1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
7 #if V8_TARGET_ARCH_IA32
9 #include "src/base/bits.h"
10 #include "src/bootstrapper.h"
11 #include "src/code-stubs.h"
12 #include "src/codegen.h"
13 #include "src/ic/handler-compiler.h"
14 #include "src/ic/ic.h"
15 #include "src/ic/stub-cache.h"
16 #include "src/isolate.h"
17 #include "src/jsregexp.h"
18 #include "src/regexp-macro-assembler.h"
19 #include "src/runtime/runtime.h"
25 static void InitializeArrayConstructorDescriptor(
26 Isolate* isolate, CodeStubDescriptor* descriptor,
27 int constant_stack_parameter_count) {
29 // eax -- number of arguments
31 // ebx -- allocation site with elements kind
32 Address deopt_handler = Runtime::FunctionForId(
33 Runtime::kArrayConstructor)->entry;
35 if (constant_stack_parameter_count == 0) {
36 descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
37 JS_FUNCTION_STUB_MODE);
39 descriptor->Initialize(eax, deopt_handler, constant_stack_parameter_count,
40 JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
45 static void InitializeInternalArrayConstructorDescriptor(
46 Isolate* isolate, CodeStubDescriptor* descriptor,
47 int constant_stack_parameter_count) {
49 // eax -- number of arguments
50 // edi -- constructor function
51 Address deopt_handler = Runtime::FunctionForId(
52 Runtime::kInternalArrayConstructor)->entry;
54 if (constant_stack_parameter_count == 0) {
55 descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
56 JS_FUNCTION_STUB_MODE);
58 descriptor->Initialize(eax, deopt_handler, constant_stack_parameter_count,
59 JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
64 void ArrayNoArgumentConstructorStub::InitializeDescriptor(
65 CodeStubDescriptor* descriptor) {
66 InitializeArrayConstructorDescriptor(isolate(), descriptor, 0);
70 void ArraySingleArgumentConstructorStub::InitializeDescriptor(
71 CodeStubDescriptor* descriptor) {
72 InitializeArrayConstructorDescriptor(isolate(), descriptor, 1);
76 void ArrayNArgumentsConstructorStub::InitializeDescriptor(
77 CodeStubDescriptor* descriptor) {
78 InitializeArrayConstructorDescriptor(isolate(), descriptor, -1);
82 void InternalArrayNoArgumentConstructorStub::InitializeDescriptor(
83 CodeStubDescriptor* descriptor) {
84 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 0);
88 void InternalArraySingleArgumentConstructorStub::InitializeDescriptor(
89 CodeStubDescriptor* descriptor) {
90 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 1);
94 void InternalArrayNArgumentsConstructorStub::InitializeDescriptor(
95 CodeStubDescriptor* descriptor) {
96 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1);
100 #define __ ACCESS_MASM(masm)
103 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
104 ExternalReference miss) {
105 // Update the static counter each time a new code stub is generated.
106 isolate()->counters()->code_stubs()->Increment();
108 CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
109 int param_count = descriptor.GetEnvironmentParameterCount();
111 // Call the runtime system in a fresh internal frame.
112 FrameScope scope(masm, StackFrame::INTERNAL);
113 DCHECK(param_count == 0 ||
114 eax.is(descriptor.GetEnvironmentParameterRegister(param_count - 1)));
116 for (int i = 0; i < param_count; ++i) {
117 __ push(descriptor.GetEnvironmentParameterRegister(i));
119 __ CallExternalReference(miss, param_count);
126 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
127 // We don't allow a GC during a store buffer overflow so there is no need to
128 // store the registers in any particular way, but we do have to store and
131 if (save_doubles()) {
132 __ sub(esp, Immediate(kDoubleSize * XMMRegister::kMaxNumRegisters));
133 for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
134 XMMRegister reg = XMMRegister::from_code(i);
135 __ movsd(Operand(esp, i * kDoubleSize), reg);
138 const int argument_count = 1;
140 AllowExternalCallThatCantCauseGC scope(masm);
141 __ PrepareCallCFunction(argument_count, ecx);
142 __ mov(Operand(esp, 0 * kPointerSize),
143 Immediate(ExternalReference::isolate_address(isolate())));
145 ExternalReference::store_buffer_overflow_function(isolate()),
147 if (save_doubles()) {
148 for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
149 XMMRegister reg = XMMRegister::from_code(i);
150 __ movsd(reg, Operand(esp, i * kDoubleSize));
152 __ add(esp, Immediate(kDoubleSize * XMMRegister::kMaxNumRegisters));
159 class FloatingPointHelper : public AllStatic {
166 // Code pattern for loading a floating point value. Input value must
167 // be either a smi or a heap number object (fp value). Requirements:
168 // operand in register number. Returns operand as floating point number
170 static void LoadFloatOperand(MacroAssembler* masm, Register number);
172 // Test if operands are smi or number objects (fp). Requirements:
173 // operand_1 in eax, operand_2 in edx; falls through on float
174 // operands, jumps to the non_float label otherwise.
175 static void CheckFloatOperands(MacroAssembler* masm,
179 // Test if operands are numbers (smi or HeapNumber objects), and load
180 // them into xmm0 and xmm1 if they are. Jump to label not_numbers if
181 // either operand is not a number. Operands are in edx and eax.
182 // Leaves operands unchanged.
183 static void LoadSSE2Operands(MacroAssembler* masm, Label* not_numbers);
187 void DoubleToIStub::Generate(MacroAssembler* masm) {
188 Register input_reg = this->source();
189 Register final_result_reg = this->destination();
190 DCHECK(is_truncating());
192 Label check_negative, process_64_bits, done, done_no_stash;
194 int double_offset = offset();
196 // Account for return address and saved regs if input is esp.
197 if (input_reg.is(esp)) double_offset += 3 * kPointerSize;
199 MemOperand mantissa_operand(MemOperand(input_reg, double_offset));
200 MemOperand exponent_operand(MemOperand(input_reg,
201 double_offset + kDoubleSize / 2));
205 Register scratch_candidates[3] = { ebx, edx, edi };
206 for (int i = 0; i < 3; i++) {
207 scratch1 = scratch_candidates[i];
208 if (!final_result_reg.is(scratch1) && !input_reg.is(scratch1)) break;
211 // Since we must use ecx for shifts below, use some other register (eax)
212 // to calculate the result if ecx is the requested return register.
213 Register result_reg = final_result_reg.is(ecx) ? eax : final_result_reg;
214 // Save ecx if it isn't the return register and therefore volatile, or if it
215 // is the return register, then save the temp register we use in its stead for
217 Register save_reg = final_result_reg.is(ecx) ? eax : ecx;
221 bool stash_exponent_copy = !input_reg.is(esp);
222 __ mov(scratch1, mantissa_operand);
223 if (CpuFeatures::IsSupported(SSE3)) {
224 CpuFeatureScope scope(masm, SSE3);
225 // Load x87 register with heap number.
226 __ fld_d(mantissa_operand);
228 __ mov(ecx, exponent_operand);
229 if (stash_exponent_copy) __ push(ecx);
231 __ and_(ecx, HeapNumber::kExponentMask);
232 __ shr(ecx, HeapNumber::kExponentShift);
233 __ lea(result_reg, MemOperand(ecx, -HeapNumber::kExponentBias));
234 __ cmp(result_reg, Immediate(HeapNumber::kMantissaBits));
235 __ j(below, &process_64_bits);
237 // Result is entirely in lower 32-bits of mantissa
238 int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize;
239 if (CpuFeatures::IsSupported(SSE3)) {
242 __ sub(ecx, Immediate(delta));
243 __ xor_(result_reg, result_reg);
244 __ cmp(ecx, Immediate(31));
247 __ jmp(&check_negative);
249 __ bind(&process_64_bits);
250 if (CpuFeatures::IsSupported(SSE3)) {
251 CpuFeatureScope scope(masm, SSE3);
252 if (stash_exponent_copy) {
253 // Already a copy of the exponent on the stack, overwrite it.
254 STATIC_ASSERT(kDoubleSize == 2 * kPointerSize);
255 __ sub(esp, Immediate(kDoubleSize / 2));
257 // Reserve space for 64 bit answer.
258 __ sub(esp, Immediate(kDoubleSize)); // Nolint.
260 // Do conversion, which cannot fail because we checked the exponent.
261 __ fisttp_d(Operand(esp, 0));
262 __ mov(result_reg, Operand(esp, 0)); // Load low word of answer as result
263 __ add(esp, Immediate(kDoubleSize));
264 __ jmp(&done_no_stash);
266 // Result must be extracted from shifted 32-bit mantissa
267 __ sub(ecx, Immediate(delta));
269 if (stash_exponent_copy) {
270 __ mov(result_reg, MemOperand(esp, 0));
272 __ mov(result_reg, exponent_operand);
275 Immediate(static_cast<uint32_t>(Double::kSignificandMask >> 32)));
277 Immediate(static_cast<uint32_t>(Double::kHiddenBit >> 32)));
278 __ shrd(result_reg, scratch1);
279 __ shr_cl(result_reg);
280 __ test(ecx, Immediate(32));
281 __ cmov(not_equal, scratch1, result_reg);
284 // If the double was negative, negate the integer result.
285 __ bind(&check_negative);
286 __ mov(result_reg, scratch1);
288 if (stash_exponent_copy) {
289 __ cmp(MemOperand(esp, 0), Immediate(0));
291 __ cmp(exponent_operand, Immediate(0));
293 __ cmov(greater, result_reg, scratch1);
297 if (stash_exponent_copy) {
298 __ add(esp, Immediate(kDoubleSize / 2));
300 __ bind(&done_no_stash);
301 if (!final_result_reg.is(result_reg)) {
302 DCHECK(final_result_reg.is(ecx));
303 __ mov(final_result_reg, result_reg);
311 void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm,
313 Label load_smi, done;
315 __ JumpIfSmi(number, &load_smi, Label::kNear);
316 __ fld_d(FieldOperand(number, HeapNumber::kValueOffset));
317 __ jmp(&done, Label::kNear);
322 __ fild_s(Operand(esp, 0));
329 void FloatingPointHelper::LoadSSE2Operands(MacroAssembler* masm,
330 Label* not_numbers) {
331 Label load_smi_edx, load_eax, load_smi_eax, load_float_eax, done;
332 // Load operand in edx into xmm0, or branch to not_numbers.
333 __ JumpIfSmi(edx, &load_smi_edx, Label::kNear);
334 Factory* factory = masm->isolate()->factory();
335 __ cmp(FieldOperand(edx, HeapObject::kMapOffset), factory->heap_number_map());
336 __ j(not_equal, not_numbers); // Argument in edx is not a number.
337 __ movsd(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
339 // Load operand in eax into xmm1, or branch to not_numbers.
340 __ JumpIfSmi(eax, &load_smi_eax, Label::kNear);
341 __ cmp(FieldOperand(eax, HeapObject::kMapOffset), factory->heap_number_map());
342 __ j(equal, &load_float_eax, Label::kNear);
343 __ jmp(not_numbers); // Argument in eax is not a number.
344 __ bind(&load_smi_edx);
345 __ SmiUntag(edx); // Untag smi before converting to float.
346 __ Cvtsi2sd(xmm0, edx);
347 __ SmiTag(edx); // Retag smi for heap number overwriting test.
349 __ bind(&load_smi_eax);
350 __ SmiUntag(eax); // Untag smi before converting to float.
351 __ Cvtsi2sd(xmm1, eax);
352 __ SmiTag(eax); // Retag smi for heap number overwriting test.
353 __ jmp(&done, Label::kNear);
354 __ bind(&load_float_eax);
355 __ movsd(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
360 void FloatingPointHelper::CheckFloatOperands(MacroAssembler* masm,
363 Label test_other, done;
364 // Test if both operands are floats or smi -> scratch=k_is_float;
365 // Otherwise scratch = k_not_float.
366 __ JumpIfSmi(edx, &test_other, Label::kNear);
367 __ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset));
368 Factory* factory = masm->isolate()->factory();
369 __ cmp(scratch, factory->heap_number_map());
370 __ j(not_equal, non_float); // argument in edx is not a number -> NaN
372 __ bind(&test_other);
373 __ JumpIfSmi(eax, &done, Label::kNear);
374 __ mov(scratch, FieldOperand(eax, HeapObject::kMapOffset));
375 __ cmp(scratch, factory->heap_number_map());
376 __ j(not_equal, non_float); // argument in eax is not a number -> NaN
378 // Fall-through: Both operands are numbers.
383 void MathPowStub::Generate(MacroAssembler* masm) {
384 Factory* factory = isolate()->factory();
385 const Register exponent = MathPowTaggedDescriptor::exponent();
386 DCHECK(exponent.is(eax));
387 const Register base = edx;
388 const Register scratch = ecx;
389 const XMMRegister double_result = xmm3;
390 const XMMRegister double_base = xmm2;
391 const XMMRegister double_exponent = xmm1;
392 const XMMRegister double_scratch = xmm4;
394 Label call_runtime, done, exponent_not_smi, int_exponent;
396 // Save 1 in double_result - we need this several times later on.
397 __ mov(scratch, Immediate(1));
398 __ Cvtsi2sd(double_result, scratch);
400 if (exponent_type() == ON_STACK) {
401 Label base_is_smi, unpack_exponent;
402 // The exponent and base are supplied as arguments on the stack.
403 // This can only happen if the stub is called from non-optimized code.
404 // Load input parameters from stack.
405 __ mov(base, Operand(esp, 2 * kPointerSize));
406 __ mov(exponent, Operand(esp, 1 * kPointerSize));
408 __ JumpIfSmi(base, &base_is_smi, Label::kNear);
409 __ cmp(FieldOperand(base, HeapObject::kMapOffset),
410 factory->heap_number_map());
411 __ j(not_equal, &call_runtime);
413 __ movsd(double_base, FieldOperand(base, HeapNumber::kValueOffset));
414 __ jmp(&unpack_exponent, Label::kNear);
416 __ bind(&base_is_smi);
418 __ Cvtsi2sd(double_base, base);
420 __ bind(&unpack_exponent);
421 __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
422 __ SmiUntag(exponent);
423 __ jmp(&int_exponent);
425 __ bind(&exponent_not_smi);
426 __ cmp(FieldOperand(exponent, HeapObject::kMapOffset),
427 factory->heap_number_map());
428 __ j(not_equal, &call_runtime);
429 __ movsd(double_exponent,
430 FieldOperand(exponent, HeapNumber::kValueOffset));
431 } else if (exponent_type() == TAGGED) {
432 __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
433 __ SmiUntag(exponent);
434 __ jmp(&int_exponent);
436 __ bind(&exponent_not_smi);
437 __ movsd(double_exponent,
438 FieldOperand(exponent, HeapNumber::kValueOffset));
441 if (exponent_type() != INTEGER) {
442 Label fast_power, try_arithmetic_simplification;
443 __ DoubleToI(exponent, double_exponent, double_scratch,
444 TREAT_MINUS_ZERO_AS_ZERO, &try_arithmetic_simplification,
445 &try_arithmetic_simplification,
446 &try_arithmetic_simplification);
447 __ jmp(&int_exponent);
449 __ bind(&try_arithmetic_simplification);
450 // Skip to runtime if possibly NaN (indicated by the indefinite integer).
451 __ cvttsd2si(exponent, Operand(double_exponent));
452 __ cmp(exponent, Immediate(0x1));
453 __ j(overflow, &call_runtime);
455 if (exponent_type() == ON_STACK) {
456 // Detect square root case. Crankshaft detects constant +/-0.5 at
457 // compile time and uses DoMathPowHalf instead. We then skip this check
458 // for non-constant cases of +/-0.5 as these hardly occur.
459 Label continue_sqrt, continue_rsqrt, not_plus_half;
461 // Load double_scratch with 0.5.
462 __ mov(scratch, Immediate(0x3F000000u));
463 __ movd(double_scratch, scratch);
464 __ cvtss2sd(double_scratch, double_scratch);
465 // Already ruled out NaNs for exponent.
466 __ ucomisd(double_scratch, double_exponent);
467 __ j(not_equal, ¬_plus_half, Label::kNear);
469 // Calculates square root of base. Check for the special case of
470 // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
471 // According to IEEE-754, single-precision -Infinity has the highest
472 // 9 bits set and the lowest 23 bits cleared.
473 __ mov(scratch, 0xFF800000u);
474 __ movd(double_scratch, scratch);
475 __ cvtss2sd(double_scratch, double_scratch);
476 __ ucomisd(double_base, double_scratch);
477 // Comparing -Infinity with NaN results in "unordered", which sets the
478 // zero flag as if both were equal. However, it also sets the carry flag.
479 __ j(not_equal, &continue_sqrt, Label::kNear);
480 __ j(carry, &continue_sqrt, Label::kNear);
482 // Set result to Infinity in the special case.
483 __ xorps(double_result, double_result);
484 __ subsd(double_result, double_scratch);
487 __ bind(&continue_sqrt);
488 // sqrtsd returns -0 when input is -0. ECMA spec requires +0.
489 __ xorps(double_scratch, double_scratch);
490 __ addsd(double_scratch, double_base); // Convert -0 to +0.
491 __ sqrtsd(double_result, double_scratch);
495 __ bind(¬_plus_half);
496 // Load double_exponent with -0.5 by substracting 1.
497 __ subsd(double_scratch, double_result);
498 // Already ruled out NaNs for exponent.
499 __ ucomisd(double_scratch, double_exponent);
500 __ j(not_equal, &fast_power, Label::kNear);
502 // Calculates reciprocal of square root of base. Check for the special
503 // case of Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
504 // According to IEEE-754, single-precision -Infinity has the highest
505 // 9 bits set and the lowest 23 bits cleared.
506 __ mov(scratch, 0xFF800000u);
507 __ movd(double_scratch, scratch);
508 __ cvtss2sd(double_scratch, double_scratch);
509 __ ucomisd(double_base, double_scratch);
510 // Comparing -Infinity with NaN results in "unordered", which sets the
511 // zero flag as if both were equal. However, it also sets the carry flag.
512 __ j(not_equal, &continue_rsqrt, Label::kNear);
513 __ j(carry, &continue_rsqrt, Label::kNear);
515 // Set result to 0 in the special case.
516 __ xorps(double_result, double_result);
519 __ bind(&continue_rsqrt);
520 // sqrtsd returns -0 when input is -0. ECMA spec requires +0.
521 __ xorps(double_exponent, double_exponent);
522 __ addsd(double_exponent, double_base); // Convert -0 to +0.
523 __ sqrtsd(double_exponent, double_exponent);
524 __ divsd(double_result, double_exponent);
528 // Using FPU instructions to calculate power.
529 Label fast_power_failed;
530 __ bind(&fast_power);
531 __ fnclex(); // Clear flags to catch exceptions later.
532 // Transfer (B)ase and (E)xponent onto the FPU register stack.
533 __ sub(esp, Immediate(kDoubleSize));
534 __ movsd(Operand(esp, 0), double_exponent);
535 __ fld_d(Operand(esp, 0)); // E
536 __ movsd(Operand(esp, 0), double_base);
537 __ fld_d(Operand(esp, 0)); // B, E
539 // Exponent is in st(1) and base is in st(0)
540 // B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B)
541 // FYL2X calculates st(1) * log2(st(0))
544 __ frndint(); // rnd(X), X
545 __ fsub(1); // rnd(X), X-rnd(X)
546 __ fxch(1); // X - rnd(X), rnd(X)
547 // F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1
548 __ f2xm1(); // 2^(X-rnd(X)) - 1, rnd(X)
549 __ fld1(); // 1, 2^(X-rnd(X)) - 1, rnd(X)
550 __ faddp(1); // 2^(X-rnd(X)), rnd(X)
551 // FSCALE calculates st(0) * 2^st(1)
552 __ fscale(); // 2^X, rnd(X)
554 // Bail out to runtime in case of exceptions in the status word.
556 __ test_b(eax, 0x5F); // We check for all but precision exception.
557 __ j(not_zero, &fast_power_failed, Label::kNear);
558 __ fstp_d(Operand(esp, 0));
559 __ movsd(double_result, Operand(esp, 0));
560 __ add(esp, Immediate(kDoubleSize));
563 __ bind(&fast_power_failed);
565 __ add(esp, Immediate(kDoubleSize));
566 __ jmp(&call_runtime);
569 // Calculate power with integer exponent.
570 __ bind(&int_exponent);
571 const XMMRegister double_scratch2 = double_exponent;
572 __ mov(scratch, exponent); // Back up exponent.
573 __ movsd(double_scratch, double_base); // Back up base.
574 __ movsd(double_scratch2, double_result); // Load double_exponent with 1.
576 // Get absolute value of exponent.
577 Label no_neg, while_true, while_false;
578 __ test(scratch, scratch);
579 __ j(positive, &no_neg, Label::kNear);
583 __ j(zero, &while_false, Label::kNear);
585 // Above condition means CF==0 && ZF==0. This means that the
586 // bit that has been shifted out is 0 and the result is not 0.
587 __ j(above, &while_true, Label::kNear);
588 __ movsd(double_result, double_scratch);
589 __ j(zero, &while_false, Label::kNear);
591 __ bind(&while_true);
593 __ mulsd(double_scratch, double_scratch);
594 __ j(above, &while_true, Label::kNear);
595 __ mulsd(double_result, double_scratch);
596 __ j(not_zero, &while_true);
598 __ bind(&while_false);
599 // scratch has the original value of the exponent - if the exponent is
600 // negative, return 1/result.
601 __ test(exponent, exponent);
602 __ j(positive, &done);
603 __ divsd(double_scratch2, double_result);
604 __ movsd(double_result, double_scratch2);
605 // Test whether result is zero. Bail out to check for subnormal result.
606 // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
607 __ xorps(double_scratch2, double_scratch2);
608 __ ucomisd(double_scratch2, double_result); // Result cannot be NaN.
609 // double_exponent aliased as double_scratch2 has already been overwritten
610 // and may not have contained the exponent value in the first place when the
611 // exponent is a smi. We reset it with exponent value before bailing out.
612 __ j(not_equal, &done);
613 __ Cvtsi2sd(double_exponent, exponent);
615 // Returning or bailing out.
616 Counters* counters = isolate()->counters();
617 if (exponent_type() == ON_STACK) {
618 // The arguments are still on the stack.
619 __ bind(&call_runtime);
620 __ TailCallRuntime(Runtime::kMathPowRT, 2, 1);
622 // The stub is called from non-optimized code, which expects the result
623 // as heap number in exponent.
625 __ AllocateHeapNumber(eax, scratch, base, &call_runtime);
626 __ movsd(FieldOperand(eax, HeapNumber::kValueOffset), double_result);
627 __ IncrementCounter(counters->math_pow(), 1);
628 __ ret(2 * kPointerSize);
630 __ bind(&call_runtime);
632 AllowExternalCallThatCantCauseGC scope(masm);
633 __ PrepareCallCFunction(4, scratch);
634 __ movsd(Operand(esp, 0 * kDoubleSize), double_base);
635 __ movsd(Operand(esp, 1 * kDoubleSize), double_exponent);
637 ExternalReference::power_double_double_function(isolate()), 4);
639 // Return value is in st(0) on ia32.
640 // Store it into the (fixed) result register.
641 __ sub(esp, Immediate(kDoubleSize));
642 __ fstp_d(Operand(esp, 0));
643 __ movsd(double_result, Operand(esp, 0));
644 __ add(esp, Immediate(kDoubleSize));
647 __ IncrementCounter(counters->math_pow(), 1);
653 void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
655 Register receiver = LoadDescriptor::ReceiverRegister();
656 // With careful management, we won't have to save slot and vector on
657 // the stack. Simply handle the possibly missing case first.
658 // TODO(mvstanton): this code can be more efficient.
659 __ cmp(FieldOperand(receiver, JSFunction::kPrototypeOrInitialMapOffset),
660 Immediate(isolate()->factory()->the_hole_value()));
662 __ TryGetFunctionPrototype(receiver, eax, ebx, &miss);
666 PropertyAccessCompiler::TailCallBuiltin(
667 masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
671 void LoadIndexedInterceptorStub::Generate(MacroAssembler* masm) {
672 // Return address is on the stack.
675 Register receiver = LoadDescriptor::ReceiverRegister();
676 Register key = LoadDescriptor::NameRegister();
677 Register scratch = eax;
678 DCHECK(!scratch.is(receiver) && !scratch.is(key));
680 // Check that the key is an array index, that is Uint32.
681 __ test(key, Immediate(kSmiTagMask | kSmiSignMask));
682 __ j(not_zero, &slow);
684 // Everything is fine, call runtime.
686 __ push(receiver); // receiver
688 __ push(scratch); // return address
690 // Perform tail call to the entry.
691 ExternalReference ref = ExternalReference(
692 IC_Utility(IC::kLoadElementWithInterceptor), masm->isolate());
693 __ TailCallExternalReference(ref, 2, 1);
696 PropertyAccessCompiler::TailCallBuiltin(
697 masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
701 void LoadIndexedStringStub::Generate(MacroAssembler* masm) {
702 // Return address is on the stack.
705 Register receiver = LoadDescriptor::ReceiverRegister();
706 Register index = LoadDescriptor::NameRegister();
707 Register scratch = edi;
708 DCHECK(!scratch.is(receiver) && !scratch.is(index));
709 Register result = eax;
710 DCHECK(!result.is(scratch));
711 DCHECK(!scratch.is(LoadWithVectorDescriptor::VectorRegister()) &&
712 result.is(LoadDescriptor::SlotRegister()));
714 // StringCharAtGenerator doesn't use the result register until it's passed
715 // the different miss possibilities. If it did, we would have a conflict
716 // when FLAG_vector_ics is true.
717 StringCharAtGenerator char_at_generator(receiver, index, scratch, result,
718 &miss, // When not a string.
719 &miss, // When not a number.
720 &miss, // When index out of range.
721 STRING_INDEX_IS_ARRAY_INDEX,
723 char_at_generator.GenerateFast(masm);
726 StubRuntimeCallHelper call_helper;
727 char_at_generator.GenerateSlow(masm, PART_OF_IC_HANDLER, call_helper);
730 PropertyAccessCompiler::TailCallBuiltin(
731 masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
735 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
736 CHECK(!has_new_target());
737 // The key is in edx and the parameter count is in eax.
738 DCHECK(edx.is(ArgumentsAccessReadDescriptor::index()));
739 DCHECK(eax.is(ArgumentsAccessReadDescriptor::parameter_count()));
741 // The displacement is used for skipping the frame pointer on the
742 // stack. It is the offset of the last parameter (if any) relative
743 // to the frame pointer.
744 static const int kDisplacement = 1 * kPointerSize;
746 // Check that the key is a smi.
748 __ JumpIfNotSmi(edx, &slow, Label::kNear);
750 // Check if the calling frame is an arguments adaptor frame.
752 __ mov(ebx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
753 __ mov(ecx, Operand(ebx, StandardFrameConstants::kContextOffset));
754 __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
755 __ j(equal, &adaptor, Label::kNear);
757 // Check index against formal parameters count limit passed in
758 // through register eax. Use unsigned comparison to get negative
761 __ j(above_equal, &slow, Label::kNear);
763 // Read the argument from the stack and return it.
764 STATIC_ASSERT(kSmiTagSize == 1);
765 STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these.
766 __ lea(ebx, Operand(ebp, eax, times_2, 0));
768 __ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
771 // Arguments adaptor case: Check index against actual arguments
772 // limit found in the arguments adaptor frame. Use unsigned
773 // comparison to get negative check for free.
775 __ mov(ecx, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset));
777 __ j(above_equal, &slow, Label::kNear);
779 // Read the argument from the stack and return it.
780 STATIC_ASSERT(kSmiTagSize == 1);
781 STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these.
782 __ lea(ebx, Operand(ebx, ecx, times_2, 0));
784 __ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
787 // Slow-case: Handle non-smi or out-of-bounds access to arguments
788 // by calling the runtime system.
790 __ pop(ebx); // Return address.
793 __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
797 void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
798 // esp[0] : return address
799 // esp[4] : number of parameters
800 // esp[8] : receiver displacement
801 // esp[12] : function
803 CHECK(!has_new_target());
805 // Check if the calling frame is an arguments adaptor frame.
807 __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
808 __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
809 __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
810 __ j(not_equal, &runtime, Label::kNear);
812 // Patch the arguments.length and the parameters pointer.
813 __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
814 __ mov(Operand(esp, 1 * kPointerSize), ecx);
815 __ lea(edx, Operand(edx, ecx, times_2,
816 StandardFrameConstants::kCallerSPOffset));
817 __ mov(Operand(esp, 2 * kPointerSize), edx);
820 __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
824 void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
825 // esp[0] : return address
826 // esp[4] : number of parameters (tagged)
827 // esp[8] : receiver displacement
828 // esp[12] : function
830 // ebx = parameter count (tagged)
831 __ mov(ebx, Operand(esp, 1 * kPointerSize));
833 CHECK(!has_new_target());
835 // Check if the calling frame is an arguments adaptor frame.
836 // TODO(rossberg): Factor out some of the bits that are shared with the other
837 // Generate* functions.
839 Label adaptor_frame, try_allocate;
840 __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
841 __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
842 __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
843 __ j(equal, &adaptor_frame, Label::kNear);
845 // No adaptor, parameter count = argument count.
847 __ jmp(&try_allocate, Label::kNear);
849 // We have an adaptor frame. Patch the parameters pointer.
850 __ bind(&adaptor_frame);
851 __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
852 __ lea(edx, Operand(edx, ecx, times_2,
853 StandardFrameConstants::kCallerSPOffset));
854 __ mov(Operand(esp, 2 * kPointerSize), edx);
856 // ebx = parameter count (tagged)
857 // ecx = argument count (smi-tagged)
858 // esp[4] = parameter count (tagged)
859 // esp[8] = address of receiver argument
860 // Compute the mapped parameter count = min(ebx, ecx) in ebx.
862 __ j(less_equal, &try_allocate, Label::kNear);
865 __ bind(&try_allocate);
867 // Save mapped parameter count.
870 // Compute the sizes of backing store, parameter map, and arguments object.
871 // 1. Parameter map, has 2 extra words containing context and backing store.
872 const int kParameterMapHeaderSize =
873 FixedArray::kHeaderSize + 2 * kPointerSize;
874 Label no_parameter_map;
876 __ j(zero, &no_parameter_map, Label::kNear);
877 __ lea(ebx, Operand(ebx, times_2, kParameterMapHeaderSize));
878 __ bind(&no_parameter_map);
881 __ lea(ebx, Operand(ebx, ecx, times_2, FixedArray::kHeaderSize));
883 // 3. Arguments object.
884 __ add(ebx, Immediate(Heap::kSloppyArgumentsObjectSize));
886 // Do the allocation of all three objects in one go.
887 __ Allocate(ebx, eax, edx, edi, &runtime, TAG_OBJECT);
889 // eax = address of new object(s) (tagged)
890 // ecx = argument count (smi-tagged)
891 // esp[0] = mapped parameter count (tagged)
892 // esp[8] = parameter count (tagged)
893 // esp[12] = address of receiver argument
894 // Get the arguments map from the current native context into edi.
895 Label has_mapped_parameters, instantiate;
896 __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
897 __ mov(edi, FieldOperand(edi, GlobalObject::kNativeContextOffset));
898 __ mov(ebx, Operand(esp, 0 * kPointerSize));
900 __ j(not_zero, &has_mapped_parameters, Label::kNear);
903 Operand(edi, Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX)));
904 __ jmp(&instantiate, Label::kNear);
906 __ bind(&has_mapped_parameters);
909 Operand(edi, Context::SlotOffset(Context::ALIASED_ARGUMENTS_MAP_INDEX)));
910 __ bind(&instantiate);
912 // eax = address of new object (tagged)
913 // ebx = mapped parameter count (tagged)
914 // ecx = argument count (smi-tagged)
915 // edi = address of arguments map (tagged)
916 // esp[0] = mapped parameter count (tagged)
917 // esp[8] = parameter count (tagged)
918 // esp[12] = address of receiver argument
919 // Copy the JS object part.
920 __ mov(FieldOperand(eax, JSObject::kMapOffset), edi);
921 __ mov(FieldOperand(eax, JSObject::kPropertiesOffset),
922 masm->isolate()->factory()->empty_fixed_array());
923 __ mov(FieldOperand(eax, JSObject::kElementsOffset),
924 masm->isolate()->factory()->empty_fixed_array());
926 // Set up the callee in-object property.
927 STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
928 __ mov(edx, Operand(esp, 4 * kPointerSize));
929 __ AssertNotSmi(edx);
930 __ mov(FieldOperand(eax, JSObject::kHeaderSize +
931 Heap::kArgumentsCalleeIndex * kPointerSize),
934 // Use the length (smi tagged) and set that as an in-object property too.
936 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
937 __ mov(FieldOperand(eax, JSObject::kHeaderSize +
938 Heap::kArgumentsLengthIndex * kPointerSize),
941 // Set up the elements pointer in the allocated arguments object.
942 // If we allocated a parameter map, edi will point there, otherwise to the
944 __ lea(edi, Operand(eax, Heap::kSloppyArgumentsObjectSize));
945 __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi);
947 // eax = address of new object (tagged)
948 // ebx = mapped parameter count (tagged)
949 // ecx = argument count (tagged)
950 // edi = address of parameter map or backing store (tagged)
951 // esp[0] = mapped parameter count (tagged)
952 // esp[8] = parameter count (tagged)
953 // esp[12] = address of receiver argument
957 // Initialize parameter map. If there are no mapped arguments, we're done.
958 Label skip_parameter_map;
960 __ j(zero, &skip_parameter_map);
962 __ mov(FieldOperand(edi, FixedArray::kMapOffset),
963 Immediate(isolate()->factory()->sloppy_arguments_elements_map()));
964 __ lea(eax, Operand(ebx, reinterpret_cast<intptr_t>(Smi::FromInt(2))));
965 __ mov(FieldOperand(edi, FixedArray::kLengthOffset), eax);
966 __ mov(FieldOperand(edi, FixedArray::kHeaderSize + 0 * kPointerSize), esi);
967 __ lea(eax, Operand(edi, ebx, times_2, kParameterMapHeaderSize));
968 __ mov(FieldOperand(edi, FixedArray::kHeaderSize + 1 * kPointerSize), eax);
970 // Copy the parameter slots and the holes in the arguments.
971 // We need to fill in mapped_parameter_count slots. They index the context,
972 // where parameters are stored in reverse order, at
973 // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
974 // The mapped parameter thus need to get indices
975 // MIN_CONTEXT_SLOTS+parameter_count-1 ..
976 // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
977 // We loop from right to left.
978 Label parameters_loop, parameters_test;
980 __ mov(eax, Operand(esp, 2 * kPointerSize));
981 __ mov(ebx, Immediate(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
982 __ add(ebx, Operand(esp, 4 * kPointerSize));
984 __ mov(ecx, isolate()->factory()->the_hole_value());
986 __ lea(edi, Operand(edi, eax, times_2, kParameterMapHeaderSize));
987 // eax = loop variable (tagged)
988 // ebx = mapping index (tagged)
989 // ecx = the hole value
990 // edx = address of parameter map (tagged)
991 // edi = address of backing store (tagged)
992 // esp[0] = argument count (tagged)
993 // esp[4] = address of new object (tagged)
994 // esp[8] = mapped parameter count (tagged)
995 // esp[16] = parameter count (tagged)
996 // esp[20] = address of receiver argument
997 __ jmp(¶meters_test, Label::kNear);
999 __ bind(¶meters_loop);
1000 __ sub(eax, Immediate(Smi::FromInt(1)));
1001 __ mov(FieldOperand(edx, eax, times_2, kParameterMapHeaderSize), ebx);
1002 __ mov(FieldOperand(edi, eax, times_2, FixedArray::kHeaderSize), ecx);
1003 __ add(ebx, Immediate(Smi::FromInt(1)));
1004 __ bind(¶meters_test);
1006 __ j(not_zero, ¶meters_loop, Label::kNear);
1009 __ bind(&skip_parameter_map);
1011 // ecx = argument count (tagged)
1012 // edi = address of backing store (tagged)
1013 // esp[0] = address of new object (tagged)
1014 // esp[4] = mapped parameter count (tagged)
1015 // esp[12] = parameter count (tagged)
1016 // esp[16] = address of receiver argument
1017 // Copy arguments header and remaining slots (if there are any).
1018 __ mov(FieldOperand(edi, FixedArray::kMapOffset),
1019 Immediate(isolate()->factory()->fixed_array_map()));
1020 __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx);
1022 Label arguments_loop, arguments_test;
1023 __ mov(ebx, Operand(esp, 1 * kPointerSize));
1024 __ mov(edx, Operand(esp, 4 * kPointerSize));
1025 __ sub(edx, ebx); // Is there a smarter way to do negative scaling?
1027 __ jmp(&arguments_test, Label::kNear);
1029 __ bind(&arguments_loop);
1030 __ sub(edx, Immediate(kPointerSize));
1031 __ mov(eax, Operand(edx, 0));
1032 __ mov(FieldOperand(edi, ebx, times_2, FixedArray::kHeaderSize), eax);
1033 __ add(ebx, Immediate(Smi::FromInt(1)));
1035 __ bind(&arguments_test);
1037 __ j(less, &arguments_loop, Label::kNear);
1040 __ pop(eax); // Address of arguments object.
1041 __ pop(ebx); // Parameter count.
1043 // Return and remove the on-stack parameters.
1044 __ ret(3 * kPointerSize);
1046 // Do the runtime call to allocate the arguments object.
1048 __ pop(eax); // Remove saved parameter count.
1049 __ mov(Operand(esp, 1 * kPointerSize), ecx); // Patch argument count.
1050 __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
1054 void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
1055 // esp[0] : return address
1056 // esp[4] : number of parameters
1057 // esp[8] : receiver displacement
1058 // esp[12] : function
1060 // Check if the calling frame is an arguments adaptor frame.
1061 Label adaptor_frame, try_allocate, runtime;
1062 __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
1063 __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
1064 __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1065 __ j(equal, &adaptor_frame, Label::kNear);
1067 // Get the length from the frame.
1068 __ mov(ecx, Operand(esp, 1 * kPointerSize));
1069 __ jmp(&try_allocate, Label::kNear);
1071 // Patch the arguments.length and the parameters pointer.
1072 __ bind(&adaptor_frame);
1073 __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
1075 if (has_new_target()) {
1076 // If the constructor was [[Call]]ed, the call will not push a new.target
1077 // onto the stack. In that case the arguments array we construct is bogus,
1078 // bu we do not care as the constructor throws immediately.
1079 __ cmp(ecx, Immediate(Smi::FromInt(0)));
1080 Label skip_decrement;
1081 __ j(equal, &skip_decrement);
1082 // Subtract 1 from smi-tagged arguments count.
1083 __ sub(ecx, Immediate(2));
1084 __ bind(&skip_decrement);
1087 __ lea(edx, Operand(edx, ecx, times_2,
1088 StandardFrameConstants::kCallerSPOffset));
1089 __ mov(Operand(esp, 1 * kPointerSize), ecx);
1090 __ mov(Operand(esp, 2 * kPointerSize), edx);
1092 // Try the new space allocation. Start out with computing the size of
1093 // the arguments object and the elements array.
1094 Label add_arguments_object;
1095 __ bind(&try_allocate);
1097 __ j(zero, &add_arguments_object, Label::kNear);
1098 __ lea(ecx, Operand(ecx, times_2, FixedArray::kHeaderSize));
1099 __ bind(&add_arguments_object);
1100 __ add(ecx, Immediate(Heap::kStrictArgumentsObjectSize));
1102 // Do the allocation of both objects in one go.
1103 __ Allocate(ecx, eax, edx, ebx, &runtime, TAG_OBJECT);
1105 // Get the arguments map from the current native context.
1106 __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
1107 __ mov(edi, FieldOperand(edi, GlobalObject::kNativeContextOffset));
1108 const int offset = Context::SlotOffset(Context::STRICT_ARGUMENTS_MAP_INDEX);
1109 __ mov(edi, Operand(edi, offset));
1111 __ mov(FieldOperand(eax, JSObject::kMapOffset), edi);
1112 __ mov(FieldOperand(eax, JSObject::kPropertiesOffset),
1113 masm->isolate()->factory()->empty_fixed_array());
1114 __ mov(FieldOperand(eax, JSObject::kElementsOffset),
1115 masm->isolate()->factory()->empty_fixed_array());
1117 // Get the length (smi tagged) and set that as an in-object property too.
1118 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
1119 __ mov(ecx, Operand(esp, 1 * kPointerSize));
1121 __ mov(FieldOperand(eax, JSObject::kHeaderSize +
1122 Heap::kArgumentsLengthIndex * kPointerSize),
1125 // If there are no actual arguments, we're done.
1128 __ j(zero, &done, Label::kNear);
1130 // Get the parameters pointer from the stack.
1131 __ mov(edx, Operand(esp, 2 * kPointerSize));
1133 // Set up the elements pointer in the allocated arguments object and
1134 // initialize the header in the elements fixed array.
1135 __ lea(edi, Operand(eax, Heap::kStrictArgumentsObjectSize));
1136 __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi);
1137 __ mov(FieldOperand(edi, FixedArray::kMapOffset),
1138 Immediate(isolate()->factory()->fixed_array_map()));
1140 __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx);
1141 // Untag the length for the loop below.
1144 // Copy the fixed array slots.
1147 __ mov(ebx, Operand(edx, -1 * kPointerSize)); // Skip receiver.
1148 __ mov(FieldOperand(edi, FixedArray::kHeaderSize), ebx);
1149 __ add(edi, Immediate(kPointerSize));
1150 __ sub(edx, Immediate(kPointerSize));
1152 __ j(not_zero, &loop);
1154 // Return and remove the on-stack parameters.
1156 __ ret(3 * kPointerSize);
1158 // Do the runtime call to allocate the arguments object.
1160 __ TailCallRuntime(Runtime::kNewStrictArguments, 3, 1);
1164 void RestParamAccessStub::GenerateNew(MacroAssembler* masm) {
1165 // esp[0] : return address
1166 // esp[4] : language mode
1167 // esp[8] : index of rest parameter
1168 // esp[12] : number of parameters
1169 // esp[16] : receiver displacement
1171 // Check if the calling frame is an arguments adaptor frame.
1173 __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
1174 __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
1175 __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1176 __ j(not_equal, &runtime);
1178 // Patch the arguments.length and the parameters pointer.
1179 __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
1180 __ mov(Operand(esp, 3 * kPointerSize), ecx);
1181 __ lea(edx, Operand(edx, ecx, times_2,
1182 StandardFrameConstants::kCallerSPOffset));
1183 __ mov(Operand(esp, 4 * kPointerSize), edx);
1186 __ TailCallRuntime(Runtime::kNewRestParam, 4, 1);
1190 void RegExpExecStub::Generate(MacroAssembler* masm) {
1191 // Just jump directly to runtime if native RegExp is not selected at compile
1192 // time or if regexp entry in generated code is turned off runtime switch or
1194 #ifdef V8_INTERPRETED_REGEXP
1195 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
1196 #else // V8_INTERPRETED_REGEXP
1198 // Stack frame on entry.
1199 // esp[0]: return address
1200 // esp[4]: last_match_info (expected JSArray)
1201 // esp[8]: previous index
1202 // esp[12]: subject string
1203 // esp[16]: JSRegExp object
1205 static const int kLastMatchInfoOffset = 1 * kPointerSize;
1206 static const int kPreviousIndexOffset = 2 * kPointerSize;
1207 static const int kSubjectOffset = 3 * kPointerSize;
1208 static const int kJSRegExpOffset = 4 * kPointerSize;
1211 Factory* factory = isolate()->factory();
1213 // Ensure that a RegExp stack is allocated.
1214 ExternalReference address_of_regexp_stack_memory_address =
1215 ExternalReference::address_of_regexp_stack_memory_address(isolate());
1216 ExternalReference address_of_regexp_stack_memory_size =
1217 ExternalReference::address_of_regexp_stack_memory_size(isolate());
1218 __ mov(ebx, Operand::StaticVariable(address_of_regexp_stack_memory_size));
1220 __ j(zero, &runtime);
1222 // Check that the first argument is a JSRegExp object.
1223 __ mov(eax, Operand(esp, kJSRegExpOffset));
1224 STATIC_ASSERT(kSmiTag == 0);
1225 __ JumpIfSmi(eax, &runtime);
1226 __ CmpObjectType(eax, JS_REGEXP_TYPE, ecx);
1227 __ j(not_equal, &runtime);
1229 // Check that the RegExp has been compiled (data contains a fixed array).
1230 __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
1231 if (FLAG_debug_code) {
1232 __ test(ecx, Immediate(kSmiTagMask));
1233 __ Check(not_zero, kUnexpectedTypeForRegExpDataFixedArrayExpected);
1234 __ CmpObjectType(ecx, FIXED_ARRAY_TYPE, ebx);
1235 __ Check(equal, kUnexpectedTypeForRegExpDataFixedArrayExpected);
1238 // ecx: RegExp data (FixedArray)
1239 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
1240 __ mov(ebx, FieldOperand(ecx, JSRegExp::kDataTagOffset));
1241 __ cmp(ebx, Immediate(Smi::FromInt(JSRegExp::IRREGEXP)));
1242 __ j(not_equal, &runtime);
1244 // ecx: RegExp data (FixedArray)
1245 // Check that the number of captures fit in the static offsets vector buffer.
1246 __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
1247 // Check (number_of_captures + 1) * 2 <= offsets vector size
1248 // Or number_of_captures * 2 <= offsets vector size - 2
1249 // Multiplying by 2 comes for free since edx is smi-tagged.
1250 STATIC_ASSERT(kSmiTag == 0);
1251 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
1252 STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
1253 __ cmp(edx, Isolate::kJSRegexpStaticOffsetsVectorSize - 2);
1254 __ j(above, &runtime);
1256 // Reset offset for possibly sliced string.
1257 __ Move(edi, Immediate(0));
1258 __ mov(eax, Operand(esp, kSubjectOffset));
1259 __ JumpIfSmi(eax, &runtime);
1260 __ mov(edx, eax); // Make a copy of the original subject string.
1261 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
1262 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
1264 // eax: subject string
1265 // edx: subject string
1266 // ebx: subject string instance type
1267 // ecx: RegExp data (FixedArray)
1268 // Handle subject string according to its encoding and representation:
1269 // (1) Sequential two byte? If yes, go to (9).
1270 // (2) Sequential one byte? If yes, go to (6).
1271 // (3) Anything but sequential or cons? If yes, go to (7).
1272 // (4) Cons string. If the string is flat, replace subject with first string.
1273 // Otherwise bailout.
1274 // (5a) Is subject sequential two byte? If yes, go to (9).
1275 // (5b) Is subject external? If yes, go to (8).
1276 // (6) One byte sequential. Load regexp code for one byte.
1280 // Deferred code at the end of the stub:
1281 // (7) Not a long external string? If yes, go to (10).
1282 // (8) External string. Make it, offset-wise, look like a sequential string.
1283 // (8a) Is the external string one byte? If yes, go to (6).
1284 // (9) Two byte sequential. Load regexp code for one byte. Go to (E).
1285 // (10) Short external string or not a string? If yes, bail out to runtime.
1286 // (11) Sliced string. Replace subject with parent. Go to (5a).
1288 Label seq_one_byte_string /* 6 */, seq_two_byte_string /* 9 */,
1289 external_string /* 8 */, check_underlying /* 5a */,
1290 not_seq_nor_cons /* 7 */, check_code /* E */,
1291 not_long_external /* 10 */;
1293 // (1) Sequential two byte? If yes, go to (9).
1294 __ and_(ebx, kIsNotStringMask |
1295 kStringRepresentationMask |
1296 kStringEncodingMask |
1297 kShortExternalStringMask);
1298 STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
1299 __ j(zero, &seq_two_byte_string); // Go to (9).
1301 // (2) Sequential one byte? If yes, go to (6).
1302 // Any other sequential string must be one byte.
1303 __ and_(ebx, Immediate(kIsNotStringMask |
1304 kStringRepresentationMask |
1305 kShortExternalStringMask));
1306 __ j(zero, &seq_one_byte_string, Label::kNear); // Go to (6).
1308 // (3) Anything but sequential or cons? If yes, go to (7).
1309 // We check whether the subject string is a cons, since sequential strings
1310 // have already been covered.
1311 STATIC_ASSERT(kConsStringTag < kExternalStringTag);
1312 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
1313 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
1314 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
1315 __ cmp(ebx, Immediate(kExternalStringTag));
1316 __ j(greater_equal, ¬_seq_nor_cons); // Go to (7).
1318 // (4) Cons string. Check that it's flat.
1319 // Replace subject with first string and reload instance type.
1320 __ cmp(FieldOperand(eax, ConsString::kSecondOffset), factory->empty_string());
1321 __ j(not_equal, &runtime);
1322 __ mov(eax, FieldOperand(eax, ConsString::kFirstOffset));
1323 __ bind(&check_underlying);
1324 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
1325 __ mov(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
1327 // (5a) Is subject sequential two byte? If yes, go to (9).
1328 __ test_b(ebx, kStringRepresentationMask | kStringEncodingMask);
1329 STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0);
1330 __ j(zero, &seq_two_byte_string); // Go to (9).
1331 // (5b) Is subject external? If yes, go to (8).
1332 __ test_b(ebx, kStringRepresentationMask);
1333 // The underlying external string is never a short external string.
1334 STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength);
1335 STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength);
1336 __ j(not_zero, &external_string); // Go to (8).
1338 // eax: sequential subject string (or look-alike, external string)
1339 // edx: original subject string
1340 // ecx: RegExp data (FixedArray)
1341 // (6) One byte sequential. Load regexp code for one byte.
1342 __ bind(&seq_one_byte_string);
1343 // Load previous index and check range before edx is overwritten. We have
1344 // to use edx instead of eax here because it might have been only made to
1345 // look like a sequential string when it actually is an external string.
1346 __ mov(ebx, Operand(esp, kPreviousIndexOffset));
1347 __ JumpIfNotSmi(ebx, &runtime);
1348 __ cmp(ebx, FieldOperand(edx, String::kLengthOffset));
1349 __ j(above_equal, &runtime);
1350 __ mov(edx, FieldOperand(ecx, JSRegExp::kDataOneByteCodeOffset));
1351 __ Move(ecx, Immediate(1)); // Type is one byte.
1353 // (E) Carry on. String handling is done.
1354 __ bind(&check_code);
1355 // edx: irregexp code
1356 // Check that the irregexp code has been generated for the actual string
1357 // encoding. If it has, the field contains a code object otherwise it contains
1358 // a smi (code flushing support).
1359 __ JumpIfSmi(edx, &runtime);
1361 // eax: subject string
1362 // ebx: previous index (smi)
1364 // ecx: encoding of subject string (1 if one_byte, 0 if two_byte);
1365 // All checks done. Now push arguments for native regexp code.
1366 Counters* counters = isolate()->counters();
1367 __ IncrementCounter(counters->regexp_entry_native(), 1);
1369 // Isolates: note we add an additional parameter here (isolate pointer).
1370 static const int kRegExpExecuteArguments = 9;
1371 __ EnterApiExitFrame(kRegExpExecuteArguments);
1373 // Argument 9: Pass current isolate address.
1374 __ mov(Operand(esp, 8 * kPointerSize),
1375 Immediate(ExternalReference::isolate_address(isolate())));
1377 // Argument 8: Indicate that this is a direct call from JavaScript.
1378 __ mov(Operand(esp, 7 * kPointerSize), Immediate(1));
1380 // Argument 7: Start (high end) of backtracking stack memory area.
1381 __ mov(esi, Operand::StaticVariable(address_of_regexp_stack_memory_address));
1382 __ add(esi, Operand::StaticVariable(address_of_regexp_stack_memory_size));
1383 __ mov(Operand(esp, 6 * kPointerSize), esi);
1385 // Argument 6: Set the number of capture registers to zero to force global
1386 // regexps to behave as non-global. This does not affect non-global regexps.
1387 __ mov(Operand(esp, 5 * kPointerSize), Immediate(0));
1389 // Argument 5: static offsets vector buffer.
1390 __ mov(Operand(esp, 4 * kPointerSize),
1391 Immediate(ExternalReference::address_of_static_offsets_vector(
1394 // Argument 2: Previous index.
1396 __ mov(Operand(esp, 1 * kPointerSize), ebx);
1398 // Argument 1: Original subject string.
1399 // The original subject is in the previous stack frame. Therefore we have to
1400 // use ebp, which points exactly to one pointer size below the previous esp.
1401 // (Because creating a new stack frame pushes the previous ebp onto the stack
1402 // and thereby moves up esp by one kPointerSize.)
1403 __ mov(esi, Operand(ebp, kSubjectOffset + kPointerSize));
1404 __ mov(Operand(esp, 0 * kPointerSize), esi);
1406 // esi: original subject string
1407 // eax: underlying subject string
1408 // ebx: previous index
1409 // ecx: encoding of subject string (1 if one_byte 0 if two_byte);
1411 // Argument 4: End of string data
1412 // Argument 3: Start of string data
1413 // Prepare start and end index of the input.
1414 // Load the length from the original sliced string if that is the case.
1415 __ mov(esi, FieldOperand(esi, String::kLengthOffset));
1416 __ add(esi, edi); // Calculate input end wrt offset.
1418 __ add(ebx, edi); // Calculate input start wrt offset.
1420 // ebx: start index of the input string
1421 // esi: end index of the input string
1422 Label setup_two_byte, setup_rest;
1424 __ j(zero, &setup_two_byte, Label::kNear);
1426 __ lea(ecx, FieldOperand(eax, esi, times_1, SeqOneByteString::kHeaderSize));
1427 __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4.
1428 __ lea(ecx, FieldOperand(eax, ebx, times_1, SeqOneByteString::kHeaderSize));
1429 __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3.
1430 __ jmp(&setup_rest, Label::kNear);
1432 __ bind(&setup_two_byte);
1433 STATIC_ASSERT(kSmiTag == 0);
1434 STATIC_ASSERT(kSmiTagSize == 1); // esi is smi (powered by 2).
1435 __ lea(ecx, FieldOperand(eax, esi, times_1, SeqTwoByteString::kHeaderSize));
1436 __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4.
1437 __ lea(ecx, FieldOperand(eax, ebx, times_2, SeqTwoByteString::kHeaderSize));
1438 __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3.
1440 __ bind(&setup_rest);
1442 // Locate the code entry and call it.
1443 __ add(edx, Immediate(Code::kHeaderSize - kHeapObjectTag));
1446 // Drop arguments and come back to JS mode.
1447 __ LeaveApiExitFrame(true);
1449 // Check the result.
1452 // We expect exactly one result since we force the called regexp to behave
1454 __ j(equal, &success);
1456 __ cmp(eax, NativeRegExpMacroAssembler::FAILURE);
1457 __ j(equal, &failure);
1458 __ cmp(eax, NativeRegExpMacroAssembler::EXCEPTION);
1459 // If not exception it can only be retry. Handle that in the runtime system.
1460 __ j(not_equal, &runtime);
1461 // Result must now be exception. If there is no pending exception already a
1462 // stack overflow (on the backtrack stack) was detected in RegExp code but
1463 // haven't created the exception yet. Handle that in the runtime system.
1464 // TODO(592): Rerunning the RegExp to get the stack overflow exception.
1465 ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
1467 __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
1468 __ mov(eax, Operand::StaticVariable(pending_exception));
1470 __ j(equal, &runtime);
1472 // For exception, throw the exception again.
1473 __ TailCallRuntime(Runtime::kRegExpExecReThrow, 4, 1);
1476 // For failure to match, return null.
1477 __ mov(eax, factory->null_value());
1478 __ ret(4 * kPointerSize);
1480 // Load RegExp data.
1482 __ mov(eax, Operand(esp, kJSRegExpOffset));
1483 __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
1484 __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
1485 // Calculate number of capture registers (number_of_captures + 1) * 2.
1486 STATIC_ASSERT(kSmiTag == 0);
1487 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
1488 __ add(edx, Immediate(2)); // edx was a smi.
1490 // edx: Number of capture registers
1491 // Load last_match_info which is still known to be a fast case JSArray.
1492 // Check that the fourth object is a JSArray object.
1493 __ mov(eax, Operand(esp, kLastMatchInfoOffset));
1494 __ JumpIfSmi(eax, &runtime);
1495 __ CmpObjectType(eax, JS_ARRAY_TYPE, ebx);
1496 __ j(not_equal, &runtime);
1497 // Check that the JSArray is in fast case.
1498 __ mov(ebx, FieldOperand(eax, JSArray::kElementsOffset));
1499 __ mov(eax, FieldOperand(ebx, HeapObject::kMapOffset));
1500 __ cmp(eax, factory->fixed_array_map());
1501 __ j(not_equal, &runtime);
1502 // Check that the last match info has space for the capture registers and the
1503 // additional information.
1504 __ mov(eax, FieldOperand(ebx, FixedArray::kLengthOffset));
1506 __ sub(eax, Immediate(RegExpImpl::kLastMatchOverhead));
1508 __ j(greater, &runtime);
1510 // ebx: last_match_info backing store (FixedArray)
1511 // edx: number of capture registers
1512 // Store the capture count.
1513 __ SmiTag(edx); // Number of capture registers to smi.
1514 __ mov(FieldOperand(ebx, RegExpImpl::kLastCaptureCountOffset), edx);
1515 __ SmiUntag(edx); // Number of capture registers back from smi.
1516 // Store last subject and last input.
1517 __ mov(eax, Operand(esp, kSubjectOffset));
1519 __ mov(FieldOperand(ebx, RegExpImpl::kLastSubjectOffset), eax);
1520 __ RecordWriteField(ebx,
1521 RegExpImpl::kLastSubjectOffset,
1526 __ mov(FieldOperand(ebx, RegExpImpl::kLastInputOffset), eax);
1527 __ RecordWriteField(ebx,
1528 RegExpImpl::kLastInputOffset,
1533 // Get the static offsets vector filled by the native regexp code.
1534 ExternalReference address_of_static_offsets_vector =
1535 ExternalReference::address_of_static_offsets_vector(isolate());
1536 __ mov(ecx, Immediate(address_of_static_offsets_vector));
1538 // ebx: last_match_info backing store (FixedArray)
1539 // ecx: offsets vector
1540 // edx: number of capture registers
1541 Label next_capture, done;
1542 // Capture register counter starts from number of capture registers and
1543 // counts down until wraping after zero.
1544 __ bind(&next_capture);
1545 __ sub(edx, Immediate(1));
1546 __ j(negative, &done, Label::kNear);
1547 // Read the value from the static offsets vector buffer.
1548 __ mov(edi, Operand(ecx, edx, times_int_size, 0));
1550 // Store the smi value in the last match info.
1551 __ mov(FieldOperand(ebx,
1554 RegExpImpl::kFirstCaptureOffset),
1556 __ jmp(&next_capture);
1559 // Return last match info.
1560 __ mov(eax, Operand(esp, kLastMatchInfoOffset));
1561 __ ret(4 * kPointerSize);
1563 // Do the runtime call to execute the regexp.
1565 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
1567 // Deferred code for string handling.
1568 // (7) Not a long external string? If yes, go to (10).
1569 __ bind(¬_seq_nor_cons);
1570 // Compare flags are still set from (3).
1571 __ j(greater, ¬_long_external, Label::kNear); // Go to (10).
1573 // (8) External string. Short external strings have been ruled out.
1574 __ bind(&external_string);
1575 // Reload instance type.
1576 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
1577 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
1578 if (FLAG_debug_code) {
1579 // Assert that we do not have a cons or slice (indirect strings) here.
1580 // Sequential strings have already been ruled out.
1581 __ test_b(ebx, kIsIndirectStringMask);
1582 __ Assert(zero, kExternalStringExpectedButNotFound);
1584 __ mov(eax, FieldOperand(eax, ExternalString::kResourceDataOffset));
1585 // Move the pointer so that offset-wise, it looks like a sequential string.
1586 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
1587 __ sub(eax, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
1588 STATIC_ASSERT(kTwoByteStringTag == 0);
1589 // (8a) Is the external string one byte? If yes, go to (6).
1590 __ test_b(ebx, kStringEncodingMask);
1591 __ j(not_zero, &seq_one_byte_string); // Goto (6).
1593 // eax: sequential subject string (or look-alike, external string)
1594 // edx: original subject string
1595 // ecx: RegExp data (FixedArray)
1596 // (9) Two byte sequential. Load regexp code for one byte. Go to (E).
1597 __ bind(&seq_two_byte_string);
1598 // Load previous index and check range before edx is overwritten. We have
1599 // to use edx instead of eax here because it might have been only made to
1600 // look like a sequential string when it actually is an external string.
1601 __ mov(ebx, Operand(esp, kPreviousIndexOffset));
1602 __ JumpIfNotSmi(ebx, &runtime);
1603 __ cmp(ebx, FieldOperand(edx, String::kLengthOffset));
1604 __ j(above_equal, &runtime);
1605 __ mov(edx, FieldOperand(ecx, JSRegExp::kDataUC16CodeOffset));
1606 __ Move(ecx, Immediate(0)); // Type is two byte.
1607 __ jmp(&check_code); // Go to (E).
1609 // (10) Not a string or a short external string? If yes, bail out to runtime.
1610 __ bind(¬_long_external);
1611 // Catch non-string subject or short external string.
1612 STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
1613 __ test(ebx, Immediate(kIsNotStringMask | kShortExternalStringTag));
1614 __ j(not_zero, &runtime);
1616 // (11) Sliced string. Replace subject with parent. Go to (5a).
1617 // Load offset into edi and replace subject string with parent.
1618 __ mov(edi, FieldOperand(eax, SlicedString::kOffsetOffset));
1619 __ mov(eax, FieldOperand(eax, SlicedString::kParentOffset));
1620 __ jmp(&check_underlying); // Go to (5a).
1621 #endif // V8_INTERPRETED_REGEXP
1625 static int NegativeComparisonResult(Condition cc) {
1626 DCHECK(cc != equal);
1627 DCHECK((cc == less) || (cc == less_equal)
1628 || (cc == greater) || (cc == greater_equal));
1629 return (cc == greater || cc == greater_equal) ? LESS : GREATER;
1633 static void CheckInputType(MacroAssembler* masm, Register input,
1634 CompareICState::State expected, Label* fail) {
1636 if (expected == CompareICState::SMI) {
1637 __ JumpIfNotSmi(input, fail);
1638 } else if (expected == CompareICState::NUMBER) {
1639 __ JumpIfSmi(input, &ok);
1640 __ cmp(FieldOperand(input, HeapObject::kMapOffset),
1641 Immediate(masm->isolate()->factory()->heap_number_map()));
1642 __ j(not_equal, fail);
1644 // We could be strict about internalized/non-internalized here, but as long as
1645 // hydrogen doesn't care, the stub doesn't have to care either.
1650 static void BranchIfNotInternalizedString(MacroAssembler* masm,
1654 __ JumpIfSmi(object, label);
1655 __ mov(scratch, FieldOperand(object, HeapObject::kMapOffset));
1656 __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
1657 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
1658 __ test(scratch, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
1659 __ j(not_zero, label);
1663 void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
1664 Label runtime_call, check_unequal_objects;
1665 Condition cc = GetCondition();
1668 CheckInputType(masm, edx, left(), &miss);
1669 CheckInputType(masm, eax, right(), &miss);
1671 // Compare two smis.
1672 Label non_smi, smi_done;
1675 __ JumpIfNotSmi(ecx, &non_smi, Label::kNear);
1676 __ sub(edx, eax); // Return on the result of the subtraction.
1677 __ j(no_overflow, &smi_done, Label::kNear);
1678 __ not_(edx); // Correct sign in case of overflow. edx is never 0 here.
1684 // NOTICE! This code is only reached after a smi-fast-case check, so
1685 // it is certain that at least one operand isn't a smi.
1687 // Identical objects can be compared fast, but there are some tricky cases
1688 // for NaN and undefined.
1689 Label generic_heap_number_comparison;
1691 Label not_identical;
1693 __ j(not_equal, ¬_identical);
1696 // Check for undefined. undefined OP undefined is false even though
1697 // undefined == undefined.
1698 __ cmp(edx, isolate()->factory()->undefined_value());
1700 // In strong mode, this comparison must throw, so call the runtime.
1701 __ j(equal, &runtime_call, Label::kFar);
1703 Label check_for_nan;
1704 __ j(not_equal, &check_for_nan, Label::kNear);
1705 __ Move(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc))));
1707 __ bind(&check_for_nan);
1711 // Test for NaN. Compare heap numbers in a general way,
1712 // to hanlde NaNs correctly.
1713 __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
1714 Immediate(isolate()->factory()->heap_number_map()));
1715 __ j(equal, &generic_heap_number_comparison, Label::kNear);
1717 __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
1718 __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
1719 // Call runtime on identical JSObjects. Otherwise return equal.
1720 __ cmpb(ecx, static_cast<uint8_t>(FIRST_SPEC_OBJECT_TYPE));
1721 __ j(above_equal, &runtime_call, Label::kFar);
1722 // Call runtime on identical symbols since we need to throw a TypeError.
1723 __ cmpb(ecx, static_cast<uint8_t>(SYMBOL_TYPE));
1724 __ j(equal, &runtime_call, Label::kFar);
1726 // We have already tested for smis and heap numbers, so if both
1727 // arguments are not strings we must proceed to the slow case.
1728 __ test(ecx, Immediate(kIsNotStringMask));
1729 __ j(not_zero, &runtime_call, Label::kFar);
1732 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
1736 __ bind(¬_identical);
1739 // Strict equality can quickly decide whether objects are equal.
1740 // Non-strict object equality is slower, so it is handled later in the stub.
1741 if (cc == equal && strict()) {
1742 Label slow; // Fallthrough label.
1744 // If we're doing a strict equality comparison, we don't have to do
1745 // type conversion, so we generate code to do fast comparison for objects
1746 // and oddballs. Non-smi numbers and strings still go through the usual
1748 // If either is a Smi (we know that not both are), then they can only
1749 // be equal if the other is a HeapNumber. If so, use the slow case.
1750 STATIC_ASSERT(kSmiTag == 0);
1751 DCHECK_EQ(static_cast<Smi*>(0), Smi::FromInt(0));
1752 __ mov(ecx, Immediate(kSmiTagMask));
1755 __ j(not_zero, ¬_smis, Label::kNear);
1756 // One operand is a smi.
1758 // Check whether the non-smi is a heap number.
1759 STATIC_ASSERT(kSmiTagMask == 1);
1760 // ecx still holds eax & kSmiTag, which is either zero or one.
1761 __ sub(ecx, Immediate(0x01));
1764 __ and_(ebx, ecx); // ebx holds either 0 or eax ^ edx.
1766 // if eax was smi, ebx is now edx, else eax.
1768 // Check if the non-smi operand is a heap number.
1769 __ cmp(FieldOperand(ebx, HeapObject::kMapOffset),
1770 Immediate(isolate()->factory()->heap_number_map()));
1771 // If heap number, handle it in the slow case.
1772 __ j(equal, &slow, Label::kNear);
1773 // Return non-equal (ebx is not zero)
1778 // If either operand is a JSObject or an oddball value, then they are not
1779 // equal since their pointers are different
1780 // There is no test for undetectability in strict equality.
1782 // Get the type of the first operand.
1783 // If the first object is a JS object, we have done pointer comparison.
1784 Label first_non_object;
1785 STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
1786 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
1787 __ j(below, &first_non_object, Label::kNear);
1789 // Return non-zero (eax is not zero)
1790 Label return_not_equal;
1791 STATIC_ASSERT(kHeapObjectTag != 0);
1792 __ bind(&return_not_equal);
1795 __ bind(&first_non_object);
1796 // Check for oddballs: true, false, null, undefined.
1797 __ CmpInstanceType(ecx, ODDBALL_TYPE);
1798 __ j(equal, &return_not_equal);
1800 __ CmpObjectType(edx, FIRST_SPEC_OBJECT_TYPE, ecx);
1801 __ j(above_equal, &return_not_equal);
1803 // Check for oddballs: true, false, null, undefined.
1804 __ CmpInstanceType(ecx, ODDBALL_TYPE);
1805 __ j(equal, &return_not_equal);
1807 // Fall through to the general case.
1811 // Generate the number comparison code.
1812 Label non_number_comparison;
1814 __ bind(&generic_heap_number_comparison);
1816 FloatingPointHelper::LoadSSE2Operands(masm, &non_number_comparison);
1817 __ ucomisd(xmm0, xmm1);
1818 // Don't base result on EFLAGS when a NaN is involved.
1819 __ j(parity_even, &unordered, Label::kNear);
1821 __ mov(eax, 0); // equal
1822 __ mov(ecx, Immediate(Smi::FromInt(1)));
1823 __ cmov(above, eax, ecx);
1824 __ mov(ecx, Immediate(Smi::FromInt(-1)));
1825 __ cmov(below, eax, ecx);
1828 // If one of the numbers was NaN, then the result is always false.
1829 // The cc is never not-equal.
1830 __ bind(&unordered);
1831 DCHECK(cc != not_equal);
1832 if (cc == less || cc == less_equal) {
1833 __ mov(eax, Immediate(Smi::FromInt(1)));
1835 __ mov(eax, Immediate(Smi::FromInt(-1)));
1839 // The number comparison code did not provide a valid result.
1840 __ bind(&non_number_comparison);
1842 // Fast negative check for internalized-to-internalized equality.
1843 Label check_for_strings;
1845 BranchIfNotInternalizedString(masm, &check_for_strings, eax, ecx);
1846 BranchIfNotInternalizedString(masm, &check_for_strings, edx, ecx);
1848 // We've already checked for object identity, so if both operands
1849 // are internalized they aren't equal. Register eax already holds a
1850 // non-zero value, which indicates not equal, so just return.
1854 __ bind(&check_for_strings);
1856 __ JumpIfNotBothSequentialOneByteStrings(edx, eax, ecx, ebx,
1857 &check_unequal_objects);
1859 // Inline comparison of one-byte strings.
1861 StringHelper::GenerateFlatOneByteStringEquals(masm, edx, eax, ecx, ebx);
1863 StringHelper::GenerateCompareFlatOneByteStrings(masm, edx, eax, ecx, ebx,
1867 __ Abort(kUnexpectedFallThroughFromStringComparison);
1870 __ bind(&check_unequal_objects);
1871 if (cc == equal && !strict()) {
1872 // Non-strict equality. Objects are unequal if
1873 // they are both JSObjects and not undetectable,
1874 // and their pointers are different.
1875 Label return_unequal;
1876 // At most one is a smi, so we can test for smi by adding the two.
1877 // A smi plus a heap object has the low bit set, a heap object plus
1878 // a heap object has the low bit clear.
1879 STATIC_ASSERT(kSmiTag == 0);
1880 STATIC_ASSERT(kSmiTagMask == 1);
1881 __ lea(ecx, Operand(eax, edx, times_1, 0));
1882 __ test(ecx, Immediate(kSmiTagMask));
1883 __ j(not_zero, &runtime_call, Label::kNear);
1884 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
1885 __ j(below, &runtime_call, Label::kNear);
1886 __ CmpObjectType(edx, FIRST_SPEC_OBJECT_TYPE, ebx);
1887 __ j(below, &runtime_call, Label::kNear);
1888 // We do not bail out after this point. Both are JSObjects, and
1889 // they are equal if and only if both are undetectable.
1890 // The and of the undetectable flags is 1 if and only if they are equal.
1891 __ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
1892 1 << Map::kIsUndetectable);
1893 __ j(zero, &return_unequal, Label::kNear);
1894 __ test_b(FieldOperand(ebx, Map::kBitFieldOffset),
1895 1 << Map::kIsUndetectable);
1896 __ j(zero, &return_unequal, Label::kNear);
1897 // The objects are both undetectable, so they both compare as the value
1898 // undefined, and are equal.
1899 __ Move(eax, Immediate(EQUAL));
1900 __ bind(&return_unequal);
1901 // Return non-equal by returning the non-zero object pointer in eax,
1902 // or return equal if we fell through to here.
1903 __ ret(0); // rax, rdx were pushed
1905 __ bind(&runtime_call);
1907 // Push arguments below the return address.
1912 // Figure out which native to call and setup the arguments.
1913 Builtins::JavaScript builtin;
1915 builtin = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
1917 builtin = strong() ? Builtins::COMPARE_STRONG : Builtins::COMPARE;
1918 __ push(Immediate(Smi::FromInt(NegativeComparisonResult(cc))));
1921 // Restore return address on the stack.
1924 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
1925 // tagged as a small integer.
1926 __ InvokeBuiltin(builtin, JUMP_FUNCTION);
1933 static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) {
1934 // eax : number of arguments to the construct function
1935 // ebx : Feedback vector
1936 // edx : slot in feedback vector (Smi)
1937 // edi : the function to call
1938 FrameScope scope(masm, StackFrame::INTERNAL);
1940 // Number-of-arguments register must be smi-tagged to call out.
1957 static void GenerateRecordCallTarget(MacroAssembler* masm) {
1958 // Cache the called function in a feedback vector slot. Cache states
1959 // are uninitialized, monomorphic (indicated by a JSFunction), and
1961 // eax : number of arguments to the construct function
1962 // ebx : Feedback vector
1963 // edx : slot in feedback vector (Smi)
1964 // edi : the function to call
1965 Isolate* isolate = masm->isolate();
1966 Label initialize, done, miss, megamorphic, not_array_function;
1968 // Load the cache state into ecx.
1969 __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
1970 FixedArray::kHeaderSize));
1972 // A monomorphic cache hit or an already megamorphic state: invoke the
1973 // function without changing the state.
1974 // We don't know if ecx is a WeakCell or a Symbol, but it's harmless to read
1975 // at this position in a symbol (see static asserts in
1976 // type-feedback-vector.h).
1977 Label check_allocation_site;
1978 __ cmp(edi, FieldOperand(ecx, WeakCell::kValueOffset));
1979 __ j(equal, &done, Label::kFar);
1980 __ CompareRoot(ecx, Heap::kmegamorphic_symbolRootIndex);
1981 __ j(equal, &done, Label::kFar);
1982 __ CompareRoot(FieldOperand(ecx, HeapObject::kMapOffset),
1983 Heap::kWeakCellMapRootIndex);
1984 __ j(not_equal, FLAG_pretenuring_call_new ? &miss : &check_allocation_site);
1986 // If the weak cell is cleared, we have a new chance to become monomorphic.
1987 __ JumpIfSmi(FieldOperand(ecx, WeakCell::kValueOffset), &initialize);
1988 __ jmp(&megamorphic);
1990 if (!FLAG_pretenuring_call_new) {
1991 __ bind(&check_allocation_site);
1992 // If we came here, we need to see if we are the array function.
1993 // If we didn't have a matching function, and we didn't find the megamorph
1994 // sentinel, then we have in the slot either some other function or an
1996 __ CompareRoot(FieldOperand(ecx, 0), Heap::kAllocationSiteMapRootIndex);
1997 __ j(not_equal, &miss);
1999 // Make sure the function is the Array() function
2000 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
2002 __ j(not_equal, &megamorphic);
2003 __ jmp(&done, Label::kFar);
2008 // A monomorphic miss (i.e, here the cache is not uninitialized) goes
2010 __ CompareRoot(ecx, Heap::kuninitialized_symbolRootIndex);
2011 __ j(equal, &initialize);
2012 // MegamorphicSentinel is an immortal immovable object (undefined) so no
2013 // write-barrier is needed.
2014 __ bind(&megamorphic);
2016 FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize),
2017 Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
2018 __ jmp(&done, Label::kFar);
2020 // An uninitialized cache is patched with the function or sentinel to
2021 // indicate the ElementsKind if function is the Array constructor.
2022 __ bind(&initialize);
2023 if (!FLAG_pretenuring_call_new) {
2024 // Make sure the function is the Array() function
2025 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
2027 __ j(not_equal, ¬_array_function);
2029 // The target function is the Array constructor,
2030 // Create an AllocationSite if we don't already have it, store it in the
2032 CreateAllocationSiteStub create_stub(isolate);
2033 CallStubInRecordCallTarget(masm, &create_stub);
2036 __ bind(¬_array_function);
2039 CreateWeakCellStub create_stub(isolate);
2040 CallStubInRecordCallTarget(masm, &create_stub);
2045 static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) {
2046 // Do not transform the receiver for strict mode functions.
2047 __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
2048 __ test_b(FieldOperand(ecx, SharedFunctionInfo::kStrictModeByteOffset),
2049 1 << SharedFunctionInfo::kStrictModeBitWithinByte);
2050 __ j(not_equal, cont);
2052 // Do not transform the receiver for natives (shared already in ecx).
2053 __ test_b(FieldOperand(ecx, SharedFunctionInfo::kNativeByteOffset),
2054 1 << SharedFunctionInfo::kNativeBitWithinByte);
2055 __ j(not_equal, cont);
2059 static void EmitSlowCase(Isolate* isolate,
2060 MacroAssembler* masm,
2062 Label* non_function) {
2063 // Check for function proxy.
2064 __ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE);
2065 __ j(not_equal, non_function);
2067 __ push(edi); // put proxy as additional argument under return address
2069 __ Move(eax, Immediate(argc + 1));
2070 __ Move(ebx, Immediate(0));
2071 __ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY);
2073 Handle<Code> adaptor = isolate->builtins()->ArgumentsAdaptorTrampoline();
2074 __ jmp(adaptor, RelocInfo::CODE_TARGET);
2077 // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
2078 // of the original receiver from the call site).
2079 __ bind(non_function);
2080 __ mov(Operand(esp, (argc + 1) * kPointerSize), edi);
2081 __ Move(eax, Immediate(argc));
2082 __ Move(ebx, Immediate(0));
2083 __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION);
2084 Handle<Code> adaptor = isolate->builtins()->ArgumentsAdaptorTrampoline();
2085 __ jmp(adaptor, RelocInfo::CODE_TARGET);
2089 static void EmitWrapCase(MacroAssembler* masm, int argc, Label* cont) {
2090 // Wrap the receiver and patch it back onto the stack.
2091 { FrameScope frame_scope(masm, StackFrame::INTERNAL);
2094 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
2097 __ mov(Operand(esp, (argc + 1) * kPointerSize), eax);
2102 static void CallFunctionNoFeedback(MacroAssembler* masm,
2103 int argc, bool needs_checks,
2104 bool call_as_method) {
2105 // edi : the function to call
2106 Label slow, non_function, wrap, cont;
2109 // Check that the function really is a JavaScript function.
2110 __ JumpIfSmi(edi, &non_function);
2112 // Goto slow case if we do not have a function.
2113 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
2114 __ j(not_equal, &slow);
2117 // Fast-case: Just invoke the function.
2118 ParameterCount actual(argc);
2120 if (call_as_method) {
2122 EmitContinueIfStrictOrNative(masm, &cont);
2125 // Load the receiver from the stack.
2126 __ mov(eax, Operand(esp, (argc + 1) * kPointerSize));
2129 __ JumpIfSmi(eax, &wrap);
2131 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
2140 __ InvokeFunction(edi, actual, JUMP_FUNCTION, NullCallWrapper());
2143 // Slow-case: Non-function called.
2145 // (non_function is bound in EmitSlowCase)
2146 EmitSlowCase(masm->isolate(), masm, argc, &non_function);
2149 if (call_as_method) {
2151 EmitWrapCase(masm, argc, &cont);
2156 void CallFunctionStub::Generate(MacroAssembler* masm) {
2157 CallFunctionNoFeedback(masm, argc(), NeedsChecks(), CallAsMethod());
2161 void CallConstructStub::Generate(MacroAssembler* masm) {
2162 // eax : number of arguments
2163 // ebx : feedback vector
2164 // edx : (only if ebx is not the megamorphic symbol) slot in feedback
2166 // edi : constructor function
2167 Label slow, non_function_call;
2169 // Check that function is not a smi.
2170 __ JumpIfSmi(edi, &non_function_call);
2171 // Check that function is a JSFunction.
2172 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
2173 __ j(not_equal, &slow);
2175 if (RecordCallTarget()) {
2176 GenerateRecordCallTarget(masm);
2178 if (FLAG_pretenuring_call_new) {
2179 // Put the AllocationSite from the feedback vector into ebx.
2180 // By adding kPointerSize we encode that we know the AllocationSite
2181 // entry is at the feedback vector slot given by edx + 1.
2182 __ mov(ebx, FieldOperand(ebx, edx, times_half_pointer_size,
2183 FixedArray::kHeaderSize + kPointerSize));
2185 Label feedback_register_initialized;
2186 // Put the AllocationSite from the feedback vector into ebx, or undefined.
2187 __ mov(ebx, FieldOperand(ebx, edx, times_half_pointer_size,
2188 FixedArray::kHeaderSize));
2189 Handle<Map> allocation_site_map =
2190 isolate()->factory()->allocation_site_map();
2191 __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map));
2192 __ j(equal, &feedback_register_initialized);
2193 __ mov(ebx, isolate()->factory()->undefined_value());
2194 __ bind(&feedback_register_initialized);
2197 __ AssertUndefinedOrAllocationSite(ebx);
2200 if (IsSuperConstructorCall()) {
2201 __ mov(edx, Operand(esp, eax, times_pointer_size, 2 * kPointerSize));
2203 // Pass original constructor to construct stub.
2207 // Jump to the function-specific construct stub.
2208 Register jmp_reg = ecx;
2209 __ mov(jmp_reg, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
2210 __ mov(jmp_reg, FieldOperand(jmp_reg,
2211 SharedFunctionInfo::kConstructStubOffset));
2212 __ lea(jmp_reg, FieldOperand(jmp_reg, Code::kHeaderSize));
2215 // edi: called object
2216 // eax: number of arguments
2220 __ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE);
2221 __ j(not_equal, &non_function_call);
2222 __ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
2225 __ bind(&non_function_call);
2226 __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
2228 // Set expected number of arguments to zero (not changing eax).
2229 __ Move(ebx, Immediate(0));
2230 Handle<Code> arguments_adaptor =
2231 isolate()->builtins()->ArgumentsAdaptorTrampoline();
2232 __ jmp(arguments_adaptor, RelocInfo::CODE_TARGET);
2236 static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) {
2237 __ mov(vector, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
2238 __ mov(vector, FieldOperand(vector, JSFunction::kSharedFunctionInfoOffset));
2239 __ mov(vector, FieldOperand(vector,
2240 SharedFunctionInfo::kFeedbackVectorOffset));
2244 void CallIC_ArrayStub::Generate(MacroAssembler* masm) {
2249 int argc = arg_count();
2250 ParameterCount actual(argc);
2252 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
2254 __ j(not_equal, &miss);
2256 __ mov(eax, arg_count());
2257 __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
2258 FixedArray::kHeaderSize));
2260 // Verify that ecx contains an AllocationSite
2261 Factory* factory = masm->isolate()->factory();
2262 __ cmp(FieldOperand(ecx, HeapObject::kMapOffset),
2263 factory->allocation_site_map());
2264 __ j(not_equal, &miss);
2268 ArrayConstructorStub stub(masm->isolate(), arg_count());
2269 __ TailCallStub(&stub);
2274 // The slow case, we need this no matter what to complete a call after a miss.
2275 CallFunctionNoFeedback(masm,
2285 void CallICStub::Generate(MacroAssembler* masm) {
2289 Isolate* isolate = masm->isolate();
2290 const int with_types_offset =
2291 FixedArray::OffsetOfElementAt(TypeFeedbackVector::kWithTypesIndex);
2292 const int generic_offset =
2293 FixedArray::OffsetOfElementAt(TypeFeedbackVector::kGenericCountIndex);
2294 Label extra_checks_or_miss, slow_start;
2295 Label slow, non_function, wrap, cont;
2296 Label have_js_function;
2297 int argc = arg_count();
2298 ParameterCount actual(argc);
2300 // The checks. First, does edi match the recorded monomorphic target?
2301 __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
2302 FixedArray::kHeaderSize));
2304 // We don't know that we have a weak cell. We might have a private symbol
2305 // or an AllocationSite, but the memory is safe to examine.
2306 // AllocationSite::kTransitionInfoOffset - contains a Smi or pointer to
2308 // WeakCell::kValueOffset - contains a JSFunction or Smi(0)
2309 // Symbol::kHashFieldSlot - if the low bit is 1, then the hash is not
2310 // computed, meaning that it can't appear to be a pointer. If the low bit is
2311 // 0, then hash is computed, but the 0 bit prevents the field from appearing
2313 STATIC_ASSERT(WeakCell::kSize >= kPointerSize);
2314 STATIC_ASSERT(AllocationSite::kTransitionInfoOffset ==
2315 WeakCell::kValueOffset &&
2316 WeakCell::kValueOffset == Symbol::kHashFieldSlot);
2318 __ cmp(edi, FieldOperand(ecx, WeakCell::kValueOffset));
2319 __ j(not_equal, &extra_checks_or_miss);
2321 // The compare above could have been a SMI/SMI comparison. Guard against this
2322 // convincing us that we have a monomorphic JSFunction.
2323 __ JumpIfSmi(edi, &extra_checks_or_miss);
2325 __ bind(&have_js_function);
2326 if (CallAsMethod()) {
2327 EmitContinueIfStrictOrNative(masm, &cont);
2329 // Load the receiver from the stack.
2330 __ mov(eax, Operand(esp, (argc + 1) * kPointerSize));
2332 __ JumpIfSmi(eax, &wrap);
2334 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
2340 __ InvokeFunction(edi, actual, JUMP_FUNCTION, NullCallWrapper());
2343 EmitSlowCase(isolate, masm, argc, &non_function);
2345 if (CallAsMethod()) {
2347 EmitWrapCase(masm, argc, &cont);
2350 __ bind(&extra_checks_or_miss);
2351 Label uninitialized, miss;
2353 __ cmp(ecx, Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
2354 __ j(equal, &slow_start);
2356 // The following cases attempt to handle MISS cases without going to the
2358 if (FLAG_trace_ic) {
2362 __ cmp(ecx, Immediate(TypeFeedbackVector::UninitializedSentinel(isolate)));
2363 __ j(equal, &uninitialized);
2365 // We are going megamorphic. If the feedback is a JSFunction, it is fine
2366 // to handle it here. More complex cases are dealt with in the runtime.
2367 __ AssertNotSmi(ecx);
2368 __ CmpObjectType(ecx, JS_FUNCTION_TYPE, ecx);
2369 __ j(not_equal, &miss);
2371 FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize),
2372 Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
2373 // We have to update statistics for runtime profiling.
2374 __ sub(FieldOperand(ebx, with_types_offset), Immediate(Smi::FromInt(1)));
2375 __ add(FieldOperand(ebx, generic_offset), Immediate(Smi::FromInt(1)));
2376 __ jmp(&slow_start);
2378 __ bind(&uninitialized);
2380 // We are going monomorphic, provided we actually have a JSFunction.
2381 __ JumpIfSmi(edi, &miss);
2383 // Goto miss case if we do not have a function.
2384 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
2385 __ j(not_equal, &miss);
2387 // Make sure the function is not the Array() function, which requires special
2388 // behavior on MISS.
2389 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
2394 __ add(FieldOperand(ebx, with_types_offset), Immediate(Smi::FromInt(1)));
2396 // Store the function. Use a stub since we need a frame for allocation.
2401 FrameScope scope(masm, StackFrame::INTERNAL);
2402 CreateWeakCellStub create_stub(isolate);
2404 __ CallStub(&create_stub);
2408 __ jmp(&have_js_function);
2410 // We are here because tracing is on or we encountered a MISS case we can't
2416 __ bind(&slow_start);
2418 // Check that the function really is a JavaScript function.
2419 __ JumpIfSmi(edi, &non_function);
2421 // Goto slow case if we do not have a function.
2422 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
2423 __ j(not_equal, &slow);
2424 __ jmp(&have_js_function);
2431 void CallICStub::GenerateMiss(MacroAssembler* masm) {
2432 FrameScope scope(masm, StackFrame::INTERNAL);
2434 // Push the function and feedback info.
2440 IC::UtilityId id = GetICState() == DEFAULT ? IC::kCallIC_Miss
2441 : IC::kCallIC_Customization_Miss;
2443 ExternalReference miss = ExternalReference(IC_Utility(id), masm->isolate());
2444 __ CallExternalReference(miss, 3);
2446 // Move result to edi and exit the internal frame.
2451 bool CEntryStub::NeedsImmovableCode() {
2456 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
2457 CEntryStub::GenerateAheadOfTime(isolate);
2458 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
2459 StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
2460 // It is important that the store buffer overflow stubs are generated first.
2461 ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
2462 CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
2463 CreateWeakCellStub::GenerateAheadOfTime(isolate);
2464 BinaryOpICStub::GenerateAheadOfTime(isolate);
2465 BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
2466 StoreFastElementStub::GenerateAheadOfTime(isolate);
2467 TypeofStub::GenerateAheadOfTime(isolate);
2471 void CodeStub::GenerateFPStubs(Isolate* isolate) {
2472 // Generate if not already in cache.
2473 CEntryStub(isolate, 1, kSaveFPRegs).GetCode();
2474 isolate->set_fp_stubs_generated(true);
2478 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
2479 CEntryStub stub(isolate, 1, kDontSaveFPRegs);
2484 void CEntryStub::Generate(MacroAssembler* masm) {
2485 // eax: number of arguments including receiver
2486 // ebx: pointer to C function (C callee-saved)
2487 // ebp: frame pointer (restored after C call)
2488 // esp: stack pointer (restored after C call)
2489 // esi: current context (C callee-saved)
2490 // edi: JS function of the caller (C callee-saved)
2492 ProfileEntryHookStub::MaybeCallEntryHook(masm);
2494 // Enter the exit frame that transitions from JavaScript to C++.
2495 __ EnterExitFrame(save_doubles());
2497 // ebx: pointer to C function (C callee-saved)
2498 // ebp: frame pointer (restored after C call)
2499 // esp: stack pointer (restored after C call)
2500 // edi: number of arguments including receiver (C callee-saved)
2501 // esi: pointer to the first argument (C callee-saved)
2503 // Result returned in eax, or eax+edx if result size is 2.
2505 // Check stack alignment.
2506 if (FLAG_debug_code) {
2507 __ CheckStackAlignment();
2511 __ mov(Operand(esp, 0 * kPointerSize), edi); // argc.
2512 __ mov(Operand(esp, 1 * kPointerSize), esi); // argv.
2513 __ mov(Operand(esp, 2 * kPointerSize),
2514 Immediate(ExternalReference::isolate_address(isolate())));
2516 // Result is in eax or edx:eax - do not destroy these registers!
2518 // Check result for exception sentinel.
2519 Label exception_returned;
2520 __ cmp(eax, isolate()->factory()->exception());
2521 __ j(equal, &exception_returned);
2523 // Check that there is no pending exception, otherwise we
2524 // should have returned the exception sentinel.
2525 if (FLAG_debug_code) {
2527 __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
2529 ExternalReference pending_exception_address(
2530 Isolate::kPendingExceptionAddress, isolate());
2531 __ cmp(edx, Operand::StaticVariable(pending_exception_address));
2532 // Cannot use check here as it attempts to generate call into runtime.
2533 __ j(equal, &okay, Label::kNear);
2539 // Exit the JavaScript to C++ exit frame.
2540 __ LeaveExitFrame(save_doubles());
2543 // Handling of exception.
2544 __ bind(&exception_returned);
2546 ExternalReference pending_handler_context_address(
2547 Isolate::kPendingHandlerContextAddress, isolate());
2548 ExternalReference pending_handler_code_address(
2549 Isolate::kPendingHandlerCodeAddress, isolate());
2550 ExternalReference pending_handler_offset_address(
2551 Isolate::kPendingHandlerOffsetAddress, isolate());
2552 ExternalReference pending_handler_fp_address(
2553 Isolate::kPendingHandlerFPAddress, isolate());
2554 ExternalReference pending_handler_sp_address(
2555 Isolate::kPendingHandlerSPAddress, isolate());
2557 // Ask the runtime for help to determine the handler. This will set eax to
2558 // contain the current pending exception, don't clobber it.
2559 ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
2562 FrameScope scope(masm, StackFrame::MANUAL);
2563 __ PrepareCallCFunction(3, eax);
2564 __ mov(Operand(esp, 0 * kPointerSize), Immediate(0)); // argc.
2565 __ mov(Operand(esp, 1 * kPointerSize), Immediate(0)); // argv.
2566 __ mov(Operand(esp, 2 * kPointerSize),
2567 Immediate(ExternalReference::isolate_address(isolate())));
2568 __ CallCFunction(find_handler, 3);
2571 // Retrieve the handler context, SP and FP.
2572 __ mov(esi, Operand::StaticVariable(pending_handler_context_address));
2573 __ mov(esp, Operand::StaticVariable(pending_handler_sp_address));
2574 __ mov(ebp, Operand::StaticVariable(pending_handler_fp_address));
2576 // If the handler is a JS frame, restore the context to the frame. Note that
2577 // the context will be set to (esi == 0) for non-JS frames.
2580 __ j(zero, &skip, Label::kNear);
2581 __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi);
2584 // Compute the handler entry address and jump to it.
2585 __ mov(edi, Operand::StaticVariable(pending_handler_code_address));
2586 __ mov(edx, Operand::StaticVariable(pending_handler_offset_address));
2587 __ lea(edi, FieldOperand(edi, edx, times_1, Code::kHeaderSize));
2592 void JSEntryStub::Generate(MacroAssembler* masm) {
2593 Label invoke, handler_entry, exit;
2594 Label not_outermost_js, not_outermost_js_2;
2596 ProfileEntryHookStub::MaybeCallEntryHook(masm);
2602 // Push marker in two places.
2603 int marker = type();
2604 __ push(Immediate(Smi::FromInt(marker))); // context slot
2605 __ push(Immediate(Smi::FromInt(marker))); // function slot
2606 // Save callee-saved registers (C calling conventions).
2611 // Save copies of the top frame descriptor on the stack.
2612 ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate());
2613 __ push(Operand::StaticVariable(c_entry_fp));
2615 // If this is the outermost JS call, set js_entry_sp value.
2616 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
2617 __ cmp(Operand::StaticVariable(js_entry_sp), Immediate(0));
2618 __ j(not_equal, ¬_outermost_js, Label::kNear);
2619 __ mov(Operand::StaticVariable(js_entry_sp), ebp);
2620 __ push(Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
2621 __ jmp(&invoke, Label::kNear);
2622 __ bind(¬_outermost_js);
2623 __ push(Immediate(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
2625 // Jump to a faked try block that does the invoke, with a faked catch
2626 // block that sets the pending exception.
2628 __ bind(&handler_entry);
2629 handler_offset_ = handler_entry.pos();
2630 // Caught exception: Store result (exception) in the pending exception
2631 // field in the JSEnv and return a failure sentinel.
2632 ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
2634 __ mov(Operand::StaticVariable(pending_exception), eax);
2635 __ mov(eax, Immediate(isolate()->factory()->exception()));
2638 // Invoke: Link this frame into the handler chain.
2640 __ PushStackHandler();
2642 // Clear any pending exceptions.
2643 __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
2644 __ mov(Operand::StaticVariable(pending_exception), edx);
2646 // Fake a receiver (NULL).
2647 __ push(Immediate(0)); // receiver
2649 // Invoke the function by calling through JS entry trampoline builtin and
2650 // pop the faked function when we return. Notice that we cannot store a
2651 // reference to the trampoline code directly in this stub, because the
2652 // builtin stubs may not have been generated yet.
2653 if (type() == StackFrame::ENTRY_CONSTRUCT) {
2654 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
2656 __ mov(edx, Immediate(construct_entry));
2658 ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
2659 __ mov(edx, Immediate(entry));
2661 __ mov(edx, Operand(edx, 0)); // deref address
2662 __ lea(edx, FieldOperand(edx, Code::kHeaderSize));
2665 // Unlink this frame from the handler chain.
2666 __ PopStackHandler();
2669 // Check if the current stack frame is marked as the outermost JS frame.
2671 __ cmp(ebx, Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
2672 __ j(not_equal, ¬_outermost_js_2);
2673 __ mov(Operand::StaticVariable(js_entry_sp), Immediate(0));
2674 __ bind(¬_outermost_js_2);
2676 // Restore the top frame descriptor from the stack.
2677 __ pop(Operand::StaticVariable(ExternalReference(
2678 Isolate::kCEntryFPAddress, isolate())));
2680 // Restore callee-saved registers (C calling conventions).
2684 __ add(esp, Immediate(2 * kPointerSize)); // remove markers
2686 // Restore frame pointer and return.
2692 // Generate stub code for instanceof.
2693 // This code can patch a call site inlined cache of the instance of check,
2694 // which looks like this.
2696 // 81 ff XX XX XX XX cmp edi, <the hole, patched to a map>
2697 // 75 0a jne <some near label>
2698 // b8 XX XX XX XX mov eax, <the hole, patched to either true or false>
2700 // If call site patching is requested the stack will have the delta from the
2701 // return address to the cmp instruction just below the return address. This
2702 // also means that call site patching can only take place with arguments in
2703 // registers. TOS looks like this when call site patching is requested
2705 // esp[0] : return address
2706 // esp[4] : delta from return address to cmp instruction
2708 void InstanceofStub::Generate(MacroAssembler* masm) {
2709 // Call site inlining and patching implies arguments in registers.
2710 DCHECK(HasArgsInRegisters() || !HasCallSiteInlineCheck());
2712 // Fixed register usage throughout the stub.
2713 Register object = eax; // Object (lhs).
2714 Register map = ebx; // Map of the object.
2715 Register function = edx; // Function (rhs).
2716 Register prototype = edi; // Prototype of the function.
2717 Register scratch = ecx;
2719 // Constants describing the call site code to patch.
2720 static const int kDeltaToCmpImmediate = 2;
2721 static const int kDeltaToMov = 8;
2722 static const int kDeltaToMovImmediate = 9;
2723 static const int8_t kCmpEdiOperandByte1 = bit_cast<int8_t, uint8_t>(0x3b);
2724 static const int8_t kCmpEdiOperandByte2 = bit_cast<int8_t, uint8_t>(0x3d);
2725 static const int8_t kMovEaxImmediateByte = bit_cast<int8_t, uint8_t>(0xb8);
2727 DCHECK_EQ(object.code(), InstanceofStub::left().code());
2728 DCHECK_EQ(function.code(), InstanceofStub::right().code());
2730 // Get the object and function - they are always both needed.
2731 Label slow, not_js_object;
2732 if (!HasArgsInRegisters()) {
2733 __ mov(object, Operand(esp, 2 * kPointerSize));
2734 __ mov(function, Operand(esp, 1 * kPointerSize));
2737 // Check that the left hand is a JS object.
2738 __ JumpIfSmi(object, ¬_js_object);
2739 __ IsObjectJSObjectType(object, map, scratch, ¬_js_object);
2741 // If there is a call site cache don't look in the global cache, but do the
2742 // real lookup and update the call site cache.
2743 if (!HasCallSiteInlineCheck() && !ReturnTrueFalseObject()) {
2744 // Look up the function and the map in the instanceof cache.
2746 __ CompareRoot(function, scratch, Heap::kInstanceofCacheFunctionRootIndex);
2747 __ j(not_equal, &miss, Label::kNear);
2748 __ CompareRoot(map, scratch, Heap::kInstanceofCacheMapRootIndex);
2749 __ j(not_equal, &miss, Label::kNear);
2750 __ LoadRoot(eax, Heap::kInstanceofCacheAnswerRootIndex);
2751 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2755 // Get the prototype of the function.
2756 __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true);
2758 // Check that the function prototype is a JS object.
2759 __ JumpIfSmi(prototype, &slow);
2760 __ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
2762 // Update the global instanceof or call site inlined cache with the current
2763 // map and function. The cached answer will be set when it is known below.
2764 if (!HasCallSiteInlineCheck()) {
2765 __ StoreRoot(map, scratch, Heap::kInstanceofCacheMapRootIndex);
2766 __ StoreRoot(function, scratch, Heap::kInstanceofCacheFunctionRootIndex);
2768 // The constants for the code patching are based on no push instructions
2769 // at the call site.
2770 DCHECK(HasArgsInRegisters());
2771 // Get return address and delta to inlined map check.
2772 __ mov(scratch, Operand(esp, 0 * kPointerSize));
2773 __ sub(scratch, Operand(esp, 1 * kPointerSize));
2774 if (FLAG_debug_code) {
2775 __ cmpb(Operand(scratch, 0), kCmpEdiOperandByte1);
2776 __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheCmp1);
2777 __ cmpb(Operand(scratch, 1), kCmpEdiOperandByte2);
2778 __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheCmp2);
2780 __ mov(scratch, Operand(scratch, kDeltaToCmpImmediate));
2781 __ mov(Operand(scratch, 0), map);
2783 // Scratch points at the cell payload. Calculate the start of the object.
2784 __ sub(scratch, Immediate(Cell::kValueOffset - 1));
2785 __ RecordWriteField(scratch, Cell::kValueOffset, map, function,
2786 kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
2790 // Loop through the prototype chain of the object looking for the function
2792 __ mov(scratch, FieldOperand(map, Map::kPrototypeOffset));
2793 Label loop, is_instance, is_not_instance;
2795 __ cmp(scratch, prototype);
2796 __ j(equal, &is_instance, Label::kNear);
2797 Factory* factory = isolate()->factory();
2798 __ cmp(scratch, Immediate(factory->null_value()));
2799 __ j(equal, &is_not_instance, Label::kNear);
2800 __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
2801 __ mov(scratch, FieldOperand(scratch, Map::kPrototypeOffset));
2804 __ bind(&is_instance);
2805 if (!HasCallSiteInlineCheck()) {
2806 __ mov(eax, Immediate(0));
2807 __ StoreRoot(eax, scratch, Heap::kInstanceofCacheAnswerRootIndex);
2808 if (ReturnTrueFalseObject()) {
2809 __ mov(eax, factory->true_value());
2812 // Get return address and delta to inlined map check.
2813 __ mov(eax, factory->true_value());
2814 __ mov(scratch, Operand(esp, 0 * kPointerSize));
2815 __ sub(scratch, Operand(esp, 1 * kPointerSize));
2816 if (FLAG_debug_code) {
2817 __ cmpb(Operand(scratch, kDeltaToMov), kMovEaxImmediateByte);
2818 __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheMov);
2820 __ mov(Operand(scratch, kDeltaToMovImmediate), eax);
2821 if (!ReturnTrueFalseObject()) {
2822 __ Move(eax, Immediate(0));
2825 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2827 __ bind(&is_not_instance);
2828 if (!HasCallSiteInlineCheck()) {
2829 __ mov(eax, Immediate(Smi::FromInt(1)));
2830 __ StoreRoot(eax, scratch, Heap::kInstanceofCacheAnswerRootIndex);
2831 if (ReturnTrueFalseObject()) {
2832 __ mov(eax, factory->false_value());
2835 // Get return address and delta to inlined map check.
2836 __ mov(eax, factory->false_value());
2837 __ mov(scratch, Operand(esp, 0 * kPointerSize));
2838 __ sub(scratch, Operand(esp, 1 * kPointerSize));
2839 if (FLAG_debug_code) {
2840 __ cmpb(Operand(scratch, kDeltaToMov), kMovEaxImmediateByte);
2841 __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheMov);
2843 __ mov(Operand(scratch, kDeltaToMovImmediate), eax);
2844 if (!ReturnTrueFalseObject()) {
2845 __ Move(eax, Immediate(Smi::FromInt(1)));
2848 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2850 Label object_not_null, object_not_null_or_smi;
2851 __ bind(¬_js_object);
2852 // Before null, smi and string value checks, check that the rhs is a function
2853 // as for a non-function rhs an exception needs to be thrown.
2854 __ JumpIfSmi(function, &slow, Label::kNear);
2855 __ CmpObjectType(function, JS_FUNCTION_TYPE, scratch);
2856 __ j(not_equal, &slow, Label::kNear);
2858 // Null is not instance of anything.
2859 __ cmp(object, factory->null_value());
2860 __ j(not_equal, &object_not_null, Label::kNear);
2861 if (ReturnTrueFalseObject()) {
2862 __ mov(eax, factory->false_value());
2864 __ Move(eax, Immediate(Smi::FromInt(1)));
2866 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2868 __ bind(&object_not_null);
2869 // Smi values is not instance of anything.
2870 __ JumpIfNotSmi(object, &object_not_null_or_smi, Label::kNear);
2871 if (ReturnTrueFalseObject()) {
2872 __ mov(eax, factory->false_value());
2874 __ Move(eax, Immediate(Smi::FromInt(1)));
2876 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2878 __ bind(&object_not_null_or_smi);
2879 // String values is not instance of anything.
2880 Condition is_string = masm->IsObjectStringType(object, scratch, scratch);
2881 __ j(NegateCondition(is_string), &slow, Label::kNear);
2882 if (ReturnTrueFalseObject()) {
2883 __ mov(eax, factory->false_value());
2885 __ Move(eax, Immediate(Smi::FromInt(1)));
2887 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2889 // Slow-case: Go through the JavaScript implementation.
2891 if (!ReturnTrueFalseObject()) {
2892 // Tail call the builtin which returns 0 or 1.
2893 if (HasArgsInRegisters()) {
2894 // Push arguments below return address.
2900 __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
2902 // Call the builtin and convert 0/1 to true/false.
2904 FrameScope scope(masm, StackFrame::INTERNAL);
2907 __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
2909 Label true_value, done;
2911 __ j(zero, &true_value, Label::kNear);
2912 __ mov(eax, factory->false_value());
2913 __ jmp(&done, Label::kNear);
2914 __ bind(&true_value);
2915 __ mov(eax, factory->true_value());
2917 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2922 // -------------------------------------------------------------------------
2923 // StringCharCodeAtGenerator
2925 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
2926 // If the receiver is a smi trigger the non-string case.
2927 STATIC_ASSERT(kSmiTag == 0);
2928 if (check_mode_ == RECEIVER_IS_UNKNOWN) {
2929 __ JumpIfSmi(object_, receiver_not_string_);
2931 // Fetch the instance type of the receiver into result register.
2932 __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
2933 __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
2934 // If the receiver is not a string trigger the non-string case.
2935 __ test(result_, Immediate(kIsNotStringMask));
2936 __ j(not_zero, receiver_not_string_);
2939 // If the index is non-smi trigger the non-smi case.
2940 STATIC_ASSERT(kSmiTag == 0);
2941 __ JumpIfNotSmi(index_, &index_not_smi_);
2942 __ bind(&got_smi_index_);
2944 // Check for index out of range.
2945 __ cmp(index_, FieldOperand(object_, String::kLengthOffset));
2946 __ j(above_equal, index_out_of_range_);
2948 __ SmiUntag(index_);
2950 Factory* factory = masm->isolate()->factory();
2951 StringCharLoadGenerator::Generate(
2952 masm, factory, object_, index_, result_, &call_runtime_);
2959 void StringCharCodeAtGenerator::GenerateSlow(
2960 MacroAssembler* masm, EmbedMode embed_mode,
2961 const RuntimeCallHelper& call_helper) {
2962 __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
2964 // Index is not a smi.
2965 __ bind(&index_not_smi_);
2966 // If index is a heap number, try converting it to an integer.
2968 masm->isolate()->factory()->heap_number_map(),
2971 call_helper.BeforeCall(masm);
2972 if (embed_mode == PART_OF_IC_HANDLER) {
2973 __ push(LoadWithVectorDescriptor::VectorRegister());
2974 __ push(LoadDescriptor::SlotRegister());
2977 __ push(index_); // Consumed by runtime conversion function.
2978 if (index_flags_ == STRING_INDEX_IS_NUMBER) {
2979 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
2981 DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
2982 // NumberToSmi discards numbers that are not exact integers.
2983 __ CallRuntime(Runtime::kNumberToSmi, 1);
2985 if (!index_.is(eax)) {
2986 // Save the conversion result before the pop instructions below
2987 // have a chance to overwrite it.
2988 __ mov(index_, eax);
2991 if (embed_mode == PART_OF_IC_HANDLER) {
2992 __ pop(LoadDescriptor::SlotRegister());
2993 __ pop(LoadWithVectorDescriptor::VectorRegister());
2995 // Reload the instance type.
2996 __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
2997 __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
2998 call_helper.AfterCall(masm);
2999 // If index is still not a smi, it must be out of range.
3000 STATIC_ASSERT(kSmiTag == 0);
3001 __ JumpIfNotSmi(index_, index_out_of_range_);
3002 // Otherwise, return to the fast path.
3003 __ jmp(&got_smi_index_);
3005 // Call runtime. We get here when the receiver is a string and the
3006 // index is a number, but the code of getting the actual character
3007 // is too complex (e.g., when the string needs to be flattened).
3008 __ bind(&call_runtime_);
3009 call_helper.BeforeCall(masm);
3013 __ CallRuntime(Runtime::kStringCharCodeAtRT, 2);
3014 if (!result_.is(eax)) {
3015 __ mov(result_, eax);
3017 call_helper.AfterCall(masm);
3020 __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
3024 // -------------------------------------------------------------------------
3025 // StringCharFromCodeGenerator
3027 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
3028 // Fast case of Heap::LookupSingleCharacterStringFromCode.
3029 STATIC_ASSERT(kSmiTag == 0);
3030 STATIC_ASSERT(kSmiShiftSize == 0);
3031 DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCode + 1));
3033 Immediate(kSmiTagMask |
3034 ((~String::kMaxOneByteCharCode) << kSmiTagSize)));
3035 __ j(not_zero, &slow_case_);
3037 Factory* factory = masm->isolate()->factory();
3038 __ Move(result_, Immediate(factory->single_character_string_cache()));
3039 STATIC_ASSERT(kSmiTag == 0);
3040 STATIC_ASSERT(kSmiTagSize == 1);
3041 STATIC_ASSERT(kSmiShiftSize == 0);
3042 // At this point code register contains smi tagged one byte char code.
3043 __ mov(result_, FieldOperand(result_,
3044 code_, times_half_pointer_size,
3045 FixedArray::kHeaderSize));
3046 __ cmp(result_, factory->undefined_value());
3047 __ j(equal, &slow_case_);
3052 void StringCharFromCodeGenerator::GenerateSlow(
3053 MacroAssembler* masm,
3054 const RuntimeCallHelper& call_helper) {
3055 __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
3057 __ bind(&slow_case_);
3058 call_helper.BeforeCall(masm);
3060 __ CallRuntime(Runtime::kCharFromCode, 1);
3061 if (!result_.is(eax)) {
3062 __ mov(result_, eax);
3064 call_helper.AfterCall(masm);
3067 __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
3071 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
3076 String::Encoding encoding) {
3077 DCHECK(!scratch.is(dest));
3078 DCHECK(!scratch.is(src));
3079 DCHECK(!scratch.is(count));
3081 // Nothing to do for zero characters.
3083 __ test(count, count);
3086 // Make count the number of bytes to copy.
3087 if (encoding == String::TWO_BYTE_ENCODING) {
3093 __ mov_b(scratch, Operand(src, 0));
3094 __ mov_b(Operand(dest, 0), scratch);
3098 __ j(not_zero, &loop);
3104 void SubStringStub::Generate(MacroAssembler* masm) {
3107 // Stack frame on entry.
3108 // esp[0]: return address
3113 // Make sure first argument is a string.
3114 __ mov(eax, Operand(esp, 3 * kPointerSize));
3115 STATIC_ASSERT(kSmiTag == 0);
3116 __ JumpIfSmi(eax, &runtime);
3117 Condition is_string = masm->IsObjectStringType(eax, ebx, ebx);
3118 __ j(NegateCondition(is_string), &runtime);
3121 // ebx: instance type
3123 // Calculate length of sub string using the smi values.
3124 __ mov(ecx, Operand(esp, 1 * kPointerSize)); // To index.
3125 __ JumpIfNotSmi(ecx, &runtime);
3126 __ mov(edx, Operand(esp, 2 * kPointerSize)); // From index.
3127 __ JumpIfNotSmi(edx, &runtime);
3129 __ cmp(ecx, FieldOperand(eax, String::kLengthOffset));
3130 Label not_original_string;
3131 // Shorter than original string's length: an actual substring.
3132 __ j(below, ¬_original_string, Label::kNear);
3133 // Longer than original string's length or negative: unsafe arguments.
3134 __ j(above, &runtime);
3135 // Return original string.
3136 Counters* counters = isolate()->counters();
3137 __ IncrementCounter(counters->sub_string_native(), 1);
3138 __ ret(3 * kPointerSize);
3139 __ bind(¬_original_string);
3142 __ cmp(ecx, Immediate(Smi::FromInt(1)));
3143 __ j(equal, &single_char);
3146 // ebx: instance type
3147 // ecx: sub string length (smi)
3148 // edx: from index (smi)
3149 // Deal with different string types: update the index if necessary
3150 // and put the underlying string into edi.
3151 Label underlying_unpacked, sliced_string, seq_or_external_string;
3152 // If the string is not indirect, it can only be sequential or external.
3153 STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
3154 STATIC_ASSERT(kIsIndirectStringMask != 0);
3155 __ test(ebx, Immediate(kIsIndirectStringMask));
3156 __ j(zero, &seq_or_external_string, Label::kNear);
3158 Factory* factory = isolate()->factory();
3159 __ test(ebx, Immediate(kSlicedNotConsMask));
3160 __ j(not_zero, &sliced_string, Label::kNear);
3161 // Cons string. Check whether it is flat, then fetch first part.
3162 // Flat cons strings have an empty second part.
3163 __ cmp(FieldOperand(eax, ConsString::kSecondOffset),
3164 factory->empty_string());
3165 __ j(not_equal, &runtime);
3166 __ mov(edi, FieldOperand(eax, ConsString::kFirstOffset));
3167 // Update instance type.
3168 __ mov(ebx, FieldOperand(edi, HeapObject::kMapOffset));
3169 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
3170 __ jmp(&underlying_unpacked, Label::kNear);
3172 __ bind(&sliced_string);
3173 // Sliced string. Fetch parent and adjust start index by offset.
3174 __ add(edx, FieldOperand(eax, SlicedString::kOffsetOffset));
3175 __ mov(edi, FieldOperand(eax, SlicedString::kParentOffset));
3176 // Update instance type.
3177 __ mov(ebx, FieldOperand(edi, HeapObject::kMapOffset));
3178 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
3179 __ jmp(&underlying_unpacked, Label::kNear);
3181 __ bind(&seq_or_external_string);
3182 // Sequential or external string. Just move string to the expected register.
3185 __ bind(&underlying_unpacked);
3187 if (FLAG_string_slices) {
3189 // edi: underlying subject string
3190 // ebx: instance type of underlying subject string
3191 // edx: adjusted start index (smi)
3192 // ecx: length (smi)
3193 __ cmp(ecx, Immediate(Smi::FromInt(SlicedString::kMinLength)));
3194 // Short slice. Copy instead of slicing.
3195 __ j(less, ©_routine);
3196 // Allocate new sliced string. At this point we do not reload the instance
3197 // type including the string encoding because we simply rely on the info
3198 // provided by the original string. It does not matter if the original
3199 // string's encoding is wrong because we always have to recheck encoding of
3200 // the newly created string's parent anyways due to externalized strings.
3201 Label two_byte_slice, set_slice_header;
3202 STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
3203 STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
3204 __ test(ebx, Immediate(kStringEncodingMask));
3205 __ j(zero, &two_byte_slice, Label::kNear);
3206 __ AllocateOneByteSlicedString(eax, ebx, no_reg, &runtime);
3207 __ jmp(&set_slice_header, Label::kNear);
3208 __ bind(&two_byte_slice);
3209 __ AllocateTwoByteSlicedString(eax, ebx, no_reg, &runtime);
3210 __ bind(&set_slice_header);
3211 __ mov(FieldOperand(eax, SlicedString::kLengthOffset), ecx);
3212 __ mov(FieldOperand(eax, SlicedString::kHashFieldOffset),
3213 Immediate(String::kEmptyHashField));
3214 __ mov(FieldOperand(eax, SlicedString::kParentOffset), edi);
3215 __ mov(FieldOperand(eax, SlicedString::kOffsetOffset), edx);
3216 __ IncrementCounter(counters->sub_string_native(), 1);
3217 __ ret(3 * kPointerSize);
3219 __ bind(©_routine);
3222 // edi: underlying subject string
3223 // ebx: instance type of underlying subject string
3224 // edx: adjusted start index (smi)
3225 // ecx: length (smi)
3226 // The subject string can only be external or sequential string of either
3227 // encoding at this point.
3228 Label two_byte_sequential, runtime_drop_two, sequential_string;
3229 STATIC_ASSERT(kExternalStringTag != 0);
3230 STATIC_ASSERT(kSeqStringTag == 0);
3231 __ test_b(ebx, kExternalStringTag);
3232 __ j(zero, &sequential_string);
3234 // Handle external string.
3235 // Rule out short external strings.
3236 STATIC_ASSERT(kShortExternalStringTag != 0);
3237 __ test_b(ebx, kShortExternalStringMask);
3238 __ j(not_zero, &runtime);
3239 __ mov(edi, FieldOperand(edi, ExternalString::kResourceDataOffset));
3240 // Move the pointer so that offset-wise, it looks like a sequential string.
3241 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
3242 __ sub(edi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
3244 __ bind(&sequential_string);
3245 // Stash away (adjusted) index and (underlying) string.
3249 STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
3250 __ test_b(ebx, kStringEncodingMask);
3251 __ j(zero, &two_byte_sequential);
3253 // Sequential one byte string. Allocate the result.
3254 __ AllocateOneByteString(eax, ecx, ebx, edx, edi, &runtime_drop_two);
3256 // eax: result string
3257 // ecx: result string length
3258 // Locate first character of result.
3260 __ add(edi, Immediate(SeqOneByteString::kHeaderSize - kHeapObjectTag));
3261 // Load string argument and locate character of sub string start.
3265 __ lea(edx, FieldOperand(edx, ebx, times_1, SeqOneByteString::kHeaderSize));
3267 // eax: result string
3268 // ecx: result length
3269 // edi: first character of result
3270 // edx: character of sub string start
3271 StringHelper::GenerateCopyCharacters(
3272 masm, edi, edx, ecx, ebx, String::ONE_BYTE_ENCODING);
3273 __ IncrementCounter(counters->sub_string_native(), 1);
3274 __ ret(3 * kPointerSize);
3276 __ bind(&two_byte_sequential);
3277 // Sequential two-byte string. Allocate the result.
3278 __ AllocateTwoByteString(eax, ecx, ebx, edx, edi, &runtime_drop_two);
3280 // eax: result string
3281 // ecx: result string length
3282 // Locate first character of result.
3285 Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
3286 // Load string argument and locate character of sub string start.
3289 // As from is a smi it is 2 times the value which matches the size of a two
3291 STATIC_ASSERT(kSmiTag == 0);
3292 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
3293 __ lea(edx, FieldOperand(edx, ebx, times_1, SeqTwoByteString::kHeaderSize));
3295 // eax: result string
3296 // ecx: result length
3297 // edi: first character of result
3298 // edx: character of sub string start
3299 StringHelper::GenerateCopyCharacters(
3300 masm, edi, edx, ecx, ebx, String::TWO_BYTE_ENCODING);
3301 __ IncrementCounter(counters->sub_string_native(), 1);
3302 __ ret(3 * kPointerSize);
3304 // Drop pushed values on the stack before tail call.
3305 __ bind(&runtime_drop_two);
3308 // Just jump to runtime to create the sub string.
3310 __ TailCallRuntime(Runtime::kSubStringRT, 3, 1);
3312 __ bind(&single_char);
3314 // ebx: instance type
3315 // ecx: sub string length (smi)
3316 // edx: from index (smi)
3317 StringCharAtGenerator generator(eax, edx, ecx, eax, &runtime, &runtime,
3318 &runtime, STRING_INDEX_IS_NUMBER,
3319 RECEIVER_IS_STRING);
3320 generator.GenerateFast(masm);
3321 __ ret(3 * kPointerSize);
3322 generator.SkipSlow(masm, &runtime);
3326 void ToNumberStub::Generate(MacroAssembler* masm) {
3327 // The ToNumber stub takes one argument in eax.
3329 __ JumpIfNotSmi(eax, ¬_smi, Label::kNear);
3333 Label not_heap_number;
3334 __ CompareMap(eax, masm->isolate()->factory()->heap_number_map());
3335 __ j(not_equal, ¬_heap_number, Label::kNear);
3337 __ bind(¬_heap_number);
3339 Label not_string, slow_string;
3340 __ CmpObjectType(eax, FIRST_NONSTRING_TYPE, edi);
3343 __ j(above_equal, ¬_string, Label::kNear);
3344 // Check if string has a cached array index.
3345 __ test(FieldOperand(eax, String::kHashFieldOffset),
3346 Immediate(String::kContainsCachedArrayIndexMask));
3347 __ j(not_zero, &slow_string, Label::kNear);
3348 __ mov(eax, FieldOperand(eax, String::kHashFieldOffset));
3349 __ IndexFromHash(eax, eax);
3351 __ bind(&slow_string);
3352 __ pop(ecx); // Pop return address.
3353 __ push(eax); // Push argument.
3354 __ push(ecx); // Push return address.
3355 __ TailCallRuntime(Runtime::kStringToNumber, 1, 1);
3356 __ bind(¬_string);
3359 __ CmpInstanceType(edi, ODDBALL_TYPE);
3360 __ j(not_equal, ¬_oddball, Label::kNear);
3361 __ mov(eax, FieldOperand(eax, Oddball::kToNumberOffset));
3363 __ bind(¬_oddball);
3365 __ pop(ecx); // Pop return address.
3366 __ push(eax); // Push argument.
3367 __ push(ecx); // Push return address.
3368 __ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_FUNCTION);
3372 void StringHelper::GenerateFlatOneByteStringEquals(MacroAssembler* masm,
3376 Register scratch2) {
3377 Register length = scratch1;
3380 Label strings_not_equal, check_zero_length;
3381 __ mov(length, FieldOperand(left, String::kLengthOffset));
3382 __ cmp(length, FieldOperand(right, String::kLengthOffset));
3383 __ j(equal, &check_zero_length, Label::kNear);
3384 __ bind(&strings_not_equal);
3385 __ Move(eax, Immediate(Smi::FromInt(NOT_EQUAL)));
3388 // Check if the length is zero.
3389 Label compare_chars;
3390 __ bind(&check_zero_length);
3391 STATIC_ASSERT(kSmiTag == 0);
3392 __ test(length, length);
3393 __ j(not_zero, &compare_chars, Label::kNear);
3394 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3397 // Compare characters.
3398 __ bind(&compare_chars);
3399 GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2,
3400 &strings_not_equal, Label::kNear);
3402 // Characters are equal.
3403 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3408 void StringHelper::GenerateCompareFlatOneByteStrings(
3409 MacroAssembler* masm, Register left, Register right, Register scratch1,
3410 Register scratch2, Register scratch3) {
3411 Counters* counters = masm->isolate()->counters();
3412 __ IncrementCounter(counters->string_compare_native(), 1);
3414 // Find minimum length.
3416 __ mov(scratch1, FieldOperand(left, String::kLengthOffset));
3417 __ mov(scratch3, scratch1);
3418 __ sub(scratch3, FieldOperand(right, String::kLengthOffset));
3420 Register length_delta = scratch3;
3422 __ j(less_equal, &left_shorter, Label::kNear);
3423 // Right string is shorter. Change scratch1 to be length of right string.
3424 __ sub(scratch1, length_delta);
3425 __ bind(&left_shorter);
3427 Register min_length = scratch1;
3429 // If either length is zero, just compare lengths.
3430 Label compare_lengths;
3431 __ test(min_length, min_length);
3432 __ j(zero, &compare_lengths, Label::kNear);
3434 // Compare characters.
3435 Label result_not_equal;
3436 GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
3437 &result_not_equal, Label::kNear);
3439 // Compare lengths - strings up to min-length are equal.
3440 __ bind(&compare_lengths);
3441 __ test(length_delta, length_delta);
3442 Label length_not_equal;
3443 __ j(not_zero, &length_not_equal, Label::kNear);
3446 STATIC_ASSERT(EQUAL == 0);
3447 STATIC_ASSERT(kSmiTag == 0);
3448 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3451 Label result_greater;
3453 __ bind(&length_not_equal);
3454 __ j(greater, &result_greater, Label::kNear);
3455 __ jmp(&result_less, Label::kNear);
3456 __ bind(&result_not_equal);
3457 __ j(above, &result_greater, Label::kNear);
3458 __ bind(&result_less);
3461 __ Move(eax, Immediate(Smi::FromInt(LESS)));
3464 // Result is GREATER.
3465 __ bind(&result_greater);
3466 __ Move(eax, Immediate(Smi::FromInt(GREATER)));
3471 void StringHelper::GenerateOneByteCharsCompareLoop(
3472 MacroAssembler* masm, Register left, Register right, Register length,
3473 Register scratch, Label* chars_not_equal,
3474 Label::Distance chars_not_equal_near) {
3475 // Change index to run from -length to -1 by adding length to string
3476 // start. This means that loop ends when index reaches zero, which
3477 // doesn't need an additional compare.
3478 __ SmiUntag(length);
3480 FieldOperand(left, length, times_1, SeqOneByteString::kHeaderSize));
3482 FieldOperand(right, length, times_1, SeqOneByteString::kHeaderSize));
3484 Register index = length; // index = -length;
3489 __ mov_b(scratch, Operand(left, index, times_1, 0));
3490 __ cmpb(scratch, Operand(right, index, times_1, 0));
3491 __ j(not_equal, chars_not_equal, chars_not_equal_near);
3493 __ j(not_zero, &loop);
3497 void StringCompareStub::Generate(MacroAssembler* masm) {
3500 // Stack frame on entry.
3501 // esp[0]: return address
3502 // esp[4]: right string
3503 // esp[8]: left string
3505 __ mov(edx, Operand(esp, 2 * kPointerSize)); // left
3506 __ mov(eax, Operand(esp, 1 * kPointerSize)); // right
3510 __ j(not_equal, ¬_same, Label::kNear);
3511 STATIC_ASSERT(EQUAL == 0);
3512 STATIC_ASSERT(kSmiTag == 0);
3513 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3514 __ IncrementCounter(isolate()->counters()->string_compare_native(), 1);
3515 __ ret(2 * kPointerSize);
3519 // Check that both objects are sequential one-byte strings.
3520 __ JumpIfNotBothSequentialOneByteStrings(edx, eax, ecx, ebx, &runtime);
3522 // Compare flat one-byte strings.
3523 // Drop arguments from the stack.
3525 __ add(esp, Immediate(2 * kPointerSize));
3527 StringHelper::GenerateCompareFlatOneByteStrings(masm, edx, eax, ecx, ebx,
3530 // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
3531 // tagged as a small integer.
3533 __ TailCallRuntime(Runtime::kStringCompareRT, 2, 1);
3537 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
3538 // ----------- S t a t e -------------
3541 // -- esp[0] : return address
3542 // -----------------------------------
3544 // Load ecx with the allocation site. We stick an undefined dummy value here
3545 // and replace it with the real allocation site later when we instantiate this
3546 // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
3547 __ mov(ecx, handle(isolate()->heap()->undefined_value()));
3549 // Make sure that we actually patched the allocation site.
3550 if (FLAG_debug_code) {
3551 __ test(ecx, Immediate(kSmiTagMask));
3552 __ Assert(not_equal, kExpectedAllocationSite);
3553 __ cmp(FieldOperand(ecx, HeapObject::kMapOffset),
3554 isolate()->factory()->allocation_site_map());
3555 __ Assert(equal, kExpectedAllocationSite);
3558 // Tail call into the stub that handles binary operations with allocation
3560 BinaryOpWithAllocationSiteStub stub(isolate(), state());
3561 __ TailCallStub(&stub);
3565 void CompareICStub::GenerateSmis(MacroAssembler* masm) {
3566 DCHECK(state() == CompareICState::SMI);
3570 __ JumpIfNotSmi(ecx, &miss, Label::kNear);
3572 if (GetCondition() == equal) {
3573 // For equality we do not care about the sign of the result.
3578 __ j(no_overflow, &done, Label::kNear);
3579 // Correct sign of result in case of overflow.
3591 void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
3592 DCHECK(state() == CompareICState::NUMBER);
3595 Label unordered, maybe_undefined1, maybe_undefined2;
3598 if (left() == CompareICState::SMI) {
3599 __ JumpIfNotSmi(edx, &miss);
3601 if (right() == CompareICState::SMI) {
3602 __ JumpIfNotSmi(eax, &miss);
3605 // Load left and right operand.
3606 Label done, left, left_smi, right_smi;
3607 __ JumpIfSmi(eax, &right_smi, Label::kNear);
3608 __ cmp(FieldOperand(eax, HeapObject::kMapOffset),
3609 isolate()->factory()->heap_number_map());
3610 __ j(not_equal, &maybe_undefined1, Label::kNear);
3611 __ movsd(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
3612 __ jmp(&left, Label::kNear);
3613 __ bind(&right_smi);
3614 __ mov(ecx, eax); // Can't clobber eax because we can still jump away.
3616 __ Cvtsi2sd(xmm1, ecx);
3619 __ JumpIfSmi(edx, &left_smi, Label::kNear);
3620 __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
3621 isolate()->factory()->heap_number_map());
3622 __ j(not_equal, &maybe_undefined2, Label::kNear);
3623 __ movsd(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
3626 __ mov(ecx, edx); // Can't clobber edx because we can still jump away.
3628 __ Cvtsi2sd(xmm0, ecx);
3631 // Compare operands.
3632 __ ucomisd(xmm0, xmm1);
3634 // Don't base result on EFLAGS when a NaN is involved.
3635 __ j(parity_even, &unordered, Label::kNear);
3637 // Return a result of -1, 0, or 1, based on EFLAGS.
3638 // Performing mov, because xor would destroy the flag register.
3639 __ mov(eax, 0); // equal
3640 __ mov(ecx, Immediate(Smi::FromInt(1)));
3641 __ cmov(above, eax, ecx);
3642 __ mov(ecx, Immediate(Smi::FromInt(-1)));
3643 __ cmov(below, eax, ecx);
3646 __ bind(&unordered);
3647 __ bind(&generic_stub);
3648 CompareICStub stub(isolate(), op(), strong(), CompareICState::GENERIC,
3649 CompareICState::GENERIC, CompareICState::GENERIC);
3650 __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
3652 __ bind(&maybe_undefined1);
3653 if (Token::IsOrderedRelationalCompareOp(op())) {
3654 __ cmp(eax, Immediate(isolate()->factory()->undefined_value()));
3655 __ j(not_equal, &miss);
3656 __ JumpIfSmi(edx, &unordered);
3657 __ CmpObjectType(edx, HEAP_NUMBER_TYPE, ecx);
3658 __ j(not_equal, &maybe_undefined2, Label::kNear);
3662 __ bind(&maybe_undefined2);
3663 if (Token::IsOrderedRelationalCompareOp(op())) {
3664 __ cmp(edx, Immediate(isolate()->factory()->undefined_value()));
3665 __ j(equal, &unordered);
3673 void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
3674 DCHECK(state() == CompareICState::INTERNALIZED_STRING);
3675 DCHECK(GetCondition() == equal);
3677 // Registers containing left and right operands respectively.
3678 Register left = edx;
3679 Register right = eax;
3680 Register tmp1 = ecx;
3681 Register tmp2 = ebx;
3683 // Check that both operands are heap objects.
3686 STATIC_ASSERT(kSmiTag == 0);
3687 __ and_(tmp1, right);
3688 __ JumpIfSmi(tmp1, &miss, Label::kNear);
3690 // Check that both operands are internalized strings.
3691 __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
3692 __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
3693 __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
3694 __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
3695 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
3697 __ test(tmp1, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
3698 __ j(not_zero, &miss, Label::kNear);
3700 // Internalized strings are compared by identity.
3702 __ cmp(left, right);
3703 // Make sure eax is non-zero. At this point input operands are
3704 // guaranteed to be non-zero.
3705 DCHECK(right.is(eax));
3706 __ j(not_equal, &done, Label::kNear);
3707 STATIC_ASSERT(EQUAL == 0);
3708 STATIC_ASSERT(kSmiTag == 0);
3709 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3718 void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
3719 DCHECK(state() == CompareICState::UNIQUE_NAME);
3720 DCHECK(GetCondition() == equal);
3722 // Registers containing left and right operands respectively.
3723 Register left = edx;
3724 Register right = eax;
3725 Register tmp1 = ecx;
3726 Register tmp2 = ebx;
3728 // Check that both operands are heap objects.
3731 STATIC_ASSERT(kSmiTag == 0);
3732 __ and_(tmp1, right);
3733 __ JumpIfSmi(tmp1, &miss, Label::kNear);
3735 // Check that both operands are unique names. This leaves the instance
3736 // types loaded in tmp1 and tmp2.
3737 __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
3738 __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
3739 __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
3740 __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
3742 __ JumpIfNotUniqueNameInstanceType(tmp1, &miss, Label::kNear);
3743 __ JumpIfNotUniqueNameInstanceType(tmp2, &miss, Label::kNear);
3745 // Unique names are compared by identity.
3747 __ cmp(left, right);
3748 // Make sure eax is non-zero. At this point input operands are
3749 // guaranteed to be non-zero.
3750 DCHECK(right.is(eax));
3751 __ j(not_equal, &done, Label::kNear);
3752 STATIC_ASSERT(EQUAL == 0);
3753 STATIC_ASSERT(kSmiTag == 0);
3754 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3763 void CompareICStub::GenerateStrings(MacroAssembler* masm) {
3764 DCHECK(state() == CompareICState::STRING);
3767 bool equality = Token::IsEqualityOp(op());
3769 // Registers containing left and right operands respectively.
3770 Register left = edx;
3771 Register right = eax;
3772 Register tmp1 = ecx;
3773 Register tmp2 = ebx;
3774 Register tmp3 = edi;
3776 // Check that both operands are heap objects.
3778 STATIC_ASSERT(kSmiTag == 0);
3779 __ and_(tmp1, right);
3780 __ JumpIfSmi(tmp1, &miss);
3782 // Check that both operands are strings. This leaves the instance
3783 // types loaded in tmp1 and tmp2.
3784 __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
3785 __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
3786 __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
3787 __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
3789 STATIC_ASSERT(kNotStringTag != 0);
3791 __ test(tmp3, Immediate(kIsNotStringMask));
3792 __ j(not_zero, &miss);
3794 // Fast check for identical strings.
3796 __ cmp(left, right);
3797 __ j(not_equal, ¬_same, Label::kNear);
3798 STATIC_ASSERT(EQUAL == 0);
3799 STATIC_ASSERT(kSmiTag == 0);
3800 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3803 // Handle not identical strings.
3806 // Check that both strings are internalized. If they are, we're done
3807 // because we already know they are not identical. But in the case of
3808 // non-equality compare, we still need to determine the order. We
3809 // also know they are both strings.
3812 STATIC_ASSERT(kInternalizedTag == 0);
3814 __ test(tmp1, Immediate(kIsNotInternalizedMask));
3815 __ j(not_zero, &do_compare, Label::kNear);
3816 // Make sure eax is non-zero. At this point input operands are
3817 // guaranteed to be non-zero.
3818 DCHECK(right.is(eax));
3820 __ bind(&do_compare);
3823 // Check that both strings are sequential one-byte.
3825 __ JumpIfNotBothSequentialOneByteStrings(left, right, tmp1, tmp2, &runtime);
3827 // Compare flat one byte strings. Returns when done.
3829 StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1,
3832 StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
3836 // Handle more complex cases in runtime.
3838 __ pop(tmp1); // Return address.
3843 __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
3845 __ TailCallRuntime(Runtime::kStringCompareRT, 2, 1);
3853 void CompareICStub::GenerateObjects(MacroAssembler* masm) {
3854 DCHECK(state() == CompareICState::OBJECT);
3858 __ JumpIfSmi(ecx, &miss, Label::kNear);
3860 __ CmpObjectType(eax, JS_OBJECT_TYPE, ecx);
3861 __ j(not_equal, &miss, Label::kNear);
3862 __ CmpObjectType(edx, JS_OBJECT_TYPE, ecx);
3863 __ j(not_equal, &miss, Label::kNear);
3865 DCHECK(GetCondition() == equal);
3874 void CompareICStub::GenerateKnownObjects(MacroAssembler* masm) {
3876 Handle<WeakCell> cell = Map::WeakCellForMap(known_map_);
3879 __ JumpIfSmi(ecx, &miss, Label::kNear);
3881 __ GetWeakValue(edi, cell);
3882 __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
3883 __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset));
3885 __ j(not_equal, &miss, Label::kNear);
3887 __ j(not_equal, &miss, Label::kNear);
3897 void CompareICStub::GenerateMiss(MacroAssembler* masm) {
3899 // Call the runtime system in a fresh internal frame.
3900 ExternalReference miss = ExternalReference(IC_Utility(IC::kCompareIC_Miss),
3902 FrameScope scope(masm, StackFrame::INTERNAL);
3903 __ push(edx); // Preserve edx and eax.
3905 __ push(edx); // And also use them as the arguments.
3907 __ push(Immediate(Smi::FromInt(op())));
3908 __ CallExternalReference(miss, 3);
3909 // Compute the entry point of the rewritten stub.
3910 __ lea(edi, FieldOperand(eax, Code::kHeaderSize));
3915 // Do a tail call to the rewritten stub.
3920 // Helper function used to check that the dictionary doesn't contain
3921 // the property. This function may return false negatives, so miss_label
3922 // must always call a backup property check that is complete.
3923 // This function is safe to call if the receiver has fast properties.
3924 // Name must be a unique name and receiver must be a heap object.
3925 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
3928 Register properties,
3931 DCHECK(name->IsUniqueName());
3933 // If names of slots in range from 1 to kProbes - 1 for the hash value are
3934 // not equal to the name and kProbes-th slot is not used (its name is the
3935 // undefined value), it guarantees the hash table doesn't contain the
3936 // property. It's true even if some slots represent deleted properties
3937 // (their names are the hole value).
3938 for (int i = 0; i < kInlinedProbes; i++) {
3939 // Compute the masked index: (hash + i + i * i) & mask.
3940 Register index = r0;
3941 // Capacity is smi 2^n.
3942 __ mov(index, FieldOperand(properties, kCapacityOffset));
3945 Immediate(Smi::FromInt(name->Hash() +
3946 NameDictionary::GetProbeOffset(i))));
3948 // Scale the index by multiplying by the entry size.
3949 DCHECK(NameDictionary::kEntrySize == 3);
3950 __ lea(index, Operand(index, index, times_2, 0)); // index *= 3.
3951 Register entity_name = r0;
3952 // Having undefined at this place means the name is not contained.
3953 DCHECK_EQ(kSmiTagSize, 1);
3954 __ mov(entity_name, Operand(properties, index, times_half_pointer_size,
3955 kElementsStartOffset - kHeapObjectTag));
3956 __ cmp(entity_name, masm->isolate()->factory()->undefined_value());
3959 // Stop if found the property.
3960 __ cmp(entity_name, Handle<Name>(name));
3964 // Check for the hole and skip.
3965 __ cmp(entity_name, masm->isolate()->factory()->the_hole_value());
3966 __ j(equal, &good, Label::kNear);
3968 // Check if the entry name is not a unique name.
3969 __ mov(entity_name, FieldOperand(entity_name, HeapObject::kMapOffset));
3970 __ JumpIfNotUniqueNameInstanceType(
3971 FieldOperand(entity_name, Map::kInstanceTypeOffset), miss);
3975 NameDictionaryLookupStub stub(masm->isolate(), properties, r0, r0,
3977 __ push(Immediate(Handle<Object>(name)));
3978 __ push(Immediate(name->Hash()));
3981 __ j(not_zero, miss);
3986 // Probe the name dictionary in the |elements| register. Jump to the
3987 // |done| label if a property with the given name is found leaving the
3988 // index into the dictionary in |r0|. Jump to the |miss| label
3990 void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
3997 DCHECK(!elements.is(r0));
3998 DCHECK(!elements.is(r1));
3999 DCHECK(!name.is(r0));
4000 DCHECK(!name.is(r1));
4002 __ AssertName(name);
4004 __ mov(r1, FieldOperand(elements, kCapacityOffset));
4005 __ shr(r1, kSmiTagSize); // convert smi to int
4008 // Generate an unrolled loop that performs a few probes before
4009 // giving up. Measurements done on Gmail indicate that 2 probes
4010 // cover ~93% of loads from dictionaries.
4011 for (int i = 0; i < kInlinedProbes; i++) {
4012 // Compute the masked index: (hash + i + i * i) & mask.
4013 __ mov(r0, FieldOperand(name, Name::kHashFieldOffset));
4014 __ shr(r0, Name::kHashShift);
4016 __ add(r0, Immediate(NameDictionary::GetProbeOffset(i)));
4020 // Scale the index by multiplying by the entry size.
4021 DCHECK(NameDictionary::kEntrySize == 3);
4022 __ lea(r0, Operand(r0, r0, times_2, 0)); // r0 = r0 * 3
4024 // Check if the key is identical to the name.
4025 __ cmp(name, Operand(elements,
4028 kElementsStartOffset - kHeapObjectTag));
4032 NameDictionaryLookupStub stub(masm->isolate(), elements, r1, r0,
4035 __ mov(r0, FieldOperand(name, Name::kHashFieldOffset));
4036 __ shr(r0, Name::kHashShift);
4046 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
4047 // This stub overrides SometimesSetsUpAFrame() to return false. That means
4048 // we cannot call anything that could cause a GC from this stub.
4049 // Stack frame on entry:
4050 // esp[0 * kPointerSize]: return address.
4051 // esp[1 * kPointerSize]: key's hash.
4052 // esp[2 * kPointerSize]: key.
4054 // dictionary_: NameDictionary to probe.
4055 // result_: used as scratch.
4056 // index_: will hold an index of entry if lookup is successful.
4057 // might alias with result_.
4059 // result_ is zero if lookup failed, non zero otherwise.
4061 Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
4063 Register scratch = result();
4065 __ mov(scratch, FieldOperand(dictionary(), kCapacityOffset));
4067 __ SmiUntag(scratch);
4070 // If names of slots in range from 1 to kProbes - 1 for the hash value are
4071 // not equal to the name and kProbes-th slot is not used (its name is the
4072 // undefined value), it guarantees the hash table doesn't contain the
4073 // property. It's true even if some slots represent deleted properties
4074 // (their names are the null value).
4075 for (int i = kInlinedProbes; i < kTotalProbes; i++) {
4076 // Compute the masked index: (hash + i + i * i) & mask.
4077 __ mov(scratch, Operand(esp, 2 * kPointerSize));
4079 __ add(scratch, Immediate(NameDictionary::GetProbeOffset(i)));
4081 __ and_(scratch, Operand(esp, 0));
4083 // Scale the index by multiplying by the entry size.
4084 DCHECK(NameDictionary::kEntrySize == 3);
4085 __ lea(index(), Operand(scratch, scratch, times_2, 0)); // index *= 3.
4087 // Having undefined at this place means the name is not contained.
4088 DCHECK_EQ(kSmiTagSize, 1);
4089 __ mov(scratch, Operand(dictionary(), index(), times_pointer_size,
4090 kElementsStartOffset - kHeapObjectTag));
4091 __ cmp(scratch, isolate()->factory()->undefined_value());
4092 __ j(equal, ¬_in_dictionary);
4094 // Stop if found the property.
4095 __ cmp(scratch, Operand(esp, 3 * kPointerSize));
4096 __ j(equal, &in_dictionary);
4098 if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
4099 // If we hit a key that is not a unique name during negative
4100 // lookup we have to bailout as this key might be equal to the
4101 // key we are looking for.
4103 // Check if the entry name is not a unique name.
4104 __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
4105 __ JumpIfNotUniqueNameInstanceType(
4106 FieldOperand(scratch, Map::kInstanceTypeOffset),
4107 &maybe_in_dictionary);
4111 __ bind(&maybe_in_dictionary);
4112 // If we are doing negative lookup then probing failure should be
4113 // treated as a lookup success. For positive lookup probing failure
4114 // should be treated as lookup failure.
4115 if (mode() == POSITIVE_LOOKUP) {
4116 __ mov(result(), Immediate(0));
4118 __ ret(2 * kPointerSize);
4121 __ bind(&in_dictionary);
4122 __ mov(result(), Immediate(1));
4124 __ ret(2 * kPointerSize);
4126 __ bind(¬_in_dictionary);
4127 __ mov(result(), Immediate(0));
4129 __ ret(2 * kPointerSize);
4133 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
4135 StoreBufferOverflowStub stub(isolate, kDontSaveFPRegs);
4137 StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
4142 // Takes the input in 3 registers: address_ value_ and object_. A pointer to
4143 // the value has just been written into the object, now this stub makes sure
4144 // we keep the GC informed. The word in the object where the value has been
4145 // written is in the address register.
4146 void RecordWriteStub::Generate(MacroAssembler* masm) {
4147 Label skip_to_incremental_noncompacting;
4148 Label skip_to_incremental_compacting;
4150 // The first two instructions are generated with labels so as to get the
4151 // offset fixed up correctly by the bind(Label*) call. We patch it back and
4152 // forth between a compare instructions (a nop in this position) and the
4153 // real branch when we start and stop incremental heap marking.
4154 __ jmp(&skip_to_incremental_noncompacting, Label::kNear);
4155 __ jmp(&skip_to_incremental_compacting, Label::kFar);
4157 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
4158 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
4159 MacroAssembler::kReturnAtEnd);
4164 __ bind(&skip_to_incremental_noncompacting);
4165 GenerateIncremental(masm, INCREMENTAL);
4167 __ bind(&skip_to_incremental_compacting);
4168 GenerateIncremental(masm, INCREMENTAL_COMPACTION);
4170 // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
4171 // Will be checked in IncrementalMarking::ActivateGeneratedStub.
4172 masm->set_byte_at(0, kTwoByteNopInstruction);
4173 masm->set_byte_at(2, kFiveByteNopInstruction);
4177 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
4180 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
4181 Label dont_need_remembered_set;
4183 __ mov(regs_.scratch0(), Operand(regs_.address(), 0));
4184 __ JumpIfNotInNewSpace(regs_.scratch0(), // Value.
4186 &dont_need_remembered_set);
4188 __ CheckPageFlag(regs_.object(),
4190 1 << MemoryChunk::SCAN_ON_SCAVENGE,
4192 &dont_need_remembered_set);
4194 // First notify the incremental marker if necessary, then update the
4196 CheckNeedsToInformIncrementalMarker(
4198 kUpdateRememberedSetOnNoNeedToInformIncrementalMarker,
4200 InformIncrementalMarker(masm);
4201 regs_.Restore(masm);
4202 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
4203 MacroAssembler::kReturnAtEnd);
4205 __ bind(&dont_need_remembered_set);
4208 CheckNeedsToInformIncrementalMarker(
4210 kReturnOnNoNeedToInformIncrementalMarker,
4212 InformIncrementalMarker(masm);
4213 regs_.Restore(masm);
4218 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
4219 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
4220 int argument_count = 3;
4221 __ PrepareCallCFunction(argument_count, regs_.scratch0());
4222 __ mov(Operand(esp, 0 * kPointerSize), regs_.object());
4223 __ mov(Operand(esp, 1 * kPointerSize), regs_.address()); // Slot.
4224 __ mov(Operand(esp, 2 * kPointerSize),
4225 Immediate(ExternalReference::isolate_address(isolate())));
4227 AllowExternalCallThatCantCauseGC scope(masm);
4229 ExternalReference::incremental_marking_record_write_function(isolate()),
4232 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
4236 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
4237 MacroAssembler* masm,
4238 OnNoNeedToInformIncrementalMarker on_no_need,
4240 Label object_is_black, need_incremental, need_incremental_pop_object;
4242 __ mov(regs_.scratch0(), Immediate(~Page::kPageAlignmentMask));
4243 __ and_(regs_.scratch0(), regs_.object());
4244 __ mov(regs_.scratch1(),
4245 Operand(regs_.scratch0(),
4246 MemoryChunk::kWriteBarrierCounterOffset));
4247 __ sub(regs_.scratch1(), Immediate(1));
4248 __ mov(Operand(regs_.scratch0(),
4249 MemoryChunk::kWriteBarrierCounterOffset),
4251 __ j(negative, &need_incremental);
4253 // Let's look at the color of the object: If it is not black we don't have
4254 // to inform the incremental marker.
4255 __ JumpIfBlack(regs_.object(),
4261 regs_.Restore(masm);
4262 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
4263 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
4264 MacroAssembler::kReturnAtEnd);
4269 __ bind(&object_is_black);
4271 // Get the value from the slot.
4272 __ mov(regs_.scratch0(), Operand(regs_.address(), 0));
4274 if (mode == INCREMENTAL_COMPACTION) {
4275 Label ensure_not_white;
4277 __ CheckPageFlag(regs_.scratch0(), // Contains value.
4278 regs_.scratch1(), // Scratch.
4279 MemoryChunk::kEvacuationCandidateMask,
4284 __ CheckPageFlag(regs_.object(),
4285 regs_.scratch1(), // Scratch.
4286 MemoryChunk::kSkipEvacuationSlotsRecordingMask,
4291 __ jmp(&need_incremental);
4293 __ bind(&ensure_not_white);
4296 // We need an extra register for this, so we push the object register
4298 __ push(regs_.object());
4299 __ EnsureNotWhite(regs_.scratch0(), // The value.
4300 regs_.scratch1(), // Scratch.
4301 regs_.object(), // Scratch.
4302 &need_incremental_pop_object,
4304 __ pop(regs_.object());
4306 regs_.Restore(masm);
4307 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
4308 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
4309 MacroAssembler::kReturnAtEnd);
4314 __ bind(&need_incremental_pop_object);
4315 __ pop(regs_.object());
4317 __ bind(&need_incremental);
4319 // Fall through when we need to inform the incremental marker.
4323 void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
4324 // ----------- S t a t e -------------
4325 // -- eax : element value to store
4326 // -- ecx : element index as smi
4327 // -- esp[0] : return address
4328 // -- esp[4] : array literal index in function
4329 // -- esp[8] : array literal
4330 // clobbers ebx, edx, edi
4331 // -----------------------------------
4334 Label double_elements;
4336 Label slow_elements;
4337 Label slow_elements_from_double;
4338 Label fast_elements;
4340 // Get array literal index, array literal and its map.
4341 __ mov(edx, Operand(esp, 1 * kPointerSize));
4342 __ mov(ebx, Operand(esp, 2 * kPointerSize));
4343 __ mov(edi, FieldOperand(ebx, JSObject::kMapOffset));
4345 __ CheckFastElements(edi, &double_elements);
4347 // Check for FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS elements
4348 __ JumpIfSmi(eax, &smi_element);
4349 __ CheckFastSmiElements(edi, &fast_elements, Label::kNear);
4351 // Store into the array literal requires a elements transition. Call into
4354 __ bind(&slow_elements);
4355 __ pop(edi); // Pop return address and remember to put back later for tail
4360 __ mov(ebx, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
4361 __ push(FieldOperand(ebx, JSFunction::kLiteralsOffset));
4363 __ push(edi); // Return return address so that tail call returns to right
4365 __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
4367 __ bind(&slow_elements_from_double);
4369 __ jmp(&slow_elements);
4371 // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object.
4372 __ bind(&fast_elements);
4373 __ mov(ebx, FieldOperand(ebx, JSObject::kElementsOffset));
4374 __ lea(ecx, FieldOperand(ebx, ecx, times_half_pointer_size,
4375 FixedArrayBase::kHeaderSize));
4376 __ mov(Operand(ecx, 0), eax);
4377 // Update the write barrier for the array store.
4378 __ RecordWrite(ebx, ecx, eax,
4380 EMIT_REMEMBERED_SET,
4384 // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS,
4385 // and value is Smi.
4386 __ bind(&smi_element);
4387 __ mov(ebx, FieldOperand(ebx, JSObject::kElementsOffset));
4388 __ mov(FieldOperand(ebx, ecx, times_half_pointer_size,
4389 FixedArrayBase::kHeaderSize), eax);
4392 // Array literal has ElementsKind of FAST_*_DOUBLE_ELEMENTS.
4393 __ bind(&double_elements);
4396 __ mov(edx, FieldOperand(ebx, JSObject::kElementsOffset));
4397 __ StoreNumberToDoubleElements(eax,
4402 &slow_elements_from_double);
4408 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
4409 CEntryStub ces(isolate(), 1, kSaveFPRegs);
4410 __ call(ces.GetCode(), RelocInfo::CODE_TARGET);
4411 int parameter_count_offset =
4412 StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
4413 __ mov(ebx, MemOperand(ebp, parameter_count_offset));
4414 masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
4416 int additional_offset =
4417 function_mode() == JS_FUNCTION_STUB_MODE ? kPointerSize : 0;
4418 __ lea(esp, MemOperand(esp, ebx, times_pointer_size, additional_offset));
4419 __ jmp(ecx); // Return to IC Miss stub, continuation still on stack.
4423 void LoadICTrampolineStub::Generate(MacroAssembler* masm) {
4424 EmitLoadTypeFeedbackVector(masm, LoadWithVectorDescriptor::VectorRegister());
4425 LoadICStub stub(isolate(), state());
4426 stub.GenerateForTrampoline(masm);
4430 void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) {
4431 EmitLoadTypeFeedbackVector(masm, LoadWithVectorDescriptor::VectorRegister());
4432 KeyedLoadICStub stub(isolate());
4433 stub.GenerateForTrampoline(masm);
4437 static void HandleArrayCases(MacroAssembler* masm, Register receiver,
4438 Register key, Register vector, Register slot,
4439 Register feedback, bool is_polymorphic,
4441 // feedback initially contains the feedback array
4442 Label next, next_loop, prepare_next;
4443 Label load_smi_map, compare_map;
4444 Label start_polymorphic;
4449 Register receiver_map = receiver;
4450 Register cached_map = vector;
4452 // Receiver might not be a heap object.
4453 __ JumpIfSmi(receiver, &load_smi_map);
4454 __ mov(receiver_map, FieldOperand(receiver, 0));
4455 __ bind(&compare_map);
4456 __ mov(cached_map, FieldOperand(feedback, FixedArray::OffsetOfElementAt(0)));
4458 // A named keyed load might have a 2 element array, all other cases can count
4459 // on an array with at least 2 {map, handler} pairs, so they can go right
4460 // into polymorphic array handling.
4461 __ cmp(receiver_map, FieldOperand(cached_map, WeakCell::kValueOffset));
4462 __ j(not_equal, is_polymorphic ? &start_polymorphic : &next);
4464 // found, now call handler.
4465 Register handler = feedback;
4466 __ mov(handler, FieldOperand(feedback, FixedArray::OffsetOfElementAt(1)));
4469 __ lea(handler, FieldOperand(handler, Code::kHeaderSize));
4472 if (!is_polymorphic) {
4474 __ cmp(FieldOperand(feedback, FixedArray::kLengthOffset),
4475 Immediate(Smi::FromInt(2)));
4476 __ j(not_equal, &start_polymorphic);
4482 // Polymorphic, we have to loop from 2 to N
4483 __ bind(&start_polymorphic);
4485 Register counter = key;
4486 __ mov(counter, Immediate(Smi::FromInt(2)));
4487 __ bind(&next_loop);
4488 __ mov(cached_map, FieldOperand(feedback, counter, times_half_pointer_size,
4489 FixedArray::kHeaderSize));
4490 __ cmp(receiver_map, FieldOperand(cached_map, WeakCell::kValueOffset));
4491 __ j(not_equal, &prepare_next);
4492 __ mov(handler, FieldOperand(feedback, counter, times_half_pointer_size,
4493 FixedArray::kHeaderSize + kPointerSize));
4497 __ lea(handler, FieldOperand(handler, Code::kHeaderSize));
4500 __ bind(&prepare_next);
4501 __ add(counter, Immediate(Smi::FromInt(2)));
4502 __ cmp(counter, FieldOperand(feedback, FixedArray::kLengthOffset));
4503 __ j(less, &next_loop);
4505 // We exhausted our array of map handler pairs.
4511 __ bind(&load_smi_map);
4512 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
4513 __ jmp(&compare_map);
4517 static void HandleMonomorphicCase(MacroAssembler* masm, Register receiver,
4518 Register key, Register vector, Register slot,
4519 Register weak_cell, Label* miss) {
4520 // feedback initially contains the feedback array
4521 Label compare_smi_map;
4523 // Move the weak map into the weak_cell register.
4524 Register ic_map = weak_cell;
4525 __ mov(ic_map, FieldOperand(weak_cell, WeakCell::kValueOffset));
4527 // Receiver might not be a heap object.
4528 __ JumpIfSmi(receiver, &compare_smi_map);
4529 __ cmp(ic_map, FieldOperand(receiver, 0));
4530 __ j(not_equal, miss);
4531 Register handler = weak_cell;
4532 __ mov(handler, FieldOperand(vector, slot, times_half_pointer_size,
4533 FixedArray::kHeaderSize + kPointerSize));
4534 __ lea(handler, FieldOperand(handler, Code::kHeaderSize));
4537 // In microbenchmarks, it made sense to unroll this code so that the call to
4538 // the handler is duplicated for a HeapObject receiver and a Smi receiver.
4539 __ bind(&compare_smi_map);
4540 __ CompareRoot(ic_map, Heap::kHeapNumberMapRootIndex);
4541 __ j(not_equal, miss);
4542 __ mov(handler, FieldOperand(vector, slot, times_half_pointer_size,
4543 FixedArray::kHeaderSize + kPointerSize));
4544 __ lea(handler, FieldOperand(handler, Code::kHeaderSize));
4549 void LoadICStub::Generate(MacroAssembler* masm) { GenerateImpl(masm, false); }
4552 void LoadICStub::GenerateForTrampoline(MacroAssembler* masm) {
4553 GenerateImpl(masm, true);
4557 void LoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4558 Register receiver = LoadWithVectorDescriptor::ReceiverRegister(); // edx
4559 Register name = LoadWithVectorDescriptor::NameRegister(); // ecx
4560 Register vector = LoadWithVectorDescriptor::VectorRegister(); // ebx
4561 Register slot = LoadWithVectorDescriptor::SlotRegister(); // eax
4562 Register scratch = edi;
4563 __ mov(scratch, FieldOperand(vector, slot, times_half_pointer_size,
4564 FixedArray::kHeaderSize));
4566 // Is it a weak cell?
4568 Label not_array, smi_key, key_okay, miss;
4569 __ CompareRoot(FieldOperand(scratch, 0), Heap::kWeakCellMapRootIndex);
4570 __ j(not_equal, &try_array);
4571 HandleMonomorphicCase(masm, receiver, name, vector, slot, scratch, &miss);
4573 // Is it a fixed array?
4574 __ bind(&try_array);
4575 __ CompareRoot(FieldOperand(scratch, 0), Heap::kFixedArrayMapRootIndex);
4576 __ j(not_equal, ¬_array);
4577 HandleArrayCases(masm, receiver, name, vector, slot, scratch, true, &miss);
4579 __ bind(¬_array);
4580 __ CompareRoot(scratch, Heap::kmegamorphic_symbolRootIndex);
4581 __ j(not_equal, &miss);
4584 Code::Flags code_flags = Code::RemoveTypeAndHolderFromFlags(
4585 Code::ComputeHandlerFlags(Code::LOAD_IC));
4586 masm->isolate()->stub_cache()->GenerateProbe(
4587 masm, Code::LOAD_IC, code_flags, false, receiver, name, vector, scratch);
4592 LoadIC::GenerateMiss(masm);
4596 void KeyedLoadICStub::Generate(MacroAssembler* masm) {
4597 GenerateImpl(masm, false);
4601 void KeyedLoadICStub::GenerateForTrampoline(MacroAssembler* masm) {
4602 GenerateImpl(masm, true);
4606 void KeyedLoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4607 Register receiver = LoadWithVectorDescriptor::ReceiverRegister(); // edx
4608 Register key = LoadWithVectorDescriptor::NameRegister(); // ecx
4609 Register vector = LoadWithVectorDescriptor::VectorRegister(); // ebx
4610 Register slot = LoadWithVectorDescriptor::SlotRegister(); // eax
4611 Register feedback = edi;
4612 __ mov(feedback, FieldOperand(vector, slot, times_half_pointer_size,
4613 FixedArray::kHeaderSize));
4614 // Is it a weak cell?
4616 Label not_array, smi_key, key_okay, miss;
4617 __ CompareRoot(FieldOperand(feedback, 0), Heap::kWeakCellMapRootIndex);
4618 __ j(not_equal, &try_array);
4619 HandleMonomorphicCase(masm, receiver, key, vector, slot, feedback, &miss);
4621 __ bind(&try_array);
4622 // Is it a fixed array?
4623 __ CompareRoot(FieldOperand(feedback, 0), Heap::kFixedArrayMapRootIndex);
4624 __ j(not_equal, ¬_array);
4626 // We have a polymorphic element handler.
4627 Label polymorphic, try_poly_name;
4628 __ bind(&polymorphic);
4629 HandleArrayCases(masm, receiver, key, vector, slot, feedback, true, &miss);
4631 __ bind(¬_array);
4633 __ CompareRoot(feedback, Heap::kmegamorphic_symbolRootIndex);
4634 __ j(not_equal, &try_poly_name);
4635 Handle<Code> megamorphic_stub =
4636 KeyedLoadIC::ChooseMegamorphicStub(masm->isolate());
4637 __ jmp(megamorphic_stub, RelocInfo::CODE_TARGET);
4639 __ bind(&try_poly_name);
4640 // We might have a name in feedback, and a fixed array in the next slot.
4641 __ cmp(key, feedback);
4642 __ j(not_equal, &miss);
4643 // If the name comparison succeeded, we know we have a fixed array with
4644 // at least one map/handler pair.
4645 __ mov(feedback, FieldOperand(vector, slot, times_half_pointer_size,
4646 FixedArray::kHeaderSize + kPointerSize));
4647 HandleArrayCases(masm, receiver, key, vector, slot, feedback, false, &miss);
4650 KeyedLoadIC::GenerateMiss(masm);
4654 void VectorStoreICTrampolineStub::Generate(MacroAssembler* masm) {
4655 EmitLoadTypeFeedbackVector(masm, VectorStoreICDescriptor::VectorRegister());
4656 VectorStoreICStub stub(isolate(), state());
4657 stub.GenerateForTrampoline(masm);
4661 void VectorKeyedStoreICTrampolineStub::Generate(MacroAssembler* masm) {
4662 EmitLoadTypeFeedbackVector(masm, VectorStoreICDescriptor::VectorRegister());
4663 VectorKeyedStoreICStub stub(isolate(), state());
4664 stub.GenerateForTrampoline(masm);
4668 void VectorStoreICStub::Generate(MacroAssembler* masm) {
4669 GenerateImpl(masm, false);
4673 void VectorStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
4674 GenerateImpl(masm, true);
4678 void VectorStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4681 // TODO(mvstanton): Implement.
4683 StoreIC::GenerateMiss(masm);
4687 void VectorKeyedStoreICStub::Generate(MacroAssembler* masm) {
4688 GenerateImpl(masm, false);
4692 void VectorKeyedStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
4693 GenerateImpl(masm, true);
4697 void VectorKeyedStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4700 // TODO(mvstanton): Implement.
4702 KeyedStoreIC::GenerateMiss(masm);
4706 void CallICTrampolineStub::Generate(MacroAssembler* masm) {
4707 EmitLoadTypeFeedbackVector(masm, ebx);
4708 CallICStub stub(isolate(), state());
4709 __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
4713 void CallIC_ArrayTrampolineStub::Generate(MacroAssembler* masm) {
4714 EmitLoadTypeFeedbackVector(masm, ebx);
4715 CallIC_ArrayStub stub(isolate(), state());
4716 __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
4720 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
4721 if (masm->isolate()->function_entry_hook() != NULL) {
4722 ProfileEntryHookStub stub(masm->isolate());
4723 masm->CallStub(&stub);
4728 void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
4729 // Save volatile registers.
4730 const int kNumSavedRegisters = 3;
4735 // Calculate and push the original stack pointer.
4736 __ lea(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize));
4739 // Retrieve our return address and use it to calculate the calling
4740 // function's address.
4741 __ mov(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize));
4742 __ sub(eax, Immediate(Assembler::kCallInstructionLength));
4745 // Call the entry hook.
4746 DCHECK(isolate()->function_entry_hook() != NULL);
4747 __ call(FUNCTION_ADDR(isolate()->function_entry_hook()),
4748 RelocInfo::RUNTIME_ENTRY);
4749 __ add(esp, Immediate(2 * kPointerSize));
4761 static void CreateArrayDispatch(MacroAssembler* masm,
4762 AllocationSiteOverrideMode mode) {
4763 if (mode == DISABLE_ALLOCATION_SITES) {
4764 T stub(masm->isolate(),
4765 GetInitialFastElementsKind(),
4767 __ TailCallStub(&stub);
4768 } else if (mode == DONT_OVERRIDE) {
4769 int last_index = GetSequenceIndexFromFastElementsKind(
4770 TERMINAL_FAST_ELEMENTS_KIND);
4771 for (int i = 0; i <= last_index; ++i) {
4773 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4775 __ j(not_equal, &next);
4776 T stub(masm->isolate(), kind);
4777 __ TailCallStub(&stub);
4781 // If we reached this point there is a problem.
4782 __ Abort(kUnexpectedElementsKindInArrayConstructor);
4789 static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
4790 AllocationSiteOverrideMode mode) {
4791 // ebx - allocation site (if mode != DISABLE_ALLOCATION_SITES)
4792 // edx - kind (if mode != DISABLE_ALLOCATION_SITES)
4793 // eax - number of arguments
4794 // edi - constructor?
4795 // esp[0] - return address
4796 // esp[4] - last argument
4797 Label normal_sequence;
4798 if (mode == DONT_OVERRIDE) {
4799 DCHECK(FAST_SMI_ELEMENTS == 0);
4800 DCHECK(FAST_HOLEY_SMI_ELEMENTS == 1);
4801 DCHECK(FAST_ELEMENTS == 2);
4802 DCHECK(FAST_HOLEY_ELEMENTS == 3);
4803 DCHECK(FAST_DOUBLE_ELEMENTS == 4);
4804 DCHECK(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
4806 // is the low bit set? If so, we are holey and that is good.
4808 __ j(not_zero, &normal_sequence);
4811 // look at the first argument
4812 __ mov(ecx, Operand(esp, kPointerSize));
4814 __ j(zero, &normal_sequence);
4816 if (mode == DISABLE_ALLOCATION_SITES) {
4817 ElementsKind initial = GetInitialFastElementsKind();
4818 ElementsKind holey_initial = GetHoleyElementsKind(initial);
4820 ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
4822 DISABLE_ALLOCATION_SITES);
4823 __ TailCallStub(&stub_holey);
4825 __ bind(&normal_sequence);
4826 ArraySingleArgumentConstructorStub stub(masm->isolate(),
4828 DISABLE_ALLOCATION_SITES);
4829 __ TailCallStub(&stub);
4830 } else if (mode == DONT_OVERRIDE) {
4831 // We are going to create a holey array, but our kind is non-holey.
4832 // Fix kind and retry.
4835 if (FLAG_debug_code) {
4836 Handle<Map> allocation_site_map =
4837 masm->isolate()->factory()->allocation_site_map();
4838 __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map));
4839 __ Assert(equal, kExpectedAllocationSite);
4842 // Save the resulting elements kind in type info. We can't just store r3
4843 // in the AllocationSite::transition_info field because elements kind is
4844 // restricted to a portion of the field...upper bits need to be left alone.
4845 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4846 __ add(FieldOperand(ebx, AllocationSite::kTransitionInfoOffset),
4847 Immediate(Smi::FromInt(kFastElementsKindPackedToHoley)));
4849 __ bind(&normal_sequence);
4850 int last_index = GetSequenceIndexFromFastElementsKind(
4851 TERMINAL_FAST_ELEMENTS_KIND);
4852 for (int i = 0; i <= last_index; ++i) {
4854 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4856 __ j(not_equal, &next);
4857 ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
4858 __ TailCallStub(&stub);
4862 // If we reached this point there is a problem.
4863 __ Abort(kUnexpectedElementsKindInArrayConstructor);
4871 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
4872 int to_index = GetSequenceIndexFromFastElementsKind(
4873 TERMINAL_FAST_ELEMENTS_KIND);
4874 for (int i = 0; i <= to_index; ++i) {
4875 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4876 T stub(isolate, kind);
4878 if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
4879 T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
4886 void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
4887 ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
4889 ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
4891 ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
4896 void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
4898 ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
4899 for (int i = 0; i < 2; i++) {
4900 // For internal arrays we only need a few things
4901 InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
4903 InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
4905 InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]);
4911 void ArrayConstructorStub::GenerateDispatchToArrayStub(
4912 MacroAssembler* masm,
4913 AllocationSiteOverrideMode mode) {
4914 if (argument_count() == ANY) {
4915 Label not_zero_case, not_one_case;
4917 __ j(not_zero, ¬_zero_case);
4918 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4920 __ bind(¬_zero_case);
4922 __ j(greater, ¬_one_case);
4923 CreateArrayDispatchOneArgument(masm, mode);
4925 __ bind(¬_one_case);
4926 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4927 } else if (argument_count() == NONE) {
4928 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4929 } else if (argument_count() == ONE) {
4930 CreateArrayDispatchOneArgument(masm, mode);
4931 } else if (argument_count() == MORE_THAN_ONE) {
4932 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4939 void ArrayConstructorStub::Generate(MacroAssembler* masm) {
4940 // ----------- S t a t e -------------
4941 // -- eax : argc (only if argument_count() is ANY or MORE_THAN_ONE)
4942 // -- ebx : AllocationSite or undefined
4943 // -- edi : constructor
4944 // -- edx : Original constructor
4945 // -- esp[0] : return address
4946 // -- esp[4] : last argument
4947 // -----------------------------------
4948 if (FLAG_debug_code) {
4949 // The array construct code is only set for the global and natives
4950 // builtin Array functions which always have maps.
4952 // Initial map for the builtin Array function should be a map.
4953 __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
4954 // Will both indicate a NULL and a Smi.
4955 __ test(ecx, Immediate(kSmiTagMask));
4956 __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
4957 __ CmpObjectType(ecx, MAP_TYPE, ecx);
4958 __ Assert(equal, kUnexpectedInitialMapForArrayFunction);
4960 // We should either have undefined in ebx or a valid AllocationSite
4961 __ AssertUndefinedOrAllocationSite(ebx);
4967 __ j(not_equal, &subclassing);
4970 // If the feedback vector is the undefined value call an array constructor
4971 // that doesn't use AllocationSites.
4972 __ cmp(ebx, isolate()->factory()->undefined_value());
4973 __ j(equal, &no_info);
4975 // Only look at the lower 16 bits of the transition info.
4976 __ mov(edx, FieldOperand(ebx, AllocationSite::kTransitionInfoOffset));
4978 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4979 __ and_(edx, Immediate(AllocationSite::ElementsKindBits::kMask));
4980 GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
4983 GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
4986 __ bind(&subclassing);
4987 __ pop(ecx); // return address.
4992 switch (argument_count()) {
4995 __ add(eax, Immediate(2));
4998 __ mov(eax, Immediate(2));
5001 __ mov(eax, Immediate(3));
5006 __ JumpToExternalReference(
5007 ExternalReference(Runtime::kArrayConstructorWithSubclassing, isolate()));
5011 void InternalArrayConstructorStub::GenerateCase(
5012 MacroAssembler* masm, ElementsKind kind) {
5013 Label not_zero_case, not_one_case;
5014 Label normal_sequence;
5017 __ j(not_zero, ¬_zero_case);
5018 InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
5019 __ TailCallStub(&stub0);
5021 __ bind(¬_zero_case);
5023 __ j(greater, ¬_one_case);
5025 if (IsFastPackedElementsKind(kind)) {
5026 // We might need to create a holey array
5027 // look at the first argument
5028 __ mov(ecx, Operand(esp, kPointerSize));
5030 __ j(zero, &normal_sequence);
5032 InternalArraySingleArgumentConstructorStub
5033 stub1_holey(isolate(), GetHoleyElementsKind(kind));
5034 __ TailCallStub(&stub1_holey);
5037 __ bind(&normal_sequence);
5038 InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
5039 __ TailCallStub(&stub1);
5041 __ bind(¬_one_case);
5042 InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
5043 __ TailCallStub(&stubN);
5047 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
5048 // ----------- S t a t e -------------
5050 // -- edi : constructor
5051 // -- esp[0] : return address
5052 // -- esp[4] : last argument
5053 // -----------------------------------
5055 if (FLAG_debug_code) {
5056 // The array construct code is only set for the global and natives
5057 // builtin Array functions which always have maps.
5059 // Initial map for the builtin Array function should be a map.
5060 __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
5061 // Will both indicate a NULL and a Smi.
5062 __ test(ecx, Immediate(kSmiTagMask));
5063 __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
5064 __ CmpObjectType(ecx, MAP_TYPE, ecx);
5065 __ Assert(equal, kUnexpectedInitialMapForArrayFunction);
5068 // Figure out the right elements kind
5069 __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
5071 // Load the map's "bit field 2" into |result|. We only need the first byte,
5072 // but the following masking takes care of that anyway.
5073 __ mov(ecx, FieldOperand(ecx, Map::kBitField2Offset));
5074 // Retrieve elements_kind from bit field 2.
5075 __ DecodeField<Map::ElementsKindBits>(ecx);
5077 if (FLAG_debug_code) {
5079 __ cmp(ecx, Immediate(FAST_ELEMENTS));
5081 __ cmp(ecx, Immediate(FAST_HOLEY_ELEMENTS));
5083 kInvalidElementsKindForInternalArrayOrInternalPackedArray);
5087 Label fast_elements_case;
5088 __ cmp(ecx, Immediate(FAST_ELEMENTS));
5089 __ j(equal, &fast_elements_case);
5090 GenerateCase(masm, FAST_HOLEY_ELEMENTS);
5092 __ bind(&fast_elements_case);
5093 GenerateCase(masm, FAST_ELEMENTS);
5097 // Generates an Operand for saving parameters after PrepareCallApiFunction.
5098 static Operand ApiParameterOperand(int index) {
5099 return Operand(esp, index * kPointerSize);
5103 // Prepares stack to put arguments (aligns and so on). Reserves
5104 // space for return value if needed (assumes the return value is a handle).
5105 // Arguments must be stored in ApiParameterOperand(0), ApiParameterOperand(1)
5106 // etc. Saves context (esi). If space was reserved for return value then
5107 // stores the pointer to the reserved slot into esi.
5108 static void PrepareCallApiFunction(MacroAssembler* masm, int argc) {
5109 __ EnterApiExitFrame(argc);
5110 if (__ emit_debug_code()) {
5111 __ mov(esi, Immediate(bit_cast<int32_t>(kZapValue)));
5116 // Calls an API function. Allocates HandleScope, extracts returned value
5117 // from handle and propagates exceptions. Clobbers ebx, edi and
5118 // caller-save registers. Restores context. On return removes
5119 // stack_space * kPointerSize (GCed).
5120 static void CallApiFunctionAndReturn(MacroAssembler* masm,
5121 Register function_address,
5122 ExternalReference thunk_ref,
5123 Operand thunk_last_arg, int stack_space,
5124 Operand* stack_space_operand,
5125 Operand return_value_operand,
5126 Operand* context_restore_operand) {
5127 Isolate* isolate = masm->isolate();
5129 ExternalReference next_address =
5130 ExternalReference::handle_scope_next_address(isolate);
5131 ExternalReference limit_address =
5132 ExternalReference::handle_scope_limit_address(isolate);
5133 ExternalReference level_address =
5134 ExternalReference::handle_scope_level_address(isolate);
5136 DCHECK(edx.is(function_address));
5137 // Allocate HandleScope in callee-save registers.
5138 __ mov(ebx, Operand::StaticVariable(next_address));
5139 __ mov(edi, Operand::StaticVariable(limit_address));
5140 __ add(Operand::StaticVariable(level_address), Immediate(1));
5142 if (FLAG_log_timer_events) {
5143 FrameScope frame(masm, StackFrame::MANUAL);
5144 __ PushSafepointRegisters();
5145 __ PrepareCallCFunction(1, eax);
5146 __ mov(Operand(esp, 0),
5147 Immediate(ExternalReference::isolate_address(isolate)));
5148 __ CallCFunction(ExternalReference::log_enter_external_function(isolate),
5150 __ PopSafepointRegisters();
5154 Label profiler_disabled;
5155 Label end_profiler_check;
5156 __ mov(eax, Immediate(ExternalReference::is_profiling_address(isolate)));
5157 __ cmpb(Operand(eax, 0), 0);
5158 __ j(zero, &profiler_disabled);
5160 // Additional parameter is the address of the actual getter function.
5161 __ mov(thunk_last_arg, function_address);
5162 // Call the api function.
5163 __ mov(eax, Immediate(thunk_ref));
5165 __ jmp(&end_profiler_check);
5167 __ bind(&profiler_disabled);
5168 // Call the api function.
5169 __ call(function_address);
5170 __ bind(&end_profiler_check);
5172 if (FLAG_log_timer_events) {
5173 FrameScope frame(masm, StackFrame::MANUAL);
5174 __ PushSafepointRegisters();
5175 __ PrepareCallCFunction(1, eax);
5176 __ mov(Operand(esp, 0),
5177 Immediate(ExternalReference::isolate_address(isolate)));
5178 __ CallCFunction(ExternalReference::log_leave_external_function(isolate),
5180 __ PopSafepointRegisters();
5184 // Load the value from ReturnValue
5185 __ mov(eax, return_value_operand);
5187 Label promote_scheduled_exception;
5188 Label delete_allocated_handles;
5189 Label leave_exit_frame;
5192 // No more valid handles (the result handle was the last one). Restore
5193 // previous handle scope.
5194 __ mov(Operand::StaticVariable(next_address), ebx);
5195 __ sub(Operand::StaticVariable(level_address), Immediate(1));
5196 __ Assert(above_equal, kInvalidHandleScopeLevel);
5197 __ cmp(edi, Operand::StaticVariable(limit_address));
5198 __ j(not_equal, &delete_allocated_handles);
5200 // Leave the API exit frame.
5201 __ bind(&leave_exit_frame);
5202 bool restore_context = context_restore_operand != NULL;
5203 if (restore_context) {
5204 __ mov(esi, *context_restore_operand);
5206 if (stack_space_operand != nullptr) {
5207 __ mov(ebx, *stack_space_operand);
5209 __ LeaveApiExitFrame(!restore_context);
5211 // Check if the function scheduled an exception.
5212 ExternalReference scheduled_exception_address =
5213 ExternalReference::scheduled_exception_address(isolate);
5214 __ cmp(Operand::StaticVariable(scheduled_exception_address),
5215 Immediate(isolate->factory()->the_hole_value()));
5216 __ j(not_equal, &promote_scheduled_exception);
5219 // Check if the function returned a valid JavaScript value.
5221 Register return_value = eax;
5224 __ JumpIfSmi(return_value, &ok, Label::kNear);
5225 __ mov(map, FieldOperand(return_value, HeapObject::kMapOffset));
5227 __ CmpInstanceType(map, LAST_NAME_TYPE);
5228 __ j(below_equal, &ok, Label::kNear);
5230 __ CmpInstanceType(map, FIRST_SPEC_OBJECT_TYPE);
5231 __ j(above_equal, &ok, Label::kNear);
5233 __ cmp(map, isolate->factory()->heap_number_map());
5234 __ j(equal, &ok, Label::kNear);
5236 __ cmp(return_value, isolate->factory()->undefined_value());
5237 __ j(equal, &ok, Label::kNear);
5239 __ cmp(return_value, isolate->factory()->true_value());
5240 __ j(equal, &ok, Label::kNear);
5242 __ cmp(return_value, isolate->factory()->false_value());
5243 __ j(equal, &ok, Label::kNear);
5245 __ cmp(return_value, isolate->factory()->null_value());
5246 __ j(equal, &ok, Label::kNear);
5248 __ Abort(kAPICallReturnedInvalidObject);
5253 if (stack_space_operand != nullptr) {
5254 DCHECK_EQ(0, stack_space);
5259 __ ret(stack_space * kPointerSize);
5262 // Re-throw by promoting a scheduled exception.
5263 __ bind(&promote_scheduled_exception);
5264 __ TailCallRuntime(Runtime::kPromoteScheduledException, 0, 1);
5266 // HandleScope limit has changed. Delete allocated extensions.
5267 ExternalReference delete_extensions =
5268 ExternalReference::delete_handle_scope_extensions(isolate);
5269 __ bind(&delete_allocated_handles);
5270 __ mov(Operand::StaticVariable(limit_address), edi);
5272 __ mov(Operand(esp, 0),
5273 Immediate(ExternalReference::isolate_address(isolate)));
5274 __ mov(eax, Immediate(delete_extensions));
5277 __ jmp(&leave_exit_frame);
5281 static void CallApiFunctionStubHelper(MacroAssembler* masm,
5282 const ParameterCount& argc,
5283 bool return_first_arg,
5284 bool call_data_undefined) {
5285 // ----------- S t a t e -------------
5287 // -- ebx : call_data
5289 // -- edx : api_function_address
5291 // -- eax : number of arguments if argc is a register
5293 // -- esp[0] : return address
5294 // -- esp[4] : last argument
5296 // -- esp[argc * 4] : first argument
5297 // -- esp[(argc + 1) * 4] : receiver
5298 // -----------------------------------
5300 Register callee = edi;
5301 Register call_data = ebx;
5302 Register holder = ecx;
5303 Register api_function_address = edx;
5304 Register context = esi;
5305 Register return_address = eax;
5307 typedef FunctionCallbackArguments FCA;
5309 STATIC_ASSERT(FCA::kContextSaveIndex == 6);
5310 STATIC_ASSERT(FCA::kCalleeIndex == 5);
5311 STATIC_ASSERT(FCA::kDataIndex == 4);
5312 STATIC_ASSERT(FCA::kReturnValueOffset == 3);
5313 STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
5314 STATIC_ASSERT(FCA::kIsolateIndex == 1);
5315 STATIC_ASSERT(FCA::kHolderIndex == 0);
5316 STATIC_ASSERT(FCA::kArgsLength == 7);
5318 DCHECK(argc.is_immediate() || eax.is(argc.reg()));
5320 if (argc.is_immediate()) {
5321 __ pop(return_address);
5325 // pop return address and save context
5326 __ xchg(context, Operand(esp, 0));
5327 return_address = context;
5336 Register scratch = call_data;
5337 if (!call_data_undefined) {
5339 __ push(Immediate(masm->isolate()->factory()->undefined_value()));
5340 // return value default
5341 __ push(Immediate(masm->isolate()->factory()->undefined_value()));
5345 // return value default
5349 __ push(Immediate(reinterpret_cast<int>(masm->isolate())));
5353 __ mov(scratch, esp);
5355 // push return address
5356 __ push(return_address);
5358 // load context from callee
5359 __ mov(context, FieldOperand(callee, JSFunction::kContextOffset));
5361 // API function gets reference to the v8::Arguments. If CPU profiler
5362 // is enabled wrapper function will be called and we need to pass
5363 // address of the callback as additional parameter, always allocate
5365 const int kApiArgc = 1 + 1;
5367 // Allocate the v8::Arguments structure in the arguments' space since
5368 // it's not controlled by GC.
5369 const int kApiStackSpace = 4;
5371 PrepareCallApiFunction(masm, kApiArgc + kApiStackSpace);
5373 // FunctionCallbackInfo::implicit_args_.
5374 __ mov(ApiParameterOperand(2), scratch);
5375 if (argc.is_immediate()) {
5377 Immediate((argc.immediate() + FCA::kArgsLength - 1) * kPointerSize));
5378 // FunctionCallbackInfo::values_.
5379 __ mov(ApiParameterOperand(3), scratch);
5380 // FunctionCallbackInfo::length_.
5381 __ Move(ApiParameterOperand(4), Immediate(argc.immediate()));
5382 // FunctionCallbackInfo::is_construct_call_.
5383 __ Move(ApiParameterOperand(5), Immediate(0));
5385 __ lea(scratch, Operand(scratch, argc.reg(), times_pointer_size,
5386 (FCA::kArgsLength - 1) * kPointerSize));
5387 // FunctionCallbackInfo::values_.
5388 __ mov(ApiParameterOperand(3), scratch);
5389 // FunctionCallbackInfo::length_.
5390 __ mov(ApiParameterOperand(4), argc.reg());
5391 // FunctionCallbackInfo::is_construct_call_.
5392 __ lea(argc.reg(), Operand(argc.reg(), times_pointer_size,
5393 (FCA::kArgsLength + 1) * kPointerSize));
5394 __ mov(ApiParameterOperand(5), argc.reg());
5397 // v8::InvocationCallback's argument.
5398 __ lea(scratch, ApiParameterOperand(2));
5399 __ mov(ApiParameterOperand(0), scratch);
5401 ExternalReference thunk_ref =
5402 ExternalReference::invoke_function_callback(masm->isolate());
5404 Operand context_restore_operand(ebp,
5405 (2 + FCA::kContextSaveIndex) * kPointerSize);
5406 // Stores return the first js argument
5407 int return_value_offset = 0;
5408 if (return_first_arg) {
5409 return_value_offset = 2 + FCA::kArgsLength;
5411 return_value_offset = 2 + FCA::kReturnValueOffset;
5413 Operand return_value_operand(ebp, return_value_offset * kPointerSize);
5414 int stack_space = 0;
5415 Operand is_construct_call_operand = ApiParameterOperand(5);
5416 Operand* stack_space_operand = &is_construct_call_operand;
5417 if (argc.is_immediate()) {
5418 stack_space = argc.immediate() + FCA::kArgsLength + 1;
5419 stack_space_operand = nullptr;
5421 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
5422 ApiParameterOperand(1), stack_space,
5423 stack_space_operand, return_value_operand,
5424 &context_restore_operand);
5428 void CallApiFunctionStub::Generate(MacroAssembler* masm) {
5429 bool call_data_undefined = this->call_data_undefined();
5430 CallApiFunctionStubHelper(masm, ParameterCount(eax), false,
5431 call_data_undefined);
5435 void CallApiAccessorStub::Generate(MacroAssembler* masm) {
5436 bool is_store = this->is_store();
5437 int argc = this->argc();
5438 bool call_data_undefined = this->call_data_undefined();
5439 CallApiFunctionStubHelper(masm, ParameterCount(argc), is_store,
5440 call_data_undefined);
5444 void CallApiGetterStub::Generate(MacroAssembler* masm) {
5445 // ----------- S t a t e -------------
5446 // -- esp[0] : return address
5448 // -- esp[8 - kArgsLength*4] : PropertyCallbackArguments object
5450 // -- edx : api_function_address
5451 // -----------------------------------
5452 DCHECK(edx.is(ApiGetterDescriptor::function_address()));
5454 // array for v8::Arguments::values_, handler for name and pointer
5455 // to the values (it considered as smi in GC).
5456 const int kStackSpace = PropertyCallbackArguments::kArgsLength + 2;
5457 // Allocate space for opional callback address parameter in case
5458 // CPU profiler is active.
5459 const int kApiArgc = 2 + 1;
5461 Register api_function_address = edx;
5462 Register scratch = ebx;
5464 // load address of name
5465 __ lea(scratch, Operand(esp, 1 * kPointerSize));
5467 PrepareCallApiFunction(masm, kApiArgc);
5468 __ mov(ApiParameterOperand(0), scratch); // name.
5469 __ add(scratch, Immediate(kPointerSize));
5470 __ mov(ApiParameterOperand(1), scratch); // arguments pointer.
5472 ExternalReference thunk_ref =
5473 ExternalReference::invoke_accessor_getter_callback(isolate());
5475 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
5476 ApiParameterOperand(2), kStackSpace, nullptr,
5477 Operand(ebp, 7 * kPointerSize), NULL);
5483 } // namespace internal
5486 #endif // V8_TARGET_ARCH_IA32