1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #if V8_TARGET_ARCH_IA32
7 #include "src/base/bits.h"
8 #include "src/bootstrapper.h"
9 #include "src/code-stubs.h"
10 #include "src/codegen.h"
11 #include "src/ia32/code-stubs-ia32.h"
12 #include "src/ia32/frames-ia32.h"
13 #include "src/ic/handler-compiler.h"
14 #include "src/ic/ic.h"
15 #include "src/ic/stub-cache.h"
16 #include "src/isolate.h"
17 #include "src/regexp/jsregexp.h"
18 #include "src/regexp/regexp-macro-assembler.h"
19 #include "src/runtime/runtime.h"
25 static void InitializeArrayConstructorDescriptor(
26 Isolate* isolate, CodeStubDescriptor* descriptor,
27 int constant_stack_parameter_count) {
29 // eax -- number of arguments
31 // ebx -- allocation site with elements kind
32 Address deopt_handler = Runtime::FunctionForId(
33 Runtime::kArrayConstructor)->entry;
35 if (constant_stack_parameter_count == 0) {
36 descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
37 JS_FUNCTION_STUB_MODE);
39 descriptor->Initialize(eax, deopt_handler, constant_stack_parameter_count,
40 JS_FUNCTION_STUB_MODE);
45 static void InitializeInternalArrayConstructorDescriptor(
46 Isolate* isolate, CodeStubDescriptor* descriptor,
47 int constant_stack_parameter_count) {
49 // eax -- number of arguments
50 // edi -- constructor function
51 Address deopt_handler = Runtime::FunctionForId(
52 Runtime::kInternalArrayConstructor)->entry;
54 if (constant_stack_parameter_count == 0) {
55 descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
56 JS_FUNCTION_STUB_MODE);
58 descriptor->Initialize(eax, deopt_handler, constant_stack_parameter_count,
59 JS_FUNCTION_STUB_MODE);
64 void ArrayNoArgumentConstructorStub::InitializeDescriptor(
65 CodeStubDescriptor* descriptor) {
66 InitializeArrayConstructorDescriptor(isolate(), descriptor, 0);
70 void ArraySingleArgumentConstructorStub::InitializeDescriptor(
71 CodeStubDescriptor* descriptor) {
72 InitializeArrayConstructorDescriptor(isolate(), descriptor, 1);
76 void ArrayNArgumentsConstructorStub::InitializeDescriptor(
77 CodeStubDescriptor* descriptor) {
78 InitializeArrayConstructorDescriptor(isolate(), descriptor, -1);
82 void InternalArrayNoArgumentConstructorStub::InitializeDescriptor(
83 CodeStubDescriptor* descriptor) {
84 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 0);
88 void InternalArraySingleArgumentConstructorStub::InitializeDescriptor(
89 CodeStubDescriptor* descriptor) {
90 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 1);
94 void InternalArrayNArgumentsConstructorStub::InitializeDescriptor(
95 CodeStubDescriptor* descriptor) {
96 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1);
100 #define __ ACCESS_MASM(masm)
103 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
104 ExternalReference miss) {
105 // Update the static counter each time a new code stub is generated.
106 isolate()->counters()->code_stubs()->Increment();
108 CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
109 int param_count = descriptor.GetRegisterParameterCount();
111 // Call the runtime system in a fresh internal frame.
112 FrameScope scope(masm, StackFrame::INTERNAL);
113 DCHECK(param_count == 0 ||
114 eax.is(descriptor.GetRegisterParameter(param_count - 1)));
116 for (int i = 0; i < param_count; ++i) {
117 __ push(descriptor.GetRegisterParameter(i));
119 __ CallExternalReference(miss, param_count);
126 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
127 // We don't allow a GC during a store buffer overflow so there is no need to
128 // store the registers in any particular way, but we do have to store and
131 if (save_doubles()) {
132 __ sub(esp, Immediate(kDoubleSize * XMMRegister::kMaxNumRegisters));
133 for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
134 XMMRegister reg = XMMRegister::from_code(i);
135 __ movsd(Operand(esp, i * kDoubleSize), reg);
138 const int argument_count = 1;
140 AllowExternalCallThatCantCauseGC scope(masm);
141 __ PrepareCallCFunction(argument_count, ecx);
142 __ mov(Operand(esp, 0 * kPointerSize),
143 Immediate(ExternalReference::isolate_address(isolate())));
145 ExternalReference::store_buffer_overflow_function(isolate()),
147 if (save_doubles()) {
148 for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
149 XMMRegister reg = XMMRegister::from_code(i);
150 __ movsd(reg, Operand(esp, i * kDoubleSize));
152 __ add(esp, Immediate(kDoubleSize * XMMRegister::kMaxNumRegisters));
159 class FloatingPointHelper : public AllStatic {
166 // Code pattern for loading a floating point value. Input value must
167 // be either a smi or a heap number object (fp value). Requirements:
168 // operand in register number. Returns operand as floating point number
170 static void LoadFloatOperand(MacroAssembler* masm, Register number);
172 // Test if operands are smi or number objects (fp). Requirements:
173 // operand_1 in eax, operand_2 in edx; falls through on float
174 // operands, jumps to the non_float label otherwise.
175 static void CheckFloatOperands(MacroAssembler* masm,
179 // Test if operands are numbers (smi or HeapNumber objects), and load
180 // them into xmm0 and xmm1 if they are. Jump to label not_numbers if
181 // either operand is not a number. Operands are in edx and eax.
182 // Leaves operands unchanged.
183 static void LoadSSE2Operands(MacroAssembler* masm, Label* not_numbers);
187 void DoubleToIStub::Generate(MacroAssembler* masm) {
188 Register input_reg = this->source();
189 Register final_result_reg = this->destination();
190 DCHECK(is_truncating());
192 Label check_negative, process_64_bits, done, done_no_stash;
194 int double_offset = offset();
196 // Account for return address and saved regs if input is esp.
197 if (input_reg.is(esp)) double_offset += 3 * kPointerSize;
199 MemOperand mantissa_operand(MemOperand(input_reg, double_offset));
200 MemOperand exponent_operand(MemOperand(input_reg,
201 double_offset + kDoubleSize / 2));
205 Register scratch_candidates[3] = { ebx, edx, edi };
206 for (int i = 0; i < 3; i++) {
207 scratch1 = scratch_candidates[i];
208 if (!final_result_reg.is(scratch1) && !input_reg.is(scratch1)) break;
211 // Since we must use ecx for shifts below, use some other register (eax)
212 // to calculate the result if ecx is the requested return register.
213 Register result_reg = final_result_reg.is(ecx) ? eax : final_result_reg;
214 // Save ecx if it isn't the return register and therefore volatile, or if it
215 // is the return register, then save the temp register we use in its stead for
217 Register save_reg = final_result_reg.is(ecx) ? eax : ecx;
221 bool stash_exponent_copy = !input_reg.is(esp);
222 __ mov(scratch1, mantissa_operand);
223 if (CpuFeatures::IsSupported(SSE3)) {
224 CpuFeatureScope scope(masm, SSE3);
225 // Load x87 register with heap number.
226 __ fld_d(mantissa_operand);
228 __ mov(ecx, exponent_operand);
229 if (stash_exponent_copy) __ push(ecx);
231 __ and_(ecx, HeapNumber::kExponentMask);
232 __ shr(ecx, HeapNumber::kExponentShift);
233 __ lea(result_reg, MemOperand(ecx, -HeapNumber::kExponentBias));
234 __ cmp(result_reg, Immediate(HeapNumber::kMantissaBits));
235 __ j(below, &process_64_bits);
237 // Result is entirely in lower 32-bits of mantissa
238 int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize;
239 if (CpuFeatures::IsSupported(SSE3)) {
242 __ sub(ecx, Immediate(delta));
243 __ xor_(result_reg, result_reg);
244 __ cmp(ecx, Immediate(31));
247 __ jmp(&check_negative);
249 __ bind(&process_64_bits);
250 if (CpuFeatures::IsSupported(SSE3)) {
251 CpuFeatureScope scope(masm, SSE3);
252 if (stash_exponent_copy) {
253 // Already a copy of the exponent on the stack, overwrite it.
254 STATIC_ASSERT(kDoubleSize == 2 * kPointerSize);
255 __ sub(esp, Immediate(kDoubleSize / 2));
257 // Reserve space for 64 bit answer.
258 __ sub(esp, Immediate(kDoubleSize)); // Nolint.
260 // Do conversion, which cannot fail because we checked the exponent.
261 __ fisttp_d(Operand(esp, 0));
262 __ mov(result_reg, Operand(esp, 0)); // Load low word of answer as result
263 __ add(esp, Immediate(kDoubleSize));
264 __ jmp(&done_no_stash);
266 // Result must be extracted from shifted 32-bit mantissa
267 __ sub(ecx, Immediate(delta));
269 if (stash_exponent_copy) {
270 __ mov(result_reg, MemOperand(esp, 0));
272 __ mov(result_reg, exponent_operand);
275 Immediate(static_cast<uint32_t>(Double::kSignificandMask >> 32)));
277 Immediate(static_cast<uint32_t>(Double::kHiddenBit >> 32)));
278 __ shrd(result_reg, scratch1);
279 __ shr_cl(result_reg);
280 __ test(ecx, Immediate(32));
281 __ cmov(not_equal, scratch1, result_reg);
284 // If the double was negative, negate the integer result.
285 __ bind(&check_negative);
286 __ mov(result_reg, scratch1);
288 if (stash_exponent_copy) {
289 __ cmp(MemOperand(esp, 0), Immediate(0));
291 __ cmp(exponent_operand, Immediate(0));
293 __ cmov(greater, result_reg, scratch1);
297 if (stash_exponent_copy) {
298 __ add(esp, Immediate(kDoubleSize / 2));
300 __ bind(&done_no_stash);
301 if (!final_result_reg.is(result_reg)) {
302 DCHECK(final_result_reg.is(ecx));
303 __ mov(final_result_reg, result_reg);
311 void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm,
313 Label load_smi, done;
315 __ JumpIfSmi(number, &load_smi, Label::kNear);
316 __ fld_d(FieldOperand(number, HeapNumber::kValueOffset));
317 __ jmp(&done, Label::kNear);
322 __ fild_s(Operand(esp, 0));
329 void FloatingPointHelper::LoadSSE2Operands(MacroAssembler* masm,
330 Label* not_numbers) {
331 Label load_smi_edx, load_eax, load_smi_eax, load_float_eax, done;
332 // Load operand in edx into xmm0, or branch to not_numbers.
333 __ JumpIfSmi(edx, &load_smi_edx, Label::kNear);
334 Factory* factory = masm->isolate()->factory();
335 __ cmp(FieldOperand(edx, HeapObject::kMapOffset), factory->heap_number_map());
336 __ j(not_equal, not_numbers); // Argument in edx is not a number.
337 __ movsd(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
339 // Load operand in eax into xmm1, or branch to not_numbers.
340 __ JumpIfSmi(eax, &load_smi_eax, Label::kNear);
341 __ cmp(FieldOperand(eax, HeapObject::kMapOffset), factory->heap_number_map());
342 __ j(equal, &load_float_eax, Label::kNear);
343 __ jmp(not_numbers); // Argument in eax is not a number.
344 __ bind(&load_smi_edx);
345 __ SmiUntag(edx); // Untag smi before converting to float.
346 __ Cvtsi2sd(xmm0, edx);
347 __ SmiTag(edx); // Retag smi for heap number overwriting test.
349 __ bind(&load_smi_eax);
350 __ SmiUntag(eax); // Untag smi before converting to float.
351 __ Cvtsi2sd(xmm1, eax);
352 __ SmiTag(eax); // Retag smi for heap number overwriting test.
353 __ jmp(&done, Label::kNear);
354 __ bind(&load_float_eax);
355 __ movsd(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
360 void FloatingPointHelper::CheckFloatOperands(MacroAssembler* masm,
363 Label test_other, done;
364 // Test if both operands are floats or smi -> scratch=k_is_float;
365 // Otherwise scratch = k_not_float.
366 __ JumpIfSmi(edx, &test_other, Label::kNear);
367 __ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset));
368 Factory* factory = masm->isolate()->factory();
369 __ cmp(scratch, factory->heap_number_map());
370 __ j(not_equal, non_float); // argument in edx is not a number -> NaN
372 __ bind(&test_other);
373 __ JumpIfSmi(eax, &done, Label::kNear);
374 __ mov(scratch, FieldOperand(eax, HeapObject::kMapOffset));
375 __ cmp(scratch, factory->heap_number_map());
376 __ j(not_equal, non_float); // argument in eax is not a number -> NaN
378 // Fall-through: Both operands are numbers.
383 void MathPowStub::Generate(MacroAssembler* masm) {
384 Factory* factory = isolate()->factory();
385 const Register exponent = MathPowTaggedDescriptor::exponent();
386 DCHECK(exponent.is(eax));
387 const Register base = edx;
388 const Register scratch = ecx;
389 const XMMRegister double_result = xmm3;
390 const XMMRegister double_base = xmm2;
391 const XMMRegister double_exponent = xmm1;
392 const XMMRegister double_scratch = xmm4;
394 Label call_runtime, done, exponent_not_smi, int_exponent;
396 // Save 1 in double_result - we need this several times later on.
397 __ mov(scratch, Immediate(1));
398 __ Cvtsi2sd(double_result, scratch);
400 if (exponent_type() == ON_STACK) {
401 Label base_is_smi, unpack_exponent;
402 // The exponent and base are supplied as arguments on the stack.
403 // This can only happen if the stub is called from non-optimized code.
404 // Load input parameters from stack.
405 __ mov(base, Operand(esp, 2 * kPointerSize));
406 __ mov(exponent, Operand(esp, 1 * kPointerSize));
408 __ JumpIfSmi(base, &base_is_smi, Label::kNear);
409 __ cmp(FieldOperand(base, HeapObject::kMapOffset),
410 factory->heap_number_map());
411 __ j(not_equal, &call_runtime);
413 __ movsd(double_base, FieldOperand(base, HeapNumber::kValueOffset));
414 __ jmp(&unpack_exponent, Label::kNear);
416 __ bind(&base_is_smi);
418 __ Cvtsi2sd(double_base, base);
420 __ bind(&unpack_exponent);
421 __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
422 __ SmiUntag(exponent);
423 __ jmp(&int_exponent);
425 __ bind(&exponent_not_smi);
426 __ cmp(FieldOperand(exponent, HeapObject::kMapOffset),
427 factory->heap_number_map());
428 __ j(not_equal, &call_runtime);
429 __ movsd(double_exponent,
430 FieldOperand(exponent, HeapNumber::kValueOffset));
431 } else if (exponent_type() == TAGGED) {
432 __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
433 __ SmiUntag(exponent);
434 __ jmp(&int_exponent);
436 __ bind(&exponent_not_smi);
437 __ movsd(double_exponent,
438 FieldOperand(exponent, HeapNumber::kValueOffset));
441 if (exponent_type() != INTEGER) {
442 Label fast_power, try_arithmetic_simplification;
443 __ DoubleToI(exponent, double_exponent, double_scratch,
444 TREAT_MINUS_ZERO_AS_ZERO, &try_arithmetic_simplification,
445 &try_arithmetic_simplification,
446 &try_arithmetic_simplification);
447 __ jmp(&int_exponent);
449 __ bind(&try_arithmetic_simplification);
450 // Skip to runtime if possibly NaN (indicated by the indefinite integer).
451 __ cvttsd2si(exponent, Operand(double_exponent));
452 __ cmp(exponent, Immediate(0x1));
453 __ j(overflow, &call_runtime);
455 if (exponent_type() == ON_STACK) {
456 // Detect square root case. Crankshaft detects constant +/-0.5 at
457 // compile time and uses DoMathPowHalf instead. We then skip this check
458 // for non-constant cases of +/-0.5 as these hardly occur.
459 Label continue_sqrt, continue_rsqrt, not_plus_half;
461 // Load double_scratch with 0.5.
462 __ mov(scratch, Immediate(0x3F000000u));
463 __ movd(double_scratch, scratch);
464 __ cvtss2sd(double_scratch, double_scratch);
465 // Already ruled out NaNs for exponent.
466 __ ucomisd(double_scratch, double_exponent);
467 __ j(not_equal, ¬_plus_half, Label::kNear);
469 // Calculates square root of base. Check for the special case of
470 // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
471 // According to IEEE-754, single-precision -Infinity has the highest
472 // 9 bits set and the lowest 23 bits cleared.
473 __ mov(scratch, 0xFF800000u);
474 __ movd(double_scratch, scratch);
475 __ cvtss2sd(double_scratch, double_scratch);
476 __ ucomisd(double_base, double_scratch);
477 // Comparing -Infinity with NaN results in "unordered", which sets the
478 // zero flag as if both were equal. However, it also sets the carry flag.
479 __ j(not_equal, &continue_sqrt, Label::kNear);
480 __ j(carry, &continue_sqrt, Label::kNear);
482 // Set result to Infinity in the special case.
483 __ xorps(double_result, double_result);
484 __ subsd(double_result, double_scratch);
487 __ bind(&continue_sqrt);
488 // sqrtsd returns -0 when input is -0. ECMA spec requires +0.
489 __ xorps(double_scratch, double_scratch);
490 __ addsd(double_scratch, double_base); // Convert -0 to +0.
491 __ sqrtsd(double_result, double_scratch);
495 __ bind(¬_plus_half);
496 // Load double_exponent with -0.5 by substracting 1.
497 __ subsd(double_scratch, double_result);
498 // Already ruled out NaNs for exponent.
499 __ ucomisd(double_scratch, double_exponent);
500 __ j(not_equal, &fast_power, Label::kNear);
502 // Calculates reciprocal of square root of base. Check for the special
503 // case of Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
504 // According to IEEE-754, single-precision -Infinity has the highest
505 // 9 bits set and the lowest 23 bits cleared.
506 __ mov(scratch, 0xFF800000u);
507 __ movd(double_scratch, scratch);
508 __ cvtss2sd(double_scratch, double_scratch);
509 __ ucomisd(double_base, double_scratch);
510 // Comparing -Infinity with NaN results in "unordered", which sets the
511 // zero flag as if both were equal. However, it also sets the carry flag.
512 __ j(not_equal, &continue_rsqrt, Label::kNear);
513 __ j(carry, &continue_rsqrt, Label::kNear);
515 // Set result to 0 in the special case.
516 __ xorps(double_result, double_result);
519 __ bind(&continue_rsqrt);
520 // sqrtsd returns -0 when input is -0. ECMA spec requires +0.
521 __ xorps(double_exponent, double_exponent);
522 __ addsd(double_exponent, double_base); // Convert -0 to +0.
523 __ sqrtsd(double_exponent, double_exponent);
524 __ divsd(double_result, double_exponent);
528 // Using FPU instructions to calculate power.
529 Label fast_power_failed;
530 __ bind(&fast_power);
531 __ fnclex(); // Clear flags to catch exceptions later.
532 // Transfer (B)ase and (E)xponent onto the FPU register stack.
533 __ sub(esp, Immediate(kDoubleSize));
534 __ movsd(Operand(esp, 0), double_exponent);
535 __ fld_d(Operand(esp, 0)); // E
536 __ movsd(Operand(esp, 0), double_base);
537 __ fld_d(Operand(esp, 0)); // B, E
539 // Exponent is in st(1) and base is in st(0)
540 // B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B)
541 // FYL2X calculates st(1) * log2(st(0))
544 __ frndint(); // rnd(X), X
545 __ fsub(1); // rnd(X), X-rnd(X)
546 __ fxch(1); // X - rnd(X), rnd(X)
547 // F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1
548 __ f2xm1(); // 2^(X-rnd(X)) - 1, rnd(X)
549 __ fld1(); // 1, 2^(X-rnd(X)) - 1, rnd(X)
550 __ faddp(1); // 2^(X-rnd(X)), rnd(X)
551 // FSCALE calculates st(0) * 2^st(1)
552 __ fscale(); // 2^X, rnd(X)
554 // Bail out to runtime in case of exceptions in the status word.
556 __ test_b(eax, 0x5F); // We check for all but precision exception.
557 __ j(not_zero, &fast_power_failed, Label::kNear);
558 __ fstp_d(Operand(esp, 0));
559 __ movsd(double_result, Operand(esp, 0));
560 __ add(esp, Immediate(kDoubleSize));
563 __ bind(&fast_power_failed);
565 __ add(esp, Immediate(kDoubleSize));
566 __ jmp(&call_runtime);
569 // Calculate power with integer exponent.
570 __ bind(&int_exponent);
571 const XMMRegister double_scratch2 = double_exponent;
572 __ mov(scratch, exponent); // Back up exponent.
573 __ movsd(double_scratch, double_base); // Back up base.
574 __ movsd(double_scratch2, double_result); // Load double_exponent with 1.
576 // Get absolute value of exponent.
577 Label no_neg, while_true, while_false;
578 __ test(scratch, scratch);
579 __ j(positive, &no_neg, Label::kNear);
583 __ j(zero, &while_false, Label::kNear);
585 // Above condition means CF==0 && ZF==0. This means that the
586 // bit that has been shifted out is 0 and the result is not 0.
587 __ j(above, &while_true, Label::kNear);
588 __ movsd(double_result, double_scratch);
589 __ j(zero, &while_false, Label::kNear);
591 __ bind(&while_true);
593 __ mulsd(double_scratch, double_scratch);
594 __ j(above, &while_true, Label::kNear);
595 __ mulsd(double_result, double_scratch);
596 __ j(not_zero, &while_true);
598 __ bind(&while_false);
599 // scratch has the original value of the exponent - if the exponent is
600 // negative, return 1/result.
601 __ test(exponent, exponent);
602 __ j(positive, &done);
603 __ divsd(double_scratch2, double_result);
604 __ movsd(double_result, double_scratch2);
605 // Test whether result is zero. Bail out to check for subnormal result.
606 // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
607 __ xorps(double_scratch2, double_scratch2);
608 __ ucomisd(double_scratch2, double_result); // Result cannot be NaN.
609 // double_exponent aliased as double_scratch2 has already been overwritten
610 // and may not have contained the exponent value in the first place when the
611 // exponent is a smi. We reset it with exponent value before bailing out.
612 __ j(not_equal, &done);
613 __ Cvtsi2sd(double_exponent, exponent);
615 // Returning or bailing out.
616 Counters* counters = isolate()->counters();
617 if (exponent_type() == ON_STACK) {
618 // The arguments are still on the stack.
619 __ bind(&call_runtime);
620 __ TailCallRuntime(Runtime::kMathPowRT, 2, 1);
622 // The stub is called from non-optimized code, which expects the result
623 // as heap number in exponent.
625 __ AllocateHeapNumber(eax, scratch, base, &call_runtime);
626 __ movsd(FieldOperand(eax, HeapNumber::kValueOffset), double_result);
627 __ IncrementCounter(counters->math_pow(), 1);
628 __ ret(2 * kPointerSize);
630 __ bind(&call_runtime);
632 AllowExternalCallThatCantCauseGC scope(masm);
633 __ PrepareCallCFunction(4, scratch);
634 __ movsd(Operand(esp, 0 * kDoubleSize), double_base);
635 __ movsd(Operand(esp, 1 * kDoubleSize), double_exponent);
637 ExternalReference::power_double_double_function(isolate()), 4);
639 // Return value is in st(0) on ia32.
640 // Store it into the (fixed) result register.
641 __ sub(esp, Immediate(kDoubleSize));
642 __ fstp_d(Operand(esp, 0));
643 __ movsd(double_result, Operand(esp, 0));
644 __ add(esp, Immediate(kDoubleSize));
647 __ IncrementCounter(counters->math_pow(), 1);
653 void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
655 Register receiver = LoadDescriptor::ReceiverRegister();
656 // With careful management, we won't have to save slot and vector on
657 // the stack. Simply handle the possibly missing case first.
658 // TODO(mvstanton): this code can be more efficient.
659 __ cmp(FieldOperand(receiver, JSFunction::kPrototypeOrInitialMapOffset),
660 Immediate(isolate()->factory()->the_hole_value()));
662 __ TryGetFunctionPrototype(receiver, eax, ebx, &miss);
666 PropertyAccessCompiler::TailCallBuiltin(
667 masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
671 void LoadIndexedInterceptorStub::Generate(MacroAssembler* masm) {
672 // Return address is on the stack.
675 Register receiver = LoadDescriptor::ReceiverRegister();
676 Register key = LoadDescriptor::NameRegister();
677 Register scratch = eax;
678 DCHECK(!scratch.is(receiver) && !scratch.is(key));
680 // Check that the key is an array index, that is Uint32.
681 __ test(key, Immediate(kSmiTagMask | kSmiSignMask));
682 __ j(not_zero, &slow);
684 // Everything is fine, call runtime.
686 __ push(receiver); // receiver
688 __ push(scratch); // return address
690 // Perform tail call to the entry.
691 __ TailCallRuntime(Runtime::kLoadElementWithInterceptor, 2, 1);
694 PropertyAccessCompiler::TailCallBuiltin(
695 masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
699 void LoadIndexedStringStub::Generate(MacroAssembler* masm) {
700 // Return address is on the stack.
703 Register receiver = LoadDescriptor::ReceiverRegister();
704 Register index = LoadDescriptor::NameRegister();
705 Register scratch = edi;
706 DCHECK(!scratch.is(receiver) && !scratch.is(index));
707 Register result = eax;
708 DCHECK(!result.is(scratch));
709 DCHECK(!scratch.is(LoadWithVectorDescriptor::VectorRegister()) &&
710 result.is(LoadDescriptor::SlotRegister()));
712 // StringCharAtGenerator doesn't use the result register until it's passed
713 // the different miss possibilities. If it did, we would have a conflict
714 // when FLAG_vector_ics is true.
715 StringCharAtGenerator char_at_generator(receiver, index, scratch, result,
716 &miss, // When not a string.
717 &miss, // When not a number.
718 &miss, // When index out of range.
719 STRING_INDEX_IS_ARRAY_INDEX,
721 char_at_generator.GenerateFast(masm);
724 StubRuntimeCallHelper call_helper;
725 char_at_generator.GenerateSlow(masm, PART_OF_IC_HANDLER, call_helper);
728 PropertyAccessCompiler::TailCallBuiltin(
729 masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
733 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
734 // The key is in edx and the parameter count is in eax.
735 DCHECK(edx.is(ArgumentsAccessReadDescriptor::index()));
736 DCHECK(eax.is(ArgumentsAccessReadDescriptor::parameter_count()));
738 // The displacement is used for skipping the frame pointer on the
739 // stack. It is the offset of the last parameter (if any) relative
740 // to the frame pointer.
741 static const int kDisplacement = 1 * kPointerSize;
743 // Check that the key is a smi.
745 __ JumpIfNotSmi(edx, &slow, Label::kNear);
747 // Check if the calling frame is an arguments adaptor frame.
749 __ mov(ebx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
750 __ mov(ecx, Operand(ebx, StandardFrameConstants::kContextOffset));
751 __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
752 __ j(equal, &adaptor, Label::kNear);
754 // Check index against formal parameters count limit passed in
755 // through register eax. Use unsigned comparison to get negative
758 __ j(above_equal, &slow, Label::kNear);
760 // Read the argument from the stack and return it.
761 STATIC_ASSERT(kSmiTagSize == 1);
762 STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these.
763 __ lea(ebx, Operand(ebp, eax, times_2, 0));
765 __ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
768 // Arguments adaptor case: Check index against actual arguments
769 // limit found in the arguments adaptor frame. Use unsigned
770 // comparison to get negative check for free.
772 __ mov(ecx, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset));
774 __ j(above_equal, &slow, Label::kNear);
776 // Read the argument from the stack and return it.
777 STATIC_ASSERT(kSmiTagSize == 1);
778 STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these.
779 __ lea(ebx, Operand(ebx, ecx, times_2, 0));
781 __ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
784 // Slow-case: Handle non-smi or out-of-bounds access to arguments
785 // by calling the runtime system.
787 __ pop(ebx); // Return address.
790 __ TailCallRuntime(Runtime::kArguments, 1, 1);
794 void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
795 // esp[0] : return address
796 // esp[4] : number of parameters
797 // esp[8] : receiver displacement
798 // esp[12] : function
800 // Check if the calling frame is an arguments adaptor frame.
802 __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
803 __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
804 __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
805 __ j(not_equal, &runtime, Label::kNear);
807 // Patch the arguments.length and the parameters pointer.
808 __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
809 __ mov(Operand(esp, 1 * kPointerSize), ecx);
810 __ lea(edx, Operand(edx, ecx, times_2,
811 StandardFrameConstants::kCallerSPOffset));
812 __ mov(Operand(esp, 2 * kPointerSize), edx);
815 __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
819 void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
820 // esp[0] : return address
821 // esp[4] : number of parameters (tagged)
822 // esp[8] : receiver displacement
823 // esp[12] : function
825 // ebx = parameter count (tagged)
826 __ mov(ebx, Operand(esp, 1 * kPointerSize));
828 // Check if the calling frame is an arguments adaptor frame.
829 // TODO(rossberg): Factor out some of the bits that are shared with the other
830 // Generate* functions.
832 Label adaptor_frame, try_allocate;
833 __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
834 __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
835 __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
836 __ j(equal, &adaptor_frame, Label::kNear);
838 // No adaptor, parameter count = argument count.
840 __ jmp(&try_allocate, Label::kNear);
842 // We have an adaptor frame. Patch the parameters pointer.
843 __ bind(&adaptor_frame);
844 __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
845 __ lea(edx, Operand(edx, ecx, times_2,
846 StandardFrameConstants::kCallerSPOffset));
847 __ mov(Operand(esp, 2 * kPointerSize), edx);
849 // ebx = parameter count (tagged)
850 // ecx = argument count (smi-tagged)
851 // esp[4] = parameter count (tagged)
852 // esp[8] = address of receiver argument
853 // Compute the mapped parameter count = min(ebx, ecx) in ebx.
855 __ j(less_equal, &try_allocate, Label::kNear);
858 __ bind(&try_allocate);
860 // Save mapped parameter count.
863 // Compute the sizes of backing store, parameter map, and arguments object.
864 // 1. Parameter map, has 2 extra words containing context and backing store.
865 const int kParameterMapHeaderSize =
866 FixedArray::kHeaderSize + 2 * kPointerSize;
867 Label no_parameter_map;
869 __ j(zero, &no_parameter_map, Label::kNear);
870 __ lea(ebx, Operand(ebx, times_2, kParameterMapHeaderSize));
871 __ bind(&no_parameter_map);
874 __ lea(ebx, Operand(ebx, ecx, times_2, FixedArray::kHeaderSize));
876 // 3. Arguments object.
877 __ add(ebx, Immediate(Heap::kSloppyArgumentsObjectSize));
879 // Do the allocation of all three objects in one go.
880 __ Allocate(ebx, eax, edx, edi, &runtime, TAG_OBJECT);
882 // eax = address of new object(s) (tagged)
883 // ecx = argument count (smi-tagged)
884 // esp[0] = mapped parameter count (tagged)
885 // esp[8] = parameter count (tagged)
886 // esp[12] = address of receiver argument
887 // Get the arguments map from the current native context into edi.
888 Label has_mapped_parameters, instantiate;
889 __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
890 __ mov(edi, FieldOperand(edi, GlobalObject::kNativeContextOffset));
891 __ mov(ebx, Operand(esp, 0 * kPointerSize));
893 __ j(not_zero, &has_mapped_parameters, Label::kNear);
896 Operand(edi, Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX)));
897 __ jmp(&instantiate, Label::kNear);
899 __ bind(&has_mapped_parameters);
900 __ mov(edi, Operand(edi, Context::SlotOffset(
901 Context::FAST_ALIASED_ARGUMENTS_MAP_INDEX)));
902 __ bind(&instantiate);
904 // eax = address of new object (tagged)
905 // ebx = mapped parameter count (tagged)
906 // ecx = argument count (smi-tagged)
907 // edi = address of arguments map (tagged)
908 // esp[0] = mapped parameter count (tagged)
909 // esp[8] = parameter count (tagged)
910 // esp[12] = address of receiver argument
911 // Copy the JS object part.
912 __ mov(FieldOperand(eax, JSObject::kMapOffset), edi);
913 __ mov(FieldOperand(eax, JSObject::kPropertiesOffset),
914 masm->isolate()->factory()->empty_fixed_array());
915 __ mov(FieldOperand(eax, JSObject::kElementsOffset),
916 masm->isolate()->factory()->empty_fixed_array());
918 // Set up the callee in-object property.
919 STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
920 __ mov(edx, Operand(esp, 4 * kPointerSize));
921 __ AssertNotSmi(edx);
922 __ mov(FieldOperand(eax, JSObject::kHeaderSize +
923 Heap::kArgumentsCalleeIndex * kPointerSize),
926 // Use the length (smi tagged) and set that as an in-object property too.
928 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
929 __ mov(FieldOperand(eax, JSObject::kHeaderSize +
930 Heap::kArgumentsLengthIndex * kPointerSize),
933 // Set up the elements pointer in the allocated arguments object.
934 // If we allocated a parameter map, edi will point there, otherwise to the
936 __ lea(edi, Operand(eax, Heap::kSloppyArgumentsObjectSize));
937 __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi);
939 // eax = address of new object (tagged)
940 // ebx = mapped parameter count (tagged)
941 // ecx = argument count (tagged)
942 // edi = address of parameter map or backing store (tagged)
943 // esp[0] = mapped parameter count (tagged)
944 // esp[8] = parameter count (tagged)
945 // esp[12] = address of receiver argument
949 // Initialize parameter map. If there are no mapped arguments, we're done.
950 Label skip_parameter_map;
952 __ j(zero, &skip_parameter_map);
954 __ mov(FieldOperand(edi, FixedArray::kMapOffset),
955 Immediate(isolate()->factory()->sloppy_arguments_elements_map()));
956 __ lea(eax, Operand(ebx, reinterpret_cast<intptr_t>(Smi::FromInt(2))));
957 __ mov(FieldOperand(edi, FixedArray::kLengthOffset), eax);
958 __ mov(FieldOperand(edi, FixedArray::kHeaderSize + 0 * kPointerSize), esi);
959 __ lea(eax, Operand(edi, ebx, times_2, kParameterMapHeaderSize));
960 __ mov(FieldOperand(edi, FixedArray::kHeaderSize + 1 * kPointerSize), eax);
962 // Copy the parameter slots and the holes in the arguments.
963 // We need to fill in mapped_parameter_count slots. They index the context,
964 // where parameters are stored in reverse order, at
965 // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
966 // The mapped parameter thus need to get indices
967 // MIN_CONTEXT_SLOTS+parameter_count-1 ..
968 // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
969 // We loop from right to left.
970 Label parameters_loop, parameters_test;
972 __ mov(eax, Operand(esp, 2 * kPointerSize));
973 __ mov(ebx, Immediate(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
974 __ add(ebx, Operand(esp, 4 * kPointerSize));
976 __ mov(ecx, isolate()->factory()->the_hole_value());
978 __ lea(edi, Operand(edi, eax, times_2, kParameterMapHeaderSize));
979 // eax = loop variable (tagged)
980 // ebx = mapping index (tagged)
981 // ecx = the hole value
982 // edx = address of parameter map (tagged)
983 // edi = address of backing store (tagged)
984 // esp[0] = argument count (tagged)
985 // esp[4] = address of new object (tagged)
986 // esp[8] = mapped parameter count (tagged)
987 // esp[16] = parameter count (tagged)
988 // esp[20] = address of receiver argument
989 __ jmp(¶meters_test, Label::kNear);
991 __ bind(¶meters_loop);
992 __ sub(eax, Immediate(Smi::FromInt(1)));
993 __ mov(FieldOperand(edx, eax, times_2, kParameterMapHeaderSize), ebx);
994 __ mov(FieldOperand(edi, eax, times_2, FixedArray::kHeaderSize), ecx);
995 __ add(ebx, Immediate(Smi::FromInt(1)));
996 __ bind(¶meters_test);
998 __ j(not_zero, ¶meters_loop, Label::kNear);
1001 __ bind(&skip_parameter_map);
1003 // ecx = argument count (tagged)
1004 // edi = address of backing store (tagged)
1005 // esp[0] = address of new object (tagged)
1006 // esp[4] = mapped parameter count (tagged)
1007 // esp[12] = parameter count (tagged)
1008 // esp[16] = address of receiver argument
1009 // Copy arguments header and remaining slots (if there are any).
1010 __ mov(FieldOperand(edi, FixedArray::kMapOffset),
1011 Immediate(isolate()->factory()->fixed_array_map()));
1012 __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx);
1014 Label arguments_loop, arguments_test;
1015 __ mov(ebx, Operand(esp, 1 * kPointerSize));
1016 __ mov(edx, Operand(esp, 4 * kPointerSize));
1017 __ sub(edx, ebx); // Is there a smarter way to do negative scaling?
1019 __ jmp(&arguments_test, Label::kNear);
1021 __ bind(&arguments_loop);
1022 __ sub(edx, Immediate(kPointerSize));
1023 __ mov(eax, Operand(edx, 0));
1024 __ mov(FieldOperand(edi, ebx, times_2, FixedArray::kHeaderSize), eax);
1025 __ add(ebx, Immediate(Smi::FromInt(1)));
1027 __ bind(&arguments_test);
1029 __ j(less, &arguments_loop, Label::kNear);
1032 __ pop(eax); // Address of arguments object.
1033 __ pop(ebx); // Parameter count.
1035 // Return and remove the on-stack parameters.
1036 __ ret(3 * kPointerSize);
1038 // Do the runtime call to allocate the arguments object.
1040 __ pop(eax); // Remove saved parameter count.
1041 __ mov(Operand(esp, 1 * kPointerSize), ecx); // Patch argument count.
1042 __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
1046 void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
1047 // esp[0] : return address
1048 // esp[4] : number of parameters
1049 // esp[8] : receiver displacement
1050 // esp[12] : function
1052 // Check if the calling frame is an arguments adaptor frame.
1053 Label adaptor_frame, try_allocate, runtime;
1054 __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
1055 __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
1056 __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1057 __ j(equal, &adaptor_frame, Label::kNear);
1059 // Get the length from the frame.
1060 __ mov(ecx, Operand(esp, 1 * kPointerSize));
1061 __ jmp(&try_allocate, Label::kNear);
1063 // Patch the arguments.length and the parameters pointer.
1064 __ bind(&adaptor_frame);
1065 __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
1067 __ lea(edx, Operand(edx, ecx, times_2,
1068 StandardFrameConstants::kCallerSPOffset));
1069 __ mov(Operand(esp, 1 * kPointerSize), ecx);
1070 __ mov(Operand(esp, 2 * kPointerSize), edx);
1072 // Try the new space allocation. Start out with computing the size of
1073 // the arguments object and the elements array.
1074 Label add_arguments_object;
1075 __ bind(&try_allocate);
1077 __ j(zero, &add_arguments_object, Label::kNear);
1078 __ lea(ecx, Operand(ecx, times_2, FixedArray::kHeaderSize));
1079 __ bind(&add_arguments_object);
1080 __ add(ecx, Immediate(Heap::kStrictArgumentsObjectSize));
1082 // Do the allocation of both objects in one go.
1083 __ Allocate(ecx, eax, edx, ebx, &runtime, TAG_OBJECT);
1085 // Get the arguments map from the current native context.
1086 __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
1087 __ mov(edi, FieldOperand(edi, GlobalObject::kNativeContextOffset));
1088 const int offset = Context::SlotOffset(Context::STRICT_ARGUMENTS_MAP_INDEX);
1089 __ mov(edi, Operand(edi, offset));
1091 __ mov(FieldOperand(eax, JSObject::kMapOffset), edi);
1092 __ mov(FieldOperand(eax, JSObject::kPropertiesOffset),
1093 masm->isolate()->factory()->empty_fixed_array());
1094 __ mov(FieldOperand(eax, JSObject::kElementsOffset),
1095 masm->isolate()->factory()->empty_fixed_array());
1097 // Get the length (smi tagged) and set that as an in-object property too.
1098 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
1099 __ mov(ecx, Operand(esp, 1 * kPointerSize));
1101 __ mov(FieldOperand(eax, JSObject::kHeaderSize +
1102 Heap::kArgumentsLengthIndex * kPointerSize),
1105 // If there are no actual arguments, we're done.
1108 __ j(zero, &done, Label::kNear);
1110 // Get the parameters pointer from the stack.
1111 __ mov(edx, Operand(esp, 2 * kPointerSize));
1113 // Set up the elements pointer in the allocated arguments object and
1114 // initialize the header in the elements fixed array.
1115 __ lea(edi, Operand(eax, Heap::kStrictArgumentsObjectSize));
1116 __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi);
1117 __ mov(FieldOperand(edi, FixedArray::kMapOffset),
1118 Immediate(isolate()->factory()->fixed_array_map()));
1120 __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx);
1121 // Untag the length for the loop below.
1124 // Copy the fixed array slots.
1127 __ mov(ebx, Operand(edx, -1 * kPointerSize)); // Skip receiver.
1128 __ mov(FieldOperand(edi, FixedArray::kHeaderSize), ebx);
1129 __ add(edi, Immediate(kPointerSize));
1130 __ sub(edx, Immediate(kPointerSize));
1132 __ j(not_zero, &loop);
1134 // Return and remove the on-stack parameters.
1136 __ ret(3 * kPointerSize);
1138 // Do the runtime call to allocate the arguments object.
1140 __ TailCallRuntime(Runtime::kNewStrictArguments, 3, 1);
1144 void RegExpExecStub::Generate(MacroAssembler* masm) {
1145 // Just jump directly to runtime if native RegExp is not selected at compile
1146 // time or if regexp entry in generated code is turned off runtime switch or
1148 #ifdef V8_INTERPRETED_REGEXP
1149 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
1150 #else // V8_INTERPRETED_REGEXP
1152 // Stack frame on entry.
1153 // esp[0]: return address
1154 // esp[4]: last_match_info (expected JSArray)
1155 // esp[8]: previous index
1156 // esp[12]: subject string
1157 // esp[16]: JSRegExp object
1159 static const int kLastMatchInfoOffset = 1 * kPointerSize;
1160 static const int kPreviousIndexOffset = 2 * kPointerSize;
1161 static const int kSubjectOffset = 3 * kPointerSize;
1162 static const int kJSRegExpOffset = 4 * kPointerSize;
1165 Factory* factory = isolate()->factory();
1167 // Ensure that a RegExp stack is allocated.
1168 ExternalReference address_of_regexp_stack_memory_address =
1169 ExternalReference::address_of_regexp_stack_memory_address(isolate());
1170 ExternalReference address_of_regexp_stack_memory_size =
1171 ExternalReference::address_of_regexp_stack_memory_size(isolate());
1172 __ mov(ebx, Operand::StaticVariable(address_of_regexp_stack_memory_size));
1174 __ j(zero, &runtime);
1176 // Check that the first argument is a JSRegExp object.
1177 __ mov(eax, Operand(esp, kJSRegExpOffset));
1178 STATIC_ASSERT(kSmiTag == 0);
1179 __ JumpIfSmi(eax, &runtime);
1180 __ CmpObjectType(eax, JS_REGEXP_TYPE, ecx);
1181 __ j(not_equal, &runtime);
1183 // Check that the RegExp has been compiled (data contains a fixed array).
1184 __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
1185 if (FLAG_debug_code) {
1186 __ test(ecx, Immediate(kSmiTagMask));
1187 __ Check(not_zero, kUnexpectedTypeForRegExpDataFixedArrayExpected);
1188 __ CmpObjectType(ecx, FIXED_ARRAY_TYPE, ebx);
1189 __ Check(equal, kUnexpectedTypeForRegExpDataFixedArrayExpected);
1192 // ecx: RegExp data (FixedArray)
1193 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
1194 __ mov(ebx, FieldOperand(ecx, JSRegExp::kDataTagOffset));
1195 __ cmp(ebx, Immediate(Smi::FromInt(JSRegExp::IRREGEXP)));
1196 __ j(not_equal, &runtime);
1198 // ecx: RegExp data (FixedArray)
1199 // Check that the number of captures fit in the static offsets vector buffer.
1200 __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
1201 // Check (number_of_captures + 1) * 2 <= offsets vector size
1202 // Or number_of_captures * 2 <= offsets vector size - 2
1203 // Multiplying by 2 comes for free since edx is smi-tagged.
1204 STATIC_ASSERT(kSmiTag == 0);
1205 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
1206 STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
1207 __ cmp(edx, Isolate::kJSRegexpStaticOffsetsVectorSize - 2);
1208 __ j(above, &runtime);
1210 // Reset offset for possibly sliced string.
1211 __ Move(edi, Immediate(0));
1212 __ mov(eax, Operand(esp, kSubjectOffset));
1213 __ JumpIfSmi(eax, &runtime);
1214 __ mov(edx, eax); // Make a copy of the original subject string.
1215 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
1216 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
1218 // eax: subject string
1219 // edx: subject string
1220 // ebx: subject string instance type
1221 // ecx: RegExp data (FixedArray)
1222 // Handle subject string according to its encoding and representation:
1223 // (1) Sequential two byte? If yes, go to (9).
1224 // (2) Sequential one byte? If yes, go to (6).
1225 // (3) Anything but sequential or cons? If yes, go to (7).
1226 // (4) Cons string. If the string is flat, replace subject with first string.
1227 // Otherwise bailout.
1228 // (5a) Is subject sequential two byte? If yes, go to (9).
1229 // (5b) Is subject external? If yes, go to (8).
1230 // (6) One byte sequential. Load regexp code for one byte.
1234 // Deferred code at the end of the stub:
1235 // (7) Not a long external string? If yes, go to (10).
1236 // (8) External string. Make it, offset-wise, look like a sequential string.
1237 // (8a) Is the external string one byte? If yes, go to (6).
1238 // (9) Two byte sequential. Load regexp code for one byte. Go to (E).
1239 // (10) Short external string or not a string? If yes, bail out to runtime.
1240 // (11) Sliced string. Replace subject with parent. Go to (5a).
1242 Label seq_one_byte_string /* 6 */, seq_two_byte_string /* 9 */,
1243 external_string /* 8 */, check_underlying /* 5a */,
1244 not_seq_nor_cons /* 7 */, check_code /* E */,
1245 not_long_external /* 10 */;
1247 // (1) Sequential two byte? If yes, go to (9).
1248 __ and_(ebx, kIsNotStringMask |
1249 kStringRepresentationMask |
1250 kStringEncodingMask |
1251 kShortExternalStringMask);
1252 STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
1253 __ j(zero, &seq_two_byte_string); // Go to (9).
1255 // (2) Sequential one byte? If yes, go to (6).
1256 // Any other sequential string must be one byte.
1257 __ and_(ebx, Immediate(kIsNotStringMask |
1258 kStringRepresentationMask |
1259 kShortExternalStringMask));
1260 __ j(zero, &seq_one_byte_string, Label::kNear); // Go to (6).
1262 // (3) Anything but sequential or cons? If yes, go to (7).
1263 // We check whether the subject string is a cons, since sequential strings
1264 // have already been covered.
1265 STATIC_ASSERT(kConsStringTag < kExternalStringTag);
1266 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
1267 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
1268 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
1269 __ cmp(ebx, Immediate(kExternalStringTag));
1270 __ j(greater_equal, ¬_seq_nor_cons); // Go to (7).
1272 // (4) Cons string. Check that it's flat.
1273 // Replace subject with first string and reload instance type.
1274 __ cmp(FieldOperand(eax, ConsString::kSecondOffset), factory->empty_string());
1275 __ j(not_equal, &runtime);
1276 __ mov(eax, FieldOperand(eax, ConsString::kFirstOffset));
1277 __ bind(&check_underlying);
1278 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
1279 __ mov(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
1281 // (5a) Is subject sequential two byte? If yes, go to (9).
1282 __ test_b(ebx, kStringRepresentationMask | kStringEncodingMask);
1283 STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0);
1284 __ j(zero, &seq_two_byte_string); // Go to (9).
1285 // (5b) Is subject external? If yes, go to (8).
1286 __ test_b(ebx, kStringRepresentationMask);
1287 // The underlying external string is never a short external string.
1288 STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength);
1289 STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength);
1290 __ j(not_zero, &external_string); // Go to (8).
1292 // eax: sequential subject string (or look-alike, external string)
1293 // edx: original subject string
1294 // ecx: RegExp data (FixedArray)
1295 // (6) One byte sequential. Load regexp code for one byte.
1296 __ bind(&seq_one_byte_string);
1297 // Load previous index and check range before edx is overwritten. We have
1298 // to use edx instead of eax here because it might have been only made to
1299 // look like a sequential string when it actually is an external string.
1300 __ mov(ebx, Operand(esp, kPreviousIndexOffset));
1301 __ JumpIfNotSmi(ebx, &runtime);
1302 __ cmp(ebx, FieldOperand(edx, String::kLengthOffset));
1303 __ j(above_equal, &runtime);
1304 __ mov(edx, FieldOperand(ecx, JSRegExp::kDataOneByteCodeOffset));
1305 __ Move(ecx, Immediate(1)); // Type is one byte.
1307 // (E) Carry on. String handling is done.
1308 __ bind(&check_code);
1309 // edx: irregexp code
1310 // Check that the irregexp code has been generated for the actual string
1311 // encoding. If it has, the field contains a code object otherwise it contains
1312 // a smi (code flushing support).
1313 __ JumpIfSmi(edx, &runtime);
1315 // eax: subject string
1316 // ebx: previous index (smi)
1318 // ecx: encoding of subject string (1 if one_byte, 0 if two_byte);
1319 // All checks done. Now push arguments for native regexp code.
1320 Counters* counters = isolate()->counters();
1321 __ IncrementCounter(counters->regexp_entry_native(), 1);
1323 // Isolates: note we add an additional parameter here (isolate pointer).
1324 static const int kRegExpExecuteArguments = 9;
1325 __ EnterApiExitFrame(kRegExpExecuteArguments);
1327 // Argument 9: Pass current isolate address.
1328 __ mov(Operand(esp, 8 * kPointerSize),
1329 Immediate(ExternalReference::isolate_address(isolate())));
1331 // Argument 8: Indicate that this is a direct call from JavaScript.
1332 __ mov(Operand(esp, 7 * kPointerSize), Immediate(1));
1334 // Argument 7: Start (high end) of backtracking stack memory area.
1335 __ mov(esi, Operand::StaticVariable(address_of_regexp_stack_memory_address));
1336 __ add(esi, Operand::StaticVariable(address_of_regexp_stack_memory_size));
1337 __ mov(Operand(esp, 6 * kPointerSize), esi);
1339 // Argument 6: Set the number of capture registers to zero to force global
1340 // regexps to behave as non-global. This does not affect non-global regexps.
1341 __ mov(Operand(esp, 5 * kPointerSize), Immediate(0));
1343 // Argument 5: static offsets vector buffer.
1344 __ mov(Operand(esp, 4 * kPointerSize),
1345 Immediate(ExternalReference::address_of_static_offsets_vector(
1348 // Argument 2: Previous index.
1350 __ mov(Operand(esp, 1 * kPointerSize), ebx);
1352 // Argument 1: Original subject string.
1353 // The original subject is in the previous stack frame. Therefore we have to
1354 // use ebp, which points exactly to one pointer size below the previous esp.
1355 // (Because creating a new stack frame pushes the previous ebp onto the stack
1356 // and thereby moves up esp by one kPointerSize.)
1357 __ mov(esi, Operand(ebp, kSubjectOffset + kPointerSize));
1358 __ mov(Operand(esp, 0 * kPointerSize), esi);
1360 // esi: original subject string
1361 // eax: underlying subject string
1362 // ebx: previous index
1363 // ecx: encoding of subject string (1 if one_byte 0 if two_byte);
1365 // Argument 4: End of string data
1366 // Argument 3: Start of string data
1367 // Prepare start and end index of the input.
1368 // Load the length from the original sliced string if that is the case.
1369 __ mov(esi, FieldOperand(esi, String::kLengthOffset));
1370 __ add(esi, edi); // Calculate input end wrt offset.
1372 __ add(ebx, edi); // Calculate input start wrt offset.
1374 // ebx: start index of the input string
1375 // esi: end index of the input string
1376 Label setup_two_byte, setup_rest;
1378 __ j(zero, &setup_two_byte, Label::kNear);
1380 __ lea(ecx, FieldOperand(eax, esi, times_1, SeqOneByteString::kHeaderSize));
1381 __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4.
1382 __ lea(ecx, FieldOperand(eax, ebx, times_1, SeqOneByteString::kHeaderSize));
1383 __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3.
1384 __ jmp(&setup_rest, Label::kNear);
1386 __ bind(&setup_two_byte);
1387 STATIC_ASSERT(kSmiTag == 0);
1388 STATIC_ASSERT(kSmiTagSize == 1); // esi is smi (powered by 2).
1389 __ lea(ecx, FieldOperand(eax, esi, times_1, SeqTwoByteString::kHeaderSize));
1390 __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4.
1391 __ lea(ecx, FieldOperand(eax, ebx, times_2, SeqTwoByteString::kHeaderSize));
1392 __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3.
1394 __ bind(&setup_rest);
1396 // Locate the code entry and call it.
1397 __ add(edx, Immediate(Code::kHeaderSize - kHeapObjectTag));
1400 // Drop arguments and come back to JS mode.
1401 __ LeaveApiExitFrame(true);
1403 // Check the result.
1406 // We expect exactly one result since we force the called regexp to behave
1408 __ j(equal, &success);
1410 __ cmp(eax, NativeRegExpMacroAssembler::FAILURE);
1411 __ j(equal, &failure);
1412 __ cmp(eax, NativeRegExpMacroAssembler::EXCEPTION);
1413 // If not exception it can only be retry. Handle that in the runtime system.
1414 __ j(not_equal, &runtime);
1415 // Result must now be exception. If there is no pending exception already a
1416 // stack overflow (on the backtrack stack) was detected in RegExp code but
1417 // haven't created the exception yet. Handle that in the runtime system.
1418 // TODO(592): Rerunning the RegExp to get the stack overflow exception.
1419 ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
1421 __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
1422 __ mov(eax, Operand::StaticVariable(pending_exception));
1424 __ j(equal, &runtime);
1426 // For exception, throw the exception again.
1427 __ TailCallRuntime(Runtime::kRegExpExecReThrow, 4, 1);
1430 // For failure to match, return null.
1431 __ mov(eax, factory->null_value());
1432 __ ret(4 * kPointerSize);
1434 // Load RegExp data.
1436 __ mov(eax, Operand(esp, kJSRegExpOffset));
1437 __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
1438 __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
1439 // Calculate number of capture registers (number_of_captures + 1) * 2.
1440 STATIC_ASSERT(kSmiTag == 0);
1441 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
1442 __ add(edx, Immediate(2)); // edx was a smi.
1444 // edx: Number of capture registers
1445 // Load last_match_info which is still known to be a fast case JSArray.
1446 // Check that the fourth object is a JSArray object.
1447 __ mov(eax, Operand(esp, kLastMatchInfoOffset));
1448 __ JumpIfSmi(eax, &runtime);
1449 __ CmpObjectType(eax, JS_ARRAY_TYPE, ebx);
1450 __ j(not_equal, &runtime);
1451 // Check that the JSArray is in fast case.
1452 __ mov(ebx, FieldOperand(eax, JSArray::kElementsOffset));
1453 __ mov(eax, FieldOperand(ebx, HeapObject::kMapOffset));
1454 __ cmp(eax, factory->fixed_array_map());
1455 __ j(not_equal, &runtime);
1456 // Check that the last match info has space for the capture registers and the
1457 // additional information.
1458 __ mov(eax, FieldOperand(ebx, FixedArray::kLengthOffset));
1460 __ sub(eax, Immediate(RegExpImpl::kLastMatchOverhead));
1462 __ j(greater, &runtime);
1464 // ebx: last_match_info backing store (FixedArray)
1465 // edx: number of capture registers
1466 // Store the capture count.
1467 __ SmiTag(edx); // Number of capture registers to smi.
1468 __ mov(FieldOperand(ebx, RegExpImpl::kLastCaptureCountOffset), edx);
1469 __ SmiUntag(edx); // Number of capture registers back from smi.
1470 // Store last subject and last input.
1471 __ mov(eax, Operand(esp, kSubjectOffset));
1473 __ mov(FieldOperand(ebx, RegExpImpl::kLastSubjectOffset), eax);
1474 __ RecordWriteField(ebx,
1475 RegExpImpl::kLastSubjectOffset,
1480 __ mov(FieldOperand(ebx, RegExpImpl::kLastInputOffset), eax);
1481 __ RecordWriteField(ebx,
1482 RegExpImpl::kLastInputOffset,
1487 // Get the static offsets vector filled by the native regexp code.
1488 ExternalReference address_of_static_offsets_vector =
1489 ExternalReference::address_of_static_offsets_vector(isolate());
1490 __ mov(ecx, Immediate(address_of_static_offsets_vector));
1492 // ebx: last_match_info backing store (FixedArray)
1493 // ecx: offsets vector
1494 // edx: number of capture registers
1495 Label next_capture, done;
1496 // Capture register counter starts from number of capture registers and
1497 // counts down until wraping after zero.
1498 __ bind(&next_capture);
1499 __ sub(edx, Immediate(1));
1500 __ j(negative, &done, Label::kNear);
1501 // Read the value from the static offsets vector buffer.
1502 __ mov(edi, Operand(ecx, edx, times_int_size, 0));
1504 // Store the smi value in the last match info.
1505 __ mov(FieldOperand(ebx,
1508 RegExpImpl::kFirstCaptureOffset),
1510 __ jmp(&next_capture);
1513 // Return last match info.
1514 __ mov(eax, Operand(esp, kLastMatchInfoOffset));
1515 __ ret(4 * kPointerSize);
1517 // Do the runtime call to execute the regexp.
1519 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
1521 // Deferred code for string handling.
1522 // (7) Not a long external string? If yes, go to (10).
1523 __ bind(¬_seq_nor_cons);
1524 // Compare flags are still set from (3).
1525 __ j(greater, ¬_long_external, Label::kNear); // Go to (10).
1527 // (8) External string. Short external strings have been ruled out.
1528 __ bind(&external_string);
1529 // Reload instance type.
1530 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
1531 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
1532 if (FLAG_debug_code) {
1533 // Assert that we do not have a cons or slice (indirect strings) here.
1534 // Sequential strings have already been ruled out.
1535 __ test_b(ebx, kIsIndirectStringMask);
1536 __ Assert(zero, kExternalStringExpectedButNotFound);
1538 __ mov(eax, FieldOperand(eax, ExternalString::kResourceDataOffset));
1539 // Move the pointer so that offset-wise, it looks like a sequential string.
1540 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
1541 __ sub(eax, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
1542 STATIC_ASSERT(kTwoByteStringTag == 0);
1543 // (8a) Is the external string one byte? If yes, go to (6).
1544 __ test_b(ebx, kStringEncodingMask);
1545 __ j(not_zero, &seq_one_byte_string); // Goto (6).
1547 // eax: sequential subject string (or look-alike, external string)
1548 // edx: original subject string
1549 // ecx: RegExp data (FixedArray)
1550 // (9) Two byte sequential. Load regexp code for one byte. Go to (E).
1551 __ bind(&seq_two_byte_string);
1552 // Load previous index and check range before edx is overwritten. We have
1553 // to use edx instead of eax here because it might have been only made to
1554 // look like a sequential string when it actually is an external string.
1555 __ mov(ebx, Operand(esp, kPreviousIndexOffset));
1556 __ JumpIfNotSmi(ebx, &runtime);
1557 __ cmp(ebx, FieldOperand(edx, String::kLengthOffset));
1558 __ j(above_equal, &runtime);
1559 __ mov(edx, FieldOperand(ecx, JSRegExp::kDataUC16CodeOffset));
1560 __ Move(ecx, Immediate(0)); // Type is two byte.
1561 __ jmp(&check_code); // Go to (E).
1563 // (10) Not a string or a short external string? If yes, bail out to runtime.
1564 __ bind(¬_long_external);
1565 // Catch non-string subject or short external string.
1566 STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
1567 __ test(ebx, Immediate(kIsNotStringMask | kShortExternalStringTag));
1568 __ j(not_zero, &runtime);
1570 // (11) Sliced string. Replace subject with parent. Go to (5a).
1571 // Load offset into edi and replace subject string with parent.
1572 __ mov(edi, FieldOperand(eax, SlicedString::kOffsetOffset));
1573 __ mov(eax, FieldOperand(eax, SlicedString::kParentOffset));
1574 __ jmp(&check_underlying); // Go to (5a).
1575 #endif // V8_INTERPRETED_REGEXP
1579 static int NegativeComparisonResult(Condition cc) {
1580 DCHECK(cc != equal);
1581 DCHECK((cc == less) || (cc == less_equal)
1582 || (cc == greater) || (cc == greater_equal));
1583 return (cc == greater || cc == greater_equal) ? LESS : GREATER;
1587 static void CheckInputType(MacroAssembler* masm, Register input,
1588 CompareICState::State expected, Label* fail) {
1590 if (expected == CompareICState::SMI) {
1591 __ JumpIfNotSmi(input, fail);
1592 } else if (expected == CompareICState::NUMBER) {
1593 __ JumpIfSmi(input, &ok);
1594 __ cmp(FieldOperand(input, HeapObject::kMapOffset),
1595 Immediate(masm->isolate()->factory()->heap_number_map()));
1596 __ j(not_equal, fail);
1598 // We could be strict about internalized/non-internalized here, but as long as
1599 // hydrogen doesn't care, the stub doesn't have to care either.
1604 static void BranchIfNotInternalizedString(MacroAssembler* masm,
1608 __ JumpIfSmi(object, label);
1609 __ mov(scratch, FieldOperand(object, HeapObject::kMapOffset));
1610 __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
1611 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
1612 __ test(scratch, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
1613 __ j(not_zero, label);
1617 void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
1618 Label runtime_call, check_unequal_objects;
1619 Condition cc = GetCondition();
1622 CheckInputType(masm, edx, left(), &miss);
1623 CheckInputType(masm, eax, right(), &miss);
1625 // Compare two smis.
1626 Label non_smi, smi_done;
1629 __ JumpIfNotSmi(ecx, &non_smi, Label::kNear);
1630 __ sub(edx, eax); // Return on the result of the subtraction.
1631 __ j(no_overflow, &smi_done, Label::kNear);
1632 __ not_(edx); // Correct sign in case of overflow. edx is never 0 here.
1638 // NOTICE! This code is only reached after a smi-fast-case check, so
1639 // it is certain that at least one operand isn't a smi.
1641 // Identical objects can be compared fast, but there are some tricky cases
1642 // for NaN and undefined.
1643 Label generic_heap_number_comparison;
1645 Label not_identical;
1647 __ j(not_equal, ¬_identical);
1650 // Check for undefined. undefined OP undefined is false even though
1651 // undefined == undefined.
1652 __ cmp(edx, isolate()->factory()->undefined_value());
1653 if (is_strong(strength())) {
1654 // In strong mode, this comparison must throw, so call the runtime.
1655 __ j(equal, &runtime_call, Label::kFar);
1657 Label check_for_nan;
1658 __ j(not_equal, &check_for_nan, Label::kNear);
1659 __ Move(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc))));
1661 __ bind(&check_for_nan);
1665 // Test for NaN. Compare heap numbers in a general way,
1666 // to handle NaNs correctly.
1667 __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
1668 Immediate(isolate()->factory()->heap_number_map()));
1669 __ j(equal, &generic_heap_number_comparison, Label::kNear);
1671 __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
1672 __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
1673 // Call runtime on identical JSObjects. Otherwise return equal.
1674 __ cmpb(ecx, static_cast<uint8_t>(FIRST_SPEC_OBJECT_TYPE));
1675 __ j(above_equal, &runtime_call, Label::kFar);
1676 // Call runtime on identical symbols since we need to throw a TypeError.
1677 __ cmpb(ecx, static_cast<uint8_t>(SYMBOL_TYPE));
1678 __ j(equal, &runtime_call, Label::kFar);
1679 // Call runtime on identical SIMD values since we must throw a TypeError.
1680 __ cmpb(ecx, static_cast<uint8_t>(SIMD128_VALUE_TYPE));
1681 __ j(equal, &runtime_call, Label::kFar);
1682 if (is_strong(strength())) {
1683 // We have already tested for smis and heap numbers, so if both
1684 // arguments are not strings we must proceed to the slow case.
1685 __ test(ecx, Immediate(kIsNotStringMask));
1686 __ j(not_zero, &runtime_call, Label::kFar);
1689 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
1693 __ bind(¬_identical);
1696 // Strict equality can quickly decide whether objects are equal.
1697 // Non-strict object equality is slower, so it is handled later in the stub.
1698 if (cc == equal && strict()) {
1699 Label slow; // Fallthrough label.
1701 // If we're doing a strict equality comparison, we don't have to do
1702 // type conversion, so we generate code to do fast comparison for objects
1703 // and oddballs. Non-smi numbers and strings still go through the usual
1705 // If either is a Smi (we know that not both are), then they can only
1706 // be equal if the other is a HeapNumber. If so, use the slow case.
1707 STATIC_ASSERT(kSmiTag == 0);
1708 DCHECK_EQ(static_cast<Smi*>(0), Smi::FromInt(0));
1709 __ mov(ecx, Immediate(kSmiTagMask));
1712 __ j(not_zero, ¬_smis, Label::kNear);
1713 // One operand is a smi.
1715 // Check whether the non-smi is a heap number.
1716 STATIC_ASSERT(kSmiTagMask == 1);
1717 // ecx still holds eax & kSmiTag, which is either zero or one.
1718 __ sub(ecx, Immediate(0x01));
1721 __ and_(ebx, ecx); // ebx holds either 0 or eax ^ edx.
1723 // if eax was smi, ebx is now edx, else eax.
1725 // Check if the non-smi operand is a heap number.
1726 __ cmp(FieldOperand(ebx, HeapObject::kMapOffset),
1727 Immediate(isolate()->factory()->heap_number_map()));
1728 // If heap number, handle it in the slow case.
1729 __ j(equal, &slow, Label::kNear);
1730 // Return non-equal (ebx is not zero)
1735 // If either operand is a JSObject or an oddball value, then they are not
1736 // equal since their pointers are different
1737 // There is no test for undetectability in strict equality.
1739 // Get the type of the first operand.
1740 // If the first object is a JS object, we have done pointer comparison.
1741 Label first_non_object;
1742 STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
1743 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
1744 __ j(below, &first_non_object, Label::kNear);
1746 // Return non-zero (eax is not zero)
1747 Label return_not_equal;
1748 STATIC_ASSERT(kHeapObjectTag != 0);
1749 __ bind(&return_not_equal);
1752 __ bind(&first_non_object);
1753 // Check for oddballs: true, false, null, undefined.
1754 __ CmpInstanceType(ecx, ODDBALL_TYPE);
1755 __ j(equal, &return_not_equal);
1757 __ CmpObjectType(edx, FIRST_SPEC_OBJECT_TYPE, ecx);
1758 __ j(above_equal, &return_not_equal);
1760 // Check for oddballs: true, false, null, undefined.
1761 __ CmpInstanceType(ecx, ODDBALL_TYPE);
1762 __ j(equal, &return_not_equal);
1764 // Fall through to the general case.
1768 // Generate the number comparison code.
1769 Label non_number_comparison;
1771 __ bind(&generic_heap_number_comparison);
1773 FloatingPointHelper::LoadSSE2Operands(masm, &non_number_comparison);
1774 __ ucomisd(xmm0, xmm1);
1775 // Don't base result on EFLAGS when a NaN is involved.
1776 __ j(parity_even, &unordered, Label::kNear);
1778 __ mov(eax, 0); // equal
1779 __ mov(ecx, Immediate(Smi::FromInt(1)));
1780 __ cmov(above, eax, ecx);
1781 __ mov(ecx, Immediate(Smi::FromInt(-1)));
1782 __ cmov(below, eax, ecx);
1785 // If one of the numbers was NaN, then the result is always false.
1786 // The cc is never not-equal.
1787 __ bind(&unordered);
1788 DCHECK(cc != not_equal);
1789 if (cc == less || cc == less_equal) {
1790 __ mov(eax, Immediate(Smi::FromInt(1)));
1792 __ mov(eax, Immediate(Smi::FromInt(-1)));
1796 // The number comparison code did not provide a valid result.
1797 __ bind(&non_number_comparison);
1799 // Fast negative check for internalized-to-internalized equality.
1800 Label check_for_strings;
1802 BranchIfNotInternalizedString(masm, &check_for_strings, eax, ecx);
1803 BranchIfNotInternalizedString(masm, &check_for_strings, edx, ecx);
1805 // We've already checked for object identity, so if both operands
1806 // are internalized they aren't equal. Register eax already holds a
1807 // non-zero value, which indicates not equal, so just return.
1811 __ bind(&check_for_strings);
1813 __ JumpIfNotBothSequentialOneByteStrings(edx, eax, ecx, ebx,
1814 &check_unequal_objects);
1816 // Inline comparison of one-byte strings.
1818 StringHelper::GenerateFlatOneByteStringEquals(masm, edx, eax, ecx, ebx);
1820 StringHelper::GenerateCompareFlatOneByteStrings(masm, edx, eax, ecx, ebx,
1824 __ Abort(kUnexpectedFallThroughFromStringComparison);
1827 __ bind(&check_unequal_objects);
1828 if (cc == equal && !strict()) {
1829 // Non-strict equality. Objects are unequal if
1830 // they are both JSObjects and not undetectable,
1831 // and their pointers are different.
1832 Label return_unequal;
1833 // At most one is a smi, so we can test for smi by adding the two.
1834 // A smi plus a heap object has the low bit set, a heap object plus
1835 // a heap object has the low bit clear.
1836 STATIC_ASSERT(kSmiTag == 0);
1837 STATIC_ASSERT(kSmiTagMask == 1);
1838 __ lea(ecx, Operand(eax, edx, times_1, 0));
1839 __ test(ecx, Immediate(kSmiTagMask));
1840 __ j(not_zero, &runtime_call, Label::kNear);
1841 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
1842 __ j(below, &runtime_call, Label::kNear);
1843 __ CmpObjectType(edx, FIRST_SPEC_OBJECT_TYPE, ebx);
1844 __ j(below, &runtime_call, Label::kNear);
1845 // We do not bail out after this point. Both are JSObjects, and
1846 // they are equal if and only if both are undetectable.
1847 // The and of the undetectable flags is 1 if and only if they are equal.
1848 __ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
1849 1 << Map::kIsUndetectable);
1850 __ j(zero, &return_unequal, Label::kNear);
1851 __ test_b(FieldOperand(ebx, Map::kBitFieldOffset),
1852 1 << Map::kIsUndetectable);
1853 __ j(zero, &return_unequal, Label::kNear);
1854 // The objects are both undetectable, so they both compare as the value
1855 // undefined, and are equal.
1856 __ Move(eax, Immediate(EQUAL));
1857 __ bind(&return_unequal);
1858 // Return non-equal by returning the non-zero object pointer in eax,
1859 // or return equal if we fell through to here.
1860 __ ret(0); // rax, rdx were pushed
1862 __ bind(&runtime_call);
1864 // Push arguments below the return address.
1869 // Figure out which native to call and setup the arguments.
1872 __ TailCallRuntime(strict() ? Runtime::kStrictEquals : Runtime::kEquals, 2,
1875 __ push(Immediate(Smi::FromInt(NegativeComparisonResult(cc))));
1877 // Restore return address on the stack.
1880 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
1881 // tagged as a small integer.
1883 is_strong(strength()) ? Runtime::kCompare_Strong : Runtime::kCompare, 3,
1892 static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub,
1894 // eax : number of arguments to the construct function
1895 // ebx : feedback vector
1896 // edx : slot in feedback vector (Smi)
1897 // edi : the function to call
1898 // esp[0]: original receiver (for IsSuperConstructorCall)
1904 FrameScope scope(masm, StackFrame::INTERNAL);
1906 // Number-of-arguments register must be smi-tagged to call out.
1934 static void GenerateRecordCallTarget(MacroAssembler* masm, bool is_super) {
1935 // Cache the called function in a feedback vector slot. Cache states
1936 // are uninitialized, monomorphic (indicated by a JSFunction), and
1938 // eax : number of arguments to the construct function
1939 // ebx : feedback vector
1940 // edx : slot in feedback vector (Smi)
1941 // edi : the function to call
1942 // esp[0]: original receiver (for IsSuperConstructorCall)
1943 Isolate* isolate = masm->isolate();
1944 Label initialize, done, miss, megamorphic, not_array_function;
1946 // Load the cache state into ecx.
1947 __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
1948 FixedArray::kHeaderSize));
1950 // A monomorphic cache hit or an already megamorphic state: invoke the
1951 // function without changing the state.
1952 // We don't know if ecx is a WeakCell or a Symbol, but it's harmless to read
1953 // at this position in a symbol (see static asserts in
1954 // type-feedback-vector.h).
1955 Label check_allocation_site;
1956 __ cmp(edi, FieldOperand(ecx, WeakCell::kValueOffset));
1957 __ j(equal, &done, Label::kFar);
1958 __ CompareRoot(ecx, Heap::kmegamorphic_symbolRootIndex);
1959 __ j(equal, &done, Label::kFar);
1960 __ CompareRoot(FieldOperand(ecx, HeapObject::kMapOffset),
1961 Heap::kWeakCellMapRootIndex);
1962 __ j(not_equal, &check_allocation_site);
1964 // If the weak cell is cleared, we have a new chance to become monomorphic.
1965 __ JumpIfSmi(FieldOperand(ecx, WeakCell::kValueOffset), &initialize);
1966 __ jmp(&megamorphic);
1968 __ bind(&check_allocation_site);
1969 // If we came here, we need to see if we are the array function.
1970 // If we didn't have a matching function, and we didn't find the megamorph
1971 // sentinel, then we have in the slot either some other function or an
1973 __ CompareRoot(FieldOperand(ecx, 0), Heap::kAllocationSiteMapRootIndex);
1974 __ j(not_equal, &miss);
1976 // Make sure the function is the Array() function
1977 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
1979 __ j(not_equal, &megamorphic);
1980 __ jmp(&done, Label::kFar);
1984 // A monomorphic miss (i.e, here the cache is not uninitialized) goes
1986 __ CompareRoot(ecx, Heap::kuninitialized_symbolRootIndex);
1987 __ j(equal, &initialize);
1988 // MegamorphicSentinel is an immortal immovable object (undefined) so no
1989 // write-barrier is needed.
1990 __ bind(&megamorphic);
1992 FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize),
1993 Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
1994 __ jmp(&done, Label::kFar);
1996 // An uninitialized cache is patched with the function or sentinel to
1997 // indicate the ElementsKind if function is the Array constructor.
1998 __ bind(&initialize);
1999 // Make sure the function is the Array() function
2000 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
2002 __ j(not_equal, ¬_array_function);
2004 // The target function is the Array constructor,
2005 // Create an AllocationSite if we don't already have it, store it in the
2007 CreateAllocationSiteStub create_stub(isolate);
2008 CallStubInRecordCallTarget(masm, &create_stub, is_super);
2011 __ bind(¬_array_function);
2012 CreateWeakCellStub weak_cell_stub(isolate);
2013 CallStubInRecordCallTarget(masm, &weak_cell_stub, is_super);
2018 static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) {
2019 // Do not transform the receiver for strict mode functions.
2020 __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
2021 __ test_b(FieldOperand(ecx, SharedFunctionInfo::kStrictModeByteOffset),
2022 1 << SharedFunctionInfo::kStrictModeBitWithinByte);
2023 __ j(not_equal, cont);
2025 // Do not transform the receiver for natives (shared already in ecx).
2026 __ test_b(FieldOperand(ecx, SharedFunctionInfo::kNativeByteOffset),
2027 1 << SharedFunctionInfo::kNativeBitWithinByte);
2028 __ j(not_equal, cont);
2032 static void EmitSlowCase(Isolate* isolate, MacroAssembler* masm, int argc) {
2034 __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
2038 static void EmitWrapCase(MacroAssembler* masm, int argc, Label* cont) {
2039 // Wrap the receiver and patch it back onto the stack.
2040 { FrameScope frame_scope(masm, StackFrame::INTERNAL);
2042 ToObjectStub stub(masm->isolate());
2046 __ mov(Operand(esp, (argc + 1) * kPointerSize), eax);
2051 static void CallFunctionNoFeedback(MacroAssembler* masm,
2052 int argc, bool needs_checks,
2053 bool call_as_method) {
2054 // edi : the function to call
2055 Label slow, wrap, cont;
2058 // Check that the function really is a JavaScript function.
2059 __ JumpIfSmi(edi, &slow);
2061 // Goto slow case if we do not have a function.
2062 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
2063 __ j(not_equal, &slow);
2066 // Fast-case: Just invoke the function.
2067 ParameterCount actual(argc);
2069 if (call_as_method) {
2071 EmitContinueIfStrictOrNative(masm, &cont);
2074 // Load the receiver from the stack.
2075 __ mov(eax, Operand(esp, (argc + 1) * kPointerSize));
2078 __ JumpIfSmi(eax, &wrap);
2080 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
2089 __ InvokeFunction(edi, actual, JUMP_FUNCTION, NullCallWrapper());
2092 // Slow-case: Non-function called.
2094 EmitSlowCase(masm->isolate(), masm, argc);
2097 if (call_as_method) {
2099 EmitWrapCase(masm, argc, &cont);
2104 void CallFunctionStub::Generate(MacroAssembler* masm) {
2105 CallFunctionNoFeedback(masm, argc(), NeedsChecks(), CallAsMethod());
2109 void CallConstructStub::Generate(MacroAssembler* masm) {
2110 // eax : number of arguments
2111 // ebx : feedback vector
2112 // ecx : original constructor (for IsSuperConstructorCall)
2113 // edx : slot in feedback vector (Smi, for RecordCallTarget)
2114 // edi : constructor function
2115 Label slow, non_function_call;
2117 if (IsSuperConstructorCall()) {
2121 // Check that function is not a smi.
2122 __ JumpIfSmi(edi, &non_function_call);
2123 // Check that function is a JSFunction.
2124 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
2125 __ j(not_equal, &slow);
2127 if (RecordCallTarget()) {
2128 GenerateRecordCallTarget(masm, IsSuperConstructorCall());
2130 Label feedback_register_initialized;
2131 // Put the AllocationSite from the feedback vector into ebx, or undefined.
2132 __ mov(ebx, FieldOperand(ebx, edx, times_half_pointer_size,
2133 FixedArray::kHeaderSize));
2134 Handle<Map> allocation_site_map =
2135 isolate()->factory()->allocation_site_map();
2136 __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map));
2137 __ j(equal, &feedback_register_initialized);
2138 __ mov(ebx, isolate()->factory()->undefined_value());
2139 __ bind(&feedback_register_initialized);
2141 __ AssertUndefinedOrAllocationSite(ebx);
2144 if (IsSuperConstructorCall()) {
2147 // Pass original constructor to construct stub.
2151 // Jump to the function-specific construct stub.
2152 Register jmp_reg = ecx;
2153 __ mov(jmp_reg, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
2154 __ mov(jmp_reg, FieldOperand(jmp_reg,
2155 SharedFunctionInfo::kConstructStubOffset));
2156 __ lea(jmp_reg, FieldOperand(jmp_reg, Code::kHeaderSize));
2159 // edi: called object
2160 // eax: number of arguments
2162 // esp[0]: original receiver (for IsSuperConstructorCall)
2165 __ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE);
2166 __ j(not_equal, &non_function_call, Label::kNear);
2167 if (IsSuperConstructorCall()) __ Drop(1);
2168 // TODO(neis): This doesn't match the ES6 spec for [[Construct]] on proxies.
2169 __ mov(edi, FieldOperand(edi, JSFunctionProxy::kConstructTrapOffset));
2170 __ Jump(isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
2172 __ bind(&non_function_call);
2173 if (IsSuperConstructorCall()) __ Drop(1);
2175 // Determine the delegate for the target (if any).
2176 FrameScope scope(masm, StackFrame::INTERNAL);
2180 __ CallRuntime(Runtime::kGetConstructorDelegate, 1);
2185 // The delegate is always a regular function.
2186 __ AssertFunction(edi);
2187 __ Jump(isolate()->builtins()->CallFunction(), RelocInfo::CODE_TARGET);
2192 static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) {
2193 __ mov(vector, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
2194 __ mov(vector, FieldOperand(vector, JSFunction::kSharedFunctionInfoOffset));
2195 __ mov(vector, FieldOperand(vector,
2196 SharedFunctionInfo::kFeedbackVectorOffset));
2200 void CallICStub::HandleArrayCase(MacroAssembler* masm, Label* miss) {
2204 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
2206 __ j(not_equal, miss);
2208 __ mov(eax, arg_count());
2210 __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
2211 FixedArray::kHeaderSize));
2213 // Increment the call count for monomorphic function calls.
2214 __ add(FieldOperand(ebx, edx, times_half_pointer_size,
2215 FixedArray::kHeaderSize + kPointerSize),
2216 Immediate(Smi::FromInt(CallICNexus::kCallCountIncrement)));
2220 ArrayConstructorStub stub(masm->isolate(), arg_count());
2221 __ TailCallStub(&stub);
2227 void CallICStub::Generate(MacroAssembler* masm) {
2231 Isolate* isolate = masm->isolate();
2232 const int with_types_offset =
2233 FixedArray::OffsetOfElementAt(TypeFeedbackVector::kWithTypesIndex);
2234 const int generic_offset =
2235 FixedArray::OffsetOfElementAt(TypeFeedbackVector::kGenericCountIndex);
2236 Label extra_checks_or_miss, slow_start;
2237 Label slow, wrap, cont;
2238 Label have_js_function;
2239 int argc = arg_count();
2240 ParameterCount actual(argc);
2242 // The checks. First, does edi match the recorded monomorphic target?
2243 __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
2244 FixedArray::kHeaderSize));
2246 // We don't know that we have a weak cell. We might have a private symbol
2247 // or an AllocationSite, but the memory is safe to examine.
2248 // AllocationSite::kTransitionInfoOffset - contains a Smi or pointer to
2250 // WeakCell::kValueOffset - contains a JSFunction or Smi(0)
2251 // Symbol::kHashFieldSlot - if the low bit is 1, then the hash is not
2252 // computed, meaning that it can't appear to be a pointer. If the low bit is
2253 // 0, then hash is computed, but the 0 bit prevents the field from appearing
2255 STATIC_ASSERT(WeakCell::kSize >= kPointerSize);
2256 STATIC_ASSERT(AllocationSite::kTransitionInfoOffset ==
2257 WeakCell::kValueOffset &&
2258 WeakCell::kValueOffset == Symbol::kHashFieldSlot);
2260 __ cmp(edi, FieldOperand(ecx, WeakCell::kValueOffset));
2261 __ j(not_equal, &extra_checks_or_miss);
2263 // The compare above could have been a SMI/SMI comparison. Guard against this
2264 // convincing us that we have a monomorphic JSFunction.
2265 __ JumpIfSmi(edi, &extra_checks_or_miss);
2267 // Increment the call count for monomorphic function calls.
2268 __ add(FieldOperand(ebx, edx, times_half_pointer_size,
2269 FixedArray::kHeaderSize + kPointerSize),
2270 Immediate(Smi::FromInt(CallICNexus::kCallCountIncrement)));
2272 __ bind(&have_js_function);
2273 if (CallAsMethod()) {
2274 EmitContinueIfStrictOrNative(masm, &cont);
2276 // Load the receiver from the stack.
2277 __ mov(eax, Operand(esp, (argc + 1) * kPointerSize));
2279 __ JumpIfSmi(eax, &wrap);
2281 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
2287 __ InvokeFunction(edi, actual, JUMP_FUNCTION, NullCallWrapper());
2290 EmitSlowCase(isolate, masm, argc);
2292 if (CallAsMethod()) {
2294 EmitWrapCase(masm, argc, &cont);
2297 __ bind(&extra_checks_or_miss);
2298 Label uninitialized, miss, not_allocation_site;
2300 __ cmp(ecx, Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
2301 __ j(equal, &slow_start);
2303 // Check if we have an allocation site.
2304 __ CompareRoot(FieldOperand(ecx, HeapObject::kMapOffset),
2305 Heap::kAllocationSiteMapRootIndex);
2306 __ j(not_equal, ¬_allocation_site);
2308 // We have an allocation site.
2309 HandleArrayCase(masm, &miss);
2311 __ bind(¬_allocation_site);
2313 // The following cases attempt to handle MISS cases without going to the
2315 if (FLAG_trace_ic) {
2319 __ cmp(ecx, Immediate(TypeFeedbackVector::UninitializedSentinel(isolate)));
2320 __ j(equal, &uninitialized);
2322 // We are going megamorphic. If the feedback is a JSFunction, it is fine
2323 // to handle it here. More complex cases are dealt with in the runtime.
2324 __ AssertNotSmi(ecx);
2325 __ CmpObjectType(ecx, JS_FUNCTION_TYPE, ecx);
2326 __ j(not_equal, &miss);
2328 FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize),
2329 Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
2330 // We have to update statistics for runtime profiling.
2331 __ sub(FieldOperand(ebx, with_types_offset), Immediate(Smi::FromInt(1)));
2332 __ add(FieldOperand(ebx, generic_offset), Immediate(Smi::FromInt(1)));
2333 __ jmp(&slow_start);
2335 __ bind(&uninitialized);
2337 // We are going monomorphic, provided we actually have a JSFunction.
2338 __ JumpIfSmi(edi, &miss);
2340 // Goto miss case if we do not have a function.
2341 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
2342 __ j(not_equal, &miss);
2344 // Make sure the function is not the Array() function, which requires special
2345 // behavior on MISS.
2346 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
2351 __ add(FieldOperand(ebx, with_types_offset), Immediate(Smi::FromInt(1)));
2353 // Initialize the call counter.
2354 __ mov(FieldOperand(ebx, edx, times_half_pointer_size,
2355 FixedArray::kHeaderSize + kPointerSize),
2356 Immediate(Smi::FromInt(CallICNexus::kCallCountIncrement)));
2358 // Store the function. Use a stub since we need a frame for allocation.
2363 FrameScope scope(masm, StackFrame::INTERNAL);
2364 CreateWeakCellStub create_stub(isolate);
2366 __ CallStub(&create_stub);
2370 __ jmp(&have_js_function);
2372 // We are here because tracing is on or we encountered a MISS case we can't
2378 __ bind(&slow_start);
2380 // Check that the function really is a JavaScript function.
2381 __ JumpIfSmi(edi, &slow);
2383 // Goto slow case if we do not have a function.
2384 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
2385 __ j(not_equal, &slow);
2386 __ jmp(&have_js_function);
2393 void CallICStub::GenerateMiss(MacroAssembler* masm) {
2394 FrameScope scope(masm, StackFrame::INTERNAL);
2396 // Push the function and feedback info.
2402 __ CallRuntime(Runtime::kCallIC_Miss, 3);
2404 // Move result to edi and exit the internal frame.
2409 bool CEntryStub::NeedsImmovableCode() {
2414 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
2415 CEntryStub::GenerateAheadOfTime(isolate);
2416 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
2417 StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
2418 // It is important that the store buffer overflow stubs are generated first.
2419 ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
2420 CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
2421 CreateWeakCellStub::GenerateAheadOfTime(isolate);
2422 BinaryOpICStub::GenerateAheadOfTime(isolate);
2423 BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
2424 StoreFastElementStub::GenerateAheadOfTime(isolate);
2425 TypeofStub::GenerateAheadOfTime(isolate);
2429 void CodeStub::GenerateFPStubs(Isolate* isolate) {
2430 // Generate if not already in cache.
2431 CEntryStub(isolate, 1, kSaveFPRegs).GetCode();
2432 isolate->set_fp_stubs_generated(true);
2436 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
2437 CEntryStub stub(isolate, 1, kDontSaveFPRegs);
2442 void CEntryStub::Generate(MacroAssembler* masm) {
2443 // eax: number of arguments including receiver
2444 // ebx: pointer to C function (C callee-saved)
2445 // ebp: frame pointer (restored after C call)
2446 // esp: stack pointer (restored after C call)
2447 // esi: current context (C callee-saved)
2448 // edi: JS function of the caller (C callee-saved)
2450 ProfileEntryHookStub::MaybeCallEntryHook(masm);
2452 // Enter the exit frame that transitions from JavaScript to C++.
2453 __ EnterExitFrame(save_doubles());
2455 // ebx: pointer to C function (C callee-saved)
2456 // ebp: frame pointer (restored after C call)
2457 // esp: stack pointer (restored after C call)
2458 // edi: number of arguments including receiver (C callee-saved)
2459 // esi: pointer to the first argument (C callee-saved)
2461 // Result returned in eax, or eax+edx if result size is 2.
2463 // Check stack alignment.
2464 if (FLAG_debug_code) {
2465 __ CheckStackAlignment();
2469 __ mov(Operand(esp, 0 * kPointerSize), edi); // argc.
2470 __ mov(Operand(esp, 1 * kPointerSize), esi); // argv.
2471 __ mov(Operand(esp, 2 * kPointerSize),
2472 Immediate(ExternalReference::isolate_address(isolate())));
2474 // Result is in eax or edx:eax - do not destroy these registers!
2476 // Check result for exception sentinel.
2477 Label exception_returned;
2478 __ cmp(eax, isolate()->factory()->exception());
2479 __ j(equal, &exception_returned);
2481 // Check that there is no pending exception, otherwise we
2482 // should have returned the exception sentinel.
2483 if (FLAG_debug_code) {
2485 __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
2487 ExternalReference pending_exception_address(
2488 Isolate::kPendingExceptionAddress, isolate());
2489 __ cmp(edx, Operand::StaticVariable(pending_exception_address));
2490 // Cannot use check here as it attempts to generate call into runtime.
2491 __ j(equal, &okay, Label::kNear);
2497 // Exit the JavaScript to C++ exit frame.
2498 __ LeaveExitFrame(save_doubles());
2501 // Handling of exception.
2502 __ bind(&exception_returned);
2504 ExternalReference pending_handler_context_address(
2505 Isolate::kPendingHandlerContextAddress, isolate());
2506 ExternalReference pending_handler_code_address(
2507 Isolate::kPendingHandlerCodeAddress, isolate());
2508 ExternalReference pending_handler_offset_address(
2509 Isolate::kPendingHandlerOffsetAddress, isolate());
2510 ExternalReference pending_handler_fp_address(
2511 Isolate::kPendingHandlerFPAddress, isolate());
2512 ExternalReference pending_handler_sp_address(
2513 Isolate::kPendingHandlerSPAddress, isolate());
2515 // Ask the runtime for help to determine the handler. This will set eax to
2516 // contain the current pending exception, don't clobber it.
2517 ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
2520 FrameScope scope(masm, StackFrame::MANUAL);
2521 __ PrepareCallCFunction(3, eax);
2522 __ mov(Operand(esp, 0 * kPointerSize), Immediate(0)); // argc.
2523 __ mov(Operand(esp, 1 * kPointerSize), Immediate(0)); // argv.
2524 __ mov(Operand(esp, 2 * kPointerSize),
2525 Immediate(ExternalReference::isolate_address(isolate())));
2526 __ CallCFunction(find_handler, 3);
2529 // Retrieve the handler context, SP and FP.
2530 __ mov(esi, Operand::StaticVariable(pending_handler_context_address));
2531 __ mov(esp, Operand::StaticVariable(pending_handler_sp_address));
2532 __ mov(ebp, Operand::StaticVariable(pending_handler_fp_address));
2534 // If the handler is a JS frame, restore the context to the frame. Note that
2535 // the context will be set to (esi == 0) for non-JS frames.
2538 __ j(zero, &skip, Label::kNear);
2539 __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi);
2542 // Compute the handler entry address and jump to it.
2543 __ mov(edi, Operand::StaticVariable(pending_handler_code_address));
2544 __ mov(edx, Operand::StaticVariable(pending_handler_offset_address));
2545 __ lea(edi, FieldOperand(edi, edx, times_1, Code::kHeaderSize));
2550 void JSEntryStub::Generate(MacroAssembler* masm) {
2551 Label invoke, handler_entry, exit;
2552 Label not_outermost_js, not_outermost_js_2;
2554 ProfileEntryHookStub::MaybeCallEntryHook(masm);
2560 // Push marker in two places.
2561 int marker = type();
2562 __ push(Immediate(Smi::FromInt(marker))); // context slot
2563 __ push(Immediate(Smi::FromInt(marker))); // function slot
2564 // Save callee-saved registers (C calling conventions).
2569 // Save copies of the top frame descriptor on the stack.
2570 ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate());
2571 __ push(Operand::StaticVariable(c_entry_fp));
2573 // If this is the outermost JS call, set js_entry_sp value.
2574 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
2575 __ cmp(Operand::StaticVariable(js_entry_sp), Immediate(0));
2576 __ j(not_equal, ¬_outermost_js, Label::kNear);
2577 __ mov(Operand::StaticVariable(js_entry_sp), ebp);
2578 __ push(Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
2579 __ jmp(&invoke, Label::kNear);
2580 __ bind(¬_outermost_js);
2581 __ push(Immediate(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
2583 // Jump to a faked try block that does the invoke, with a faked catch
2584 // block that sets the pending exception.
2586 __ bind(&handler_entry);
2587 handler_offset_ = handler_entry.pos();
2588 // Caught exception: Store result (exception) in the pending exception
2589 // field in the JSEnv and return a failure sentinel.
2590 ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
2592 __ mov(Operand::StaticVariable(pending_exception), eax);
2593 __ mov(eax, Immediate(isolate()->factory()->exception()));
2596 // Invoke: Link this frame into the handler chain.
2598 __ PushStackHandler();
2600 // Clear any pending exceptions.
2601 __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
2602 __ mov(Operand::StaticVariable(pending_exception), edx);
2604 // Fake a receiver (NULL).
2605 __ push(Immediate(0)); // receiver
2607 // Invoke the function by calling through JS entry trampoline builtin and
2608 // pop the faked function when we return. Notice that we cannot store a
2609 // reference to the trampoline code directly in this stub, because the
2610 // builtin stubs may not have been generated yet.
2611 if (type() == StackFrame::ENTRY_CONSTRUCT) {
2612 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
2614 __ mov(edx, Immediate(construct_entry));
2616 ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
2617 __ mov(edx, Immediate(entry));
2619 __ mov(edx, Operand(edx, 0)); // deref address
2620 __ lea(edx, FieldOperand(edx, Code::kHeaderSize));
2623 // Unlink this frame from the handler chain.
2624 __ PopStackHandler();
2627 // Check if the current stack frame is marked as the outermost JS frame.
2629 __ cmp(ebx, Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
2630 __ j(not_equal, ¬_outermost_js_2);
2631 __ mov(Operand::StaticVariable(js_entry_sp), Immediate(0));
2632 __ bind(¬_outermost_js_2);
2634 // Restore the top frame descriptor from the stack.
2635 __ pop(Operand::StaticVariable(ExternalReference(
2636 Isolate::kCEntryFPAddress, isolate())));
2638 // Restore callee-saved registers (C calling conventions).
2642 __ add(esp, Immediate(2 * kPointerSize)); // remove markers
2644 // Restore frame pointer and return.
2650 void InstanceOfStub::Generate(MacroAssembler* masm) {
2651 Register const object = edx; // Object (lhs).
2652 Register const function = eax; // Function (rhs).
2653 Register const object_map = ecx; // Map of {object}.
2654 Register const function_map = ebx; // Map of {function}.
2655 Register const function_prototype = function_map; // Prototype of {function}.
2656 Register const scratch = edi;
2658 DCHECK(object.is(InstanceOfDescriptor::LeftRegister()));
2659 DCHECK(function.is(InstanceOfDescriptor::RightRegister()));
2661 // Check if {object} is a smi.
2662 Label object_is_smi;
2663 __ JumpIfSmi(object, &object_is_smi, Label::kNear);
2665 // Lookup the {function} and the {object} map in the global instanceof cache.
2666 // Note: This is safe because we clear the global instanceof cache whenever
2667 // we change the prototype of any object.
2668 Label fast_case, slow_case;
2669 __ mov(object_map, FieldOperand(object, HeapObject::kMapOffset));
2670 __ CompareRoot(function, scratch, Heap::kInstanceofCacheFunctionRootIndex);
2671 __ j(not_equal, &fast_case, Label::kNear);
2672 __ CompareRoot(object_map, scratch, Heap::kInstanceofCacheMapRootIndex);
2673 __ j(not_equal, &fast_case, Label::kNear);
2674 __ LoadRoot(eax, Heap::kInstanceofCacheAnswerRootIndex);
2677 // If {object} is a smi we can safely return false if {function} is a JS
2678 // function, otherwise we have to miss to the runtime and throw an exception.
2679 __ bind(&object_is_smi);
2680 __ JumpIfSmi(function, &slow_case);
2681 __ CmpObjectType(function, JS_FUNCTION_TYPE, function_map);
2682 __ j(not_equal, &slow_case);
2683 __ LoadRoot(eax, Heap::kFalseValueRootIndex);
2686 // Fast-case: The {function} must be a valid JSFunction.
2687 __ bind(&fast_case);
2688 __ JumpIfSmi(function, &slow_case);
2689 __ CmpObjectType(function, JS_FUNCTION_TYPE, function_map);
2690 __ j(not_equal, &slow_case);
2692 // Ensure that {function} has an instance prototype.
2693 __ test_b(FieldOperand(function_map, Map::kBitFieldOffset),
2694 static_cast<uint8_t>(1 << Map::kHasNonInstancePrototype));
2695 __ j(not_zero, &slow_case);
2697 // Ensure that {function} is not bound.
2698 Register const shared_info = scratch;
2700 FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
2701 __ BooleanBitTest(shared_info, SharedFunctionInfo::kCompilerHintsOffset,
2702 SharedFunctionInfo::kBoundFunction);
2703 __ j(not_zero, &slow_case);
2705 // Get the "prototype" (or initial map) of the {function}.
2706 __ mov(function_prototype,
2707 FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
2708 __ AssertNotSmi(function_prototype);
2710 // Resolve the prototype if the {function} has an initial map. Afterwards the
2711 // {function_prototype} will be either the JSReceiver prototype object or the
2712 // hole value, which means that no instances of the {function} were created so
2713 // far and hence we should return false.
2714 Label function_prototype_valid;
2715 Register const function_prototype_map = scratch;
2716 __ CmpObjectType(function_prototype, MAP_TYPE, function_prototype_map);
2717 __ j(not_equal, &function_prototype_valid, Label::kNear);
2718 __ mov(function_prototype,
2719 FieldOperand(function_prototype, Map::kPrototypeOffset));
2720 __ bind(&function_prototype_valid);
2721 __ AssertNotSmi(function_prototype);
2723 // Update the global instanceof cache with the current {object} map and
2724 // {function}. The cached answer will be set when it is known below.
2725 __ StoreRoot(function, scratch, Heap::kInstanceofCacheFunctionRootIndex);
2726 __ StoreRoot(object_map, scratch, Heap::kInstanceofCacheMapRootIndex);
2728 // Loop through the prototype chain looking for the {function} prototype.
2729 // Assume true, and change to false if not found.
2730 Register const object_prototype = object_map;
2732 __ mov(eax, isolate()->factory()->true_value());
2734 __ mov(object_prototype, FieldOperand(object_map, Map::kPrototypeOffset));
2735 __ cmp(object_prototype, function_prototype);
2736 __ j(equal, &done, Label::kNear);
2737 __ cmp(object_prototype, isolate()->factory()->null_value());
2738 __ mov(object_map, FieldOperand(object_prototype, HeapObject::kMapOffset));
2739 __ j(not_equal, &loop);
2740 __ mov(eax, isolate()->factory()->false_value());
2742 __ StoreRoot(eax, scratch, Heap::kInstanceofCacheAnswerRootIndex);
2745 // Slow-case: Call the runtime function.
2746 __ bind(&slow_case);
2747 __ pop(scratch); // Pop return address.
2748 __ push(object); // Push {object}.
2749 __ push(function); // Push {function}.
2750 __ push(scratch); // Push return address.
2751 __ TailCallRuntime(Runtime::kInstanceOf, 2, 1);
2755 // -------------------------------------------------------------------------
2756 // StringCharCodeAtGenerator
2758 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
2759 // If the receiver is a smi trigger the non-string case.
2760 STATIC_ASSERT(kSmiTag == 0);
2761 if (check_mode_ == RECEIVER_IS_UNKNOWN) {
2762 __ JumpIfSmi(object_, receiver_not_string_);
2764 // Fetch the instance type of the receiver into result register.
2765 __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
2766 __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
2767 // If the receiver is not a string trigger the non-string case.
2768 __ test(result_, Immediate(kIsNotStringMask));
2769 __ j(not_zero, receiver_not_string_);
2772 // If the index is non-smi trigger the non-smi case.
2773 STATIC_ASSERT(kSmiTag == 0);
2774 __ JumpIfNotSmi(index_, &index_not_smi_);
2775 __ bind(&got_smi_index_);
2777 // Check for index out of range.
2778 __ cmp(index_, FieldOperand(object_, String::kLengthOffset));
2779 __ j(above_equal, index_out_of_range_);
2781 __ SmiUntag(index_);
2783 Factory* factory = masm->isolate()->factory();
2784 StringCharLoadGenerator::Generate(
2785 masm, factory, object_, index_, result_, &call_runtime_);
2792 void StringCharCodeAtGenerator::GenerateSlow(
2793 MacroAssembler* masm, EmbedMode embed_mode,
2794 const RuntimeCallHelper& call_helper) {
2795 __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
2797 // Index is not a smi.
2798 __ bind(&index_not_smi_);
2799 // If index is a heap number, try converting it to an integer.
2801 masm->isolate()->factory()->heap_number_map(),
2804 call_helper.BeforeCall(masm);
2805 if (embed_mode == PART_OF_IC_HANDLER) {
2806 __ push(LoadWithVectorDescriptor::VectorRegister());
2807 __ push(LoadDescriptor::SlotRegister());
2810 __ push(index_); // Consumed by runtime conversion function.
2811 if (index_flags_ == STRING_INDEX_IS_NUMBER) {
2812 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
2814 DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
2815 // NumberToSmi discards numbers that are not exact integers.
2816 __ CallRuntime(Runtime::kNumberToSmi, 1);
2818 if (!index_.is(eax)) {
2819 // Save the conversion result before the pop instructions below
2820 // have a chance to overwrite it.
2821 __ mov(index_, eax);
2824 if (embed_mode == PART_OF_IC_HANDLER) {
2825 __ pop(LoadDescriptor::SlotRegister());
2826 __ pop(LoadWithVectorDescriptor::VectorRegister());
2828 // Reload the instance type.
2829 __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
2830 __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
2831 call_helper.AfterCall(masm);
2832 // If index is still not a smi, it must be out of range.
2833 STATIC_ASSERT(kSmiTag == 0);
2834 __ JumpIfNotSmi(index_, index_out_of_range_);
2835 // Otherwise, return to the fast path.
2836 __ jmp(&got_smi_index_);
2838 // Call runtime. We get here when the receiver is a string and the
2839 // index is a number, but the code of getting the actual character
2840 // is too complex (e.g., when the string needs to be flattened).
2841 __ bind(&call_runtime_);
2842 call_helper.BeforeCall(masm);
2846 __ CallRuntime(Runtime::kStringCharCodeAtRT, 2);
2847 if (!result_.is(eax)) {
2848 __ mov(result_, eax);
2850 call_helper.AfterCall(masm);
2853 __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
2857 // -------------------------------------------------------------------------
2858 // StringCharFromCodeGenerator
2860 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
2861 // Fast case of Heap::LookupSingleCharacterStringFromCode.
2862 STATIC_ASSERT(kSmiTag == 0);
2863 STATIC_ASSERT(kSmiShiftSize == 0);
2864 DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCodeU + 1));
2865 __ test(code_, Immediate(kSmiTagMask |
2866 ((~String::kMaxOneByteCharCodeU) << kSmiTagSize)));
2867 __ j(not_zero, &slow_case_);
2869 Factory* factory = masm->isolate()->factory();
2870 __ Move(result_, Immediate(factory->single_character_string_cache()));
2871 STATIC_ASSERT(kSmiTag == 0);
2872 STATIC_ASSERT(kSmiTagSize == 1);
2873 STATIC_ASSERT(kSmiShiftSize == 0);
2874 // At this point code register contains smi tagged one byte char code.
2875 __ mov(result_, FieldOperand(result_,
2876 code_, times_half_pointer_size,
2877 FixedArray::kHeaderSize));
2878 __ cmp(result_, factory->undefined_value());
2879 __ j(equal, &slow_case_);
2884 void StringCharFromCodeGenerator::GenerateSlow(
2885 MacroAssembler* masm,
2886 const RuntimeCallHelper& call_helper) {
2887 __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
2889 __ bind(&slow_case_);
2890 call_helper.BeforeCall(masm);
2892 __ CallRuntime(Runtime::kCharFromCode, 1);
2893 if (!result_.is(eax)) {
2894 __ mov(result_, eax);
2896 call_helper.AfterCall(masm);
2899 __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
2903 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
2908 String::Encoding encoding) {
2909 DCHECK(!scratch.is(dest));
2910 DCHECK(!scratch.is(src));
2911 DCHECK(!scratch.is(count));
2913 // Nothing to do for zero characters.
2915 __ test(count, count);
2918 // Make count the number of bytes to copy.
2919 if (encoding == String::TWO_BYTE_ENCODING) {
2925 __ mov_b(scratch, Operand(src, 0));
2926 __ mov_b(Operand(dest, 0), scratch);
2930 __ j(not_zero, &loop);
2936 void SubStringStub::Generate(MacroAssembler* masm) {
2939 // Stack frame on entry.
2940 // esp[0]: return address
2945 // Make sure first argument is a string.
2946 __ mov(eax, Operand(esp, 3 * kPointerSize));
2947 STATIC_ASSERT(kSmiTag == 0);
2948 __ JumpIfSmi(eax, &runtime);
2949 Condition is_string = masm->IsObjectStringType(eax, ebx, ebx);
2950 __ j(NegateCondition(is_string), &runtime);
2953 // ebx: instance type
2955 // Calculate length of sub string using the smi values.
2956 __ mov(ecx, Operand(esp, 1 * kPointerSize)); // To index.
2957 __ JumpIfNotSmi(ecx, &runtime);
2958 __ mov(edx, Operand(esp, 2 * kPointerSize)); // From index.
2959 __ JumpIfNotSmi(edx, &runtime);
2961 __ cmp(ecx, FieldOperand(eax, String::kLengthOffset));
2962 Label not_original_string;
2963 // Shorter than original string's length: an actual substring.
2964 __ j(below, ¬_original_string, Label::kNear);
2965 // Longer than original string's length or negative: unsafe arguments.
2966 __ j(above, &runtime);
2967 // Return original string.
2968 Counters* counters = isolate()->counters();
2969 __ IncrementCounter(counters->sub_string_native(), 1);
2970 __ ret(3 * kPointerSize);
2971 __ bind(¬_original_string);
2974 __ cmp(ecx, Immediate(Smi::FromInt(1)));
2975 __ j(equal, &single_char);
2978 // ebx: instance type
2979 // ecx: sub string length (smi)
2980 // edx: from index (smi)
2981 // Deal with different string types: update the index if necessary
2982 // and put the underlying string into edi.
2983 Label underlying_unpacked, sliced_string, seq_or_external_string;
2984 // If the string is not indirect, it can only be sequential or external.
2985 STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
2986 STATIC_ASSERT(kIsIndirectStringMask != 0);
2987 __ test(ebx, Immediate(kIsIndirectStringMask));
2988 __ j(zero, &seq_or_external_string, Label::kNear);
2990 Factory* factory = isolate()->factory();
2991 __ test(ebx, Immediate(kSlicedNotConsMask));
2992 __ j(not_zero, &sliced_string, Label::kNear);
2993 // Cons string. Check whether it is flat, then fetch first part.
2994 // Flat cons strings have an empty second part.
2995 __ cmp(FieldOperand(eax, ConsString::kSecondOffset),
2996 factory->empty_string());
2997 __ j(not_equal, &runtime);
2998 __ mov(edi, FieldOperand(eax, ConsString::kFirstOffset));
2999 // Update instance type.
3000 __ mov(ebx, FieldOperand(edi, HeapObject::kMapOffset));
3001 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
3002 __ jmp(&underlying_unpacked, Label::kNear);
3004 __ bind(&sliced_string);
3005 // Sliced string. Fetch parent and adjust start index by offset.
3006 __ add(edx, FieldOperand(eax, SlicedString::kOffsetOffset));
3007 __ mov(edi, FieldOperand(eax, SlicedString::kParentOffset));
3008 // Update instance type.
3009 __ mov(ebx, FieldOperand(edi, HeapObject::kMapOffset));
3010 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
3011 __ jmp(&underlying_unpacked, Label::kNear);
3013 __ bind(&seq_or_external_string);
3014 // Sequential or external string. Just move string to the expected register.
3017 __ bind(&underlying_unpacked);
3019 if (FLAG_string_slices) {
3021 // edi: underlying subject string
3022 // ebx: instance type of underlying subject string
3023 // edx: adjusted start index (smi)
3024 // ecx: length (smi)
3025 __ cmp(ecx, Immediate(Smi::FromInt(SlicedString::kMinLength)));
3026 // Short slice. Copy instead of slicing.
3027 __ j(less, ©_routine);
3028 // Allocate new sliced string. At this point we do not reload the instance
3029 // type including the string encoding because we simply rely on the info
3030 // provided by the original string. It does not matter if the original
3031 // string's encoding is wrong because we always have to recheck encoding of
3032 // the newly created string's parent anyways due to externalized strings.
3033 Label two_byte_slice, set_slice_header;
3034 STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
3035 STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
3036 __ test(ebx, Immediate(kStringEncodingMask));
3037 __ j(zero, &two_byte_slice, Label::kNear);
3038 __ AllocateOneByteSlicedString(eax, ebx, no_reg, &runtime);
3039 __ jmp(&set_slice_header, Label::kNear);
3040 __ bind(&two_byte_slice);
3041 __ AllocateTwoByteSlicedString(eax, ebx, no_reg, &runtime);
3042 __ bind(&set_slice_header);
3043 __ mov(FieldOperand(eax, SlicedString::kLengthOffset), ecx);
3044 __ mov(FieldOperand(eax, SlicedString::kHashFieldOffset),
3045 Immediate(String::kEmptyHashField));
3046 __ mov(FieldOperand(eax, SlicedString::kParentOffset), edi);
3047 __ mov(FieldOperand(eax, SlicedString::kOffsetOffset), edx);
3048 __ IncrementCounter(counters->sub_string_native(), 1);
3049 __ ret(3 * kPointerSize);
3051 __ bind(©_routine);
3054 // edi: underlying subject string
3055 // ebx: instance type of underlying subject string
3056 // edx: adjusted start index (smi)
3057 // ecx: length (smi)
3058 // The subject string can only be external or sequential string of either
3059 // encoding at this point.
3060 Label two_byte_sequential, runtime_drop_two, sequential_string;
3061 STATIC_ASSERT(kExternalStringTag != 0);
3062 STATIC_ASSERT(kSeqStringTag == 0);
3063 __ test_b(ebx, kExternalStringTag);
3064 __ j(zero, &sequential_string);
3066 // Handle external string.
3067 // Rule out short external strings.
3068 STATIC_ASSERT(kShortExternalStringTag != 0);
3069 __ test_b(ebx, kShortExternalStringMask);
3070 __ j(not_zero, &runtime);
3071 __ mov(edi, FieldOperand(edi, ExternalString::kResourceDataOffset));
3072 // Move the pointer so that offset-wise, it looks like a sequential string.
3073 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
3074 __ sub(edi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
3076 __ bind(&sequential_string);
3077 // Stash away (adjusted) index and (underlying) string.
3081 STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
3082 __ test_b(ebx, kStringEncodingMask);
3083 __ j(zero, &two_byte_sequential);
3085 // Sequential one byte string. Allocate the result.
3086 __ AllocateOneByteString(eax, ecx, ebx, edx, edi, &runtime_drop_two);
3088 // eax: result string
3089 // ecx: result string length
3090 // Locate first character of result.
3092 __ add(edi, Immediate(SeqOneByteString::kHeaderSize - kHeapObjectTag));
3093 // Load string argument and locate character of sub string start.
3097 __ lea(edx, FieldOperand(edx, ebx, times_1, SeqOneByteString::kHeaderSize));
3099 // eax: result string
3100 // ecx: result length
3101 // edi: first character of result
3102 // edx: character of sub string start
3103 StringHelper::GenerateCopyCharacters(
3104 masm, edi, edx, ecx, ebx, String::ONE_BYTE_ENCODING);
3105 __ IncrementCounter(counters->sub_string_native(), 1);
3106 __ ret(3 * kPointerSize);
3108 __ bind(&two_byte_sequential);
3109 // Sequential two-byte string. Allocate the result.
3110 __ AllocateTwoByteString(eax, ecx, ebx, edx, edi, &runtime_drop_two);
3112 // eax: result string
3113 // ecx: result string length
3114 // Locate first character of result.
3117 Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
3118 // Load string argument and locate character of sub string start.
3121 // As from is a smi it is 2 times the value which matches the size of a two
3123 STATIC_ASSERT(kSmiTag == 0);
3124 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
3125 __ lea(edx, FieldOperand(edx, ebx, times_1, SeqTwoByteString::kHeaderSize));
3127 // eax: result string
3128 // ecx: result length
3129 // edi: first character of result
3130 // edx: character of sub string start
3131 StringHelper::GenerateCopyCharacters(
3132 masm, edi, edx, ecx, ebx, String::TWO_BYTE_ENCODING);
3133 __ IncrementCounter(counters->sub_string_native(), 1);
3134 __ ret(3 * kPointerSize);
3136 // Drop pushed values on the stack before tail call.
3137 __ bind(&runtime_drop_two);
3140 // Just jump to runtime to create the sub string.
3142 __ TailCallRuntime(Runtime::kSubString, 3, 1);
3144 __ bind(&single_char);
3146 // ebx: instance type
3147 // ecx: sub string length (smi)
3148 // edx: from index (smi)
3149 StringCharAtGenerator generator(eax, edx, ecx, eax, &runtime, &runtime,
3150 &runtime, STRING_INDEX_IS_NUMBER,
3151 RECEIVER_IS_STRING);
3152 generator.GenerateFast(masm);
3153 __ ret(3 * kPointerSize);
3154 generator.SkipSlow(masm, &runtime);
3158 void ToNumberStub::Generate(MacroAssembler* masm) {
3159 // The ToNumber stub takes one argument in eax.
3161 __ JumpIfNotSmi(eax, ¬_smi, Label::kNear);
3165 Label not_heap_number;
3166 __ CompareMap(eax, masm->isolate()->factory()->heap_number_map());
3167 __ j(not_equal, ¬_heap_number, Label::kNear);
3169 __ bind(¬_heap_number);
3171 Label not_string, slow_string;
3172 __ CmpObjectType(eax, FIRST_NONSTRING_TYPE, edi);
3175 __ j(above_equal, ¬_string, Label::kNear);
3176 // Check if string has a cached array index.
3177 __ test(FieldOperand(eax, String::kHashFieldOffset),
3178 Immediate(String::kContainsCachedArrayIndexMask));
3179 __ j(not_zero, &slow_string, Label::kNear);
3180 __ mov(eax, FieldOperand(eax, String::kHashFieldOffset));
3181 __ IndexFromHash(eax, eax);
3183 __ bind(&slow_string);
3184 __ pop(ecx); // Pop return address.
3185 __ push(eax); // Push argument.
3186 __ push(ecx); // Push return address.
3187 __ TailCallRuntime(Runtime::kStringToNumber, 1, 1);
3188 __ bind(¬_string);
3191 __ CmpInstanceType(edi, ODDBALL_TYPE);
3192 __ j(not_equal, ¬_oddball, Label::kNear);
3193 __ mov(eax, FieldOperand(eax, Oddball::kToNumberOffset));
3195 __ bind(¬_oddball);
3197 __ pop(ecx); // Pop return address.
3198 __ push(eax); // Push argument.
3199 __ push(ecx); // Push return address.
3200 __ TailCallRuntime(Runtime::kToNumber, 1, 1);
3204 void ToStringStub::Generate(MacroAssembler* masm) {
3205 // The ToString stub takes one argument in eax.
3207 __ JumpIfSmi(eax, &is_number, Label::kNear);
3210 __ CmpObjectType(eax, FIRST_NONSTRING_TYPE, edi);
3212 // edi: receiver map
3213 __ j(above_equal, ¬_string, Label::kNear);
3215 __ bind(¬_string);
3217 Label not_heap_number;
3218 __ CompareMap(eax, masm->isolate()->factory()->heap_number_map());
3219 __ j(not_equal, ¬_heap_number, Label::kNear);
3220 __ bind(&is_number);
3221 NumberToStringStub stub(isolate());
3222 __ TailCallStub(&stub);
3223 __ bind(¬_heap_number);
3226 __ CmpInstanceType(edi, ODDBALL_TYPE);
3227 __ j(not_equal, ¬_oddball, Label::kNear);
3228 __ mov(eax, FieldOperand(eax, Oddball::kToStringOffset));
3230 __ bind(¬_oddball);
3232 __ pop(ecx); // Pop return address.
3233 __ push(eax); // Push argument.
3234 __ push(ecx); // Push return address.
3235 __ TailCallRuntime(Runtime::kToString, 1, 1);
3239 void StringHelper::GenerateFlatOneByteStringEquals(MacroAssembler* masm,
3243 Register scratch2) {
3244 Register length = scratch1;
3247 Label strings_not_equal, check_zero_length;
3248 __ mov(length, FieldOperand(left, String::kLengthOffset));
3249 __ cmp(length, FieldOperand(right, String::kLengthOffset));
3250 __ j(equal, &check_zero_length, Label::kNear);
3251 __ bind(&strings_not_equal);
3252 __ Move(eax, Immediate(Smi::FromInt(NOT_EQUAL)));
3255 // Check if the length is zero.
3256 Label compare_chars;
3257 __ bind(&check_zero_length);
3258 STATIC_ASSERT(kSmiTag == 0);
3259 __ test(length, length);
3260 __ j(not_zero, &compare_chars, Label::kNear);
3261 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3264 // Compare characters.
3265 __ bind(&compare_chars);
3266 GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2,
3267 &strings_not_equal, Label::kNear);
3269 // Characters are equal.
3270 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3275 void StringHelper::GenerateCompareFlatOneByteStrings(
3276 MacroAssembler* masm, Register left, Register right, Register scratch1,
3277 Register scratch2, Register scratch3) {
3278 Counters* counters = masm->isolate()->counters();
3279 __ IncrementCounter(counters->string_compare_native(), 1);
3281 // Find minimum length.
3283 __ mov(scratch1, FieldOperand(left, String::kLengthOffset));
3284 __ mov(scratch3, scratch1);
3285 __ sub(scratch3, FieldOperand(right, String::kLengthOffset));
3287 Register length_delta = scratch3;
3289 __ j(less_equal, &left_shorter, Label::kNear);
3290 // Right string is shorter. Change scratch1 to be length of right string.
3291 __ sub(scratch1, length_delta);
3292 __ bind(&left_shorter);
3294 Register min_length = scratch1;
3296 // If either length is zero, just compare lengths.
3297 Label compare_lengths;
3298 __ test(min_length, min_length);
3299 __ j(zero, &compare_lengths, Label::kNear);
3301 // Compare characters.
3302 Label result_not_equal;
3303 GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
3304 &result_not_equal, Label::kNear);
3306 // Compare lengths - strings up to min-length are equal.
3307 __ bind(&compare_lengths);
3308 __ test(length_delta, length_delta);
3309 Label length_not_equal;
3310 __ j(not_zero, &length_not_equal, Label::kNear);
3313 STATIC_ASSERT(EQUAL == 0);
3314 STATIC_ASSERT(kSmiTag == 0);
3315 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3318 Label result_greater;
3320 __ bind(&length_not_equal);
3321 __ j(greater, &result_greater, Label::kNear);
3322 __ jmp(&result_less, Label::kNear);
3323 __ bind(&result_not_equal);
3324 __ j(above, &result_greater, Label::kNear);
3325 __ bind(&result_less);
3328 __ Move(eax, Immediate(Smi::FromInt(LESS)));
3331 // Result is GREATER.
3332 __ bind(&result_greater);
3333 __ Move(eax, Immediate(Smi::FromInt(GREATER)));
3338 void StringHelper::GenerateOneByteCharsCompareLoop(
3339 MacroAssembler* masm, Register left, Register right, Register length,
3340 Register scratch, Label* chars_not_equal,
3341 Label::Distance chars_not_equal_near) {
3342 // Change index to run from -length to -1 by adding length to string
3343 // start. This means that loop ends when index reaches zero, which
3344 // doesn't need an additional compare.
3345 __ SmiUntag(length);
3347 FieldOperand(left, length, times_1, SeqOneByteString::kHeaderSize));
3349 FieldOperand(right, length, times_1, SeqOneByteString::kHeaderSize));
3351 Register index = length; // index = -length;
3356 __ mov_b(scratch, Operand(left, index, times_1, 0));
3357 __ cmpb(scratch, Operand(right, index, times_1, 0));
3358 __ j(not_equal, chars_not_equal, chars_not_equal_near);
3360 __ j(not_zero, &loop);
3364 void StringCompareStub::Generate(MacroAssembler* masm) {
3365 // ----------- S t a t e -------------
3366 // -- edx : left string
3367 // -- eax : right string
3368 // -- esp[0] : return address
3369 // -----------------------------------
3370 __ AssertString(edx);
3371 __ AssertString(eax);
3375 __ j(not_equal, ¬_same, Label::kNear);
3376 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3377 __ IncrementCounter(isolate()->counters()->string_compare_native(), 1);
3382 // Check that both objects are sequential one-byte strings.
3384 __ JumpIfNotBothSequentialOneByteStrings(edx, eax, ecx, ebx, &runtime);
3386 // Compare flat one-byte strings.
3387 __ IncrementCounter(isolate()->counters()->string_compare_native(), 1);
3388 StringHelper::GenerateCompareFlatOneByteStrings(masm, edx, eax, ecx, ebx,
3391 // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
3392 // tagged as a small integer.
3394 __ PopReturnAddressTo(ecx);
3397 __ PushReturnAddressFrom(ecx);
3398 __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
3402 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
3403 // ----------- S t a t e -------------
3406 // -- esp[0] : return address
3407 // -----------------------------------
3409 // Load ecx with the allocation site. We stick an undefined dummy value here
3410 // and replace it with the real allocation site later when we instantiate this
3411 // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
3412 __ mov(ecx, handle(isolate()->heap()->undefined_value()));
3414 // Make sure that we actually patched the allocation site.
3415 if (FLAG_debug_code) {
3416 __ test(ecx, Immediate(kSmiTagMask));
3417 __ Assert(not_equal, kExpectedAllocationSite);
3418 __ cmp(FieldOperand(ecx, HeapObject::kMapOffset),
3419 isolate()->factory()->allocation_site_map());
3420 __ Assert(equal, kExpectedAllocationSite);
3423 // Tail call into the stub that handles binary operations with allocation
3425 BinaryOpWithAllocationSiteStub stub(isolate(), state());
3426 __ TailCallStub(&stub);
3430 void CompareICStub::GenerateSmis(MacroAssembler* masm) {
3431 DCHECK(state() == CompareICState::SMI);
3435 __ JumpIfNotSmi(ecx, &miss, Label::kNear);
3437 if (GetCondition() == equal) {
3438 // For equality we do not care about the sign of the result.
3443 __ j(no_overflow, &done, Label::kNear);
3444 // Correct sign of result in case of overflow.
3456 void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
3457 DCHECK(state() == CompareICState::NUMBER);
3460 Label unordered, maybe_undefined1, maybe_undefined2;
3463 if (left() == CompareICState::SMI) {
3464 __ JumpIfNotSmi(edx, &miss);
3466 if (right() == CompareICState::SMI) {
3467 __ JumpIfNotSmi(eax, &miss);
3470 // Load left and right operand.
3471 Label done, left, left_smi, right_smi;
3472 __ JumpIfSmi(eax, &right_smi, Label::kNear);
3473 __ cmp(FieldOperand(eax, HeapObject::kMapOffset),
3474 isolate()->factory()->heap_number_map());
3475 __ j(not_equal, &maybe_undefined1, Label::kNear);
3476 __ movsd(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
3477 __ jmp(&left, Label::kNear);
3478 __ bind(&right_smi);
3479 __ mov(ecx, eax); // Can't clobber eax because we can still jump away.
3481 __ Cvtsi2sd(xmm1, ecx);
3484 __ JumpIfSmi(edx, &left_smi, Label::kNear);
3485 __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
3486 isolate()->factory()->heap_number_map());
3487 __ j(not_equal, &maybe_undefined2, Label::kNear);
3488 __ movsd(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
3491 __ mov(ecx, edx); // Can't clobber edx because we can still jump away.
3493 __ Cvtsi2sd(xmm0, ecx);
3496 // Compare operands.
3497 __ ucomisd(xmm0, xmm1);
3499 // Don't base result on EFLAGS when a NaN is involved.
3500 __ j(parity_even, &unordered, Label::kNear);
3502 // Return a result of -1, 0, or 1, based on EFLAGS.
3503 // Performing mov, because xor would destroy the flag register.
3504 __ mov(eax, 0); // equal
3505 __ mov(ecx, Immediate(Smi::FromInt(1)));
3506 __ cmov(above, eax, ecx);
3507 __ mov(ecx, Immediate(Smi::FromInt(-1)));
3508 __ cmov(below, eax, ecx);
3511 __ bind(&unordered);
3512 __ bind(&generic_stub);
3513 CompareICStub stub(isolate(), op(), strength(), CompareICState::GENERIC,
3514 CompareICState::GENERIC, CompareICState::GENERIC);
3515 __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
3517 __ bind(&maybe_undefined1);
3518 if (Token::IsOrderedRelationalCompareOp(op())) {
3519 __ cmp(eax, Immediate(isolate()->factory()->undefined_value()));
3520 __ j(not_equal, &miss);
3521 __ JumpIfSmi(edx, &unordered);
3522 __ CmpObjectType(edx, HEAP_NUMBER_TYPE, ecx);
3523 __ j(not_equal, &maybe_undefined2, Label::kNear);
3527 __ bind(&maybe_undefined2);
3528 if (Token::IsOrderedRelationalCompareOp(op())) {
3529 __ cmp(edx, Immediate(isolate()->factory()->undefined_value()));
3530 __ j(equal, &unordered);
3538 void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
3539 DCHECK(state() == CompareICState::INTERNALIZED_STRING);
3540 DCHECK(GetCondition() == equal);
3542 // Registers containing left and right operands respectively.
3543 Register left = edx;
3544 Register right = eax;
3545 Register tmp1 = ecx;
3546 Register tmp2 = ebx;
3548 // Check that both operands are heap objects.
3551 STATIC_ASSERT(kSmiTag == 0);
3552 __ and_(tmp1, right);
3553 __ JumpIfSmi(tmp1, &miss, Label::kNear);
3555 // Check that both operands are internalized strings.
3556 __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
3557 __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
3558 __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
3559 __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
3560 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
3562 __ test(tmp1, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
3563 __ j(not_zero, &miss, Label::kNear);
3565 // Internalized strings are compared by identity.
3567 __ cmp(left, right);
3568 // Make sure eax is non-zero. At this point input operands are
3569 // guaranteed to be non-zero.
3570 DCHECK(right.is(eax));
3571 __ j(not_equal, &done, Label::kNear);
3572 STATIC_ASSERT(EQUAL == 0);
3573 STATIC_ASSERT(kSmiTag == 0);
3574 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3583 void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
3584 DCHECK(state() == CompareICState::UNIQUE_NAME);
3585 DCHECK(GetCondition() == equal);
3587 // Registers containing left and right operands respectively.
3588 Register left = edx;
3589 Register right = eax;
3590 Register tmp1 = ecx;
3591 Register tmp2 = ebx;
3593 // Check that both operands are heap objects.
3596 STATIC_ASSERT(kSmiTag == 0);
3597 __ and_(tmp1, right);
3598 __ JumpIfSmi(tmp1, &miss, Label::kNear);
3600 // Check that both operands are unique names. This leaves the instance
3601 // types loaded in tmp1 and tmp2.
3602 __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
3603 __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
3604 __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
3605 __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
3607 __ JumpIfNotUniqueNameInstanceType(tmp1, &miss, Label::kNear);
3608 __ JumpIfNotUniqueNameInstanceType(tmp2, &miss, Label::kNear);
3610 // Unique names are compared by identity.
3612 __ cmp(left, right);
3613 // Make sure eax is non-zero. At this point input operands are
3614 // guaranteed to be non-zero.
3615 DCHECK(right.is(eax));
3616 __ j(not_equal, &done, Label::kNear);
3617 STATIC_ASSERT(EQUAL == 0);
3618 STATIC_ASSERT(kSmiTag == 0);
3619 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3628 void CompareICStub::GenerateStrings(MacroAssembler* masm) {
3629 DCHECK(state() == CompareICState::STRING);
3632 bool equality = Token::IsEqualityOp(op());
3634 // Registers containing left and right operands respectively.
3635 Register left = edx;
3636 Register right = eax;
3637 Register tmp1 = ecx;
3638 Register tmp2 = ebx;
3639 Register tmp3 = edi;
3641 // Check that both operands are heap objects.
3643 STATIC_ASSERT(kSmiTag == 0);
3644 __ and_(tmp1, right);
3645 __ JumpIfSmi(tmp1, &miss);
3647 // Check that both operands are strings. This leaves the instance
3648 // types loaded in tmp1 and tmp2.
3649 __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
3650 __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
3651 __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
3652 __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
3654 STATIC_ASSERT(kNotStringTag != 0);
3656 __ test(tmp3, Immediate(kIsNotStringMask));
3657 __ j(not_zero, &miss);
3659 // Fast check for identical strings.
3661 __ cmp(left, right);
3662 __ j(not_equal, ¬_same, Label::kNear);
3663 STATIC_ASSERT(EQUAL == 0);
3664 STATIC_ASSERT(kSmiTag == 0);
3665 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3668 // Handle not identical strings.
3671 // Check that both strings are internalized. If they are, we're done
3672 // because we already know they are not identical. But in the case of
3673 // non-equality compare, we still need to determine the order. We
3674 // also know they are both strings.
3677 STATIC_ASSERT(kInternalizedTag == 0);
3679 __ test(tmp1, Immediate(kIsNotInternalizedMask));
3680 __ j(not_zero, &do_compare, Label::kNear);
3681 // Make sure eax is non-zero. At this point input operands are
3682 // guaranteed to be non-zero.
3683 DCHECK(right.is(eax));
3685 __ bind(&do_compare);
3688 // Check that both strings are sequential one-byte.
3690 __ JumpIfNotBothSequentialOneByteStrings(left, right, tmp1, tmp2, &runtime);
3692 // Compare flat one byte strings. Returns when done.
3694 StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1,
3697 StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
3701 // Handle more complex cases in runtime.
3703 __ pop(tmp1); // Return address.
3708 __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
3710 __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
3718 void CompareICStub::GenerateObjects(MacroAssembler* masm) {
3719 DCHECK(state() == CompareICState::OBJECT);
3723 __ JumpIfSmi(ecx, &miss, Label::kNear);
3725 __ CmpObjectType(eax, JS_OBJECT_TYPE, ecx);
3726 __ j(not_equal, &miss, Label::kNear);
3727 __ CmpObjectType(edx, JS_OBJECT_TYPE, ecx);
3728 __ j(not_equal, &miss, Label::kNear);
3730 DCHECK(GetCondition() == equal);
3739 void CompareICStub::GenerateKnownObjects(MacroAssembler* masm) {
3741 Handle<WeakCell> cell = Map::WeakCellForMap(known_map_);
3744 __ JumpIfSmi(ecx, &miss, Label::kNear);
3746 __ GetWeakValue(edi, cell);
3747 __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
3748 __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset));
3750 __ j(not_equal, &miss, Label::kNear);
3752 __ j(not_equal, &miss, Label::kNear);
3762 void CompareICStub::GenerateMiss(MacroAssembler* masm) {
3764 // Call the runtime system in a fresh internal frame.
3765 FrameScope scope(masm, StackFrame::INTERNAL);
3766 __ push(edx); // Preserve edx and eax.
3768 __ push(edx); // And also use them as the arguments.
3770 __ push(Immediate(Smi::FromInt(op())));
3771 __ CallRuntime(Runtime::kCompareIC_Miss, 3);
3772 // Compute the entry point of the rewritten stub.
3773 __ lea(edi, FieldOperand(eax, Code::kHeaderSize));
3778 // Do a tail call to the rewritten stub.
3783 // Helper function used to check that the dictionary doesn't contain
3784 // the property. This function may return false negatives, so miss_label
3785 // must always call a backup property check that is complete.
3786 // This function is safe to call if the receiver has fast properties.
3787 // Name must be a unique name and receiver must be a heap object.
3788 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
3791 Register properties,
3794 DCHECK(name->IsUniqueName());
3796 // If names of slots in range from 1 to kProbes - 1 for the hash value are
3797 // not equal to the name and kProbes-th slot is not used (its name is the
3798 // undefined value), it guarantees the hash table doesn't contain the
3799 // property. It's true even if some slots represent deleted properties
3800 // (their names are the hole value).
3801 for (int i = 0; i < kInlinedProbes; i++) {
3802 // Compute the masked index: (hash + i + i * i) & mask.
3803 Register index = r0;
3804 // Capacity is smi 2^n.
3805 __ mov(index, FieldOperand(properties, kCapacityOffset));
3808 Immediate(Smi::FromInt(name->Hash() +
3809 NameDictionary::GetProbeOffset(i))));
3811 // Scale the index by multiplying by the entry size.
3812 STATIC_ASSERT(NameDictionary::kEntrySize == 3);
3813 __ lea(index, Operand(index, index, times_2, 0)); // index *= 3.
3814 Register entity_name = r0;
3815 // Having undefined at this place means the name is not contained.
3816 STATIC_ASSERT(kSmiTagSize == 1);
3817 __ mov(entity_name, Operand(properties, index, times_half_pointer_size,
3818 kElementsStartOffset - kHeapObjectTag));
3819 __ cmp(entity_name, masm->isolate()->factory()->undefined_value());
3822 // Stop if found the property.
3823 __ cmp(entity_name, Handle<Name>(name));
3827 // Check for the hole and skip.
3828 __ cmp(entity_name, masm->isolate()->factory()->the_hole_value());
3829 __ j(equal, &good, Label::kNear);
3831 // Check if the entry name is not a unique name.
3832 __ mov(entity_name, FieldOperand(entity_name, HeapObject::kMapOffset));
3833 __ JumpIfNotUniqueNameInstanceType(
3834 FieldOperand(entity_name, Map::kInstanceTypeOffset), miss);
3838 NameDictionaryLookupStub stub(masm->isolate(), properties, r0, r0,
3840 __ push(Immediate(Handle<Object>(name)));
3841 __ push(Immediate(name->Hash()));
3844 __ j(not_zero, miss);
3849 // Probe the name dictionary in the |elements| register. Jump to the
3850 // |done| label if a property with the given name is found leaving the
3851 // index into the dictionary in |r0|. Jump to the |miss| label
3853 void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
3860 DCHECK(!elements.is(r0));
3861 DCHECK(!elements.is(r1));
3862 DCHECK(!name.is(r0));
3863 DCHECK(!name.is(r1));
3865 __ AssertName(name);
3867 __ mov(r1, FieldOperand(elements, kCapacityOffset));
3868 __ shr(r1, kSmiTagSize); // convert smi to int
3871 // Generate an unrolled loop that performs a few probes before
3872 // giving up. Measurements done on Gmail indicate that 2 probes
3873 // cover ~93% of loads from dictionaries.
3874 for (int i = 0; i < kInlinedProbes; i++) {
3875 // Compute the masked index: (hash + i + i * i) & mask.
3876 __ mov(r0, FieldOperand(name, Name::kHashFieldOffset));
3877 __ shr(r0, Name::kHashShift);
3879 __ add(r0, Immediate(NameDictionary::GetProbeOffset(i)));
3883 // Scale the index by multiplying by the entry size.
3884 STATIC_ASSERT(NameDictionary::kEntrySize == 3);
3885 __ lea(r0, Operand(r0, r0, times_2, 0)); // r0 = r0 * 3
3887 // Check if the key is identical to the name.
3888 __ cmp(name, Operand(elements,
3891 kElementsStartOffset - kHeapObjectTag));
3895 NameDictionaryLookupStub stub(masm->isolate(), elements, r1, r0,
3898 __ mov(r0, FieldOperand(name, Name::kHashFieldOffset));
3899 __ shr(r0, Name::kHashShift);
3909 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
3910 // This stub overrides SometimesSetsUpAFrame() to return false. That means
3911 // we cannot call anything that could cause a GC from this stub.
3912 // Stack frame on entry:
3913 // esp[0 * kPointerSize]: return address.
3914 // esp[1 * kPointerSize]: key's hash.
3915 // esp[2 * kPointerSize]: key.
3917 // dictionary_: NameDictionary to probe.
3918 // result_: used as scratch.
3919 // index_: will hold an index of entry if lookup is successful.
3920 // might alias with result_.
3922 // result_ is zero if lookup failed, non zero otherwise.
3924 Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
3926 Register scratch = result();
3928 __ mov(scratch, FieldOperand(dictionary(), kCapacityOffset));
3930 __ SmiUntag(scratch);
3933 // If names of slots in range from 1 to kProbes - 1 for the hash value are
3934 // not equal to the name and kProbes-th slot is not used (its name is the
3935 // undefined value), it guarantees the hash table doesn't contain the
3936 // property. It's true even if some slots represent deleted properties
3937 // (their names are the null value).
3938 for (int i = kInlinedProbes; i < kTotalProbes; i++) {
3939 // Compute the masked index: (hash + i + i * i) & mask.
3940 __ mov(scratch, Operand(esp, 2 * kPointerSize));
3942 __ add(scratch, Immediate(NameDictionary::GetProbeOffset(i)));
3944 __ and_(scratch, Operand(esp, 0));
3946 // Scale the index by multiplying by the entry size.
3947 STATIC_ASSERT(NameDictionary::kEntrySize == 3);
3948 __ lea(index(), Operand(scratch, scratch, times_2, 0)); // index *= 3.
3950 // Having undefined at this place means the name is not contained.
3951 STATIC_ASSERT(kSmiTagSize == 1);
3952 __ mov(scratch, Operand(dictionary(), index(), times_pointer_size,
3953 kElementsStartOffset - kHeapObjectTag));
3954 __ cmp(scratch, isolate()->factory()->undefined_value());
3955 __ j(equal, ¬_in_dictionary);
3957 // Stop if found the property.
3958 __ cmp(scratch, Operand(esp, 3 * kPointerSize));
3959 __ j(equal, &in_dictionary);
3961 if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
3962 // If we hit a key that is not a unique name during negative
3963 // lookup we have to bailout as this key might be equal to the
3964 // key we are looking for.
3966 // Check if the entry name is not a unique name.
3967 __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
3968 __ JumpIfNotUniqueNameInstanceType(
3969 FieldOperand(scratch, Map::kInstanceTypeOffset),
3970 &maybe_in_dictionary);
3974 __ bind(&maybe_in_dictionary);
3975 // If we are doing negative lookup then probing failure should be
3976 // treated as a lookup success. For positive lookup probing failure
3977 // should be treated as lookup failure.
3978 if (mode() == POSITIVE_LOOKUP) {
3979 __ mov(result(), Immediate(0));
3981 __ ret(2 * kPointerSize);
3984 __ bind(&in_dictionary);
3985 __ mov(result(), Immediate(1));
3987 __ ret(2 * kPointerSize);
3989 __ bind(¬_in_dictionary);
3990 __ mov(result(), Immediate(0));
3992 __ ret(2 * kPointerSize);
3996 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
3998 StoreBufferOverflowStub stub(isolate, kDontSaveFPRegs);
4000 StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
4005 // Takes the input in 3 registers: address_ value_ and object_. A pointer to
4006 // the value has just been written into the object, now this stub makes sure
4007 // we keep the GC informed. The word in the object where the value has been
4008 // written is in the address register.
4009 void RecordWriteStub::Generate(MacroAssembler* masm) {
4010 Label skip_to_incremental_noncompacting;
4011 Label skip_to_incremental_compacting;
4013 // The first two instructions are generated with labels so as to get the
4014 // offset fixed up correctly by the bind(Label*) call. We patch it back and
4015 // forth between a compare instructions (a nop in this position) and the
4016 // real branch when we start and stop incremental heap marking.
4017 __ jmp(&skip_to_incremental_noncompacting, Label::kNear);
4018 __ jmp(&skip_to_incremental_compacting, Label::kFar);
4020 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
4021 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
4022 MacroAssembler::kReturnAtEnd);
4027 __ bind(&skip_to_incremental_noncompacting);
4028 GenerateIncremental(masm, INCREMENTAL);
4030 __ bind(&skip_to_incremental_compacting);
4031 GenerateIncremental(masm, INCREMENTAL_COMPACTION);
4033 // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
4034 // Will be checked in IncrementalMarking::ActivateGeneratedStub.
4035 masm->set_byte_at(0, kTwoByteNopInstruction);
4036 masm->set_byte_at(2, kFiveByteNopInstruction);
4040 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
4043 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
4044 Label dont_need_remembered_set;
4046 __ mov(regs_.scratch0(), Operand(regs_.address(), 0));
4047 __ JumpIfNotInNewSpace(regs_.scratch0(), // Value.
4049 &dont_need_remembered_set);
4051 __ CheckPageFlag(regs_.object(),
4053 1 << MemoryChunk::SCAN_ON_SCAVENGE,
4055 &dont_need_remembered_set);
4057 // First notify the incremental marker if necessary, then update the
4059 CheckNeedsToInformIncrementalMarker(
4061 kUpdateRememberedSetOnNoNeedToInformIncrementalMarker,
4063 InformIncrementalMarker(masm);
4064 regs_.Restore(masm);
4065 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
4066 MacroAssembler::kReturnAtEnd);
4068 __ bind(&dont_need_remembered_set);
4071 CheckNeedsToInformIncrementalMarker(
4073 kReturnOnNoNeedToInformIncrementalMarker,
4075 InformIncrementalMarker(masm);
4076 regs_.Restore(masm);
4081 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
4082 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
4083 int argument_count = 3;
4084 __ PrepareCallCFunction(argument_count, regs_.scratch0());
4085 __ mov(Operand(esp, 0 * kPointerSize), regs_.object());
4086 __ mov(Operand(esp, 1 * kPointerSize), regs_.address()); // Slot.
4087 __ mov(Operand(esp, 2 * kPointerSize),
4088 Immediate(ExternalReference::isolate_address(isolate())));
4090 AllowExternalCallThatCantCauseGC scope(masm);
4092 ExternalReference::incremental_marking_record_write_function(isolate()),
4095 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
4099 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
4100 MacroAssembler* masm,
4101 OnNoNeedToInformIncrementalMarker on_no_need,
4103 Label object_is_black, need_incremental, need_incremental_pop_object;
4105 __ mov(regs_.scratch0(), Immediate(~Page::kPageAlignmentMask));
4106 __ and_(regs_.scratch0(), regs_.object());
4107 __ mov(regs_.scratch1(),
4108 Operand(regs_.scratch0(),
4109 MemoryChunk::kWriteBarrierCounterOffset));
4110 __ sub(regs_.scratch1(), Immediate(1));
4111 __ mov(Operand(regs_.scratch0(),
4112 MemoryChunk::kWriteBarrierCounterOffset),
4114 __ j(negative, &need_incremental);
4116 // Let's look at the color of the object: If it is not black we don't have
4117 // to inform the incremental marker.
4118 __ JumpIfBlack(regs_.object(),
4124 regs_.Restore(masm);
4125 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
4126 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
4127 MacroAssembler::kReturnAtEnd);
4132 __ bind(&object_is_black);
4134 // Get the value from the slot.
4135 __ mov(regs_.scratch0(), Operand(regs_.address(), 0));
4137 if (mode == INCREMENTAL_COMPACTION) {
4138 Label ensure_not_white;
4140 __ CheckPageFlag(regs_.scratch0(), // Contains value.
4141 regs_.scratch1(), // Scratch.
4142 MemoryChunk::kEvacuationCandidateMask,
4147 __ CheckPageFlag(regs_.object(),
4148 regs_.scratch1(), // Scratch.
4149 MemoryChunk::kSkipEvacuationSlotsRecordingMask,
4154 __ jmp(&need_incremental);
4156 __ bind(&ensure_not_white);
4159 // We need an extra register for this, so we push the object register
4161 __ push(regs_.object());
4162 __ EnsureNotWhite(regs_.scratch0(), // The value.
4163 regs_.scratch1(), // Scratch.
4164 regs_.object(), // Scratch.
4165 &need_incremental_pop_object,
4167 __ pop(regs_.object());
4169 regs_.Restore(masm);
4170 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
4171 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
4172 MacroAssembler::kReturnAtEnd);
4177 __ bind(&need_incremental_pop_object);
4178 __ pop(regs_.object());
4180 __ bind(&need_incremental);
4182 // Fall through when we need to inform the incremental marker.
4186 void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
4187 // ----------- S t a t e -------------
4188 // -- eax : element value to store
4189 // -- ecx : element index as smi
4190 // -- esp[0] : return address
4191 // -- esp[4] : array literal index in function
4192 // -- esp[8] : array literal
4193 // clobbers ebx, edx, edi
4194 // -----------------------------------
4197 Label double_elements;
4199 Label slow_elements;
4200 Label slow_elements_from_double;
4201 Label fast_elements;
4203 // Get array literal index, array literal and its map.
4204 __ mov(edx, Operand(esp, 1 * kPointerSize));
4205 __ mov(ebx, Operand(esp, 2 * kPointerSize));
4206 __ mov(edi, FieldOperand(ebx, JSObject::kMapOffset));
4208 __ CheckFastElements(edi, &double_elements);
4210 // Check for FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS elements
4211 __ JumpIfSmi(eax, &smi_element);
4212 __ CheckFastSmiElements(edi, &fast_elements, Label::kNear);
4214 // Store into the array literal requires a elements transition. Call into
4217 __ bind(&slow_elements);
4218 __ pop(edi); // Pop return address and remember to put back later for tail
4223 __ mov(ebx, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
4224 __ push(FieldOperand(ebx, JSFunction::kLiteralsOffset));
4226 __ push(edi); // Return return address so that tail call returns to right
4228 __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
4230 __ bind(&slow_elements_from_double);
4232 __ jmp(&slow_elements);
4234 // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object.
4235 __ bind(&fast_elements);
4236 __ mov(ebx, FieldOperand(ebx, JSObject::kElementsOffset));
4237 __ lea(ecx, FieldOperand(ebx, ecx, times_half_pointer_size,
4238 FixedArrayBase::kHeaderSize));
4239 __ mov(Operand(ecx, 0), eax);
4240 // Update the write barrier for the array store.
4241 __ RecordWrite(ebx, ecx, eax,
4243 EMIT_REMEMBERED_SET,
4247 // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS,
4248 // and value is Smi.
4249 __ bind(&smi_element);
4250 __ mov(ebx, FieldOperand(ebx, JSObject::kElementsOffset));
4251 __ mov(FieldOperand(ebx, ecx, times_half_pointer_size,
4252 FixedArrayBase::kHeaderSize), eax);
4255 // Array literal has ElementsKind of FAST_*_DOUBLE_ELEMENTS.
4256 __ bind(&double_elements);
4259 __ mov(edx, FieldOperand(ebx, JSObject::kElementsOffset));
4260 __ StoreNumberToDoubleElements(eax,
4265 &slow_elements_from_double);
4271 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
4272 CEntryStub ces(isolate(), 1, kSaveFPRegs);
4273 __ call(ces.GetCode(), RelocInfo::CODE_TARGET);
4274 int parameter_count_offset =
4275 StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
4276 __ mov(ebx, MemOperand(ebp, parameter_count_offset));
4277 masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
4279 int additional_offset =
4280 function_mode() == JS_FUNCTION_STUB_MODE ? kPointerSize : 0;
4281 __ lea(esp, MemOperand(esp, ebx, times_pointer_size, additional_offset));
4282 __ jmp(ecx); // Return to IC Miss stub, continuation still on stack.
4286 void LoadICTrampolineStub::Generate(MacroAssembler* masm) {
4287 EmitLoadTypeFeedbackVector(masm, LoadWithVectorDescriptor::VectorRegister());
4288 LoadICStub stub(isolate(), state());
4289 stub.GenerateForTrampoline(masm);
4293 void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) {
4294 EmitLoadTypeFeedbackVector(masm, LoadWithVectorDescriptor::VectorRegister());
4295 KeyedLoadICStub stub(isolate(), state());
4296 stub.GenerateForTrampoline(masm);
4300 static void HandleArrayCases(MacroAssembler* masm, Register receiver,
4301 Register key, Register vector, Register slot,
4302 Register feedback, bool is_polymorphic,
4304 // feedback initially contains the feedback array
4305 Label next, next_loop, prepare_next;
4306 Label load_smi_map, compare_map;
4307 Label start_polymorphic;
4312 Register receiver_map = receiver;
4313 Register cached_map = vector;
4315 // Receiver might not be a heap object.
4316 __ JumpIfSmi(receiver, &load_smi_map);
4317 __ mov(receiver_map, FieldOperand(receiver, 0));
4318 __ bind(&compare_map);
4319 __ mov(cached_map, FieldOperand(feedback, FixedArray::OffsetOfElementAt(0)));
4321 // A named keyed load might have a 2 element array, all other cases can count
4322 // on an array with at least 2 {map, handler} pairs, so they can go right
4323 // into polymorphic array handling.
4324 __ cmp(receiver_map, FieldOperand(cached_map, WeakCell::kValueOffset));
4325 __ j(not_equal, is_polymorphic ? &start_polymorphic : &next);
4327 // found, now call handler.
4328 Register handler = feedback;
4329 __ mov(handler, FieldOperand(feedback, FixedArray::OffsetOfElementAt(1)));
4332 __ lea(handler, FieldOperand(handler, Code::kHeaderSize));
4335 if (!is_polymorphic) {
4337 __ cmp(FieldOperand(feedback, FixedArray::kLengthOffset),
4338 Immediate(Smi::FromInt(2)));
4339 __ j(not_equal, &start_polymorphic);
4345 // Polymorphic, we have to loop from 2 to N
4346 __ bind(&start_polymorphic);
4348 Register counter = key;
4349 __ mov(counter, Immediate(Smi::FromInt(2)));
4350 __ bind(&next_loop);
4351 __ mov(cached_map, FieldOperand(feedback, counter, times_half_pointer_size,
4352 FixedArray::kHeaderSize));
4353 __ cmp(receiver_map, FieldOperand(cached_map, WeakCell::kValueOffset));
4354 __ j(not_equal, &prepare_next);
4355 __ mov(handler, FieldOperand(feedback, counter, times_half_pointer_size,
4356 FixedArray::kHeaderSize + kPointerSize));
4360 __ lea(handler, FieldOperand(handler, Code::kHeaderSize));
4363 __ bind(&prepare_next);
4364 __ add(counter, Immediate(Smi::FromInt(2)));
4365 __ cmp(counter, FieldOperand(feedback, FixedArray::kLengthOffset));
4366 __ j(less, &next_loop);
4368 // We exhausted our array of map handler pairs.
4374 __ bind(&load_smi_map);
4375 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
4376 __ jmp(&compare_map);
4380 static void HandleMonomorphicCase(MacroAssembler* masm, Register receiver,
4381 Register key, Register vector, Register slot,
4382 Register weak_cell, Label* miss) {
4383 // feedback initially contains the feedback array
4384 Label compare_smi_map;
4386 // Move the weak map into the weak_cell register.
4387 Register ic_map = weak_cell;
4388 __ mov(ic_map, FieldOperand(weak_cell, WeakCell::kValueOffset));
4390 // Receiver might not be a heap object.
4391 __ JumpIfSmi(receiver, &compare_smi_map);
4392 __ cmp(ic_map, FieldOperand(receiver, 0));
4393 __ j(not_equal, miss);
4394 Register handler = weak_cell;
4395 __ mov(handler, FieldOperand(vector, slot, times_half_pointer_size,
4396 FixedArray::kHeaderSize + kPointerSize));
4397 __ lea(handler, FieldOperand(handler, Code::kHeaderSize));
4400 // In microbenchmarks, it made sense to unroll this code so that the call to
4401 // the handler is duplicated for a HeapObject receiver and a Smi receiver.
4402 __ bind(&compare_smi_map);
4403 __ CompareRoot(ic_map, Heap::kHeapNumberMapRootIndex);
4404 __ j(not_equal, miss);
4405 __ mov(handler, FieldOperand(vector, slot, times_half_pointer_size,
4406 FixedArray::kHeaderSize + kPointerSize));
4407 __ lea(handler, FieldOperand(handler, Code::kHeaderSize));
4412 void LoadICStub::Generate(MacroAssembler* masm) { GenerateImpl(masm, false); }
4415 void LoadICStub::GenerateForTrampoline(MacroAssembler* masm) {
4416 GenerateImpl(masm, true);
4420 void LoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4421 Register receiver = LoadWithVectorDescriptor::ReceiverRegister(); // edx
4422 Register name = LoadWithVectorDescriptor::NameRegister(); // ecx
4423 Register vector = LoadWithVectorDescriptor::VectorRegister(); // ebx
4424 Register slot = LoadWithVectorDescriptor::SlotRegister(); // eax
4425 Register scratch = edi;
4426 __ mov(scratch, FieldOperand(vector, slot, times_half_pointer_size,
4427 FixedArray::kHeaderSize));
4429 // Is it a weak cell?
4431 Label not_array, smi_key, key_okay, miss;
4432 __ CompareRoot(FieldOperand(scratch, 0), Heap::kWeakCellMapRootIndex);
4433 __ j(not_equal, &try_array);
4434 HandleMonomorphicCase(masm, receiver, name, vector, slot, scratch, &miss);
4436 // Is it a fixed array?
4437 __ bind(&try_array);
4438 __ CompareRoot(FieldOperand(scratch, 0), Heap::kFixedArrayMapRootIndex);
4439 __ j(not_equal, ¬_array);
4440 HandleArrayCases(masm, receiver, name, vector, slot, scratch, true, &miss);
4442 __ bind(¬_array);
4443 __ CompareRoot(scratch, Heap::kmegamorphic_symbolRootIndex);
4444 __ j(not_equal, &miss);
4447 Code::Flags code_flags = Code::RemoveTypeAndHolderFromFlags(
4448 Code::ComputeHandlerFlags(Code::LOAD_IC));
4449 masm->isolate()->stub_cache()->GenerateProbe(masm, Code::LOAD_IC, code_flags,
4450 receiver, name, vector, scratch);
4455 LoadIC::GenerateMiss(masm);
4459 void KeyedLoadICStub::Generate(MacroAssembler* masm) {
4460 GenerateImpl(masm, false);
4464 void KeyedLoadICStub::GenerateForTrampoline(MacroAssembler* masm) {
4465 GenerateImpl(masm, true);
4469 void KeyedLoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4470 Register receiver = LoadWithVectorDescriptor::ReceiverRegister(); // edx
4471 Register key = LoadWithVectorDescriptor::NameRegister(); // ecx
4472 Register vector = LoadWithVectorDescriptor::VectorRegister(); // ebx
4473 Register slot = LoadWithVectorDescriptor::SlotRegister(); // eax
4474 Register feedback = edi;
4475 __ mov(feedback, FieldOperand(vector, slot, times_half_pointer_size,
4476 FixedArray::kHeaderSize));
4477 // Is it a weak cell?
4479 Label not_array, smi_key, key_okay, miss;
4480 __ CompareRoot(FieldOperand(feedback, 0), Heap::kWeakCellMapRootIndex);
4481 __ j(not_equal, &try_array);
4482 HandleMonomorphicCase(masm, receiver, key, vector, slot, feedback, &miss);
4484 __ bind(&try_array);
4485 // Is it a fixed array?
4486 __ CompareRoot(FieldOperand(feedback, 0), Heap::kFixedArrayMapRootIndex);
4487 __ j(not_equal, ¬_array);
4489 // We have a polymorphic element handler.
4490 Label polymorphic, try_poly_name;
4491 __ bind(&polymorphic);
4492 HandleArrayCases(masm, receiver, key, vector, slot, feedback, true, &miss);
4494 __ bind(¬_array);
4496 __ CompareRoot(feedback, Heap::kmegamorphic_symbolRootIndex);
4497 __ j(not_equal, &try_poly_name);
4498 Handle<Code> megamorphic_stub =
4499 KeyedLoadIC::ChooseMegamorphicStub(masm->isolate(), GetExtraICState());
4500 __ jmp(megamorphic_stub, RelocInfo::CODE_TARGET);
4502 __ bind(&try_poly_name);
4503 // We might have a name in feedback, and a fixed array in the next slot.
4504 __ cmp(key, feedback);
4505 __ j(not_equal, &miss);
4506 // If the name comparison succeeded, we know we have a fixed array with
4507 // at least one map/handler pair.
4508 __ mov(feedback, FieldOperand(vector, slot, times_half_pointer_size,
4509 FixedArray::kHeaderSize + kPointerSize));
4510 HandleArrayCases(masm, receiver, key, vector, slot, feedback, false, &miss);
4513 KeyedLoadIC::GenerateMiss(masm);
4517 void VectorStoreICTrampolineStub::Generate(MacroAssembler* masm) {
4518 EmitLoadTypeFeedbackVector(masm, VectorStoreICDescriptor::VectorRegister());
4519 VectorStoreICStub stub(isolate(), state());
4520 stub.GenerateForTrampoline(masm);
4524 void VectorKeyedStoreICTrampolineStub::Generate(MacroAssembler* masm) {
4525 EmitLoadTypeFeedbackVector(masm, VectorStoreICDescriptor::VectorRegister());
4526 VectorKeyedStoreICStub stub(isolate(), state());
4527 stub.GenerateForTrampoline(masm);
4531 void VectorStoreICStub::Generate(MacroAssembler* masm) {
4532 GenerateImpl(masm, false);
4536 void VectorStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
4537 GenerateImpl(masm, true);
4541 // value is on the stack already.
4542 static void HandlePolymorphicStoreCase(MacroAssembler* masm, Register receiver,
4543 Register key, Register vector,
4544 Register slot, Register feedback,
4546 // feedback initially contains the feedback array
4547 Label next, next_loop, prepare_next;
4548 Label load_smi_map, compare_map;
4549 Label start_polymorphic;
4550 ExternalReference virtual_register =
4551 ExternalReference::vector_store_virtual_register(masm->isolate());
4556 Register receiver_map = receiver;
4557 Register cached_map = vector;
4559 // Receiver might not be a heap object.
4560 __ JumpIfSmi(receiver, &load_smi_map);
4561 __ mov(receiver_map, FieldOperand(receiver, 0));
4562 __ bind(&compare_map);
4563 __ mov(cached_map, FieldOperand(feedback, FixedArray::OffsetOfElementAt(0)));
4565 // A named keyed store might have a 2 element array, all other cases can count
4566 // on an array with at least 2 {map, handler} pairs, so they can go right
4567 // into polymorphic array handling.
4568 __ cmp(receiver_map, FieldOperand(cached_map, WeakCell::kValueOffset));
4569 __ j(not_equal, &start_polymorphic);
4571 // found, now call handler.
4572 Register handler = feedback;
4573 DCHECK(handler.is(VectorStoreICDescriptor::ValueRegister()));
4574 __ mov(handler, FieldOperand(feedback, FixedArray::OffsetOfElementAt(1)));
4577 __ lea(handler, FieldOperand(handler, Code::kHeaderSize));
4578 __ mov(Operand::StaticVariable(virtual_register), handler);
4579 __ pop(handler); // Pop "value".
4580 __ jmp(Operand::StaticVariable(virtual_register));
4582 // Polymorphic, we have to loop from 2 to N
4584 // TODO(mvstanton): I think there is a bug here, we are assuming the
4585 // array has more than one map/handler pair, but we call this function in the
4586 // keyed store with a string key case, where it might be just an array of two
4589 __ bind(&start_polymorphic);
4591 Register counter = key;
4592 __ mov(counter, Immediate(Smi::FromInt(2)));
4593 __ bind(&next_loop);
4594 __ mov(cached_map, FieldOperand(feedback, counter, times_half_pointer_size,
4595 FixedArray::kHeaderSize));
4596 __ cmp(receiver_map, FieldOperand(cached_map, WeakCell::kValueOffset));
4597 __ j(not_equal, &prepare_next);
4598 __ mov(handler, FieldOperand(feedback, counter, times_half_pointer_size,
4599 FixedArray::kHeaderSize + kPointerSize));
4600 __ lea(handler, FieldOperand(handler, Code::kHeaderSize));
4604 __ mov(Operand::StaticVariable(virtual_register), handler);
4605 __ pop(handler); // Pop "value".
4606 __ jmp(Operand::StaticVariable(virtual_register));
4608 __ bind(&prepare_next);
4609 __ add(counter, Immediate(Smi::FromInt(2)));
4610 __ cmp(counter, FieldOperand(feedback, FixedArray::kLengthOffset));
4611 __ j(less, &next_loop);
4613 // We exhausted our array of map handler pairs.
4619 __ bind(&load_smi_map);
4620 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
4621 __ jmp(&compare_map);
4625 static void HandleMonomorphicStoreCase(MacroAssembler* masm, Register receiver,
4626 Register key, Register vector,
4627 Register slot, Register weak_cell,
4629 // The store ic value is on the stack.
4630 DCHECK(weak_cell.is(VectorStoreICDescriptor::ValueRegister()));
4631 ExternalReference virtual_register =
4632 ExternalReference::vector_store_virtual_register(masm->isolate());
4634 // feedback initially contains the feedback array
4635 Label compare_smi_map;
4637 // Move the weak map into the weak_cell register.
4638 Register ic_map = weak_cell;
4639 __ mov(ic_map, FieldOperand(weak_cell, WeakCell::kValueOffset));
4641 // Receiver might not be a heap object.
4642 __ JumpIfSmi(receiver, &compare_smi_map);
4643 __ cmp(ic_map, FieldOperand(receiver, 0));
4644 __ j(not_equal, miss);
4645 __ mov(weak_cell, FieldOperand(vector, slot, times_half_pointer_size,
4646 FixedArray::kHeaderSize + kPointerSize));
4647 __ lea(weak_cell, FieldOperand(weak_cell, Code::kHeaderSize));
4648 // Put the store ic value back in it's register.
4649 __ mov(Operand::StaticVariable(virtual_register), weak_cell);
4650 __ pop(weak_cell); // Pop "value".
4651 // jump to the handler.
4652 __ jmp(Operand::StaticVariable(virtual_register));
4654 // In microbenchmarks, it made sense to unroll this code so that the call to
4655 // the handler is duplicated for a HeapObject receiver and a Smi receiver.
4656 __ bind(&compare_smi_map);
4657 __ CompareRoot(ic_map, Heap::kHeapNumberMapRootIndex);
4658 __ j(not_equal, miss);
4659 __ mov(weak_cell, FieldOperand(vector, slot, times_half_pointer_size,
4660 FixedArray::kHeaderSize + kPointerSize));
4661 __ lea(weak_cell, FieldOperand(weak_cell, Code::kHeaderSize));
4662 __ mov(Operand::StaticVariable(virtual_register), weak_cell);
4663 __ pop(weak_cell); // Pop "value".
4664 // jump to the handler.
4665 __ jmp(Operand::StaticVariable(virtual_register));
4669 void VectorStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4670 Register receiver = VectorStoreICDescriptor::ReceiverRegister(); // edx
4671 Register key = VectorStoreICDescriptor::NameRegister(); // ecx
4672 Register value = VectorStoreICDescriptor::ValueRegister(); // eax
4673 Register vector = VectorStoreICDescriptor::VectorRegister(); // ebx
4674 Register slot = VectorStoreICDescriptor::SlotRegister(); // edi
4679 Register scratch = value;
4680 __ mov(scratch, FieldOperand(vector, slot, times_half_pointer_size,
4681 FixedArray::kHeaderSize));
4683 // Is it a weak cell?
4685 Label not_array, smi_key, key_okay;
4686 __ CompareRoot(FieldOperand(scratch, 0), Heap::kWeakCellMapRootIndex);
4687 __ j(not_equal, &try_array);
4688 HandleMonomorphicStoreCase(masm, receiver, key, vector, slot, scratch, &miss);
4690 // Is it a fixed array?
4691 __ bind(&try_array);
4692 __ CompareRoot(FieldOperand(scratch, 0), Heap::kFixedArrayMapRootIndex);
4693 __ j(not_equal, ¬_array);
4694 HandlePolymorphicStoreCase(masm, receiver, key, vector, slot, scratch, &miss);
4696 __ bind(¬_array);
4697 __ CompareRoot(scratch, Heap::kmegamorphic_symbolRootIndex);
4698 __ j(not_equal, &miss);
4703 Code::Flags code_flags = Code::RemoveTypeAndHolderFromFlags(
4704 Code::ComputeHandlerFlags(Code::STORE_IC));
4705 masm->isolate()->stub_cache()->GenerateProbe(masm, Code::STORE_IC, code_flags,
4706 receiver, key, slot, no_reg);
4710 __ jmp(&no_pop_miss);
4714 __ bind(&no_pop_miss);
4715 StoreIC::GenerateMiss(masm);
4719 void VectorKeyedStoreICStub::Generate(MacroAssembler* masm) {
4720 GenerateImpl(masm, false);
4724 void VectorKeyedStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
4725 GenerateImpl(masm, true);
4729 static void HandlePolymorphicKeyedStoreCase(MacroAssembler* masm,
4730 Register receiver, Register key,
4731 Register vector, Register slot,
4732 Register feedback, Label* miss) {
4733 // feedback initially contains the feedback array
4734 Label next, next_loop, prepare_next;
4735 Label load_smi_map, compare_map;
4736 Label transition_call;
4738 ExternalReference virtual_register =
4739 ExternalReference::vector_store_virtual_register(masm->isolate());
4744 Register receiver_map = receiver;
4745 Register cached_map = vector;
4747 // Receiver might not be a heap object.
4748 __ JumpIfSmi(receiver, &load_smi_map);
4749 __ mov(receiver_map, FieldOperand(receiver, 0));
4750 __ bind(&compare_map);
4752 // Polymorphic, we have to loop from 0 to N - 1
4754 // On the stack we have:
4759 Register counter = key;
4760 __ mov(counter, Immediate(Smi::FromInt(0)));
4761 __ bind(&next_loop);
4762 __ mov(cached_map, FieldOperand(feedback, counter, times_half_pointer_size,
4763 FixedArray::kHeaderSize));
4764 __ cmp(receiver_map, FieldOperand(cached_map, WeakCell::kValueOffset));
4765 __ j(not_equal, &prepare_next);
4766 __ mov(cached_map, FieldOperand(feedback, counter, times_half_pointer_size,
4767 FixedArray::kHeaderSize + kPointerSize));
4768 __ CompareRoot(cached_map, Heap::kUndefinedValueRootIndex);
4769 __ j(not_equal, &transition_call);
4770 __ mov(feedback, FieldOperand(feedback, counter, times_half_pointer_size,
4771 FixedArray::kHeaderSize + 2 * kPointerSize));
4775 __ lea(feedback, FieldOperand(feedback, Code::kHeaderSize));
4776 __ mov(Operand::StaticVariable(virtual_register), feedback);
4777 __ pop(feedback); // Pop "value".
4778 __ jmp(Operand::StaticVariable(virtual_register));
4780 __ bind(&transition_call);
4781 // Oh holy hell this will be tough.
4782 // The map goes in vector register.
4783 __ mov(receiver, FieldOperand(cached_map, WeakCell::kValueOffset));
4784 // The weak cell may have been cleared.
4785 __ JumpIfSmi(receiver, &pop_and_miss);
4786 // slot goes on the stack, and holds return address.
4787 __ xchg(slot, Operand(esp, 4 * kPointerSize));
4788 // Get the handler in value.
4789 __ mov(feedback, FieldOperand(feedback, counter, times_half_pointer_size,
4790 FixedArray::kHeaderSize + 2 * kPointerSize));
4791 __ lea(feedback, FieldOperand(feedback, Code::kHeaderSize));
4792 // Pop key into place.
4794 // Put the return address on top of stack, vector goes in slot.
4795 __ xchg(slot, Operand(esp, 0));
4796 // put the map on the stack, receiver holds receiver.
4797 __ xchg(receiver, Operand(esp, 1 * kPointerSize));
4798 // put the vector on the stack, slot holds value.
4799 __ xchg(slot, Operand(esp, 2 * kPointerSize));
4800 // feedback (value) = value, slot = handler.
4801 __ xchg(feedback, slot);
4804 __ bind(&prepare_next);
4805 __ add(counter, Immediate(Smi::FromInt(3)));
4806 __ cmp(counter, FieldOperand(feedback, FixedArray::kLengthOffset));
4807 __ j(less, &next_loop);
4809 // We exhausted our array of map handler pairs.
4810 __ bind(&pop_and_miss);
4816 __ bind(&load_smi_map);
4817 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
4818 __ jmp(&compare_map);
4822 void VectorKeyedStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4823 Register receiver = VectorStoreICDescriptor::ReceiverRegister(); // edx
4824 Register key = VectorStoreICDescriptor::NameRegister(); // ecx
4825 Register value = VectorStoreICDescriptor::ValueRegister(); // eax
4826 Register vector = VectorStoreICDescriptor::VectorRegister(); // ebx
4827 Register slot = VectorStoreICDescriptor::SlotRegister(); // edi
4832 Register scratch = value;
4833 __ mov(scratch, FieldOperand(vector, slot, times_half_pointer_size,
4834 FixedArray::kHeaderSize));
4836 // Is it a weak cell?
4838 Label not_array, smi_key, key_okay;
4839 __ CompareRoot(FieldOperand(scratch, 0), Heap::kWeakCellMapRootIndex);
4840 __ j(not_equal, &try_array);
4841 HandleMonomorphicStoreCase(masm, receiver, key, vector, slot, scratch, &miss);
4843 // Is it a fixed array?
4844 __ bind(&try_array);
4845 __ CompareRoot(FieldOperand(scratch, 0), Heap::kFixedArrayMapRootIndex);
4846 __ j(not_equal, ¬_array);
4847 HandlePolymorphicKeyedStoreCase(masm, receiver, key, vector, slot, scratch,
4850 __ bind(¬_array);
4851 Label try_poly_name;
4852 __ CompareRoot(scratch, Heap::kmegamorphic_symbolRootIndex);
4853 __ j(not_equal, &try_poly_name);
4857 Handle<Code> megamorphic_stub =
4858 KeyedStoreIC::ChooseMegamorphicStub(masm->isolate(), GetExtraICState());
4859 __ jmp(megamorphic_stub, RelocInfo::CODE_TARGET);
4861 __ bind(&try_poly_name);
4862 // We might have a name in feedback, and a fixed array in the next slot.
4863 __ cmp(key, scratch);
4864 __ j(not_equal, &miss);
4865 // If the name comparison succeeded, we know we have a fixed array with
4866 // at least one map/handler pair.
4867 __ mov(scratch, FieldOperand(vector, slot, times_half_pointer_size,
4868 FixedArray::kHeaderSize + kPointerSize));
4869 HandlePolymorphicStoreCase(masm, receiver, key, vector, slot, scratch, &miss);
4873 KeyedStoreIC::GenerateMiss(masm);
4877 void CallICTrampolineStub::Generate(MacroAssembler* masm) {
4878 EmitLoadTypeFeedbackVector(masm, ebx);
4879 CallICStub stub(isolate(), state());
4880 __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
4884 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
4885 if (masm->isolate()->function_entry_hook() != NULL) {
4886 ProfileEntryHookStub stub(masm->isolate());
4887 masm->CallStub(&stub);
4892 void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
4893 // Save volatile registers.
4894 const int kNumSavedRegisters = 3;
4899 // Calculate and push the original stack pointer.
4900 __ lea(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize));
4903 // Retrieve our return address and use it to calculate the calling
4904 // function's address.
4905 __ mov(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize));
4906 __ sub(eax, Immediate(Assembler::kCallInstructionLength));
4909 // Call the entry hook.
4910 DCHECK(isolate()->function_entry_hook() != NULL);
4911 __ call(FUNCTION_ADDR(isolate()->function_entry_hook()),
4912 RelocInfo::RUNTIME_ENTRY);
4913 __ add(esp, Immediate(2 * kPointerSize));
4925 static void CreateArrayDispatch(MacroAssembler* masm,
4926 AllocationSiteOverrideMode mode) {
4927 if (mode == DISABLE_ALLOCATION_SITES) {
4928 T stub(masm->isolate(),
4929 GetInitialFastElementsKind(),
4931 __ TailCallStub(&stub);
4932 } else if (mode == DONT_OVERRIDE) {
4933 int last_index = GetSequenceIndexFromFastElementsKind(
4934 TERMINAL_FAST_ELEMENTS_KIND);
4935 for (int i = 0; i <= last_index; ++i) {
4937 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4939 __ j(not_equal, &next);
4940 T stub(masm->isolate(), kind);
4941 __ TailCallStub(&stub);
4945 // If we reached this point there is a problem.
4946 __ Abort(kUnexpectedElementsKindInArrayConstructor);
4953 static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
4954 AllocationSiteOverrideMode mode) {
4955 // ebx - allocation site (if mode != DISABLE_ALLOCATION_SITES)
4956 // edx - kind (if mode != DISABLE_ALLOCATION_SITES)
4957 // eax - number of arguments
4958 // edi - constructor?
4959 // esp[0] - return address
4960 // esp[4] - last argument
4961 Label normal_sequence;
4962 if (mode == DONT_OVERRIDE) {
4963 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
4964 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
4965 STATIC_ASSERT(FAST_ELEMENTS == 2);
4966 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
4967 STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4);
4968 STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
4970 // is the low bit set? If so, we are holey and that is good.
4972 __ j(not_zero, &normal_sequence);
4975 // look at the first argument
4976 __ mov(ecx, Operand(esp, kPointerSize));
4978 __ j(zero, &normal_sequence);
4980 if (mode == DISABLE_ALLOCATION_SITES) {
4981 ElementsKind initial = GetInitialFastElementsKind();
4982 ElementsKind holey_initial = GetHoleyElementsKind(initial);
4984 ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
4986 DISABLE_ALLOCATION_SITES);
4987 __ TailCallStub(&stub_holey);
4989 __ bind(&normal_sequence);
4990 ArraySingleArgumentConstructorStub stub(masm->isolate(),
4992 DISABLE_ALLOCATION_SITES);
4993 __ TailCallStub(&stub);
4994 } else if (mode == DONT_OVERRIDE) {
4995 // We are going to create a holey array, but our kind is non-holey.
4996 // Fix kind and retry.
4999 if (FLAG_debug_code) {
5000 Handle<Map> allocation_site_map =
5001 masm->isolate()->factory()->allocation_site_map();
5002 __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map));
5003 __ Assert(equal, kExpectedAllocationSite);
5006 // Save the resulting elements kind in type info. We can't just store r3
5007 // in the AllocationSite::transition_info field because elements kind is
5008 // restricted to a portion of the field...upper bits need to be left alone.
5009 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
5010 __ add(FieldOperand(ebx, AllocationSite::kTransitionInfoOffset),
5011 Immediate(Smi::FromInt(kFastElementsKindPackedToHoley)));
5013 __ bind(&normal_sequence);
5014 int last_index = GetSequenceIndexFromFastElementsKind(
5015 TERMINAL_FAST_ELEMENTS_KIND);
5016 for (int i = 0; i <= last_index; ++i) {
5018 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
5020 __ j(not_equal, &next);
5021 ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
5022 __ TailCallStub(&stub);
5026 // If we reached this point there is a problem.
5027 __ Abort(kUnexpectedElementsKindInArrayConstructor);
5035 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
5036 int to_index = GetSequenceIndexFromFastElementsKind(
5037 TERMINAL_FAST_ELEMENTS_KIND);
5038 for (int i = 0; i <= to_index; ++i) {
5039 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
5040 T stub(isolate, kind);
5042 if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
5043 T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
5050 void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
5051 ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
5053 ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
5055 ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
5060 void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
5062 ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
5063 for (int i = 0; i < 2; i++) {
5064 // For internal arrays we only need a few things
5065 InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
5067 InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
5069 InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]);
5075 void ArrayConstructorStub::GenerateDispatchToArrayStub(
5076 MacroAssembler* masm,
5077 AllocationSiteOverrideMode mode) {
5078 if (argument_count() == ANY) {
5079 Label not_zero_case, not_one_case;
5081 __ j(not_zero, ¬_zero_case);
5082 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
5084 __ bind(¬_zero_case);
5086 __ j(greater, ¬_one_case);
5087 CreateArrayDispatchOneArgument(masm, mode);
5089 __ bind(¬_one_case);
5090 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
5091 } else if (argument_count() == NONE) {
5092 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
5093 } else if (argument_count() == ONE) {
5094 CreateArrayDispatchOneArgument(masm, mode);
5095 } else if (argument_count() == MORE_THAN_ONE) {
5096 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
5103 void ArrayConstructorStub::Generate(MacroAssembler* masm) {
5104 // ----------- S t a t e -------------
5105 // -- eax : argc (only if argument_count() is ANY or MORE_THAN_ONE)
5106 // -- ebx : AllocationSite or undefined
5107 // -- edi : constructor
5108 // -- edx : Original constructor
5109 // -- esp[0] : return address
5110 // -- esp[4] : last argument
5111 // -----------------------------------
5112 if (FLAG_debug_code) {
5113 // The array construct code is only set for the global and natives
5114 // builtin Array functions which always have maps.
5116 // Initial map for the builtin Array function should be a map.
5117 __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
5118 // Will both indicate a NULL and a Smi.
5119 __ test(ecx, Immediate(kSmiTagMask));
5120 __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
5121 __ CmpObjectType(ecx, MAP_TYPE, ecx);
5122 __ Assert(equal, kUnexpectedInitialMapForArrayFunction);
5124 // We should either have undefined in ebx or a valid AllocationSite
5125 __ AssertUndefinedOrAllocationSite(ebx);
5131 __ j(not_equal, &subclassing);
5134 // If the feedback vector is the undefined value call an array constructor
5135 // that doesn't use AllocationSites.
5136 __ cmp(ebx, isolate()->factory()->undefined_value());
5137 __ j(equal, &no_info);
5139 // Only look at the lower 16 bits of the transition info.
5140 __ mov(edx, FieldOperand(ebx, AllocationSite::kTransitionInfoOffset));
5142 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
5143 __ and_(edx, Immediate(AllocationSite::ElementsKindBits::kMask));
5144 GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
5147 GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
5150 __ bind(&subclassing);
5151 __ pop(ecx); // return address.
5156 switch (argument_count()) {
5159 __ add(eax, Immediate(2));
5162 __ mov(eax, Immediate(2));
5165 __ mov(eax, Immediate(3));
5170 __ JumpToExternalReference(
5171 ExternalReference(Runtime::kArrayConstructorWithSubclassing, isolate()));
5175 void InternalArrayConstructorStub::GenerateCase(
5176 MacroAssembler* masm, ElementsKind kind) {
5177 Label not_zero_case, not_one_case;
5178 Label normal_sequence;
5181 __ j(not_zero, ¬_zero_case);
5182 InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
5183 __ TailCallStub(&stub0);
5185 __ bind(¬_zero_case);
5187 __ j(greater, ¬_one_case);
5189 if (IsFastPackedElementsKind(kind)) {
5190 // We might need to create a holey array
5191 // look at the first argument
5192 __ mov(ecx, Operand(esp, kPointerSize));
5194 __ j(zero, &normal_sequence);
5196 InternalArraySingleArgumentConstructorStub
5197 stub1_holey(isolate(), GetHoleyElementsKind(kind));
5198 __ TailCallStub(&stub1_holey);
5201 __ bind(&normal_sequence);
5202 InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
5203 __ TailCallStub(&stub1);
5205 __ bind(¬_one_case);
5206 InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
5207 __ TailCallStub(&stubN);
5211 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
5212 // ----------- S t a t e -------------
5214 // -- edi : constructor
5215 // -- esp[0] : return address
5216 // -- esp[4] : last argument
5217 // -----------------------------------
5219 if (FLAG_debug_code) {
5220 // The array construct code is only set for the global and natives
5221 // builtin Array functions which always have maps.
5223 // Initial map for the builtin Array function should be a map.
5224 __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
5225 // Will both indicate a NULL and a Smi.
5226 __ test(ecx, Immediate(kSmiTagMask));
5227 __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
5228 __ CmpObjectType(ecx, MAP_TYPE, ecx);
5229 __ Assert(equal, kUnexpectedInitialMapForArrayFunction);
5232 // Figure out the right elements kind
5233 __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
5235 // Load the map's "bit field 2" into |result|. We only need the first byte,
5236 // but the following masking takes care of that anyway.
5237 __ mov(ecx, FieldOperand(ecx, Map::kBitField2Offset));
5238 // Retrieve elements_kind from bit field 2.
5239 __ DecodeField<Map::ElementsKindBits>(ecx);
5241 if (FLAG_debug_code) {
5243 __ cmp(ecx, Immediate(FAST_ELEMENTS));
5245 __ cmp(ecx, Immediate(FAST_HOLEY_ELEMENTS));
5247 kInvalidElementsKindForInternalArrayOrInternalPackedArray);
5251 Label fast_elements_case;
5252 __ cmp(ecx, Immediate(FAST_ELEMENTS));
5253 __ j(equal, &fast_elements_case);
5254 GenerateCase(masm, FAST_HOLEY_ELEMENTS);
5256 __ bind(&fast_elements_case);
5257 GenerateCase(masm, FAST_ELEMENTS);
5261 void LoadGlobalViaContextStub::Generate(MacroAssembler* masm) {
5262 Register context_reg = esi;
5263 Register slot_reg = ebx;
5264 Register result_reg = eax;
5267 // Go up context chain to the script context.
5268 for (int i = 0; i < depth(); ++i) {
5269 __ mov(result_reg, ContextOperand(context_reg, Context::PREVIOUS_INDEX));
5270 context_reg = result_reg;
5273 // Load the PropertyCell value at the specified slot.
5274 __ mov(result_reg, ContextOperand(context_reg, slot_reg));
5275 __ mov(result_reg, FieldOperand(result_reg, PropertyCell::kValueOffset));
5277 // Check that value is not the_hole.
5278 __ CompareRoot(result_reg, Heap::kTheHoleValueRootIndex);
5279 __ j(equal, &slow_case, Label::kNear);
5282 // Fallback to the runtime.
5283 __ bind(&slow_case);
5284 __ SmiTag(slot_reg);
5285 __ Pop(result_reg); // Pop return address.
5287 __ Push(result_reg); // Push return address.
5288 __ TailCallRuntime(Runtime::kLoadGlobalViaContext, 1, 1);
5292 void StoreGlobalViaContextStub::Generate(MacroAssembler* masm) {
5293 Register context_reg = esi;
5294 Register slot_reg = ebx;
5295 Register value_reg = eax;
5296 Register cell_reg = edi;
5297 Register cell_details_reg = edx;
5298 Register cell_value_reg = ecx;
5299 Label fast_heapobject_case, fast_smi_case, slow_case;
5301 if (FLAG_debug_code) {
5302 __ CompareRoot(value_reg, Heap::kTheHoleValueRootIndex);
5303 __ Check(not_equal, kUnexpectedValue);
5306 // Go up context chain to the script context.
5307 for (int i = 0; i < depth(); ++i) {
5308 __ mov(cell_reg, ContextOperand(context_reg, Context::PREVIOUS_INDEX));
5309 context_reg = cell_reg;
5312 // Load the PropertyCell at the specified slot.
5313 __ mov(cell_reg, ContextOperand(context_reg, slot_reg));
5315 // Load PropertyDetails for the cell (actually only the cell_type and kind).
5316 __ mov(cell_details_reg,
5317 FieldOperand(cell_reg, PropertyCell::kDetailsOffset));
5318 __ SmiUntag(cell_details_reg);
5319 __ and_(cell_details_reg,
5320 Immediate(PropertyDetails::PropertyCellTypeField::kMask |
5321 PropertyDetails::KindField::kMask |
5322 PropertyDetails::kAttributesReadOnlyMask));
5324 // Check if PropertyCell holds mutable data.
5325 Label not_mutable_data;
5326 __ cmp(cell_details_reg,
5327 Immediate(PropertyDetails::PropertyCellTypeField::encode(
5328 PropertyCellType::kMutable) |
5329 PropertyDetails::KindField::encode(kData)));
5330 __ j(not_equal, ¬_mutable_data);
5331 __ JumpIfSmi(value_reg, &fast_smi_case);
5332 __ bind(&fast_heapobject_case);
5333 __ mov(FieldOperand(cell_reg, PropertyCell::kValueOffset), value_reg);
5334 __ RecordWriteField(cell_reg, PropertyCell::kValueOffset, value_reg,
5335 cell_details_reg, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
5337 // RecordWriteField clobbers the value register, so we need to reload.
5338 __ mov(value_reg, FieldOperand(cell_reg, PropertyCell::kValueOffset));
5340 __ bind(¬_mutable_data);
5342 // Check if PropertyCell value matches the new value (relevant for Constant,
5343 // ConstantType and Undefined cells).
5344 Label not_same_value;
5345 __ mov(cell_value_reg, FieldOperand(cell_reg, PropertyCell::kValueOffset));
5346 __ cmp(cell_value_reg, value_reg);
5347 __ j(not_equal, ¬_same_value,
5348 FLAG_debug_code ? Label::kFar : Label::kNear);
5349 // Make sure the PropertyCell is not marked READ_ONLY.
5350 __ test(cell_details_reg,
5351 Immediate(PropertyDetails::kAttributesReadOnlyMask));
5352 __ j(not_zero, &slow_case);
5353 if (FLAG_debug_code) {
5355 // This can only be true for Constant, ConstantType and Undefined cells,
5356 // because we never store the_hole via this stub.
5357 __ cmp(cell_details_reg,
5358 Immediate(PropertyDetails::PropertyCellTypeField::encode(
5359 PropertyCellType::kConstant) |
5360 PropertyDetails::KindField::encode(kData)));
5362 __ cmp(cell_details_reg,
5363 Immediate(PropertyDetails::PropertyCellTypeField::encode(
5364 PropertyCellType::kConstantType) |
5365 PropertyDetails::KindField::encode(kData)));
5367 __ cmp(cell_details_reg,
5368 Immediate(PropertyDetails::PropertyCellTypeField::encode(
5369 PropertyCellType::kUndefined) |
5370 PropertyDetails::KindField::encode(kData)));
5371 __ Check(equal, kUnexpectedValue);
5375 __ bind(¬_same_value);
5377 // Check if PropertyCell contains data with constant type (and is not
5379 __ cmp(cell_details_reg,
5380 Immediate(PropertyDetails::PropertyCellTypeField::encode(
5381 PropertyCellType::kConstantType) |
5382 PropertyDetails::KindField::encode(kData)));
5383 __ j(not_equal, &slow_case, Label::kNear);
5385 // Now either both old and new values must be SMIs or both must be heap
5386 // objects with same map.
5387 Label value_is_heap_object;
5388 __ JumpIfNotSmi(value_reg, &value_is_heap_object, Label::kNear);
5389 __ JumpIfNotSmi(cell_value_reg, &slow_case, Label::kNear);
5390 // Old and new values are SMIs, no need for a write barrier here.
5391 __ bind(&fast_smi_case);
5392 __ mov(FieldOperand(cell_reg, PropertyCell::kValueOffset), value_reg);
5394 __ bind(&value_is_heap_object);
5395 __ JumpIfSmi(cell_value_reg, &slow_case, Label::kNear);
5396 Register cell_value_map_reg = cell_value_reg;
5397 __ mov(cell_value_map_reg,
5398 FieldOperand(cell_value_reg, HeapObject::kMapOffset));
5399 __ cmp(cell_value_map_reg, FieldOperand(value_reg, HeapObject::kMapOffset));
5400 __ j(equal, &fast_heapobject_case);
5402 // Fallback to the runtime.
5403 __ bind(&slow_case);
5404 __ SmiTag(slot_reg);
5405 __ Pop(cell_reg); // Pop return address.
5408 __ Push(cell_reg); // Push return address.
5409 __ TailCallRuntime(is_strict(language_mode())
5410 ? Runtime::kStoreGlobalViaContext_Strict
5411 : Runtime::kStoreGlobalViaContext_Sloppy,
5416 // Generates an Operand for saving parameters after PrepareCallApiFunction.
5417 static Operand ApiParameterOperand(int index) {
5418 return Operand(esp, index * kPointerSize);
5422 // Prepares stack to put arguments (aligns and so on). Reserves
5423 // space for return value if needed (assumes the return value is a handle).
5424 // Arguments must be stored in ApiParameterOperand(0), ApiParameterOperand(1)
5425 // etc. Saves context (esi). If space was reserved for return value then
5426 // stores the pointer to the reserved slot into esi.
5427 static void PrepareCallApiFunction(MacroAssembler* masm, int argc) {
5428 __ EnterApiExitFrame(argc);
5429 if (__ emit_debug_code()) {
5430 __ mov(esi, Immediate(bit_cast<int32_t>(kZapValue)));
5435 // Calls an API function. Allocates HandleScope, extracts returned value
5436 // from handle and propagates exceptions. Clobbers ebx, edi and
5437 // caller-save registers. Restores context. On return removes
5438 // stack_space * kPointerSize (GCed).
5439 static void CallApiFunctionAndReturn(MacroAssembler* masm,
5440 Register function_address,
5441 ExternalReference thunk_ref,
5442 Operand thunk_last_arg, int stack_space,
5443 Operand* stack_space_operand,
5444 Operand return_value_operand,
5445 Operand* context_restore_operand) {
5446 Isolate* isolate = masm->isolate();
5448 ExternalReference next_address =
5449 ExternalReference::handle_scope_next_address(isolate);
5450 ExternalReference limit_address =
5451 ExternalReference::handle_scope_limit_address(isolate);
5452 ExternalReference level_address =
5453 ExternalReference::handle_scope_level_address(isolate);
5455 DCHECK(edx.is(function_address));
5456 // Allocate HandleScope in callee-save registers.
5457 __ mov(ebx, Operand::StaticVariable(next_address));
5458 __ mov(edi, Operand::StaticVariable(limit_address));
5459 __ add(Operand::StaticVariable(level_address), Immediate(1));
5461 if (FLAG_log_timer_events) {
5462 FrameScope frame(masm, StackFrame::MANUAL);
5463 __ PushSafepointRegisters();
5464 __ PrepareCallCFunction(1, eax);
5465 __ mov(Operand(esp, 0),
5466 Immediate(ExternalReference::isolate_address(isolate)));
5467 __ CallCFunction(ExternalReference::log_enter_external_function(isolate),
5469 __ PopSafepointRegisters();
5473 Label profiler_disabled;
5474 Label end_profiler_check;
5475 __ mov(eax, Immediate(ExternalReference::is_profiling_address(isolate)));
5476 __ cmpb(Operand(eax, 0), 0);
5477 __ j(zero, &profiler_disabled);
5479 // Additional parameter is the address of the actual getter function.
5480 __ mov(thunk_last_arg, function_address);
5481 // Call the api function.
5482 __ mov(eax, Immediate(thunk_ref));
5484 __ jmp(&end_profiler_check);
5486 __ bind(&profiler_disabled);
5487 // Call the api function.
5488 __ call(function_address);
5489 __ bind(&end_profiler_check);
5491 if (FLAG_log_timer_events) {
5492 FrameScope frame(masm, StackFrame::MANUAL);
5493 __ PushSafepointRegisters();
5494 __ PrepareCallCFunction(1, eax);
5495 __ mov(Operand(esp, 0),
5496 Immediate(ExternalReference::isolate_address(isolate)));
5497 __ CallCFunction(ExternalReference::log_leave_external_function(isolate),
5499 __ PopSafepointRegisters();
5503 // Load the value from ReturnValue
5504 __ mov(eax, return_value_operand);
5506 Label promote_scheduled_exception;
5507 Label delete_allocated_handles;
5508 Label leave_exit_frame;
5511 // No more valid handles (the result handle was the last one). Restore
5512 // previous handle scope.
5513 __ mov(Operand::StaticVariable(next_address), ebx);
5514 __ sub(Operand::StaticVariable(level_address), Immediate(1));
5515 __ Assert(above_equal, kInvalidHandleScopeLevel);
5516 __ cmp(edi, Operand::StaticVariable(limit_address));
5517 __ j(not_equal, &delete_allocated_handles);
5519 // Leave the API exit frame.
5520 __ bind(&leave_exit_frame);
5521 bool restore_context = context_restore_operand != NULL;
5522 if (restore_context) {
5523 __ mov(esi, *context_restore_operand);
5525 if (stack_space_operand != nullptr) {
5526 __ mov(ebx, *stack_space_operand);
5528 __ LeaveApiExitFrame(!restore_context);
5530 // Check if the function scheduled an exception.
5531 ExternalReference scheduled_exception_address =
5532 ExternalReference::scheduled_exception_address(isolate);
5533 __ cmp(Operand::StaticVariable(scheduled_exception_address),
5534 Immediate(isolate->factory()->the_hole_value()));
5535 __ j(not_equal, &promote_scheduled_exception);
5538 // Check if the function returned a valid JavaScript value.
5540 Register return_value = eax;
5543 __ JumpIfSmi(return_value, &ok, Label::kNear);
5544 __ mov(map, FieldOperand(return_value, HeapObject::kMapOffset));
5546 __ CmpInstanceType(map, LAST_NAME_TYPE);
5547 __ j(below_equal, &ok, Label::kNear);
5549 __ CmpInstanceType(map, FIRST_SPEC_OBJECT_TYPE);
5550 __ j(above_equal, &ok, Label::kNear);
5552 __ cmp(map, isolate->factory()->heap_number_map());
5553 __ j(equal, &ok, Label::kNear);
5555 __ cmp(return_value, isolate->factory()->undefined_value());
5556 __ j(equal, &ok, Label::kNear);
5558 __ cmp(return_value, isolate->factory()->true_value());
5559 __ j(equal, &ok, Label::kNear);
5561 __ cmp(return_value, isolate->factory()->false_value());
5562 __ j(equal, &ok, Label::kNear);
5564 __ cmp(return_value, isolate->factory()->null_value());
5565 __ j(equal, &ok, Label::kNear);
5567 __ Abort(kAPICallReturnedInvalidObject);
5572 if (stack_space_operand != nullptr) {
5573 DCHECK_EQ(0, stack_space);
5578 __ ret(stack_space * kPointerSize);
5581 // Re-throw by promoting a scheduled exception.
5582 __ bind(&promote_scheduled_exception);
5583 __ TailCallRuntime(Runtime::kPromoteScheduledException, 0, 1);
5585 // HandleScope limit has changed. Delete allocated extensions.
5586 ExternalReference delete_extensions =
5587 ExternalReference::delete_handle_scope_extensions(isolate);
5588 __ bind(&delete_allocated_handles);
5589 __ mov(Operand::StaticVariable(limit_address), edi);
5591 __ mov(Operand(esp, 0),
5592 Immediate(ExternalReference::isolate_address(isolate)));
5593 __ mov(eax, Immediate(delete_extensions));
5596 __ jmp(&leave_exit_frame);
5600 static void CallApiFunctionStubHelper(MacroAssembler* masm,
5601 const ParameterCount& argc,
5602 bool return_first_arg,
5603 bool call_data_undefined) {
5604 // ----------- S t a t e -------------
5606 // -- ebx : call_data
5608 // -- edx : api_function_address
5610 // -- eax : number of arguments if argc is a register
5612 // -- esp[0] : return address
5613 // -- esp[4] : last argument
5615 // -- esp[argc * 4] : first argument
5616 // -- esp[(argc + 1) * 4] : receiver
5617 // -----------------------------------
5619 Register callee = edi;
5620 Register call_data = ebx;
5621 Register holder = ecx;
5622 Register api_function_address = edx;
5623 Register context = esi;
5624 Register return_address = eax;
5626 typedef FunctionCallbackArguments FCA;
5628 STATIC_ASSERT(FCA::kContextSaveIndex == 6);
5629 STATIC_ASSERT(FCA::kCalleeIndex == 5);
5630 STATIC_ASSERT(FCA::kDataIndex == 4);
5631 STATIC_ASSERT(FCA::kReturnValueOffset == 3);
5632 STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
5633 STATIC_ASSERT(FCA::kIsolateIndex == 1);
5634 STATIC_ASSERT(FCA::kHolderIndex == 0);
5635 STATIC_ASSERT(FCA::kArgsLength == 7);
5637 DCHECK(argc.is_immediate() || eax.is(argc.reg()));
5639 if (argc.is_immediate()) {
5640 __ pop(return_address);
5644 // pop return address and save context
5645 __ xchg(context, Operand(esp, 0));
5646 return_address = context;
5655 Register scratch = call_data;
5656 if (!call_data_undefined) {
5658 __ push(Immediate(masm->isolate()->factory()->undefined_value()));
5659 // return value default
5660 __ push(Immediate(masm->isolate()->factory()->undefined_value()));
5664 // return value default
5668 __ push(Immediate(reinterpret_cast<int>(masm->isolate())));
5672 __ mov(scratch, esp);
5674 // push return address
5675 __ push(return_address);
5677 // load context from callee
5678 __ mov(context, FieldOperand(callee, JSFunction::kContextOffset));
5680 // API function gets reference to the v8::Arguments. If CPU profiler
5681 // is enabled wrapper function will be called and we need to pass
5682 // address of the callback as additional parameter, always allocate
5684 const int kApiArgc = 1 + 1;
5686 // Allocate the v8::Arguments structure in the arguments' space since
5687 // it's not controlled by GC.
5688 const int kApiStackSpace = 4;
5690 PrepareCallApiFunction(masm, kApiArgc + kApiStackSpace);
5692 // FunctionCallbackInfo::implicit_args_.
5693 __ mov(ApiParameterOperand(2), scratch);
5694 if (argc.is_immediate()) {
5696 Immediate((argc.immediate() + FCA::kArgsLength - 1) * kPointerSize));
5697 // FunctionCallbackInfo::values_.
5698 __ mov(ApiParameterOperand(3), scratch);
5699 // FunctionCallbackInfo::length_.
5700 __ Move(ApiParameterOperand(4), Immediate(argc.immediate()));
5701 // FunctionCallbackInfo::is_construct_call_.
5702 __ Move(ApiParameterOperand(5), Immediate(0));
5704 __ lea(scratch, Operand(scratch, argc.reg(), times_pointer_size,
5705 (FCA::kArgsLength - 1) * kPointerSize));
5706 // FunctionCallbackInfo::values_.
5707 __ mov(ApiParameterOperand(3), scratch);
5708 // FunctionCallbackInfo::length_.
5709 __ mov(ApiParameterOperand(4), argc.reg());
5710 // FunctionCallbackInfo::is_construct_call_.
5711 __ lea(argc.reg(), Operand(argc.reg(), times_pointer_size,
5712 (FCA::kArgsLength + 1) * kPointerSize));
5713 __ mov(ApiParameterOperand(5), argc.reg());
5716 // v8::InvocationCallback's argument.
5717 __ lea(scratch, ApiParameterOperand(2));
5718 __ mov(ApiParameterOperand(0), scratch);
5720 ExternalReference thunk_ref =
5721 ExternalReference::invoke_function_callback(masm->isolate());
5723 Operand context_restore_operand(ebp,
5724 (2 + FCA::kContextSaveIndex) * kPointerSize);
5725 // Stores return the first js argument
5726 int return_value_offset = 0;
5727 if (return_first_arg) {
5728 return_value_offset = 2 + FCA::kArgsLength;
5730 return_value_offset = 2 + FCA::kReturnValueOffset;
5732 Operand return_value_operand(ebp, return_value_offset * kPointerSize);
5733 int stack_space = 0;
5734 Operand is_construct_call_operand = ApiParameterOperand(5);
5735 Operand* stack_space_operand = &is_construct_call_operand;
5736 if (argc.is_immediate()) {
5737 stack_space = argc.immediate() + FCA::kArgsLength + 1;
5738 stack_space_operand = nullptr;
5740 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
5741 ApiParameterOperand(1), stack_space,
5742 stack_space_operand, return_value_operand,
5743 &context_restore_operand);
5747 void CallApiFunctionStub::Generate(MacroAssembler* masm) {
5748 bool call_data_undefined = this->call_data_undefined();
5749 CallApiFunctionStubHelper(masm, ParameterCount(eax), false,
5750 call_data_undefined);
5754 void CallApiAccessorStub::Generate(MacroAssembler* masm) {
5755 bool is_store = this->is_store();
5756 int argc = this->argc();
5757 bool call_data_undefined = this->call_data_undefined();
5758 CallApiFunctionStubHelper(masm, ParameterCount(argc), is_store,
5759 call_data_undefined);
5763 void CallApiGetterStub::Generate(MacroAssembler* masm) {
5764 // ----------- S t a t e -------------
5765 // -- esp[0] : return address
5767 // -- esp[8 - kArgsLength*4] : PropertyCallbackArguments object
5769 // -- edx : api_function_address
5770 // -----------------------------------
5771 DCHECK(edx.is(ApiGetterDescriptor::function_address()));
5773 // array for v8::Arguments::values_, handler for name and pointer
5774 // to the values (it considered as smi in GC).
5775 const int kStackSpace = PropertyCallbackArguments::kArgsLength + 2;
5776 // Allocate space for opional callback address parameter in case
5777 // CPU profiler is active.
5778 const int kApiArgc = 2 + 1;
5780 Register api_function_address = edx;
5781 Register scratch = ebx;
5783 // load address of name
5784 __ lea(scratch, Operand(esp, 1 * kPointerSize));
5786 PrepareCallApiFunction(masm, kApiArgc);
5787 __ mov(ApiParameterOperand(0), scratch); // name.
5788 __ add(scratch, Immediate(kPointerSize));
5789 __ mov(ApiParameterOperand(1), scratch); // arguments pointer.
5791 ExternalReference thunk_ref =
5792 ExternalReference::invoke_accessor_getter_callback(isolate());
5794 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
5795 ApiParameterOperand(2), kStackSpace, nullptr,
5796 Operand(ebp, 7 * kPointerSize), NULL);
5802 } // namespace internal
5805 #endif // V8_TARGET_ARCH_IA32