949 if (FLAG_debug_code) {
4950 // The array construct code is only set for the global and natives
4951 // builtin Array functions which always have maps.
4953 // Initial map for the builtin Array function should be a map.
4954 __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
4955 // Will both indicate a NULL and a Smi.
4956 __ test(ecx, Immediate(kSmiTagMask));
4957 __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
4958 __ CmpObjectType(ecx, MAP_TYPE, ecx);
4959 __ Assert(equal, kUnexpectedInitialMapForArrayFunction);
4961 // We should either have undefined in ebx or a valid AllocationSite
4962 __ AssertUndefinedOrAllocationSite(ebx);
4968 __ j(not_equal, &subclassing);
4971 // If the feedback vector is the undefined value call an array constructor
4972 // that doesn't use AllocationSites.
4973 __ cmp(ebx, isolate()->factory()->undefined_value());
4974 __ j(equal, &no_info);
4976 // Only look at the lower 16 bits of the transition info.
4977 __ mov(edx, FieldOperand(ebx, AllocationSite::kTransitionInfoOffset));
4979 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4980 __ and_(edx, Immediate(AllocationSite::ElementsKindBits::kMask));
4981 GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
4984 GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
4987 __ bind(&subclassing);
4988 __ pop(ecx); // return address.
4993 switch (argument_count()) {
4996 __ add(eax, Immediate(2));
4999 __ mov(eax, Immediate(2));
5002 __ mov(eax, Immediate(3));
5007 __ JumpToExternalReference(
5008 ExternalReference(Runtime::kArrayConstructorWithSubclassing, isolate()));
5012 void InternalArrayConstructorStub::GenerateCase(
5013 MacroAssembler* masm, ElementsKind kind) {
5014 Label not_zero_case, not_one_case;
5015 Label normal_sequence;
5018 __ j(not_zero, ¬_zero_case);
5019 InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
5020 __ TailCallStub(&stub0);
5022 __ bind(¬_zero_case);
5024 __ j(greater, ¬_one_case);
5026 if (IsFastPackedElementsKind(kind)) {
5027 // We might need to create a holey array
5028 // look at the first argument
5029 __ mov(ecx, Operand(esp, kPointerSize));
5031 __ j(zero, &normal_sequence);
5033 InternalArraySingleArgumentConstructorStub
5034 stub1_holey(isolate(), GetHoleyElementsKind(kind));
5035 __ TailCallStub(&stub1_holey);
5038 __ bind(&normal_sequence);
5039 InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
5040 __ TailCallStub(&stub1);
5042 __ bind(¬_one_case);
5043 InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
5044 __ TailCallStub(&stubN);
5048 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
5049 // ----------- S t a t e -------------
5051 // -- edi : constructor
5052 // -- esp[0] : return address
5053 // -- esp[4] : last argument
5054 // -----------------------------------
5056 if (FLAG_debug_code) {
5057 // The array construct code is only set for the global and natives
5058 // builtin Array functions which always have maps.
5060 // Initial map for the builtin Array function should be a map.
5061 __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
5062 // Will both indicate a NULL and a Smi.
5063 __ test(ecx, Immediate(kSmiTagMask));
5064 __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
5065 __ CmpObjectType(ecx, MAP_TYPE, ecx);
5066 __ Assert(equal, kUnexpectedInitialMapForArrayFunction);
5069 // Figure out the right elements kind
5070 __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
5072 // Load the map's "bit field 2" into |result|. We only need the first byte,
5073 // but the following masking takes care of that anyway.
5074 __ mov(ecx, FieldOperand(ecx, Map::kBitField2Offset));
5075 // Retrieve elements_kind from bit field 2.
5076 __ DecodeField<Map::ElementsKindBits>(ecx);
5078 if (FLAG_debug_code) {
5080 __ cmp(ecx, Immediate(FAST_ELEMENTS));
5082 __ cmp(ecx, Immediate(FAST_HOLEY_ELEMENTS));
5084 kInvalidElementsKindForInternalArrayOrInternalPackedArray);
5088 Label fast_elements_case;
5089 __ cmp(ecx, Immediate(FAST_ELEMENTS));
5090 __ j(equal, &fast_elements_case);
5091 GenerateCase(masm, FAST_HOLEY_ELEMENTS);
5093 __ bind(&fast_elements_case);
5094 GenerateCase(masm, FAST_ELEMENTS);
5098 // Generates an Operand for saving parameters after PrepareCallApiFunction.
5099 static Operand ApiParameterOperand(int index) {
5100 return Operand(esp, index * kPointerSize);
5104 // Prepares stack to put arguments (aligns and so on). Reserves
5105 // space for return value if needed (assumes the return value is a handle).
5106 // Arguments must be stored in ApiParameterOperand(0), ApiParameterOperand(1)
5107 // etc. Saves context (esi). If space was reserved for return value then
5108 // stores the pointer to the reserved slot into esi.
5109 static void PrepareCallApiFunction(MacroAssembler* masm, int argc) {
5110 __ EnterApiExitFrame(argc);
5111 if (__ emit_debug_code()) {
5112 __ mov(esi, Immediate(bit_cast<int32_t>(kZapValue)));
5117 // Calls an API function. Allocates HandleScope, extracts returned value
5118 // from handle and propagates exceptions. Clobbers ebx, edi and
5119 // caller-save registers. Restores context. On return removes
5120 // stack_space * kPointerSize (GCed).
5121 static void CallApiFunctionAndReturn(MacroAssembler* masm,
5122 Register function_address,
5123 ExternalReference thunk_ref,
5124 Operand thunk_last_arg, int stack_space,
5125 Operand* stack_space_operand,
5126 Operand return_value_operand,
5127 Operand* context_restore_operand) {
5128 Isolate* isolate = masm->isolate();
5130 ExternalReference next_address =
5131 ExternalReference::handle_scope_next_address(isolate);
5132 ExternalReference limit_address =
5133 ExternalReference::handle_scope_limit_address(isolate);
5134 ExternalReference level_address =
5135 ExternalReference::handle_scope_level_address(isolate);
5137 DCHECK(edx.is(function_address));
5138 // Allocate HandleScope in callee-save registers.
5139 __ mov(ebx, Operand::StaticVariable(next_address));
5140 __ mov(edi, Operand::StaticVariable(limit_address));
5141 __ add(Operand::StaticVariable(level_address), Immediate(1));
5143 if (FLAG_log_timer_events) {
5144 FrameScope frame(masm, StackFrame::MANUAL);
5145 __ PushSafepointRegisters();
5146 __ PrepareCallCFunction(1, eax);
5147 __ mov(Operand(esp, 0),
5148 Immediate(ExternalReference::isolate_address(isolate)));
5149 __ CallCFunction(ExternalReference::log_enter_external_function(isolate),
5151 __ PopSafepointRegisters();
5155 Label profiler_disabled;
5156 Label end_profiler_check;
5157 __ mov(eax, Immediate(ExternalReference::is_profiling_address(isolate)));
5158 __ cmpb(Operand(eax, 0), 0);
5159 __ j(zero, &profiler_disabled);
5161 // Additional parameter is the address of the actual getter function.
5162 __ mov(thunk_last_arg, function_address);
5163 // Call the api function.
5164 __ mov(eax, Immediate(thunk_ref));
5166 __ jmp(&end_profiler_check);
5168 __ bind(&profiler_disabled);
5169 // Call the api function.
5170 __ call(function_address);
5171 __ bind(&end_profiler_check);
5173 if (FLAG_log_timer_events) {
5174 FrameScope frame(masm, StackFrame::MANUAL);
5175 __ PushSafepointRegisters();
5176 __ PrepareCallCFunction(1, eax);
5177 __ mov(Operand(esp, 0),
5178 Immediate(ExternalReference::isolate_address(isolate)));
5179 __ CallCFunction(ExternalReference::log_leave_external_function(isolate),
5181 __ PopSafepointRegisters();
5185 // Load the value from ReturnValue
5186 __ mov(eax, return_value_operand);
5188 Label promote_scheduled_exception;
5189 Label delete_allocated_handles;
5190 Label leave_exit_frame;
5193 // No more valid handles (the result handle was the last one). Restore
5194 // previous handle scope.
5195 __ mov(Operand::StaticVariable(next_address), ebx);
5196 __ sub(Operand::StaticVariable(level_address), Immediate(1));
5197 __ Assert(above_equal, kInvalidHandleScopeLevel);
5198 __ cmp(edi, Operand::StaticVariable(limit_address));
5199 __ j(not_equal, &delete_allocated_handles);
5201 // Leave the API exit frame.
5202 __ bind(&leave_exit_frame);
5203 bool restore_context = context_restore_operand != NULL;
5204 if (restore_context) {
5205 __ mov(esi, *context_restore_operand);
5207 if (stack_space_operand != nullptr) {
5208 __ mov(ebx, *stack_space_operand);
5210 __ LeaveApiExitFrame(!restore_context);
5212 // Check if the function scheduled an exception.
5213 ExternalReference scheduled_exception_address =
5214 ExternalReference::scheduled_exception_address(isolate);
5215 __ cmp(Operand::StaticVariable(scheduled_exception_address),
5216 Immediate(isolate->factory()->the_hole_value()));
5217 __ j(not_equal, &promote_scheduled_exception);
5220 // Check if the function returned a valid JavaScript value.
5222 Register return_value = eax;
5225 __ JumpIfSmi(return_value, &ok, Label::kNear);
5226 __ mov(map, FieldOperand(return_value, HeapObject::kMapOffset));
5228 __ CmpInstanceType(map, LAST_NAME_TYPE);
5229 __ j(below_equal, &ok, Label::kNear);
5231 __ CmpInstanceType(map, FIRST_SPEC_OBJECT_TYPE);
5232 __ j(above_equal, &ok, Label::kNear);
5234 __ cmp(map, isolate->factory()->heap_number_map());
5235 __ j(equal, &ok, Label::kNear);
5237 __ cmp(return_value, isolate->factory()->undefined_value());
5238 __ j(equal, &ok, Label::kNear);
5240 __ cmp(return_value, isolate->factory()->true_value());
5241 __ j(equal, &ok, Label::kNear);
5243 __ cmp(return_value, isolate->factory()->false_value());
5244 __ j(equal, &ok, Label::kNear);
5246 __ cmp(return_value, isolate->factory()->null_value());
5247 __ j(equal, &ok, Label::kNear);
5249 __ Abort(kAPICallReturnedInvalidObject);
5254 if (stack_space_operand != nullptr) {
5255 DCHECK_EQ(0, stack_space);
5260 __ ret(stack_space * kPointerSize);
5263 // Re-throw by promoting a scheduled exception.
5264 __ bind(&promote_scheduled_exception);
5265 __ TailCallRuntime(Runtime::kPromoteScheduledException, 0, 1);
5267 // HandleScope limit has changed. Delete allocated extensions.
5268 ExternalReference delete_extensions =
5269 ExternalReference::delete_handle_scope_extensions(isolate);
5270 __ bind(&delete_allocated_handles);
5271 __ mov(Operand::StaticVariable(limit_address), edi);
5273 __ mov(Operand(esp, 0),
5274 Immediate(ExternalReference::isolate_address(isolate)));
5275 __ mov(eax, Immediate(delete_extensions));
5278 __ jmp(&leave_exit_frame);
5282 static void CallApiFunctionStubHelper(MacroAssembler* masm,
5283 const ParameterCount& argc,
5284 bool return_first_arg,
5285 bool call_data_undefined) {
5286 // ----------- S t a t e -------------
5288 // -- ebx : call_data
5290 // -- edx : api_function_address
5292 // -- eax : number of arguments if argc is a register
5294 // -- esp[0] : return address
5295 // -- esp[4] : last argument
5297 // -- esp[argc * 4] : first argument
5298 // -- esp[(argc + 1) * 4] : receiver
5299 // -----------------------------------
5301 Register callee = edi;
5302 Register call_data = ebx;
5303 Register holder = ecx;
5304 Register api_function_address = edx;
5305 Register context = esi;
5306 Register return_address = eax;
5308 typedef FunctionCallbackArguments FCA;
5310 STATIC_ASSERT(FCA::kContextSaveIndex == 6);
5311 STATIC_ASSERT(FCA::kCalleeIndex == 5);
5312 STATIC_ASSERT(FCA::kDataIndex == 4);
5313 STATIC_ASSERT(FCA::kReturnValueOffset == 3);
5314 STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
5315 STATIC_ASSERT(FCA::kIsolateIndex == 1);
5316 STATIC_ASSERT(FCA::kHolderIndex == 0);
5317 STATIC_ASSERT(FCA::kArgsLength == 7);
5319 DCHECK(argc.is_immediate() || eax.is(argc.reg()));
5321 if (argc.is_immediate()) {
5322 __ pop(return_address);
5326 // pop return address and save context
5327 __ xchg(context, Operand(esp, 0));
5328 return_address = context;
5337 Register scratch = call_data;
5338 if (!call_data_undefined) {
5340 __ push(Immediate(masm->isolate()->factory()->undefined_value()));
5341 // return value default
5342 __ push(Immediate(masm->isolate()->factory()->undefined_value()));
5346 // return value default
5350 __ push(Immediate(reinterpret_cast<int>(masm->isolate())));
5354 __ mov(scratch, esp);
5356 // push return address
5357 __ push(return_address);
5359 // load context from callee
5360 __ mov(context, FieldOperand(callee, JSFunction::kContextOffset));
5362 // API function gets reference to the v8::Arguments. If CPU profiler
5363 // is enabled wrapper function will be called and we need to pass
5364 // address of the callback as additional parameter, always allocate
5366 const int kApiArgc = 1 + 1;
5368 // Allocate the v8::Arguments structure in the arguments' space since
5369 // it's not controlled by GC.
5370 const int kApiStackSpace = 4;
5372 PrepareCallApiFunction(masm, kApiArgc + kApiStackSpace);
5374 // FunctionCallbackInfo::implicit_args_.
5375 __ mov(ApiParameterOperand(2), scratch);
5376 if (argc.is_immediate()) {
5378 Immediate((argc.immediate() + FCA::kArgsLength - 1) * kPointerSize));
5379 // FunctionCallbackInfo::values_.
5380 __ mov(ApiParameterOperand(3), scratch);
5381 // FunctionCallbackInfo::length_.
5382 __ Move(ApiParameterOperand(4), Immediate(argc.immediate()));
5383 // FunctionCallbackInfo::is_construct_call_.
5384 __ Move(ApiParameterOperand(5), Immediate(0));
5386 __ lea(scratch, Operand(scratch, argc.reg(), times_pointer_size,
5387 (FCA::kArgsLength - 1) * kPointerSize));
5388 // FunctionCallbackInfo::values_.
5389 __ mov(ApiParameterOperand(3), scratch);
5390 // FunctionCallbackInfo::length_.
5391 __ mov(ApiParameterOperand(4), argc.reg());
5392 // FunctionCallbackInfo::is_construct_call_.
5393 __ lea(argc.reg(), Operand(argc.reg(), times_pointer_size,
5394 (FCA::kArgsLength + 1) * kPointerSize));
5395 __ mov(ApiParameterOperand(5), argc.reg());
5398 // v8::InvocationCallback's argument.
5399 __ lea(scratch, ApiParameterOperand(2));
5400 __ mov(ApiParameterOperand(0), scratch);
5402 ExternalReference thunk_ref =
5403 ExternalReference::invoke_function_callback(masm->isolate());
5405 Operand context_restore_operand(ebp,
5406 (2 + FCA::kContextSaveIndex) * kPointerSize);
5407 // Stores return the first js argument
5408 int return_value_offset = 0;
5409 if (return_first_arg) {
5410 return_value_offset = 2 + FCA::kArgsLength;
5412 return_value_offset = 2 + FCA::kReturnValueOffset;
5414 Operand return_value_operand(ebp, return_value_offset * kPointerSize);
5415 int stack_space = 0;
5416 Operand is_construct_call_operand = ApiParameterOperand(5);
5417 Operand* stack_space_operand = &is_construct_call_operand;
5418 if (argc.is_immediate()) {
5419 stack_space = argc.immediate() + FCA::kArgsLength + 1;
5420 stack_space_operand = nullptr;
5422 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
5423 ApiParameterOperand(1), stack_space,
5424 stack_space_operand, return_value_operand,
5425 &context_restore_operand);
5429 void CallApiFunctionStub::Generate(MacroAssembler* masm) {
5430 bool call_data_undefined = this->call_data_undefined();
5431 CallApiFunctionStubHelper(masm, ParameterCount(eax), false,
5432 call_data_undefined);
5436 void CallApiAccessorStub::Generate(MacroAssembler* masm) {
5437 bool is_store = this->is_store();
5438 int argc = this->argc();
5439 bool call_data_undefined = this->call_data_undefined();
5440 CallApiFunctionStubHelper(masm, ParameterCount(argc), is_store,
5441 call_data_undefined);
5445 void CallApiGetterStub::Generate(MacroAssembler* masm) {
5446 // ----------- S t a t e -------------
5447 // -- esp[0] : return address
5449 // -- esp[8 - kArgsLength*4] : PropertyCallbackArguments object
5451 // -- edx : api_function_address
5452 // -----------------------------------
5453 DCHECK(edx.is(ApiGetterDescriptor::function_address()));
5455 // array for v8::Arguments::values_, handler for name and pointer
5456 // to the values (it considered as smi in GC).
5457 const int kStackSpace = PropertyCallbackArguments::kArgsLength + 2;
5458 // Allocate space for opional callback address parameter in case
5459 // CPU profiler is active.
5460 const int kApiArgc = 2 + 1;
5462 Register api_function_address = edx;
5463 Register scratch = ebx;
5465 // load address of name
5466 __ lea(scratch, Operand(esp, 1 * kPointerSize));
5468 PrepareCallApiFunction(masm, kApiArgc);
5469 __ mov(ApiParameterOperand(0), scratch); // name.
5470 __ add(scratch, Immediate(kPointerSize));
5471 __ mov(ApiParameterOperand(1), scratch); // arguments pointer.
5473 ExternalReference thunk_ref =
5474 ExternalReference::invoke_accessor_getter_callback(isolate());
5476 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
5477 ApiParameterOperand(2), kStackSpace, nullptr,
5478 Operand(ebp, 7 * kPointerSize), NULL);
5484 } // namespace internal
5487 #endif // V8_TARGET_ARCH_IA32