794a38b8e4d4faa0f703c5e520fdc69e6c734e60
[platform/upstream/v8.git] / src / hydrogen.cc
1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/hydrogen.h"
6
7 #include <sstream>
8
9 #include "src/v8.h"
10
11 #include "src/allocation-site-scopes.h"
12 #include "src/ast-numbering.h"
13 #include "src/full-codegen/full-codegen.h"
14 #include "src/hydrogen-bce.h"
15 #include "src/hydrogen-bch.h"
16 #include "src/hydrogen-canonicalize.h"
17 #include "src/hydrogen-check-elimination.h"
18 #include "src/hydrogen-dce.h"
19 #include "src/hydrogen-dehoist.h"
20 #include "src/hydrogen-environment-liveness.h"
21 #include "src/hydrogen-escape-analysis.h"
22 #include "src/hydrogen-gvn.h"
23 #include "src/hydrogen-infer-representation.h"
24 #include "src/hydrogen-infer-types.h"
25 #include "src/hydrogen-load-elimination.h"
26 #include "src/hydrogen-mark-deoptimize.h"
27 #include "src/hydrogen-mark-unreachable.h"
28 #include "src/hydrogen-osr.h"
29 #include "src/hydrogen-range-analysis.h"
30 #include "src/hydrogen-redundant-phi.h"
31 #include "src/hydrogen-removable-simulates.h"
32 #include "src/hydrogen-representation-changes.h"
33 #include "src/hydrogen-sce.h"
34 #include "src/hydrogen-store-elimination.h"
35 #include "src/hydrogen-uint32-analysis.h"
36 #include "src/ic/call-optimization.h"
37 #include "src/ic/ic.h"
38 // GetRootConstructor
39 #include "src/ic/ic-inl.h"
40 #include "src/lithium-allocator.h"
41 #include "src/parser.h"
42 #include "src/runtime/runtime.h"
43 #include "src/scopeinfo.h"
44 #include "src/typing.h"
45
46 #if V8_TARGET_ARCH_IA32
47 #include "src/ia32/lithium-codegen-ia32.h"  // NOLINT
48 #elif V8_TARGET_ARCH_X64
49 #include "src/x64/lithium-codegen-x64.h"  // NOLINT
50 #elif V8_TARGET_ARCH_ARM64
51 #include "src/arm64/lithium-codegen-arm64.h"  // NOLINT
52 #elif V8_TARGET_ARCH_ARM
53 #include "src/arm/lithium-codegen-arm.h"  // NOLINT
54 #elif V8_TARGET_ARCH_PPC
55 #include "src/ppc/lithium-codegen-ppc.h"  // NOLINT
56 #elif V8_TARGET_ARCH_MIPS
57 #include "src/mips/lithium-codegen-mips.h"  // NOLINT
58 #elif V8_TARGET_ARCH_MIPS64
59 #include "src/mips64/lithium-codegen-mips64.h"  // NOLINT
60 #elif V8_TARGET_ARCH_X87
61 #include "src/x87/lithium-codegen-x87.h"  // NOLINT
62 #else
63 #error Unsupported target architecture.
64 #endif
65
66 namespace v8 {
67 namespace internal {
68
69 HBasicBlock::HBasicBlock(HGraph* graph)
70     : block_id_(graph->GetNextBlockID()),
71       graph_(graph),
72       phis_(4, graph->zone()),
73       first_(NULL),
74       last_(NULL),
75       end_(NULL),
76       loop_information_(NULL),
77       predecessors_(2, graph->zone()),
78       dominator_(NULL),
79       dominated_blocks_(4, graph->zone()),
80       last_environment_(NULL),
81       argument_count_(-1),
82       first_instruction_index_(-1),
83       last_instruction_index_(-1),
84       deleted_phis_(4, graph->zone()),
85       parent_loop_header_(NULL),
86       inlined_entry_block_(NULL),
87       is_inline_return_target_(false),
88       is_reachable_(true),
89       dominates_loop_successors_(false),
90       is_osr_entry_(false),
91       is_ordered_(false) { }
92
93
94 Isolate* HBasicBlock::isolate() const {
95   return graph_->isolate();
96 }
97
98
99 void HBasicBlock::MarkUnreachable() {
100   is_reachable_ = false;
101 }
102
103
104 void HBasicBlock::AttachLoopInformation() {
105   DCHECK(!IsLoopHeader());
106   loop_information_ = new(zone()) HLoopInformation(this, zone());
107 }
108
109
110 void HBasicBlock::DetachLoopInformation() {
111   DCHECK(IsLoopHeader());
112   loop_information_ = NULL;
113 }
114
115
116 void HBasicBlock::AddPhi(HPhi* phi) {
117   DCHECK(!IsStartBlock());
118   phis_.Add(phi, zone());
119   phi->SetBlock(this);
120 }
121
122
123 void HBasicBlock::RemovePhi(HPhi* phi) {
124   DCHECK(phi->block() == this);
125   DCHECK(phis_.Contains(phi));
126   phi->Kill();
127   phis_.RemoveElement(phi);
128   phi->SetBlock(NULL);
129 }
130
131
132 void HBasicBlock::AddInstruction(HInstruction* instr, SourcePosition position) {
133   DCHECK(!IsStartBlock() || !IsFinished());
134   DCHECK(!instr->IsLinked());
135   DCHECK(!IsFinished());
136
137   if (!position.IsUnknown()) {
138     instr->set_position(position);
139   }
140   if (first_ == NULL) {
141     DCHECK(last_environment() != NULL);
142     DCHECK(!last_environment()->ast_id().IsNone());
143     HBlockEntry* entry = new(zone()) HBlockEntry();
144     entry->InitializeAsFirst(this);
145     if (!position.IsUnknown()) {
146       entry->set_position(position);
147     } else {
148       DCHECK(!FLAG_hydrogen_track_positions ||
149              !graph()->info()->IsOptimizing() || instr->IsAbnormalExit());
150     }
151     first_ = last_ = entry;
152   }
153   instr->InsertAfter(last_);
154 }
155
156
157 HPhi* HBasicBlock::AddNewPhi(int merged_index) {
158   if (graph()->IsInsideNoSideEffectsScope()) {
159     merged_index = HPhi::kInvalidMergedIndex;
160   }
161   HPhi* phi = new(zone()) HPhi(merged_index, zone());
162   AddPhi(phi);
163   return phi;
164 }
165
166
167 HSimulate* HBasicBlock::CreateSimulate(BailoutId ast_id,
168                                        RemovableSimulate removable) {
169   DCHECK(HasEnvironment());
170   HEnvironment* environment = last_environment();
171   DCHECK(ast_id.IsNone() ||
172          ast_id == BailoutId::StubEntry() ||
173          environment->closure()->shared()->VerifyBailoutId(ast_id));
174
175   int push_count = environment->push_count();
176   int pop_count = environment->pop_count();
177
178   HSimulate* instr =
179       new(zone()) HSimulate(ast_id, pop_count, zone(), removable);
180 #ifdef DEBUG
181   instr->set_closure(environment->closure());
182 #endif
183   // Order of pushed values: newest (top of stack) first. This allows
184   // HSimulate::MergeWith() to easily append additional pushed values
185   // that are older (from further down the stack).
186   for (int i = 0; i < push_count; ++i) {
187     instr->AddPushedValue(environment->ExpressionStackAt(i));
188   }
189   for (GrowableBitVector::Iterator it(environment->assigned_variables(),
190                                       zone());
191        !it.Done();
192        it.Advance()) {
193     int index = it.Current();
194     instr->AddAssignedValue(index, environment->Lookup(index));
195   }
196   environment->ClearHistory();
197   return instr;
198 }
199
200
201 void HBasicBlock::Finish(HControlInstruction* end, SourcePosition position) {
202   DCHECK(!IsFinished());
203   AddInstruction(end, position);
204   end_ = end;
205   for (HSuccessorIterator it(end); !it.Done(); it.Advance()) {
206     it.Current()->RegisterPredecessor(this);
207   }
208 }
209
210
211 void HBasicBlock::Goto(HBasicBlock* block, SourcePosition position,
212                        FunctionState* state, bool add_simulate) {
213   bool drop_extra = state != NULL &&
214       state->inlining_kind() == NORMAL_RETURN;
215
216   if (block->IsInlineReturnTarget()) {
217     HEnvironment* env = last_environment();
218     int argument_count = env->arguments_environment()->parameter_count();
219     AddInstruction(new(zone())
220                    HLeaveInlined(state->entry(), argument_count),
221                    position);
222     UpdateEnvironment(last_environment()->DiscardInlined(drop_extra));
223   }
224
225   if (add_simulate) AddNewSimulate(BailoutId::None(), position);
226   HGoto* instr = new(zone()) HGoto(block);
227   Finish(instr, position);
228 }
229
230
231 void HBasicBlock::AddLeaveInlined(HValue* return_value, FunctionState* state,
232                                   SourcePosition position) {
233   HBasicBlock* target = state->function_return();
234   bool drop_extra = state->inlining_kind() == NORMAL_RETURN;
235
236   DCHECK(target->IsInlineReturnTarget());
237   DCHECK(return_value != NULL);
238   HEnvironment* env = last_environment();
239   int argument_count = env->arguments_environment()->parameter_count();
240   AddInstruction(new(zone()) HLeaveInlined(state->entry(), argument_count),
241                  position);
242   UpdateEnvironment(last_environment()->DiscardInlined(drop_extra));
243   last_environment()->Push(return_value);
244   AddNewSimulate(BailoutId::None(), position);
245   HGoto* instr = new(zone()) HGoto(target);
246   Finish(instr, position);
247 }
248
249
250 void HBasicBlock::SetInitialEnvironment(HEnvironment* env) {
251   DCHECK(!HasEnvironment());
252   DCHECK(first() == NULL);
253   UpdateEnvironment(env);
254 }
255
256
257 void HBasicBlock::UpdateEnvironment(HEnvironment* env) {
258   last_environment_ = env;
259   graph()->update_maximum_environment_size(env->first_expression_index());
260 }
261
262
263 void HBasicBlock::SetJoinId(BailoutId ast_id) {
264   int length = predecessors_.length();
265   DCHECK(length > 0);
266   for (int i = 0; i < length; i++) {
267     HBasicBlock* predecessor = predecessors_[i];
268     DCHECK(predecessor->end()->IsGoto());
269     HSimulate* simulate = HSimulate::cast(predecessor->end()->previous());
270     DCHECK(i != 0 ||
271            (predecessor->last_environment()->closure().is_null() ||
272             predecessor->last_environment()->closure()->shared()
273               ->VerifyBailoutId(ast_id)));
274     simulate->set_ast_id(ast_id);
275     predecessor->last_environment()->set_ast_id(ast_id);
276   }
277 }
278
279
280 bool HBasicBlock::Dominates(HBasicBlock* other) const {
281   HBasicBlock* current = other->dominator();
282   while (current != NULL) {
283     if (current == this) return true;
284     current = current->dominator();
285   }
286   return false;
287 }
288
289
290 bool HBasicBlock::EqualToOrDominates(HBasicBlock* other) const {
291   if (this == other) return true;
292   return Dominates(other);
293 }
294
295
296 int HBasicBlock::LoopNestingDepth() const {
297   const HBasicBlock* current = this;
298   int result  = (current->IsLoopHeader()) ? 1 : 0;
299   while (current->parent_loop_header() != NULL) {
300     current = current->parent_loop_header();
301     result++;
302   }
303   return result;
304 }
305
306
307 void HBasicBlock::PostProcessLoopHeader(IterationStatement* stmt) {
308   DCHECK(IsLoopHeader());
309
310   SetJoinId(stmt->EntryId());
311   if (predecessors()->length() == 1) {
312     // This is a degenerated loop.
313     DetachLoopInformation();
314     return;
315   }
316
317   // Only the first entry into the loop is from outside the loop. All other
318   // entries must be back edges.
319   for (int i = 1; i < predecessors()->length(); ++i) {
320     loop_information()->RegisterBackEdge(predecessors()->at(i));
321   }
322 }
323
324
325 void HBasicBlock::MarkSuccEdgeUnreachable(int succ) {
326   DCHECK(IsFinished());
327   HBasicBlock* succ_block = end()->SuccessorAt(succ);
328
329   DCHECK(succ_block->predecessors()->length() == 1);
330   succ_block->MarkUnreachable();
331 }
332
333
334 void HBasicBlock::RegisterPredecessor(HBasicBlock* pred) {
335   if (HasPredecessor()) {
336     // Only loop header blocks can have a predecessor added after
337     // instructions have been added to the block (they have phis for all
338     // values in the environment, these phis may be eliminated later).
339     DCHECK(IsLoopHeader() || first_ == NULL);
340     HEnvironment* incoming_env = pred->last_environment();
341     if (IsLoopHeader()) {
342       DCHECK_EQ(phis()->length(), incoming_env->length());
343       for (int i = 0; i < phis_.length(); ++i) {
344         phis_[i]->AddInput(incoming_env->values()->at(i));
345       }
346     } else {
347       last_environment()->AddIncomingEdge(this, pred->last_environment());
348     }
349   } else if (!HasEnvironment() && !IsFinished()) {
350     DCHECK(!IsLoopHeader());
351     SetInitialEnvironment(pred->last_environment()->Copy());
352   }
353
354   predecessors_.Add(pred, zone());
355 }
356
357
358 void HBasicBlock::AddDominatedBlock(HBasicBlock* block) {
359   DCHECK(!dominated_blocks_.Contains(block));
360   // Keep the list of dominated blocks sorted such that if there is two
361   // succeeding block in this list, the predecessor is before the successor.
362   int index = 0;
363   while (index < dominated_blocks_.length() &&
364          dominated_blocks_[index]->block_id() < block->block_id()) {
365     ++index;
366   }
367   dominated_blocks_.InsertAt(index, block, zone());
368 }
369
370
371 void HBasicBlock::AssignCommonDominator(HBasicBlock* other) {
372   if (dominator_ == NULL) {
373     dominator_ = other;
374     other->AddDominatedBlock(this);
375   } else if (other->dominator() != NULL) {
376     HBasicBlock* first = dominator_;
377     HBasicBlock* second = other;
378
379     while (first != second) {
380       if (first->block_id() > second->block_id()) {
381         first = first->dominator();
382       } else {
383         second = second->dominator();
384       }
385       DCHECK(first != NULL && second != NULL);
386     }
387
388     if (dominator_ != first) {
389       DCHECK(dominator_->dominated_blocks_.Contains(this));
390       dominator_->dominated_blocks_.RemoveElement(this);
391       dominator_ = first;
392       first->AddDominatedBlock(this);
393     }
394   }
395 }
396
397
398 void HBasicBlock::AssignLoopSuccessorDominators() {
399   // Mark blocks that dominate all subsequent reachable blocks inside their
400   // loop. Exploit the fact that blocks are sorted in reverse post order. When
401   // the loop is visited in increasing block id order, if the number of
402   // non-loop-exiting successor edges at the dominator_candidate block doesn't
403   // exceed the number of previously encountered predecessor edges, there is no
404   // path from the loop header to any block with higher id that doesn't go
405   // through the dominator_candidate block. In this case, the
406   // dominator_candidate block is guaranteed to dominate all blocks reachable
407   // from it with higher ids.
408   HBasicBlock* last = loop_information()->GetLastBackEdge();
409   int outstanding_successors = 1;  // one edge from the pre-header
410   // Header always dominates everything.
411   MarkAsLoopSuccessorDominator();
412   for (int j = block_id(); j <= last->block_id(); ++j) {
413     HBasicBlock* dominator_candidate = graph_->blocks()->at(j);
414     for (HPredecessorIterator it(dominator_candidate); !it.Done();
415          it.Advance()) {
416       HBasicBlock* predecessor = it.Current();
417       // Don't count back edges.
418       if (predecessor->block_id() < dominator_candidate->block_id()) {
419         outstanding_successors--;
420       }
421     }
422
423     // If more successors than predecessors have been seen in the loop up to
424     // now, it's not possible to guarantee that the current block dominates
425     // all of the blocks with higher IDs. In this case, assume conservatively
426     // that those paths through loop that don't go through the current block
427     // contain all of the loop's dependencies. Also be careful to record
428     // dominator information about the current loop that's being processed,
429     // and not nested loops, which will be processed when
430     // AssignLoopSuccessorDominators gets called on their header.
431     DCHECK(outstanding_successors >= 0);
432     HBasicBlock* parent_loop_header = dominator_candidate->parent_loop_header();
433     if (outstanding_successors == 0 &&
434         (parent_loop_header == this && !dominator_candidate->IsLoopHeader())) {
435       dominator_candidate->MarkAsLoopSuccessorDominator();
436     }
437     HControlInstruction* end = dominator_candidate->end();
438     for (HSuccessorIterator it(end); !it.Done(); it.Advance()) {
439       HBasicBlock* successor = it.Current();
440       // Only count successors that remain inside the loop and don't loop back
441       // to a loop header.
442       if (successor->block_id() > dominator_candidate->block_id() &&
443           successor->block_id() <= last->block_id()) {
444         // Backwards edges must land on loop headers.
445         DCHECK(successor->block_id() > dominator_candidate->block_id() ||
446                successor->IsLoopHeader());
447         outstanding_successors++;
448       }
449     }
450   }
451 }
452
453
454 int HBasicBlock::PredecessorIndexOf(HBasicBlock* predecessor) const {
455   for (int i = 0; i < predecessors_.length(); ++i) {
456     if (predecessors_[i] == predecessor) return i;
457   }
458   UNREACHABLE();
459   return -1;
460 }
461
462
463 #ifdef DEBUG
464 void HBasicBlock::Verify() {
465   // Check that every block is finished.
466   DCHECK(IsFinished());
467   DCHECK(block_id() >= 0);
468
469   // Check that the incoming edges are in edge split form.
470   if (predecessors_.length() > 1) {
471     for (int i = 0; i < predecessors_.length(); ++i) {
472       DCHECK(predecessors_[i]->end()->SecondSuccessor() == NULL);
473     }
474   }
475 }
476 #endif
477
478
479 void HLoopInformation::RegisterBackEdge(HBasicBlock* block) {
480   this->back_edges_.Add(block, block->zone());
481   AddBlock(block);
482 }
483
484
485 HBasicBlock* HLoopInformation::GetLastBackEdge() const {
486   int max_id = -1;
487   HBasicBlock* result = NULL;
488   for (int i = 0; i < back_edges_.length(); ++i) {
489     HBasicBlock* cur = back_edges_[i];
490     if (cur->block_id() > max_id) {
491       max_id = cur->block_id();
492       result = cur;
493     }
494   }
495   return result;
496 }
497
498
499 void HLoopInformation::AddBlock(HBasicBlock* block) {
500   if (block == loop_header()) return;
501   if (block->parent_loop_header() == loop_header()) return;
502   if (block->parent_loop_header() != NULL) {
503     AddBlock(block->parent_loop_header());
504   } else {
505     block->set_parent_loop_header(loop_header());
506     blocks_.Add(block, block->zone());
507     for (int i = 0; i < block->predecessors()->length(); ++i) {
508       AddBlock(block->predecessors()->at(i));
509     }
510   }
511 }
512
513
514 #ifdef DEBUG
515
516 // Checks reachability of the blocks in this graph and stores a bit in
517 // the BitVector "reachable()" for every block that can be reached
518 // from the start block of the graph. If "dont_visit" is non-null, the given
519 // block is treated as if it would not be part of the graph. "visited_count()"
520 // returns the number of reachable blocks.
521 class ReachabilityAnalyzer BASE_EMBEDDED {
522  public:
523   ReachabilityAnalyzer(HBasicBlock* entry_block,
524                        int block_count,
525                        HBasicBlock* dont_visit)
526       : visited_count_(0),
527         stack_(16, entry_block->zone()),
528         reachable_(block_count, entry_block->zone()),
529         dont_visit_(dont_visit) {
530     PushBlock(entry_block);
531     Analyze();
532   }
533
534   int visited_count() const { return visited_count_; }
535   const BitVector* reachable() const { return &reachable_; }
536
537  private:
538   void PushBlock(HBasicBlock* block) {
539     if (block != NULL && block != dont_visit_ &&
540         !reachable_.Contains(block->block_id())) {
541       reachable_.Add(block->block_id());
542       stack_.Add(block, block->zone());
543       visited_count_++;
544     }
545   }
546
547   void Analyze() {
548     while (!stack_.is_empty()) {
549       HControlInstruction* end = stack_.RemoveLast()->end();
550       for (HSuccessorIterator it(end); !it.Done(); it.Advance()) {
551         PushBlock(it.Current());
552       }
553     }
554   }
555
556   int visited_count_;
557   ZoneList<HBasicBlock*> stack_;
558   BitVector reachable_;
559   HBasicBlock* dont_visit_;
560 };
561
562
563 void HGraph::Verify(bool do_full_verify) const {
564   Heap::RelocationLock relocation_lock(isolate()->heap());
565   AllowHandleDereference allow_deref;
566   AllowDeferredHandleDereference allow_deferred_deref;
567   for (int i = 0; i < blocks_.length(); i++) {
568     HBasicBlock* block = blocks_.at(i);
569
570     block->Verify();
571
572     // Check that every block contains at least one node and that only the last
573     // node is a control instruction.
574     HInstruction* current = block->first();
575     DCHECK(current != NULL && current->IsBlockEntry());
576     while (current != NULL) {
577       DCHECK((current->next() == NULL) == current->IsControlInstruction());
578       DCHECK(current->block() == block);
579       current->Verify();
580       current = current->next();
581     }
582
583     // Check that successors are correctly set.
584     HBasicBlock* first = block->end()->FirstSuccessor();
585     HBasicBlock* second = block->end()->SecondSuccessor();
586     DCHECK(second == NULL || first != NULL);
587
588     // Check that the predecessor array is correct.
589     if (first != NULL) {
590       DCHECK(first->predecessors()->Contains(block));
591       if (second != NULL) {
592         DCHECK(second->predecessors()->Contains(block));
593       }
594     }
595
596     // Check that phis have correct arguments.
597     for (int j = 0; j < block->phis()->length(); j++) {
598       HPhi* phi = block->phis()->at(j);
599       phi->Verify();
600     }
601
602     // Check that all join blocks have predecessors that end with an
603     // unconditional goto and agree on their environment node id.
604     if (block->predecessors()->length() >= 2) {
605       BailoutId id =
606           block->predecessors()->first()->last_environment()->ast_id();
607       for (int k = 0; k < block->predecessors()->length(); k++) {
608         HBasicBlock* predecessor = block->predecessors()->at(k);
609         DCHECK(predecessor->end()->IsGoto() ||
610                predecessor->end()->IsDeoptimize());
611         DCHECK(predecessor->last_environment()->ast_id() == id);
612       }
613     }
614   }
615
616   // Check special property of first block to have no predecessors.
617   DCHECK(blocks_.at(0)->predecessors()->is_empty());
618
619   if (do_full_verify) {
620     // Check that the graph is fully connected.
621     ReachabilityAnalyzer analyzer(entry_block_, blocks_.length(), NULL);
622     DCHECK(analyzer.visited_count() == blocks_.length());
623
624     // Check that entry block dominator is NULL.
625     DCHECK(entry_block_->dominator() == NULL);
626
627     // Check dominators.
628     for (int i = 0; i < blocks_.length(); ++i) {
629       HBasicBlock* block = blocks_.at(i);
630       if (block->dominator() == NULL) {
631         // Only start block may have no dominator assigned to.
632         DCHECK(i == 0);
633       } else {
634         // Assert that block is unreachable if dominator must not be visited.
635         ReachabilityAnalyzer dominator_analyzer(entry_block_,
636                                                 blocks_.length(),
637                                                 block->dominator());
638         DCHECK(!dominator_analyzer.reachable()->Contains(block->block_id()));
639       }
640     }
641   }
642 }
643
644 #endif
645
646
647 HConstant* HGraph::GetConstant(SetOncePointer<HConstant>* pointer,
648                                int32_t value) {
649   if (!pointer->is_set()) {
650     // Can't pass GetInvalidContext() to HConstant::New, because that will
651     // recursively call GetConstant
652     HConstant* constant = HConstant::New(isolate(), zone(), NULL, value);
653     constant->InsertAfter(entry_block()->first());
654     pointer->set(constant);
655     return constant;
656   }
657   return ReinsertConstantIfNecessary(pointer->get());
658 }
659
660
661 HConstant* HGraph::ReinsertConstantIfNecessary(HConstant* constant) {
662   if (!constant->IsLinked()) {
663     // The constant was removed from the graph. Reinsert.
664     constant->ClearFlag(HValue::kIsDead);
665     constant->InsertAfter(entry_block()->first());
666   }
667   return constant;
668 }
669
670
671 HConstant* HGraph::GetConstant0() {
672   return GetConstant(&constant_0_, 0);
673 }
674
675
676 HConstant* HGraph::GetConstant1() {
677   return GetConstant(&constant_1_, 1);
678 }
679
680
681 HConstant* HGraph::GetConstantMinus1() {
682   return GetConstant(&constant_minus1_, -1);
683 }
684
685
686 HConstant* HGraph::GetConstantBool(bool value) {
687   return value ? GetConstantTrue() : GetConstantFalse();
688 }
689
690
691 #define DEFINE_GET_CONSTANT(Name, name, type, htype, boolean_value)            \
692 HConstant* HGraph::GetConstant##Name() {                                       \
693   if (!constant_##name##_.is_set()) {                                          \
694     HConstant* constant = new(zone()) HConstant(                               \
695         Unique<Object>::CreateImmovable(isolate()->factory()->name##_value()), \
696         Unique<Map>::CreateImmovable(isolate()->factory()->type##_map()),      \
697         false,                                                                 \
698         Representation::Tagged(),                                              \
699         htype,                                                                 \
700         true,                                                                  \
701         boolean_value,                                                         \
702         false,                                                                 \
703         ODDBALL_TYPE);                                                         \
704     constant->InsertAfter(entry_block()->first());                             \
705     constant_##name##_.set(constant);                                          \
706   }                                                                            \
707   return ReinsertConstantIfNecessary(constant_##name##_.get());                \
708 }
709
710
711 DEFINE_GET_CONSTANT(Undefined, undefined, undefined, HType::Undefined(), false)
712 DEFINE_GET_CONSTANT(True, true, boolean, HType::Boolean(), true)
713 DEFINE_GET_CONSTANT(False, false, boolean, HType::Boolean(), false)
714 DEFINE_GET_CONSTANT(Hole, the_hole, the_hole, HType::None(), false)
715 DEFINE_GET_CONSTANT(Null, null, null, HType::Null(), false)
716
717
718 #undef DEFINE_GET_CONSTANT
719
720 #define DEFINE_IS_CONSTANT(Name, name)                                         \
721 bool HGraph::IsConstant##Name(HConstant* constant) {                           \
722   return constant_##name##_.is_set() && constant == constant_##name##_.get();  \
723 }
724 DEFINE_IS_CONSTANT(Undefined, undefined)
725 DEFINE_IS_CONSTANT(0, 0)
726 DEFINE_IS_CONSTANT(1, 1)
727 DEFINE_IS_CONSTANT(Minus1, minus1)
728 DEFINE_IS_CONSTANT(True, true)
729 DEFINE_IS_CONSTANT(False, false)
730 DEFINE_IS_CONSTANT(Hole, the_hole)
731 DEFINE_IS_CONSTANT(Null, null)
732
733 #undef DEFINE_IS_CONSTANT
734
735
736 HConstant* HGraph::GetInvalidContext() {
737   return GetConstant(&constant_invalid_context_, 0xFFFFC0C7);
738 }
739
740
741 bool HGraph::IsStandardConstant(HConstant* constant) {
742   if (IsConstantUndefined(constant)) return true;
743   if (IsConstant0(constant)) return true;
744   if (IsConstant1(constant)) return true;
745   if (IsConstantMinus1(constant)) return true;
746   if (IsConstantTrue(constant)) return true;
747   if (IsConstantFalse(constant)) return true;
748   if (IsConstantHole(constant)) return true;
749   if (IsConstantNull(constant)) return true;
750   return false;
751 }
752
753
754 HGraphBuilder::IfBuilder::IfBuilder() : builder_(NULL), needs_compare_(true) {}
755
756
757 HGraphBuilder::IfBuilder::IfBuilder(HGraphBuilder* builder)
758     : needs_compare_(true) {
759   Initialize(builder);
760 }
761
762
763 HGraphBuilder::IfBuilder::IfBuilder(HGraphBuilder* builder,
764                                     HIfContinuation* continuation)
765     : needs_compare_(false), first_true_block_(NULL), first_false_block_(NULL) {
766   InitializeDontCreateBlocks(builder);
767   continuation->Continue(&first_true_block_, &first_false_block_);
768 }
769
770
771 void HGraphBuilder::IfBuilder::InitializeDontCreateBlocks(
772     HGraphBuilder* builder) {
773   builder_ = builder;
774   finished_ = false;
775   did_then_ = false;
776   did_else_ = false;
777   did_else_if_ = false;
778   did_and_ = false;
779   did_or_ = false;
780   captured_ = false;
781   pending_merge_block_ = false;
782   split_edge_merge_block_ = NULL;
783   merge_at_join_blocks_ = NULL;
784   normal_merge_at_join_block_count_ = 0;
785   deopt_merge_at_join_block_count_ = 0;
786 }
787
788
789 void HGraphBuilder::IfBuilder::Initialize(HGraphBuilder* builder) {
790   InitializeDontCreateBlocks(builder);
791   HEnvironment* env = builder->environment();
792   first_true_block_ = builder->CreateBasicBlock(env->Copy());
793   first_false_block_ = builder->CreateBasicBlock(env->Copy());
794 }
795
796
797 HControlInstruction* HGraphBuilder::IfBuilder::AddCompare(
798     HControlInstruction* compare) {
799   DCHECK(did_then_ == did_else_);
800   if (did_else_) {
801     // Handle if-then-elseif
802     did_else_if_ = true;
803     did_else_ = false;
804     did_then_ = false;
805     did_and_ = false;
806     did_or_ = false;
807     pending_merge_block_ = false;
808     split_edge_merge_block_ = NULL;
809     HEnvironment* env = builder()->environment();
810     first_true_block_ = builder()->CreateBasicBlock(env->Copy());
811     first_false_block_ = builder()->CreateBasicBlock(env->Copy());
812   }
813   if (split_edge_merge_block_ != NULL) {
814     HEnvironment* env = first_false_block_->last_environment();
815     HBasicBlock* split_edge = builder()->CreateBasicBlock(env->Copy());
816     if (did_or_) {
817       compare->SetSuccessorAt(0, split_edge);
818       compare->SetSuccessorAt(1, first_false_block_);
819     } else {
820       compare->SetSuccessorAt(0, first_true_block_);
821       compare->SetSuccessorAt(1, split_edge);
822     }
823     builder()->GotoNoSimulate(split_edge, split_edge_merge_block_);
824   } else {
825     compare->SetSuccessorAt(0, first_true_block_);
826     compare->SetSuccessorAt(1, first_false_block_);
827   }
828   builder()->FinishCurrentBlock(compare);
829   needs_compare_ = false;
830   return compare;
831 }
832
833
834 void HGraphBuilder::IfBuilder::Or() {
835   DCHECK(!needs_compare_);
836   DCHECK(!did_and_);
837   did_or_ = true;
838   HEnvironment* env = first_false_block_->last_environment();
839   if (split_edge_merge_block_ == NULL) {
840     split_edge_merge_block_ = builder()->CreateBasicBlock(env->Copy());
841     builder()->GotoNoSimulate(first_true_block_, split_edge_merge_block_);
842     first_true_block_ = split_edge_merge_block_;
843   }
844   builder()->set_current_block(first_false_block_);
845   first_false_block_ = builder()->CreateBasicBlock(env->Copy());
846 }
847
848
849 void HGraphBuilder::IfBuilder::And() {
850   DCHECK(!needs_compare_);
851   DCHECK(!did_or_);
852   did_and_ = true;
853   HEnvironment* env = first_false_block_->last_environment();
854   if (split_edge_merge_block_ == NULL) {
855     split_edge_merge_block_ = builder()->CreateBasicBlock(env->Copy());
856     builder()->GotoNoSimulate(first_false_block_, split_edge_merge_block_);
857     first_false_block_ = split_edge_merge_block_;
858   }
859   builder()->set_current_block(first_true_block_);
860   first_true_block_ = builder()->CreateBasicBlock(env->Copy());
861 }
862
863
864 void HGraphBuilder::IfBuilder::CaptureContinuation(
865     HIfContinuation* continuation) {
866   DCHECK(!did_else_if_);
867   DCHECK(!finished_);
868   DCHECK(!captured_);
869
870   HBasicBlock* true_block = NULL;
871   HBasicBlock* false_block = NULL;
872   Finish(&true_block, &false_block);
873   DCHECK(true_block != NULL);
874   DCHECK(false_block != NULL);
875   continuation->Capture(true_block, false_block);
876   captured_ = true;
877   builder()->set_current_block(NULL);
878   End();
879 }
880
881
882 void HGraphBuilder::IfBuilder::JoinContinuation(HIfContinuation* continuation) {
883   DCHECK(!did_else_if_);
884   DCHECK(!finished_);
885   DCHECK(!captured_);
886   HBasicBlock* true_block = NULL;
887   HBasicBlock* false_block = NULL;
888   Finish(&true_block, &false_block);
889   merge_at_join_blocks_ = NULL;
890   if (true_block != NULL && !true_block->IsFinished()) {
891     DCHECK(continuation->IsTrueReachable());
892     builder()->GotoNoSimulate(true_block, continuation->true_branch());
893   }
894   if (false_block != NULL && !false_block->IsFinished()) {
895     DCHECK(continuation->IsFalseReachable());
896     builder()->GotoNoSimulate(false_block, continuation->false_branch());
897   }
898   captured_ = true;
899   End();
900 }
901
902
903 void HGraphBuilder::IfBuilder::Then() {
904   DCHECK(!captured_);
905   DCHECK(!finished_);
906   did_then_ = true;
907   if (needs_compare_) {
908     // Handle if's without any expressions, they jump directly to the "else"
909     // branch. However, we must pretend that the "then" branch is reachable,
910     // so that the graph builder visits it and sees any live range extending
911     // constructs within it.
912     HConstant* constant_false = builder()->graph()->GetConstantFalse();
913     ToBooleanStub::Types boolean_type = ToBooleanStub::Types();
914     boolean_type.Add(ToBooleanStub::BOOLEAN);
915     HBranch* branch = builder()->New<HBranch>(
916         constant_false, boolean_type, first_true_block_, first_false_block_);
917     builder()->FinishCurrentBlock(branch);
918   }
919   builder()->set_current_block(first_true_block_);
920   pending_merge_block_ = true;
921 }
922
923
924 void HGraphBuilder::IfBuilder::Else() {
925   DCHECK(did_then_);
926   DCHECK(!captured_);
927   DCHECK(!finished_);
928   AddMergeAtJoinBlock(false);
929   builder()->set_current_block(first_false_block_);
930   pending_merge_block_ = true;
931   did_else_ = true;
932 }
933
934
935 void HGraphBuilder::IfBuilder::Deopt(Deoptimizer::DeoptReason reason) {
936   DCHECK(did_then_);
937   builder()->Add<HDeoptimize>(reason, Deoptimizer::EAGER);
938   AddMergeAtJoinBlock(true);
939 }
940
941
942 void HGraphBuilder::IfBuilder::Return(HValue* value) {
943   HValue* parameter_count = builder()->graph()->GetConstantMinus1();
944   builder()->FinishExitCurrentBlock(
945       builder()->New<HReturn>(value, parameter_count));
946   AddMergeAtJoinBlock(false);
947 }
948
949
950 void HGraphBuilder::IfBuilder::AddMergeAtJoinBlock(bool deopt) {
951   if (!pending_merge_block_) return;
952   HBasicBlock* block = builder()->current_block();
953   DCHECK(block == NULL || !block->IsFinished());
954   MergeAtJoinBlock* record = new (builder()->zone())
955       MergeAtJoinBlock(block, deopt, merge_at_join_blocks_);
956   merge_at_join_blocks_ = record;
957   if (block != NULL) {
958     DCHECK(block->end() == NULL);
959     if (deopt) {
960       normal_merge_at_join_block_count_++;
961     } else {
962       deopt_merge_at_join_block_count_++;
963     }
964   }
965   builder()->set_current_block(NULL);
966   pending_merge_block_ = false;
967 }
968
969
970 void HGraphBuilder::IfBuilder::Finish() {
971   DCHECK(!finished_);
972   if (!did_then_) {
973     Then();
974   }
975   AddMergeAtJoinBlock(false);
976   if (!did_else_) {
977     Else();
978     AddMergeAtJoinBlock(false);
979   }
980   finished_ = true;
981 }
982
983
984 void HGraphBuilder::IfBuilder::Finish(HBasicBlock** then_continuation,
985                                       HBasicBlock** else_continuation) {
986   Finish();
987
988   MergeAtJoinBlock* else_record = merge_at_join_blocks_;
989   if (else_continuation != NULL) {
990     *else_continuation = else_record->block_;
991   }
992   MergeAtJoinBlock* then_record = else_record->next_;
993   if (then_continuation != NULL) {
994     *then_continuation = then_record->block_;
995   }
996   DCHECK(then_record->next_ == NULL);
997 }
998
999
1000 void HGraphBuilder::IfBuilder::EndUnreachable() {
1001   if (captured_) return;
1002   Finish();
1003   builder()->set_current_block(nullptr);
1004 }
1005
1006
1007 void HGraphBuilder::IfBuilder::End() {
1008   if (captured_) return;
1009   Finish();
1010
1011   int total_merged_blocks = normal_merge_at_join_block_count_ +
1012     deopt_merge_at_join_block_count_;
1013   DCHECK(total_merged_blocks >= 1);
1014   HBasicBlock* merge_block =
1015       total_merged_blocks == 1 ? NULL : builder()->graph()->CreateBasicBlock();
1016
1017   // Merge non-deopt blocks first to ensure environment has right size for
1018   // padding.
1019   MergeAtJoinBlock* current = merge_at_join_blocks_;
1020   while (current != NULL) {
1021     if (!current->deopt_ && current->block_ != NULL) {
1022       // If there is only one block that makes it through to the end of the
1023       // if, then just set it as the current block and continue rather then
1024       // creating an unnecessary merge block.
1025       if (total_merged_blocks == 1) {
1026         builder()->set_current_block(current->block_);
1027         return;
1028       }
1029       builder()->GotoNoSimulate(current->block_, merge_block);
1030     }
1031     current = current->next_;
1032   }
1033
1034   // Merge deopt blocks, padding when necessary.
1035   current = merge_at_join_blocks_;
1036   while (current != NULL) {
1037     if (current->deopt_ && current->block_ != NULL) {
1038       current->block_->FinishExit(
1039           HAbnormalExit::New(builder()->isolate(), builder()->zone(), NULL),
1040           SourcePosition::Unknown());
1041     }
1042     current = current->next_;
1043   }
1044   builder()->set_current_block(merge_block);
1045 }
1046
1047
1048 HGraphBuilder::LoopBuilder::LoopBuilder(HGraphBuilder* builder) {
1049   Initialize(builder, NULL, kWhileTrue, NULL);
1050 }
1051
1052
1053 HGraphBuilder::LoopBuilder::LoopBuilder(HGraphBuilder* builder, HValue* context,
1054                                         LoopBuilder::Direction direction) {
1055   Initialize(builder, context, direction, builder->graph()->GetConstant1());
1056 }
1057
1058
1059 HGraphBuilder::LoopBuilder::LoopBuilder(HGraphBuilder* builder, HValue* context,
1060                                         LoopBuilder::Direction direction,
1061                                         HValue* increment_amount) {
1062   Initialize(builder, context, direction, increment_amount);
1063   increment_amount_ = increment_amount;
1064 }
1065
1066
1067 void HGraphBuilder::LoopBuilder::Initialize(HGraphBuilder* builder,
1068                                             HValue* context,
1069                                             Direction direction,
1070                                             HValue* increment_amount) {
1071   builder_ = builder;
1072   context_ = context;
1073   direction_ = direction;
1074   increment_amount_ = increment_amount;
1075
1076   finished_ = false;
1077   header_block_ = builder->CreateLoopHeaderBlock();
1078   body_block_ = NULL;
1079   exit_block_ = NULL;
1080   exit_trampoline_block_ = NULL;
1081 }
1082
1083
1084 HValue* HGraphBuilder::LoopBuilder::BeginBody(
1085     HValue* initial,
1086     HValue* terminating,
1087     Token::Value token) {
1088   DCHECK(direction_ != kWhileTrue);
1089   HEnvironment* env = builder_->environment();
1090   phi_ = header_block_->AddNewPhi(env->values()->length());
1091   phi_->AddInput(initial);
1092   env->Push(initial);
1093   builder_->GotoNoSimulate(header_block_);
1094
1095   HEnvironment* body_env = env->Copy();
1096   HEnvironment* exit_env = env->Copy();
1097   // Remove the phi from the expression stack
1098   body_env->Pop();
1099   exit_env->Pop();
1100   body_block_ = builder_->CreateBasicBlock(body_env);
1101   exit_block_ = builder_->CreateBasicBlock(exit_env);
1102
1103   builder_->set_current_block(header_block_);
1104   env->Pop();
1105   builder_->FinishCurrentBlock(builder_->New<HCompareNumericAndBranch>(
1106           phi_, terminating, token, body_block_, exit_block_));
1107
1108   builder_->set_current_block(body_block_);
1109   if (direction_ == kPreIncrement || direction_ == kPreDecrement) {
1110     Isolate* isolate = builder_->isolate();
1111     HValue* one = builder_->graph()->GetConstant1();
1112     if (direction_ == kPreIncrement) {
1113       increment_ = HAdd::New(isolate, zone(), context_, phi_, one);
1114     } else {
1115       increment_ = HSub::New(isolate, zone(), context_, phi_, one);
1116     }
1117     increment_->ClearFlag(HValue::kCanOverflow);
1118     builder_->AddInstruction(increment_);
1119     return increment_;
1120   } else {
1121     return phi_;
1122   }
1123 }
1124
1125
1126 void HGraphBuilder::LoopBuilder::BeginBody(int drop_count) {
1127   DCHECK(direction_ == kWhileTrue);
1128   HEnvironment* env = builder_->environment();
1129   builder_->GotoNoSimulate(header_block_);
1130   builder_->set_current_block(header_block_);
1131   env->Drop(drop_count);
1132 }
1133
1134
1135 void HGraphBuilder::LoopBuilder::Break() {
1136   if (exit_trampoline_block_ == NULL) {
1137     // Its the first time we saw a break.
1138     if (direction_ == kWhileTrue) {
1139       HEnvironment* env = builder_->environment()->Copy();
1140       exit_trampoline_block_ = builder_->CreateBasicBlock(env);
1141     } else {
1142       HEnvironment* env = exit_block_->last_environment()->Copy();
1143       exit_trampoline_block_ = builder_->CreateBasicBlock(env);
1144       builder_->GotoNoSimulate(exit_block_, exit_trampoline_block_);
1145     }
1146   }
1147
1148   builder_->GotoNoSimulate(exit_trampoline_block_);
1149   builder_->set_current_block(NULL);
1150 }
1151
1152
1153 void HGraphBuilder::LoopBuilder::EndBody() {
1154   DCHECK(!finished_);
1155
1156   if (direction_ == kPostIncrement || direction_ == kPostDecrement) {
1157     Isolate* isolate = builder_->isolate();
1158     if (direction_ == kPostIncrement) {
1159       increment_ =
1160           HAdd::New(isolate, zone(), context_, phi_, increment_amount_);
1161     } else {
1162       increment_ =
1163           HSub::New(isolate, zone(), context_, phi_, increment_amount_);
1164     }
1165     increment_->ClearFlag(HValue::kCanOverflow);
1166     builder_->AddInstruction(increment_);
1167   }
1168
1169   if (direction_ != kWhileTrue) {
1170     // Push the new increment value on the expression stack to merge into
1171     // the phi.
1172     builder_->environment()->Push(increment_);
1173   }
1174   HBasicBlock* last_block = builder_->current_block();
1175   builder_->GotoNoSimulate(last_block, header_block_);
1176   header_block_->loop_information()->RegisterBackEdge(last_block);
1177
1178   if (exit_trampoline_block_ != NULL) {
1179     builder_->set_current_block(exit_trampoline_block_);
1180   } else {
1181     builder_->set_current_block(exit_block_);
1182   }
1183   finished_ = true;
1184 }
1185
1186
1187 HGraph* HGraphBuilder::CreateGraph() {
1188   graph_ = new(zone()) HGraph(info_);
1189   if (FLAG_hydrogen_stats) isolate()->GetHStatistics()->Initialize(info_);
1190   CompilationPhase phase("H_Block building", info_);
1191   set_current_block(graph()->entry_block());
1192   if (!BuildGraph()) return NULL;
1193   graph()->FinalizeUniqueness();
1194   return graph_;
1195 }
1196
1197
1198 HInstruction* HGraphBuilder::AddInstruction(HInstruction* instr) {
1199   DCHECK(current_block() != NULL);
1200   DCHECK(!FLAG_hydrogen_track_positions ||
1201          !position_.IsUnknown() ||
1202          !info_->IsOptimizing());
1203   current_block()->AddInstruction(instr, source_position());
1204   if (graph()->IsInsideNoSideEffectsScope()) {
1205     instr->SetFlag(HValue::kHasNoObservableSideEffects);
1206   }
1207   return instr;
1208 }
1209
1210
1211 void HGraphBuilder::FinishCurrentBlock(HControlInstruction* last) {
1212   DCHECK(!FLAG_hydrogen_track_positions ||
1213          !info_->IsOptimizing() ||
1214          !position_.IsUnknown());
1215   current_block()->Finish(last, source_position());
1216   if (last->IsReturn() || last->IsAbnormalExit()) {
1217     set_current_block(NULL);
1218   }
1219 }
1220
1221
1222 void HGraphBuilder::FinishExitCurrentBlock(HControlInstruction* instruction) {
1223   DCHECK(!FLAG_hydrogen_track_positions || !info_->IsOptimizing() ||
1224          !position_.IsUnknown());
1225   current_block()->FinishExit(instruction, source_position());
1226   if (instruction->IsReturn() || instruction->IsAbnormalExit()) {
1227     set_current_block(NULL);
1228   }
1229 }
1230
1231
1232 void HGraphBuilder::AddIncrementCounter(StatsCounter* counter) {
1233   if (FLAG_native_code_counters && counter->Enabled()) {
1234     HValue* reference = Add<HConstant>(ExternalReference(counter));
1235     HValue* old_value =
1236         Add<HLoadNamedField>(reference, nullptr, HObjectAccess::ForCounter());
1237     HValue* new_value = AddUncasted<HAdd>(old_value, graph()->GetConstant1());
1238     new_value->ClearFlag(HValue::kCanOverflow);  // Ignore counter overflow
1239     Add<HStoreNamedField>(reference, HObjectAccess::ForCounter(),
1240                           new_value, STORE_TO_INITIALIZED_ENTRY);
1241   }
1242 }
1243
1244
1245 void HGraphBuilder::AddSimulate(BailoutId id,
1246                                 RemovableSimulate removable) {
1247   DCHECK(current_block() != NULL);
1248   DCHECK(!graph()->IsInsideNoSideEffectsScope());
1249   current_block()->AddNewSimulate(id, source_position(), removable);
1250 }
1251
1252
1253 HBasicBlock* HGraphBuilder::CreateBasicBlock(HEnvironment* env) {
1254   HBasicBlock* b = graph()->CreateBasicBlock();
1255   b->SetInitialEnvironment(env);
1256   return b;
1257 }
1258
1259
1260 HBasicBlock* HGraphBuilder::CreateLoopHeaderBlock() {
1261   HBasicBlock* header = graph()->CreateBasicBlock();
1262   HEnvironment* entry_env = environment()->CopyAsLoopHeader(header);
1263   header->SetInitialEnvironment(entry_env);
1264   header->AttachLoopInformation();
1265   return header;
1266 }
1267
1268
1269 HValue* HGraphBuilder::BuildGetElementsKind(HValue* object) {
1270   HValue* map = Add<HLoadNamedField>(object, nullptr, HObjectAccess::ForMap());
1271
1272   HValue* bit_field2 =
1273       Add<HLoadNamedField>(map, nullptr, HObjectAccess::ForMapBitField2());
1274   return BuildDecodeField<Map::ElementsKindBits>(bit_field2);
1275 }
1276
1277
1278 HValue* HGraphBuilder::BuildCheckHeapObject(HValue* obj) {
1279   if (obj->type().IsHeapObject()) return obj;
1280   return Add<HCheckHeapObject>(obj);
1281 }
1282
1283
1284 void HGraphBuilder::FinishExitWithHardDeoptimization(
1285     Deoptimizer::DeoptReason reason) {
1286   Add<HDeoptimize>(reason, Deoptimizer::EAGER);
1287   FinishExitCurrentBlock(New<HAbnormalExit>());
1288 }
1289
1290
1291 HValue* HGraphBuilder::BuildCheckString(HValue* string) {
1292   if (!string->type().IsString()) {
1293     DCHECK(!string->IsConstant() ||
1294            !HConstant::cast(string)->HasStringValue());
1295     BuildCheckHeapObject(string);
1296     return Add<HCheckInstanceType>(string, HCheckInstanceType::IS_STRING);
1297   }
1298   return string;
1299 }
1300
1301
1302 HValue* HGraphBuilder::BuildWrapReceiver(HValue* object, HValue* function) {
1303   if (object->type().IsJSObject()) return object;
1304   if (function->IsConstant() &&
1305       HConstant::cast(function)->handle(isolate())->IsJSFunction()) {
1306     Handle<JSFunction> f = Handle<JSFunction>::cast(
1307         HConstant::cast(function)->handle(isolate()));
1308     SharedFunctionInfo* shared = f->shared();
1309     if (is_strict(shared->language_mode()) || shared->native()) return object;
1310   }
1311   return Add<HWrapReceiver>(object, function);
1312 }
1313
1314
1315 HValue* HGraphBuilder::BuildCheckAndGrowElementsCapacity(
1316     HValue* object, HValue* elements, ElementsKind kind, HValue* length,
1317     HValue* capacity, HValue* key) {
1318   HValue* max_gap = Add<HConstant>(static_cast<int32_t>(JSObject::kMaxGap));
1319   HValue* max_capacity = AddUncasted<HAdd>(capacity, max_gap);
1320   Add<HBoundsCheck>(key, max_capacity);
1321
1322   HValue* new_capacity = BuildNewElementsCapacity(key);
1323   HValue* new_elements = BuildGrowElementsCapacity(object, elements, kind, kind,
1324                                                    length, new_capacity);
1325   return new_elements;
1326 }
1327
1328
1329 HValue* HGraphBuilder::BuildCheckForCapacityGrow(
1330     HValue* object,
1331     HValue* elements,
1332     ElementsKind kind,
1333     HValue* length,
1334     HValue* key,
1335     bool is_js_array,
1336     PropertyAccessType access_type) {
1337   IfBuilder length_checker(this);
1338
1339   Token::Value token = IsHoleyElementsKind(kind) ? Token::GTE : Token::EQ;
1340   length_checker.If<HCompareNumericAndBranch>(key, length, token);
1341
1342   length_checker.Then();
1343
1344   HValue* current_capacity = AddLoadFixedArrayLength(elements);
1345
1346   if (top_info()->IsStub()) {
1347     IfBuilder capacity_checker(this);
1348     capacity_checker.If<HCompareNumericAndBranch>(key, current_capacity,
1349                                                   Token::GTE);
1350     capacity_checker.Then();
1351     HValue* new_elements = BuildCheckAndGrowElementsCapacity(
1352         object, elements, kind, length, current_capacity, key);
1353     environment()->Push(new_elements);
1354     capacity_checker.Else();
1355     environment()->Push(elements);
1356     capacity_checker.End();
1357   } else {
1358     HValue* result = Add<HMaybeGrowElements>(
1359         object, elements, key, current_capacity, is_js_array, kind);
1360     environment()->Push(result);
1361   }
1362
1363   if (is_js_array) {
1364     HValue* new_length = AddUncasted<HAdd>(key, graph_->GetConstant1());
1365     new_length->ClearFlag(HValue::kCanOverflow);
1366
1367     Add<HStoreNamedField>(object, HObjectAccess::ForArrayLength(kind),
1368                           new_length);
1369   }
1370
1371   if (access_type == STORE && kind == FAST_SMI_ELEMENTS) {
1372     HValue* checked_elements = environment()->Top();
1373
1374     // Write zero to ensure that the new element is initialized with some smi.
1375     Add<HStoreKeyed>(checked_elements, key, graph()->GetConstant0(), kind);
1376   }
1377
1378   length_checker.Else();
1379   Add<HBoundsCheck>(key, length);
1380
1381   environment()->Push(elements);
1382   length_checker.End();
1383
1384   return environment()->Pop();
1385 }
1386
1387
1388 HValue* HGraphBuilder::BuildCopyElementsOnWrite(HValue* object,
1389                                                 HValue* elements,
1390                                                 ElementsKind kind,
1391                                                 HValue* length) {
1392   Factory* factory = isolate()->factory();
1393
1394   IfBuilder cow_checker(this);
1395
1396   cow_checker.If<HCompareMap>(elements, factory->fixed_cow_array_map());
1397   cow_checker.Then();
1398
1399   HValue* capacity = AddLoadFixedArrayLength(elements);
1400
1401   HValue* new_elements = BuildGrowElementsCapacity(object, elements, kind,
1402                                                    kind, length, capacity);
1403
1404   environment()->Push(new_elements);
1405
1406   cow_checker.Else();
1407
1408   environment()->Push(elements);
1409
1410   cow_checker.End();
1411
1412   return environment()->Pop();
1413 }
1414
1415
1416 void HGraphBuilder::BuildTransitionElementsKind(HValue* object,
1417                                                 HValue* map,
1418                                                 ElementsKind from_kind,
1419                                                 ElementsKind to_kind,
1420                                                 bool is_jsarray) {
1421   DCHECK(!IsFastHoleyElementsKind(from_kind) ||
1422          IsFastHoleyElementsKind(to_kind));
1423
1424   if (AllocationSite::GetMode(from_kind, to_kind) == TRACK_ALLOCATION_SITE) {
1425     Add<HTrapAllocationMemento>(object);
1426   }
1427
1428   if (!IsSimpleMapChangeTransition(from_kind, to_kind)) {
1429     HInstruction* elements = AddLoadElements(object);
1430
1431     HInstruction* empty_fixed_array = Add<HConstant>(
1432         isolate()->factory()->empty_fixed_array());
1433
1434     IfBuilder if_builder(this);
1435
1436     if_builder.IfNot<HCompareObjectEqAndBranch>(elements, empty_fixed_array);
1437
1438     if_builder.Then();
1439
1440     HInstruction* elements_length = AddLoadFixedArrayLength(elements);
1441
1442     HInstruction* array_length =
1443         is_jsarray
1444             ? Add<HLoadNamedField>(object, nullptr,
1445                                    HObjectAccess::ForArrayLength(from_kind))
1446             : elements_length;
1447
1448     BuildGrowElementsCapacity(object, elements, from_kind, to_kind,
1449                               array_length, elements_length);
1450
1451     if_builder.End();
1452   }
1453
1454   Add<HStoreNamedField>(object, HObjectAccess::ForMap(), map);
1455 }
1456
1457
1458 void HGraphBuilder::BuildJSObjectCheck(HValue* receiver,
1459                                        int bit_field_mask) {
1460   // Check that the object isn't a smi.
1461   Add<HCheckHeapObject>(receiver);
1462
1463   // Get the map of the receiver.
1464   HValue* map =
1465       Add<HLoadNamedField>(receiver, nullptr, HObjectAccess::ForMap());
1466
1467   // Check the instance type and if an access check is needed, this can be
1468   // done with a single load, since both bytes are adjacent in the map.
1469   HObjectAccess access(HObjectAccess::ForMapInstanceTypeAndBitField());
1470   HValue* instance_type_and_bit_field =
1471       Add<HLoadNamedField>(map, nullptr, access);
1472
1473   HValue* mask = Add<HConstant>(0x00FF | (bit_field_mask << 8));
1474   HValue* and_result = AddUncasted<HBitwise>(Token::BIT_AND,
1475                                              instance_type_and_bit_field,
1476                                              mask);
1477   HValue* sub_result = AddUncasted<HSub>(and_result,
1478                                          Add<HConstant>(JS_OBJECT_TYPE));
1479   Add<HBoundsCheck>(sub_result,
1480                     Add<HConstant>(LAST_JS_OBJECT_TYPE + 1 - JS_OBJECT_TYPE));
1481 }
1482
1483
1484 void HGraphBuilder::BuildKeyedIndexCheck(HValue* key,
1485                                          HIfContinuation* join_continuation) {
1486   // The sometimes unintuitively backward ordering of the ifs below is
1487   // convoluted, but necessary.  All of the paths must guarantee that the
1488   // if-true of the continuation returns a smi element index and the if-false of
1489   // the continuation returns either a symbol or a unique string key. All other
1490   // object types cause a deopt to fall back to the runtime.
1491
1492   IfBuilder key_smi_if(this);
1493   key_smi_if.If<HIsSmiAndBranch>(key);
1494   key_smi_if.Then();
1495   {
1496     Push(key);  // Nothing to do, just continue to true of continuation.
1497   }
1498   key_smi_if.Else();
1499   {
1500     HValue* map = Add<HLoadNamedField>(key, nullptr, HObjectAccess::ForMap());
1501     HValue* instance_type =
1502         Add<HLoadNamedField>(map, nullptr, HObjectAccess::ForMapInstanceType());
1503
1504     // Non-unique string, check for a string with a hash code that is actually
1505     // an index.
1506     STATIC_ASSERT(LAST_UNIQUE_NAME_TYPE == FIRST_NONSTRING_TYPE);
1507     IfBuilder not_string_or_name_if(this);
1508     not_string_or_name_if.If<HCompareNumericAndBranch>(
1509         instance_type,
1510         Add<HConstant>(LAST_UNIQUE_NAME_TYPE),
1511         Token::GT);
1512
1513     not_string_or_name_if.Then();
1514     {
1515       // Non-smi, non-Name, non-String: Try to convert to smi in case of
1516       // HeapNumber.
1517       // TODO(danno): This could call some variant of ToString
1518       Push(AddUncasted<HForceRepresentation>(key, Representation::Smi()));
1519     }
1520     not_string_or_name_if.Else();
1521     {
1522       // String or Name: check explicitly for Name, they can short-circuit
1523       // directly to unique non-index key path.
1524       IfBuilder not_symbol_if(this);
1525       not_symbol_if.If<HCompareNumericAndBranch>(
1526           instance_type,
1527           Add<HConstant>(SYMBOL_TYPE),
1528           Token::NE);
1529
1530       not_symbol_if.Then();
1531       {
1532         // String: check whether the String is a String of an index. If it is,
1533         // extract the index value from the hash.
1534         HValue* hash = Add<HLoadNamedField>(key, nullptr,
1535                                             HObjectAccess::ForNameHashField());
1536         HValue* not_index_mask = Add<HConstant>(static_cast<int>(
1537             String::kContainsCachedArrayIndexMask));
1538
1539         HValue* not_index_test = AddUncasted<HBitwise>(
1540             Token::BIT_AND, hash, not_index_mask);
1541
1542         IfBuilder string_index_if(this);
1543         string_index_if.If<HCompareNumericAndBranch>(not_index_test,
1544                                                      graph()->GetConstant0(),
1545                                                      Token::EQ);
1546         string_index_if.Then();
1547         {
1548           // String with index in hash: extract string and merge to index path.
1549           Push(BuildDecodeField<String::ArrayIndexValueBits>(hash));
1550         }
1551         string_index_if.Else();
1552         {
1553           // Key is a non-index String, check for uniqueness/internalization.
1554           // If it's not internalized yet, internalize it now.
1555           HValue* not_internalized_bit = AddUncasted<HBitwise>(
1556               Token::BIT_AND,
1557               instance_type,
1558               Add<HConstant>(static_cast<int>(kIsNotInternalizedMask)));
1559
1560           IfBuilder internalized(this);
1561           internalized.If<HCompareNumericAndBranch>(not_internalized_bit,
1562                                                     graph()->GetConstant0(),
1563                                                     Token::EQ);
1564           internalized.Then();
1565           Push(key);
1566
1567           internalized.Else();
1568           Add<HPushArguments>(key);
1569           HValue* intern_key = Add<HCallRuntime>(
1570               isolate()->factory()->empty_string(),
1571               Runtime::FunctionForId(Runtime::kInternalizeString), 1);
1572           Push(intern_key);
1573
1574           internalized.End();
1575           // Key guaranteed to be a unique string
1576         }
1577         string_index_if.JoinContinuation(join_continuation);
1578       }
1579       not_symbol_if.Else();
1580       {
1581         Push(key);  // Key is symbol
1582       }
1583       not_symbol_if.JoinContinuation(join_continuation);
1584     }
1585     not_string_or_name_if.JoinContinuation(join_continuation);
1586   }
1587   key_smi_if.JoinContinuation(join_continuation);
1588 }
1589
1590
1591 void HGraphBuilder::BuildNonGlobalObjectCheck(HValue* receiver) {
1592   // Get the the instance type of the receiver, and make sure that it is
1593   // not one of the global object types.
1594   HValue* map =
1595       Add<HLoadNamedField>(receiver, nullptr, HObjectAccess::ForMap());
1596   HValue* instance_type =
1597       Add<HLoadNamedField>(map, nullptr, HObjectAccess::ForMapInstanceType());
1598   STATIC_ASSERT(JS_BUILTINS_OBJECT_TYPE == JS_GLOBAL_OBJECT_TYPE + 1);
1599   HValue* min_global_type = Add<HConstant>(JS_GLOBAL_OBJECT_TYPE);
1600   HValue* max_global_type = Add<HConstant>(JS_BUILTINS_OBJECT_TYPE);
1601
1602   IfBuilder if_global_object(this);
1603   if_global_object.If<HCompareNumericAndBranch>(instance_type,
1604                                                 max_global_type,
1605                                                 Token::LTE);
1606   if_global_object.And();
1607   if_global_object.If<HCompareNumericAndBranch>(instance_type,
1608                                                 min_global_type,
1609                                                 Token::GTE);
1610   if_global_object.ThenDeopt(Deoptimizer::kReceiverWasAGlobalObject);
1611   if_global_object.End();
1612 }
1613
1614
1615 void HGraphBuilder::BuildTestForDictionaryProperties(
1616     HValue* object,
1617     HIfContinuation* continuation) {
1618   HValue* properties = Add<HLoadNamedField>(
1619       object, nullptr, HObjectAccess::ForPropertiesPointer());
1620   HValue* properties_map =
1621       Add<HLoadNamedField>(properties, nullptr, HObjectAccess::ForMap());
1622   HValue* hash_map = Add<HLoadRoot>(Heap::kHashTableMapRootIndex);
1623   IfBuilder builder(this);
1624   builder.If<HCompareObjectEqAndBranch>(properties_map, hash_map);
1625   builder.CaptureContinuation(continuation);
1626 }
1627
1628
1629 HValue* HGraphBuilder::BuildKeyedLookupCacheHash(HValue* object,
1630                                                  HValue* key) {
1631   // Load the map of the receiver, compute the keyed lookup cache hash
1632   // based on 32 bits of the map pointer and the string hash.
1633   HValue* object_map =
1634       Add<HLoadNamedField>(object, nullptr, HObjectAccess::ForMapAsInteger32());
1635   HValue* shifted_map = AddUncasted<HShr>(
1636       object_map, Add<HConstant>(KeyedLookupCache::kMapHashShift));
1637   HValue* string_hash =
1638       Add<HLoadNamedField>(key, nullptr, HObjectAccess::ForStringHashField());
1639   HValue* shifted_hash = AddUncasted<HShr>(
1640       string_hash, Add<HConstant>(String::kHashShift));
1641   HValue* xor_result = AddUncasted<HBitwise>(Token::BIT_XOR, shifted_map,
1642                                              shifted_hash);
1643   int mask = (KeyedLookupCache::kCapacityMask & KeyedLookupCache::kHashMask);
1644   return AddUncasted<HBitwise>(Token::BIT_AND, xor_result,
1645                                Add<HConstant>(mask));
1646 }
1647
1648
1649 HValue* HGraphBuilder::BuildElementIndexHash(HValue* index) {
1650   int32_t seed_value = static_cast<uint32_t>(isolate()->heap()->HashSeed());
1651   HValue* seed = Add<HConstant>(seed_value);
1652   HValue* hash = AddUncasted<HBitwise>(Token::BIT_XOR, index, seed);
1653
1654   // hash = ~hash + (hash << 15);
1655   HValue* shifted_hash = AddUncasted<HShl>(hash, Add<HConstant>(15));
1656   HValue* not_hash = AddUncasted<HBitwise>(Token::BIT_XOR, hash,
1657                                            graph()->GetConstantMinus1());
1658   hash = AddUncasted<HAdd>(shifted_hash, not_hash);
1659
1660   // hash = hash ^ (hash >> 12);
1661   shifted_hash = AddUncasted<HShr>(hash, Add<HConstant>(12));
1662   hash = AddUncasted<HBitwise>(Token::BIT_XOR, hash, shifted_hash);
1663
1664   // hash = hash + (hash << 2);
1665   shifted_hash = AddUncasted<HShl>(hash, Add<HConstant>(2));
1666   hash = AddUncasted<HAdd>(hash, shifted_hash);
1667
1668   // hash = hash ^ (hash >> 4);
1669   shifted_hash = AddUncasted<HShr>(hash, Add<HConstant>(4));
1670   hash = AddUncasted<HBitwise>(Token::BIT_XOR, hash, shifted_hash);
1671
1672   // hash = hash * 2057;
1673   hash = AddUncasted<HMul>(hash, Add<HConstant>(2057));
1674   hash->ClearFlag(HValue::kCanOverflow);
1675
1676   // hash = hash ^ (hash >> 16);
1677   shifted_hash = AddUncasted<HShr>(hash, Add<HConstant>(16));
1678   return AddUncasted<HBitwise>(Token::BIT_XOR, hash, shifted_hash);
1679 }
1680
1681
1682 HValue* HGraphBuilder::BuildUncheckedDictionaryElementLoad(
1683     HValue* receiver, HValue* elements, HValue* key, HValue* hash,
1684     LanguageMode language_mode) {
1685   HValue* capacity =
1686       Add<HLoadKeyed>(elements, Add<HConstant>(NameDictionary::kCapacityIndex),
1687                       nullptr, FAST_ELEMENTS);
1688
1689   HValue* mask = AddUncasted<HSub>(capacity, graph()->GetConstant1());
1690   mask->ChangeRepresentation(Representation::Integer32());
1691   mask->ClearFlag(HValue::kCanOverflow);
1692
1693   HValue* entry = hash;
1694   HValue* count = graph()->GetConstant1();
1695   Push(entry);
1696   Push(count);
1697
1698   HIfContinuation return_or_loop_continuation(graph()->CreateBasicBlock(),
1699                                               graph()->CreateBasicBlock());
1700   HIfContinuation found_key_match_continuation(graph()->CreateBasicBlock(),
1701                                                graph()->CreateBasicBlock());
1702   LoopBuilder probe_loop(this);
1703   probe_loop.BeginBody(2);  // Drop entry, count from last environment to
1704                             // appease live range building without simulates.
1705
1706   count = Pop();
1707   entry = Pop();
1708   entry = AddUncasted<HBitwise>(Token::BIT_AND, entry, mask);
1709   int entry_size = SeededNumberDictionary::kEntrySize;
1710   HValue* base_index = AddUncasted<HMul>(entry, Add<HConstant>(entry_size));
1711   base_index->ClearFlag(HValue::kCanOverflow);
1712   int start_offset = SeededNumberDictionary::kElementsStartIndex;
1713   HValue* key_index =
1714       AddUncasted<HAdd>(base_index, Add<HConstant>(start_offset));
1715   key_index->ClearFlag(HValue::kCanOverflow);
1716
1717   HValue* candidate_key =
1718       Add<HLoadKeyed>(elements, key_index, nullptr, FAST_ELEMENTS);
1719   IfBuilder if_undefined(this);
1720   if_undefined.If<HCompareObjectEqAndBranch>(candidate_key,
1721                                              graph()->GetConstantUndefined());
1722   if_undefined.Then();
1723   {
1724     // element == undefined means "not found". Call the runtime.
1725     // TODO(jkummerow): walk the prototype chain instead.
1726     Add<HPushArguments>(receiver, key);
1727     Push(Add<HCallRuntime>(
1728         isolate()->factory()->empty_string(),
1729         Runtime::FunctionForId(is_strong(language_mode)
1730                                    ? Runtime::kKeyedGetPropertyStrong
1731                                    : Runtime::kKeyedGetProperty),
1732         2));
1733   }
1734   if_undefined.Else();
1735   {
1736     IfBuilder if_match(this);
1737     if_match.If<HCompareObjectEqAndBranch>(candidate_key, key);
1738     if_match.Then();
1739     if_match.Else();
1740
1741     // Update non-internalized string in the dictionary with internalized key?
1742     IfBuilder if_update_with_internalized(this);
1743     HValue* smi_check =
1744         if_update_with_internalized.IfNot<HIsSmiAndBranch>(candidate_key);
1745     if_update_with_internalized.And();
1746     HValue* map = AddLoadMap(candidate_key, smi_check);
1747     HValue* instance_type =
1748         Add<HLoadNamedField>(map, nullptr, HObjectAccess::ForMapInstanceType());
1749     HValue* not_internalized_bit = AddUncasted<HBitwise>(
1750         Token::BIT_AND, instance_type,
1751         Add<HConstant>(static_cast<int>(kIsNotInternalizedMask)));
1752     if_update_with_internalized.If<HCompareNumericAndBranch>(
1753         not_internalized_bit, graph()->GetConstant0(), Token::NE);
1754     if_update_with_internalized.And();
1755     if_update_with_internalized.IfNot<HCompareObjectEqAndBranch>(
1756         candidate_key, graph()->GetConstantHole());
1757     if_update_with_internalized.AndIf<HStringCompareAndBranch>(candidate_key,
1758                                                                key, Token::EQ);
1759     if_update_with_internalized.Then();
1760     // Replace a key that is a non-internalized string by the equivalent
1761     // internalized string for faster further lookups.
1762     Add<HStoreKeyed>(elements, key_index, key, FAST_ELEMENTS);
1763     if_update_with_internalized.Else();
1764
1765     if_update_with_internalized.JoinContinuation(&found_key_match_continuation);
1766     if_match.JoinContinuation(&found_key_match_continuation);
1767
1768     IfBuilder found_key_match(this, &found_key_match_continuation);
1769     found_key_match.Then();
1770     // Key at current probe matches. Relevant bits in the |details| field must
1771     // be zero, otherwise the dictionary element requires special handling.
1772     HValue* details_index =
1773         AddUncasted<HAdd>(base_index, Add<HConstant>(start_offset + 2));
1774     details_index->ClearFlag(HValue::kCanOverflow);
1775     HValue* details =
1776         Add<HLoadKeyed>(elements, details_index, nullptr, FAST_ELEMENTS);
1777     int details_mask = PropertyDetails::TypeField::kMask;
1778     details = AddUncasted<HBitwise>(Token::BIT_AND, details,
1779                                     Add<HConstant>(details_mask));
1780     IfBuilder details_compare(this);
1781     details_compare.If<HCompareNumericAndBranch>(
1782         details, graph()->GetConstant0(), Token::EQ);
1783     details_compare.Then();
1784     HValue* result_index =
1785         AddUncasted<HAdd>(base_index, Add<HConstant>(start_offset + 1));
1786     result_index->ClearFlag(HValue::kCanOverflow);
1787     Push(Add<HLoadKeyed>(elements, result_index, nullptr, FAST_ELEMENTS));
1788     details_compare.Else();
1789     Add<HPushArguments>(receiver, key);
1790     Push(Add<HCallRuntime>(
1791         isolate()->factory()->empty_string(),
1792         Runtime::FunctionForId(is_strong(language_mode)
1793                                    ? Runtime::kKeyedGetPropertyStrong
1794                                    : Runtime::kKeyedGetProperty),
1795         2));
1796     details_compare.End();
1797
1798     found_key_match.Else();
1799     found_key_match.JoinContinuation(&return_or_loop_continuation);
1800   }
1801   if_undefined.JoinContinuation(&return_or_loop_continuation);
1802
1803   IfBuilder return_or_loop(this, &return_or_loop_continuation);
1804   return_or_loop.Then();
1805   probe_loop.Break();
1806
1807   return_or_loop.Else();
1808   entry = AddUncasted<HAdd>(entry, count);
1809   entry->ClearFlag(HValue::kCanOverflow);
1810   count = AddUncasted<HAdd>(count, graph()->GetConstant1());
1811   count->ClearFlag(HValue::kCanOverflow);
1812   Push(entry);
1813   Push(count);
1814
1815   probe_loop.EndBody();
1816
1817   return_or_loop.End();
1818
1819   return Pop();
1820 }
1821
1822
1823 HValue* HGraphBuilder::BuildRegExpConstructResult(HValue* length,
1824                                                   HValue* index,
1825                                                   HValue* input) {
1826   NoObservableSideEffectsScope scope(this);
1827   HConstant* max_length = Add<HConstant>(JSObject::kInitialMaxFastElementArray);
1828   Add<HBoundsCheck>(length, max_length);
1829
1830   // Generate size calculation code here in order to make it dominate
1831   // the JSRegExpResult allocation.
1832   ElementsKind elements_kind = FAST_ELEMENTS;
1833   HValue* size = BuildCalculateElementsSize(elements_kind, length);
1834
1835   // Allocate the JSRegExpResult and the FixedArray in one step.
1836   HValue* result = Add<HAllocate>(
1837       Add<HConstant>(JSRegExpResult::kSize), HType::JSArray(),
1838       NOT_TENURED, JS_ARRAY_TYPE);
1839
1840   // Initialize the JSRegExpResult header.
1841   HValue* global_object = Add<HLoadNamedField>(
1842       context(), nullptr,
1843       HObjectAccess::ForContextSlot(Context::GLOBAL_OBJECT_INDEX));
1844   HValue* native_context = Add<HLoadNamedField>(
1845       global_object, nullptr, HObjectAccess::ForGlobalObjectNativeContext());
1846   Add<HStoreNamedField>(
1847       result, HObjectAccess::ForMap(),
1848       Add<HLoadNamedField>(
1849           native_context, nullptr,
1850           HObjectAccess::ForContextSlot(Context::REGEXP_RESULT_MAP_INDEX)));
1851   HConstant* empty_fixed_array =
1852       Add<HConstant>(isolate()->factory()->empty_fixed_array());
1853   Add<HStoreNamedField>(
1854       result, HObjectAccess::ForJSArrayOffset(JSArray::kPropertiesOffset),
1855       empty_fixed_array);
1856   Add<HStoreNamedField>(
1857       result, HObjectAccess::ForJSArrayOffset(JSArray::kElementsOffset),
1858       empty_fixed_array);
1859   Add<HStoreNamedField>(
1860       result, HObjectAccess::ForJSArrayOffset(JSArray::kLengthOffset), length);
1861
1862   // Initialize the additional fields.
1863   Add<HStoreNamedField>(
1864       result, HObjectAccess::ForJSArrayOffset(JSRegExpResult::kIndexOffset),
1865       index);
1866   Add<HStoreNamedField>(
1867       result, HObjectAccess::ForJSArrayOffset(JSRegExpResult::kInputOffset),
1868       input);
1869
1870   // Allocate and initialize the elements header.
1871   HAllocate* elements = BuildAllocateElements(elements_kind, size);
1872   BuildInitializeElementsHeader(elements, elements_kind, length);
1873
1874   if (!elements->has_size_upper_bound()) {
1875     HConstant* size_in_bytes_upper_bound = EstablishElementsAllocationSize(
1876         elements_kind, max_length->Integer32Value());
1877     elements->set_size_upper_bound(size_in_bytes_upper_bound);
1878   }
1879
1880   Add<HStoreNamedField>(
1881       result, HObjectAccess::ForJSArrayOffset(JSArray::kElementsOffset),
1882       elements);
1883
1884   // Initialize the elements contents with undefined.
1885   BuildFillElementsWithValue(
1886       elements, elements_kind, graph()->GetConstant0(), length,
1887       graph()->GetConstantUndefined());
1888
1889   return result;
1890 }
1891
1892
1893 HValue* HGraphBuilder::BuildNumberToString(HValue* object, Type* type) {
1894   NoObservableSideEffectsScope scope(this);
1895
1896   // Convert constant numbers at compile time.
1897   if (object->IsConstant() && HConstant::cast(object)->HasNumberValue()) {
1898     Handle<Object> number = HConstant::cast(object)->handle(isolate());
1899     Handle<String> result = isolate()->factory()->NumberToString(number);
1900     return Add<HConstant>(result);
1901   }
1902
1903   // Create a joinable continuation.
1904   HIfContinuation found(graph()->CreateBasicBlock(),
1905                         graph()->CreateBasicBlock());
1906
1907   // Load the number string cache.
1908   HValue* number_string_cache =
1909       Add<HLoadRoot>(Heap::kNumberStringCacheRootIndex);
1910
1911   // Make the hash mask from the length of the number string cache. It
1912   // contains two elements (number and string) for each cache entry.
1913   HValue* mask = AddLoadFixedArrayLength(number_string_cache);
1914   mask->set_type(HType::Smi());
1915   mask = AddUncasted<HSar>(mask, graph()->GetConstant1());
1916   mask = AddUncasted<HSub>(mask, graph()->GetConstant1());
1917
1918   // Check whether object is a smi.
1919   IfBuilder if_objectissmi(this);
1920   if_objectissmi.If<HIsSmiAndBranch>(object);
1921   if_objectissmi.Then();
1922   {
1923     // Compute hash for smi similar to smi_get_hash().
1924     HValue* hash = AddUncasted<HBitwise>(Token::BIT_AND, object, mask);
1925
1926     // Load the key.
1927     HValue* key_index = AddUncasted<HShl>(hash, graph()->GetConstant1());
1928     HValue* key = Add<HLoadKeyed>(number_string_cache, key_index, nullptr,
1929                                   FAST_ELEMENTS, ALLOW_RETURN_HOLE);
1930
1931     // Check if object == key.
1932     IfBuilder if_objectiskey(this);
1933     if_objectiskey.If<HCompareObjectEqAndBranch>(object, key);
1934     if_objectiskey.Then();
1935     {
1936       // Make the key_index available.
1937       Push(key_index);
1938     }
1939     if_objectiskey.JoinContinuation(&found);
1940   }
1941   if_objectissmi.Else();
1942   {
1943     if (type->Is(Type::SignedSmall())) {
1944       if_objectissmi.Deopt(Deoptimizer::kExpectedSmi);
1945     } else {
1946       // Check if the object is a heap number.
1947       IfBuilder if_objectisnumber(this);
1948       HValue* objectisnumber = if_objectisnumber.If<HCompareMap>(
1949           object, isolate()->factory()->heap_number_map());
1950       if_objectisnumber.Then();
1951       {
1952         // Compute hash for heap number similar to double_get_hash().
1953         HValue* low = Add<HLoadNamedField>(
1954             object, objectisnumber,
1955             HObjectAccess::ForHeapNumberValueLowestBits());
1956         HValue* high = Add<HLoadNamedField>(
1957             object, objectisnumber,
1958             HObjectAccess::ForHeapNumberValueHighestBits());
1959         HValue* hash = AddUncasted<HBitwise>(Token::BIT_XOR, low, high);
1960         hash = AddUncasted<HBitwise>(Token::BIT_AND, hash, mask);
1961
1962         // Load the key.
1963         HValue* key_index = AddUncasted<HShl>(hash, graph()->GetConstant1());
1964         HValue* key = Add<HLoadKeyed>(number_string_cache, key_index, nullptr,
1965                                       FAST_ELEMENTS, ALLOW_RETURN_HOLE);
1966
1967         // Check if the key is a heap number and compare it with the object.
1968         IfBuilder if_keyisnotsmi(this);
1969         HValue* keyisnotsmi = if_keyisnotsmi.IfNot<HIsSmiAndBranch>(key);
1970         if_keyisnotsmi.Then();
1971         {
1972           IfBuilder if_keyisheapnumber(this);
1973           if_keyisheapnumber.If<HCompareMap>(
1974               key, isolate()->factory()->heap_number_map());
1975           if_keyisheapnumber.Then();
1976           {
1977             // Check if values of key and object match.
1978             IfBuilder if_keyeqobject(this);
1979             if_keyeqobject.If<HCompareNumericAndBranch>(
1980                 Add<HLoadNamedField>(key, keyisnotsmi,
1981                                      HObjectAccess::ForHeapNumberValue()),
1982                 Add<HLoadNamedField>(object, objectisnumber,
1983                                      HObjectAccess::ForHeapNumberValue()),
1984                 Token::EQ);
1985             if_keyeqobject.Then();
1986             {
1987               // Make the key_index available.
1988               Push(key_index);
1989             }
1990             if_keyeqobject.JoinContinuation(&found);
1991           }
1992           if_keyisheapnumber.JoinContinuation(&found);
1993         }
1994         if_keyisnotsmi.JoinContinuation(&found);
1995       }
1996       if_objectisnumber.Else();
1997       {
1998         if (type->Is(Type::Number())) {
1999           if_objectisnumber.Deopt(Deoptimizer::kExpectedHeapNumber);
2000         }
2001       }
2002       if_objectisnumber.JoinContinuation(&found);
2003     }
2004   }
2005   if_objectissmi.JoinContinuation(&found);
2006
2007   // Check for cache hit.
2008   IfBuilder if_found(this, &found);
2009   if_found.Then();
2010   {
2011     // Count number to string operation in native code.
2012     AddIncrementCounter(isolate()->counters()->number_to_string_native());
2013
2014     // Load the value in case of cache hit.
2015     HValue* key_index = Pop();
2016     HValue* value_index = AddUncasted<HAdd>(key_index, graph()->GetConstant1());
2017     Push(Add<HLoadKeyed>(number_string_cache, value_index, nullptr,
2018                          FAST_ELEMENTS, ALLOW_RETURN_HOLE));
2019   }
2020   if_found.Else();
2021   {
2022     // Cache miss, fallback to runtime.
2023     Add<HPushArguments>(object);
2024     Push(Add<HCallRuntime>(
2025             isolate()->factory()->empty_string(),
2026             Runtime::FunctionForId(Runtime::kNumberToStringSkipCache),
2027             1));
2028   }
2029   if_found.End();
2030
2031   return Pop();
2032 }
2033
2034
2035 HValue* HGraphBuilder::BuildToObject(HValue* receiver) {
2036   NoObservableSideEffectsScope scope(this);
2037
2038   // Create a joinable continuation.
2039   HIfContinuation wrap(graph()->CreateBasicBlock(),
2040                        graph()->CreateBasicBlock());
2041
2042   // Determine the proper global constructor function required to wrap
2043   // {receiver} into a JSValue, unless {receiver} is already a {JSReceiver}, in
2044   // which case we just return it.  Deopts to Runtime::kToObject if {receiver}
2045   // is undefined or null.
2046   IfBuilder receiver_is_smi(this);
2047   receiver_is_smi.If<HIsSmiAndBranch>(receiver);
2048   receiver_is_smi.Then();
2049   {
2050     // Load native context.
2051     HValue* native_context = BuildGetNativeContext();
2052
2053     // Load global Number function.
2054     HValue* constructor = Add<HLoadNamedField>(
2055         native_context, nullptr,
2056         HObjectAccess::ForContextSlot(Context::NUMBER_FUNCTION_INDEX));
2057     Push(constructor);
2058   }
2059   receiver_is_smi.Else();
2060   {
2061     // Determine {receiver} map and instance type.
2062     HValue* receiver_map =
2063         Add<HLoadNamedField>(receiver, nullptr, HObjectAccess::ForMap());
2064     HValue* receiver_instance_type = Add<HLoadNamedField>(
2065         receiver_map, nullptr, HObjectAccess::ForMapInstanceType());
2066
2067     // First check whether {receiver} is already a spec object (fast case).
2068     IfBuilder receiver_is_not_spec_object(this);
2069     receiver_is_not_spec_object.If<HCompareNumericAndBranch>(
2070         receiver_instance_type, Add<HConstant>(FIRST_SPEC_OBJECT_TYPE),
2071         Token::LT);
2072     receiver_is_not_spec_object.Then();
2073     {
2074       // Load native context.
2075       HValue* native_context = BuildGetNativeContext();
2076
2077       IfBuilder receiver_is_heap_number(this);
2078       receiver_is_heap_number.If<HCompareNumericAndBranch>(
2079           receiver_instance_type, Add<HConstant>(HEAP_NUMBER_TYPE), Token::EQ);
2080       receiver_is_heap_number.Then();
2081       {
2082         // Load global Number function.
2083         HValue* constructor = Add<HLoadNamedField>(
2084             native_context, nullptr,
2085             HObjectAccess::ForContextSlot(Context::NUMBER_FUNCTION_INDEX));
2086         Push(constructor);
2087       }
2088       receiver_is_heap_number.Else();
2089       {
2090         // Load boolean map (we cannot decide based on instance type, because
2091         // it's ODDBALL_TYPE, which would also include null and undefined).
2092         HValue* boolean_map = Add<HLoadRoot>(Heap::kBooleanMapRootIndex);
2093
2094         IfBuilder receiver_is_boolean(this);
2095         receiver_is_boolean.If<HCompareObjectEqAndBranch>(receiver_map,
2096                                                           boolean_map);
2097         receiver_is_boolean.Then();
2098         {
2099           // Load global Boolean function.
2100           HValue* constructor = Add<HLoadNamedField>(
2101               native_context, nullptr,
2102               HObjectAccess::ForContextSlot(Context::BOOLEAN_FUNCTION_INDEX));
2103           Push(constructor);
2104         }
2105         receiver_is_boolean.Else();
2106         {
2107           IfBuilder receiver_is_string(this);
2108           receiver_is_string.If<HCompareNumericAndBranch>(
2109               receiver_instance_type, Add<HConstant>(FIRST_NONSTRING_TYPE),
2110               Token::LT);
2111           receiver_is_string.Then();
2112           {
2113             // Load global String function.
2114             HValue* constructor = Add<HLoadNamedField>(
2115                 native_context, nullptr,
2116                 HObjectAccess::ForContextSlot(Context::STRING_FUNCTION_INDEX));
2117             Push(constructor);
2118           }
2119           receiver_is_string.Else();
2120           {
2121             IfBuilder receiver_is_symbol(this);
2122             receiver_is_symbol.If<HCompareNumericAndBranch>(
2123                 receiver_instance_type, Add<HConstant>(SYMBOL_TYPE), Token::EQ);
2124             receiver_is_symbol.Then();
2125             {
2126               // Load global Symbol function.
2127               HValue* constructor = Add<HLoadNamedField>(
2128                   native_context, nullptr, HObjectAccess::ForContextSlot(
2129                                                Context::SYMBOL_FUNCTION_INDEX));
2130               Push(constructor);
2131             }
2132             receiver_is_symbol.Else();
2133             {
2134               IfBuilder receiver_is_float32x4(this);
2135               receiver_is_float32x4.If<HCompareNumericAndBranch>(
2136                   receiver_instance_type, Add<HConstant>(FLOAT32X4_TYPE),
2137                   Token::EQ);
2138               receiver_is_float32x4.Then();
2139               {
2140                 // Load global Float32x4 function.
2141                 HValue* constructor = Add<HLoadNamedField>(
2142                     native_context, nullptr,
2143                     HObjectAccess::ForContextSlot(
2144                         Context::FLOAT32X4_FUNCTION_INDEX));
2145                 Push(constructor);
2146               }
2147               receiver_is_float32x4.ElseDeopt(
2148                   Deoptimizer::kUndefinedOrNullInToObject);
2149               receiver_is_float32x4.JoinContinuation(&wrap);
2150             }
2151             receiver_is_symbol.JoinContinuation(&wrap);
2152           }
2153           receiver_is_string.JoinContinuation(&wrap);
2154         }
2155         receiver_is_boolean.JoinContinuation(&wrap);
2156       }
2157       receiver_is_heap_number.JoinContinuation(&wrap);
2158     }
2159     receiver_is_not_spec_object.JoinContinuation(&wrap);
2160   }
2161   receiver_is_smi.JoinContinuation(&wrap);
2162
2163   // Wrap the receiver if necessary.
2164   IfBuilder if_wrap(this, &wrap);
2165   if_wrap.Then();
2166   {
2167     // Determine the initial map for the global constructor.
2168     HValue* constructor = Pop();
2169     HValue* constructor_initial_map = Add<HLoadNamedField>(
2170         constructor, nullptr, HObjectAccess::ForPrototypeOrInitialMap());
2171     // Allocate and initialize a JSValue wrapper.
2172     HValue* value =
2173         BuildAllocate(Add<HConstant>(JSValue::kSize), HType::JSObject(),
2174                       JS_VALUE_TYPE, HAllocationMode());
2175     Add<HStoreNamedField>(value, HObjectAccess::ForMap(),
2176                           constructor_initial_map);
2177     HValue* empty_fixed_array = Add<HLoadRoot>(Heap::kEmptyFixedArrayRootIndex);
2178     Add<HStoreNamedField>(value, HObjectAccess::ForPropertiesPointer(),
2179                           empty_fixed_array);
2180     Add<HStoreNamedField>(value, HObjectAccess::ForElementsPointer(),
2181                           empty_fixed_array);
2182     Add<HStoreNamedField>(value, HObjectAccess::ForObservableJSObjectOffset(
2183                                      JSValue::kValueOffset),
2184                           receiver);
2185     Push(value);
2186   }
2187   if_wrap.Else();
2188   { Push(receiver); }
2189   if_wrap.End();
2190   return Pop();
2191 }
2192
2193
2194 HAllocate* HGraphBuilder::BuildAllocate(
2195     HValue* object_size,
2196     HType type,
2197     InstanceType instance_type,
2198     HAllocationMode allocation_mode) {
2199   // Compute the effective allocation size.
2200   HValue* size = object_size;
2201   if (allocation_mode.CreateAllocationMementos()) {
2202     size = AddUncasted<HAdd>(size, Add<HConstant>(AllocationMemento::kSize));
2203     size->ClearFlag(HValue::kCanOverflow);
2204   }
2205
2206   // Perform the actual allocation.
2207   HAllocate* object = Add<HAllocate>(
2208       size, type, allocation_mode.GetPretenureMode(),
2209       instance_type, allocation_mode.feedback_site());
2210
2211   // Setup the allocation memento.
2212   if (allocation_mode.CreateAllocationMementos()) {
2213     BuildCreateAllocationMemento(
2214         object, object_size, allocation_mode.current_site());
2215   }
2216
2217   return object;
2218 }
2219
2220
2221 HValue* HGraphBuilder::BuildAddStringLengths(HValue* left_length,
2222                                              HValue* right_length) {
2223   // Compute the combined string length and check against max string length.
2224   HValue* length = AddUncasted<HAdd>(left_length, right_length);
2225   // Check that length <= kMaxLength <=> length < MaxLength + 1.
2226   HValue* max_length = Add<HConstant>(String::kMaxLength + 1);
2227   Add<HBoundsCheck>(length, max_length);
2228   return length;
2229 }
2230
2231
2232 HValue* HGraphBuilder::BuildCreateConsString(
2233     HValue* length,
2234     HValue* left,
2235     HValue* right,
2236     HAllocationMode allocation_mode) {
2237   // Determine the string instance types.
2238   HInstruction* left_instance_type = AddLoadStringInstanceType(left);
2239   HInstruction* right_instance_type = AddLoadStringInstanceType(right);
2240
2241   // Allocate the cons string object. HAllocate does not care whether we
2242   // pass CONS_STRING_TYPE or CONS_ONE_BYTE_STRING_TYPE here, so we just use
2243   // CONS_STRING_TYPE here. Below we decide whether the cons string is
2244   // one-byte or two-byte and set the appropriate map.
2245   DCHECK(HAllocate::CompatibleInstanceTypes(CONS_STRING_TYPE,
2246                                             CONS_ONE_BYTE_STRING_TYPE));
2247   HAllocate* result = BuildAllocate(Add<HConstant>(ConsString::kSize),
2248                                     HType::String(), CONS_STRING_TYPE,
2249                                     allocation_mode);
2250
2251   // Compute intersection and difference of instance types.
2252   HValue* anded_instance_types = AddUncasted<HBitwise>(
2253       Token::BIT_AND, left_instance_type, right_instance_type);
2254   HValue* xored_instance_types = AddUncasted<HBitwise>(
2255       Token::BIT_XOR, left_instance_type, right_instance_type);
2256
2257   // We create a one-byte cons string if
2258   // 1. both strings are one-byte, or
2259   // 2. at least one of the strings is two-byte, but happens to contain only
2260   //    one-byte characters.
2261   // To do this, we check
2262   // 1. if both strings are one-byte, or if the one-byte data hint is set in
2263   //    both strings, or
2264   // 2. if one of the strings has the one-byte data hint set and the other
2265   //    string is one-byte.
2266   IfBuilder if_onebyte(this);
2267   STATIC_ASSERT(kOneByteStringTag != 0);
2268   STATIC_ASSERT(kOneByteDataHintMask != 0);
2269   if_onebyte.If<HCompareNumericAndBranch>(
2270       AddUncasted<HBitwise>(
2271           Token::BIT_AND, anded_instance_types,
2272           Add<HConstant>(static_cast<int32_t>(
2273                   kStringEncodingMask | kOneByteDataHintMask))),
2274       graph()->GetConstant0(), Token::NE);
2275   if_onebyte.Or();
2276   STATIC_ASSERT(kOneByteStringTag != 0 &&
2277                 kOneByteDataHintTag != 0 &&
2278                 kOneByteDataHintTag != kOneByteStringTag);
2279   if_onebyte.If<HCompareNumericAndBranch>(
2280       AddUncasted<HBitwise>(
2281           Token::BIT_AND, xored_instance_types,
2282           Add<HConstant>(static_cast<int32_t>(
2283                   kOneByteStringTag | kOneByteDataHintTag))),
2284       Add<HConstant>(static_cast<int32_t>(
2285               kOneByteStringTag | kOneByteDataHintTag)), Token::EQ);
2286   if_onebyte.Then();
2287   {
2288     // We can safely skip the write barrier for storing the map here.
2289     Add<HStoreNamedField>(
2290         result, HObjectAccess::ForMap(),
2291         Add<HConstant>(isolate()->factory()->cons_one_byte_string_map()));
2292   }
2293   if_onebyte.Else();
2294   {
2295     // We can safely skip the write barrier for storing the map here.
2296     Add<HStoreNamedField>(
2297         result, HObjectAccess::ForMap(),
2298         Add<HConstant>(isolate()->factory()->cons_string_map()));
2299   }
2300   if_onebyte.End();
2301
2302   // Initialize the cons string fields.
2303   Add<HStoreNamedField>(result, HObjectAccess::ForStringHashField(),
2304                         Add<HConstant>(String::kEmptyHashField));
2305   Add<HStoreNamedField>(result, HObjectAccess::ForStringLength(), length);
2306   Add<HStoreNamedField>(result, HObjectAccess::ForConsStringFirst(), left);
2307   Add<HStoreNamedField>(result, HObjectAccess::ForConsStringSecond(), right);
2308
2309   // Count the native string addition.
2310   AddIncrementCounter(isolate()->counters()->string_add_native());
2311
2312   return result;
2313 }
2314
2315
2316 void HGraphBuilder::BuildCopySeqStringChars(HValue* src,
2317                                             HValue* src_offset,
2318                                             String::Encoding src_encoding,
2319                                             HValue* dst,
2320                                             HValue* dst_offset,
2321                                             String::Encoding dst_encoding,
2322                                             HValue* length) {
2323   DCHECK(dst_encoding != String::ONE_BYTE_ENCODING ||
2324          src_encoding == String::ONE_BYTE_ENCODING);
2325   LoopBuilder loop(this, context(), LoopBuilder::kPostIncrement);
2326   HValue* index = loop.BeginBody(graph()->GetConstant0(), length, Token::LT);
2327   {
2328     HValue* src_index = AddUncasted<HAdd>(src_offset, index);
2329     HValue* value =
2330         AddUncasted<HSeqStringGetChar>(src_encoding, src, src_index);
2331     HValue* dst_index = AddUncasted<HAdd>(dst_offset, index);
2332     Add<HSeqStringSetChar>(dst_encoding, dst, dst_index, value);
2333   }
2334   loop.EndBody();
2335 }
2336
2337
2338 HValue* HGraphBuilder::BuildObjectSizeAlignment(
2339     HValue* unaligned_size, int header_size) {
2340   DCHECK((header_size & kObjectAlignmentMask) == 0);
2341   HValue* size = AddUncasted<HAdd>(
2342       unaligned_size, Add<HConstant>(static_cast<int32_t>(
2343           header_size + kObjectAlignmentMask)));
2344   size->ClearFlag(HValue::kCanOverflow);
2345   return AddUncasted<HBitwise>(
2346       Token::BIT_AND, size, Add<HConstant>(static_cast<int32_t>(
2347           ~kObjectAlignmentMask)));
2348 }
2349
2350
2351 HValue* HGraphBuilder::BuildUncheckedStringAdd(
2352     HValue* left,
2353     HValue* right,
2354     HAllocationMode allocation_mode) {
2355   // Determine the string lengths.
2356   HValue* left_length = AddLoadStringLength(left);
2357   HValue* right_length = AddLoadStringLength(right);
2358
2359   // Compute the combined string length.
2360   HValue* length = BuildAddStringLengths(left_length, right_length);
2361
2362   // Do some manual constant folding here.
2363   if (left_length->IsConstant()) {
2364     HConstant* c_left_length = HConstant::cast(left_length);
2365     DCHECK_NE(0, c_left_length->Integer32Value());
2366     if (c_left_length->Integer32Value() + 1 >= ConsString::kMinLength) {
2367       // The right string contains at least one character.
2368       return BuildCreateConsString(length, left, right, allocation_mode);
2369     }
2370   } else if (right_length->IsConstant()) {
2371     HConstant* c_right_length = HConstant::cast(right_length);
2372     DCHECK_NE(0, c_right_length->Integer32Value());
2373     if (c_right_length->Integer32Value() + 1 >= ConsString::kMinLength) {
2374       // The left string contains at least one character.
2375       return BuildCreateConsString(length, left, right, allocation_mode);
2376     }
2377   }
2378
2379   // Check if we should create a cons string.
2380   IfBuilder if_createcons(this);
2381   if_createcons.If<HCompareNumericAndBranch>(
2382       length, Add<HConstant>(ConsString::kMinLength), Token::GTE);
2383   if_createcons.Then();
2384   {
2385     // Create a cons string.
2386     Push(BuildCreateConsString(length, left, right, allocation_mode));
2387   }
2388   if_createcons.Else();
2389   {
2390     // Determine the string instance types.
2391     HValue* left_instance_type = AddLoadStringInstanceType(left);
2392     HValue* right_instance_type = AddLoadStringInstanceType(right);
2393
2394     // Compute union and difference of instance types.
2395     HValue* ored_instance_types = AddUncasted<HBitwise>(
2396         Token::BIT_OR, left_instance_type, right_instance_type);
2397     HValue* xored_instance_types = AddUncasted<HBitwise>(
2398         Token::BIT_XOR, left_instance_type, right_instance_type);
2399
2400     // Check if both strings have the same encoding and both are
2401     // sequential.
2402     IfBuilder if_sameencodingandsequential(this);
2403     if_sameencodingandsequential.If<HCompareNumericAndBranch>(
2404         AddUncasted<HBitwise>(
2405             Token::BIT_AND, xored_instance_types,
2406             Add<HConstant>(static_cast<int32_t>(kStringEncodingMask))),
2407         graph()->GetConstant0(), Token::EQ);
2408     if_sameencodingandsequential.And();
2409     STATIC_ASSERT(kSeqStringTag == 0);
2410     if_sameencodingandsequential.If<HCompareNumericAndBranch>(
2411         AddUncasted<HBitwise>(
2412             Token::BIT_AND, ored_instance_types,
2413             Add<HConstant>(static_cast<int32_t>(kStringRepresentationMask))),
2414         graph()->GetConstant0(), Token::EQ);
2415     if_sameencodingandsequential.Then();
2416     {
2417       HConstant* string_map =
2418           Add<HConstant>(isolate()->factory()->string_map());
2419       HConstant* one_byte_string_map =
2420           Add<HConstant>(isolate()->factory()->one_byte_string_map());
2421
2422       // Determine map and size depending on whether result is one-byte string.
2423       IfBuilder if_onebyte(this);
2424       STATIC_ASSERT(kOneByteStringTag != 0);
2425       if_onebyte.If<HCompareNumericAndBranch>(
2426           AddUncasted<HBitwise>(
2427               Token::BIT_AND, ored_instance_types,
2428               Add<HConstant>(static_cast<int32_t>(kStringEncodingMask))),
2429           graph()->GetConstant0(), Token::NE);
2430       if_onebyte.Then();
2431       {
2432         // Allocate sequential one-byte string object.
2433         Push(length);
2434         Push(one_byte_string_map);
2435       }
2436       if_onebyte.Else();
2437       {
2438         // Allocate sequential two-byte string object.
2439         HValue* size = AddUncasted<HShl>(length, graph()->GetConstant1());
2440         size->ClearFlag(HValue::kCanOverflow);
2441         size->SetFlag(HValue::kUint32);
2442         Push(size);
2443         Push(string_map);
2444       }
2445       if_onebyte.End();
2446       HValue* map = Pop();
2447
2448       // Calculate the number of bytes needed for the characters in the
2449       // string while observing object alignment.
2450       STATIC_ASSERT((SeqString::kHeaderSize & kObjectAlignmentMask) == 0);
2451       HValue* size = BuildObjectSizeAlignment(Pop(), SeqString::kHeaderSize);
2452
2453       // Allocate the string object. HAllocate does not care whether we pass
2454       // STRING_TYPE or ONE_BYTE_STRING_TYPE here, so we just use STRING_TYPE.
2455       HAllocate* result = BuildAllocate(
2456           size, HType::String(), STRING_TYPE, allocation_mode);
2457       Add<HStoreNamedField>(result, HObjectAccess::ForMap(), map);
2458
2459       // Initialize the string fields.
2460       Add<HStoreNamedField>(result, HObjectAccess::ForStringHashField(),
2461                             Add<HConstant>(String::kEmptyHashField));
2462       Add<HStoreNamedField>(result, HObjectAccess::ForStringLength(), length);
2463
2464       // Copy characters to the result string.
2465       IfBuilder if_twobyte(this);
2466       if_twobyte.If<HCompareObjectEqAndBranch>(map, string_map);
2467       if_twobyte.Then();
2468       {
2469         // Copy characters from the left string.
2470         BuildCopySeqStringChars(
2471             left, graph()->GetConstant0(), String::TWO_BYTE_ENCODING,
2472             result, graph()->GetConstant0(), String::TWO_BYTE_ENCODING,
2473             left_length);
2474
2475         // Copy characters from the right string.
2476         BuildCopySeqStringChars(
2477             right, graph()->GetConstant0(), String::TWO_BYTE_ENCODING,
2478             result, left_length, String::TWO_BYTE_ENCODING,
2479             right_length);
2480       }
2481       if_twobyte.Else();
2482       {
2483         // Copy characters from the left string.
2484         BuildCopySeqStringChars(
2485             left, graph()->GetConstant0(), String::ONE_BYTE_ENCODING,
2486             result, graph()->GetConstant0(), String::ONE_BYTE_ENCODING,
2487             left_length);
2488
2489         // Copy characters from the right string.
2490         BuildCopySeqStringChars(
2491             right, graph()->GetConstant0(), String::ONE_BYTE_ENCODING,
2492             result, left_length, String::ONE_BYTE_ENCODING,
2493             right_length);
2494       }
2495       if_twobyte.End();
2496
2497       // Count the native string addition.
2498       AddIncrementCounter(isolate()->counters()->string_add_native());
2499
2500       // Return the sequential string.
2501       Push(result);
2502     }
2503     if_sameencodingandsequential.Else();
2504     {
2505       // Fallback to the runtime to add the two strings.
2506       Add<HPushArguments>(left, right);
2507       Push(Add<HCallRuntime>(isolate()->factory()->empty_string(),
2508                              Runtime::FunctionForId(Runtime::kStringAdd), 2));
2509     }
2510     if_sameencodingandsequential.End();
2511   }
2512   if_createcons.End();
2513
2514   return Pop();
2515 }
2516
2517
2518 HValue* HGraphBuilder::BuildStringAdd(
2519     HValue* left,
2520     HValue* right,
2521     HAllocationMode allocation_mode) {
2522   NoObservableSideEffectsScope no_effects(this);
2523
2524   // Determine string lengths.
2525   HValue* left_length = AddLoadStringLength(left);
2526   HValue* right_length = AddLoadStringLength(right);
2527
2528   // Check if left string is empty.
2529   IfBuilder if_leftempty(this);
2530   if_leftempty.If<HCompareNumericAndBranch>(
2531       left_length, graph()->GetConstant0(), Token::EQ);
2532   if_leftempty.Then();
2533   {
2534     // Count the native string addition.
2535     AddIncrementCounter(isolate()->counters()->string_add_native());
2536
2537     // Just return the right string.
2538     Push(right);
2539   }
2540   if_leftempty.Else();
2541   {
2542     // Check if right string is empty.
2543     IfBuilder if_rightempty(this);
2544     if_rightempty.If<HCompareNumericAndBranch>(
2545         right_length, graph()->GetConstant0(), Token::EQ);
2546     if_rightempty.Then();
2547     {
2548       // Count the native string addition.
2549       AddIncrementCounter(isolate()->counters()->string_add_native());
2550
2551       // Just return the left string.
2552       Push(left);
2553     }
2554     if_rightempty.Else();
2555     {
2556       // Add the two non-empty strings.
2557       Push(BuildUncheckedStringAdd(left, right, allocation_mode));
2558     }
2559     if_rightempty.End();
2560   }
2561   if_leftempty.End();
2562
2563   return Pop();
2564 }
2565
2566
2567 HInstruction* HGraphBuilder::BuildUncheckedMonomorphicElementAccess(
2568     HValue* checked_object,
2569     HValue* key,
2570     HValue* val,
2571     bool is_js_array,
2572     ElementsKind elements_kind,
2573     PropertyAccessType access_type,
2574     LoadKeyedHoleMode load_mode,
2575     KeyedAccessStoreMode store_mode) {
2576   DCHECK(top_info()->IsStub() || checked_object->IsCompareMap() ||
2577          checked_object->IsCheckMaps());
2578   DCHECK(!IsFixedTypedArrayElementsKind(elements_kind) || !is_js_array);
2579   // No GVNFlag is necessary for ElementsKind if there is an explicit dependency
2580   // on a HElementsTransition instruction. The flag can also be removed if the
2581   // map to check has FAST_HOLEY_ELEMENTS, since there can be no further
2582   // ElementsKind transitions. Finally, the dependency can be removed for stores
2583   // for FAST_ELEMENTS, since a transition to HOLEY elements won't change the
2584   // generated store code.
2585   if ((elements_kind == FAST_HOLEY_ELEMENTS) ||
2586       (elements_kind == FAST_ELEMENTS && access_type == STORE)) {
2587     checked_object->ClearDependsOnFlag(kElementsKind);
2588   }
2589
2590   bool fast_smi_only_elements = IsFastSmiElementsKind(elements_kind);
2591   bool fast_elements = IsFastObjectElementsKind(elements_kind);
2592   HValue* elements = AddLoadElements(checked_object);
2593   if (access_type == STORE && (fast_elements || fast_smi_only_elements) &&
2594       store_mode != STORE_NO_TRANSITION_HANDLE_COW) {
2595     HCheckMaps* check_cow_map = Add<HCheckMaps>(
2596         elements, isolate()->factory()->fixed_array_map());
2597     check_cow_map->ClearDependsOnFlag(kElementsKind);
2598   }
2599   HInstruction* length = NULL;
2600   if (is_js_array) {
2601     length = Add<HLoadNamedField>(
2602         checked_object->ActualValue(), checked_object,
2603         HObjectAccess::ForArrayLength(elements_kind));
2604   } else {
2605     length = AddLoadFixedArrayLength(elements);
2606   }
2607   length->set_type(HType::Smi());
2608   HValue* checked_key = NULL;
2609   if (IsFixedTypedArrayElementsKind(elements_kind)) {
2610     checked_object = Add<HCheckArrayBufferNotNeutered>(checked_object);
2611
2612     HValue* external_pointer = Add<HLoadNamedField>(
2613         elements, nullptr,
2614         HObjectAccess::ForFixedTypedArrayBaseExternalPointer());
2615     HValue* base_pointer = Add<HLoadNamedField>(
2616         elements, nullptr, HObjectAccess::ForFixedTypedArrayBaseBasePointer());
2617     HValue* backing_store = AddUncasted<HAdd>(
2618         external_pointer, base_pointer, Strength::WEAK, AddOfExternalAndTagged);
2619
2620     if (store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) {
2621       NoObservableSideEffectsScope no_effects(this);
2622       IfBuilder length_checker(this);
2623       length_checker.If<HCompareNumericAndBranch>(key, length, Token::LT);
2624       length_checker.Then();
2625       IfBuilder negative_checker(this);
2626       HValue* bounds_check = negative_checker.If<HCompareNumericAndBranch>(
2627           key, graph()->GetConstant0(), Token::GTE);
2628       negative_checker.Then();
2629       HInstruction* result = AddElementAccess(
2630           backing_store, key, val, bounds_check, elements_kind, access_type);
2631       negative_checker.ElseDeopt(Deoptimizer::kNegativeKeyEncountered);
2632       negative_checker.End();
2633       length_checker.End();
2634       return result;
2635     } else {
2636       DCHECK(store_mode == STANDARD_STORE);
2637       checked_key = Add<HBoundsCheck>(key, length);
2638       return AddElementAccess(
2639           backing_store, checked_key, val,
2640           checked_object, elements_kind, access_type);
2641     }
2642   }
2643   DCHECK(fast_smi_only_elements ||
2644          fast_elements ||
2645          IsFastDoubleElementsKind(elements_kind));
2646
2647   // In case val is stored into a fast smi array, assure that the value is a smi
2648   // before manipulating the backing store. Otherwise the actual store may
2649   // deopt, leaving the backing store in an invalid state.
2650   if (access_type == STORE && IsFastSmiElementsKind(elements_kind) &&
2651       !val->type().IsSmi()) {
2652     val = AddUncasted<HForceRepresentation>(val, Representation::Smi());
2653   }
2654
2655   if (IsGrowStoreMode(store_mode)) {
2656     NoObservableSideEffectsScope no_effects(this);
2657     Representation representation = HStoreKeyed::RequiredValueRepresentation(
2658         elements_kind, STORE_TO_INITIALIZED_ENTRY);
2659     val = AddUncasted<HForceRepresentation>(val, representation);
2660     elements = BuildCheckForCapacityGrow(checked_object, elements,
2661                                          elements_kind, length, key,
2662                                          is_js_array, access_type);
2663     checked_key = key;
2664   } else {
2665     checked_key = Add<HBoundsCheck>(key, length);
2666
2667     if (access_type == STORE && (fast_elements || fast_smi_only_elements)) {
2668       if (store_mode == STORE_NO_TRANSITION_HANDLE_COW) {
2669         NoObservableSideEffectsScope no_effects(this);
2670         elements = BuildCopyElementsOnWrite(checked_object, elements,
2671                                             elements_kind, length);
2672       } else {
2673         HCheckMaps* check_cow_map = Add<HCheckMaps>(
2674             elements, isolate()->factory()->fixed_array_map());
2675         check_cow_map->ClearDependsOnFlag(kElementsKind);
2676       }
2677     }
2678   }
2679   return AddElementAccess(elements, checked_key, val, checked_object,
2680                           elements_kind, access_type, load_mode);
2681 }
2682
2683
2684 HValue* HGraphBuilder::BuildAllocateArrayFromLength(
2685     JSArrayBuilder* array_builder,
2686     HValue* length_argument) {
2687   if (length_argument->IsConstant() &&
2688       HConstant::cast(length_argument)->HasSmiValue()) {
2689     int array_length = HConstant::cast(length_argument)->Integer32Value();
2690     if (array_length == 0) {
2691       return array_builder->AllocateEmptyArray();
2692     } else {
2693       return array_builder->AllocateArray(length_argument,
2694                                           array_length,
2695                                           length_argument);
2696     }
2697   }
2698
2699   HValue* constant_zero = graph()->GetConstant0();
2700   HConstant* max_alloc_length =
2701       Add<HConstant>(JSObject::kInitialMaxFastElementArray);
2702   HInstruction* checked_length = Add<HBoundsCheck>(length_argument,
2703                                                    max_alloc_length);
2704   IfBuilder if_builder(this);
2705   if_builder.If<HCompareNumericAndBranch>(checked_length, constant_zero,
2706                                           Token::EQ);
2707   if_builder.Then();
2708   const int initial_capacity = JSArray::kPreallocatedArrayElements;
2709   HConstant* initial_capacity_node = Add<HConstant>(initial_capacity);
2710   Push(initial_capacity_node);  // capacity
2711   Push(constant_zero);          // length
2712   if_builder.Else();
2713   if (!(top_info()->IsStub()) &&
2714       IsFastPackedElementsKind(array_builder->kind())) {
2715     // We'll come back later with better (holey) feedback.
2716     if_builder.Deopt(
2717         Deoptimizer::kHoleyArrayDespitePackedElements_kindFeedback);
2718   } else {
2719     Push(checked_length);         // capacity
2720     Push(checked_length);         // length
2721   }
2722   if_builder.End();
2723
2724   // Figure out total size
2725   HValue* length = Pop();
2726   HValue* capacity = Pop();
2727   return array_builder->AllocateArray(capacity, max_alloc_length, length);
2728 }
2729
2730
2731 HValue* HGraphBuilder::BuildCalculateElementsSize(ElementsKind kind,
2732                                                   HValue* capacity) {
2733   int elements_size = IsFastDoubleElementsKind(kind)
2734       ? kDoubleSize
2735       : kPointerSize;
2736
2737   HConstant* elements_size_value = Add<HConstant>(elements_size);
2738   HInstruction* mul =
2739       HMul::NewImul(isolate(), zone(), context(), capacity->ActualValue(),
2740                     elements_size_value);
2741   AddInstruction(mul);
2742   mul->ClearFlag(HValue::kCanOverflow);
2743
2744   STATIC_ASSERT(FixedDoubleArray::kHeaderSize == FixedArray::kHeaderSize);
2745
2746   HConstant* header_size = Add<HConstant>(FixedArray::kHeaderSize);
2747   HValue* total_size = AddUncasted<HAdd>(mul, header_size);
2748   total_size->ClearFlag(HValue::kCanOverflow);
2749   return total_size;
2750 }
2751
2752
2753 HAllocate* HGraphBuilder::AllocateJSArrayObject(AllocationSiteMode mode) {
2754   int base_size = JSArray::kSize;
2755   if (mode == TRACK_ALLOCATION_SITE) {
2756     base_size += AllocationMemento::kSize;
2757   }
2758   HConstant* size_in_bytes = Add<HConstant>(base_size);
2759   return Add<HAllocate>(
2760       size_in_bytes, HType::JSArray(), NOT_TENURED, JS_OBJECT_TYPE);
2761 }
2762
2763
2764 HConstant* HGraphBuilder::EstablishElementsAllocationSize(
2765     ElementsKind kind,
2766     int capacity) {
2767   int base_size = IsFastDoubleElementsKind(kind)
2768       ? FixedDoubleArray::SizeFor(capacity)
2769       : FixedArray::SizeFor(capacity);
2770
2771   return Add<HConstant>(base_size);
2772 }
2773
2774
2775 HAllocate* HGraphBuilder::BuildAllocateElements(ElementsKind kind,
2776                                                 HValue* size_in_bytes) {
2777   InstanceType instance_type = IsFastDoubleElementsKind(kind)
2778       ? FIXED_DOUBLE_ARRAY_TYPE
2779       : FIXED_ARRAY_TYPE;
2780
2781   return Add<HAllocate>(size_in_bytes, HType::HeapObject(), NOT_TENURED,
2782                         instance_type);
2783 }
2784
2785
2786 void HGraphBuilder::BuildInitializeElementsHeader(HValue* elements,
2787                                                   ElementsKind kind,
2788                                                   HValue* capacity) {
2789   Factory* factory = isolate()->factory();
2790   Handle<Map> map = IsFastDoubleElementsKind(kind)
2791       ? factory->fixed_double_array_map()
2792       : factory->fixed_array_map();
2793
2794   Add<HStoreNamedField>(elements, HObjectAccess::ForMap(), Add<HConstant>(map));
2795   Add<HStoreNamedField>(elements, HObjectAccess::ForFixedArrayLength(),
2796                         capacity);
2797 }
2798
2799
2800 HValue* HGraphBuilder::BuildAllocateAndInitializeArray(ElementsKind kind,
2801                                                        HValue* capacity) {
2802   // The HForceRepresentation is to prevent possible deopt on int-smi
2803   // conversion after allocation but before the new object fields are set.
2804   capacity = AddUncasted<HForceRepresentation>(capacity, Representation::Smi());
2805   HValue* size_in_bytes = BuildCalculateElementsSize(kind, capacity);
2806   HValue* new_array = BuildAllocateElements(kind, size_in_bytes);
2807   BuildInitializeElementsHeader(new_array, kind, capacity);
2808   return new_array;
2809 }
2810
2811
2812 void HGraphBuilder::BuildJSArrayHeader(HValue* array,
2813                                        HValue* array_map,
2814                                        HValue* elements,
2815                                        AllocationSiteMode mode,
2816                                        ElementsKind elements_kind,
2817                                        HValue* allocation_site_payload,
2818                                        HValue* length_field) {
2819   Add<HStoreNamedField>(array, HObjectAccess::ForMap(), array_map);
2820
2821   HConstant* empty_fixed_array =
2822     Add<HConstant>(isolate()->factory()->empty_fixed_array());
2823
2824   Add<HStoreNamedField>(
2825       array, HObjectAccess::ForPropertiesPointer(), empty_fixed_array);
2826
2827   Add<HStoreNamedField>(
2828       array, HObjectAccess::ForElementsPointer(),
2829       elements != NULL ? elements : empty_fixed_array);
2830
2831   Add<HStoreNamedField>(
2832       array, HObjectAccess::ForArrayLength(elements_kind), length_field);
2833
2834   if (mode == TRACK_ALLOCATION_SITE) {
2835     BuildCreateAllocationMemento(
2836         array, Add<HConstant>(JSArray::kSize), allocation_site_payload);
2837   }
2838 }
2839
2840
2841 HInstruction* HGraphBuilder::AddElementAccess(
2842     HValue* elements,
2843     HValue* checked_key,
2844     HValue* val,
2845     HValue* dependency,
2846     ElementsKind elements_kind,
2847     PropertyAccessType access_type,
2848     LoadKeyedHoleMode load_mode) {
2849   if (access_type == STORE) {
2850     DCHECK(val != NULL);
2851     if (elements_kind == UINT8_CLAMPED_ELEMENTS) {
2852       val = Add<HClampToUint8>(val);
2853     }
2854     return Add<HStoreKeyed>(elements, checked_key, val, elements_kind,
2855                             STORE_TO_INITIALIZED_ENTRY);
2856   }
2857
2858   DCHECK(access_type == LOAD);
2859   DCHECK(val == NULL);
2860   HLoadKeyed* load = Add<HLoadKeyed>(
2861       elements, checked_key, dependency, elements_kind, load_mode);
2862   if (elements_kind == UINT32_ELEMENTS) {
2863     graph()->RecordUint32Instruction(load);
2864   }
2865   return load;
2866 }
2867
2868
2869 HLoadNamedField* HGraphBuilder::AddLoadMap(HValue* object,
2870                                            HValue* dependency) {
2871   return Add<HLoadNamedField>(object, dependency, HObjectAccess::ForMap());
2872 }
2873
2874
2875 HLoadNamedField* HGraphBuilder::AddLoadElements(HValue* object,
2876                                                 HValue* dependency) {
2877   return Add<HLoadNamedField>(
2878       object, dependency, HObjectAccess::ForElementsPointer());
2879 }
2880
2881
2882 HLoadNamedField* HGraphBuilder::AddLoadFixedArrayLength(
2883     HValue* array,
2884     HValue* dependency) {
2885   return Add<HLoadNamedField>(
2886       array, dependency, HObjectAccess::ForFixedArrayLength());
2887 }
2888
2889
2890 HLoadNamedField* HGraphBuilder::AddLoadArrayLength(HValue* array,
2891                                                    ElementsKind kind,
2892                                                    HValue* dependency) {
2893   return Add<HLoadNamedField>(
2894       array, dependency, HObjectAccess::ForArrayLength(kind));
2895 }
2896
2897
2898 HValue* HGraphBuilder::BuildNewElementsCapacity(HValue* old_capacity) {
2899   HValue* half_old_capacity = AddUncasted<HShr>(old_capacity,
2900                                                 graph_->GetConstant1());
2901
2902   HValue* new_capacity = AddUncasted<HAdd>(half_old_capacity, old_capacity);
2903   new_capacity->ClearFlag(HValue::kCanOverflow);
2904
2905   HValue* min_growth = Add<HConstant>(16);
2906
2907   new_capacity = AddUncasted<HAdd>(new_capacity, min_growth);
2908   new_capacity->ClearFlag(HValue::kCanOverflow);
2909
2910   return new_capacity;
2911 }
2912
2913
2914 HValue* HGraphBuilder::BuildGrowElementsCapacity(HValue* object,
2915                                                  HValue* elements,
2916                                                  ElementsKind kind,
2917                                                  ElementsKind new_kind,
2918                                                  HValue* length,
2919                                                  HValue* new_capacity) {
2920   Add<HBoundsCheck>(new_capacity, Add<HConstant>(
2921           (Page::kMaxRegularHeapObjectSize - FixedArray::kHeaderSize) >>
2922           ElementsKindToShiftSize(new_kind)));
2923
2924   HValue* new_elements =
2925       BuildAllocateAndInitializeArray(new_kind, new_capacity);
2926
2927   BuildCopyElements(elements, kind, new_elements,
2928                     new_kind, length, new_capacity);
2929
2930   Add<HStoreNamedField>(object, HObjectAccess::ForElementsPointer(),
2931                         new_elements);
2932
2933   return new_elements;
2934 }
2935
2936
2937 void HGraphBuilder::BuildFillElementsWithValue(HValue* elements,
2938                                                ElementsKind elements_kind,
2939                                                HValue* from,
2940                                                HValue* to,
2941                                                HValue* value) {
2942   if (to == NULL) {
2943     to = AddLoadFixedArrayLength(elements);
2944   }
2945
2946   // Special loop unfolding case
2947   STATIC_ASSERT(JSArray::kPreallocatedArrayElements <=
2948                 kElementLoopUnrollThreshold);
2949   int initial_capacity = -1;
2950   if (from->IsInteger32Constant() && to->IsInteger32Constant()) {
2951     int constant_from = from->GetInteger32Constant();
2952     int constant_to = to->GetInteger32Constant();
2953
2954     if (constant_from == 0 && constant_to <= kElementLoopUnrollThreshold) {
2955       initial_capacity = constant_to;
2956     }
2957   }
2958
2959   if (initial_capacity >= 0) {
2960     for (int i = 0; i < initial_capacity; i++) {
2961       HInstruction* key = Add<HConstant>(i);
2962       Add<HStoreKeyed>(elements, key, value, elements_kind);
2963     }
2964   } else {
2965     // Carefully loop backwards so that the "from" remains live through the loop
2966     // rather than the to. This often corresponds to keeping length live rather
2967     // then capacity, which helps register allocation, since length is used more
2968     // other than capacity after filling with holes.
2969     LoopBuilder builder(this, context(), LoopBuilder::kPostDecrement);
2970
2971     HValue* key = builder.BeginBody(to, from, Token::GT);
2972
2973     HValue* adjusted_key = AddUncasted<HSub>(key, graph()->GetConstant1());
2974     adjusted_key->ClearFlag(HValue::kCanOverflow);
2975
2976     Add<HStoreKeyed>(elements, adjusted_key, value, elements_kind);
2977
2978     builder.EndBody();
2979   }
2980 }
2981
2982
2983 void HGraphBuilder::BuildFillElementsWithHole(HValue* elements,
2984                                               ElementsKind elements_kind,
2985                                               HValue* from,
2986                                               HValue* to) {
2987   // Fast elements kinds need to be initialized in case statements below cause a
2988   // garbage collection.
2989
2990   HValue* hole = IsFastSmiOrObjectElementsKind(elements_kind)
2991                      ? graph()->GetConstantHole()
2992                      : Add<HConstant>(HConstant::kHoleNaN);
2993
2994   // Since we're about to store a hole value, the store instruction below must
2995   // assume an elements kind that supports heap object values.
2996   if (IsFastSmiOrObjectElementsKind(elements_kind)) {
2997     elements_kind = FAST_HOLEY_ELEMENTS;
2998   }
2999
3000   BuildFillElementsWithValue(elements, elements_kind, from, to, hole);
3001 }
3002
3003
3004 void HGraphBuilder::BuildCopyProperties(HValue* from_properties,
3005                                         HValue* to_properties, HValue* length,
3006                                         HValue* capacity) {
3007   ElementsKind kind = FAST_ELEMENTS;
3008
3009   BuildFillElementsWithValue(to_properties, kind, length, capacity,
3010                              graph()->GetConstantUndefined());
3011
3012   LoopBuilder builder(this, context(), LoopBuilder::kPostDecrement);
3013
3014   HValue* key = builder.BeginBody(length, graph()->GetConstant0(), Token::GT);
3015
3016   key = AddUncasted<HSub>(key, graph()->GetConstant1());
3017   key->ClearFlag(HValue::kCanOverflow);
3018
3019   HValue* element = Add<HLoadKeyed>(from_properties, key, nullptr, kind);
3020
3021   Add<HStoreKeyed>(to_properties, key, element, kind);
3022
3023   builder.EndBody();
3024 }
3025
3026
3027 void HGraphBuilder::BuildCopyElements(HValue* from_elements,
3028                                       ElementsKind from_elements_kind,
3029                                       HValue* to_elements,
3030                                       ElementsKind to_elements_kind,
3031                                       HValue* length,
3032                                       HValue* capacity) {
3033   int constant_capacity = -1;
3034   if (capacity != NULL &&
3035       capacity->IsConstant() &&
3036       HConstant::cast(capacity)->HasInteger32Value()) {
3037     int constant_candidate = HConstant::cast(capacity)->Integer32Value();
3038     if (constant_candidate <= kElementLoopUnrollThreshold) {
3039       constant_capacity = constant_candidate;
3040     }
3041   }
3042
3043   bool pre_fill_with_holes =
3044     IsFastDoubleElementsKind(from_elements_kind) &&
3045     IsFastObjectElementsKind(to_elements_kind);
3046   if (pre_fill_with_holes) {
3047     // If the copy might trigger a GC, make sure that the FixedArray is
3048     // pre-initialized with holes to make sure that it's always in a
3049     // consistent state.
3050     BuildFillElementsWithHole(to_elements, to_elements_kind,
3051                               graph()->GetConstant0(), NULL);
3052   }
3053
3054   if (constant_capacity != -1) {
3055     // Unroll the loop for small elements kinds.
3056     for (int i = 0; i < constant_capacity; i++) {
3057       HValue* key_constant = Add<HConstant>(i);
3058       HInstruction* value = Add<HLoadKeyed>(from_elements, key_constant,
3059                                             nullptr, from_elements_kind);
3060       Add<HStoreKeyed>(to_elements, key_constant, value, to_elements_kind);
3061     }
3062   } else {
3063     if (!pre_fill_with_holes &&
3064         (capacity == NULL || !length->Equals(capacity))) {
3065       BuildFillElementsWithHole(to_elements, to_elements_kind,
3066                                 length, NULL);
3067     }
3068
3069     LoopBuilder builder(this, context(), LoopBuilder::kPostDecrement);
3070
3071     HValue* key = builder.BeginBody(length, graph()->GetConstant0(),
3072                                     Token::GT);
3073
3074     key = AddUncasted<HSub>(key, graph()->GetConstant1());
3075     key->ClearFlag(HValue::kCanOverflow);
3076
3077     HValue* element = Add<HLoadKeyed>(from_elements, key, nullptr,
3078                                       from_elements_kind, ALLOW_RETURN_HOLE);
3079
3080     ElementsKind kind = (IsHoleyElementsKind(from_elements_kind) &&
3081                          IsFastSmiElementsKind(to_elements_kind))
3082       ? FAST_HOLEY_ELEMENTS : to_elements_kind;
3083
3084     if (IsHoleyElementsKind(from_elements_kind) &&
3085         from_elements_kind != to_elements_kind) {
3086       IfBuilder if_hole(this);
3087       if_hole.If<HCompareHoleAndBranch>(element);
3088       if_hole.Then();
3089       HConstant* hole_constant = IsFastDoubleElementsKind(to_elements_kind)
3090                                      ? Add<HConstant>(HConstant::kHoleNaN)
3091                                      : graph()->GetConstantHole();
3092       Add<HStoreKeyed>(to_elements, key, hole_constant, kind);
3093       if_hole.Else();
3094       HStoreKeyed* store = Add<HStoreKeyed>(to_elements, key, element, kind);
3095       store->SetFlag(HValue::kAllowUndefinedAsNaN);
3096       if_hole.End();
3097     } else {
3098       HStoreKeyed* store = Add<HStoreKeyed>(to_elements, key, element, kind);
3099       store->SetFlag(HValue::kAllowUndefinedAsNaN);
3100     }
3101
3102     builder.EndBody();
3103   }
3104
3105   Counters* counters = isolate()->counters();
3106   AddIncrementCounter(counters->inlined_copied_elements());
3107 }
3108
3109
3110 HValue* HGraphBuilder::BuildCloneShallowArrayCow(HValue* boilerplate,
3111                                                  HValue* allocation_site,
3112                                                  AllocationSiteMode mode,
3113                                                  ElementsKind kind) {
3114   HAllocate* array = AllocateJSArrayObject(mode);
3115
3116   HValue* map = AddLoadMap(boilerplate);
3117   HValue* elements = AddLoadElements(boilerplate);
3118   HValue* length = AddLoadArrayLength(boilerplate, kind);
3119
3120   BuildJSArrayHeader(array,
3121                      map,
3122                      elements,
3123                      mode,
3124                      FAST_ELEMENTS,
3125                      allocation_site,
3126                      length);
3127   return array;
3128 }
3129
3130
3131 HValue* HGraphBuilder::BuildCloneShallowArrayEmpty(HValue* boilerplate,
3132                                                    HValue* allocation_site,
3133                                                    AllocationSiteMode mode) {
3134   HAllocate* array = AllocateJSArrayObject(mode);
3135
3136   HValue* map = AddLoadMap(boilerplate);
3137
3138   BuildJSArrayHeader(array,
3139                      map,
3140                      NULL,  // set elements to empty fixed array
3141                      mode,
3142                      FAST_ELEMENTS,
3143                      allocation_site,
3144                      graph()->GetConstant0());
3145   return array;
3146 }
3147
3148
3149 HValue* HGraphBuilder::BuildCloneShallowArrayNonEmpty(HValue* boilerplate,
3150                                                       HValue* allocation_site,
3151                                                       AllocationSiteMode mode,
3152                                                       ElementsKind kind) {
3153   HValue* boilerplate_elements = AddLoadElements(boilerplate);
3154   HValue* capacity = AddLoadFixedArrayLength(boilerplate_elements);
3155
3156   // Generate size calculation code here in order to make it dominate
3157   // the JSArray allocation.
3158   HValue* elements_size = BuildCalculateElementsSize(kind, capacity);
3159
3160   // Create empty JSArray object for now, store elimination should remove
3161   // redundant initialization of elements and length fields and at the same
3162   // time the object will be fully prepared for GC if it happens during
3163   // elements allocation.
3164   HValue* result = BuildCloneShallowArrayEmpty(
3165       boilerplate, allocation_site, mode);
3166
3167   HAllocate* elements = BuildAllocateElements(kind, elements_size);
3168
3169   // This function implicitly relies on the fact that the
3170   // FastCloneShallowArrayStub is called only for literals shorter than
3171   // JSObject::kInitialMaxFastElementArray.
3172   // Can't add HBoundsCheck here because otherwise the stub will eager a frame.
3173   HConstant* size_upper_bound = EstablishElementsAllocationSize(
3174       kind, JSObject::kInitialMaxFastElementArray);
3175   elements->set_size_upper_bound(size_upper_bound);
3176
3177   Add<HStoreNamedField>(result, HObjectAccess::ForElementsPointer(), elements);
3178
3179   // The allocation for the cloned array above causes register pressure on
3180   // machines with low register counts. Force a reload of the boilerplate
3181   // elements here to free up a register for the allocation to avoid unnecessary
3182   // spillage.
3183   boilerplate_elements = AddLoadElements(boilerplate);
3184   boilerplate_elements->SetFlag(HValue::kCantBeReplaced);
3185
3186   // Copy the elements array header.
3187   for (int i = 0; i < FixedArrayBase::kHeaderSize; i += kPointerSize) {
3188     HObjectAccess access = HObjectAccess::ForFixedArrayHeader(i);
3189     Add<HStoreNamedField>(
3190         elements, access,
3191         Add<HLoadNamedField>(boilerplate_elements, nullptr, access));
3192   }
3193
3194   // And the result of the length
3195   HValue* length = AddLoadArrayLength(boilerplate, kind);
3196   Add<HStoreNamedField>(result, HObjectAccess::ForArrayLength(kind), length);
3197
3198   BuildCopyElements(boilerplate_elements, kind, elements,
3199                     kind, length, NULL);
3200   return result;
3201 }
3202
3203
3204 void HGraphBuilder::BuildCompareNil(HValue* value, Type* type,
3205                                     HIfContinuation* continuation,
3206                                     MapEmbedding map_embedding) {
3207   IfBuilder if_nil(this);
3208   bool some_case_handled = false;
3209   bool some_case_missing = false;
3210
3211   if (type->Maybe(Type::Null())) {
3212     if (some_case_handled) if_nil.Or();
3213     if_nil.If<HCompareObjectEqAndBranch>(value, graph()->GetConstantNull());
3214     some_case_handled = true;
3215   } else {
3216     some_case_missing = true;
3217   }
3218
3219   if (type->Maybe(Type::Undefined())) {
3220     if (some_case_handled) if_nil.Or();
3221     if_nil.If<HCompareObjectEqAndBranch>(value,
3222                                          graph()->GetConstantUndefined());
3223     some_case_handled = true;
3224   } else {
3225     some_case_missing = true;
3226   }
3227
3228   if (type->Maybe(Type::Undetectable())) {
3229     if (some_case_handled) if_nil.Or();
3230     if_nil.If<HIsUndetectableAndBranch>(value);
3231     some_case_handled = true;
3232   } else {
3233     some_case_missing = true;
3234   }
3235
3236   if (some_case_missing) {
3237     if_nil.Then();
3238     if_nil.Else();
3239     if (type->NumClasses() == 1) {
3240       BuildCheckHeapObject(value);
3241       // For ICs, the map checked below is a sentinel map that gets replaced by
3242       // the monomorphic map when the code is used as a template to generate a
3243       // new IC. For optimized functions, there is no sentinel map, the map
3244       // emitted below is the actual monomorphic map.
3245       if (map_embedding == kEmbedMapsViaWeakCells) {
3246         HValue* cell =
3247             Add<HConstant>(Map::WeakCellForMap(type->Classes().Current()));
3248         HValue* expected_map = Add<HLoadNamedField>(
3249             cell, nullptr, HObjectAccess::ForWeakCellValue());
3250         HValue* map =
3251             Add<HLoadNamedField>(value, nullptr, HObjectAccess::ForMap());
3252         IfBuilder map_check(this);
3253         map_check.IfNot<HCompareObjectEqAndBranch>(expected_map, map);
3254         map_check.ThenDeopt(Deoptimizer::kUnknownMap);
3255         map_check.End();
3256       } else {
3257         DCHECK(map_embedding == kEmbedMapsDirectly);
3258         Add<HCheckMaps>(value, type->Classes().Current());
3259       }
3260     } else {
3261       if_nil.Deopt(Deoptimizer::kTooManyUndetectableTypes);
3262     }
3263   }
3264
3265   if_nil.CaptureContinuation(continuation);
3266 }
3267
3268
3269 void HGraphBuilder::BuildCreateAllocationMemento(
3270     HValue* previous_object,
3271     HValue* previous_object_size,
3272     HValue* allocation_site) {
3273   DCHECK(allocation_site != NULL);
3274   HInnerAllocatedObject* allocation_memento = Add<HInnerAllocatedObject>(
3275       previous_object, previous_object_size, HType::HeapObject());
3276   AddStoreMapConstant(
3277       allocation_memento, isolate()->factory()->allocation_memento_map());
3278   Add<HStoreNamedField>(
3279       allocation_memento,
3280       HObjectAccess::ForAllocationMementoSite(),
3281       allocation_site);
3282   if (FLAG_allocation_site_pretenuring) {
3283     HValue* memento_create_count =
3284         Add<HLoadNamedField>(allocation_site, nullptr,
3285                              HObjectAccess::ForAllocationSiteOffset(
3286                                  AllocationSite::kPretenureCreateCountOffset));
3287     memento_create_count = AddUncasted<HAdd>(
3288         memento_create_count, graph()->GetConstant1());
3289     // This smi value is reset to zero after every gc, overflow isn't a problem
3290     // since the counter is bounded by the new space size.
3291     memento_create_count->ClearFlag(HValue::kCanOverflow);
3292     Add<HStoreNamedField>(
3293         allocation_site, HObjectAccess::ForAllocationSiteOffset(
3294             AllocationSite::kPretenureCreateCountOffset), memento_create_count);
3295   }
3296 }
3297
3298
3299 HInstruction* HGraphBuilder::BuildGetNativeContext() {
3300   // Get the global object, then the native context
3301   HValue* global_object = Add<HLoadNamedField>(
3302       context(), nullptr,
3303       HObjectAccess::ForContextSlot(Context::GLOBAL_OBJECT_INDEX));
3304   return Add<HLoadNamedField>(global_object, nullptr,
3305                               HObjectAccess::ForObservableJSObjectOffset(
3306                                   GlobalObject::kNativeContextOffset));
3307 }
3308
3309
3310 HInstruction* HGraphBuilder::BuildGetNativeContext(HValue* closure) {
3311   // Get the global object, then the native context
3312   HInstruction* context = Add<HLoadNamedField>(
3313       closure, nullptr, HObjectAccess::ForFunctionContextPointer());
3314   HInstruction* global_object = Add<HLoadNamedField>(
3315       context, nullptr,
3316       HObjectAccess::ForContextSlot(Context::GLOBAL_OBJECT_INDEX));
3317   HObjectAccess access = HObjectAccess::ForObservableJSObjectOffset(
3318       GlobalObject::kNativeContextOffset);
3319   return Add<HLoadNamedField>(global_object, nullptr, access);
3320 }
3321
3322
3323 HInstruction* HGraphBuilder::BuildGetScriptContext(int context_index) {
3324   HValue* native_context = BuildGetNativeContext();
3325   HValue* script_context_table = Add<HLoadNamedField>(
3326       native_context, nullptr,
3327       HObjectAccess::ForContextSlot(Context::SCRIPT_CONTEXT_TABLE_INDEX));
3328   return Add<HLoadNamedField>(script_context_table, nullptr,
3329                               HObjectAccess::ForScriptContext(context_index));
3330 }
3331
3332
3333 HValue* HGraphBuilder::BuildGetParentContext(HValue* depth, int depth_value) {
3334   HValue* script_context = context();
3335   if (depth != NULL) {
3336     HValue* zero = graph()->GetConstant0();
3337
3338     Push(script_context);
3339     Push(depth);
3340
3341     LoopBuilder loop(this);
3342     loop.BeginBody(2);  // Drop script_context and depth from last environment
3343                         // to appease live range building without simulates.
3344     depth = Pop();
3345     script_context = Pop();
3346
3347     script_context = Add<HLoadNamedField>(
3348         script_context, nullptr,
3349         HObjectAccess::ForContextSlot(Context::PREVIOUS_INDEX));
3350     depth = AddUncasted<HSub>(depth, graph()->GetConstant1());
3351     depth->ClearFlag(HValue::kCanOverflow);
3352
3353     IfBuilder if_break(this);
3354     if_break.If<HCompareNumericAndBranch, HValue*>(depth, zero, Token::EQ);
3355     if_break.Then();
3356     {
3357       Push(script_context);  // The result.
3358       loop.Break();
3359     }
3360     if_break.Else();
3361     {
3362       Push(script_context);
3363       Push(depth);
3364     }
3365     loop.EndBody();
3366     if_break.End();
3367
3368     script_context = Pop();
3369   } else if (depth_value > 0) {
3370     // Unroll the above loop.
3371     for (int i = 0; i < depth_value; i++) {
3372       script_context = Add<HLoadNamedField>(
3373           script_context, nullptr,
3374           HObjectAccess::ForContextSlot(Context::PREVIOUS_INDEX));
3375     }
3376   }
3377   return script_context;
3378 }
3379
3380
3381 HInstruction* HGraphBuilder::BuildGetArrayFunction() {
3382   HInstruction* native_context = BuildGetNativeContext();
3383   HInstruction* index =
3384       Add<HConstant>(static_cast<int32_t>(Context::ARRAY_FUNCTION_INDEX));
3385   return Add<HLoadKeyed>(native_context, index, nullptr, FAST_ELEMENTS);
3386 }
3387
3388
3389 HValue* HGraphBuilder::BuildArrayBufferViewFieldAccessor(HValue* object,
3390                                                          HValue* checked_object,
3391                                                          FieldIndex index) {
3392   NoObservableSideEffectsScope scope(this);
3393   HObjectAccess access = HObjectAccess::ForObservableJSObjectOffset(
3394       index.offset(), Representation::Tagged());
3395   HInstruction* buffer = Add<HLoadNamedField>(
3396       object, checked_object, HObjectAccess::ForJSArrayBufferViewBuffer());
3397   HInstruction* field = Add<HLoadNamedField>(object, checked_object, access);
3398
3399   HInstruction* flags = Add<HLoadNamedField>(
3400       buffer, nullptr, HObjectAccess::ForJSArrayBufferBitField());
3401   HValue* was_neutered_mask =
3402       Add<HConstant>(1 << JSArrayBuffer::WasNeutered::kShift);
3403   HValue* was_neutered_test =
3404       AddUncasted<HBitwise>(Token::BIT_AND, flags, was_neutered_mask);
3405
3406   IfBuilder if_was_neutered(this);
3407   if_was_neutered.If<HCompareNumericAndBranch>(
3408       was_neutered_test, graph()->GetConstant0(), Token::NE);
3409   if_was_neutered.Then();
3410   Push(graph()->GetConstant0());
3411   if_was_neutered.Else();
3412   Push(field);
3413   if_was_neutered.End();
3414
3415   return Pop();
3416 }
3417
3418
3419 HGraphBuilder::JSArrayBuilder::JSArrayBuilder(HGraphBuilder* builder,
3420     ElementsKind kind,
3421     HValue* allocation_site_payload,
3422     HValue* constructor_function,
3423     AllocationSiteOverrideMode override_mode) :
3424         builder_(builder),
3425         kind_(kind),
3426         allocation_site_payload_(allocation_site_payload),
3427         constructor_function_(constructor_function) {
3428   DCHECK(!allocation_site_payload->IsConstant() ||
3429          HConstant::cast(allocation_site_payload)->handle(
3430              builder_->isolate())->IsAllocationSite());
3431   mode_ = override_mode == DISABLE_ALLOCATION_SITES
3432       ? DONT_TRACK_ALLOCATION_SITE
3433       : AllocationSite::GetMode(kind);
3434 }
3435
3436
3437 HGraphBuilder::JSArrayBuilder::JSArrayBuilder(HGraphBuilder* builder,
3438                                               ElementsKind kind,
3439                                               HValue* constructor_function) :
3440     builder_(builder),
3441     kind_(kind),
3442     mode_(DONT_TRACK_ALLOCATION_SITE),
3443     allocation_site_payload_(NULL),
3444     constructor_function_(constructor_function) {
3445 }
3446
3447
3448 HValue* HGraphBuilder::JSArrayBuilder::EmitMapCode() {
3449   if (!builder()->top_info()->IsStub()) {
3450     // A constant map is fine.
3451     Handle<Map> map(builder()->isolate()->get_initial_js_array_map(kind_),
3452                     builder()->isolate());
3453     return builder()->Add<HConstant>(map);
3454   }
3455
3456   if (constructor_function_ != NULL && kind_ == GetInitialFastElementsKind()) {
3457     // No need for a context lookup if the kind_ matches the initial
3458     // map, because we can just load the map in that case.
3459     HObjectAccess access = HObjectAccess::ForPrototypeOrInitialMap();
3460     return builder()->Add<HLoadNamedField>(constructor_function_, nullptr,
3461                                            access);
3462   }
3463
3464   // TODO(mvstanton): we should always have a constructor function if we
3465   // are creating a stub.
3466   HInstruction* native_context = constructor_function_ != NULL
3467       ? builder()->BuildGetNativeContext(constructor_function_)
3468       : builder()->BuildGetNativeContext();
3469
3470   HInstruction* index = builder()->Add<HConstant>(
3471       static_cast<int32_t>(Context::JS_ARRAY_MAPS_INDEX));
3472
3473   HInstruction* map_array =
3474       builder()->Add<HLoadKeyed>(native_context, index, nullptr, FAST_ELEMENTS);
3475
3476   HInstruction* kind_index = builder()->Add<HConstant>(kind_);
3477
3478   return builder()->Add<HLoadKeyed>(map_array, kind_index, nullptr,
3479                                     FAST_ELEMENTS);
3480 }
3481
3482
3483 HValue* HGraphBuilder::JSArrayBuilder::EmitInternalMapCode() {
3484   // Find the map near the constructor function
3485   HObjectAccess access = HObjectAccess::ForPrototypeOrInitialMap();
3486   return builder()->Add<HLoadNamedField>(constructor_function_, nullptr,
3487                                          access);
3488 }
3489
3490
3491 HAllocate* HGraphBuilder::JSArrayBuilder::AllocateEmptyArray() {
3492   HConstant* capacity = builder()->Add<HConstant>(initial_capacity());
3493   return AllocateArray(capacity,
3494                        capacity,
3495                        builder()->graph()->GetConstant0());
3496 }
3497
3498
3499 HAllocate* HGraphBuilder::JSArrayBuilder::AllocateArray(
3500     HValue* capacity,
3501     HConstant* capacity_upper_bound,
3502     HValue* length_field,
3503     FillMode fill_mode) {
3504   return AllocateArray(capacity,
3505                        capacity_upper_bound->GetInteger32Constant(),
3506                        length_field,
3507                        fill_mode);
3508 }
3509
3510
3511 HAllocate* HGraphBuilder::JSArrayBuilder::AllocateArray(
3512     HValue* capacity,
3513     int capacity_upper_bound,
3514     HValue* length_field,
3515     FillMode fill_mode) {
3516   HConstant* elememts_size_upper_bound = capacity->IsInteger32Constant()
3517       ? HConstant::cast(capacity)
3518       : builder()->EstablishElementsAllocationSize(kind_, capacity_upper_bound);
3519
3520   HAllocate* array = AllocateArray(capacity, length_field, fill_mode);
3521   if (!elements_location_->has_size_upper_bound()) {
3522     elements_location_->set_size_upper_bound(elememts_size_upper_bound);
3523   }
3524   return array;
3525 }
3526
3527
3528 HAllocate* HGraphBuilder::JSArrayBuilder::AllocateArray(
3529     HValue* capacity,
3530     HValue* length_field,
3531     FillMode fill_mode) {
3532   // These HForceRepresentations are because we store these as fields in the
3533   // objects we construct, and an int32-to-smi HChange could deopt. Accept
3534   // the deopt possibility now, before allocation occurs.
3535   capacity =
3536       builder()->AddUncasted<HForceRepresentation>(capacity,
3537                                                    Representation::Smi());
3538   length_field =
3539       builder()->AddUncasted<HForceRepresentation>(length_field,
3540                                                    Representation::Smi());
3541
3542   // Generate size calculation code here in order to make it dominate
3543   // the JSArray allocation.
3544   HValue* elements_size =
3545       builder()->BuildCalculateElementsSize(kind_, capacity);
3546
3547   // Allocate (dealing with failure appropriately)
3548   HAllocate* array_object = builder()->AllocateJSArrayObject(mode_);
3549
3550   // Fill in the fields: map, properties, length
3551   HValue* map;
3552   if (allocation_site_payload_ == NULL) {
3553     map = EmitInternalMapCode();
3554   } else {
3555     map = EmitMapCode();
3556   }
3557
3558   builder()->BuildJSArrayHeader(array_object,
3559                                 map,
3560                                 NULL,  // set elements to empty fixed array
3561                                 mode_,
3562                                 kind_,
3563                                 allocation_site_payload_,
3564                                 length_field);
3565
3566   // Allocate and initialize the elements
3567   elements_location_ = builder()->BuildAllocateElements(kind_, elements_size);
3568
3569   builder()->BuildInitializeElementsHeader(elements_location_, kind_, capacity);
3570
3571   // Set the elements
3572   builder()->Add<HStoreNamedField>(
3573       array_object, HObjectAccess::ForElementsPointer(), elements_location_);
3574
3575   if (fill_mode == FILL_WITH_HOLE) {
3576     builder()->BuildFillElementsWithHole(elements_location_, kind_,
3577                                          graph()->GetConstant0(), capacity);
3578   }
3579
3580   return array_object;
3581 }
3582
3583
3584 HValue* HGraphBuilder::AddLoadJSBuiltin(Builtins::JavaScript builtin) {
3585   HValue* global_object = Add<HLoadNamedField>(
3586       context(), nullptr,
3587       HObjectAccess::ForContextSlot(Context::GLOBAL_OBJECT_INDEX));
3588   HObjectAccess access = HObjectAccess::ForObservableJSObjectOffset(
3589       GlobalObject::kBuiltinsOffset);
3590   HValue* builtins = Add<HLoadNamedField>(global_object, nullptr, access);
3591   HObjectAccess function_access = HObjectAccess::ForObservableJSObjectOffset(
3592           JSBuiltinsObject::OffsetOfFunctionWithId(builtin));
3593   return Add<HLoadNamedField>(builtins, nullptr, function_access);
3594 }
3595
3596
3597 HOptimizedGraphBuilder::HOptimizedGraphBuilder(CompilationInfo* info)
3598     : HGraphBuilder(info),
3599       function_state_(NULL),
3600       initial_function_state_(this, info, NORMAL_RETURN, 0),
3601       ast_context_(NULL),
3602       break_scope_(NULL),
3603       inlined_count_(0),
3604       globals_(10, info->zone()),
3605       osr_(new(info->zone()) HOsrBuilder(this)) {
3606   // This is not initialized in the initializer list because the
3607   // constructor for the initial state relies on function_state_ == NULL
3608   // to know it's the initial state.
3609   function_state_ = &initial_function_state_;
3610   InitializeAstVisitor(info->isolate(), info->zone());
3611   if (top_info()->is_tracking_positions()) {
3612     SetSourcePosition(info->shared_info()->start_position());
3613   }
3614 }
3615
3616
3617 HBasicBlock* HOptimizedGraphBuilder::CreateJoin(HBasicBlock* first,
3618                                                 HBasicBlock* second,
3619                                                 BailoutId join_id) {
3620   if (first == NULL) {
3621     return second;
3622   } else if (second == NULL) {
3623     return first;
3624   } else {
3625     HBasicBlock* join_block = graph()->CreateBasicBlock();
3626     Goto(first, join_block);
3627     Goto(second, join_block);
3628     join_block->SetJoinId(join_id);
3629     return join_block;
3630   }
3631 }
3632
3633
3634 HBasicBlock* HOptimizedGraphBuilder::JoinContinue(IterationStatement* statement,
3635                                                   HBasicBlock* exit_block,
3636                                                   HBasicBlock* continue_block) {
3637   if (continue_block != NULL) {
3638     if (exit_block != NULL) Goto(exit_block, continue_block);
3639     continue_block->SetJoinId(statement->ContinueId());
3640     return continue_block;
3641   }
3642   return exit_block;
3643 }
3644
3645
3646 HBasicBlock* HOptimizedGraphBuilder::CreateLoop(IterationStatement* statement,
3647                                                 HBasicBlock* loop_entry,
3648                                                 HBasicBlock* body_exit,
3649                                                 HBasicBlock* loop_successor,
3650                                                 HBasicBlock* break_block) {
3651   if (body_exit != NULL) Goto(body_exit, loop_entry);
3652   loop_entry->PostProcessLoopHeader(statement);
3653   if (break_block != NULL) {
3654     if (loop_successor != NULL) Goto(loop_successor, break_block);
3655     break_block->SetJoinId(statement->ExitId());
3656     return break_block;
3657   }
3658   return loop_successor;
3659 }
3660
3661
3662 // Build a new loop header block and set it as the current block.
3663 HBasicBlock* HOptimizedGraphBuilder::BuildLoopEntry() {
3664   HBasicBlock* loop_entry = CreateLoopHeaderBlock();
3665   Goto(loop_entry);
3666   set_current_block(loop_entry);
3667   return loop_entry;
3668 }
3669
3670
3671 HBasicBlock* HOptimizedGraphBuilder::BuildLoopEntry(
3672     IterationStatement* statement) {
3673   HBasicBlock* loop_entry = osr()->HasOsrEntryAt(statement)
3674       ? osr()->BuildOsrLoopEntry(statement)
3675       : BuildLoopEntry();
3676   return loop_entry;
3677 }
3678
3679
3680 void HBasicBlock::FinishExit(HControlInstruction* instruction,
3681                              SourcePosition position) {
3682   Finish(instruction, position);
3683   ClearEnvironment();
3684 }
3685
3686
3687 std::ostream& operator<<(std::ostream& os, const HBasicBlock& b) {
3688   return os << "B" << b.block_id();
3689 }
3690
3691
3692 HGraph::HGraph(CompilationInfo* info)
3693     : isolate_(info->isolate()),
3694       next_block_id_(0),
3695       entry_block_(NULL),
3696       blocks_(8, info->zone()),
3697       values_(16, info->zone()),
3698       phi_list_(NULL),
3699       uint32_instructions_(NULL),
3700       osr_(NULL),
3701       info_(info),
3702       zone_(info->zone()),
3703       is_recursive_(false),
3704       use_optimistic_licm_(false),
3705       depends_on_empty_array_proto_elements_(false),
3706       type_change_checksum_(0),
3707       maximum_environment_size_(0),
3708       no_side_effects_scope_count_(0),
3709       disallow_adding_new_values_(false) {
3710   if (info->IsStub()) {
3711     CallInterfaceDescriptor descriptor =
3712         info->code_stub()->GetCallInterfaceDescriptor();
3713     start_environment_ =
3714         new (zone_) HEnvironment(zone_, descriptor.GetRegisterParameterCount());
3715   } else {
3716     if (info->is_tracking_positions()) {
3717       info->TraceInlinedFunction(info->shared_info(), SourcePosition::Unknown(),
3718                                  InlinedFunctionInfo::kNoParentId);
3719     }
3720     start_environment_ =
3721         new(zone_) HEnvironment(NULL, info->scope(), info->closure(), zone_);
3722   }
3723   start_environment_->set_ast_id(BailoutId::FunctionEntry());
3724   entry_block_ = CreateBasicBlock();
3725   entry_block_->SetInitialEnvironment(start_environment_);
3726 }
3727
3728
3729 HBasicBlock* HGraph::CreateBasicBlock() {
3730   HBasicBlock* result = new(zone()) HBasicBlock(this);
3731   blocks_.Add(result, zone());
3732   return result;
3733 }
3734
3735
3736 void HGraph::FinalizeUniqueness() {
3737   DisallowHeapAllocation no_gc;
3738   for (int i = 0; i < blocks()->length(); ++i) {
3739     for (HInstructionIterator it(blocks()->at(i)); !it.Done(); it.Advance()) {
3740       it.Current()->FinalizeUniqueness();
3741     }
3742   }
3743 }
3744
3745
3746 int HGraph::SourcePositionToScriptPosition(SourcePosition pos) {
3747   return (FLAG_hydrogen_track_positions && !pos.IsUnknown())
3748              ? info()->start_position_for(pos.inlining_id()) + pos.position()
3749              : pos.raw();
3750 }
3751
3752
3753 // Block ordering was implemented with two mutually recursive methods,
3754 // HGraph::Postorder and HGraph::PostorderLoopBlocks.
3755 // The recursion could lead to stack overflow so the algorithm has been
3756 // implemented iteratively.
3757 // At a high level the algorithm looks like this:
3758 //
3759 // Postorder(block, loop_header) : {
3760 //   if (block has already been visited or is of another loop) return;
3761 //   mark block as visited;
3762 //   if (block is a loop header) {
3763 //     VisitLoopMembers(block, loop_header);
3764 //     VisitSuccessorsOfLoopHeader(block);
3765 //   } else {
3766 //     VisitSuccessors(block)
3767 //   }
3768 //   put block in result list;
3769 // }
3770 //
3771 // VisitLoopMembers(block, outer_loop_header) {
3772 //   foreach (block b in block loop members) {
3773 //     VisitSuccessorsOfLoopMember(b, outer_loop_header);
3774 //     if (b is loop header) VisitLoopMembers(b);
3775 //   }
3776 // }
3777 //
3778 // VisitSuccessorsOfLoopMember(block, outer_loop_header) {
3779 //   foreach (block b in block successors) Postorder(b, outer_loop_header)
3780 // }
3781 //
3782 // VisitSuccessorsOfLoopHeader(block) {
3783 //   foreach (block b in block successors) Postorder(b, block)
3784 // }
3785 //
3786 // VisitSuccessors(block, loop_header) {
3787 //   foreach (block b in block successors) Postorder(b, loop_header)
3788 // }
3789 //
3790 // The ordering is started calling Postorder(entry, NULL).
3791 //
3792 // Each instance of PostorderProcessor represents the "stack frame" of the
3793 // recursion, and particularly keeps the state of the loop (iteration) of the
3794 // "Visit..." function it represents.
3795 // To recycle memory we keep all the frames in a double linked list but
3796 // this means that we cannot use constructors to initialize the frames.
3797 //
3798 class PostorderProcessor : public ZoneObject {
3799  public:
3800   // Back link (towards the stack bottom).
3801   PostorderProcessor* parent() {return father_; }
3802   // Forward link (towards the stack top).
3803   PostorderProcessor* child() {return child_; }
3804   HBasicBlock* block() { return block_; }
3805   HLoopInformation* loop() { return loop_; }
3806   HBasicBlock* loop_header() { return loop_header_; }
3807
3808   static PostorderProcessor* CreateEntryProcessor(Zone* zone,
3809                                                   HBasicBlock* block) {
3810     PostorderProcessor* result = new(zone) PostorderProcessor(NULL);
3811     return result->SetupSuccessors(zone, block, NULL);
3812   }
3813
3814   PostorderProcessor* PerformStep(Zone* zone,
3815                                   ZoneList<HBasicBlock*>* order) {
3816     PostorderProcessor* next =
3817         PerformNonBacktrackingStep(zone, order);
3818     if (next != NULL) {
3819       return next;
3820     } else {
3821       return Backtrack(zone, order);
3822     }
3823   }
3824
3825  private:
3826   explicit PostorderProcessor(PostorderProcessor* father)
3827       : father_(father), child_(NULL), successor_iterator(NULL) { }
3828
3829   // Each enum value states the cycle whose state is kept by this instance.
3830   enum LoopKind {
3831     NONE,
3832     SUCCESSORS,
3833     SUCCESSORS_OF_LOOP_HEADER,
3834     LOOP_MEMBERS,
3835     SUCCESSORS_OF_LOOP_MEMBER
3836   };
3837
3838   // Each "Setup..." method is like a constructor for a cycle state.
3839   PostorderProcessor* SetupSuccessors(Zone* zone,
3840                                       HBasicBlock* block,
3841                                       HBasicBlock* loop_header) {
3842     if (block == NULL || block->IsOrdered() ||
3843         block->parent_loop_header() != loop_header) {
3844       kind_ = NONE;
3845       block_ = NULL;
3846       loop_ = NULL;
3847       loop_header_ = NULL;
3848       return this;
3849     } else {
3850       block_ = block;
3851       loop_ = NULL;
3852       block->MarkAsOrdered();
3853
3854       if (block->IsLoopHeader()) {
3855         kind_ = SUCCESSORS_OF_LOOP_HEADER;
3856         loop_header_ = block;
3857         InitializeSuccessors();
3858         PostorderProcessor* result = Push(zone);
3859         return result->SetupLoopMembers(zone, block, block->loop_information(),
3860                                         loop_header);
3861       } else {
3862         DCHECK(block->IsFinished());
3863         kind_ = SUCCESSORS;
3864         loop_header_ = loop_header;
3865         InitializeSuccessors();
3866         return this;
3867       }
3868     }
3869   }
3870
3871   PostorderProcessor* SetupLoopMembers(Zone* zone,
3872                                        HBasicBlock* block,
3873                                        HLoopInformation* loop,
3874                                        HBasicBlock* loop_header) {
3875     kind_ = LOOP_MEMBERS;
3876     block_ = block;
3877     loop_ = loop;
3878     loop_header_ = loop_header;
3879     InitializeLoopMembers();
3880     return this;
3881   }
3882
3883   PostorderProcessor* SetupSuccessorsOfLoopMember(
3884       HBasicBlock* block,
3885       HLoopInformation* loop,
3886       HBasicBlock* loop_header) {
3887     kind_ = SUCCESSORS_OF_LOOP_MEMBER;
3888     block_ = block;
3889     loop_ = loop;
3890     loop_header_ = loop_header;
3891     InitializeSuccessors();
3892     return this;
3893   }
3894
3895   // This method "allocates" a new stack frame.
3896   PostorderProcessor* Push(Zone* zone) {
3897     if (child_ == NULL) {
3898       child_ = new(zone) PostorderProcessor(this);
3899     }
3900     return child_;
3901   }
3902
3903   void ClosePostorder(ZoneList<HBasicBlock*>* order, Zone* zone) {
3904     DCHECK(block_->end()->FirstSuccessor() == NULL ||
3905            order->Contains(block_->end()->FirstSuccessor()) ||
3906            block_->end()->FirstSuccessor()->IsLoopHeader());
3907     DCHECK(block_->end()->SecondSuccessor() == NULL ||
3908            order->Contains(block_->end()->SecondSuccessor()) ||
3909            block_->end()->SecondSuccessor()->IsLoopHeader());
3910     order->Add(block_, zone);
3911   }
3912
3913   // This method is the basic block to walk up the stack.
3914   PostorderProcessor* Pop(Zone* zone,
3915                           ZoneList<HBasicBlock*>* order) {
3916     switch (kind_) {
3917       case SUCCESSORS:
3918       case SUCCESSORS_OF_LOOP_HEADER:
3919         ClosePostorder(order, zone);
3920         return father_;
3921       case LOOP_MEMBERS:
3922         return father_;
3923       case SUCCESSORS_OF_LOOP_MEMBER:
3924         if (block()->IsLoopHeader() && block() != loop_->loop_header()) {
3925           // In this case we need to perform a LOOP_MEMBERS cycle so we
3926           // initialize it and return this instead of father.
3927           return SetupLoopMembers(zone, block(),
3928                                   block()->loop_information(), loop_header_);
3929         } else {
3930           return father_;
3931         }
3932       case NONE:
3933         return father_;
3934     }
3935     UNREACHABLE();
3936     return NULL;
3937   }
3938
3939   // Walks up the stack.
3940   PostorderProcessor* Backtrack(Zone* zone,
3941                                 ZoneList<HBasicBlock*>* order) {
3942     PostorderProcessor* parent = Pop(zone, order);
3943     while (parent != NULL) {
3944       PostorderProcessor* next =
3945           parent->PerformNonBacktrackingStep(zone, order);
3946       if (next != NULL) {
3947         return next;
3948       } else {
3949         parent = parent->Pop(zone, order);
3950       }
3951     }
3952     return NULL;
3953   }
3954
3955   PostorderProcessor* PerformNonBacktrackingStep(
3956       Zone* zone,
3957       ZoneList<HBasicBlock*>* order) {
3958     HBasicBlock* next_block;
3959     switch (kind_) {
3960       case SUCCESSORS:
3961         next_block = AdvanceSuccessors();
3962         if (next_block != NULL) {
3963           PostorderProcessor* result = Push(zone);
3964           return result->SetupSuccessors(zone, next_block, loop_header_);
3965         }
3966         break;
3967       case SUCCESSORS_OF_LOOP_HEADER:
3968         next_block = AdvanceSuccessors();
3969         if (next_block != NULL) {
3970           PostorderProcessor* result = Push(zone);
3971           return result->SetupSuccessors(zone, next_block, block());
3972         }
3973         break;
3974       case LOOP_MEMBERS:
3975         next_block = AdvanceLoopMembers();
3976         if (next_block != NULL) {
3977           PostorderProcessor* result = Push(zone);
3978           return result->SetupSuccessorsOfLoopMember(next_block,
3979                                                      loop_, loop_header_);
3980         }
3981         break;
3982       case SUCCESSORS_OF_LOOP_MEMBER:
3983         next_block = AdvanceSuccessors();
3984         if (next_block != NULL) {
3985           PostorderProcessor* result = Push(zone);
3986           return result->SetupSuccessors(zone, next_block, loop_header_);
3987         }
3988         break;
3989       case NONE:
3990         return NULL;
3991     }
3992     return NULL;
3993   }
3994
3995   // The following two methods implement a "foreach b in successors" cycle.
3996   void InitializeSuccessors() {
3997     loop_index = 0;
3998     loop_length = 0;
3999     successor_iterator = HSuccessorIterator(block_->end());
4000   }
4001
4002   HBasicBlock* AdvanceSuccessors() {
4003     if (!successor_iterator.Done()) {
4004       HBasicBlock* result = successor_iterator.Current();
4005       successor_iterator.Advance();
4006       return result;
4007     }
4008     return NULL;
4009   }
4010
4011   // The following two methods implement a "foreach b in loop members" cycle.
4012   void InitializeLoopMembers() {
4013     loop_index = 0;
4014     loop_length = loop_->blocks()->length();
4015   }
4016
4017   HBasicBlock* AdvanceLoopMembers() {
4018     if (loop_index < loop_length) {
4019       HBasicBlock* result = loop_->blocks()->at(loop_index);
4020       loop_index++;
4021       return result;
4022     } else {
4023       return NULL;
4024     }
4025   }
4026
4027   LoopKind kind_;
4028   PostorderProcessor* father_;
4029   PostorderProcessor* child_;
4030   HLoopInformation* loop_;
4031   HBasicBlock* block_;
4032   HBasicBlock* loop_header_;
4033   int loop_index;
4034   int loop_length;
4035   HSuccessorIterator successor_iterator;
4036 };
4037
4038
4039 void HGraph::OrderBlocks() {
4040   CompilationPhase phase("H_Block ordering", info());
4041
4042 #ifdef DEBUG
4043   // Initially the blocks must not be ordered.
4044   for (int i = 0; i < blocks_.length(); ++i) {
4045     DCHECK(!blocks_[i]->IsOrdered());
4046   }
4047 #endif
4048
4049   PostorderProcessor* postorder =
4050       PostorderProcessor::CreateEntryProcessor(zone(), blocks_[0]);
4051   blocks_.Rewind(0);
4052   while (postorder) {
4053     postorder = postorder->PerformStep(zone(), &blocks_);
4054   }
4055
4056 #ifdef DEBUG
4057   // Now all blocks must be marked as ordered.
4058   for (int i = 0; i < blocks_.length(); ++i) {
4059     DCHECK(blocks_[i]->IsOrdered());
4060   }
4061 #endif
4062
4063   // Reverse block list and assign block IDs.
4064   for (int i = 0, j = blocks_.length(); --j >= i; ++i) {
4065     HBasicBlock* bi = blocks_[i];
4066     HBasicBlock* bj = blocks_[j];
4067     bi->set_block_id(j);
4068     bj->set_block_id(i);
4069     blocks_[i] = bj;
4070     blocks_[j] = bi;
4071   }
4072 }
4073
4074
4075 void HGraph::AssignDominators() {
4076   HPhase phase("H_Assign dominators", this);
4077   for (int i = 0; i < blocks_.length(); ++i) {
4078     HBasicBlock* block = blocks_[i];
4079     if (block->IsLoopHeader()) {
4080       // Only the first predecessor of a loop header is from outside the loop.
4081       // All others are back edges, and thus cannot dominate the loop header.
4082       block->AssignCommonDominator(block->predecessors()->first());
4083       block->AssignLoopSuccessorDominators();
4084     } else {
4085       for (int j = blocks_[i]->predecessors()->length() - 1; j >= 0; --j) {
4086         blocks_[i]->AssignCommonDominator(blocks_[i]->predecessors()->at(j));
4087       }
4088     }
4089   }
4090 }
4091
4092
4093 bool HGraph::CheckArgumentsPhiUses() {
4094   int block_count = blocks_.length();
4095   for (int i = 0; i < block_count; ++i) {
4096     for (int j = 0; j < blocks_[i]->phis()->length(); ++j) {
4097       HPhi* phi = blocks_[i]->phis()->at(j);
4098       // We don't support phi uses of arguments for now.
4099       if (phi->CheckFlag(HValue::kIsArguments)) return false;
4100     }
4101   }
4102   return true;
4103 }
4104
4105
4106 bool HGraph::CheckConstPhiUses() {
4107   int block_count = blocks_.length();
4108   for (int i = 0; i < block_count; ++i) {
4109     for (int j = 0; j < blocks_[i]->phis()->length(); ++j) {
4110       HPhi* phi = blocks_[i]->phis()->at(j);
4111       // Check for the hole value (from an uninitialized const).
4112       for (int k = 0; k < phi->OperandCount(); k++) {
4113         if (phi->OperandAt(k) == GetConstantHole()) return false;
4114       }
4115     }
4116   }
4117   return true;
4118 }
4119
4120
4121 void HGraph::CollectPhis() {
4122   int block_count = blocks_.length();
4123   phi_list_ = new(zone()) ZoneList<HPhi*>(block_count, zone());
4124   for (int i = 0; i < block_count; ++i) {
4125     for (int j = 0; j < blocks_[i]->phis()->length(); ++j) {
4126       HPhi* phi = blocks_[i]->phis()->at(j);
4127       phi_list_->Add(phi, zone());
4128     }
4129   }
4130 }
4131
4132
4133 // Implementation of utility class to encapsulate the translation state for
4134 // a (possibly inlined) function.
4135 FunctionState::FunctionState(HOptimizedGraphBuilder* owner,
4136                              CompilationInfo* info, InliningKind inlining_kind,
4137                              int inlining_id)
4138     : owner_(owner),
4139       compilation_info_(info),
4140       call_context_(NULL),
4141       inlining_kind_(inlining_kind),
4142       function_return_(NULL),
4143       test_context_(NULL),
4144       entry_(NULL),
4145       arguments_object_(NULL),
4146       arguments_elements_(NULL),
4147       inlining_id_(inlining_id),
4148       outer_source_position_(SourcePosition::Unknown()),
4149       outer_(owner->function_state()) {
4150   if (outer_ != NULL) {
4151     // State for an inline function.
4152     if (owner->ast_context()->IsTest()) {
4153       HBasicBlock* if_true = owner->graph()->CreateBasicBlock();
4154       HBasicBlock* if_false = owner->graph()->CreateBasicBlock();
4155       if_true->MarkAsInlineReturnTarget(owner->current_block());
4156       if_false->MarkAsInlineReturnTarget(owner->current_block());
4157       TestContext* outer_test_context = TestContext::cast(owner->ast_context());
4158       Expression* cond = outer_test_context->condition();
4159       // The AstContext constructor pushed on the context stack.  This newed
4160       // instance is the reason that AstContext can't be BASE_EMBEDDED.
4161       test_context_ = new TestContext(owner, cond, if_true, if_false);
4162     } else {
4163       function_return_ = owner->graph()->CreateBasicBlock();
4164       function_return()->MarkAsInlineReturnTarget(owner->current_block());
4165     }
4166     // Set this after possibly allocating a new TestContext above.
4167     call_context_ = owner->ast_context();
4168   }
4169
4170   // Push on the state stack.
4171   owner->set_function_state(this);
4172
4173   if (compilation_info_->is_tracking_positions()) {
4174     outer_source_position_ = owner->source_position();
4175     owner->EnterInlinedSource(
4176       info->shared_info()->start_position(),
4177       inlining_id);
4178     owner->SetSourcePosition(info->shared_info()->start_position());
4179   }
4180 }
4181
4182
4183 FunctionState::~FunctionState() {
4184   delete test_context_;
4185   owner_->set_function_state(outer_);
4186
4187   if (compilation_info_->is_tracking_positions()) {
4188     owner_->set_source_position(outer_source_position_);
4189     owner_->EnterInlinedSource(
4190       outer_->compilation_info()->shared_info()->start_position(),
4191       outer_->inlining_id());
4192   }
4193 }
4194
4195
4196 // Implementation of utility classes to represent an expression's context in
4197 // the AST.
4198 AstContext::AstContext(HOptimizedGraphBuilder* owner, Expression::Context kind)
4199     : owner_(owner),
4200       kind_(kind),
4201       outer_(owner->ast_context()),
4202       typeof_mode_(NOT_INSIDE_TYPEOF) {
4203   owner->set_ast_context(this);  // Push.
4204 #ifdef DEBUG
4205   DCHECK(owner->environment()->frame_type() == JS_FUNCTION);
4206   original_length_ = owner->environment()->length();
4207 #endif
4208 }
4209
4210
4211 AstContext::~AstContext() {
4212   owner_->set_ast_context(outer_);  // Pop.
4213 }
4214
4215
4216 EffectContext::~EffectContext() {
4217   DCHECK(owner()->HasStackOverflow() ||
4218          owner()->current_block() == NULL ||
4219          (owner()->environment()->length() == original_length_ &&
4220           owner()->environment()->frame_type() == JS_FUNCTION));
4221 }
4222
4223
4224 ValueContext::~ValueContext() {
4225   DCHECK(owner()->HasStackOverflow() ||
4226          owner()->current_block() == NULL ||
4227          (owner()->environment()->length() == original_length_ + 1 &&
4228           owner()->environment()->frame_type() == JS_FUNCTION));
4229 }
4230
4231
4232 void EffectContext::ReturnValue(HValue* value) {
4233   // The value is simply ignored.
4234 }
4235
4236
4237 void ValueContext::ReturnValue(HValue* value) {
4238   // The value is tracked in the bailout environment, and communicated
4239   // through the environment as the result of the expression.
4240   if (value->CheckFlag(HValue::kIsArguments)) {
4241     if (flag_ == ARGUMENTS_FAKED) {
4242       value = owner()->graph()->GetConstantUndefined();
4243     } else if (!arguments_allowed()) {
4244       owner()->Bailout(kBadValueContextForArgumentsValue);
4245     }
4246   }
4247   owner()->Push(value);
4248 }
4249
4250
4251 void TestContext::ReturnValue(HValue* value) {
4252   BuildBranch(value);
4253 }
4254
4255
4256 void EffectContext::ReturnInstruction(HInstruction* instr, BailoutId ast_id) {
4257   DCHECK(!instr->IsControlInstruction());
4258   owner()->AddInstruction(instr);
4259   if (instr->HasObservableSideEffects()) {
4260     owner()->Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
4261   }
4262 }
4263
4264
4265 void EffectContext::ReturnControl(HControlInstruction* instr,
4266                                   BailoutId ast_id) {
4267   DCHECK(!instr->HasObservableSideEffects());
4268   HBasicBlock* empty_true = owner()->graph()->CreateBasicBlock();
4269   HBasicBlock* empty_false = owner()->graph()->CreateBasicBlock();
4270   instr->SetSuccessorAt(0, empty_true);
4271   instr->SetSuccessorAt(1, empty_false);
4272   owner()->FinishCurrentBlock(instr);
4273   HBasicBlock* join = owner()->CreateJoin(empty_true, empty_false, ast_id);
4274   owner()->set_current_block(join);
4275 }
4276
4277
4278 void EffectContext::ReturnContinuation(HIfContinuation* continuation,
4279                                        BailoutId ast_id) {
4280   HBasicBlock* true_branch = NULL;
4281   HBasicBlock* false_branch = NULL;
4282   continuation->Continue(&true_branch, &false_branch);
4283   if (!continuation->IsTrueReachable()) {
4284     owner()->set_current_block(false_branch);
4285   } else if (!continuation->IsFalseReachable()) {
4286     owner()->set_current_block(true_branch);
4287   } else {
4288     HBasicBlock* join = owner()->CreateJoin(true_branch, false_branch, ast_id);
4289     owner()->set_current_block(join);
4290   }
4291 }
4292
4293
4294 void ValueContext::ReturnInstruction(HInstruction* instr, BailoutId ast_id) {
4295   DCHECK(!instr->IsControlInstruction());
4296   if (!arguments_allowed() && instr->CheckFlag(HValue::kIsArguments)) {
4297     return owner()->Bailout(kBadValueContextForArgumentsObjectValue);
4298   }
4299   owner()->AddInstruction(instr);
4300   owner()->Push(instr);
4301   if (instr->HasObservableSideEffects()) {
4302     owner()->Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
4303   }
4304 }
4305
4306
4307 void ValueContext::ReturnControl(HControlInstruction* instr, BailoutId ast_id) {
4308   DCHECK(!instr->HasObservableSideEffects());
4309   if (!arguments_allowed() && instr->CheckFlag(HValue::kIsArguments)) {
4310     return owner()->Bailout(kBadValueContextForArgumentsObjectValue);
4311   }
4312   HBasicBlock* materialize_false = owner()->graph()->CreateBasicBlock();
4313   HBasicBlock* materialize_true = owner()->graph()->CreateBasicBlock();
4314   instr->SetSuccessorAt(0, materialize_true);
4315   instr->SetSuccessorAt(1, materialize_false);
4316   owner()->FinishCurrentBlock(instr);
4317   owner()->set_current_block(materialize_true);
4318   owner()->Push(owner()->graph()->GetConstantTrue());
4319   owner()->set_current_block(materialize_false);
4320   owner()->Push(owner()->graph()->GetConstantFalse());
4321   HBasicBlock* join =
4322     owner()->CreateJoin(materialize_true, materialize_false, ast_id);
4323   owner()->set_current_block(join);
4324 }
4325
4326
4327 void ValueContext::ReturnContinuation(HIfContinuation* continuation,
4328                                       BailoutId ast_id) {
4329   HBasicBlock* materialize_true = NULL;
4330   HBasicBlock* materialize_false = NULL;
4331   continuation->Continue(&materialize_true, &materialize_false);
4332   if (continuation->IsTrueReachable()) {
4333     owner()->set_current_block(materialize_true);
4334     owner()->Push(owner()->graph()->GetConstantTrue());
4335     owner()->set_current_block(materialize_true);
4336   }
4337   if (continuation->IsFalseReachable()) {
4338     owner()->set_current_block(materialize_false);
4339     owner()->Push(owner()->graph()->GetConstantFalse());
4340     owner()->set_current_block(materialize_false);
4341   }
4342   if (continuation->TrueAndFalseReachable()) {
4343     HBasicBlock* join =
4344         owner()->CreateJoin(materialize_true, materialize_false, ast_id);
4345     owner()->set_current_block(join);
4346   }
4347 }
4348
4349
4350 void TestContext::ReturnInstruction(HInstruction* instr, BailoutId ast_id) {
4351   DCHECK(!instr->IsControlInstruction());
4352   HOptimizedGraphBuilder* builder = owner();
4353   builder->AddInstruction(instr);
4354   // We expect a simulate after every expression with side effects, though
4355   // this one isn't actually needed (and wouldn't work if it were targeted).
4356   if (instr->HasObservableSideEffects()) {
4357     builder->Push(instr);
4358     builder->Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
4359     builder->Pop();
4360   }
4361   BuildBranch(instr);
4362 }
4363
4364
4365 void TestContext::ReturnControl(HControlInstruction* instr, BailoutId ast_id) {
4366   DCHECK(!instr->HasObservableSideEffects());
4367   HBasicBlock* empty_true = owner()->graph()->CreateBasicBlock();
4368   HBasicBlock* empty_false = owner()->graph()->CreateBasicBlock();
4369   instr->SetSuccessorAt(0, empty_true);
4370   instr->SetSuccessorAt(1, empty_false);
4371   owner()->FinishCurrentBlock(instr);
4372   owner()->Goto(empty_true, if_true(), owner()->function_state());
4373   owner()->Goto(empty_false, if_false(), owner()->function_state());
4374   owner()->set_current_block(NULL);
4375 }
4376
4377
4378 void TestContext::ReturnContinuation(HIfContinuation* continuation,
4379                                      BailoutId ast_id) {
4380   HBasicBlock* true_branch = NULL;
4381   HBasicBlock* false_branch = NULL;
4382   continuation->Continue(&true_branch, &false_branch);
4383   if (continuation->IsTrueReachable()) {
4384     owner()->Goto(true_branch, if_true(), owner()->function_state());
4385   }
4386   if (continuation->IsFalseReachable()) {
4387     owner()->Goto(false_branch, if_false(), owner()->function_state());
4388   }
4389   owner()->set_current_block(NULL);
4390 }
4391
4392
4393 void TestContext::BuildBranch(HValue* value) {
4394   // We expect the graph to be in edge-split form: there is no edge that
4395   // connects a branch node to a join node.  We conservatively ensure that
4396   // property by always adding an empty block on the outgoing edges of this
4397   // branch.
4398   HOptimizedGraphBuilder* builder = owner();
4399   if (value != NULL && value->CheckFlag(HValue::kIsArguments)) {
4400     builder->Bailout(kArgumentsObjectValueInATestContext);
4401   }
4402   ToBooleanStub::Types expected(condition()->to_boolean_types());
4403   ReturnControl(owner()->New<HBranch>(value, expected), BailoutId::None());
4404 }
4405
4406
4407 // HOptimizedGraphBuilder infrastructure for bailing out and checking bailouts.
4408 #define CHECK_BAILOUT(call)                     \
4409   do {                                          \
4410     call;                                       \
4411     if (HasStackOverflow()) return;             \
4412   } while (false)
4413
4414
4415 #define CHECK_ALIVE(call)                                       \
4416   do {                                                          \
4417     call;                                                       \
4418     if (HasStackOverflow() || current_block() == NULL) return;  \
4419   } while (false)
4420
4421
4422 #define CHECK_ALIVE_OR_RETURN(call, value)                            \
4423   do {                                                                \
4424     call;                                                             \
4425     if (HasStackOverflow() || current_block() == NULL) return value;  \
4426   } while (false)
4427
4428
4429 void HOptimizedGraphBuilder::Bailout(BailoutReason reason) {
4430   current_info()->AbortOptimization(reason);
4431   SetStackOverflow();
4432 }
4433
4434
4435 void HOptimizedGraphBuilder::VisitForEffect(Expression* expr) {
4436   EffectContext for_effect(this);
4437   Visit(expr);
4438 }
4439
4440
4441 void HOptimizedGraphBuilder::VisitForValue(Expression* expr,
4442                                            ArgumentsAllowedFlag flag) {
4443   ValueContext for_value(this, flag);
4444   Visit(expr);
4445 }
4446
4447
4448 void HOptimizedGraphBuilder::VisitForTypeOf(Expression* expr) {
4449   ValueContext for_value(this, ARGUMENTS_NOT_ALLOWED);
4450   for_value.set_typeof_mode(INSIDE_TYPEOF);
4451   Visit(expr);
4452 }
4453
4454
4455 void HOptimizedGraphBuilder::VisitForControl(Expression* expr,
4456                                              HBasicBlock* true_block,
4457                                              HBasicBlock* false_block) {
4458   TestContext for_test(this, expr, true_block, false_block);
4459   Visit(expr);
4460 }
4461
4462
4463 void HOptimizedGraphBuilder::VisitExpressions(
4464     ZoneList<Expression*>* exprs) {
4465   for (int i = 0; i < exprs->length(); ++i) {
4466     CHECK_ALIVE(VisitForValue(exprs->at(i)));
4467   }
4468 }
4469
4470
4471 void HOptimizedGraphBuilder::VisitExpressions(ZoneList<Expression*>* exprs,
4472                                               ArgumentsAllowedFlag flag) {
4473   for (int i = 0; i < exprs->length(); ++i) {
4474     CHECK_ALIVE(VisitForValue(exprs->at(i), flag));
4475   }
4476 }
4477
4478
4479 bool HOptimizedGraphBuilder::BuildGraph() {
4480   if (IsSubclassConstructor(current_info()->function()->kind())) {
4481     Bailout(kSuperReference);
4482     return false;
4483   }
4484
4485   int slots = current_info()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
4486   if (current_info()->scope()->is_script_scope() && slots > 0) {
4487     Bailout(kScriptContext);
4488     return false;
4489   }
4490
4491   Scope* scope = current_info()->scope();
4492   SetUpScope(scope);
4493
4494   // Add an edge to the body entry.  This is warty: the graph's start
4495   // environment will be used by the Lithium translation as the initial
4496   // environment on graph entry, but it has now been mutated by the
4497   // Hydrogen translation of the instructions in the start block.  This
4498   // environment uses values which have not been defined yet.  These
4499   // Hydrogen instructions will then be replayed by the Lithium
4500   // translation, so they cannot have an environment effect.  The edge to
4501   // the body's entry block (along with some special logic for the start
4502   // block in HInstruction::InsertAfter) seals the start block from
4503   // getting unwanted instructions inserted.
4504   //
4505   // TODO(kmillikin): Fix this.  Stop mutating the initial environment.
4506   // Make the Hydrogen instructions in the initial block into Hydrogen
4507   // values (but not instructions), present in the initial environment and
4508   // not replayed by the Lithium translation.
4509   HEnvironment* initial_env = environment()->CopyWithoutHistory();
4510   HBasicBlock* body_entry = CreateBasicBlock(initial_env);
4511   Goto(body_entry);
4512   body_entry->SetJoinId(BailoutId::FunctionEntry());
4513   set_current_block(body_entry);
4514
4515   VisitDeclarations(scope->declarations());
4516   Add<HSimulate>(BailoutId::Declarations());
4517
4518   Add<HStackCheck>(HStackCheck::kFunctionEntry);
4519
4520   VisitStatements(current_info()->function()->body());
4521   if (HasStackOverflow()) return false;
4522
4523   if (current_block() != NULL) {
4524     Add<HReturn>(graph()->GetConstantUndefined());
4525     set_current_block(NULL);
4526   }
4527
4528   // If the checksum of the number of type info changes is the same as the
4529   // last time this function was compiled, then this recompile is likely not
4530   // due to missing/inadequate type feedback, but rather too aggressive
4531   // optimization. Disable optimistic LICM in that case.
4532   Handle<Code> unoptimized_code(current_info()->shared_info()->code());
4533   DCHECK(unoptimized_code->kind() == Code::FUNCTION);
4534   Handle<TypeFeedbackInfo> type_info(
4535       TypeFeedbackInfo::cast(unoptimized_code->type_feedback_info()));
4536   int checksum = type_info->own_type_change_checksum();
4537   int composite_checksum = graph()->update_type_change_checksum(checksum);
4538   graph()->set_use_optimistic_licm(
4539       !type_info->matches_inlined_type_change_checksum(composite_checksum));
4540   type_info->set_inlined_type_change_checksum(composite_checksum);
4541
4542   // Perform any necessary OSR-specific cleanups or changes to the graph.
4543   osr()->FinishGraph();
4544
4545   return true;
4546 }
4547
4548
4549 bool HGraph::Optimize(BailoutReason* bailout_reason) {
4550   OrderBlocks();
4551   AssignDominators();
4552
4553   // We need to create a HConstant "zero" now so that GVN will fold every
4554   // zero-valued constant in the graph together.
4555   // The constant is needed to make idef-based bounds check work: the pass
4556   // evaluates relations with "zero" and that zero cannot be created after GVN.
4557   GetConstant0();
4558
4559 #ifdef DEBUG
4560   // Do a full verify after building the graph and computing dominators.
4561   Verify(true);
4562 #endif
4563
4564   if (FLAG_analyze_environment_liveness && maximum_environment_size() != 0) {
4565     Run<HEnvironmentLivenessAnalysisPhase>();
4566   }
4567
4568   if (!CheckConstPhiUses()) {
4569     *bailout_reason = kUnsupportedPhiUseOfConstVariable;
4570     return false;
4571   }
4572   Run<HRedundantPhiEliminationPhase>();
4573   if (!CheckArgumentsPhiUses()) {
4574     *bailout_reason = kUnsupportedPhiUseOfArguments;
4575     return false;
4576   }
4577
4578   // Find and mark unreachable code to simplify optimizations, especially gvn,
4579   // where unreachable code could unnecessarily defeat LICM.
4580   Run<HMarkUnreachableBlocksPhase>();
4581
4582   if (FLAG_dead_code_elimination) Run<HDeadCodeEliminationPhase>();
4583   if (FLAG_use_escape_analysis) Run<HEscapeAnalysisPhase>();
4584
4585   if (FLAG_load_elimination) Run<HLoadEliminationPhase>();
4586
4587   CollectPhis();
4588
4589   if (has_osr()) osr()->FinishOsrValues();
4590
4591   Run<HInferRepresentationPhase>();
4592
4593   // Remove HSimulate instructions that have turned out not to be needed
4594   // after all by folding them into the following HSimulate.
4595   // This must happen after inferring representations.
4596   Run<HMergeRemovableSimulatesPhase>();
4597
4598   Run<HMarkDeoptimizeOnUndefinedPhase>();
4599   Run<HRepresentationChangesPhase>();
4600
4601   Run<HInferTypesPhase>();
4602
4603   // Must be performed before canonicalization to ensure that Canonicalize
4604   // will not remove semantically meaningful ToInt32 operations e.g. BIT_OR with
4605   // zero.
4606   Run<HUint32AnalysisPhase>();
4607
4608   if (FLAG_use_canonicalizing) Run<HCanonicalizePhase>();
4609
4610   if (FLAG_use_gvn) Run<HGlobalValueNumberingPhase>();
4611
4612   if (FLAG_check_elimination) Run<HCheckEliminationPhase>();
4613
4614   if (FLAG_store_elimination) Run<HStoreEliminationPhase>();
4615
4616   Run<HRangeAnalysisPhase>();
4617
4618   Run<HComputeChangeUndefinedToNaN>();
4619
4620   // Eliminate redundant stack checks on backwards branches.
4621   Run<HStackCheckEliminationPhase>();
4622
4623   if (FLAG_array_bounds_checks_elimination) Run<HBoundsCheckEliminationPhase>();
4624   if (FLAG_array_bounds_checks_hoisting) Run<HBoundsCheckHoistingPhase>();
4625   if (FLAG_array_index_dehoisting) Run<HDehoistIndexComputationsPhase>();
4626   if (FLAG_dead_code_elimination) Run<HDeadCodeEliminationPhase>();
4627
4628   RestoreActualValues();
4629
4630   // Find unreachable code a second time, GVN and other optimizations may have
4631   // made blocks unreachable that were previously reachable.
4632   Run<HMarkUnreachableBlocksPhase>();
4633
4634   return true;
4635 }
4636
4637
4638 void HGraph::RestoreActualValues() {
4639   HPhase phase("H_Restore actual values", this);
4640
4641   for (int block_index = 0; block_index < blocks()->length(); block_index++) {
4642     HBasicBlock* block = blocks()->at(block_index);
4643
4644 #ifdef DEBUG
4645     for (int i = 0; i < block->phis()->length(); i++) {
4646       HPhi* phi = block->phis()->at(i);
4647       DCHECK(phi->ActualValue() == phi);
4648     }
4649 #endif
4650
4651     for (HInstructionIterator it(block); !it.Done(); it.Advance()) {
4652       HInstruction* instruction = it.Current();
4653       if (instruction->ActualValue() == instruction) continue;
4654       if (instruction->CheckFlag(HValue::kIsDead)) {
4655         // The instruction was marked as deleted but left in the graph
4656         // as a control flow dependency point for subsequent
4657         // instructions.
4658         instruction->DeleteAndReplaceWith(instruction->ActualValue());
4659       } else {
4660         DCHECK(instruction->IsInformativeDefinition());
4661         if (instruction->IsPurelyInformativeDefinition()) {
4662           instruction->DeleteAndReplaceWith(instruction->RedefinedOperand());
4663         } else {
4664           instruction->ReplaceAllUsesWith(instruction->ActualValue());
4665         }
4666       }
4667     }
4668   }
4669 }
4670
4671
4672 void HOptimizedGraphBuilder::PushArgumentsFromEnvironment(int count) {
4673   ZoneList<HValue*> arguments(count, zone());
4674   for (int i = 0; i < count; ++i) {
4675     arguments.Add(Pop(), zone());
4676   }
4677
4678   HPushArguments* push_args = New<HPushArguments>();
4679   while (!arguments.is_empty()) {
4680     push_args->AddInput(arguments.RemoveLast());
4681   }
4682   AddInstruction(push_args);
4683 }
4684
4685
4686 template <class Instruction>
4687 HInstruction* HOptimizedGraphBuilder::PreProcessCall(Instruction* call) {
4688   PushArgumentsFromEnvironment(call->argument_count());
4689   return call;
4690 }
4691
4692
4693 void HOptimizedGraphBuilder::SetUpScope(Scope* scope) {
4694   // First special is HContext.
4695   HInstruction* context = Add<HContext>();
4696   environment()->BindContext(context);
4697
4698   // Create an arguments object containing the initial parameters.  Set the
4699   // initial values of parameters including "this" having parameter index 0.
4700   DCHECK_EQ(scope->num_parameters() + 1, environment()->parameter_count());
4701   HArgumentsObject* arguments_object =
4702       New<HArgumentsObject>(environment()->parameter_count());
4703   for (int i = 0; i < environment()->parameter_count(); ++i) {
4704     HInstruction* parameter = Add<HParameter>(i);
4705     arguments_object->AddArgument(parameter, zone());
4706     environment()->Bind(i, parameter);
4707   }
4708   AddInstruction(arguments_object);
4709   graph()->SetArgumentsObject(arguments_object);
4710
4711   HConstant* undefined_constant = graph()->GetConstantUndefined();
4712   // Initialize specials and locals to undefined.
4713   for (int i = environment()->parameter_count() + 1;
4714        i < environment()->length();
4715        ++i) {
4716     environment()->Bind(i, undefined_constant);
4717   }
4718
4719   // Handle the arguments and arguments shadow variables specially (they do
4720   // not have declarations).
4721   if (scope->arguments() != NULL) {
4722     environment()->Bind(scope->arguments(),
4723                         graph()->GetArgumentsObject());
4724   }
4725
4726   int rest_index;
4727   Variable* rest = scope->rest_parameter(&rest_index);
4728   if (rest) {
4729     return Bailout(kRestParameter);
4730   }
4731
4732   if (scope->this_function_var() != nullptr ||
4733       scope->new_target_var() != nullptr) {
4734     return Bailout(kSuperReference);
4735   }
4736 }
4737
4738
4739 void HOptimizedGraphBuilder::VisitStatements(ZoneList<Statement*>* statements) {
4740   for (int i = 0; i < statements->length(); i++) {
4741     Statement* stmt = statements->at(i);
4742     CHECK_ALIVE(Visit(stmt));
4743     if (stmt->IsJump()) break;
4744   }
4745 }
4746
4747
4748 void HOptimizedGraphBuilder::VisitBlock(Block* stmt) {
4749   DCHECK(!HasStackOverflow());
4750   DCHECK(current_block() != NULL);
4751   DCHECK(current_block()->HasPredecessor());
4752
4753   Scope* outer_scope = scope();
4754   Scope* scope = stmt->scope();
4755   BreakAndContinueInfo break_info(stmt, outer_scope);
4756
4757   { BreakAndContinueScope push(&break_info, this);
4758     if (scope != NULL) {
4759       if (scope->ContextLocalCount() > 0) {
4760         // Load the function object.
4761         Scope* declaration_scope = scope->DeclarationScope();
4762         HInstruction* function;
4763         HValue* outer_context = environment()->context();
4764         if (declaration_scope->is_script_scope() ||
4765             declaration_scope->is_eval_scope()) {
4766           function = new (zone())
4767               HLoadContextSlot(outer_context, Context::CLOSURE_INDEX,
4768                                HLoadContextSlot::kNoCheck);
4769         } else {
4770           function = New<HThisFunction>();
4771         }
4772         AddInstruction(function);
4773         // Allocate a block context and store it to the stack frame.
4774         HInstruction* inner_context = Add<HAllocateBlockContext>(
4775             outer_context, function, scope->GetScopeInfo(isolate()));
4776         HInstruction* instr = Add<HStoreFrameContext>(inner_context);
4777         set_scope(scope);
4778         environment()->BindContext(inner_context);
4779         if (instr->HasObservableSideEffects()) {
4780           AddSimulate(stmt->EntryId(), REMOVABLE_SIMULATE);
4781         }
4782       }
4783       VisitDeclarations(scope->declarations());
4784       AddSimulate(stmt->DeclsId(), REMOVABLE_SIMULATE);
4785     }
4786     CHECK_BAILOUT(VisitStatements(stmt->statements()));
4787   }
4788   set_scope(outer_scope);
4789   if (scope != NULL && current_block() != NULL &&
4790       scope->ContextLocalCount() > 0) {
4791     HValue* inner_context = environment()->context();
4792     HValue* outer_context = Add<HLoadNamedField>(
4793         inner_context, nullptr,
4794         HObjectAccess::ForContextSlot(Context::PREVIOUS_INDEX));
4795
4796     HInstruction* instr = Add<HStoreFrameContext>(outer_context);
4797     environment()->BindContext(outer_context);
4798     if (instr->HasObservableSideEffects()) {
4799       AddSimulate(stmt->ExitId(), REMOVABLE_SIMULATE);
4800     }
4801   }
4802   HBasicBlock* break_block = break_info.break_block();
4803   if (break_block != NULL) {
4804     if (current_block() != NULL) Goto(break_block);
4805     break_block->SetJoinId(stmt->ExitId());
4806     set_current_block(break_block);
4807   }
4808 }
4809
4810
4811 void HOptimizedGraphBuilder::VisitExpressionStatement(
4812     ExpressionStatement* stmt) {
4813   DCHECK(!HasStackOverflow());
4814   DCHECK(current_block() != NULL);
4815   DCHECK(current_block()->HasPredecessor());
4816   VisitForEffect(stmt->expression());
4817 }
4818
4819
4820 void HOptimizedGraphBuilder::VisitEmptyStatement(EmptyStatement* stmt) {
4821   DCHECK(!HasStackOverflow());
4822   DCHECK(current_block() != NULL);
4823   DCHECK(current_block()->HasPredecessor());
4824 }
4825
4826
4827 void HOptimizedGraphBuilder::VisitIfStatement(IfStatement* stmt) {
4828   DCHECK(!HasStackOverflow());
4829   DCHECK(current_block() != NULL);
4830   DCHECK(current_block()->HasPredecessor());
4831   if (stmt->condition()->ToBooleanIsTrue()) {
4832     Add<HSimulate>(stmt->ThenId());
4833     Visit(stmt->then_statement());
4834   } else if (stmt->condition()->ToBooleanIsFalse()) {
4835     Add<HSimulate>(stmt->ElseId());
4836     Visit(stmt->else_statement());
4837   } else {
4838     HBasicBlock* cond_true = graph()->CreateBasicBlock();
4839     HBasicBlock* cond_false = graph()->CreateBasicBlock();
4840     CHECK_BAILOUT(VisitForControl(stmt->condition(), cond_true, cond_false));
4841
4842     if (cond_true->HasPredecessor()) {
4843       cond_true->SetJoinId(stmt->ThenId());
4844       set_current_block(cond_true);
4845       CHECK_BAILOUT(Visit(stmt->then_statement()));
4846       cond_true = current_block();
4847     } else {
4848       cond_true = NULL;
4849     }
4850
4851     if (cond_false->HasPredecessor()) {
4852       cond_false->SetJoinId(stmt->ElseId());
4853       set_current_block(cond_false);
4854       CHECK_BAILOUT(Visit(stmt->else_statement()));
4855       cond_false = current_block();
4856     } else {
4857       cond_false = NULL;
4858     }
4859
4860     HBasicBlock* join = CreateJoin(cond_true, cond_false, stmt->IfId());
4861     set_current_block(join);
4862   }
4863 }
4864
4865
4866 HBasicBlock* HOptimizedGraphBuilder::BreakAndContinueScope::Get(
4867     BreakableStatement* stmt,
4868     BreakType type,
4869     Scope** scope,
4870     int* drop_extra) {
4871   *drop_extra = 0;
4872   BreakAndContinueScope* current = this;
4873   while (current != NULL && current->info()->target() != stmt) {
4874     *drop_extra += current->info()->drop_extra();
4875     current = current->next();
4876   }
4877   DCHECK(current != NULL);  // Always found (unless stack is malformed).
4878   *scope = current->info()->scope();
4879
4880   if (type == BREAK) {
4881     *drop_extra += current->info()->drop_extra();
4882   }
4883
4884   HBasicBlock* block = NULL;
4885   switch (type) {
4886     case BREAK:
4887       block = current->info()->break_block();
4888       if (block == NULL) {
4889         block = current->owner()->graph()->CreateBasicBlock();
4890         current->info()->set_break_block(block);
4891       }
4892       break;
4893
4894     case CONTINUE:
4895       block = current->info()->continue_block();
4896       if (block == NULL) {
4897         block = current->owner()->graph()->CreateBasicBlock();
4898         current->info()->set_continue_block(block);
4899       }
4900       break;
4901   }
4902
4903   return block;
4904 }
4905
4906
4907 void HOptimizedGraphBuilder::VisitContinueStatement(
4908     ContinueStatement* stmt) {
4909   DCHECK(!HasStackOverflow());
4910   DCHECK(current_block() != NULL);
4911   DCHECK(current_block()->HasPredecessor());
4912   Scope* outer_scope = NULL;
4913   Scope* inner_scope = scope();
4914   int drop_extra = 0;
4915   HBasicBlock* continue_block = break_scope()->Get(
4916       stmt->target(), BreakAndContinueScope::CONTINUE,
4917       &outer_scope, &drop_extra);
4918   HValue* context = environment()->context();
4919   Drop(drop_extra);
4920   int context_pop_count = inner_scope->ContextChainLength(outer_scope);
4921   if (context_pop_count > 0) {
4922     while (context_pop_count-- > 0) {
4923       HInstruction* context_instruction = Add<HLoadNamedField>(
4924           context, nullptr,
4925           HObjectAccess::ForContextSlot(Context::PREVIOUS_INDEX));
4926       context = context_instruction;
4927     }
4928     HInstruction* instr = Add<HStoreFrameContext>(context);
4929     if (instr->HasObservableSideEffects()) {
4930       AddSimulate(stmt->target()->EntryId(), REMOVABLE_SIMULATE);
4931     }
4932     environment()->BindContext(context);
4933   }
4934
4935   Goto(continue_block);
4936   set_current_block(NULL);
4937 }
4938
4939
4940 void HOptimizedGraphBuilder::VisitBreakStatement(BreakStatement* stmt) {
4941   DCHECK(!HasStackOverflow());
4942   DCHECK(current_block() != NULL);
4943   DCHECK(current_block()->HasPredecessor());
4944   Scope* outer_scope = NULL;
4945   Scope* inner_scope = scope();
4946   int drop_extra = 0;
4947   HBasicBlock* break_block = break_scope()->Get(
4948       stmt->target(), BreakAndContinueScope::BREAK,
4949       &outer_scope, &drop_extra);
4950   HValue* context = environment()->context();
4951   Drop(drop_extra);
4952   int context_pop_count = inner_scope->ContextChainLength(outer_scope);
4953   if (context_pop_count > 0) {
4954     while (context_pop_count-- > 0) {
4955       HInstruction* context_instruction = Add<HLoadNamedField>(
4956           context, nullptr,
4957           HObjectAccess::ForContextSlot(Context::PREVIOUS_INDEX));
4958       context = context_instruction;
4959     }
4960     HInstruction* instr = Add<HStoreFrameContext>(context);
4961     if (instr->HasObservableSideEffects()) {
4962       AddSimulate(stmt->target()->ExitId(), REMOVABLE_SIMULATE);
4963     }
4964     environment()->BindContext(context);
4965   }
4966   Goto(break_block);
4967   set_current_block(NULL);
4968 }
4969
4970
4971 void HOptimizedGraphBuilder::VisitReturnStatement(ReturnStatement* stmt) {
4972   DCHECK(!HasStackOverflow());
4973   DCHECK(current_block() != NULL);
4974   DCHECK(current_block()->HasPredecessor());
4975   FunctionState* state = function_state();
4976   AstContext* context = call_context();
4977   if (context == NULL) {
4978     // Not an inlined return, so an actual one.
4979     CHECK_ALIVE(VisitForValue(stmt->expression()));
4980     HValue* result = environment()->Pop();
4981     Add<HReturn>(result);
4982   } else if (state->inlining_kind() == CONSTRUCT_CALL_RETURN) {
4983     // Return from an inlined construct call. In a test context the return value
4984     // will always evaluate to true, in a value context the return value needs
4985     // to be a JSObject.
4986     if (context->IsTest()) {
4987       TestContext* test = TestContext::cast(context);
4988       CHECK_ALIVE(VisitForEffect(stmt->expression()));
4989       Goto(test->if_true(), state);
4990     } else if (context->IsEffect()) {
4991       CHECK_ALIVE(VisitForEffect(stmt->expression()));
4992       Goto(function_return(), state);
4993     } else {
4994       DCHECK(context->IsValue());
4995       CHECK_ALIVE(VisitForValue(stmt->expression()));
4996       HValue* return_value = Pop();
4997       HValue* receiver = environment()->arguments_environment()->Lookup(0);
4998       HHasInstanceTypeAndBranch* typecheck =
4999           New<HHasInstanceTypeAndBranch>(return_value,
5000                                          FIRST_SPEC_OBJECT_TYPE,
5001                                          LAST_SPEC_OBJECT_TYPE);
5002       HBasicBlock* if_spec_object = graph()->CreateBasicBlock();
5003       HBasicBlock* not_spec_object = graph()->CreateBasicBlock();
5004       typecheck->SetSuccessorAt(0, if_spec_object);
5005       typecheck->SetSuccessorAt(1, not_spec_object);
5006       FinishCurrentBlock(typecheck);
5007       AddLeaveInlined(if_spec_object, return_value, state);
5008       AddLeaveInlined(not_spec_object, receiver, state);
5009     }
5010   } else if (state->inlining_kind() == SETTER_CALL_RETURN) {
5011     // Return from an inlined setter call. The returned value is never used, the
5012     // value of an assignment is always the value of the RHS of the assignment.
5013     CHECK_ALIVE(VisitForEffect(stmt->expression()));
5014     if (context->IsTest()) {
5015       HValue* rhs = environment()->arguments_environment()->Lookup(1);
5016       context->ReturnValue(rhs);
5017     } else if (context->IsEffect()) {
5018       Goto(function_return(), state);
5019     } else {
5020       DCHECK(context->IsValue());
5021       HValue* rhs = environment()->arguments_environment()->Lookup(1);
5022       AddLeaveInlined(rhs, state);
5023     }
5024   } else {
5025     // Return from a normal inlined function. Visit the subexpression in the
5026     // expression context of the call.
5027     if (context->IsTest()) {
5028       TestContext* test = TestContext::cast(context);
5029       VisitForControl(stmt->expression(), test->if_true(), test->if_false());
5030     } else if (context->IsEffect()) {
5031       // Visit in value context and ignore the result. This is needed to keep
5032       // environment in sync with full-codegen since some visitors (e.g.
5033       // VisitCountOperation) use the operand stack differently depending on
5034       // context.
5035       CHECK_ALIVE(VisitForValue(stmt->expression()));
5036       Pop();
5037       Goto(function_return(), state);
5038     } else {
5039       DCHECK(context->IsValue());
5040       CHECK_ALIVE(VisitForValue(stmt->expression()));
5041       AddLeaveInlined(Pop(), state);
5042     }
5043   }
5044   set_current_block(NULL);
5045 }
5046
5047
5048 void HOptimizedGraphBuilder::VisitWithStatement(WithStatement* stmt) {
5049   DCHECK(!HasStackOverflow());
5050   DCHECK(current_block() != NULL);
5051   DCHECK(current_block()->HasPredecessor());
5052   return Bailout(kWithStatement);
5053 }
5054
5055
5056 void HOptimizedGraphBuilder::VisitSwitchStatement(SwitchStatement* stmt) {
5057   DCHECK(!HasStackOverflow());
5058   DCHECK(current_block() != NULL);
5059   DCHECK(current_block()->HasPredecessor());
5060
5061   ZoneList<CaseClause*>* clauses = stmt->cases();
5062   int clause_count = clauses->length();
5063   ZoneList<HBasicBlock*> body_blocks(clause_count, zone());
5064
5065   CHECK_ALIVE(VisitForValue(stmt->tag()));
5066   Add<HSimulate>(stmt->EntryId());
5067   HValue* tag_value = Top();
5068   Type* tag_type = stmt->tag()->bounds().lower;
5069
5070   // 1. Build all the tests, with dangling true branches
5071   BailoutId default_id = BailoutId::None();
5072   for (int i = 0; i < clause_count; ++i) {
5073     CaseClause* clause = clauses->at(i);
5074     if (clause->is_default()) {
5075       body_blocks.Add(NULL, zone());
5076       if (default_id.IsNone()) default_id = clause->EntryId();
5077       continue;
5078     }
5079
5080     // Generate a compare and branch.
5081     CHECK_ALIVE(VisitForValue(clause->label()));
5082     HValue* label_value = Pop();
5083
5084     Type* label_type = clause->label()->bounds().lower;
5085     Type* combined_type = clause->compare_type();
5086     HControlInstruction* compare = BuildCompareInstruction(
5087         Token::EQ_STRICT, tag_value, label_value, tag_type, label_type,
5088         combined_type,
5089         ScriptPositionToSourcePosition(stmt->tag()->position()),
5090         ScriptPositionToSourcePosition(clause->label()->position()),
5091         PUSH_BEFORE_SIMULATE, clause->id());
5092
5093     HBasicBlock* next_test_block = graph()->CreateBasicBlock();
5094     HBasicBlock* body_block = graph()->CreateBasicBlock();
5095     body_blocks.Add(body_block, zone());
5096     compare->SetSuccessorAt(0, body_block);
5097     compare->SetSuccessorAt(1, next_test_block);
5098     FinishCurrentBlock(compare);
5099
5100     set_current_block(body_block);
5101     Drop(1);  // tag_value
5102
5103     set_current_block(next_test_block);
5104   }
5105
5106   // Save the current block to use for the default or to join with the
5107   // exit.
5108   HBasicBlock* last_block = current_block();
5109   Drop(1);  // tag_value
5110
5111   // 2. Loop over the clauses and the linked list of tests in lockstep,
5112   // translating the clause bodies.
5113   HBasicBlock* fall_through_block = NULL;
5114
5115   BreakAndContinueInfo break_info(stmt, scope());
5116   { BreakAndContinueScope push(&break_info, this);
5117     for (int i = 0; i < clause_count; ++i) {
5118       CaseClause* clause = clauses->at(i);
5119
5120       // Identify the block where normal (non-fall-through) control flow
5121       // goes to.
5122       HBasicBlock* normal_block = NULL;
5123       if (clause->is_default()) {
5124         if (last_block == NULL) continue;
5125         normal_block = last_block;
5126         last_block = NULL;  // Cleared to indicate we've handled it.
5127       } else {
5128         normal_block = body_blocks[i];
5129       }
5130
5131       if (fall_through_block == NULL) {
5132         set_current_block(normal_block);
5133       } else {
5134         HBasicBlock* join = CreateJoin(fall_through_block,
5135                                        normal_block,
5136                                        clause->EntryId());
5137         set_current_block(join);
5138       }
5139
5140       CHECK_BAILOUT(VisitStatements(clause->statements()));
5141       fall_through_block = current_block();
5142     }
5143   }
5144
5145   // Create an up-to-3-way join.  Use the break block if it exists since
5146   // it's already a join block.
5147   HBasicBlock* break_block = break_info.break_block();
5148   if (break_block == NULL) {
5149     set_current_block(CreateJoin(fall_through_block,
5150                                  last_block,
5151                                  stmt->ExitId()));
5152   } else {
5153     if (fall_through_block != NULL) Goto(fall_through_block, break_block);
5154     if (last_block != NULL) Goto(last_block, break_block);
5155     break_block->SetJoinId(stmt->ExitId());
5156     set_current_block(break_block);
5157   }
5158 }
5159
5160
5161 void HOptimizedGraphBuilder::VisitLoopBody(IterationStatement* stmt,
5162                                            HBasicBlock* loop_entry) {
5163   Add<HSimulate>(stmt->StackCheckId());
5164   HStackCheck* stack_check =
5165       HStackCheck::cast(Add<HStackCheck>(HStackCheck::kBackwardsBranch));
5166   DCHECK(loop_entry->IsLoopHeader());
5167   loop_entry->loop_information()->set_stack_check(stack_check);
5168   CHECK_BAILOUT(Visit(stmt->body()));
5169 }
5170
5171
5172 void HOptimizedGraphBuilder::VisitDoWhileStatement(DoWhileStatement* stmt) {
5173   DCHECK(!HasStackOverflow());
5174   DCHECK(current_block() != NULL);
5175   DCHECK(current_block()->HasPredecessor());
5176   DCHECK(current_block() != NULL);
5177   HBasicBlock* loop_entry = BuildLoopEntry(stmt);
5178
5179   BreakAndContinueInfo break_info(stmt, scope());
5180   {
5181     BreakAndContinueScope push(&break_info, this);
5182     CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry));
5183   }
5184   HBasicBlock* body_exit =
5185       JoinContinue(stmt, current_block(), break_info.continue_block());
5186   HBasicBlock* loop_successor = NULL;
5187   if (body_exit != NULL && !stmt->cond()->ToBooleanIsTrue()) {
5188     set_current_block(body_exit);
5189     loop_successor = graph()->CreateBasicBlock();
5190     if (stmt->cond()->ToBooleanIsFalse()) {
5191       loop_entry->loop_information()->stack_check()->Eliminate();
5192       Goto(loop_successor);
5193       body_exit = NULL;
5194     } else {
5195       // The block for a true condition, the actual predecessor block of the
5196       // back edge.
5197       body_exit = graph()->CreateBasicBlock();
5198       CHECK_BAILOUT(VisitForControl(stmt->cond(), body_exit, loop_successor));
5199     }
5200     if (body_exit != NULL && body_exit->HasPredecessor()) {
5201       body_exit->SetJoinId(stmt->BackEdgeId());
5202     } else {
5203       body_exit = NULL;
5204     }
5205     if (loop_successor->HasPredecessor()) {
5206       loop_successor->SetJoinId(stmt->ExitId());
5207     } else {
5208       loop_successor = NULL;
5209     }
5210   }
5211   HBasicBlock* loop_exit = CreateLoop(stmt,
5212                                       loop_entry,
5213                                       body_exit,
5214                                       loop_successor,
5215                                       break_info.break_block());
5216   set_current_block(loop_exit);
5217 }
5218
5219
5220 void HOptimizedGraphBuilder::VisitWhileStatement(WhileStatement* stmt) {
5221   DCHECK(!HasStackOverflow());
5222   DCHECK(current_block() != NULL);
5223   DCHECK(current_block()->HasPredecessor());
5224   DCHECK(current_block() != NULL);
5225   HBasicBlock* loop_entry = BuildLoopEntry(stmt);
5226
5227   // If the condition is constant true, do not generate a branch.
5228   HBasicBlock* loop_successor = NULL;
5229   if (!stmt->cond()->ToBooleanIsTrue()) {
5230     HBasicBlock* body_entry = graph()->CreateBasicBlock();
5231     loop_successor = graph()->CreateBasicBlock();
5232     CHECK_BAILOUT(VisitForControl(stmt->cond(), body_entry, loop_successor));
5233     if (body_entry->HasPredecessor()) {
5234       body_entry->SetJoinId(stmt->BodyId());
5235       set_current_block(body_entry);
5236     }
5237     if (loop_successor->HasPredecessor()) {
5238       loop_successor->SetJoinId(stmt->ExitId());
5239     } else {
5240       loop_successor = NULL;
5241     }
5242   }
5243
5244   BreakAndContinueInfo break_info(stmt, scope());
5245   if (current_block() != NULL) {
5246     BreakAndContinueScope push(&break_info, this);
5247     CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry));
5248   }
5249   HBasicBlock* body_exit =
5250       JoinContinue(stmt, current_block(), break_info.continue_block());
5251   HBasicBlock* loop_exit = CreateLoop(stmt,
5252                                       loop_entry,
5253                                       body_exit,
5254                                       loop_successor,
5255                                       break_info.break_block());
5256   set_current_block(loop_exit);
5257 }
5258
5259
5260 void HOptimizedGraphBuilder::VisitForStatement(ForStatement* stmt) {
5261   DCHECK(!HasStackOverflow());
5262   DCHECK(current_block() != NULL);
5263   DCHECK(current_block()->HasPredecessor());
5264   if (stmt->init() != NULL) {
5265     CHECK_ALIVE(Visit(stmt->init()));
5266   }
5267   DCHECK(current_block() != NULL);
5268   HBasicBlock* loop_entry = BuildLoopEntry(stmt);
5269
5270   HBasicBlock* loop_successor = NULL;
5271   if (stmt->cond() != NULL) {
5272     HBasicBlock* body_entry = graph()->CreateBasicBlock();
5273     loop_successor = graph()->CreateBasicBlock();
5274     CHECK_BAILOUT(VisitForControl(stmt->cond(), body_entry, loop_successor));
5275     if (body_entry->HasPredecessor()) {
5276       body_entry->SetJoinId(stmt->BodyId());
5277       set_current_block(body_entry);
5278     }
5279     if (loop_successor->HasPredecessor()) {
5280       loop_successor->SetJoinId(stmt->ExitId());
5281     } else {
5282       loop_successor = NULL;
5283     }
5284   }
5285
5286   BreakAndContinueInfo break_info(stmt, scope());
5287   if (current_block() != NULL) {
5288     BreakAndContinueScope push(&break_info, this);
5289     CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry));
5290   }
5291   HBasicBlock* body_exit =
5292       JoinContinue(stmt, current_block(), break_info.continue_block());
5293
5294   if (stmt->next() != NULL && body_exit != NULL) {
5295     set_current_block(body_exit);
5296     CHECK_BAILOUT(Visit(stmt->next()));
5297     body_exit = current_block();
5298   }
5299
5300   HBasicBlock* loop_exit = CreateLoop(stmt,
5301                                       loop_entry,
5302                                       body_exit,
5303                                       loop_successor,
5304                                       break_info.break_block());
5305   set_current_block(loop_exit);
5306 }
5307
5308
5309 void HOptimizedGraphBuilder::VisitForInStatement(ForInStatement* stmt) {
5310   DCHECK(!HasStackOverflow());
5311   DCHECK(current_block() != NULL);
5312   DCHECK(current_block()->HasPredecessor());
5313
5314   if (!FLAG_optimize_for_in) {
5315     return Bailout(kForInStatementOptimizationIsDisabled);
5316   }
5317
5318   if (!stmt->each()->IsVariableProxy() ||
5319       !stmt->each()->AsVariableProxy()->var()->IsStackLocal()) {
5320     return Bailout(kForInStatementWithNonLocalEachVariable);
5321   }
5322
5323   Variable* each_var = stmt->each()->AsVariableProxy()->var();
5324
5325   CHECK_ALIVE(VisitForValue(stmt->enumerable()));
5326   HValue* enumerable = Top();  // Leave enumerable at the top.
5327
5328   IfBuilder if_undefined_or_null(this);
5329   if_undefined_or_null.If<HCompareObjectEqAndBranch>(
5330       enumerable, graph()->GetConstantUndefined());
5331   if_undefined_or_null.Or();
5332   if_undefined_or_null.If<HCompareObjectEqAndBranch>(
5333       enumerable, graph()->GetConstantNull());
5334   if_undefined_or_null.ThenDeopt(Deoptimizer::kUndefinedOrNullInForIn);
5335   if_undefined_or_null.End();
5336   BuildForInBody(stmt, each_var, enumerable);
5337 }
5338
5339
5340 void HOptimizedGraphBuilder::BuildForInBody(ForInStatement* stmt,
5341                                             Variable* each_var,
5342                                             HValue* enumerable) {
5343   HInstruction* map;
5344   HInstruction* array;
5345   HInstruction* enum_length;
5346   bool fast = stmt->for_in_type() == ForInStatement::FAST_FOR_IN;
5347   if (fast) {
5348     map = Add<HForInPrepareMap>(enumerable);
5349     Add<HSimulate>(stmt->PrepareId());
5350
5351     array = Add<HForInCacheArray>(enumerable, map,
5352                                   DescriptorArray::kEnumCacheBridgeCacheIndex);
5353     enum_length = Add<HMapEnumLength>(map);
5354
5355     HInstruction* index_cache = Add<HForInCacheArray>(
5356         enumerable, map, DescriptorArray::kEnumCacheBridgeIndicesCacheIndex);
5357     HForInCacheArray::cast(array)
5358         ->set_index_cache(HForInCacheArray::cast(index_cache));
5359   } else {
5360     Add<HSimulate>(stmt->PrepareId());
5361     {
5362       NoObservableSideEffectsScope no_effects(this);
5363       BuildJSObjectCheck(enumerable, 0);
5364     }
5365     Add<HSimulate>(stmt->ToObjectId());
5366
5367     map = graph()->GetConstant1();
5368     Runtime::FunctionId function_id = Runtime::kGetPropertyNamesFast;
5369     Add<HPushArguments>(enumerable);
5370     array = Add<HCallRuntime>(isolate()->factory()->empty_string(),
5371                               Runtime::FunctionForId(function_id), 1);
5372     Push(array);
5373     Add<HSimulate>(stmt->EnumId());
5374     Drop(1);
5375     Handle<Map> array_map = isolate()->factory()->fixed_array_map();
5376     HValue* check = Add<HCheckMaps>(array, array_map);
5377     enum_length = AddLoadFixedArrayLength(array, check);
5378   }
5379
5380   HInstruction* start_index = Add<HConstant>(0);
5381
5382   Push(map);
5383   Push(array);
5384   Push(enum_length);
5385   Push(start_index);
5386
5387   HBasicBlock* loop_entry = BuildLoopEntry(stmt);
5388
5389   // Reload the values to ensure we have up-to-date values inside of the loop.
5390   // This is relevant especially for OSR where the values don't come from the
5391   // computation above, but from the OSR entry block.
5392   enumerable = environment()->ExpressionStackAt(4);
5393   HValue* index = environment()->ExpressionStackAt(0);
5394   HValue* limit = environment()->ExpressionStackAt(1);
5395
5396   // Check that we still have more keys.
5397   HCompareNumericAndBranch* compare_index =
5398       New<HCompareNumericAndBranch>(index, limit, Token::LT);
5399   compare_index->set_observed_input_representation(
5400       Representation::Smi(), Representation::Smi());
5401
5402   HBasicBlock* loop_body = graph()->CreateBasicBlock();
5403   HBasicBlock* loop_successor = graph()->CreateBasicBlock();
5404
5405   compare_index->SetSuccessorAt(0, loop_body);
5406   compare_index->SetSuccessorAt(1, loop_successor);
5407   FinishCurrentBlock(compare_index);
5408
5409   set_current_block(loop_successor);
5410   Drop(5);
5411
5412   set_current_block(loop_body);
5413
5414   HValue* key =
5415       Add<HLoadKeyed>(environment()->ExpressionStackAt(2),  // Enum cache.
5416                       index, index, FAST_ELEMENTS);
5417
5418   if (fast) {
5419     // Check if the expected map still matches that of the enumerable.
5420     // If not just deoptimize.
5421     Add<HCheckMapValue>(enumerable, environment()->ExpressionStackAt(3));
5422     Bind(each_var, key);
5423   } else {
5424     Add<HPushArguments>(enumerable, key);
5425     Runtime::FunctionId function_id = Runtime::kForInFilter;
5426     key = Add<HCallRuntime>(isolate()->factory()->empty_string(),
5427                             Runtime::FunctionForId(function_id), 2);
5428     Push(key);
5429     Add<HSimulate>(stmt->FilterId());
5430     key = Pop();
5431     Bind(each_var, key);
5432     IfBuilder if_undefined(this);
5433     if_undefined.If<HCompareObjectEqAndBranch>(key,
5434                                                graph()->GetConstantUndefined());
5435     if_undefined.ThenDeopt(Deoptimizer::kUndefined);
5436     if_undefined.End();
5437     Add<HSimulate>(stmt->AssignmentId());
5438   }
5439
5440   BreakAndContinueInfo break_info(stmt, scope(), 5);
5441   {
5442     BreakAndContinueScope push(&break_info, this);
5443     CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry));
5444   }
5445
5446   HBasicBlock* body_exit =
5447       JoinContinue(stmt, current_block(), break_info.continue_block());
5448
5449   if (body_exit != NULL) {
5450     set_current_block(body_exit);
5451
5452     HValue* current_index = Pop();
5453     Push(AddUncasted<HAdd>(current_index, graph()->GetConstant1()));
5454     body_exit = current_block();
5455   }
5456
5457   HBasicBlock* loop_exit = CreateLoop(stmt,
5458                                       loop_entry,
5459                                       body_exit,
5460                                       loop_successor,
5461                                       break_info.break_block());
5462
5463   set_current_block(loop_exit);
5464 }
5465
5466
5467 void HOptimizedGraphBuilder::VisitForOfStatement(ForOfStatement* stmt) {
5468   DCHECK(!HasStackOverflow());
5469   DCHECK(current_block() != NULL);
5470   DCHECK(current_block()->HasPredecessor());
5471   return Bailout(kForOfStatement);
5472 }
5473
5474
5475 void HOptimizedGraphBuilder::VisitTryCatchStatement(TryCatchStatement* stmt) {
5476   DCHECK(!HasStackOverflow());
5477   DCHECK(current_block() != NULL);
5478   DCHECK(current_block()->HasPredecessor());
5479   return Bailout(kTryCatchStatement);
5480 }
5481
5482
5483 void HOptimizedGraphBuilder::VisitTryFinallyStatement(
5484     TryFinallyStatement* stmt) {
5485   DCHECK(!HasStackOverflow());
5486   DCHECK(current_block() != NULL);
5487   DCHECK(current_block()->HasPredecessor());
5488   return Bailout(kTryFinallyStatement);
5489 }
5490
5491
5492 void HOptimizedGraphBuilder::VisitDebuggerStatement(DebuggerStatement* stmt) {
5493   DCHECK(!HasStackOverflow());
5494   DCHECK(current_block() != NULL);
5495   DCHECK(current_block()->HasPredecessor());
5496   return Bailout(kDebuggerStatement);
5497 }
5498
5499
5500 void HOptimizedGraphBuilder::VisitCaseClause(CaseClause* clause) {
5501   UNREACHABLE();
5502 }
5503
5504
5505 void HOptimizedGraphBuilder::VisitFunctionLiteral(FunctionLiteral* expr) {
5506   DCHECK(!HasStackOverflow());
5507   DCHECK(current_block() != NULL);
5508   DCHECK(current_block()->HasPredecessor());
5509   Handle<SharedFunctionInfo> shared_info = Compiler::GetSharedFunctionInfo(
5510       expr, current_info()->script(), top_info());
5511   // We also have a stack overflow if the recursive compilation did.
5512   if (HasStackOverflow()) return;
5513   HFunctionLiteral* instr =
5514       New<HFunctionLiteral>(shared_info, expr->pretenure());
5515   return ast_context()->ReturnInstruction(instr, expr->id());
5516 }
5517
5518
5519 void HOptimizedGraphBuilder::VisitClassLiteral(ClassLiteral* lit) {
5520   DCHECK(!HasStackOverflow());
5521   DCHECK(current_block() != NULL);
5522   DCHECK(current_block()->HasPredecessor());
5523   return Bailout(kClassLiteral);
5524 }
5525
5526
5527 void HOptimizedGraphBuilder::VisitNativeFunctionLiteral(
5528     NativeFunctionLiteral* expr) {
5529   DCHECK(!HasStackOverflow());
5530   DCHECK(current_block() != NULL);
5531   DCHECK(current_block()->HasPredecessor());
5532   return Bailout(kNativeFunctionLiteral);
5533 }
5534
5535
5536 void HOptimizedGraphBuilder::VisitConditional(Conditional* expr) {
5537   DCHECK(!HasStackOverflow());
5538   DCHECK(current_block() != NULL);
5539   DCHECK(current_block()->HasPredecessor());
5540   HBasicBlock* cond_true = graph()->CreateBasicBlock();
5541   HBasicBlock* cond_false = graph()->CreateBasicBlock();
5542   CHECK_BAILOUT(VisitForControl(expr->condition(), cond_true, cond_false));
5543
5544   // Visit the true and false subexpressions in the same AST context as the
5545   // whole expression.
5546   if (cond_true->HasPredecessor()) {
5547     cond_true->SetJoinId(expr->ThenId());
5548     set_current_block(cond_true);
5549     CHECK_BAILOUT(Visit(expr->then_expression()));
5550     cond_true = current_block();
5551   } else {
5552     cond_true = NULL;
5553   }
5554
5555   if (cond_false->HasPredecessor()) {
5556     cond_false->SetJoinId(expr->ElseId());
5557     set_current_block(cond_false);
5558     CHECK_BAILOUT(Visit(expr->else_expression()));
5559     cond_false = current_block();
5560   } else {
5561     cond_false = NULL;
5562   }
5563
5564   if (!ast_context()->IsTest()) {
5565     HBasicBlock* join = CreateJoin(cond_true, cond_false, expr->id());
5566     set_current_block(join);
5567     if (join != NULL && !ast_context()->IsEffect()) {
5568       return ast_context()->ReturnValue(Pop());
5569     }
5570   }
5571 }
5572
5573
5574 HOptimizedGraphBuilder::GlobalPropertyAccess
5575 HOptimizedGraphBuilder::LookupGlobalProperty(Variable* var, LookupIterator* it,
5576                                              PropertyAccessType access_type) {
5577   if (var->is_this() || !current_info()->has_global_object()) {
5578     return kUseGeneric;
5579   }
5580
5581   switch (it->state()) {
5582     case LookupIterator::ACCESSOR:
5583     case LookupIterator::ACCESS_CHECK:
5584     case LookupIterator::INTERCEPTOR:
5585     case LookupIterator::INTEGER_INDEXED_EXOTIC:
5586     case LookupIterator::NOT_FOUND:
5587       return kUseGeneric;
5588     case LookupIterator::DATA:
5589       if (access_type == STORE && it->IsReadOnly()) return kUseGeneric;
5590       return kUseCell;
5591     case LookupIterator::JSPROXY:
5592     case LookupIterator::TRANSITION:
5593       UNREACHABLE();
5594   }
5595   UNREACHABLE();
5596   return kUseGeneric;
5597 }
5598
5599
5600 HValue* HOptimizedGraphBuilder::BuildContextChainWalk(Variable* var) {
5601   DCHECK(var->IsContextSlot());
5602   HValue* context = environment()->context();
5603   int length = scope()->ContextChainLength(var->scope());
5604   while (length-- > 0) {
5605     context = Add<HLoadNamedField>(
5606         context, nullptr,
5607         HObjectAccess::ForContextSlot(Context::PREVIOUS_INDEX));
5608   }
5609   return context;
5610 }
5611
5612
5613 void HOptimizedGraphBuilder::VisitVariableProxy(VariableProxy* expr) {
5614   DCHECK(!HasStackOverflow());
5615   DCHECK(current_block() != NULL);
5616   DCHECK(current_block()->HasPredecessor());
5617   Variable* variable = expr->var();
5618   switch (variable->location()) {
5619     case VariableLocation::GLOBAL:
5620     case VariableLocation::UNALLOCATED: {
5621       if (IsLexicalVariableMode(variable->mode())) {
5622         // TODO(rossberg): should this be an DCHECK?
5623         return Bailout(kReferenceToGlobalLexicalVariable);
5624       }
5625       // Handle known global constants like 'undefined' specially to avoid a
5626       // load from a global cell for them.
5627       Handle<Object> constant_value =
5628           isolate()->factory()->GlobalConstantFor(variable->name());
5629       if (!constant_value.is_null()) {
5630         HConstant* instr = New<HConstant>(constant_value);
5631         return ast_context()->ReturnInstruction(instr, expr->id());
5632       }
5633
5634       Handle<GlobalObject> global(current_info()->global_object());
5635
5636       // Lookup in script contexts.
5637       {
5638         Handle<ScriptContextTable> script_contexts(
5639             global->native_context()->script_context_table());
5640         ScriptContextTable::LookupResult lookup;
5641         if (ScriptContextTable::Lookup(script_contexts, variable->name(),
5642                                        &lookup)) {
5643           Handle<Context> script_context = ScriptContextTable::GetContext(
5644               script_contexts, lookup.context_index);
5645           Handle<Object> current_value =
5646               FixedArray::get(script_context, lookup.slot_index);
5647
5648           // If the values is not the hole, it will stay initialized,
5649           // so no need to generate a check.
5650           if (*current_value == *isolate()->factory()->the_hole_value()) {
5651             return Bailout(kReferenceToUninitializedVariable);
5652           }
5653           HInstruction* result = New<HLoadNamedField>(
5654               Add<HConstant>(script_context), nullptr,
5655               HObjectAccess::ForContextSlot(lookup.slot_index));
5656           return ast_context()->ReturnInstruction(result, expr->id());
5657         }
5658       }
5659
5660       LookupIterator it(global, variable->name(), LookupIterator::OWN);
5661       GlobalPropertyAccess type = LookupGlobalProperty(variable, &it, LOAD);
5662
5663       if (type == kUseCell) {
5664         Handle<PropertyCell> cell = it.GetPropertyCell();
5665         top_info()->dependencies()->AssumePropertyCell(cell);
5666         auto cell_type = it.property_details().cell_type();
5667         if (cell_type == PropertyCellType::kConstant ||
5668             cell_type == PropertyCellType::kUndefined) {
5669           Handle<Object> constant_object(cell->value(), isolate());
5670           if (constant_object->IsConsString()) {
5671             constant_object =
5672                 String::Flatten(Handle<String>::cast(constant_object));
5673           }
5674           HConstant* constant = New<HConstant>(constant_object);
5675           return ast_context()->ReturnInstruction(constant, expr->id());
5676         } else {
5677           auto access = HObjectAccess::ForPropertyCellValue();
5678           UniqueSet<Map>* field_maps = nullptr;
5679           if (cell_type == PropertyCellType::kConstantType) {
5680             switch (cell->GetConstantType()) {
5681               case PropertyCellConstantType::kSmi:
5682                 access = access.WithRepresentation(Representation::Smi());
5683                 break;
5684               case PropertyCellConstantType::kStableMap: {
5685                 // Check that the map really is stable. The heap object could
5686                 // have mutated without the cell updating state. In that case,
5687                 // make no promises about the loaded value except that it's a
5688                 // heap object.
5689                 access =
5690                     access.WithRepresentation(Representation::HeapObject());
5691                 Handle<Map> map(HeapObject::cast(cell->value())->map());
5692                 if (map->is_stable()) {
5693                   field_maps = new (zone())
5694                       UniqueSet<Map>(Unique<Map>::CreateImmovable(map), zone());
5695                 }
5696                 break;
5697               }
5698             }
5699           }
5700           HConstant* cell_constant = Add<HConstant>(cell);
5701           HLoadNamedField* instr;
5702           if (field_maps == nullptr) {
5703             instr = New<HLoadNamedField>(cell_constant, nullptr, access);
5704           } else {
5705             instr = New<HLoadNamedField>(cell_constant, nullptr, access,
5706                                          field_maps, HType::HeapObject());
5707           }
5708           instr->ClearDependsOnFlag(kInobjectFields);
5709           instr->SetDependsOnFlag(kGlobalVars);
5710           return ast_context()->ReturnInstruction(instr, expr->id());
5711         }
5712       } else if (variable->IsGlobalSlot()) {
5713         DCHECK(variable->index() > 0);
5714         DCHECK(variable->IsStaticGlobalObjectProperty());
5715         int slot_index = variable->index();
5716         int depth = scope()->ContextChainLength(variable->scope());
5717
5718         HLoadGlobalViaContext* instr =
5719             New<HLoadGlobalViaContext>(depth, slot_index);
5720         return ast_context()->ReturnInstruction(instr, expr->id());
5721
5722       } else {
5723         HValue* global_object = Add<HLoadNamedField>(
5724             context(), nullptr,
5725             HObjectAccess::ForContextSlot(Context::GLOBAL_OBJECT_INDEX));
5726         HLoadGlobalGeneric* instr = New<HLoadGlobalGeneric>(
5727             global_object, variable->name(), ast_context()->typeof_mode());
5728         instr->SetVectorAndSlot(handle(current_feedback_vector(), isolate()),
5729                                 expr->VariableFeedbackSlot());
5730         return ast_context()->ReturnInstruction(instr, expr->id());
5731       }
5732     }
5733
5734     case VariableLocation::PARAMETER:
5735     case VariableLocation::LOCAL: {
5736       HValue* value = LookupAndMakeLive(variable);
5737       if (value == graph()->GetConstantHole()) {
5738         DCHECK(IsDeclaredVariableMode(variable->mode()) &&
5739                variable->mode() != VAR);
5740         return Bailout(kReferenceToUninitializedVariable);
5741       }
5742       return ast_context()->ReturnValue(value);
5743     }
5744
5745     case VariableLocation::CONTEXT: {
5746       HValue* context = BuildContextChainWalk(variable);
5747       HLoadContextSlot::Mode mode;
5748       switch (variable->mode()) {
5749         case LET:
5750         case CONST:
5751           mode = HLoadContextSlot::kCheckDeoptimize;
5752           break;
5753         case CONST_LEGACY:
5754           mode = HLoadContextSlot::kCheckReturnUndefined;
5755           break;
5756         default:
5757           mode = HLoadContextSlot::kNoCheck;
5758           break;
5759       }
5760       HLoadContextSlot* instr =
5761           new(zone()) HLoadContextSlot(context, variable->index(), mode);
5762       return ast_context()->ReturnInstruction(instr, expr->id());
5763     }
5764
5765     case VariableLocation::LOOKUP:
5766       return Bailout(kReferenceToAVariableWhichRequiresDynamicLookup);
5767   }
5768 }
5769
5770
5771 void HOptimizedGraphBuilder::VisitLiteral(Literal* expr) {
5772   DCHECK(!HasStackOverflow());
5773   DCHECK(current_block() != NULL);
5774   DCHECK(current_block()->HasPredecessor());
5775   HConstant* instr = New<HConstant>(expr->value());
5776   return ast_context()->ReturnInstruction(instr, expr->id());
5777 }
5778
5779
5780 void HOptimizedGraphBuilder::VisitRegExpLiteral(RegExpLiteral* expr) {
5781   DCHECK(!HasStackOverflow());
5782   DCHECK(current_block() != NULL);
5783   DCHECK(current_block()->HasPredecessor());
5784   Handle<JSFunction> closure = function_state()->compilation_info()->closure();
5785   Handle<FixedArray> literals(closure->literals());
5786   HRegExpLiteral* instr = New<HRegExpLiteral>(literals,
5787                                               expr->pattern(),
5788                                               expr->flags(),
5789                                               expr->literal_index());
5790   return ast_context()->ReturnInstruction(instr, expr->id());
5791 }
5792
5793
5794 static bool CanInlinePropertyAccess(Handle<Map> map) {
5795   if (map->instance_type() == HEAP_NUMBER_TYPE) return true;
5796   if (map->instance_type() < FIRST_NONSTRING_TYPE) return true;
5797   return map->IsJSObjectMap() && !map->is_dictionary_map() &&
5798          !map->has_named_interceptor() &&
5799          // TODO(verwaest): Whitelist contexts to which we have access.
5800          !map->is_access_check_needed();
5801 }
5802
5803
5804 // Determines whether the given array or object literal boilerplate satisfies
5805 // all limits to be considered for fast deep-copying and computes the total
5806 // size of all objects that are part of the graph.
5807 static bool IsFastLiteral(Handle<JSObject> boilerplate,
5808                           int max_depth,
5809                           int* max_properties) {
5810   if (boilerplate->map()->is_deprecated() &&
5811       !JSObject::TryMigrateInstance(boilerplate)) {
5812     return false;
5813   }
5814
5815   DCHECK(max_depth >= 0 && *max_properties >= 0);
5816   if (max_depth == 0) return false;
5817
5818   Isolate* isolate = boilerplate->GetIsolate();
5819   Handle<FixedArrayBase> elements(boilerplate->elements());
5820   if (elements->length() > 0 &&
5821       elements->map() != isolate->heap()->fixed_cow_array_map()) {
5822     if (boilerplate->HasFastSmiOrObjectElements()) {
5823       Handle<FixedArray> fast_elements = Handle<FixedArray>::cast(elements);
5824       int length = elements->length();
5825       for (int i = 0; i < length; i++) {
5826         if ((*max_properties)-- == 0) return false;
5827         Handle<Object> value(fast_elements->get(i), isolate);
5828         if (value->IsJSObject()) {
5829           Handle<JSObject> value_object = Handle<JSObject>::cast(value);
5830           if (!IsFastLiteral(value_object,
5831                              max_depth - 1,
5832                              max_properties)) {
5833             return false;
5834           }
5835         }
5836       }
5837     } else if (!boilerplate->HasFastDoubleElements()) {
5838       return false;
5839     }
5840   }
5841
5842   Handle<FixedArray> properties(boilerplate->properties());
5843   if (properties->length() > 0) {
5844     return false;
5845   } else {
5846     Handle<DescriptorArray> descriptors(
5847         boilerplate->map()->instance_descriptors());
5848     int limit = boilerplate->map()->NumberOfOwnDescriptors();
5849     for (int i = 0; i < limit; i++) {
5850       PropertyDetails details = descriptors->GetDetails(i);
5851       if (details.type() != DATA) continue;
5852       if ((*max_properties)-- == 0) return false;
5853       FieldIndex field_index = FieldIndex::ForDescriptor(boilerplate->map(), i);
5854       if (boilerplate->IsUnboxedDoubleField(field_index)) continue;
5855       Handle<Object> value(boilerplate->RawFastPropertyAt(field_index),
5856                            isolate);
5857       if (value->IsJSObject()) {
5858         Handle<JSObject> value_object = Handle<JSObject>::cast(value);
5859         if (!IsFastLiteral(value_object,
5860                            max_depth - 1,
5861                            max_properties)) {
5862           return false;
5863         }
5864       }
5865     }
5866   }
5867   return true;
5868 }
5869
5870
5871 void HOptimizedGraphBuilder::VisitObjectLiteral(ObjectLiteral* expr) {
5872   DCHECK(!HasStackOverflow());
5873   DCHECK(current_block() != NULL);
5874   DCHECK(current_block()->HasPredecessor());
5875
5876   Handle<JSFunction> closure = function_state()->compilation_info()->closure();
5877   HInstruction* literal;
5878
5879   // Check whether to use fast or slow deep-copying for boilerplate.
5880   int max_properties = kMaxFastLiteralProperties;
5881   Handle<Object> literals_cell(closure->literals()->get(expr->literal_index()),
5882                                isolate());
5883   Handle<AllocationSite> site;
5884   Handle<JSObject> boilerplate;
5885   if (!literals_cell->IsUndefined()) {
5886     // Retrieve the boilerplate
5887     site = Handle<AllocationSite>::cast(literals_cell);
5888     boilerplate = Handle<JSObject>(JSObject::cast(site->transition_info()),
5889                                    isolate());
5890   }
5891
5892   if (!boilerplate.is_null() &&
5893       IsFastLiteral(boilerplate, kMaxFastLiteralDepth, &max_properties)) {
5894     AllocationSiteUsageContext site_context(isolate(), site, false);
5895     site_context.EnterNewScope();
5896     literal = BuildFastLiteral(boilerplate, &site_context);
5897     site_context.ExitScope(site, boilerplate);
5898   } else {
5899     NoObservableSideEffectsScope no_effects(this);
5900     Handle<FixedArray> closure_literals(closure->literals(), isolate());
5901     Handle<FixedArray> constant_properties = expr->constant_properties();
5902     int literal_index = expr->literal_index();
5903     int flags = expr->ComputeFlags(true);
5904
5905     Add<HPushArguments>(Add<HConstant>(closure_literals),
5906                         Add<HConstant>(literal_index),
5907                         Add<HConstant>(constant_properties),
5908                         Add<HConstant>(flags));
5909
5910     Runtime::FunctionId function_id = Runtime::kCreateObjectLiteral;
5911     literal = Add<HCallRuntime>(isolate()->factory()->empty_string(),
5912                                 Runtime::FunctionForId(function_id),
5913                                 4);
5914   }
5915
5916   // The object is expected in the bailout environment during computation
5917   // of the property values and is the value of the entire expression.
5918   Push(literal);
5919   int store_slot_index = 0;
5920   for (int i = 0; i < expr->properties()->length(); i++) {
5921     ObjectLiteral::Property* property = expr->properties()->at(i);
5922     if (property->is_computed_name()) return Bailout(kComputedPropertyName);
5923     if (property->IsCompileTimeValue()) continue;
5924
5925     Literal* key = property->key()->AsLiteral();
5926     Expression* value = property->value();
5927
5928     switch (property->kind()) {
5929       case ObjectLiteral::Property::MATERIALIZED_LITERAL:
5930         DCHECK(!CompileTimeValue::IsCompileTimeValue(value));
5931         // Fall through.
5932       case ObjectLiteral::Property::COMPUTED:
5933         // It is safe to use [[Put]] here because the boilerplate already
5934         // contains computed properties with an uninitialized value.
5935         if (key->value()->IsInternalizedString()) {
5936           if (property->emit_store()) {
5937             CHECK_ALIVE(VisitForValue(value));
5938             HValue* value = Pop();
5939
5940             Handle<Map> map = property->GetReceiverType();
5941             Handle<String> name = key->AsPropertyName();
5942             HValue* store;
5943             FeedbackVectorICSlot slot = expr->GetNthSlot(store_slot_index++);
5944             if (map.is_null()) {
5945               // If we don't know the monomorphic type, do a generic store.
5946               CHECK_ALIVE(store = BuildNamedGeneric(STORE, NULL, slot, literal,
5947                                                     name, value));
5948             } else {
5949               PropertyAccessInfo info(this, STORE, map, name);
5950               if (info.CanAccessMonomorphic()) {
5951                 HValue* checked_literal = Add<HCheckMaps>(literal, map);
5952                 DCHECK(!info.IsAccessorConstant());
5953                 store = BuildMonomorphicAccess(
5954                     &info, literal, checked_literal, value,
5955                     BailoutId::None(), BailoutId::None());
5956               } else {
5957                 CHECK_ALIVE(store = BuildNamedGeneric(STORE, NULL, slot,
5958                                                       literal, name, value));
5959               }
5960             }
5961             if (store->IsInstruction()) {
5962               AddInstruction(HInstruction::cast(store));
5963             }
5964             DCHECK(store->HasObservableSideEffects());
5965             Add<HSimulate>(key->id(), REMOVABLE_SIMULATE);
5966
5967             // Add [[HomeObject]] to function literals.
5968             if (FunctionLiteral::NeedsHomeObject(property->value())) {
5969               Handle<Symbol> sym = isolate()->factory()->home_object_symbol();
5970               HInstruction* store_home = BuildNamedGeneric(
5971                   STORE, NULL, expr->GetNthSlot(store_slot_index++), value, sym,
5972                   literal);
5973               AddInstruction(store_home);
5974               DCHECK(store_home->HasObservableSideEffects());
5975               Add<HSimulate>(property->value()->id(), REMOVABLE_SIMULATE);
5976             }
5977           } else {
5978             CHECK_ALIVE(VisitForEffect(value));
5979           }
5980           break;
5981         }
5982         // Fall through.
5983       case ObjectLiteral::Property::PROTOTYPE:
5984       case ObjectLiteral::Property::SETTER:
5985       case ObjectLiteral::Property::GETTER:
5986         return Bailout(kObjectLiteralWithComplexProperty);
5987       default: UNREACHABLE();
5988     }
5989   }
5990
5991   // Crankshaft may not consume all the slots because it doesn't emit accessors.
5992   DCHECK(!FLAG_vector_stores || store_slot_index <= expr->slot_count());
5993
5994   if (expr->has_function()) {
5995     // Return the result of the transformation to fast properties
5996     // instead of the original since this operation changes the map
5997     // of the object. This makes sure that the original object won't
5998     // be used by other optimized code before it is transformed
5999     // (e.g. because of code motion).
6000     HToFastProperties* result = Add<HToFastProperties>(Pop());
6001     return ast_context()->ReturnValue(result);
6002   } else {
6003     return ast_context()->ReturnValue(Pop());
6004   }
6005 }
6006
6007
6008 void HOptimizedGraphBuilder::VisitArrayLiteral(ArrayLiteral* expr) {
6009   DCHECK(!HasStackOverflow());
6010   DCHECK(current_block() != NULL);
6011   DCHECK(current_block()->HasPredecessor());
6012   expr->BuildConstantElements(isolate());
6013   ZoneList<Expression*>* subexprs = expr->values();
6014   int length = subexprs->length();
6015   HInstruction* literal;
6016
6017   Handle<AllocationSite> site;
6018   Handle<FixedArray> literals(environment()->closure()->literals(), isolate());
6019   bool uninitialized = false;
6020   Handle<Object> literals_cell(literals->get(expr->literal_index()),
6021                                isolate());
6022   Handle<JSObject> boilerplate_object;
6023   if (literals_cell->IsUndefined()) {
6024     uninitialized = true;
6025     Handle<Object> raw_boilerplate;
6026     ASSIGN_RETURN_ON_EXCEPTION_VALUE(
6027         isolate(), raw_boilerplate,
6028         Runtime::CreateArrayLiteralBoilerplate(
6029             isolate(), literals, expr->constant_elements(),
6030             is_strong(function_language_mode())),
6031         Bailout(kArrayBoilerplateCreationFailed));
6032
6033     boilerplate_object = Handle<JSObject>::cast(raw_boilerplate);
6034     AllocationSiteCreationContext creation_context(isolate());
6035     site = creation_context.EnterNewScope();
6036     if (JSObject::DeepWalk(boilerplate_object, &creation_context).is_null()) {
6037       return Bailout(kArrayBoilerplateCreationFailed);
6038     }
6039     creation_context.ExitScope(site, boilerplate_object);
6040     literals->set(expr->literal_index(), *site);
6041
6042     if (boilerplate_object->elements()->map() ==
6043         isolate()->heap()->fixed_cow_array_map()) {
6044       isolate()->counters()->cow_arrays_created_runtime()->Increment();
6045     }
6046   } else {
6047     DCHECK(literals_cell->IsAllocationSite());
6048     site = Handle<AllocationSite>::cast(literals_cell);
6049     boilerplate_object = Handle<JSObject>(
6050         JSObject::cast(site->transition_info()), isolate());
6051   }
6052
6053   DCHECK(!boilerplate_object.is_null());
6054   DCHECK(site->SitePointsToLiteral());
6055
6056   ElementsKind boilerplate_elements_kind =
6057       boilerplate_object->GetElementsKind();
6058
6059   // Check whether to use fast or slow deep-copying for boilerplate.
6060   int max_properties = kMaxFastLiteralProperties;
6061   if (IsFastLiteral(boilerplate_object,
6062                     kMaxFastLiteralDepth,
6063                     &max_properties)) {
6064     AllocationSiteUsageContext site_context(isolate(), site, false);
6065     site_context.EnterNewScope();
6066     literal = BuildFastLiteral(boilerplate_object, &site_context);
6067     site_context.ExitScope(site, boilerplate_object);
6068   } else {
6069     NoObservableSideEffectsScope no_effects(this);
6070     // Boilerplate already exists and constant elements are never accessed,
6071     // pass an empty fixed array to the runtime function instead.
6072     Handle<FixedArray> constants = isolate()->factory()->empty_fixed_array();
6073     int literal_index = expr->literal_index();
6074     int flags = expr->ComputeFlags(true);
6075
6076     Add<HPushArguments>(Add<HConstant>(literals),
6077                         Add<HConstant>(literal_index),
6078                         Add<HConstant>(constants),
6079                         Add<HConstant>(flags));
6080
6081     Runtime::FunctionId function_id = Runtime::kCreateArrayLiteral;
6082     literal = Add<HCallRuntime>(isolate()->factory()->empty_string(),
6083                                 Runtime::FunctionForId(function_id),
6084                                 4);
6085
6086     // Register to deopt if the boilerplate ElementsKind changes.
6087     top_info()->dependencies()->AssumeTransitionStable(site);
6088   }
6089
6090   // The array is expected in the bailout environment during computation
6091   // of the property values and is the value of the entire expression.
6092   Push(literal);
6093   // The literal index is on the stack, too.
6094   Push(Add<HConstant>(expr->literal_index()));
6095
6096   HInstruction* elements = NULL;
6097
6098   for (int i = 0; i < length; i++) {
6099     Expression* subexpr = subexprs->at(i);
6100     if (subexpr->IsSpread()) {
6101       return Bailout(kSpread);
6102     }
6103
6104     // If the subexpression is a literal or a simple materialized literal it
6105     // is already set in the cloned array.
6106     if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
6107
6108     CHECK_ALIVE(VisitForValue(subexpr));
6109     HValue* value = Pop();
6110     if (!Smi::IsValid(i)) return Bailout(kNonSmiKeyInArrayLiteral);
6111
6112     elements = AddLoadElements(literal);
6113
6114     HValue* key = Add<HConstant>(i);
6115
6116     switch (boilerplate_elements_kind) {
6117       case FAST_SMI_ELEMENTS:
6118       case FAST_HOLEY_SMI_ELEMENTS:
6119       case FAST_ELEMENTS:
6120       case FAST_HOLEY_ELEMENTS:
6121       case FAST_DOUBLE_ELEMENTS:
6122       case FAST_HOLEY_DOUBLE_ELEMENTS: {
6123         HStoreKeyed* instr = Add<HStoreKeyed>(elements, key, value,
6124                                               boilerplate_elements_kind);
6125         instr->SetUninitialized(uninitialized);
6126         break;
6127       }
6128       default:
6129         UNREACHABLE();
6130         break;
6131     }
6132
6133     Add<HSimulate>(expr->GetIdForElement(i));
6134   }
6135
6136   Drop(1);  // array literal index
6137   return ast_context()->ReturnValue(Pop());
6138 }
6139
6140
6141 HCheckMaps* HOptimizedGraphBuilder::AddCheckMap(HValue* object,
6142                                                 Handle<Map> map) {
6143   BuildCheckHeapObject(object);
6144   return Add<HCheckMaps>(object, map);
6145 }
6146
6147
6148 HInstruction* HOptimizedGraphBuilder::BuildLoadNamedField(
6149     PropertyAccessInfo* info,
6150     HValue* checked_object) {
6151   // See if this is a load for an immutable property
6152   if (checked_object->ActualValue()->IsConstant()) {
6153     Handle<Object> object(
6154         HConstant::cast(checked_object->ActualValue())->handle(isolate()));
6155
6156     if (object->IsJSObject()) {
6157       LookupIterator it(object, info->name(),
6158                         LookupIterator::OWN_SKIP_INTERCEPTOR);
6159       Handle<Object> value = JSReceiver::GetDataProperty(&it);
6160       if (it.IsFound() && it.IsReadOnly() && !it.IsConfigurable()) {
6161         return New<HConstant>(value);
6162       }
6163     }
6164   }
6165
6166   HObjectAccess access = info->access();
6167   if (access.representation().IsDouble() &&
6168       (!FLAG_unbox_double_fields || !access.IsInobject())) {
6169     // Load the heap number.
6170     checked_object = Add<HLoadNamedField>(
6171         checked_object, nullptr,
6172         access.WithRepresentation(Representation::Tagged()));
6173     // Load the double value from it.
6174     access = HObjectAccess::ForHeapNumberValue();
6175   }
6176
6177   SmallMapList* map_list = info->field_maps();
6178   if (map_list->length() == 0) {
6179     return New<HLoadNamedField>(checked_object, checked_object, access);
6180   }
6181
6182   UniqueSet<Map>* maps = new(zone()) UniqueSet<Map>(map_list->length(), zone());
6183   for (int i = 0; i < map_list->length(); ++i) {
6184     maps->Add(Unique<Map>::CreateImmovable(map_list->at(i)), zone());
6185   }
6186   return New<HLoadNamedField>(
6187       checked_object, checked_object, access, maps, info->field_type());
6188 }
6189
6190
6191 HInstruction* HOptimizedGraphBuilder::BuildStoreNamedField(
6192     PropertyAccessInfo* info,
6193     HValue* checked_object,
6194     HValue* value) {
6195   bool transition_to_field = info->IsTransition();
6196   // TODO(verwaest): Move this logic into PropertyAccessInfo.
6197   HObjectAccess field_access = info->access();
6198
6199   HStoreNamedField *instr;
6200   if (field_access.representation().IsDouble() &&
6201       (!FLAG_unbox_double_fields || !field_access.IsInobject())) {
6202     HObjectAccess heap_number_access =
6203         field_access.WithRepresentation(Representation::Tagged());
6204     if (transition_to_field) {
6205       // The store requires a mutable HeapNumber to be allocated.
6206       NoObservableSideEffectsScope no_side_effects(this);
6207       HInstruction* heap_number_size = Add<HConstant>(HeapNumber::kSize);
6208
6209       // TODO(hpayer): Allocation site pretenuring support.
6210       HInstruction* heap_number = Add<HAllocate>(heap_number_size,
6211           HType::HeapObject(),
6212           NOT_TENURED,
6213           MUTABLE_HEAP_NUMBER_TYPE);
6214       AddStoreMapConstant(
6215           heap_number, isolate()->factory()->mutable_heap_number_map());
6216       Add<HStoreNamedField>(heap_number, HObjectAccess::ForHeapNumberValue(),
6217                             value);
6218       instr = New<HStoreNamedField>(checked_object->ActualValue(),
6219                                     heap_number_access,
6220                                     heap_number);
6221     } else {
6222       // Already holds a HeapNumber; load the box and write its value field.
6223       HInstruction* heap_number =
6224           Add<HLoadNamedField>(checked_object, nullptr, heap_number_access);
6225       instr = New<HStoreNamedField>(heap_number,
6226                                     HObjectAccess::ForHeapNumberValue(),
6227                                     value, STORE_TO_INITIALIZED_ENTRY);
6228     }
6229   } else {
6230     if (field_access.representation().IsHeapObject()) {
6231       BuildCheckHeapObject(value);
6232     }
6233
6234     if (!info->field_maps()->is_empty()) {
6235       DCHECK(field_access.representation().IsHeapObject());
6236       value = Add<HCheckMaps>(value, info->field_maps());
6237     }
6238
6239     // This is a normal store.
6240     instr = New<HStoreNamedField>(
6241         checked_object->ActualValue(), field_access, value,
6242         transition_to_field ? INITIALIZING_STORE : STORE_TO_INITIALIZED_ENTRY);
6243   }
6244
6245   if (transition_to_field) {
6246     Handle<Map> transition(info->transition());
6247     DCHECK(!transition->is_deprecated());
6248     instr->SetTransition(Add<HConstant>(transition));
6249   }
6250   return instr;
6251 }
6252
6253
6254 bool HOptimizedGraphBuilder::PropertyAccessInfo::IsCompatible(
6255     PropertyAccessInfo* info) {
6256   if (!CanInlinePropertyAccess(map_)) return false;
6257
6258   // Currently only handle Type::Number as a polymorphic case.
6259   // TODO(verwaest): Support monomorphic handling of numbers with a HCheckNumber
6260   // instruction.
6261   if (IsNumberType()) return false;
6262
6263   // Values are only compatible for monomorphic load if they all behave the same
6264   // regarding value wrappers.
6265   if (IsValueWrapped() != info->IsValueWrapped()) return false;
6266
6267   if (!LookupDescriptor()) return false;
6268
6269   if (!IsFound()) {
6270     return (!info->IsFound() || info->has_holder()) &&
6271            map()->prototype() == info->map()->prototype();
6272   }
6273
6274   // Mismatch if the other access info found the property in the prototype
6275   // chain.
6276   if (info->has_holder()) return false;
6277
6278   if (IsAccessorConstant()) {
6279     return accessor_.is_identical_to(info->accessor_) &&
6280         api_holder_.is_identical_to(info->api_holder_);
6281   }
6282
6283   if (IsDataConstant()) {
6284     return constant_.is_identical_to(info->constant_);
6285   }
6286
6287   DCHECK(IsData());
6288   if (!info->IsData()) return false;
6289
6290   Representation r = access_.representation();
6291   if (IsLoad()) {
6292     if (!info->access_.representation().IsCompatibleForLoad(r)) return false;
6293   } else {
6294     if (!info->access_.representation().IsCompatibleForStore(r)) return false;
6295   }
6296   if (info->access_.offset() != access_.offset()) return false;
6297   if (info->access_.IsInobject() != access_.IsInobject()) return false;
6298   if (IsLoad()) {
6299     if (field_maps_.is_empty()) {
6300       info->field_maps_.Clear();
6301     } else if (!info->field_maps_.is_empty()) {
6302       for (int i = 0; i < field_maps_.length(); ++i) {
6303         info->field_maps_.AddMapIfMissing(field_maps_.at(i), info->zone());
6304       }
6305       info->field_maps_.Sort();
6306     }
6307   } else {
6308     // We can only merge stores that agree on their field maps. The comparison
6309     // below is safe, since we keep the field maps sorted.
6310     if (field_maps_.length() != info->field_maps_.length()) return false;
6311     for (int i = 0; i < field_maps_.length(); ++i) {
6312       if (!field_maps_.at(i).is_identical_to(info->field_maps_.at(i))) {
6313         return false;
6314       }
6315     }
6316   }
6317   info->GeneralizeRepresentation(r);
6318   info->field_type_ = info->field_type_.Combine(field_type_);
6319   return true;
6320 }
6321
6322
6323 bool HOptimizedGraphBuilder::PropertyAccessInfo::LookupDescriptor() {
6324   if (!map_->IsJSObjectMap()) return true;
6325   LookupDescriptor(*map_, *name_);
6326   return LoadResult(map_);
6327 }
6328
6329
6330 bool HOptimizedGraphBuilder::PropertyAccessInfo::LoadResult(Handle<Map> map) {
6331   if (!IsLoad() && IsProperty() && IsReadOnly()) {
6332     return false;
6333   }
6334
6335   if (IsData()) {
6336     // Construct the object field access.
6337     int index = GetLocalFieldIndexFromMap(map);
6338     access_ = HObjectAccess::ForField(map, index, representation(), name_);
6339
6340     // Load field map for heap objects.
6341     return LoadFieldMaps(map);
6342   } else if (IsAccessorConstant()) {
6343     Handle<Object> accessors = GetAccessorsFromMap(map);
6344     if (!accessors->IsAccessorPair()) return false;
6345     Object* raw_accessor =
6346         IsLoad() ? Handle<AccessorPair>::cast(accessors)->getter()
6347                  : Handle<AccessorPair>::cast(accessors)->setter();
6348     if (!raw_accessor->IsJSFunction()) return false;
6349     Handle<JSFunction> accessor = handle(JSFunction::cast(raw_accessor));
6350     if (accessor->shared()->IsApiFunction()) {
6351       CallOptimization call_optimization(accessor);
6352       if (call_optimization.is_simple_api_call()) {
6353         CallOptimization::HolderLookup holder_lookup;
6354         api_holder_ =
6355             call_optimization.LookupHolderOfExpectedType(map_, &holder_lookup);
6356       }
6357     }
6358     accessor_ = accessor;
6359   } else if (IsDataConstant()) {
6360     constant_ = GetConstantFromMap(map);
6361   }
6362
6363   return true;
6364 }
6365
6366
6367 bool HOptimizedGraphBuilder::PropertyAccessInfo::LoadFieldMaps(
6368     Handle<Map> map) {
6369   // Clear any previously collected field maps/type.
6370   field_maps_.Clear();
6371   field_type_ = HType::Tagged();
6372
6373   // Figure out the field type from the accessor map.
6374   Handle<HeapType> field_type = GetFieldTypeFromMap(map);
6375
6376   // Collect the (stable) maps from the field type.
6377   int num_field_maps = field_type->NumClasses();
6378   if (num_field_maps > 0) {
6379     DCHECK(access_.representation().IsHeapObject());
6380     field_maps_.Reserve(num_field_maps, zone());
6381     HeapType::Iterator<Map> it = field_type->Classes();
6382     while (!it.Done()) {
6383       Handle<Map> field_map = it.Current();
6384       if (!field_map->is_stable()) {
6385         field_maps_.Clear();
6386         break;
6387       }
6388       field_maps_.Add(field_map, zone());
6389       it.Advance();
6390     }
6391   }
6392
6393   if (field_maps_.is_empty()) {
6394     // Store is not safe if the field map was cleared.
6395     return IsLoad() || !field_type->Is(HeapType::None());
6396   }
6397
6398   field_maps_.Sort();
6399   DCHECK_EQ(num_field_maps, field_maps_.length());
6400
6401   // Determine field HType from field HeapType.
6402   field_type_ = HType::FromType<HeapType>(field_type);
6403   DCHECK(field_type_.IsHeapObject());
6404
6405   // Add dependency on the map that introduced the field.
6406   top_info()->dependencies()->AssumeFieldType(GetFieldOwnerFromMap(map));
6407   return true;
6408 }
6409
6410
6411 bool HOptimizedGraphBuilder::PropertyAccessInfo::LookupInPrototypes() {
6412   Handle<Map> map = this->map();
6413
6414   while (map->prototype()->IsJSObject()) {
6415     holder_ = handle(JSObject::cast(map->prototype()));
6416     if (holder_->map()->is_deprecated()) {
6417       JSObject::TryMigrateInstance(holder_);
6418     }
6419     map = Handle<Map>(holder_->map());
6420     if (!CanInlinePropertyAccess(map)) {
6421       NotFound();
6422       return false;
6423     }
6424     LookupDescriptor(*map, *name_);
6425     if (IsFound()) return LoadResult(map);
6426   }
6427
6428   NotFound();
6429   return !map->prototype()->IsJSReceiver();
6430 }
6431
6432
6433 bool HOptimizedGraphBuilder::PropertyAccessInfo::IsIntegerIndexedExotic() {
6434   InstanceType instance_type = map_->instance_type();
6435   return instance_type == JS_TYPED_ARRAY_TYPE &&
6436          IsSpecialIndex(isolate()->unicode_cache(), *name_);
6437 }
6438
6439
6440 bool HOptimizedGraphBuilder::PropertyAccessInfo::CanAccessMonomorphic() {
6441   if (!CanInlinePropertyAccess(map_)) return false;
6442   if (IsJSObjectFieldAccessor()) return IsLoad();
6443   if (IsJSArrayBufferViewFieldAccessor()) return IsLoad();
6444   if (map_->function_with_prototype() && !map_->has_non_instance_prototype() &&
6445       name_.is_identical_to(isolate()->factory()->prototype_string())) {
6446     return IsLoad();
6447   }
6448   if (!LookupDescriptor()) return false;
6449   if (IsFound()) return IsLoad() || !IsReadOnly();
6450   if (IsIntegerIndexedExotic()) return false;
6451   if (!LookupInPrototypes()) return false;
6452   if (IsLoad()) return true;
6453
6454   if (IsAccessorConstant()) return true;
6455   LookupTransition(*map_, *name_, NONE);
6456   if (IsTransitionToData() && map_->unused_property_fields() > 0) {
6457     // Construct the object field access.
6458     int descriptor = transition()->LastAdded();
6459     int index =
6460         transition()->instance_descriptors()->GetFieldIndex(descriptor) -
6461         map_->inobject_properties();
6462     PropertyDetails details =
6463         transition()->instance_descriptors()->GetDetails(descriptor);
6464     Representation representation = details.representation();
6465     access_ = HObjectAccess::ForField(map_, index, representation, name_);
6466
6467     // Load field map for heap objects.
6468     return LoadFieldMaps(transition());
6469   }
6470   return false;
6471 }
6472
6473
6474 bool HOptimizedGraphBuilder::PropertyAccessInfo::CanAccessAsMonomorphic(
6475     SmallMapList* maps) {
6476   DCHECK(map_.is_identical_to(maps->first()));
6477   if (!CanAccessMonomorphic()) return false;
6478   STATIC_ASSERT(kMaxLoadPolymorphism == kMaxStorePolymorphism);
6479   if (maps->length() > kMaxLoadPolymorphism) return false;
6480   HObjectAccess access = HObjectAccess::ForMap();  // bogus default
6481   if (GetJSObjectFieldAccess(&access)) {
6482     for (int i = 1; i < maps->length(); ++i) {
6483       PropertyAccessInfo test_info(builder_, access_type_, maps->at(i), name_);
6484       HObjectAccess test_access = HObjectAccess::ForMap();  // bogus default
6485       if (!test_info.GetJSObjectFieldAccess(&test_access)) return false;
6486       if (!access.Equals(test_access)) return false;
6487     }
6488     return true;
6489   }
6490   if (GetJSArrayBufferViewFieldAccess(&access)) {
6491     for (int i = 1; i < maps->length(); ++i) {
6492       PropertyAccessInfo test_info(builder_, access_type_, maps->at(i), name_);
6493       HObjectAccess test_access = HObjectAccess::ForMap();  // bogus default
6494       if (!test_info.GetJSArrayBufferViewFieldAccess(&test_access)) {
6495         return false;
6496       }
6497       if (!access.Equals(test_access)) return false;
6498     }
6499     return true;
6500   }
6501
6502   // Currently only handle numbers as a polymorphic case.
6503   // TODO(verwaest): Support monomorphic handling of numbers with a HCheckNumber
6504   // instruction.
6505   if (IsNumberType()) return false;
6506
6507   // Multiple maps cannot transition to the same target map.
6508   DCHECK(!IsLoad() || !IsTransition());
6509   if (IsTransition() && maps->length() > 1) return false;
6510
6511   for (int i = 1; i < maps->length(); ++i) {
6512     PropertyAccessInfo test_info(builder_, access_type_, maps->at(i), name_);
6513     if (!test_info.IsCompatible(this)) return false;
6514   }
6515
6516   return true;
6517 }
6518
6519
6520 Handle<Map> HOptimizedGraphBuilder::PropertyAccessInfo::map() {
6521   JSFunction* ctor = IC::GetRootConstructor(
6522       *map_, current_info()->closure()->context()->native_context());
6523   if (ctor != NULL) return handle(ctor->initial_map());
6524   return map_;
6525 }
6526
6527
6528 static bool NeedsWrapping(Handle<Map> map, Handle<JSFunction> target) {
6529   return !map->IsJSObjectMap() &&
6530          is_sloppy(target->shared()->language_mode()) &&
6531          !target->shared()->native();
6532 }
6533
6534
6535 bool HOptimizedGraphBuilder::PropertyAccessInfo::NeedsWrappingFor(
6536     Handle<JSFunction> target) const {
6537   return NeedsWrapping(map_, target);
6538 }
6539
6540
6541 HValue* HOptimizedGraphBuilder::BuildMonomorphicAccess(
6542     PropertyAccessInfo* info, HValue* object, HValue* checked_object,
6543     HValue* value, BailoutId ast_id, BailoutId return_id,
6544     bool can_inline_accessor) {
6545   HObjectAccess access = HObjectAccess::ForMap();  // bogus default
6546   if (info->GetJSObjectFieldAccess(&access)) {
6547     DCHECK(info->IsLoad());
6548     return New<HLoadNamedField>(object, checked_object, access);
6549   }
6550
6551   if (info->GetJSArrayBufferViewFieldAccess(&access)) {
6552     DCHECK(info->IsLoad());
6553     checked_object = Add<HCheckArrayBufferNotNeutered>(checked_object);
6554     return New<HLoadNamedField>(object, checked_object, access);
6555   }
6556
6557   if (info->name().is_identical_to(isolate()->factory()->prototype_string()) &&
6558       info->map()->function_with_prototype()) {
6559     DCHECK(!info->map()->has_non_instance_prototype());
6560     return New<HLoadFunctionPrototype>(checked_object);
6561   }
6562
6563   HValue* checked_holder = checked_object;
6564   if (info->has_holder()) {
6565     Handle<JSObject> prototype(JSObject::cast(info->map()->prototype()));
6566     checked_holder = BuildCheckPrototypeMaps(prototype, info->holder());
6567   }
6568
6569   if (!info->IsFound()) {
6570     DCHECK(info->IsLoad());
6571     if (is_strong(function_language_mode())) {
6572       return New<HCallRuntime>(
6573           isolate()->factory()->empty_string(),
6574           Runtime::FunctionForId(Runtime::kThrowStrongModeImplicitConversion),
6575           0);
6576     } else {
6577       return graph()->GetConstantUndefined();
6578     }
6579   }
6580
6581   if (info->IsData()) {
6582     if (info->IsLoad()) {
6583       return BuildLoadNamedField(info, checked_holder);
6584     } else {
6585       return BuildStoreNamedField(info, checked_object, value);
6586     }
6587   }
6588
6589   if (info->IsTransition()) {
6590     DCHECK(!info->IsLoad());
6591     return BuildStoreNamedField(info, checked_object, value);
6592   }
6593
6594   if (info->IsAccessorConstant()) {
6595     Push(checked_object);
6596     int argument_count = 1;
6597     if (!info->IsLoad()) {
6598       argument_count = 2;
6599       Push(value);
6600     }
6601
6602     if (info->NeedsWrappingFor(info->accessor())) {
6603       HValue* function = Add<HConstant>(info->accessor());
6604       PushArgumentsFromEnvironment(argument_count);
6605       return New<HCallFunction>(function, argument_count, WRAP_AND_CALL);
6606     } else if (FLAG_inline_accessors && can_inline_accessor) {
6607       bool success = info->IsLoad()
6608           ? TryInlineGetter(info->accessor(), info->map(), ast_id, return_id)
6609           : TryInlineSetter(
6610               info->accessor(), info->map(), ast_id, return_id, value);
6611       if (success || HasStackOverflow()) return NULL;
6612     }
6613
6614     PushArgumentsFromEnvironment(argument_count);
6615     return BuildCallConstantFunction(info->accessor(), argument_count);
6616   }
6617
6618   DCHECK(info->IsDataConstant());
6619   if (info->IsLoad()) {
6620     return New<HConstant>(info->constant());
6621   } else {
6622     return New<HCheckValue>(value, Handle<JSFunction>::cast(info->constant()));
6623   }
6624 }
6625
6626
6627 void HOptimizedGraphBuilder::HandlePolymorphicNamedFieldAccess(
6628     PropertyAccessType access_type, Expression* expr, FeedbackVectorICSlot slot,
6629     BailoutId ast_id, BailoutId return_id, HValue* object, HValue* value,
6630     SmallMapList* maps, Handle<String> name) {
6631   // Something did not match; must use a polymorphic load.
6632   int count = 0;
6633   HBasicBlock* join = NULL;
6634   HBasicBlock* number_block = NULL;
6635   bool handled_string = false;
6636
6637   bool handle_smi = false;
6638   STATIC_ASSERT(kMaxLoadPolymorphism == kMaxStorePolymorphism);
6639   int i;
6640   for (i = 0; i < maps->length() && count < kMaxLoadPolymorphism; ++i) {
6641     PropertyAccessInfo info(this, access_type, maps->at(i), name);
6642     if (info.IsStringType()) {
6643       if (handled_string) continue;
6644       handled_string = true;
6645     }
6646     if (info.CanAccessMonomorphic()) {
6647       count++;
6648       if (info.IsNumberType()) {
6649         handle_smi = true;
6650         break;
6651       }
6652     }
6653   }
6654
6655   if (i < maps->length()) {
6656     count = -1;
6657     maps->Clear();
6658   } else {
6659     count = 0;
6660   }
6661   HControlInstruction* smi_check = NULL;
6662   handled_string = false;
6663
6664   for (i = 0; i < maps->length() && count < kMaxLoadPolymorphism; ++i) {
6665     PropertyAccessInfo info(this, access_type, maps->at(i), name);
6666     if (info.IsStringType()) {
6667       if (handled_string) continue;
6668       handled_string = true;
6669     }
6670     if (!info.CanAccessMonomorphic()) continue;
6671
6672     if (count == 0) {
6673       join = graph()->CreateBasicBlock();
6674       if (handle_smi) {
6675         HBasicBlock* empty_smi_block = graph()->CreateBasicBlock();
6676         HBasicBlock* not_smi_block = graph()->CreateBasicBlock();
6677         number_block = graph()->CreateBasicBlock();
6678         smi_check = New<HIsSmiAndBranch>(
6679             object, empty_smi_block, not_smi_block);
6680         FinishCurrentBlock(smi_check);
6681         GotoNoSimulate(empty_smi_block, number_block);
6682         set_current_block(not_smi_block);
6683       } else {
6684         BuildCheckHeapObject(object);
6685       }
6686     }
6687     ++count;
6688     HBasicBlock* if_true = graph()->CreateBasicBlock();
6689     HBasicBlock* if_false = graph()->CreateBasicBlock();
6690     HUnaryControlInstruction* compare;
6691
6692     HValue* dependency;
6693     if (info.IsNumberType()) {
6694       Handle<Map> heap_number_map = isolate()->factory()->heap_number_map();
6695       compare = New<HCompareMap>(object, heap_number_map, if_true, if_false);
6696       dependency = smi_check;
6697     } else if (info.IsStringType()) {
6698       compare = New<HIsStringAndBranch>(object, if_true, if_false);
6699       dependency = compare;
6700     } else {
6701       compare = New<HCompareMap>(object, info.map(), if_true, if_false);
6702       dependency = compare;
6703     }
6704     FinishCurrentBlock(compare);
6705
6706     if (info.IsNumberType()) {
6707       GotoNoSimulate(if_true, number_block);
6708       if_true = number_block;
6709     }
6710
6711     set_current_block(if_true);
6712
6713     HValue* access =
6714         BuildMonomorphicAccess(&info, object, dependency, value, ast_id,
6715                                return_id, FLAG_polymorphic_inlining);
6716
6717     HValue* result = NULL;
6718     switch (access_type) {
6719       case LOAD:
6720         result = access;
6721         break;
6722       case STORE:
6723         result = value;
6724         break;
6725     }
6726
6727     if (access == NULL) {
6728       if (HasStackOverflow()) return;
6729     } else {
6730       if (access->IsInstruction()) {
6731         HInstruction* instr = HInstruction::cast(access);
6732         if (!instr->IsLinked()) AddInstruction(instr);
6733       }
6734       if (!ast_context()->IsEffect()) Push(result);
6735     }
6736
6737     if (current_block() != NULL) Goto(join);
6738     set_current_block(if_false);
6739   }
6740
6741   // Finish up.  Unconditionally deoptimize if we've handled all the maps we
6742   // know about and do not want to handle ones we've never seen.  Otherwise
6743   // use a generic IC.
6744   if (count == maps->length() && FLAG_deoptimize_uncommon_cases) {
6745     FinishExitWithHardDeoptimization(
6746         Deoptimizer::kUnknownMapInPolymorphicAccess);
6747   } else {
6748     HInstruction* instr =
6749         BuildNamedGeneric(access_type, expr, slot, object, name, value);
6750     AddInstruction(instr);
6751     if (!ast_context()->IsEffect()) Push(access_type == LOAD ? instr : value);
6752
6753     if (join != NULL) {
6754       Goto(join);
6755     } else {
6756       Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
6757       if (!ast_context()->IsEffect()) ast_context()->ReturnValue(Pop());
6758       return;
6759     }
6760   }
6761
6762   DCHECK(join != NULL);
6763   if (join->HasPredecessor()) {
6764     join->SetJoinId(ast_id);
6765     set_current_block(join);
6766     if (!ast_context()->IsEffect()) ast_context()->ReturnValue(Pop());
6767   } else {
6768     set_current_block(NULL);
6769   }
6770 }
6771
6772
6773 static bool ComputeReceiverTypes(Expression* expr,
6774                                  HValue* receiver,
6775                                  SmallMapList** t,
6776                                  Zone* zone) {
6777   SmallMapList* maps = expr->GetReceiverTypes();
6778   *t = maps;
6779   bool monomorphic = expr->IsMonomorphic();
6780   if (maps != NULL && receiver->HasMonomorphicJSObjectType()) {
6781     Map* root_map = receiver->GetMonomorphicJSObjectMap()->FindRootMap();
6782     maps->FilterForPossibleTransitions(root_map);
6783     monomorphic = maps->length() == 1;
6784   }
6785   return monomorphic && CanInlinePropertyAccess(maps->first());
6786 }
6787
6788
6789 static bool AreStringTypes(SmallMapList* maps) {
6790   for (int i = 0; i < maps->length(); i++) {
6791     if (maps->at(i)->instance_type() >= FIRST_NONSTRING_TYPE) return false;
6792   }
6793   return true;
6794 }
6795
6796
6797 void HOptimizedGraphBuilder::BuildStore(Expression* expr, Property* prop,
6798                                         FeedbackVectorICSlot slot,
6799                                         BailoutId ast_id, BailoutId return_id,
6800                                         bool is_uninitialized) {
6801   if (!prop->key()->IsPropertyName()) {
6802     // Keyed store.
6803     HValue* value = Pop();
6804     HValue* key = Pop();
6805     HValue* object = Pop();
6806     bool has_side_effects = false;
6807     HValue* result =
6808         HandleKeyedElementAccess(object, key, value, expr, slot, ast_id,
6809                                  return_id, STORE, &has_side_effects);
6810     if (has_side_effects) {
6811       if (!ast_context()->IsEffect()) Push(value);
6812       Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
6813       if (!ast_context()->IsEffect()) Drop(1);
6814     }
6815     if (result == NULL) return;
6816     return ast_context()->ReturnValue(value);
6817   }
6818
6819   // Named store.
6820   HValue* value = Pop();
6821   HValue* object = Pop();
6822
6823   Literal* key = prop->key()->AsLiteral();
6824   Handle<String> name = Handle<String>::cast(key->value());
6825   DCHECK(!name.is_null());
6826
6827   HValue* access = BuildNamedAccess(STORE, ast_id, return_id, expr, slot,
6828                                     object, name, value, is_uninitialized);
6829   if (access == NULL) return;
6830
6831   if (!ast_context()->IsEffect()) Push(value);
6832   if (access->IsInstruction()) AddInstruction(HInstruction::cast(access));
6833   if (access->HasObservableSideEffects()) {
6834     Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
6835   }
6836   if (!ast_context()->IsEffect()) Drop(1);
6837   return ast_context()->ReturnValue(value);
6838 }
6839
6840
6841 void HOptimizedGraphBuilder::HandlePropertyAssignment(Assignment* expr) {
6842   Property* prop = expr->target()->AsProperty();
6843   DCHECK(prop != NULL);
6844   CHECK_ALIVE(VisitForValue(prop->obj()));
6845   if (!prop->key()->IsPropertyName()) {
6846     CHECK_ALIVE(VisitForValue(prop->key()));
6847   }
6848   CHECK_ALIVE(VisitForValue(expr->value()));
6849   BuildStore(expr, prop, expr->AssignmentSlot(), expr->id(),
6850              expr->AssignmentId(), expr->IsUninitialized());
6851 }
6852
6853
6854 // Because not every expression has a position and there is not common
6855 // superclass of Assignment and CountOperation, we cannot just pass the
6856 // owning expression instead of position and ast_id separately.
6857 void HOptimizedGraphBuilder::HandleGlobalVariableAssignment(
6858     Variable* var, HValue* value, FeedbackVectorICSlot ic_slot,
6859     BailoutId ast_id) {
6860   Handle<GlobalObject> global(current_info()->global_object());
6861
6862   // Lookup in script contexts.
6863   {
6864     Handle<ScriptContextTable> script_contexts(
6865         global->native_context()->script_context_table());
6866     ScriptContextTable::LookupResult lookup;
6867     if (ScriptContextTable::Lookup(script_contexts, var->name(), &lookup)) {
6868       if (lookup.mode == CONST) {
6869         return Bailout(kNonInitializerAssignmentToConst);
6870       }
6871       Handle<Context> script_context =
6872           ScriptContextTable::GetContext(script_contexts, lookup.context_index);
6873
6874       Handle<Object> current_value =
6875           FixedArray::get(script_context, lookup.slot_index);
6876
6877       // If the values is not the hole, it will stay initialized,
6878       // so no need to generate a check.
6879       if (*current_value == *isolate()->factory()->the_hole_value()) {
6880         return Bailout(kReferenceToUninitializedVariable);
6881       }
6882
6883       HStoreNamedField* instr = Add<HStoreNamedField>(
6884           Add<HConstant>(script_context),
6885           HObjectAccess::ForContextSlot(lookup.slot_index), value);
6886       USE(instr);
6887       DCHECK(instr->HasObservableSideEffects());
6888       Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
6889       return;
6890     }
6891   }
6892
6893   LookupIterator it(global, var->name(), LookupIterator::OWN);
6894   GlobalPropertyAccess type = LookupGlobalProperty(var, &it, STORE);
6895   if (type == kUseCell) {
6896     Handle<PropertyCell> cell = it.GetPropertyCell();
6897     top_info()->dependencies()->AssumePropertyCell(cell);
6898     auto cell_type = it.property_details().cell_type();
6899     if (cell_type == PropertyCellType::kConstant ||
6900         cell_type == PropertyCellType::kUndefined) {
6901       Handle<Object> constant(cell->value(), isolate());
6902       if (value->IsConstant()) {
6903         HConstant* c_value = HConstant::cast(value);
6904         if (!constant.is_identical_to(c_value->handle(isolate()))) {
6905           Add<HDeoptimize>(Deoptimizer::kConstantGlobalVariableAssignment,
6906                            Deoptimizer::EAGER);
6907         }
6908       } else {
6909         HValue* c_constant = Add<HConstant>(constant);
6910         IfBuilder builder(this);
6911         if (constant->IsNumber()) {
6912           builder.If<HCompareNumericAndBranch>(value, c_constant, Token::EQ);
6913         } else {
6914           builder.If<HCompareObjectEqAndBranch>(value, c_constant);
6915         }
6916         builder.Then();
6917         builder.Else();
6918         Add<HDeoptimize>(Deoptimizer::kConstantGlobalVariableAssignment,
6919                          Deoptimizer::EAGER);
6920         builder.End();
6921       }
6922     }
6923     HConstant* cell_constant = Add<HConstant>(cell);
6924     auto access = HObjectAccess::ForPropertyCellValue();
6925     if (cell_type == PropertyCellType::kConstantType) {
6926       switch (cell->GetConstantType()) {
6927         case PropertyCellConstantType::kSmi:
6928           access = access.WithRepresentation(Representation::Smi());
6929           break;
6930         case PropertyCellConstantType::kStableMap: {
6931           // The map may no longer be stable, deopt if it's ever different from
6932           // what is currently there, which will allow for restablization.
6933           Handle<Map> map(HeapObject::cast(cell->value())->map());
6934           Add<HCheckHeapObject>(value);
6935           value = Add<HCheckMaps>(value, map);
6936           access = access.WithRepresentation(Representation::HeapObject());
6937           break;
6938         }
6939       }
6940     }
6941     HInstruction* instr = Add<HStoreNamedField>(cell_constant, access, value);
6942     instr->ClearChangesFlag(kInobjectFields);
6943     instr->SetChangesFlag(kGlobalVars);
6944     if (instr->HasObservableSideEffects()) {
6945       Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
6946     }
6947   } else if (var->IsGlobalSlot()) {
6948     DCHECK(var->index() > 0);
6949     DCHECK(var->IsStaticGlobalObjectProperty());
6950     int slot_index = var->index();
6951     int depth = scope()->ContextChainLength(var->scope());
6952
6953     HStoreGlobalViaContext* instr = Add<HStoreGlobalViaContext>(
6954         value, depth, slot_index, function_language_mode());
6955     USE(instr);
6956     DCHECK(instr->HasObservableSideEffects());
6957     Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
6958
6959   } else {
6960     HValue* global_object = Add<HLoadNamedField>(
6961         context(), nullptr,
6962         HObjectAccess::ForContextSlot(Context::GLOBAL_OBJECT_INDEX));
6963     HStoreNamedGeneric* instr =
6964         Add<HStoreNamedGeneric>(global_object, var->name(), value,
6965                                 function_language_mode(), PREMONOMORPHIC);
6966     if (FLAG_vector_stores) {
6967       Handle<TypeFeedbackVector> vector =
6968           handle(current_feedback_vector(), isolate());
6969       instr->SetVectorAndSlot(vector, ic_slot);
6970     }
6971     USE(instr);
6972     DCHECK(instr->HasObservableSideEffects());
6973     Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
6974   }
6975 }
6976
6977
6978 void HOptimizedGraphBuilder::HandleCompoundAssignment(Assignment* expr) {
6979   Expression* target = expr->target();
6980   VariableProxy* proxy = target->AsVariableProxy();
6981   Property* prop = target->AsProperty();
6982   DCHECK(proxy == NULL || prop == NULL);
6983
6984   // We have a second position recorded in the FullCodeGenerator to have
6985   // type feedback for the binary operation.
6986   BinaryOperation* operation = expr->binary_operation();
6987
6988   if (proxy != NULL) {
6989     Variable* var = proxy->var();
6990     if (var->mode() == LET)  {
6991       return Bailout(kUnsupportedLetCompoundAssignment);
6992     }
6993
6994     CHECK_ALIVE(VisitForValue(operation));
6995
6996     switch (var->location()) {
6997       case VariableLocation::GLOBAL:
6998       case VariableLocation::UNALLOCATED:
6999         HandleGlobalVariableAssignment(var, Top(), expr->AssignmentSlot(),
7000                                        expr->AssignmentId());
7001         break;
7002
7003       case VariableLocation::PARAMETER:
7004       case VariableLocation::LOCAL:
7005         if (var->mode() == CONST_LEGACY)  {
7006           return Bailout(kUnsupportedConstCompoundAssignment);
7007         }
7008         if (var->mode() == CONST) {
7009           return Bailout(kNonInitializerAssignmentToConst);
7010         }
7011         BindIfLive(var, Top());
7012         break;
7013
7014       case VariableLocation::CONTEXT: {
7015         // Bail out if we try to mutate a parameter value in a function
7016         // using the arguments object.  We do not (yet) correctly handle the
7017         // arguments property of the function.
7018         if (current_info()->scope()->arguments() != NULL) {
7019           // Parameters will be allocated to context slots.  We have no
7020           // direct way to detect that the variable is a parameter so we do
7021           // a linear search of the parameter variables.
7022           int count = current_info()->scope()->num_parameters();
7023           for (int i = 0; i < count; ++i) {
7024             if (var == current_info()->scope()->parameter(i)) {
7025               Bailout(kAssignmentToParameterFunctionUsesArgumentsObject);
7026             }
7027           }
7028         }
7029
7030         HStoreContextSlot::Mode mode;
7031
7032         switch (var->mode()) {
7033           case LET:
7034             mode = HStoreContextSlot::kCheckDeoptimize;
7035             break;
7036           case CONST:
7037             return Bailout(kNonInitializerAssignmentToConst);
7038           case CONST_LEGACY:
7039             return ast_context()->ReturnValue(Pop());
7040           default:
7041             mode = HStoreContextSlot::kNoCheck;
7042         }
7043
7044         HValue* context = BuildContextChainWalk(var);
7045         HStoreContextSlot* instr = Add<HStoreContextSlot>(
7046             context, var->index(), mode, Top());
7047         if (instr->HasObservableSideEffects()) {
7048           Add<HSimulate>(expr->AssignmentId(), REMOVABLE_SIMULATE);
7049         }
7050         break;
7051       }
7052
7053       case VariableLocation::LOOKUP:
7054         return Bailout(kCompoundAssignmentToLookupSlot);
7055     }
7056     return ast_context()->ReturnValue(Pop());
7057
7058   } else if (prop != NULL) {
7059     CHECK_ALIVE(VisitForValue(prop->obj()));
7060     HValue* object = Top();
7061     HValue* key = NULL;
7062     if (!prop->key()->IsPropertyName() || prop->IsStringAccess()) {
7063       CHECK_ALIVE(VisitForValue(prop->key()));
7064       key = Top();
7065     }
7066
7067     CHECK_ALIVE(PushLoad(prop, object, key));
7068
7069     CHECK_ALIVE(VisitForValue(expr->value()));
7070     HValue* right = Pop();
7071     HValue* left = Pop();
7072
7073     Push(BuildBinaryOperation(operation, left, right, PUSH_BEFORE_SIMULATE));
7074
7075     BuildStore(expr, prop, expr->AssignmentSlot(), expr->id(),
7076                expr->AssignmentId(), expr->IsUninitialized());
7077   } else {
7078     return Bailout(kInvalidLhsInCompoundAssignment);
7079   }
7080 }
7081
7082
7083 void HOptimizedGraphBuilder::VisitAssignment(Assignment* expr) {
7084   DCHECK(!HasStackOverflow());
7085   DCHECK(current_block() != NULL);
7086   DCHECK(current_block()->HasPredecessor());
7087   VariableProxy* proxy = expr->target()->AsVariableProxy();
7088   Property* prop = expr->target()->AsProperty();
7089   DCHECK(proxy == NULL || prop == NULL);
7090
7091   if (expr->is_compound()) {
7092     HandleCompoundAssignment(expr);
7093     return;
7094   }
7095
7096   if (prop != NULL) {
7097     HandlePropertyAssignment(expr);
7098   } else if (proxy != NULL) {
7099     Variable* var = proxy->var();
7100
7101     if (var->mode() == CONST) {
7102       if (expr->op() != Token::INIT_CONST) {
7103         return Bailout(kNonInitializerAssignmentToConst);
7104       }
7105     } else if (var->mode() == CONST_LEGACY) {
7106       if (expr->op() != Token::INIT_CONST_LEGACY) {
7107         CHECK_ALIVE(VisitForValue(expr->value()));
7108         return ast_context()->ReturnValue(Pop());
7109       }
7110
7111       if (var->IsStackAllocated()) {
7112         // We insert a use of the old value to detect unsupported uses of const
7113         // variables (e.g. initialization inside a loop).
7114         HValue* old_value = environment()->Lookup(var);
7115         Add<HUseConst>(old_value);
7116       }
7117     }
7118
7119     if (proxy->IsArguments()) return Bailout(kAssignmentToArguments);
7120
7121     // Handle the assignment.
7122     switch (var->location()) {
7123       case VariableLocation::GLOBAL:
7124       case VariableLocation::UNALLOCATED:
7125         CHECK_ALIVE(VisitForValue(expr->value()));
7126         HandleGlobalVariableAssignment(var, Top(), expr->AssignmentSlot(),
7127                                        expr->AssignmentId());
7128         return ast_context()->ReturnValue(Pop());
7129
7130       case VariableLocation::PARAMETER:
7131       case VariableLocation::LOCAL: {
7132         // Perform an initialization check for let declared variables
7133         // or parameters.
7134         if (var->mode() == LET && expr->op() == Token::ASSIGN) {
7135           HValue* env_value = environment()->Lookup(var);
7136           if (env_value == graph()->GetConstantHole()) {
7137             return Bailout(kAssignmentToLetVariableBeforeInitialization);
7138           }
7139         }
7140         // We do not allow the arguments object to occur in a context where it
7141         // may escape, but assignments to stack-allocated locals are
7142         // permitted.
7143         CHECK_ALIVE(VisitForValue(expr->value(), ARGUMENTS_ALLOWED));
7144         HValue* value = Pop();
7145         BindIfLive(var, value);
7146         return ast_context()->ReturnValue(value);
7147       }
7148
7149       case VariableLocation::CONTEXT: {
7150         // Bail out if we try to mutate a parameter value in a function using
7151         // the arguments object.  We do not (yet) correctly handle the
7152         // arguments property of the function.
7153         if (current_info()->scope()->arguments() != NULL) {
7154           // Parameters will rewrite to context slots.  We have no direct way
7155           // to detect that the variable is a parameter.
7156           int count = current_info()->scope()->num_parameters();
7157           for (int i = 0; i < count; ++i) {
7158             if (var == current_info()->scope()->parameter(i)) {
7159               return Bailout(kAssignmentToParameterInArgumentsObject);
7160             }
7161           }
7162         }
7163
7164         CHECK_ALIVE(VisitForValue(expr->value()));
7165         HStoreContextSlot::Mode mode;
7166         if (expr->op() == Token::ASSIGN) {
7167           switch (var->mode()) {
7168             case LET:
7169               mode = HStoreContextSlot::kCheckDeoptimize;
7170               break;
7171             case CONST:
7172               // This case is checked statically so no need to
7173               // perform checks here
7174               UNREACHABLE();
7175             case CONST_LEGACY:
7176               return ast_context()->ReturnValue(Pop());
7177             default:
7178               mode = HStoreContextSlot::kNoCheck;
7179           }
7180         } else if (expr->op() == Token::INIT_VAR ||
7181                    expr->op() == Token::INIT_LET ||
7182                    expr->op() == Token::INIT_CONST) {
7183           mode = HStoreContextSlot::kNoCheck;
7184         } else {
7185           DCHECK(expr->op() == Token::INIT_CONST_LEGACY);
7186
7187           mode = HStoreContextSlot::kCheckIgnoreAssignment;
7188         }
7189
7190         HValue* context = BuildContextChainWalk(var);
7191         HStoreContextSlot* instr = Add<HStoreContextSlot>(
7192             context, var->index(), mode, Top());
7193         if (instr->HasObservableSideEffects()) {
7194           Add<HSimulate>(expr->AssignmentId(), REMOVABLE_SIMULATE);
7195         }
7196         return ast_context()->ReturnValue(Pop());
7197       }
7198
7199       case VariableLocation::LOOKUP:
7200         return Bailout(kAssignmentToLOOKUPVariable);
7201     }
7202   } else {
7203     return Bailout(kInvalidLeftHandSideInAssignment);
7204   }
7205 }
7206
7207
7208 void HOptimizedGraphBuilder::VisitYield(Yield* expr) {
7209   // Generators are not optimized, so we should never get here.
7210   UNREACHABLE();
7211 }
7212
7213
7214 void HOptimizedGraphBuilder::VisitThrow(Throw* expr) {
7215   DCHECK(!HasStackOverflow());
7216   DCHECK(current_block() != NULL);
7217   DCHECK(current_block()->HasPredecessor());
7218   if (!ast_context()->IsEffect()) {
7219     // The parser turns invalid left-hand sides in assignments into throw
7220     // statements, which may not be in effect contexts. We might still try
7221     // to optimize such functions; bail out now if we do.
7222     return Bailout(kInvalidLeftHandSideInAssignment);
7223   }
7224   CHECK_ALIVE(VisitForValue(expr->exception()));
7225
7226   HValue* value = environment()->Pop();
7227   if (!top_info()->is_tracking_positions()) SetSourcePosition(expr->position());
7228   Add<HPushArguments>(value);
7229   Add<HCallRuntime>(isolate()->factory()->empty_string(),
7230                     Runtime::FunctionForId(Runtime::kThrow), 1);
7231   Add<HSimulate>(expr->id());
7232
7233   // If the throw definitely exits the function, we can finish with a dummy
7234   // control flow at this point.  This is not the case if the throw is inside
7235   // an inlined function which may be replaced.
7236   if (call_context() == NULL) {
7237     FinishExitCurrentBlock(New<HAbnormalExit>());
7238   }
7239 }
7240
7241
7242 HInstruction* HGraphBuilder::AddLoadStringInstanceType(HValue* string) {
7243   if (string->IsConstant()) {
7244     HConstant* c_string = HConstant::cast(string);
7245     if (c_string->HasStringValue()) {
7246       return Add<HConstant>(c_string->StringValue()->map()->instance_type());
7247     }
7248   }
7249   return Add<HLoadNamedField>(
7250       Add<HLoadNamedField>(string, nullptr, HObjectAccess::ForMap()), nullptr,
7251       HObjectAccess::ForMapInstanceType());
7252 }
7253
7254
7255 HInstruction* HGraphBuilder::AddLoadStringLength(HValue* string) {
7256   return AddInstruction(BuildLoadStringLength(string));
7257 }
7258
7259
7260 HInstruction* HGraphBuilder::BuildLoadStringLength(HValue* string) {
7261   if (string->IsConstant()) {
7262     HConstant* c_string = HConstant::cast(string);
7263     if (c_string->HasStringValue()) {
7264       return New<HConstant>(c_string->StringValue()->length());
7265     }
7266   }
7267   return New<HLoadNamedField>(string, nullptr,
7268                               HObjectAccess::ForStringLength());
7269 }
7270
7271
7272 HInstruction* HOptimizedGraphBuilder::BuildNamedGeneric(
7273     PropertyAccessType access_type, Expression* expr, FeedbackVectorICSlot slot,
7274     HValue* object, Handle<Name> name, HValue* value, bool is_uninitialized) {
7275   if (is_uninitialized) {
7276     Add<HDeoptimize>(
7277         Deoptimizer::kInsufficientTypeFeedbackForGenericNamedAccess,
7278         Deoptimizer::SOFT);
7279   }
7280   if (access_type == LOAD) {
7281     Handle<TypeFeedbackVector> vector =
7282         handle(current_feedback_vector(), isolate());
7283
7284     if (!expr->AsProperty()->key()->IsPropertyName()) {
7285       // It's possible that a keyed load of a constant string was converted
7286       // to a named load. Here, at the last minute, we need to make sure to
7287       // use a generic Keyed Load if we are using the type vector, because
7288       // it has to share information with full code.
7289       HConstant* key = Add<HConstant>(name);
7290       HLoadKeyedGeneric* result = New<HLoadKeyedGeneric>(
7291           object, key, function_language_mode(), PREMONOMORPHIC);
7292       result->SetVectorAndSlot(vector, slot);
7293       return result;
7294     }
7295
7296     HLoadNamedGeneric* result = New<HLoadNamedGeneric>(
7297         object, name, function_language_mode(), PREMONOMORPHIC);
7298     result->SetVectorAndSlot(vector, slot);
7299     return result;
7300   } else {
7301     if (FLAG_vector_stores &&
7302         current_feedback_vector()->GetKind(slot) == Code::KEYED_STORE_IC) {
7303       // It's possible that a keyed store of a constant string was converted
7304       // to a named store. Here, at the last minute, we need to make sure to
7305       // use a generic Keyed Store if we are using the type vector, because
7306       // it has to share information with full code.
7307       HConstant* key = Add<HConstant>(name);
7308       HStoreKeyedGeneric* result = New<HStoreKeyedGeneric>(
7309           object, key, value, function_language_mode(), PREMONOMORPHIC);
7310       Handle<TypeFeedbackVector> vector =
7311           handle(current_feedback_vector(), isolate());
7312       result->SetVectorAndSlot(vector, slot);
7313       return result;
7314     }
7315
7316     HStoreNamedGeneric* result = New<HStoreNamedGeneric>(
7317         object, name, value, function_language_mode(), PREMONOMORPHIC);
7318     if (FLAG_vector_stores) {
7319       Handle<TypeFeedbackVector> vector =
7320           handle(current_feedback_vector(), isolate());
7321       result->SetVectorAndSlot(vector, slot);
7322     }
7323     return result;
7324   }
7325 }
7326
7327
7328 HInstruction* HOptimizedGraphBuilder::BuildKeyedGeneric(
7329     PropertyAccessType access_type, Expression* expr, FeedbackVectorICSlot slot,
7330     HValue* object, HValue* key, HValue* value) {
7331   if (access_type == LOAD) {
7332     InlineCacheState initial_state = expr->AsProperty()->GetInlineCacheState();
7333     HLoadKeyedGeneric* result = New<HLoadKeyedGeneric>(
7334         object, key, function_language_mode(), initial_state);
7335     // HLoadKeyedGeneric with vector ics benefits from being encoded as
7336     // MEGAMORPHIC because the vector/slot combo becomes unnecessary.
7337     if (initial_state != MEGAMORPHIC) {
7338       // We need to pass vector information.
7339       Handle<TypeFeedbackVector> vector =
7340           handle(current_feedback_vector(), isolate());
7341       result->SetVectorAndSlot(vector, slot);
7342     }
7343     return result;
7344   } else {
7345     HStoreKeyedGeneric* result = New<HStoreKeyedGeneric>(
7346         object, key, value, function_language_mode(), PREMONOMORPHIC);
7347     if (FLAG_vector_stores) {
7348       Handle<TypeFeedbackVector> vector =
7349           handle(current_feedback_vector(), isolate());
7350       result->SetVectorAndSlot(vector, slot);
7351     }
7352     return result;
7353   }
7354 }
7355
7356
7357 LoadKeyedHoleMode HOptimizedGraphBuilder::BuildKeyedHoleMode(Handle<Map> map) {
7358   // Loads from a "stock" fast holey double arrays can elide the hole check.
7359   // Loads from a "stock" fast holey array can convert the hole to undefined
7360   // with impunity.
7361   LoadKeyedHoleMode load_mode = NEVER_RETURN_HOLE;
7362   bool holey_double_elements =
7363       *map == isolate()->get_initial_js_array_map(FAST_HOLEY_DOUBLE_ELEMENTS);
7364   bool holey_elements =
7365       *map == isolate()->get_initial_js_array_map(FAST_HOLEY_ELEMENTS);
7366   if ((holey_double_elements || holey_elements) &&
7367       isolate()->IsFastArrayConstructorPrototypeChainIntact()) {
7368     load_mode =
7369         holey_double_elements ? ALLOW_RETURN_HOLE : CONVERT_HOLE_TO_UNDEFINED;
7370
7371     Handle<JSObject> prototype(JSObject::cast(map->prototype()), isolate());
7372     Handle<JSObject> object_prototype = isolate()->initial_object_prototype();
7373     BuildCheckPrototypeMaps(prototype, object_prototype);
7374     graph()->MarkDependsOnEmptyArrayProtoElements();
7375   }
7376   return load_mode;
7377 }
7378
7379
7380 HInstruction* HOptimizedGraphBuilder::BuildMonomorphicElementAccess(
7381     HValue* object,
7382     HValue* key,
7383     HValue* val,
7384     HValue* dependency,
7385     Handle<Map> map,
7386     PropertyAccessType access_type,
7387     KeyedAccessStoreMode store_mode) {
7388   HCheckMaps* checked_object = Add<HCheckMaps>(object, map, dependency);
7389
7390   if (access_type == STORE && map->prototype()->IsJSObject()) {
7391     // monomorphic stores need a prototype chain check because shape
7392     // changes could allow callbacks on elements in the chain that
7393     // aren't compatible with monomorphic keyed stores.
7394     PrototypeIterator iter(map);
7395     JSObject* holder = NULL;
7396     while (!iter.IsAtEnd()) {
7397       holder = JSObject::cast(*PrototypeIterator::GetCurrent(iter));
7398       iter.Advance();
7399     }
7400     DCHECK(holder && holder->IsJSObject());
7401
7402     BuildCheckPrototypeMaps(handle(JSObject::cast(map->prototype())),
7403                             Handle<JSObject>(holder));
7404   }
7405
7406   LoadKeyedHoleMode load_mode = BuildKeyedHoleMode(map);
7407   return BuildUncheckedMonomorphicElementAccess(
7408       checked_object, key, val,
7409       map->instance_type() == JS_ARRAY_TYPE,
7410       map->elements_kind(), access_type,
7411       load_mode, store_mode);
7412 }
7413
7414
7415 static bool CanInlineElementAccess(Handle<Map> map) {
7416   return map->IsJSObjectMap() && !map->has_dictionary_elements() &&
7417          !map->has_sloppy_arguments_elements() &&
7418          !map->has_indexed_interceptor() && !map->is_access_check_needed();
7419 }
7420
7421
7422 HInstruction* HOptimizedGraphBuilder::TryBuildConsolidatedElementLoad(
7423     HValue* object,
7424     HValue* key,
7425     HValue* val,
7426     SmallMapList* maps) {
7427   // For polymorphic loads of similar elements kinds (i.e. all tagged or all
7428   // double), always use the "worst case" code without a transition.  This is
7429   // much faster than transitioning the elements to the worst case, trading a
7430   // HTransitionElements for a HCheckMaps, and avoiding mutation of the array.
7431   bool has_double_maps = false;
7432   bool has_smi_or_object_maps = false;
7433   bool has_js_array_access = false;
7434   bool has_non_js_array_access = false;
7435   bool has_seen_holey_elements = false;
7436   Handle<Map> most_general_consolidated_map;
7437   for (int i = 0; i < maps->length(); ++i) {
7438     Handle<Map> map = maps->at(i);
7439     if (!CanInlineElementAccess(map)) return NULL;
7440     // Don't allow mixing of JSArrays with JSObjects.
7441     if (map->instance_type() == JS_ARRAY_TYPE) {
7442       if (has_non_js_array_access) return NULL;
7443       has_js_array_access = true;
7444     } else if (has_js_array_access) {
7445       return NULL;
7446     } else {
7447       has_non_js_array_access = true;
7448     }
7449     // Don't allow mixed, incompatible elements kinds.
7450     if (map->has_fast_double_elements()) {
7451       if (has_smi_or_object_maps) return NULL;
7452       has_double_maps = true;
7453     } else if (map->has_fast_smi_or_object_elements()) {
7454       if (has_double_maps) return NULL;
7455       has_smi_or_object_maps = true;
7456     } else {
7457       return NULL;
7458     }
7459     // Remember if we've ever seen holey elements.
7460     if (IsHoleyElementsKind(map->elements_kind())) {
7461       has_seen_holey_elements = true;
7462     }
7463     // Remember the most general elements kind, the code for its load will
7464     // properly handle all of the more specific cases.
7465     if ((i == 0) || IsMoreGeneralElementsKindTransition(
7466             most_general_consolidated_map->elements_kind(),
7467             map->elements_kind())) {
7468       most_general_consolidated_map = map;
7469     }
7470   }
7471   if (!has_double_maps && !has_smi_or_object_maps) return NULL;
7472
7473   HCheckMaps* checked_object = Add<HCheckMaps>(object, maps);
7474   // FAST_ELEMENTS is considered more general than FAST_HOLEY_SMI_ELEMENTS.
7475   // If we've seen both, the consolidated load must use FAST_HOLEY_ELEMENTS.
7476   ElementsKind consolidated_elements_kind = has_seen_holey_elements
7477       ? GetHoleyElementsKind(most_general_consolidated_map->elements_kind())
7478       : most_general_consolidated_map->elements_kind();
7479   HInstruction* instr = BuildUncheckedMonomorphicElementAccess(
7480       checked_object, key, val,
7481       most_general_consolidated_map->instance_type() == JS_ARRAY_TYPE,
7482       consolidated_elements_kind,
7483       LOAD, NEVER_RETURN_HOLE, STANDARD_STORE);
7484   return instr;
7485 }
7486
7487
7488 HValue* HOptimizedGraphBuilder::HandlePolymorphicElementAccess(
7489     Expression* expr, FeedbackVectorICSlot slot, HValue* object, HValue* key,
7490     HValue* val, SmallMapList* maps, PropertyAccessType access_type,
7491     KeyedAccessStoreMode store_mode, bool* has_side_effects) {
7492   *has_side_effects = false;
7493   BuildCheckHeapObject(object);
7494
7495   if (access_type == LOAD) {
7496     HInstruction* consolidated_load =
7497         TryBuildConsolidatedElementLoad(object, key, val, maps);
7498     if (consolidated_load != NULL) {
7499       *has_side_effects |= consolidated_load->HasObservableSideEffects();
7500       return consolidated_load;
7501     }
7502   }
7503
7504   // Elements_kind transition support.
7505   MapHandleList transition_target(maps->length());
7506   // Collect possible transition targets.
7507   MapHandleList possible_transitioned_maps(maps->length());
7508   for (int i = 0; i < maps->length(); ++i) {
7509     Handle<Map> map = maps->at(i);
7510     // Loads from strings or loads with a mix of string and non-string maps
7511     // shouldn't be handled polymorphically.
7512     DCHECK(access_type != LOAD || !map->IsStringMap());
7513     ElementsKind elements_kind = map->elements_kind();
7514     if (CanInlineElementAccess(map) && IsFastElementsKind(elements_kind) &&
7515         elements_kind != GetInitialFastElementsKind()) {
7516       possible_transitioned_maps.Add(map);
7517     }
7518     if (IsSloppyArgumentsElements(elements_kind)) {
7519       HInstruction* result =
7520           BuildKeyedGeneric(access_type, expr, slot, object, key, val);
7521       *has_side_effects = result->HasObservableSideEffects();
7522       return AddInstruction(result);
7523     }
7524   }
7525   // Get transition target for each map (NULL == no transition).
7526   for (int i = 0; i < maps->length(); ++i) {
7527     Handle<Map> map = maps->at(i);
7528     Handle<Map> transitioned_map =
7529         Map::FindTransitionedMap(map, &possible_transitioned_maps);
7530     transition_target.Add(transitioned_map);
7531   }
7532
7533   MapHandleList untransitionable_maps(maps->length());
7534   HTransitionElementsKind* transition = NULL;
7535   for (int i = 0; i < maps->length(); ++i) {
7536     Handle<Map> map = maps->at(i);
7537     DCHECK(map->IsMap());
7538     if (!transition_target.at(i).is_null()) {
7539       DCHECK(Map::IsValidElementsTransition(
7540           map->elements_kind(),
7541           transition_target.at(i)->elements_kind()));
7542       transition = Add<HTransitionElementsKind>(object, map,
7543                                                 transition_target.at(i));
7544     } else {
7545       untransitionable_maps.Add(map);
7546     }
7547   }
7548
7549   // If only one map is left after transitioning, handle this case
7550   // monomorphically.
7551   DCHECK(untransitionable_maps.length() >= 1);
7552   if (untransitionable_maps.length() == 1) {
7553     Handle<Map> untransitionable_map = untransitionable_maps[0];
7554     HInstruction* instr = NULL;
7555     if (!CanInlineElementAccess(untransitionable_map)) {
7556       instr = AddInstruction(
7557           BuildKeyedGeneric(access_type, expr, slot, object, key, val));
7558     } else {
7559       instr = BuildMonomorphicElementAccess(
7560           object, key, val, transition, untransitionable_map, access_type,
7561           store_mode);
7562     }
7563     *has_side_effects |= instr->HasObservableSideEffects();
7564     return access_type == STORE ? val : instr;
7565   }
7566
7567   HBasicBlock* join = graph()->CreateBasicBlock();
7568
7569   for (int i = 0; i < untransitionable_maps.length(); ++i) {
7570     Handle<Map> map = untransitionable_maps[i];
7571     ElementsKind elements_kind = map->elements_kind();
7572     HBasicBlock* this_map = graph()->CreateBasicBlock();
7573     HBasicBlock* other_map = graph()->CreateBasicBlock();
7574     HCompareMap* mapcompare =
7575         New<HCompareMap>(object, map, this_map, other_map);
7576     FinishCurrentBlock(mapcompare);
7577
7578     set_current_block(this_map);
7579     HInstruction* access = NULL;
7580     if (!CanInlineElementAccess(map)) {
7581       access = AddInstruction(
7582           BuildKeyedGeneric(access_type, expr, slot, object, key, val));
7583     } else {
7584       DCHECK(IsFastElementsKind(elements_kind) ||
7585              IsFixedTypedArrayElementsKind(elements_kind));
7586       LoadKeyedHoleMode load_mode = BuildKeyedHoleMode(map);
7587       // Happily, mapcompare is a checked object.
7588       access = BuildUncheckedMonomorphicElementAccess(
7589           mapcompare, key, val,
7590           map->instance_type() == JS_ARRAY_TYPE,
7591           elements_kind, access_type,
7592           load_mode,
7593           store_mode);
7594     }
7595     *has_side_effects |= access->HasObservableSideEffects();
7596     // The caller will use has_side_effects and add a correct Simulate.
7597     access->SetFlag(HValue::kHasNoObservableSideEffects);
7598     if (access_type == LOAD) {
7599       Push(access);
7600     }
7601     NoObservableSideEffectsScope scope(this);
7602     GotoNoSimulate(join);
7603     set_current_block(other_map);
7604   }
7605
7606   // Ensure that we visited at least one map above that goes to join. This is
7607   // necessary because FinishExitWithHardDeoptimization does an AbnormalExit
7608   // rather than joining the join block. If this becomes an issue, insert a
7609   // generic access in the case length() == 0.
7610   DCHECK(join->predecessors()->length() > 0);
7611   // Deopt if none of the cases matched.
7612   NoObservableSideEffectsScope scope(this);
7613   FinishExitWithHardDeoptimization(
7614       Deoptimizer::kUnknownMapInPolymorphicElementAccess);
7615   set_current_block(join);
7616   return access_type == STORE ? val : Pop();
7617 }
7618
7619
7620 HValue* HOptimizedGraphBuilder::HandleKeyedElementAccess(
7621     HValue* obj, HValue* key, HValue* val, Expression* expr,
7622     FeedbackVectorICSlot slot, BailoutId ast_id, BailoutId return_id,
7623     PropertyAccessType access_type, bool* has_side_effects) {
7624   if (key->ActualValue()->IsConstant()) {
7625     Handle<Object> constant =
7626         HConstant::cast(key->ActualValue())->handle(isolate());
7627     uint32_t array_index;
7628     if (constant->IsString() &&
7629         !Handle<String>::cast(constant)->AsArrayIndex(&array_index)) {
7630       if (!constant->IsUniqueName()) {
7631         constant = isolate()->factory()->InternalizeString(
7632             Handle<String>::cast(constant));
7633       }
7634       HValue* access =
7635           BuildNamedAccess(access_type, ast_id, return_id, expr, slot, obj,
7636                            Handle<String>::cast(constant), val, false);
7637       if (access == NULL || access->IsPhi() ||
7638           HInstruction::cast(access)->IsLinked()) {
7639         *has_side_effects = false;
7640       } else {
7641         HInstruction* instr = HInstruction::cast(access);
7642         AddInstruction(instr);
7643         *has_side_effects = instr->HasObservableSideEffects();
7644       }
7645       return access;
7646     }
7647   }
7648
7649   DCHECK(!expr->IsPropertyName());
7650   HInstruction* instr = NULL;
7651
7652   SmallMapList* maps;
7653   bool monomorphic = ComputeReceiverTypes(expr, obj, &maps, zone());
7654
7655   bool force_generic = false;
7656   if (expr->GetKeyType() == PROPERTY) {
7657     // Non-Generic accesses assume that elements are being accessed, and will
7658     // deopt for non-index keys, which the IC knows will occur.
7659     // TODO(jkummerow): Consider adding proper support for property accesses.
7660     force_generic = true;
7661     monomorphic = false;
7662   } else if (access_type == STORE &&
7663              (monomorphic || (maps != NULL && !maps->is_empty()))) {
7664     // Stores can't be mono/polymorphic if their prototype chain has dictionary
7665     // elements. However a receiver map that has dictionary elements itself
7666     // should be left to normal mono/poly behavior (the other maps may benefit
7667     // from highly optimized stores).
7668     for (int i = 0; i < maps->length(); i++) {
7669       Handle<Map> current_map = maps->at(i);
7670       if (current_map->DictionaryElementsInPrototypeChainOnly()) {
7671         force_generic = true;
7672         monomorphic = false;
7673         break;
7674       }
7675     }
7676   } else if (access_type == LOAD && !monomorphic &&
7677              (maps != NULL && !maps->is_empty())) {
7678     // Polymorphic loads have to go generic if any of the maps are strings.
7679     // If some, but not all of the maps are strings, we should go generic
7680     // because polymorphic access wants to key on ElementsKind and isn't
7681     // compatible with strings.
7682     for (int i = 0; i < maps->length(); i++) {
7683       Handle<Map> current_map = maps->at(i);
7684       if (current_map->IsStringMap()) {
7685         force_generic = true;
7686         break;
7687       }
7688     }
7689   }
7690
7691   if (monomorphic) {
7692     Handle<Map> map = maps->first();
7693     if (!CanInlineElementAccess(map)) {
7694       instr = AddInstruction(
7695           BuildKeyedGeneric(access_type, expr, slot, obj, key, val));
7696     } else {
7697       BuildCheckHeapObject(obj);
7698       instr = BuildMonomorphicElementAccess(
7699           obj, key, val, NULL, map, access_type, expr->GetStoreMode());
7700     }
7701   } else if (!force_generic && (maps != NULL && !maps->is_empty())) {
7702     return HandlePolymorphicElementAccess(expr, slot, obj, key, val, maps,
7703                                           access_type, expr->GetStoreMode(),
7704                                           has_side_effects);
7705   } else {
7706     if (access_type == STORE) {
7707       if (expr->IsAssignment() &&
7708           expr->AsAssignment()->HasNoTypeInformation()) {
7709         Add<HDeoptimize>(Deoptimizer::kInsufficientTypeFeedbackForKeyedStore,
7710                          Deoptimizer::SOFT);
7711       }
7712     } else {
7713       if (expr->AsProperty()->HasNoTypeInformation()) {
7714         Add<HDeoptimize>(Deoptimizer::kInsufficientTypeFeedbackForKeyedLoad,
7715                          Deoptimizer::SOFT);
7716       }
7717     }
7718     instr = AddInstruction(
7719         BuildKeyedGeneric(access_type, expr, slot, obj, key, val));
7720   }
7721   *has_side_effects = instr->HasObservableSideEffects();
7722   return instr;
7723 }
7724
7725
7726 void HOptimizedGraphBuilder::EnsureArgumentsArePushedForAccess() {
7727   // Outermost function already has arguments on the stack.
7728   if (function_state()->outer() == NULL) return;
7729
7730   if (function_state()->arguments_pushed()) return;
7731
7732   // Push arguments when entering inlined function.
7733   HEnterInlined* entry = function_state()->entry();
7734   entry->set_arguments_pushed();
7735
7736   HArgumentsObject* arguments = entry->arguments_object();
7737   const ZoneList<HValue*>* arguments_values = arguments->arguments_values();
7738
7739   HInstruction* insert_after = entry;
7740   for (int i = 0; i < arguments_values->length(); i++) {
7741     HValue* argument = arguments_values->at(i);
7742     HInstruction* push_argument = New<HPushArguments>(argument);
7743     push_argument->InsertAfter(insert_after);
7744     insert_after = push_argument;
7745   }
7746
7747   HArgumentsElements* arguments_elements = New<HArgumentsElements>(true);
7748   arguments_elements->ClearFlag(HValue::kUseGVN);
7749   arguments_elements->InsertAfter(insert_after);
7750   function_state()->set_arguments_elements(arguments_elements);
7751 }
7752
7753
7754 bool HOptimizedGraphBuilder::TryArgumentsAccess(Property* expr) {
7755   VariableProxy* proxy = expr->obj()->AsVariableProxy();
7756   if (proxy == NULL) return false;
7757   if (!proxy->var()->IsStackAllocated()) return false;
7758   if (!environment()->Lookup(proxy->var())->CheckFlag(HValue::kIsArguments)) {
7759     return false;
7760   }
7761
7762   HInstruction* result = NULL;
7763   if (expr->key()->IsPropertyName()) {
7764     Handle<String> name = expr->key()->AsLiteral()->AsPropertyName();
7765     if (!String::Equals(name, isolate()->factory()->length_string())) {
7766       return false;
7767     }
7768
7769     if (function_state()->outer() == NULL) {
7770       HInstruction* elements = Add<HArgumentsElements>(false);
7771       result = New<HArgumentsLength>(elements);
7772     } else {
7773       // Number of arguments without receiver.
7774       int argument_count = environment()->
7775           arguments_environment()->parameter_count() - 1;
7776       result = New<HConstant>(argument_count);
7777     }
7778   } else {
7779     Push(graph()->GetArgumentsObject());
7780     CHECK_ALIVE_OR_RETURN(VisitForValue(expr->key()), true);
7781     HValue* key = Pop();
7782     Drop(1);  // Arguments object.
7783     if (function_state()->outer() == NULL) {
7784       HInstruction* elements = Add<HArgumentsElements>(false);
7785       HInstruction* length = Add<HArgumentsLength>(elements);
7786       HInstruction* checked_key = Add<HBoundsCheck>(key, length);
7787       result = New<HAccessArgumentsAt>(elements, length, checked_key);
7788     } else {
7789       EnsureArgumentsArePushedForAccess();
7790
7791       // Number of arguments without receiver.
7792       HInstruction* elements = function_state()->arguments_elements();
7793       int argument_count = environment()->
7794           arguments_environment()->parameter_count() - 1;
7795       HInstruction* length = Add<HConstant>(argument_count);
7796       HInstruction* checked_key = Add<HBoundsCheck>(key, length);
7797       result = New<HAccessArgumentsAt>(elements, length, checked_key);
7798     }
7799   }
7800   ast_context()->ReturnInstruction(result, expr->id());
7801   return true;
7802 }
7803
7804
7805 HValue* HOptimizedGraphBuilder::BuildNamedAccess(
7806     PropertyAccessType access, BailoutId ast_id, BailoutId return_id,
7807     Expression* expr, FeedbackVectorICSlot slot, HValue* object,
7808     Handle<String> name, HValue* value, bool is_uninitialized) {
7809   SmallMapList* maps;
7810   ComputeReceiverTypes(expr, object, &maps, zone());
7811   DCHECK(maps != NULL);
7812
7813   if (maps->length() > 0) {
7814     PropertyAccessInfo info(this, access, maps->first(), name);
7815     if (!info.CanAccessAsMonomorphic(maps)) {
7816       HandlePolymorphicNamedFieldAccess(access, expr, slot, ast_id, return_id,
7817                                         object, value, maps, name);
7818       return NULL;
7819     }
7820
7821     HValue* checked_object;
7822     // Type::Number() is only supported by polymorphic load/call handling.
7823     DCHECK(!info.IsNumberType());
7824     BuildCheckHeapObject(object);
7825     if (AreStringTypes(maps)) {
7826       checked_object =
7827           Add<HCheckInstanceType>(object, HCheckInstanceType::IS_STRING);
7828     } else {
7829       checked_object = Add<HCheckMaps>(object, maps);
7830     }
7831     return BuildMonomorphicAccess(
7832         &info, object, checked_object, value, ast_id, return_id);
7833   }
7834
7835   return BuildNamedGeneric(access, expr, slot, object, name, value,
7836                            is_uninitialized);
7837 }
7838
7839
7840 void HOptimizedGraphBuilder::PushLoad(Property* expr,
7841                                       HValue* object,
7842                                       HValue* key) {
7843   ValueContext for_value(this, ARGUMENTS_NOT_ALLOWED);
7844   Push(object);
7845   if (key != NULL) Push(key);
7846   BuildLoad(expr, expr->LoadId());
7847 }
7848
7849
7850 void HOptimizedGraphBuilder::BuildLoad(Property* expr,
7851                                        BailoutId ast_id) {
7852   HInstruction* instr = NULL;
7853   if (expr->IsStringAccess()) {
7854     HValue* index = Pop();
7855     HValue* string = Pop();
7856     HInstruction* char_code = BuildStringCharCodeAt(string, index);
7857     AddInstruction(char_code);
7858     instr = NewUncasted<HStringCharFromCode>(char_code);
7859
7860   } else if (expr->key()->IsPropertyName()) {
7861     Handle<String> name = expr->key()->AsLiteral()->AsPropertyName();
7862     HValue* object = Pop();
7863
7864     HValue* value = BuildNamedAccess(LOAD, ast_id, expr->LoadId(), expr,
7865                                      expr->PropertyFeedbackSlot(), object, name,
7866                                      NULL, expr->IsUninitialized());
7867     if (value == NULL) return;
7868     if (value->IsPhi()) return ast_context()->ReturnValue(value);
7869     instr = HInstruction::cast(value);
7870     if (instr->IsLinked()) return ast_context()->ReturnValue(instr);
7871
7872   } else {
7873     HValue* key = Pop();
7874     HValue* obj = Pop();
7875
7876     bool has_side_effects = false;
7877     HValue* load = HandleKeyedElementAccess(
7878         obj, key, NULL, expr, expr->PropertyFeedbackSlot(), ast_id,
7879         expr->LoadId(), LOAD, &has_side_effects);
7880     if (has_side_effects) {
7881       if (ast_context()->IsEffect()) {
7882         Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
7883       } else {
7884         Push(load);
7885         Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
7886         Drop(1);
7887       }
7888     }
7889     if (load == NULL) return;
7890     return ast_context()->ReturnValue(load);
7891   }
7892   return ast_context()->ReturnInstruction(instr, ast_id);
7893 }
7894
7895
7896 void HOptimizedGraphBuilder::VisitProperty(Property* expr) {
7897   DCHECK(!HasStackOverflow());
7898   DCHECK(current_block() != NULL);
7899   DCHECK(current_block()->HasPredecessor());
7900
7901   if (TryArgumentsAccess(expr)) return;
7902
7903   CHECK_ALIVE(VisitForValue(expr->obj()));
7904   if (!expr->key()->IsPropertyName() || expr->IsStringAccess()) {
7905     CHECK_ALIVE(VisitForValue(expr->key()));
7906   }
7907
7908   BuildLoad(expr, expr->id());
7909 }
7910
7911
7912 HInstruction* HGraphBuilder::BuildConstantMapCheck(Handle<JSObject> constant) {
7913   HCheckMaps* check = Add<HCheckMaps>(
7914       Add<HConstant>(constant), handle(constant->map()));
7915   check->ClearDependsOnFlag(kElementsKind);
7916   return check;
7917 }
7918
7919
7920 HInstruction* HGraphBuilder::BuildCheckPrototypeMaps(Handle<JSObject> prototype,
7921                                                      Handle<JSObject> holder) {
7922   PrototypeIterator iter(isolate(), prototype,
7923                          PrototypeIterator::START_AT_RECEIVER);
7924   while (holder.is_null() ||
7925          !PrototypeIterator::GetCurrent(iter).is_identical_to(holder)) {
7926     BuildConstantMapCheck(
7927         Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)));
7928     iter.Advance();
7929     if (iter.IsAtEnd()) {
7930       return NULL;
7931     }
7932   }
7933   return BuildConstantMapCheck(
7934       Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)));
7935 }
7936
7937
7938 void HOptimizedGraphBuilder::AddCheckPrototypeMaps(Handle<JSObject> holder,
7939                                                    Handle<Map> receiver_map) {
7940   if (!holder.is_null()) {
7941     Handle<JSObject> prototype(JSObject::cast(receiver_map->prototype()));
7942     BuildCheckPrototypeMaps(prototype, holder);
7943   }
7944 }
7945
7946
7947 HInstruction* HOptimizedGraphBuilder::NewPlainFunctionCall(
7948     HValue* fun, int argument_count, bool pass_argument_count) {
7949   return New<HCallJSFunction>(fun, argument_count, pass_argument_count);
7950 }
7951
7952
7953 HInstruction* HOptimizedGraphBuilder::NewArgumentAdaptorCall(
7954     HValue* fun, HValue* context,
7955     int argument_count, HValue* expected_param_count) {
7956   ArgumentAdaptorDescriptor descriptor(isolate());
7957   HValue* arity = Add<HConstant>(argument_count - 1);
7958
7959   HValue* op_vals[] = { context, fun, arity, expected_param_count };
7960
7961   Handle<Code> adaptor =
7962       isolate()->builtins()->ArgumentsAdaptorTrampoline();
7963   HConstant* adaptor_value = Add<HConstant>(adaptor);
7964
7965   return New<HCallWithDescriptor>(adaptor_value, argument_count, descriptor,
7966                                   Vector<HValue*>(op_vals, arraysize(op_vals)));
7967 }
7968
7969
7970 HInstruction* HOptimizedGraphBuilder::BuildCallConstantFunction(
7971     Handle<JSFunction> jsfun, int argument_count) {
7972   HValue* target = Add<HConstant>(jsfun);
7973   // For constant functions, we try to avoid calling the
7974   // argument adaptor and instead call the function directly
7975   int formal_parameter_count =
7976       jsfun->shared()->internal_formal_parameter_count();
7977   bool dont_adapt_arguments =
7978       (formal_parameter_count ==
7979        SharedFunctionInfo::kDontAdaptArgumentsSentinel);
7980   int arity = argument_count - 1;
7981   bool can_invoke_directly =
7982       dont_adapt_arguments || formal_parameter_count == arity;
7983   if (can_invoke_directly) {
7984     if (jsfun.is_identical_to(current_info()->closure())) {
7985       graph()->MarkRecursive();
7986     }
7987     return NewPlainFunctionCall(target, argument_count, dont_adapt_arguments);
7988   } else {
7989     HValue* param_count_value = Add<HConstant>(formal_parameter_count);
7990     HValue* context = Add<HLoadNamedField>(
7991         target, nullptr, HObjectAccess::ForFunctionContextPointer());
7992     return NewArgumentAdaptorCall(target, context,
7993         argument_count, param_count_value);
7994   }
7995   UNREACHABLE();
7996   return NULL;
7997 }
7998
7999
8000 class FunctionSorter {
8001  public:
8002   explicit FunctionSorter(int index = 0, int ticks = 0, int size = 0)
8003       : index_(index), ticks_(ticks), size_(size) {}
8004
8005   int index() const { return index_; }
8006   int ticks() const { return ticks_; }
8007   int size() const { return size_; }
8008
8009  private:
8010   int index_;
8011   int ticks_;
8012   int size_;
8013 };
8014
8015
8016 inline bool operator<(const FunctionSorter& lhs, const FunctionSorter& rhs) {
8017   int diff = lhs.ticks() - rhs.ticks();
8018   if (diff != 0) return diff > 0;
8019   return lhs.size() < rhs.size();
8020 }
8021
8022
8023 void HOptimizedGraphBuilder::HandlePolymorphicCallNamed(Call* expr,
8024                                                         HValue* receiver,
8025                                                         SmallMapList* maps,
8026                                                         Handle<String> name) {
8027   int argument_count = expr->arguments()->length() + 1;  // Includes receiver.
8028   FunctionSorter order[kMaxCallPolymorphism];
8029
8030   bool handle_smi = false;
8031   bool handled_string = false;
8032   int ordered_functions = 0;
8033
8034   int i;
8035   for (i = 0; i < maps->length() && ordered_functions < kMaxCallPolymorphism;
8036        ++i) {
8037     PropertyAccessInfo info(this, LOAD, maps->at(i), name);
8038     if (info.CanAccessMonomorphic() && info.IsDataConstant() &&
8039         info.constant()->IsJSFunction()) {
8040       if (info.IsStringType()) {
8041         if (handled_string) continue;
8042         handled_string = true;
8043       }
8044       Handle<JSFunction> target = Handle<JSFunction>::cast(info.constant());
8045       if (info.IsNumberType()) {
8046         handle_smi = true;
8047       }
8048       expr->set_target(target);
8049       order[ordered_functions++] = FunctionSorter(
8050           i, target->shared()->profiler_ticks(), InliningAstSize(target));
8051     }
8052   }
8053
8054   std::sort(order, order + ordered_functions);
8055
8056   if (i < maps->length()) {
8057     maps->Clear();
8058     ordered_functions = -1;
8059   }
8060
8061   HBasicBlock* number_block = NULL;
8062   HBasicBlock* join = NULL;
8063   handled_string = false;
8064   int count = 0;
8065
8066   for (int fn = 0; fn < ordered_functions; ++fn) {
8067     int i = order[fn].index();
8068     PropertyAccessInfo info(this, LOAD, maps->at(i), name);
8069     if (info.IsStringType()) {
8070       if (handled_string) continue;
8071       handled_string = true;
8072     }
8073     // Reloads the target.
8074     info.CanAccessMonomorphic();
8075     Handle<JSFunction> target = Handle<JSFunction>::cast(info.constant());
8076
8077     expr->set_target(target);
8078     if (count == 0) {
8079       // Only needed once.
8080       join = graph()->CreateBasicBlock();
8081       if (handle_smi) {
8082         HBasicBlock* empty_smi_block = graph()->CreateBasicBlock();
8083         HBasicBlock* not_smi_block = graph()->CreateBasicBlock();
8084         number_block = graph()->CreateBasicBlock();
8085         FinishCurrentBlock(New<HIsSmiAndBranch>(
8086                 receiver, empty_smi_block, not_smi_block));
8087         GotoNoSimulate(empty_smi_block, number_block);
8088         set_current_block(not_smi_block);
8089       } else {
8090         BuildCheckHeapObject(receiver);
8091       }
8092     }
8093     ++count;
8094     HBasicBlock* if_true = graph()->CreateBasicBlock();
8095     HBasicBlock* if_false = graph()->CreateBasicBlock();
8096     HUnaryControlInstruction* compare;
8097
8098     Handle<Map> map = info.map();
8099     if (info.IsNumberType()) {
8100       Handle<Map> heap_number_map = isolate()->factory()->heap_number_map();
8101       compare = New<HCompareMap>(receiver, heap_number_map, if_true, if_false);
8102     } else if (info.IsStringType()) {
8103       compare = New<HIsStringAndBranch>(receiver, if_true, if_false);
8104     } else {
8105       compare = New<HCompareMap>(receiver, map, if_true, if_false);
8106     }
8107     FinishCurrentBlock(compare);
8108
8109     if (info.IsNumberType()) {
8110       GotoNoSimulate(if_true, number_block);
8111       if_true = number_block;
8112     }
8113
8114     set_current_block(if_true);
8115
8116     AddCheckPrototypeMaps(info.holder(), map);
8117
8118     HValue* function = Add<HConstant>(expr->target());
8119     environment()->SetExpressionStackAt(0, function);
8120     Push(receiver);
8121     CHECK_ALIVE(VisitExpressions(expr->arguments()));
8122     bool needs_wrapping = info.NeedsWrappingFor(target);
8123     bool try_inline = FLAG_polymorphic_inlining && !needs_wrapping;
8124     if (FLAG_trace_inlining && try_inline) {
8125       Handle<JSFunction> caller = current_info()->closure();
8126       base::SmartArrayPointer<char> caller_name =
8127           caller->shared()->DebugName()->ToCString();
8128       PrintF("Trying to inline the polymorphic call to %s from %s\n",
8129              name->ToCString().get(),
8130              caller_name.get());
8131     }
8132     if (try_inline && TryInlineCall(expr)) {
8133       // Trying to inline will signal that we should bailout from the
8134       // entire compilation by setting stack overflow on the visitor.
8135       if (HasStackOverflow()) return;
8136     } else {
8137       // Since HWrapReceiver currently cannot actually wrap numbers and strings,
8138       // use the regular CallFunctionStub for method calls to wrap the receiver.
8139       // TODO(verwaest): Support creation of value wrappers directly in
8140       // HWrapReceiver.
8141       HInstruction* call = needs_wrapping
8142           ? NewUncasted<HCallFunction>(
8143               function, argument_count, WRAP_AND_CALL)
8144           : BuildCallConstantFunction(target, argument_count);
8145       PushArgumentsFromEnvironment(argument_count);
8146       AddInstruction(call);
8147       Drop(1);  // Drop the function.
8148       if (!ast_context()->IsEffect()) Push(call);
8149     }
8150
8151     if (current_block() != NULL) Goto(join);
8152     set_current_block(if_false);
8153   }
8154
8155   // Finish up.  Unconditionally deoptimize if we've handled all the maps we
8156   // know about and do not want to handle ones we've never seen.  Otherwise
8157   // use a generic IC.
8158   if (ordered_functions == maps->length() && FLAG_deoptimize_uncommon_cases) {
8159     FinishExitWithHardDeoptimization(Deoptimizer::kUnknownMapInPolymorphicCall);
8160   } else {
8161     Property* prop = expr->expression()->AsProperty();
8162     HInstruction* function =
8163         BuildNamedGeneric(LOAD, prop, prop->PropertyFeedbackSlot(), receiver,
8164                           name, NULL, prop->IsUninitialized());
8165     AddInstruction(function);
8166     Push(function);
8167     AddSimulate(prop->LoadId(), REMOVABLE_SIMULATE);
8168
8169     environment()->SetExpressionStackAt(1, function);
8170     environment()->SetExpressionStackAt(0, receiver);
8171     CHECK_ALIVE(VisitExpressions(expr->arguments()));
8172
8173     CallFunctionFlags flags = receiver->type().IsJSObject()
8174         ? NO_CALL_FUNCTION_FLAGS : CALL_AS_METHOD;
8175     HInstruction* call = New<HCallFunction>(
8176         function, argument_count, flags);
8177
8178     PushArgumentsFromEnvironment(argument_count);
8179
8180     Drop(1);  // Function.
8181
8182     if (join != NULL) {
8183       AddInstruction(call);
8184       if (!ast_context()->IsEffect()) Push(call);
8185       Goto(join);
8186     } else {
8187       return ast_context()->ReturnInstruction(call, expr->id());
8188     }
8189   }
8190
8191   // We assume that control flow is always live after an expression.  So
8192   // even without predecessors to the join block, we set it as the exit
8193   // block and continue by adding instructions there.
8194   DCHECK(join != NULL);
8195   if (join->HasPredecessor()) {
8196     set_current_block(join);
8197     join->SetJoinId(expr->id());
8198     if (!ast_context()->IsEffect()) return ast_context()->ReturnValue(Pop());
8199   } else {
8200     set_current_block(NULL);
8201   }
8202 }
8203
8204
8205 void HOptimizedGraphBuilder::TraceInline(Handle<JSFunction> target,
8206                                          Handle<JSFunction> caller,
8207                                          const char* reason) {
8208   if (FLAG_trace_inlining) {
8209     base::SmartArrayPointer<char> target_name =
8210         target->shared()->DebugName()->ToCString();
8211     base::SmartArrayPointer<char> caller_name =
8212         caller->shared()->DebugName()->ToCString();
8213     if (reason == NULL) {
8214       PrintF("Inlined %s called from %s.\n", target_name.get(),
8215              caller_name.get());
8216     } else {
8217       PrintF("Did not inline %s called from %s (%s).\n",
8218              target_name.get(), caller_name.get(), reason);
8219     }
8220   }
8221 }
8222
8223
8224 static const int kNotInlinable = 1000000000;
8225
8226
8227 int HOptimizedGraphBuilder::InliningAstSize(Handle<JSFunction> target) {
8228   if (!FLAG_use_inlining) return kNotInlinable;
8229
8230   // Precondition: call is monomorphic and we have found a target with the
8231   // appropriate arity.
8232   Handle<JSFunction> caller = current_info()->closure();
8233   Handle<SharedFunctionInfo> target_shared(target->shared());
8234
8235   // Always inline functions that force inlining.
8236   if (target_shared->force_inline()) {
8237     return 0;
8238   }
8239   if (target->IsBuiltin()) {
8240     return kNotInlinable;
8241   }
8242
8243   if (target_shared->IsApiFunction()) {
8244     TraceInline(target, caller, "target is api function");
8245     return kNotInlinable;
8246   }
8247
8248   // Do a quick check on source code length to avoid parsing large
8249   // inlining candidates.
8250   if (target_shared->SourceSize() >
8251       Min(FLAG_max_inlined_source_size, kUnlimitedMaxInlinedSourceSize)) {
8252     TraceInline(target, caller, "target text too big");
8253     return kNotInlinable;
8254   }
8255
8256   // Target must be inlineable.
8257   if (!target_shared->IsInlineable()) {
8258     TraceInline(target, caller, "target not inlineable");
8259     return kNotInlinable;
8260   }
8261   if (target_shared->disable_optimization_reason() != kNoReason) {
8262     TraceInline(target, caller, "target contains unsupported syntax [early]");
8263     return kNotInlinable;
8264   }
8265
8266   int nodes_added = target_shared->ast_node_count();
8267   return nodes_added;
8268 }
8269
8270
8271 bool HOptimizedGraphBuilder::TryInline(Handle<JSFunction> target,
8272                                        int arguments_count,
8273                                        HValue* implicit_return_value,
8274                                        BailoutId ast_id, BailoutId return_id,
8275                                        InliningKind inlining_kind) {
8276   if (target->context()->native_context() !=
8277       top_info()->closure()->context()->native_context()) {
8278     return false;
8279   }
8280   int nodes_added = InliningAstSize(target);
8281   if (nodes_added == kNotInlinable) return false;
8282
8283   Handle<JSFunction> caller = current_info()->closure();
8284
8285   if (nodes_added > Min(FLAG_max_inlined_nodes, kUnlimitedMaxInlinedNodes)) {
8286     TraceInline(target, caller, "target AST is too large [early]");
8287     return false;
8288   }
8289
8290   // Don't inline deeper than the maximum number of inlining levels.
8291   HEnvironment* env = environment();
8292   int current_level = 1;
8293   while (env->outer() != NULL) {
8294     if (current_level == FLAG_max_inlining_levels) {
8295       TraceInline(target, caller, "inline depth limit reached");
8296       return false;
8297     }
8298     if (env->outer()->frame_type() == JS_FUNCTION) {
8299       current_level++;
8300     }
8301     env = env->outer();
8302   }
8303
8304   // Don't inline recursive functions.
8305   for (FunctionState* state = function_state();
8306        state != NULL;
8307        state = state->outer()) {
8308     if (*state->compilation_info()->closure() == *target) {
8309       TraceInline(target, caller, "target is recursive");
8310       return false;
8311     }
8312   }
8313
8314   // We don't want to add more than a certain number of nodes from inlining.
8315   // Always inline small methods (<= 10 nodes).
8316   if (inlined_count_ > Min(FLAG_max_inlined_nodes_cumulative,
8317                            kUnlimitedMaxInlinedNodesCumulative)) {
8318     TraceInline(target, caller, "cumulative AST node limit reached");
8319     return false;
8320   }
8321
8322   // Parse and allocate variables.
8323   // Use the same AstValueFactory for creating strings in the sub-compilation
8324   // step, but don't transfer ownership to target_info.
8325   ParseInfo parse_info(zone(), target);
8326   parse_info.set_ast_value_factory(
8327       top_info()->parse_info()->ast_value_factory());
8328   parse_info.set_ast_value_factory_owned(false);
8329
8330   CompilationInfo target_info(&parse_info);
8331   Handle<SharedFunctionInfo> target_shared(target->shared());
8332   if (target_shared->HasDebugInfo()) {
8333     TraceInline(target, caller, "target is being debugged");
8334     return false;
8335   }
8336   if (!Compiler::ParseAndAnalyze(target_info.parse_info())) {
8337     if (target_info.isolate()->has_pending_exception()) {
8338       // Parse or scope error, never optimize this function.
8339       SetStackOverflow();
8340       target_shared->DisableOptimization(kParseScopeError);
8341     }
8342     TraceInline(target, caller, "parse failure");
8343     return false;
8344   }
8345
8346   if (target_info.scope()->num_heap_slots() > 0) {
8347     TraceInline(target, caller, "target has context-allocated variables");
8348     return false;
8349   }
8350   FunctionLiteral* function = target_info.function();
8351
8352   // The following conditions must be checked again after re-parsing, because
8353   // earlier the information might not have been complete due to lazy parsing.
8354   nodes_added = function->ast_node_count();
8355   if (nodes_added > Min(FLAG_max_inlined_nodes, kUnlimitedMaxInlinedNodes)) {
8356     TraceInline(target, caller, "target AST is too large [late]");
8357     return false;
8358   }
8359   if (function->dont_optimize()) {
8360     TraceInline(target, caller, "target contains unsupported syntax [late]");
8361     return false;
8362   }
8363
8364   // If the function uses the arguments object check that inlining of functions
8365   // with arguments object is enabled and the arguments-variable is
8366   // stack allocated.
8367   if (function->scope()->arguments() != NULL) {
8368     if (!FLAG_inline_arguments) {
8369       TraceInline(target, caller, "target uses arguments object");
8370       return false;
8371     }
8372   }
8373
8374   // All declarations must be inlineable.
8375   ZoneList<Declaration*>* decls = target_info.scope()->declarations();
8376   int decl_count = decls->length();
8377   for (int i = 0; i < decl_count; ++i) {
8378     if (!decls->at(i)->IsInlineable()) {
8379       TraceInline(target, caller, "target has non-trivial declaration");
8380       return false;
8381     }
8382   }
8383
8384   // Generate the deoptimization data for the unoptimized version of
8385   // the target function if we don't already have it.
8386   if (!Compiler::EnsureDeoptimizationSupport(&target_info)) {
8387     TraceInline(target, caller, "could not generate deoptimization info");
8388     return false;
8389   }
8390
8391   // In strong mode it is an error to call a function with too few arguments.
8392   // In that case do not inline because then the arity check would be skipped.
8393   if (is_strong(function->language_mode()) &&
8394       arguments_count < function->parameter_count()) {
8395     TraceInline(target, caller,
8396                 "too few arguments passed to a strong function");
8397     return false;
8398   }
8399
8400   // ----------------------------------------------------------------
8401   // After this point, we've made a decision to inline this function (so
8402   // TryInline should always return true).
8403
8404   // Type-check the inlined function.
8405   DCHECK(target_shared->has_deoptimization_support());
8406   AstTyper::Run(&target_info);
8407
8408   int inlining_id = 0;
8409   if (top_info()->is_tracking_positions()) {
8410     inlining_id = top_info()->TraceInlinedFunction(
8411         target_shared, source_position(), function_state()->inlining_id());
8412   }
8413
8414   // Save the pending call context. Set up new one for the inlined function.
8415   // The function state is new-allocated because we need to delete it
8416   // in two different places.
8417   FunctionState* target_state =
8418       new FunctionState(this, &target_info, inlining_kind, inlining_id);
8419
8420   HConstant* undefined = graph()->GetConstantUndefined();
8421
8422   HEnvironment* inner_env =
8423       environment()->CopyForInlining(target,
8424                                      arguments_count,
8425                                      function,
8426                                      undefined,
8427                                      function_state()->inlining_kind());
8428
8429   HConstant* context = Add<HConstant>(Handle<Context>(target->context()));
8430   inner_env->BindContext(context);
8431
8432   // Create a dematerialized arguments object for the function, also copy the
8433   // current arguments values to use them for materialization.
8434   HEnvironment* arguments_env = inner_env->arguments_environment();
8435   int parameter_count = arguments_env->parameter_count();
8436   HArgumentsObject* arguments_object = Add<HArgumentsObject>(parameter_count);
8437   for (int i = 0; i < parameter_count; i++) {
8438     arguments_object->AddArgument(arguments_env->Lookup(i), zone());
8439   }
8440
8441   // If the function uses arguments object then bind bind one.
8442   if (function->scope()->arguments() != NULL) {
8443     DCHECK(function->scope()->arguments()->IsStackAllocated());
8444     inner_env->Bind(function->scope()->arguments(), arguments_object);
8445   }
8446
8447   // Capture the state before invoking the inlined function for deopt in the
8448   // inlined function. This simulate has no bailout-id since it's not directly
8449   // reachable for deopt, and is only used to capture the state. If the simulate
8450   // becomes reachable by merging, the ast id of the simulate merged into it is
8451   // adopted.
8452   Add<HSimulate>(BailoutId::None());
8453
8454   current_block()->UpdateEnvironment(inner_env);
8455   Scope* saved_scope = scope();
8456   set_scope(target_info.scope());
8457   HEnterInlined* enter_inlined =
8458       Add<HEnterInlined>(return_id, target, context, arguments_count, function,
8459                          function_state()->inlining_kind(),
8460                          function->scope()->arguments(), arguments_object);
8461   if (top_info()->is_tracking_positions()) {
8462     enter_inlined->set_inlining_id(inlining_id);
8463   }
8464   function_state()->set_entry(enter_inlined);
8465
8466   VisitDeclarations(target_info.scope()->declarations());
8467   VisitStatements(function->body());
8468   set_scope(saved_scope);
8469   if (HasStackOverflow()) {
8470     // Bail out if the inline function did, as we cannot residualize a call
8471     // instead, but do not disable optimization for the outer function.
8472     TraceInline(target, caller, "inline graph construction failed");
8473     target_shared->DisableOptimization(kInliningBailedOut);
8474     current_info()->RetryOptimization(kInliningBailedOut);
8475     delete target_state;
8476     return true;
8477   }
8478
8479   // Update inlined nodes count.
8480   inlined_count_ += nodes_added;
8481
8482   Handle<Code> unoptimized_code(target_shared->code());
8483   DCHECK(unoptimized_code->kind() == Code::FUNCTION);
8484   Handle<TypeFeedbackInfo> type_info(
8485       TypeFeedbackInfo::cast(unoptimized_code->type_feedback_info()));
8486   graph()->update_type_change_checksum(type_info->own_type_change_checksum());
8487
8488   TraceInline(target, caller, NULL);
8489
8490   if (current_block() != NULL) {
8491     FunctionState* state = function_state();
8492     if (state->inlining_kind() == CONSTRUCT_CALL_RETURN) {
8493       // Falling off the end of an inlined construct call. In a test context the
8494       // return value will always evaluate to true, in a value context the
8495       // return value is the newly allocated receiver.
8496       if (call_context()->IsTest()) {
8497         Goto(inlined_test_context()->if_true(), state);
8498       } else if (call_context()->IsEffect()) {
8499         Goto(function_return(), state);
8500       } else {
8501         DCHECK(call_context()->IsValue());
8502         AddLeaveInlined(implicit_return_value, state);
8503       }
8504     } else if (state->inlining_kind() == SETTER_CALL_RETURN) {
8505       // Falling off the end of an inlined setter call. The returned value is
8506       // never used, the value of an assignment is always the value of the RHS
8507       // of the assignment.
8508       if (call_context()->IsTest()) {
8509         inlined_test_context()->ReturnValue(implicit_return_value);
8510       } else if (call_context()->IsEffect()) {
8511         Goto(function_return(), state);
8512       } else {
8513         DCHECK(call_context()->IsValue());
8514         AddLeaveInlined(implicit_return_value, state);
8515       }
8516     } else {
8517       // Falling off the end of a normal inlined function. This basically means
8518       // returning undefined.
8519       if (call_context()->IsTest()) {
8520         Goto(inlined_test_context()->if_false(), state);
8521       } else if (call_context()->IsEffect()) {
8522         Goto(function_return(), state);
8523       } else {
8524         DCHECK(call_context()->IsValue());
8525         AddLeaveInlined(undefined, state);
8526       }
8527     }
8528   }
8529
8530   // Fix up the function exits.
8531   if (inlined_test_context() != NULL) {
8532     HBasicBlock* if_true = inlined_test_context()->if_true();
8533     HBasicBlock* if_false = inlined_test_context()->if_false();
8534
8535     HEnterInlined* entry = function_state()->entry();
8536
8537     // Pop the return test context from the expression context stack.
8538     DCHECK(ast_context() == inlined_test_context());
8539     ClearInlinedTestContext();
8540     delete target_state;
8541
8542     // Forward to the real test context.
8543     if (if_true->HasPredecessor()) {
8544       entry->RegisterReturnTarget(if_true, zone());
8545       if_true->SetJoinId(ast_id);
8546       HBasicBlock* true_target = TestContext::cast(ast_context())->if_true();
8547       Goto(if_true, true_target, function_state());
8548     }
8549     if (if_false->HasPredecessor()) {
8550       entry->RegisterReturnTarget(if_false, zone());
8551       if_false->SetJoinId(ast_id);
8552       HBasicBlock* false_target = TestContext::cast(ast_context())->if_false();
8553       Goto(if_false, false_target, function_state());
8554     }
8555     set_current_block(NULL);
8556     return true;
8557
8558   } else if (function_return()->HasPredecessor()) {
8559     function_state()->entry()->RegisterReturnTarget(function_return(), zone());
8560     function_return()->SetJoinId(ast_id);
8561     set_current_block(function_return());
8562   } else {
8563     set_current_block(NULL);
8564   }
8565   delete target_state;
8566   return true;
8567 }
8568
8569
8570 bool HOptimizedGraphBuilder::TryInlineCall(Call* expr) {
8571   return TryInline(expr->target(), expr->arguments()->length(), NULL,
8572                    expr->id(), expr->ReturnId(), NORMAL_RETURN);
8573 }
8574
8575
8576 bool HOptimizedGraphBuilder::TryInlineConstruct(CallNew* expr,
8577                                                 HValue* implicit_return_value) {
8578   return TryInline(expr->target(), expr->arguments()->length(),
8579                    implicit_return_value, expr->id(), expr->ReturnId(),
8580                    CONSTRUCT_CALL_RETURN);
8581 }
8582
8583
8584 bool HOptimizedGraphBuilder::TryInlineGetter(Handle<JSFunction> getter,
8585                                              Handle<Map> receiver_map,
8586                                              BailoutId ast_id,
8587                                              BailoutId return_id) {
8588   if (TryInlineApiGetter(getter, receiver_map, ast_id)) return true;
8589   return TryInline(getter, 0, NULL, ast_id, return_id, GETTER_CALL_RETURN);
8590 }
8591
8592
8593 bool HOptimizedGraphBuilder::TryInlineSetter(Handle<JSFunction> setter,
8594                                              Handle<Map> receiver_map,
8595                                              BailoutId id,
8596                                              BailoutId assignment_id,
8597                                              HValue* implicit_return_value) {
8598   if (TryInlineApiSetter(setter, receiver_map, id)) return true;
8599   return TryInline(setter, 1, implicit_return_value, id, assignment_id,
8600                    SETTER_CALL_RETURN);
8601 }
8602
8603
8604 bool HOptimizedGraphBuilder::TryInlineIndirectCall(Handle<JSFunction> function,
8605                                                    Call* expr,
8606                                                    int arguments_count) {
8607   return TryInline(function, arguments_count, NULL, expr->id(),
8608                    expr->ReturnId(), NORMAL_RETURN);
8609 }
8610
8611
8612 bool HOptimizedGraphBuilder::TryInlineBuiltinFunctionCall(Call* expr) {
8613   if (!expr->target()->shared()->HasBuiltinFunctionId()) return false;
8614   BuiltinFunctionId id = expr->target()->shared()->builtin_function_id();
8615   switch (id) {
8616     case kMathExp:
8617       if (!FLAG_fast_math) break;
8618       // Fall through if FLAG_fast_math.
8619     case kMathRound:
8620     case kMathFround:
8621     case kMathFloor:
8622     case kMathAbs:
8623     case kMathSqrt:
8624     case kMathLog:
8625     case kMathClz32:
8626       if (expr->arguments()->length() == 1) {
8627         HValue* argument = Pop();
8628         Drop(2);  // Receiver and function.
8629         HInstruction* op = NewUncasted<HUnaryMathOperation>(argument, id);
8630         ast_context()->ReturnInstruction(op, expr->id());
8631         return true;
8632       }
8633       break;
8634     case kMathImul:
8635       if (expr->arguments()->length() == 2) {
8636         HValue* right = Pop();
8637         HValue* left = Pop();
8638         Drop(2);  // Receiver and function.
8639         HInstruction* op =
8640             HMul::NewImul(isolate(), zone(), context(), left, right);
8641         ast_context()->ReturnInstruction(op, expr->id());
8642         return true;
8643       }
8644       break;
8645     default:
8646       // Not supported for inlining yet.
8647       break;
8648   }
8649   return false;
8650 }
8651
8652
8653 // static
8654 bool HOptimizedGraphBuilder::IsReadOnlyLengthDescriptor(
8655     Handle<Map> jsarray_map) {
8656   DCHECK(!jsarray_map->is_dictionary_map());
8657   Isolate* isolate = jsarray_map->GetIsolate();
8658   Handle<Name> length_string = isolate->factory()->length_string();
8659   DescriptorArray* descriptors = jsarray_map->instance_descriptors();
8660   int number = descriptors->SearchWithCache(*length_string, *jsarray_map);
8661   DCHECK_NE(DescriptorArray::kNotFound, number);
8662   return descriptors->GetDetails(number).IsReadOnly();
8663 }
8664
8665
8666 // static
8667 bool HOptimizedGraphBuilder::CanInlineArrayResizeOperation(
8668     Handle<Map> receiver_map) {
8669   return !receiver_map.is_null() &&
8670          receiver_map->instance_type() == JS_ARRAY_TYPE &&
8671          IsFastElementsKind(receiver_map->elements_kind()) &&
8672          !receiver_map->is_dictionary_map() &&
8673          !IsReadOnlyLengthDescriptor(receiver_map) &&
8674          !receiver_map->is_observed() && receiver_map->is_extensible();
8675 }
8676
8677
8678 bool HOptimizedGraphBuilder::TryInlineBuiltinMethodCall(
8679     Call* expr, Handle<JSFunction> function, Handle<Map> receiver_map,
8680     int args_count_no_receiver) {
8681   if (!function->shared()->HasBuiltinFunctionId()) return false;
8682   BuiltinFunctionId id = function->shared()->builtin_function_id();
8683   int argument_count = args_count_no_receiver + 1;  // Plus receiver.
8684
8685   if (receiver_map.is_null()) {
8686     HValue* receiver = environment()->ExpressionStackAt(args_count_no_receiver);
8687     if (receiver->IsConstant() &&
8688         HConstant::cast(receiver)->handle(isolate())->IsHeapObject()) {
8689       receiver_map =
8690           handle(Handle<HeapObject>::cast(
8691                      HConstant::cast(receiver)->handle(isolate()))->map());
8692     }
8693   }
8694   // Try to inline calls like Math.* as operations in the calling function.
8695   switch (id) {
8696     case kStringCharCodeAt:
8697     case kStringCharAt:
8698       if (argument_count == 2) {
8699         HValue* index = Pop();
8700         HValue* string = Pop();
8701         Drop(1);  // Function.
8702         HInstruction* char_code =
8703             BuildStringCharCodeAt(string, index);
8704         if (id == kStringCharCodeAt) {
8705           ast_context()->ReturnInstruction(char_code, expr->id());
8706           return true;
8707         }
8708         AddInstruction(char_code);
8709         HInstruction* result = NewUncasted<HStringCharFromCode>(char_code);
8710         ast_context()->ReturnInstruction(result, expr->id());
8711         return true;
8712       }
8713       break;
8714     case kStringFromCharCode:
8715       if (argument_count == 2) {
8716         HValue* argument = Pop();
8717         Drop(2);  // Receiver and function.
8718         HInstruction* result = NewUncasted<HStringCharFromCode>(argument);
8719         ast_context()->ReturnInstruction(result, expr->id());
8720         return true;
8721       }
8722       break;
8723     case kMathExp:
8724       if (!FLAG_fast_math) break;
8725       // Fall through if FLAG_fast_math.
8726     case kMathRound:
8727     case kMathFround:
8728     case kMathFloor:
8729     case kMathAbs:
8730     case kMathSqrt:
8731     case kMathLog:
8732     case kMathClz32:
8733       if (argument_count == 2) {
8734         HValue* argument = Pop();
8735         Drop(2);  // Receiver and function.
8736         HInstruction* op = NewUncasted<HUnaryMathOperation>(argument, id);
8737         ast_context()->ReturnInstruction(op, expr->id());
8738         return true;
8739       }
8740       break;
8741     case kMathPow:
8742       if (argument_count == 3) {
8743         HValue* right = Pop();
8744         HValue* left = Pop();
8745         Drop(2);  // Receiver and function.
8746         HInstruction* result = NULL;
8747         // Use sqrt() if exponent is 0.5 or -0.5.
8748         if (right->IsConstant() && HConstant::cast(right)->HasDoubleValue()) {
8749           double exponent = HConstant::cast(right)->DoubleValue();
8750           if (exponent == 0.5) {
8751             result = NewUncasted<HUnaryMathOperation>(left, kMathPowHalf);
8752           } else if (exponent == -0.5) {
8753             HValue* one = graph()->GetConstant1();
8754             HInstruction* sqrt = AddUncasted<HUnaryMathOperation>(
8755                 left, kMathPowHalf);
8756             // MathPowHalf doesn't have side effects so there's no need for
8757             // an environment simulation here.
8758             DCHECK(!sqrt->HasObservableSideEffects());
8759             result = NewUncasted<HDiv>(one, sqrt);
8760           } else if (exponent == 2.0) {
8761             result = NewUncasted<HMul>(left, left);
8762           }
8763         }
8764
8765         if (result == NULL) {
8766           result = NewUncasted<HPower>(left, right);
8767         }
8768         ast_context()->ReturnInstruction(result, expr->id());
8769         return true;
8770       }
8771       break;
8772     case kMathMax:
8773     case kMathMin:
8774       if (argument_count == 3) {
8775         HValue* right = Pop();
8776         HValue* left = Pop();
8777         Drop(2);  // Receiver and function.
8778         HMathMinMax::Operation op = (id == kMathMin) ? HMathMinMax::kMathMin
8779                                                      : HMathMinMax::kMathMax;
8780         HInstruction* result = NewUncasted<HMathMinMax>(left, right, op);
8781         ast_context()->ReturnInstruction(result, expr->id());
8782         return true;
8783       }
8784       break;
8785     case kMathImul:
8786       if (argument_count == 3) {
8787         HValue* right = Pop();
8788         HValue* left = Pop();
8789         Drop(2);  // Receiver and function.
8790         HInstruction* result =
8791             HMul::NewImul(isolate(), zone(), context(), left, right);
8792         ast_context()->ReturnInstruction(result, expr->id());
8793         return true;
8794       }
8795       break;
8796     case kArrayPop: {
8797       if (!CanInlineArrayResizeOperation(receiver_map)) return false;
8798       ElementsKind elements_kind = receiver_map->elements_kind();
8799
8800       Drop(args_count_no_receiver);
8801       HValue* result;
8802       HValue* reduced_length;
8803       HValue* receiver = Pop();
8804
8805       HValue* checked_object = AddCheckMap(receiver, receiver_map);
8806       HValue* length =
8807           Add<HLoadNamedField>(checked_object, nullptr,
8808                                HObjectAccess::ForArrayLength(elements_kind));
8809
8810       Drop(1);  // Function.
8811
8812       { NoObservableSideEffectsScope scope(this);
8813         IfBuilder length_checker(this);
8814
8815         HValue* bounds_check = length_checker.If<HCompareNumericAndBranch>(
8816             length, graph()->GetConstant0(), Token::EQ);
8817         length_checker.Then();
8818
8819         if (!ast_context()->IsEffect()) Push(graph()->GetConstantUndefined());
8820
8821         length_checker.Else();
8822         HValue* elements = AddLoadElements(checked_object);
8823         // Ensure that we aren't popping from a copy-on-write array.
8824         if (IsFastSmiOrObjectElementsKind(elements_kind)) {
8825           elements = BuildCopyElementsOnWrite(checked_object, elements,
8826                                               elements_kind, length);
8827         }
8828         reduced_length = AddUncasted<HSub>(length, graph()->GetConstant1());
8829         result = AddElementAccess(elements, reduced_length, NULL,
8830                                   bounds_check, elements_kind, LOAD);
8831         HValue* hole = IsFastSmiOrObjectElementsKind(elements_kind)
8832                            ? graph()->GetConstantHole()
8833                            : Add<HConstant>(HConstant::kHoleNaN);
8834         if (IsFastSmiOrObjectElementsKind(elements_kind)) {
8835           elements_kind = FAST_HOLEY_ELEMENTS;
8836         }
8837         AddElementAccess(
8838             elements, reduced_length, hole, bounds_check, elements_kind, STORE);
8839         Add<HStoreNamedField>(
8840             checked_object, HObjectAccess::ForArrayLength(elements_kind),
8841             reduced_length, STORE_TO_INITIALIZED_ENTRY);
8842
8843         if (!ast_context()->IsEffect()) Push(result);
8844
8845         length_checker.End();
8846       }
8847       result = ast_context()->IsEffect() ? graph()->GetConstant0() : Top();
8848       Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
8849       if (!ast_context()->IsEffect()) Drop(1);
8850
8851       ast_context()->ReturnValue(result);
8852       return true;
8853     }
8854     case kArrayPush: {
8855       if (!CanInlineArrayResizeOperation(receiver_map)) return false;
8856       ElementsKind elements_kind = receiver_map->elements_kind();
8857
8858       // If there may be elements accessors in the prototype chain, the fast
8859       // inlined version can't be used.
8860       if (receiver_map->DictionaryElementsInPrototypeChainOnly()) return false;
8861       // If there currently can be no elements accessors on the prototype chain,
8862       // it doesn't mean that there won't be any later. Install a full prototype
8863       // chain check to trap element accessors being installed on the prototype
8864       // chain, which would cause elements to go to dictionary mode and result
8865       // in a map change.
8866       Handle<JSObject> prototype(JSObject::cast(receiver_map->prototype()));
8867       BuildCheckPrototypeMaps(prototype, Handle<JSObject>());
8868
8869       // Protect against adding elements to the Array prototype, which needs to
8870       // route through appropriate bottlenecks.
8871       if (isolate()->IsFastArrayConstructorPrototypeChainIntact() &&
8872           !prototype->IsJSArray()) {
8873         return false;
8874       }
8875
8876       const int argc = args_count_no_receiver;
8877       if (argc != 1) return false;
8878
8879       HValue* value_to_push = Pop();
8880       HValue* array = Pop();
8881       Drop(1);  // Drop function.
8882
8883       HInstruction* new_size = NULL;
8884       HValue* length = NULL;
8885
8886       {
8887         NoObservableSideEffectsScope scope(this);
8888
8889         length = Add<HLoadNamedField>(
8890             array, nullptr, HObjectAccess::ForArrayLength(elements_kind));
8891
8892         new_size = AddUncasted<HAdd>(length, graph()->GetConstant1());
8893
8894         bool is_array = receiver_map->instance_type() == JS_ARRAY_TYPE;
8895         HValue* checked_array = Add<HCheckMaps>(array, receiver_map);
8896         BuildUncheckedMonomorphicElementAccess(
8897             checked_array, length, value_to_push, is_array, elements_kind,
8898             STORE, NEVER_RETURN_HOLE, STORE_AND_GROW_NO_TRANSITION);
8899
8900         if (!ast_context()->IsEffect()) Push(new_size);
8901         Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
8902         if (!ast_context()->IsEffect()) Drop(1);
8903       }
8904
8905       ast_context()->ReturnValue(new_size);
8906       return true;
8907     }
8908     case kArrayShift: {
8909       if (!CanInlineArrayResizeOperation(receiver_map)) return false;
8910       ElementsKind kind = receiver_map->elements_kind();
8911
8912       // If there may be elements accessors in the prototype chain, the fast
8913       // inlined version can't be used.
8914       if (receiver_map->DictionaryElementsInPrototypeChainOnly()) return false;
8915
8916       // If there currently can be no elements accessors on the prototype chain,
8917       // it doesn't mean that there won't be any later. Install a full prototype
8918       // chain check to trap element accessors being installed on the prototype
8919       // chain, which would cause elements to go to dictionary mode and result
8920       // in a map change.
8921       BuildCheckPrototypeMaps(
8922           handle(JSObject::cast(receiver_map->prototype()), isolate()),
8923           Handle<JSObject>::null());
8924
8925       // Threshold for fast inlined Array.shift().
8926       HConstant* inline_threshold = Add<HConstant>(static_cast<int32_t>(16));
8927
8928       Drop(args_count_no_receiver);
8929       HValue* receiver = Pop();
8930       HValue* function = Pop();
8931       HValue* result;
8932
8933       {
8934         NoObservableSideEffectsScope scope(this);
8935
8936         HValue* length = Add<HLoadNamedField>(
8937             receiver, nullptr, HObjectAccess::ForArrayLength(kind));
8938
8939         IfBuilder if_lengthiszero(this);
8940         HValue* lengthiszero = if_lengthiszero.If<HCompareNumericAndBranch>(
8941             length, graph()->GetConstant0(), Token::EQ);
8942         if_lengthiszero.Then();
8943         {
8944           if (!ast_context()->IsEffect()) Push(graph()->GetConstantUndefined());
8945         }
8946         if_lengthiszero.Else();
8947         {
8948           HValue* elements = AddLoadElements(receiver);
8949
8950           // Check if we can use the fast inlined Array.shift().
8951           IfBuilder if_inline(this);
8952           if_inline.If<HCompareNumericAndBranch>(
8953               length, inline_threshold, Token::LTE);
8954           if (IsFastSmiOrObjectElementsKind(kind)) {
8955             // We cannot handle copy-on-write backing stores here.
8956             if_inline.AndIf<HCompareMap>(
8957                 elements, isolate()->factory()->fixed_array_map());
8958           }
8959           if_inline.Then();
8960           {
8961             // Remember the result.
8962             if (!ast_context()->IsEffect()) {
8963               Push(AddElementAccess(elements, graph()->GetConstant0(), NULL,
8964                                     lengthiszero, kind, LOAD));
8965             }
8966
8967             // Compute the new length.
8968             HValue* new_length = AddUncasted<HSub>(
8969                 length, graph()->GetConstant1());
8970             new_length->ClearFlag(HValue::kCanOverflow);
8971
8972             // Copy the remaining elements.
8973             LoopBuilder loop(this, context(), LoopBuilder::kPostIncrement);
8974             {
8975               HValue* new_key = loop.BeginBody(
8976                   graph()->GetConstant0(), new_length, Token::LT);
8977               HValue* key = AddUncasted<HAdd>(new_key, graph()->GetConstant1());
8978               key->ClearFlag(HValue::kCanOverflow);
8979               ElementsKind copy_kind =
8980                   kind == FAST_HOLEY_SMI_ELEMENTS ? FAST_HOLEY_ELEMENTS : kind;
8981               HValue* element = AddUncasted<HLoadKeyed>(
8982                   elements, key, lengthiszero, copy_kind, ALLOW_RETURN_HOLE);
8983               HStoreKeyed* store =
8984                   Add<HStoreKeyed>(elements, new_key, element, copy_kind);
8985               store->SetFlag(HValue::kAllowUndefinedAsNaN);
8986             }
8987             loop.EndBody();
8988
8989             // Put a hole at the end.
8990             HValue* hole = IsFastSmiOrObjectElementsKind(kind)
8991                                ? graph()->GetConstantHole()
8992                                : Add<HConstant>(HConstant::kHoleNaN);
8993             if (IsFastSmiOrObjectElementsKind(kind)) kind = FAST_HOLEY_ELEMENTS;
8994             Add<HStoreKeyed>(
8995                 elements, new_length, hole, kind, INITIALIZING_STORE);
8996
8997             // Remember new length.
8998             Add<HStoreNamedField>(
8999                 receiver, HObjectAccess::ForArrayLength(kind),
9000                 new_length, STORE_TO_INITIALIZED_ENTRY);
9001           }
9002           if_inline.Else();
9003           {
9004             Add<HPushArguments>(receiver);
9005             result = Add<HCallJSFunction>(function, 1, true);
9006             if (!ast_context()->IsEffect()) Push(result);
9007           }
9008           if_inline.End();
9009         }
9010         if_lengthiszero.End();
9011       }
9012       result = ast_context()->IsEffect() ? graph()->GetConstant0() : Top();
9013       Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
9014       if (!ast_context()->IsEffect()) Drop(1);
9015       ast_context()->ReturnValue(result);
9016       return true;
9017     }
9018     case kArrayIndexOf:
9019     case kArrayLastIndexOf: {
9020       if (receiver_map.is_null()) return false;
9021       if (receiver_map->instance_type() != JS_ARRAY_TYPE) return false;
9022       ElementsKind kind = receiver_map->elements_kind();
9023       if (!IsFastElementsKind(kind)) return false;
9024       if (receiver_map->is_observed()) return false;
9025       if (argument_count != 2) return false;
9026       if (!receiver_map->is_extensible()) return false;
9027
9028       // If there may be elements accessors in the prototype chain, the fast
9029       // inlined version can't be used.
9030       if (receiver_map->DictionaryElementsInPrototypeChainOnly()) return false;
9031
9032       // If there currently can be no elements accessors on the prototype chain,
9033       // it doesn't mean that there won't be any later. Install a full prototype
9034       // chain check to trap element accessors being installed on the prototype
9035       // chain, which would cause elements to go to dictionary mode and result
9036       // in a map change.
9037       BuildCheckPrototypeMaps(
9038           handle(JSObject::cast(receiver_map->prototype()), isolate()),
9039           Handle<JSObject>::null());
9040
9041       HValue* search_element = Pop();
9042       HValue* receiver = Pop();
9043       Drop(1);  // Drop function.
9044
9045       ArrayIndexOfMode mode = (id == kArrayIndexOf)
9046           ? kFirstIndexOf : kLastIndexOf;
9047       HValue* index = BuildArrayIndexOf(receiver, search_element, kind, mode);
9048
9049       if (!ast_context()->IsEffect()) Push(index);
9050       Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
9051       if (!ast_context()->IsEffect()) Drop(1);
9052       ast_context()->ReturnValue(index);
9053       return true;
9054     }
9055     default:
9056       // Not yet supported for inlining.
9057       break;
9058   }
9059   return false;
9060 }
9061
9062
9063 bool HOptimizedGraphBuilder::TryInlineApiFunctionCall(Call* expr,
9064                                                       HValue* receiver) {
9065   Handle<JSFunction> function = expr->target();
9066   int argc = expr->arguments()->length();
9067   SmallMapList receiver_maps;
9068   return TryInlineApiCall(function,
9069                           receiver,
9070                           &receiver_maps,
9071                           argc,
9072                           expr->id(),
9073                           kCallApiFunction);
9074 }
9075
9076
9077 bool HOptimizedGraphBuilder::TryInlineApiMethodCall(
9078     Call* expr,
9079     HValue* receiver,
9080     SmallMapList* receiver_maps) {
9081   Handle<JSFunction> function = expr->target();
9082   int argc = expr->arguments()->length();
9083   return TryInlineApiCall(function,
9084                           receiver,
9085                           receiver_maps,
9086                           argc,
9087                           expr->id(),
9088                           kCallApiMethod);
9089 }
9090
9091
9092 bool HOptimizedGraphBuilder::TryInlineApiGetter(Handle<JSFunction> function,
9093                                                 Handle<Map> receiver_map,
9094                                                 BailoutId ast_id) {
9095   SmallMapList receiver_maps(1, zone());
9096   receiver_maps.Add(receiver_map, zone());
9097   return TryInlineApiCall(function,
9098                           NULL,  // Receiver is on expression stack.
9099                           &receiver_maps,
9100                           0,
9101                           ast_id,
9102                           kCallApiGetter);
9103 }
9104
9105
9106 bool HOptimizedGraphBuilder::TryInlineApiSetter(Handle<JSFunction> function,
9107                                                 Handle<Map> receiver_map,
9108                                                 BailoutId ast_id) {
9109   SmallMapList receiver_maps(1, zone());
9110   receiver_maps.Add(receiver_map, zone());
9111   return TryInlineApiCall(function,
9112                           NULL,  // Receiver is on expression stack.
9113                           &receiver_maps,
9114                           1,
9115                           ast_id,
9116                           kCallApiSetter);
9117 }
9118
9119
9120 bool HOptimizedGraphBuilder::TryInlineApiCall(Handle<JSFunction> function,
9121                                                HValue* receiver,
9122                                                SmallMapList* receiver_maps,
9123                                                int argc,
9124                                                BailoutId ast_id,
9125                                                ApiCallType call_type) {
9126   if (function->context()->native_context() !=
9127       top_info()->closure()->context()->native_context()) {
9128     return false;
9129   }
9130   CallOptimization optimization(function);
9131   if (!optimization.is_simple_api_call()) return false;
9132   Handle<Map> holder_map;
9133   for (int i = 0; i < receiver_maps->length(); ++i) {
9134     auto map = receiver_maps->at(i);
9135     // Don't inline calls to receivers requiring accesschecks.
9136     if (map->is_access_check_needed()) return false;
9137   }
9138   if (call_type == kCallApiFunction) {
9139     // Cannot embed a direct reference to the global proxy map
9140     // as it maybe dropped on deserialization.
9141     CHECK(!isolate()->serializer_enabled());
9142     DCHECK_EQ(0, receiver_maps->length());
9143     receiver_maps->Add(handle(function->global_proxy()->map()), zone());
9144   }
9145   CallOptimization::HolderLookup holder_lookup =
9146       CallOptimization::kHolderNotFound;
9147   Handle<JSObject> api_holder = optimization.LookupHolderOfExpectedType(
9148       receiver_maps->first(), &holder_lookup);
9149   if (holder_lookup == CallOptimization::kHolderNotFound) return false;
9150
9151   if (FLAG_trace_inlining) {
9152     PrintF("Inlining api function ");
9153     function->ShortPrint();
9154     PrintF("\n");
9155   }
9156
9157   bool is_function = false;
9158   bool is_store = false;
9159   switch (call_type) {
9160     case kCallApiFunction:
9161     case kCallApiMethod:
9162       // Need to check that none of the receiver maps could have changed.
9163       Add<HCheckMaps>(receiver, receiver_maps);
9164       // Need to ensure the chain between receiver and api_holder is intact.
9165       if (holder_lookup == CallOptimization::kHolderFound) {
9166         AddCheckPrototypeMaps(api_holder, receiver_maps->first());
9167       } else {
9168         DCHECK_EQ(holder_lookup, CallOptimization::kHolderIsReceiver);
9169       }
9170       // Includes receiver.
9171       PushArgumentsFromEnvironment(argc + 1);
9172       is_function = true;
9173       break;
9174     case kCallApiGetter:
9175       // Receiver and prototype chain cannot have changed.
9176       DCHECK_EQ(0, argc);
9177       DCHECK_NULL(receiver);
9178       // Receiver is on expression stack.
9179       receiver = Pop();
9180       Add<HPushArguments>(receiver);
9181       break;
9182     case kCallApiSetter:
9183       {
9184         is_store = true;
9185         // Receiver and prototype chain cannot have changed.
9186         DCHECK_EQ(1, argc);
9187         DCHECK_NULL(receiver);
9188         // Receiver and value are on expression stack.
9189         HValue* value = Pop();
9190         receiver = Pop();
9191         Add<HPushArguments>(receiver, value);
9192         break;
9193      }
9194   }
9195
9196   HValue* holder = NULL;
9197   switch (holder_lookup) {
9198     case CallOptimization::kHolderFound:
9199       holder = Add<HConstant>(api_holder);
9200       break;
9201     case CallOptimization::kHolderIsReceiver:
9202       holder = receiver;
9203       break;
9204     case CallOptimization::kHolderNotFound:
9205       UNREACHABLE();
9206       break;
9207   }
9208   Handle<CallHandlerInfo> api_call_info = optimization.api_call_info();
9209   Handle<Object> call_data_obj(api_call_info->data(), isolate());
9210   bool call_data_undefined = call_data_obj->IsUndefined();
9211   HValue* call_data = Add<HConstant>(call_data_obj);
9212   ApiFunction fun(v8::ToCData<Address>(api_call_info->callback()));
9213   ExternalReference ref = ExternalReference(&fun,
9214                                             ExternalReference::DIRECT_API_CALL,
9215                                             isolate());
9216   HValue* api_function_address = Add<HConstant>(ExternalReference(ref));
9217
9218   HValue* op_vals[] = {context(), Add<HConstant>(function), call_data, holder,
9219                        api_function_address, nullptr};
9220
9221   HInstruction* call = nullptr;
9222   if (!is_function) {
9223     CallApiAccessorStub stub(isolate(), is_store, call_data_undefined);
9224     Handle<Code> code = stub.GetCode();
9225     HConstant* code_value = Add<HConstant>(code);
9226     ApiAccessorDescriptor descriptor(isolate());
9227     call = New<HCallWithDescriptor>(
9228         code_value, argc + 1, descriptor,
9229         Vector<HValue*>(op_vals, arraysize(op_vals) - 1));
9230   } else if (argc <= CallApiFunctionWithFixedArgsStub::kMaxFixedArgs) {
9231     CallApiFunctionWithFixedArgsStub stub(isolate(), argc, call_data_undefined);
9232     Handle<Code> code = stub.GetCode();
9233     HConstant* code_value = Add<HConstant>(code);
9234     ApiFunctionWithFixedArgsDescriptor descriptor(isolate());
9235     call = New<HCallWithDescriptor>(
9236         code_value, argc + 1, descriptor,
9237         Vector<HValue*>(op_vals, arraysize(op_vals) - 1));
9238     Drop(1);  // Drop function.
9239   } else {
9240     op_vals[arraysize(op_vals) - 1] = Add<HConstant>(argc);
9241     CallApiFunctionStub stub(isolate(), call_data_undefined);
9242     Handle<Code> code = stub.GetCode();
9243     HConstant* code_value = Add<HConstant>(code);
9244     ApiFunctionDescriptor descriptor(isolate());
9245     call =
9246         New<HCallWithDescriptor>(code_value, argc + 1, descriptor,
9247                                  Vector<HValue*>(op_vals, arraysize(op_vals)));
9248     Drop(1);  // Drop function.
9249   }
9250
9251   ast_context()->ReturnInstruction(call, ast_id);
9252   return true;
9253 }
9254
9255
9256 void HOptimizedGraphBuilder::HandleIndirectCall(Call* expr, HValue* function,
9257                                                 int arguments_count) {
9258   Handle<JSFunction> known_function;
9259   int args_count_no_receiver = arguments_count - 1;
9260   if (function->IsConstant() &&
9261       HConstant::cast(function)->handle(isolate())->IsJSFunction()) {
9262     known_function =
9263         Handle<JSFunction>::cast(HConstant::cast(function)->handle(isolate()));
9264     if (TryInlineBuiltinMethodCall(expr, known_function, Handle<Map>(),
9265                                    args_count_no_receiver)) {
9266       if (FLAG_trace_inlining) {
9267         PrintF("Inlining builtin ");
9268         known_function->ShortPrint();
9269         PrintF("\n");
9270       }
9271       return;
9272     }
9273
9274     if (TryInlineIndirectCall(known_function, expr, args_count_no_receiver)) {
9275       return;
9276     }
9277   }
9278
9279   PushArgumentsFromEnvironment(arguments_count);
9280   HInvokeFunction* call =
9281       New<HInvokeFunction>(function, known_function, arguments_count);
9282   Drop(1);  // Function
9283   ast_context()->ReturnInstruction(call, expr->id());
9284 }
9285
9286
9287 bool HOptimizedGraphBuilder::TryIndirectCall(Call* expr) {
9288   DCHECK(expr->expression()->IsProperty());
9289
9290   if (!expr->IsMonomorphic()) {
9291     return false;
9292   }
9293   Handle<Map> function_map = expr->GetReceiverTypes()->first();
9294   if (function_map->instance_type() != JS_FUNCTION_TYPE ||
9295       !expr->target()->shared()->HasBuiltinFunctionId()) {
9296     return false;
9297   }
9298
9299   switch (expr->target()->shared()->builtin_function_id()) {
9300     case kFunctionCall: {
9301       if (expr->arguments()->length() == 0) return false;
9302       BuildFunctionCall(expr);
9303       return true;
9304     }
9305     case kFunctionApply: {
9306       // For .apply, only the pattern f.apply(receiver, arguments)
9307       // is supported.
9308       if (current_info()->scope()->arguments() == NULL) return false;
9309
9310       if (!CanBeFunctionApplyArguments(expr)) return false;
9311
9312       BuildFunctionApply(expr);
9313       return true;
9314     }
9315     default: { return false; }
9316   }
9317   UNREACHABLE();
9318 }
9319
9320
9321 void HOptimizedGraphBuilder::BuildFunctionApply(Call* expr) {
9322   ZoneList<Expression*>* args = expr->arguments();
9323   CHECK_ALIVE(VisitForValue(args->at(0)));
9324   HValue* receiver = Pop();  // receiver
9325   HValue* function = Pop();  // f
9326   Drop(1);  // apply
9327
9328   Handle<Map> function_map = expr->GetReceiverTypes()->first();
9329   HValue* checked_function = AddCheckMap(function, function_map);
9330
9331   if (function_state()->outer() == NULL) {
9332     HInstruction* elements = Add<HArgumentsElements>(false);
9333     HInstruction* length = Add<HArgumentsLength>(elements);
9334     HValue* wrapped_receiver = BuildWrapReceiver(receiver, checked_function);
9335     HInstruction* result = New<HApplyArguments>(function,
9336                                                 wrapped_receiver,
9337                                                 length,
9338                                                 elements);
9339     ast_context()->ReturnInstruction(result, expr->id());
9340   } else {
9341     // We are inside inlined function and we know exactly what is inside
9342     // arguments object. But we need to be able to materialize at deopt.
9343     DCHECK_EQ(environment()->arguments_environment()->parameter_count(),
9344               function_state()->entry()->arguments_object()->arguments_count());
9345     HArgumentsObject* args = function_state()->entry()->arguments_object();
9346     const ZoneList<HValue*>* arguments_values = args->arguments_values();
9347     int arguments_count = arguments_values->length();
9348     Push(function);
9349     Push(BuildWrapReceiver(receiver, checked_function));
9350     for (int i = 1; i < arguments_count; i++) {
9351       Push(arguments_values->at(i));
9352     }
9353     HandleIndirectCall(expr, function, arguments_count);
9354   }
9355 }
9356
9357
9358 // f.call(...)
9359 void HOptimizedGraphBuilder::BuildFunctionCall(Call* expr) {
9360   HValue* function = Top();  // f
9361   Handle<Map> function_map = expr->GetReceiverTypes()->first();
9362   HValue* checked_function = AddCheckMap(function, function_map);
9363
9364   // f and call are on the stack in the unoptimized code
9365   // during evaluation of the arguments.
9366   CHECK_ALIVE(VisitExpressions(expr->arguments()));
9367
9368   int args_length = expr->arguments()->length();
9369   int receiver_index = args_length - 1;
9370   // Patch the receiver.
9371   HValue* receiver = BuildWrapReceiver(
9372       environment()->ExpressionStackAt(receiver_index), checked_function);
9373   environment()->SetExpressionStackAt(receiver_index, receiver);
9374
9375   // Call must not be on the stack from now on.
9376   int call_index = args_length + 1;
9377   environment()->RemoveExpressionStackAt(call_index);
9378
9379   HandleIndirectCall(expr, function, args_length);
9380 }
9381
9382
9383 HValue* HOptimizedGraphBuilder::ImplicitReceiverFor(HValue* function,
9384                                                     Handle<JSFunction> target) {
9385   SharedFunctionInfo* shared = target->shared();
9386   if (is_sloppy(shared->language_mode()) && !shared->native()) {
9387     // Cannot embed a direct reference to the global proxy
9388     // as is it dropped on deserialization.
9389     CHECK(!isolate()->serializer_enabled());
9390     Handle<JSObject> global_proxy(target->context()->global_proxy());
9391     return Add<HConstant>(global_proxy);
9392   }
9393   return graph()->GetConstantUndefined();
9394 }
9395
9396
9397 void HOptimizedGraphBuilder::BuildArrayCall(Expression* expression,
9398                                             int arguments_count,
9399                                             HValue* function,
9400                                             Handle<AllocationSite> site) {
9401   Add<HCheckValue>(function, array_function());
9402
9403   if (IsCallArrayInlineable(arguments_count, site)) {
9404     BuildInlinedCallArray(expression, arguments_count, site);
9405     return;
9406   }
9407
9408   HInstruction* call = PreProcessCall(New<HCallNewArray>(
9409       function, arguments_count + 1, site->GetElementsKind(), site));
9410   if (expression->IsCall()) {
9411     Drop(1);
9412   }
9413   ast_context()->ReturnInstruction(call, expression->id());
9414 }
9415
9416
9417 HValue* HOptimizedGraphBuilder::BuildArrayIndexOf(HValue* receiver,
9418                                                   HValue* search_element,
9419                                                   ElementsKind kind,
9420                                                   ArrayIndexOfMode mode) {
9421   DCHECK(IsFastElementsKind(kind));
9422
9423   NoObservableSideEffectsScope no_effects(this);
9424
9425   HValue* elements = AddLoadElements(receiver);
9426   HValue* length = AddLoadArrayLength(receiver, kind);
9427
9428   HValue* initial;
9429   HValue* terminating;
9430   Token::Value token;
9431   LoopBuilder::Direction direction;
9432   if (mode == kFirstIndexOf) {
9433     initial = graph()->GetConstant0();
9434     terminating = length;
9435     token = Token::LT;
9436     direction = LoopBuilder::kPostIncrement;
9437   } else {
9438     DCHECK_EQ(kLastIndexOf, mode);
9439     initial = length;
9440     terminating = graph()->GetConstant0();
9441     token = Token::GT;
9442     direction = LoopBuilder::kPreDecrement;
9443   }
9444
9445   Push(graph()->GetConstantMinus1());
9446   if (IsFastDoubleElementsKind(kind) || IsFastSmiElementsKind(kind)) {
9447     // Make sure that we can actually compare numbers correctly below, see
9448     // https://code.google.com/p/chromium/issues/detail?id=407946 for details.
9449     search_element = AddUncasted<HForceRepresentation>(
9450         search_element, IsFastSmiElementsKind(kind) ? Representation::Smi()
9451                                                     : Representation::Double());
9452
9453     LoopBuilder loop(this, context(), direction);
9454     {
9455       HValue* index = loop.BeginBody(initial, terminating, token);
9456       HValue* element = AddUncasted<HLoadKeyed>(elements, index, nullptr, kind,
9457                                                 ALLOW_RETURN_HOLE);
9458       IfBuilder if_issame(this);
9459       if_issame.If<HCompareNumericAndBranch>(element, search_element,
9460                                              Token::EQ_STRICT);
9461       if_issame.Then();
9462       {
9463         Drop(1);
9464         Push(index);
9465         loop.Break();
9466       }
9467       if_issame.End();
9468     }
9469     loop.EndBody();
9470   } else {
9471     IfBuilder if_isstring(this);
9472     if_isstring.If<HIsStringAndBranch>(search_element);
9473     if_isstring.Then();
9474     {
9475       LoopBuilder loop(this, context(), direction);
9476       {
9477         HValue* index = loop.BeginBody(initial, terminating, token);
9478         HValue* element = AddUncasted<HLoadKeyed>(elements, index, nullptr,
9479                                                   kind, ALLOW_RETURN_HOLE);
9480         IfBuilder if_issame(this);
9481         if_issame.If<HIsStringAndBranch>(element);
9482         if_issame.AndIf<HStringCompareAndBranch>(
9483             element, search_element, Token::EQ_STRICT);
9484         if_issame.Then();
9485         {
9486           Drop(1);
9487           Push(index);
9488           loop.Break();
9489         }
9490         if_issame.End();
9491       }
9492       loop.EndBody();
9493     }
9494     if_isstring.Else();
9495     {
9496       IfBuilder if_isnumber(this);
9497       if_isnumber.If<HIsSmiAndBranch>(search_element);
9498       if_isnumber.OrIf<HCompareMap>(
9499           search_element, isolate()->factory()->heap_number_map());
9500       if_isnumber.Then();
9501       {
9502         HValue* search_number =
9503             AddUncasted<HForceRepresentation>(search_element,
9504                                               Representation::Double());
9505         LoopBuilder loop(this, context(), direction);
9506         {
9507           HValue* index = loop.BeginBody(initial, terminating, token);
9508           HValue* element = AddUncasted<HLoadKeyed>(elements, index, nullptr,
9509                                                     kind, ALLOW_RETURN_HOLE);
9510
9511           IfBuilder if_element_isnumber(this);
9512           if_element_isnumber.If<HIsSmiAndBranch>(element);
9513           if_element_isnumber.OrIf<HCompareMap>(
9514               element, isolate()->factory()->heap_number_map());
9515           if_element_isnumber.Then();
9516           {
9517             HValue* number =
9518                 AddUncasted<HForceRepresentation>(element,
9519                                                   Representation::Double());
9520             IfBuilder if_issame(this);
9521             if_issame.If<HCompareNumericAndBranch>(
9522                 number, search_number, Token::EQ_STRICT);
9523             if_issame.Then();
9524             {
9525               Drop(1);
9526               Push(index);
9527               loop.Break();
9528             }
9529             if_issame.End();
9530           }
9531           if_element_isnumber.End();
9532         }
9533         loop.EndBody();
9534       }
9535       if_isnumber.Else();
9536       {
9537         LoopBuilder loop(this, context(), direction);
9538         {
9539           HValue* index = loop.BeginBody(initial, terminating, token);
9540           HValue* element = AddUncasted<HLoadKeyed>(elements, index, nullptr,
9541                                                     kind, ALLOW_RETURN_HOLE);
9542           IfBuilder if_issame(this);
9543           if_issame.If<HCompareObjectEqAndBranch>(
9544               element, search_element);
9545           if_issame.Then();
9546           {
9547             Drop(1);
9548             Push(index);
9549             loop.Break();
9550           }
9551           if_issame.End();
9552         }
9553         loop.EndBody();
9554       }
9555       if_isnumber.End();
9556     }
9557     if_isstring.End();
9558   }
9559
9560   return Pop();
9561 }
9562
9563
9564 bool HOptimizedGraphBuilder::TryHandleArrayCall(Call* expr, HValue* function) {
9565   if (!array_function().is_identical_to(expr->target())) {
9566     return false;
9567   }
9568
9569   Handle<AllocationSite> site = expr->allocation_site();
9570   if (site.is_null()) return false;
9571
9572   BuildArrayCall(expr,
9573                  expr->arguments()->length(),
9574                  function,
9575                  site);
9576   return true;
9577 }
9578
9579
9580 bool HOptimizedGraphBuilder::TryHandleArrayCallNew(CallNew* expr,
9581                                                    HValue* function) {
9582   if (!array_function().is_identical_to(expr->target())) {
9583     return false;
9584   }
9585
9586   Handle<AllocationSite> site = expr->allocation_site();
9587   if (site.is_null()) return false;
9588
9589   BuildArrayCall(expr, expr->arguments()->length(), function, site);
9590   return true;
9591 }
9592
9593
9594 bool HOptimizedGraphBuilder::CanBeFunctionApplyArguments(Call* expr) {
9595   ZoneList<Expression*>* args = expr->arguments();
9596   if (args->length() != 2) return false;
9597   VariableProxy* arg_two = args->at(1)->AsVariableProxy();
9598   if (arg_two == NULL || !arg_two->var()->IsStackAllocated()) return false;
9599   HValue* arg_two_value = LookupAndMakeLive(arg_two->var());
9600   if (!arg_two_value->CheckFlag(HValue::kIsArguments)) return false;
9601   return true;
9602 }
9603
9604
9605 void HOptimizedGraphBuilder::VisitCall(Call* expr) {
9606   DCHECK(!HasStackOverflow());
9607   DCHECK(current_block() != NULL);
9608   DCHECK(current_block()->HasPredecessor());
9609   if (!top_info()->is_tracking_positions()) SetSourcePosition(expr->position());
9610   Expression* callee = expr->expression();
9611   int argument_count = expr->arguments()->length() + 1;  // Plus receiver.
9612   HInstruction* call = NULL;
9613
9614   Property* prop = callee->AsProperty();
9615   if (prop != NULL) {
9616     CHECK_ALIVE(VisitForValue(prop->obj()));
9617     HValue* receiver = Top();
9618
9619     SmallMapList* maps;
9620     ComputeReceiverTypes(expr, receiver, &maps, zone());
9621
9622     if (prop->key()->IsPropertyName() && maps->length() > 0) {
9623       Handle<String> name = prop->key()->AsLiteral()->AsPropertyName();
9624       PropertyAccessInfo info(this, LOAD, maps->first(), name);
9625       if (!info.CanAccessAsMonomorphic(maps)) {
9626         HandlePolymorphicCallNamed(expr, receiver, maps, name);
9627         return;
9628       }
9629     }
9630     HValue* key = NULL;
9631     if (!prop->key()->IsPropertyName()) {
9632       CHECK_ALIVE(VisitForValue(prop->key()));
9633       key = Pop();
9634     }
9635
9636     CHECK_ALIVE(PushLoad(prop, receiver, key));
9637     HValue* function = Pop();
9638
9639     if (function->IsConstant() &&
9640         HConstant::cast(function)->handle(isolate())->IsJSFunction()) {
9641       // Push the function under the receiver.
9642       environment()->SetExpressionStackAt(0, function);
9643       Push(receiver);
9644
9645       Handle<JSFunction> known_function = Handle<JSFunction>::cast(
9646           HConstant::cast(function)->handle(isolate()));
9647       expr->set_target(known_function);
9648
9649       if (TryIndirectCall(expr)) return;
9650       CHECK_ALIVE(VisitExpressions(expr->arguments()));
9651
9652       Handle<Map> map = maps->length() == 1 ? maps->first() : Handle<Map>();
9653       if (TryInlineBuiltinMethodCall(expr, known_function, map,
9654                                      expr->arguments()->length())) {
9655         if (FLAG_trace_inlining) {
9656           PrintF("Inlining builtin ");
9657           known_function->ShortPrint();
9658           PrintF("\n");
9659         }
9660         return;
9661       }
9662       if (TryInlineApiMethodCall(expr, receiver, maps)) return;
9663
9664       // Wrap the receiver if necessary.
9665       if (NeedsWrapping(maps->first(), known_function)) {
9666         // Since HWrapReceiver currently cannot actually wrap numbers and
9667         // strings, use the regular CallFunctionStub for method calls to wrap
9668         // the receiver.
9669         // TODO(verwaest): Support creation of value wrappers directly in
9670         // HWrapReceiver.
9671         call = New<HCallFunction>(
9672             function, argument_count, WRAP_AND_CALL);
9673       } else if (TryInlineCall(expr)) {
9674         return;
9675       } else {
9676         call = BuildCallConstantFunction(known_function, argument_count);
9677       }
9678
9679     } else {
9680       ArgumentsAllowedFlag arguments_flag = ARGUMENTS_NOT_ALLOWED;
9681       if (CanBeFunctionApplyArguments(expr) && expr->is_uninitialized()) {
9682         // We have to use EAGER deoptimization here because Deoptimizer::SOFT
9683         // gets ignored by the always-opt flag, which leads to incorrect code.
9684         Add<HDeoptimize>(
9685             Deoptimizer::kInsufficientTypeFeedbackForCallWithArguments,
9686             Deoptimizer::EAGER);
9687         arguments_flag = ARGUMENTS_FAKED;
9688       }
9689
9690       // Push the function under the receiver.
9691       environment()->SetExpressionStackAt(0, function);
9692       Push(receiver);
9693
9694       CHECK_ALIVE(VisitExpressions(expr->arguments(), arguments_flag));
9695       CallFunctionFlags flags = receiver->type().IsJSObject()
9696           ? NO_CALL_FUNCTION_FLAGS : CALL_AS_METHOD;
9697       call = New<HCallFunction>(function, argument_count, flags);
9698     }
9699     PushArgumentsFromEnvironment(argument_count);
9700
9701   } else {
9702     VariableProxy* proxy = expr->expression()->AsVariableProxy();
9703     if (proxy != NULL && proxy->var()->is_possibly_eval(isolate())) {
9704       return Bailout(kPossibleDirectCallToEval);
9705     }
9706
9707     // The function is on the stack in the unoptimized code during
9708     // evaluation of the arguments.
9709     CHECK_ALIVE(VisitForValue(expr->expression()));
9710     HValue* function = Top();
9711     if (function->IsConstant() &&
9712         HConstant::cast(function)->handle(isolate())->IsJSFunction()) {
9713       Handle<Object> constant = HConstant::cast(function)->handle(isolate());
9714       Handle<JSFunction> target = Handle<JSFunction>::cast(constant);
9715       expr->SetKnownGlobalTarget(target);
9716     }
9717
9718     // Placeholder for the receiver.
9719     Push(graph()->GetConstantUndefined());
9720     CHECK_ALIVE(VisitExpressions(expr->arguments()));
9721
9722     if (expr->IsMonomorphic()) {
9723       Add<HCheckValue>(function, expr->target());
9724
9725       // Patch the global object on the stack by the expected receiver.
9726       HValue* receiver = ImplicitReceiverFor(function, expr->target());
9727       const int receiver_index = argument_count - 1;
9728       environment()->SetExpressionStackAt(receiver_index, receiver);
9729
9730       if (TryInlineBuiltinFunctionCall(expr)) {
9731         if (FLAG_trace_inlining) {
9732           PrintF("Inlining builtin ");
9733           expr->target()->ShortPrint();
9734           PrintF("\n");
9735         }
9736         return;
9737       }
9738       if (TryInlineApiFunctionCall(expr, receiver)) return;
9739       if (TryHandleArrayCall(expr, function)) return;
9740       if (TryInlineCall(expr)) return;
9741
9742       PushArgumentsFromEnvironment(argument_count);
9743       call = BuildCallConstantFunction(expr->target(), argument_count);
9744     } else {
9745       PushArgumentsFromEnvironment(argument_count);
9746       HCallFunction* call_function =
9747           New<HCallFunction>(function, argument_count);
9748       call = call_function;
9749       if (expr->is_uninitialized() &&
9750           expr->IsUsingCallFeedbackICSlot(isolate())) {
9751         // We've never seen this call before, so let's have Crankshaft learn
9752         // through the type vector.
9753         Handle<TypeFeedbackVector> vector =
9754             handle(current_feedback_vector(), isolate());
9755         FeedbackVectorICSlot slot = expr->CallFeedbackICSlot();
9756         call_function->SetVectorAndSlot(vector, slot);
9757       }
9758     }
9759   }
9760
9761   Drop(1);  // Drop the function.
9762   return ast_context()->ReturnInstruction(call, expr->id());
9763 }
9764
9765
9766 void HOptimizedGraphBuilder::BuildInlinedCallArray(
9767     Expression* expression,
9768     int argument_count,
9769     Handle<AllocationSite> site) {
9770   DCHECK(!site.is_null());
9771   DCHECK(argument_count >= 0 && argument_count <= 1);
9772   NoObservableSideEffectsScope no_effects(this);
9773
9774   // We should at least have the constructor on the expression stack.
9775   HValue* constructor = environment()->ExpressionStackAt(argument_count);
9776
9777   // Register on the site for deoptimization if the transition feedback changes.
9778   top_info()->dependencies()->AssumeTransitionStable(site);
9779   ElementsKind kind = site->GetElementsKind();
9780   HInstruction* site_instruction = Add<HConstant>(site);
9781
9782   // In the single constant argument case, we may have to adjust elements kind
9783   // to avoid creating a packed non-empty array.
9784   if (argument_count == 1 && !IsHoleyElementsKind(kind)) {
9785     HValue* argument = environment()->Top();
9786     if (argument->IsConstant()) {
9787       HConstant* constant_argument = HConstant::cast(argument);
9788       DCHECK(constant_argument->HasSmiValue());
9789       int constant_array_size = constant_argument->Integer32Value();
9790       if (constant_array_size != 0) {
9791         kind = GetHoleyElementsKind(kind);
9792       }
9793     }
9794   }
9795
9796   // Build the array.
9797   JSArrayBuilder array_builder(this,
9798                                kind,
9799                                site_instruction,
9800                                constructor,
9801                                DISABLE_ALLOCATION_SITES);
9802   HValue* new_object = argument_count == 0
9803       ? array_builder.AllocateEmptyArray()
9804       : BuildAllocateArrayFromLength(&array_builder, Top());
9805
9806   int args_to_drop = argument_count + (expression->IsCall() ? 2 : 1);
9807   Drop(args_to_drop);
9808   ast_context()->ReturnValue(new_object);
9809 }
9810
9811
9812 // Checks whether allocation using the given constructor can be inlined.
9813 static bool IsAllocationInlineable(Handle<JSFunction> constructor) {
9814   return constructor->has_initial_map() &&
9815          constructor->initial_map()->instance_type() == JS_OBJECT_TYPE &&
9816          constructor->initial_map()->instance_size() <
9817              HAllocate::kMaxInlineSize;
9818 }
9819
9820
9821 bool HOptimizedGraphBuilder::IsCallArrayInlineable(
9822     int argument_count,
9823     Handle<AllocationSite> site) {
9824   Handle<JSFunction> caller = current_info()->closure();
9825   Handle<JSFunction> target = array_function();
9826   // We should have the function plus array arguments on the environment stack.
9827   DCHECK(environment()->length() >= (argument_count + 1));
9828   DCHECK(!site.is_null());
9829
9830   bool inline_ok = false;
9831   if (site->CanInlineCall()) {
9832     // We also want to avoid inlining in certain 1 argument scenarios.
9833     if (argument_count == 1) {
9834       HValue* argument = Top();
9835       if (argument->IsConstant()) {
9836         // Do not inline if the constant length argument is not a smi or
9837         // outside the valid range for unrolled loop initialization.
9838         HConstant* constant_argument = HConstant::cast(argument);
9839         if (constant_argument->HasSmiValue()) {
9840           int value = constant_argument->Integer32Value();
9841           inline_ok = value >= 0 && value <= kElementLoopUnrollThreshold;
9842           if (!inline_ok) {
9843             TraceInline(target, caller,
9844                         "Constant length outside of valid inlining range.");
9845           }
9846         }
9847       } else {
9848         TraceInline(target, caller,
9849                     "Dont inline [new] Array(n) where n isn't constant.");
9850       }
9851     } else if (argument_count == 0) {
9852       inline_ok = true;
9853     } else {
9854       TraceInline(target, caller, "Too many arguments to inline.");
9855     }
9856   } else {
9857     TraceInline(target, caller, "AllocationSite requested no inlining.");
9858   }
9859
9860   if (inline_ok) {
9861     TraceInline(target, caller, NULL);
9862   }
9863   return inline_ok;
9864 }
9865
9866
9867 void HOptimizedGraphBuilder::VisitCallNew(CallNew* expr) {
9868   DCHECK(!HasStackOverflow());
9869   DCHECK(current_block() != NULL);
9870   DCHECK(current_block()->HasPredecessor());
9871   if (!top_info()->is_tracking_positions()) SetSourcePosition(expr->position());
9872   int argument_count = expr->arguments()->length() + 1;  // Plus constructor.
9873   Factory* factory = isolate()->factory();
9874
9875   // The constructor function is on the stack in the unoptimized code
9876   // during evaluation of the arguments.
9877   CHECK_ALIVE(VisitForValue(expr->expression()));
9878   HValue* function = Top();
9879   CHECK_ALIVE(VisitExpressions(expr->arguments()));
9880
9881   if (function->IsConstant() &&
9882       HConstant::cast(function)->handle(isolate())->IsJSFunction()) {
9883     Handle<Object> constant = HConstant::cast(function)->handle(isolate());
9884     expr->SetKnownGlobalTarget(Handle<JSFunction>::cast(constant));
9885   }
9886
9887   if (FLAG_inline_construct &&
9888       expr->IsMonomorphic() &&
9889       IsAllocationInlineable(expr->target())) {
9890     Handle<JSFunction> constructor = expr->target();
9891     HValue* check = Add<HCheckValue>(function, constructor);
9892
9893     // Force completion of inobject slack tracking before generating
9894     // allocation code to finalize instance size.
9895     if (constructor->IsInobjectSlackTrackingInProgress()) {
9896       constructor->CompleteInobjectSlackTracking();
9897     }
9898
9899     // Calculate instance size from initial map of constructor.
9900     DCHECK(constructor->has_initial_map());
9901     Handle<Map> initial_map(constructor->initial_map());
9902     int instance_size = initial_map->instance_size();
9903
9904     // Allocate an instance of the implicit receiver object.
9905     HValue* size_in_bytes = Add<HConstant>(instance_size);
9906     HAllocationMode allocation_mode;
9907     if (FLAG_pretenuring_call_new) {
9908       if (FLAG_allocation_site_pretenuring) {
9909         // Try to use pretenuring feedback.
9910         Handle<AllocationSite> allocation_site = expr->allocation_site();
9911         allocation_mode = HAllocationMode(allocation_site);
9912         // Take a dependency on allocation site.
9913         top_info()->dependencies()->AssumeTenuringDecision(allocation_site);
9914       }
9915     }
9916
9917     HAllocate* receiver = BuildAllocate(
9918         size_in_bytes, HType::JSObject(), JS_OBJECT_TYPE, allocation_mode);
9919     receiver->set_known_initial_map(initial_map);
9920
9921     // Initialize map and fields of the newly allocated object.
9922     { NoObservableSideEffectsScope no_effects(this);
9923       DCHECK(initial_map->instance_type() == JS_OBJECT_TYPE);
9924       Add<HStoreNamedField>(receiver,
9925           HObjectAccess::ForMapAndOffset(initial_map, JSObject::kMapOffset),
9926           Add<HConstant>(initial_map));
9927       HValue* empty_fixed_array = Add<HConstant>(factory->empty_fixed_array());
9928       Add<HStoreNamedField>(receiver,
9929           HObjectAccess::ForMapAndOffset(initial_map,
9930                                          JSObject::kPropertiesOffset),
9931           empty_fixed_array);
9932       Add<HStoreNamedField>(receiver,
9933           HObjectAccess::ForMapAndOffset(initial_map,
9934                                          JSObject::kElementsOffset),
9935           empty_fixed_array);
9936       BuildInitializeInobjectProperties(receiver, initial_map);
9937     }
9938
9939     // Replace the constructor function with a newly allocated receiver using
9940     // the index of the receiver from the top of the expression stack.
9941     const int receiver_index = argument_count - 1;
9942     DCHECK(environment()->ExpressionStackAt(receiver_index) == function);
9943     environment()->SetExpressionStackAt(receiver_index, receiver);
9944
9945     if (TryInlineConstruct(expr, receiver)) {
9946       // Inlining worked, add a dependency on the initial map to make sure that
9947       // this code is deoptimized whenever the initial map of the constructor
9948       // changes.
9949       top_info()->dependencies()->AssumeInitialMapCantChange(initial_map);
9950       return;
9951     }
9952
9953     // TODO(mstarzinger): For now we remove the previous HAllocate and all
9954     // corresponding instructions and instead add HPushArguments for the
9955     // arguments in case inlining failed.  What we actually should do is for
9956     // inlining to try to build a subgraph without mutating the parent graph.
9957     HInstruction* instr = current_block()->last();
9958     do {
9959       HInstruction* prev_instr = instr->previous();
9960       instr->DeleteAndReplaceWith(NULL);
9961       instr = prev_instr;
9962     } while (instr != check);
9963     environment()->SetExpressionStackAt(receiver_index, function);
9964     HInstruction* call =
9965       PreProcessCall(New<HCallNew>(function, argument_count));
9966     return ast_context()->ReturnInstruction(call, expr->id());
9967   } else {
9968     // The constructor function is both an operand to the instruction and an
9969     // argument to the construct call.
9970     if (TryHandleArrayCallNew(expr, function)) return;
9971
9972     HInstruction* call =
9973         PreProcessCall(New<HCallNew>(function, argument_count));
9974     return ast_context()->ReturnInstruction(call, expr->id());
9975   }
9976 }
9977
9978
9979 void HOptimizedGraphBuilder::BuildInitializeInobjectProperties(
9980     HValue* receiver, Handle<Map> initial_map) {
9981   if (initial_map->inobject_properties() != 0) {
9982     HConstant* undefined = graph()->GetConstantUndefined();
9983     for (int i = 0; i < initial_map->inobject_properties(); i++) {
9984       int property_offset = initial_map->GetInObjectPropertyOffset(i);
9985       Add<HStoreNamedField>(receiver, HObjectAccess::ForMapAndOffset(
9986                                           initial_map, property_offset),
9987                             undefined);
9988     }
9989   }
9990 }
9991
9992
9993 HValue* HGraphBuilder::BuildAllocateEmptyArrayBuffer(HValue* byte_length) {
9994   // We HForceRepresentation here to avoid allocations during an *-to-tagged
9995   // HChange that could cause GC while the array buffer object is not fully
9996   // initialized.
9997   HObjectAccess byte_length_access(HObjectAccess::ForJSArrayBufferByteLength());
9998   byte_length = AddUncasted<HForceRepresentation>(
9999       byte_length, byte_length_access.representation());
10000   HAllocate* result =
10001       BuildAllocate(Add<HConstant>(JSArrayBuffer::kSizeWithInternalFields),
10002                     HType::JSObject(), JS_ARRAY_BUFFER_TYPE, HAllocationMode());
10003
10004   HValue* global_object = Add<HLoadNamedField>(
10005       context(), nullptr,
10006       HObjectAccess::ForContextSlot(Context::GLOBAL_OBJECT_INDEX));
10007   HValue* native_context = Add<HLoadNamedField>(
10008       global_object, nullptr, HObjectAccess::ForGlobalObjectNativeContext());
10009   Add<HStoreNamedField>(
10010       result, HObjectAccess::ForMap(),
10011       Add<HLoadNamedField>(
10012           native_context, nullptr,
10013           HObjectAccess::ForContextSlot(Context::ARRAY_BUFFER_MAP_INDEX)));
10014
10015   HConstant* empty_fixed_array =
10016       Add<HConstant>(isolate()->factory()->empty_fixed_array());
10017   Add<HStoreNamedField>(
10018       result, HObjectAccess::ForJSArrayOffset(JSArray::kPropertiesOffset),
10019       empty_fixed_array);
10020   Add<HStoreNamedField>(
10021       result, HObjectAccess::ForJSArrayOffset(JSArray::kElementsOffset),
10022       empty_fixed_array);
10023   Add<HStoreNamedField>(
10024       result, HObjectAccess::ForJSArrayBufferBackingStore().WithRepresentation(
10025                   Representation::Smi()),
10026       graph()->GetConstant0());
10027   Add<HStoreNamedField>(result, byte_length_access, byte_length);
10028   Add<HStoreNamedField>(result, HObjectAccess::ForJSArrayBufferBitFieldSlot(),
10029                         graph()->GetConstant0());
10030   Add<HStoreNamedField>(
10031       result, HObjectAccess::ForJSArrayBufferBitField(),
10032       Add<HConstant>((1 << JSArrayBuffer::IsExternal::kShift) |
10033                      (1 << JSArrayBuffer::IsNeuterable::kShift)));
10034
10035   for (int field = 0; field < v8::ArrayBuffer::kInternalFieldCount; ++field) {
10036     Add<HStoreNamedField>(
10037         result,
10038         HObjectAccess::ForObservableJSObjectOffset(
10039             JSArrayBuffer::kSize + field * kPointerSize, Representation::Smi()),
10040         graph()->GetConstant0());
10041   }
10042
10043   return result;
10044 }
10045
10046
10047 template <class ViewClass>
10048 void HGraphBuilder::BuildArrayBufferViewInitialization(
10049     HValue* obj,
10050     HValue* buffer,
10051     HValue* byte_offset,
10052     HValue* byte_length) {
10053
10054   for (int offset = ViewClass::kSize;
10055        offset < ViewClass::kSizeWithInternalFields;
10056        offset += kPointerSize) {
10057     Add<HStoreNamedField>(obj,
10058         HObjectAccess::ForObservableJSObjectOffset(offset),
10059         graph()->GetConstant0());
10060   }
10061
10062   Add<HStoreNamedField>(
10063       obj,
10064       HObjectAccess::ForJSArrayBufferViewByteOffset(),
10065       byte_offset);
10066   Add<HStoreNamedField>(
10067       obj,
10068       HObjectAccess::ForJSArrayBufferViewByteLength(),
10069       byte_length);
10070   Add<HStoreNamedField>(obj, HObjectAccess::ForJSArrayBufferViewBuffer(),
10071                         buffer);
10072 }
10073
10074
10075 void HOptimizedGraphBuilder::GenerateDataViewInitialize(
10076     CallRuntime* expr) {
10077   ZoneList<Expression*>* arguments = expr->arguments();
10078
10079   DCHECK(arguments->length()== 4);
10080   CHECK_ALIVE(VisitForValue(arguments->at(0)));
10081   HValue* obj = Pop();
10082
10083   CHECK_ALIVE(VisitForValue(arguments->at(1)));
10084   HValue* buffer = Pop();
10085
10086   CHECK_ALIVE(VisitForValue(arguments->at(2)));
10087   HValue* byte_offset = Pop();
10088
10089   CHECK_ALIVE(VisitForValue(arguments->at(3)));
10090   HValue* byte_length = Pop();
10091
10092   {
10093     NoObservableSideEffectsScope scope(this);
10094     BuildArrayBufferViewInitialization<JSDataView>(
10095         obj, buffer, byte_offset, byte_length);
10096   }
10097 }
10098
10099
10100 static Handle<Map> TypedArrayMap(Isolate* isolate,
10101                                  ExternalArrayType array_type,
10102                                  ElementsKind target_kind) {
10103   Handle<Context> native_context = isolate->native_context();
10104   Handle<JSFunction> fun;
10105   switch (array_type) {
10106 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size)                       \
10107     case kExternal##Type##Array:                                              \
10108       fun = Handle<JSFunction>(native_context->type##_array_fun());           \
10109       break;
10110
10111     TYPED_ARRAYS(TYPED_ARRAY_CASE)
10112 #undef TYPED_ARRAY_CASE
10113   }
10114   Handle<Map> map(fun->initial_map());
10115   return Map::AsElementsKind(map, target_kind);
10116 }
10117
10118
10119 HValue* HOptimizedGraphBuilder::BuildAllocateExternalElements(
10120     ExternalArrayType array_type,
10121     bool is_zero_byte_offset,
10122     HValue* buffer, HValue* byte_offset, HValue* length) {
10123   Handle<Map> external_array_map(
10124       isolate()->heap()->MapForFixedTypedArray(array_type));
10125
10126   // The HForceRepresentation is to prevent possible deopt on int-smi
10127   // conversion after allocation but before the new object fields are set.
10128   length = AddUncasted<HForceRepresentation>(length, Representation::Smi());
10129   HValue* elements = Add<HAllocate>(
10130       Add<HConstant>(FixedTypedArrayBase::kHeaderSize), HType::HeapObject(),
10131       NOT_TENURED, external_array_map->instance_type());
10132
10133   AddStoreMapConstant(elements, external_array_map);
10134   Add<HStoreNamedField>(elements,
10135       HObjectAccess::ForFixedArrayLength(), length);
10136
10137   HValue* backing_store = Add<HLoadNamedField>(
10138       buffer, nullptr, HObjectAccess::ForJSArrayBufferBackingStore());
10139
10140   HValue* typed_array_start;
10141   if (is_zero_byte_offset) {
10142     typed_array_start = backing_store;
10143   } else {
10144     HInstruction* external_pointer =
10145         AddUncasted<HAdd>(backing_store, byte_offset);
10146     // Arguments are checked prior to call to TypedArrayInitialize,
10147     // including byte_offset.
10148     external_pointer->ClearFlag(HValue::kCanOverflow);
10149     typed_array_start = external_pointer;
10150   }
10151
10152   Add<HStoreNamedField>(elements,
10153                         HObjectAccess::ForFixedTypedArrayBaseBasePointer(),
10154                         graph()->GetConstant0());
10155   Add<HStoreNamedField>(elements,
10156                         HObjectAccess::ForFixedTypedArrayBaseExternalPointer(),
10157                         typed_array_start);
10158
10159   return elements;
10160 }
10161
10162
10163 HValue* HOptimizedGraphBuilder::BuildAllocateFixedTypedArray(
10164     ExternalArrayType array_type, size_t element_size,
10165     ElementsKind fixed_elements_kind, HValue* byte_length, HValue* length,
10166     bool initialize) {
10167   STATIC_ASSERT(
10168       (FixedTypedArrayBase::kHeaderSize & kObjectAlignmentMask) == 0);
10169   HValue* total_size;
10170
10171   // if fixed array's elements are not aligned to object's alignment,
10172   // we need to align the whole array to object alignment.
10173   if (element_size % kObjectAlignment != 0) {
10174     total_size = BuildObjectSizeAlignment(
10175         byte_length, FixedTypedArrayBase::kHeaderSize);
10176   } else {
10177     total_size = AddUncasted<HAdd>(byte_length,
10178         Add<HConstant>(FixedTypedArrayBase::kHeaderSize));
10179     total_size->ClearFlag(HValue::kCanOverflow);
10180   }
10181
10182   // The HForceRepresentation is to prevent possible deopt on int-smi
10183   // conversion after allocation but before the new object fields are set.
10184   length = AddUncasted<HForceRepresentation>(length, Representation::Smi());
10185   Handle<Map> fixed_typed_array_map(
10186       isolate()->heap()->MapForFixedTypedArray(array_type));
10187   HAllocate* elements =
10188       Add<HAllocate>(total_size, HType::HeapObject(), NOT_TENURED,
10189                      fixed_typed_array_map->instance_type());
10190
10191 #ifndef V8_HOST_ARCH_64_BIT
10192   if (array_type == kExternalFloat64Array) {
10193     elements->MakeDoubleAligned();
10194   }
10195 #endif
10196
10197   AddStoreMapConstant(elements, fixed_typed_array_map);
10198
10199   Add<HStoreNamedField>(elements,
10200       HObjectAccess::ForFixedArrayLength(),
10201       length);
10202   Add<HStoreNamedField>(
10203       elements, HObjectAccess::ForFixedTypedArrayBaseBasePointer(), elements);
10204
10205   Add<HStoreNamedField>(
10206       elements, HObjectAccess::ForFixedTypedArrayBaseExternalPointer(),
10207       Add<HConstant>(ExternalReference::fixed_typed_array_base_data_offset()));
10208
10209   HValue* filler = Add<HConstant>(static_cast<int32_t>(0));
10210
10211   if (initialize) {
10212     LoopBuilder builder(this, context(), LoopBuilder::kPostIncrement);
10213
10214     HValue* backing_store = AddUncasted<HAdd>(
10215         Add<HConstant>(ExternalReference::fixed_typed_array_base_data_offset()),
10216         elements, Strength::WEAK, AddOfExternalAndTagged);
10217
10218     HValue* key = builder.BeginBody(
10219         Add<HConstant>(static_cast<int32_t>(0)),
10220         length, Token::LT);
10221     Add<HStoreKeyed>(backing_store, key, filler, fixed_elements_kind);
10222
10223     builder.EndBody();
10224   }
10225   return elements;
10226 }
10227
10228
10229 void HOptimizedGraphBuilder::GenerateTypedArrayInitialize(
10230     CallRuntime* expr) {
10231   ZoneList<Expression*>* arguments = expr->arguments();
10232
10233   static const int kObjectArg = 0;
10234   static const int kArrayIdArg = 1;
10235   static const int kBufferArg = 2;
10236   static const int kByteOffsetArg = 3;
10237   static const int kByteLengthArg = 4;
10238   static const int kInitializeArg = 5;
10239   static const int kArgsLength = 6;
10240   DCHECK(arguments->length() == kArgsLength);
10241
10242
10243   CHECK_ALIVE(VisitForValue(arguments->at(kObjectArg)));
10244   HValue* obj = Pop();
10245
10246   if (!arguments->at(kArrayIdArg)->IsLiteral()) {
10247     // This should never happen in real use, but can happen when fuzzing.
10248     // Just bail out.
10249     Bailout(kNeedSmiLiteral);
10250     return;
10251   }
10252   Handle<Object> value =
10253       static_cast<Literal*>(arguments->at(kArrayIdArg))->value();
10254   if (!value->IsSmi()) {
10255     // This should never happen in real use, but can happen when fuzzing.
10256     // Just bail out.
10257     Bailout(kNeedSmiLiteral);
10258     return;
10259   }
10260   int array_id = Smi::cast(*value)->value();
10261
10262   HValue* buffer;
10263   if (!arguments->at(kBufferArg)->IsNullLiteral()) {
10264     CHECK_ALIVE(VisitForValue(arguments->at(kBufferArg)));
10265     buffer = Pop();
10266   } else {
10267     buffer = NULL;
10268   }
10269
10270   HValue* byte_offset;
10271   bool is_zero_byte_offset;
10272
10273   if (arguments->at(kByteOffsetArg)->IsLiteral()
10274       && Smi::FromInt(0) ==
10275       *static_cast<Literal*>(arguments->at(kByteOffsetArg))->value()) {
10276     byte_offset = Add<HConstant>(static_cast<int32_t>(0));
10277     is_zero_byte_offset = true;
10278   } else {
10279     CHECK_ALIVE(VisitForValue(arguments->at(kByteOffsetArg)));
10280     byte_offset = Pop();
10281     is_zero_byte_offset = false;
10282     DCHECK(buffer != NULL);
10283   }
10284
10285   CHECK_ALIVE(VisitForValue(arguments->at(kByteLengthArg)));
10286   HValue* byte_length = Pop();
10287
10288   CHECK(arguments->at(kInitializeArg)->IsLiteral());
10289   bool initialize = static_cast<Literal*>(arguments->at(kInitializeArg))
10290                         ->value()
10291                         ->BooleanValue();
10292
10293   NoObservableSideEffectsScope scope(this);
10294   IfBuilder byte_offset_smi(this);
10295
10296   if (!is_zero_byte_offset) {
10297     byte_offset_smi.If<HIsSmiAndBranch>(byte_offset);
10298     byte_offset_smi.Then();
10299   }
10300
10301   ExternalArrayType array_type =
10302       kExternalInt8Array;  // Bogus initialization.
10303   size_t element_size = 1;  // Bogus initialization.
10304   ElementsKind fixed_elements_kind =  // Bogus initialization.
10305       INT8_ELEMENTS;
10306   Runtime::ArrayIdToTypeAndSize(array_id,
10307       &array_type,
10308       &fixed_elements_kind,
10309       &element_size);
10310
10311
10312   { //  byte_offset is Smi.
10313     HValue* allocated_buffer = buffer;
10314     if (buffer == NULL) {
10315       allocated_buffer = BuildAllocateEmptyArrayBuffer(byte_length);
10316     }
10317     BuildArrayBufferViewInitialization<JSTypedArray>(obj, allocated_buffer,
10318                                                      byte_offset, byte_length);
10319
10320
10321     HInstruction* length = AddUncasted<HDiv>(byte_length,
10322         Add<HConstant>(static_cast<int32_t>(element_size)));
10323
10324     Add<HStoreNamedField>(obj,
10325         HObjectAccess::ForJSTypedArrayLength(),
10326         length);
10327
10328     HValue* elements;
10329     if (buffer != NULL) {
10330       elements = BuildAllocateExternalElements(
10331           array_type, is_zero_byte_offset, buffer, byte_offset, length);
10332       Handle<Map> obj_map =
10333           TypedArrayMap(isolate(), array_type, fixed_elements_kind);
10334       AddStoreMapConstant(obj, obj_map);
10335     } else {
10336       DCHECK(is_zero_byte_offset);
10337       elements = BuildAllocateFixedTypedArray(array_type, element_size,
10338                                               fixed_elements_kind, byte_length,
10339                                               length, initialize);
10340     }
10341     Add<HStoreNamedField>(
10342         obj, HObjectAccess::ForElementsPointer(), elements);
10343   }
10344
10345   if (!is_zero_byte_offset) {
10346     byte_offset_smi.Else();
10347     { //  byte_offset is not Smi.
10348       Push(obj);
10349       CHECK_ALIVE(VisitForValue(arguments->at(kArrayIdArg)));
10350       Push(buffer);
10351       Push(byte_offset);
10352       Push(byte_length);
10353       CHECK_ALIVE(VisitForValue(arguments->at(kInitializeArg)));
10354       PushArgumentsFromEnvironment(kArgsLength);
10355       Add<HCallRuntime>(expr->name(), expr->function(), kArgsLength);
10356     }
10357   }
10358   byte_offset_smi.End();
10359 }
10360
10361
10362 void HOptimizedGraphBuilder::GenerateMaxSmi(CallRuntime* expr) {
10363   DCHECK(expr->arguments()->length() == 0);
10364   HConstant* max_smi = New<HConstant>(static_cast<int32_t>(Smi::kMaxValue));
10365   return ast_context()->ReturnInstruction(max_smi, expr->id());
10366 }
10367
10368
10369 void HOptimizedGraphBuilder::GenerateTypedArrayMaxSizeInHeap(
10370     CallRuntime* expr) {
10371   DCHECK(expr->arguments()->length() == 0);
10372   HConstant* result = New<HConstant>(static_cast<int32_t>(
10373         FLAG_typed_array_max_size_in_heap));
10374   return ast_context()->ReturnInstruction(result, expr->id());
10375 }
10376
10377
10378 void HOptimizedGraphBuilder::GenerateArrayBufferGetByteLength(
10379     CallRuntime* expr) {
10380   DCHECK(expr->arguments()->length() == 1);
10381   CHECK_ALIVE(VisitForValue(expr->arguments()->at(0)));
10382   HValue* buffer = Pop();
10383   HInstruction* result = New<HLoadNamedField>(
10384       buffer, nullptr, HObjectAccess::ForJSArrayBufferByteLength());
10385   return ast_context()->ReturnInstruction(result, expr->id());
10386 }
10387
10388
10389 void HOptimizedGraphBuilder::GenerateArrayBufferViewGetByteLength(
10390     CallRuntime* expr) {
10391   NoObservableSideEffectsScope scope(this);
10392   DCHECK(expr->arguments()->length() == 1);
10393   CHECK_ALIVE(VisitForValue(expr->arguments()->at(0)));
10394   HValue* view = Pop();
10395
10396   return ast_context()->ReturnValue(BuildArrayBufferViewFieldAccessor(
10397       view, nullptr,
10398       FieldIndex::ForInObjectOffset(JSArrayBufferView::kByteLengthOffset)));
10399 }
10400
10401
10402 void HOptimizedGraphBuilder::GenerateArrayBufferViewGetByteOffset(
10403     CallRuntime* expr) {
10404   NoObservableSideEffectsScope scope(this);
10405   DCHECK(expr->arguments()->length() == 1);
10406   CHECK_ALIVE(VisitForValue(expr->arguments()->at(0)));
10407   HValue* view = Pop();
10408
10409   return ast_context()->ReturnValue(BuildArrayBufferViewFieldAccessor(
10410       view, nullptr,
10411       FieldIndex::ForInObjectOffset(JSArrayBufferView::kByteOffsetOffset)));
10412 }
10413
10414
10415 void HOptimizedGraphBuilder::GenerateTypedArrayGetLength(
10416     CallRuntime* expr) {
10417   NoObservableSideEffectsScope scope(this);
10418   DCHECK(expr->arguments()->length() == 1);
10419   CHECK_ALIVE(VisitForValue(expr->arguments()->at(0)));
10420   HValue* view = Pop();
10421
10422   return ast_context()->ReturnValue(BuildArrayBufferViewFieldAccessor(
10423       view, nullptr,
10424       FieldIndex::ForInObjectOffset(JSTypedArray::kLengthOffset)));
10425 }
10426
10427
10428 void HOptimizedGraphBuilder::VisitCallRuntime(CallRuntime* expr) {
10429   DCHECK(!HasStackOverflow());
10430   DCHECK(current_block() != NULL);
10431   DCHECK(current_block()->HasPredecessor());
10432   if (expr->is_jsruntime()) {
10433     return Bailout(kCallToAJavaScriptRuntimeFunction);
10434   }
10435
10436   const Runtime::Function* function = expr->function();
10437   DCHECK(function != NULL);
10438   switch (function->function_id) {
10439 #define CALL_INTRINSIC_GENERATOR(Name) \
10440   case Runtime::kInline##Name:         \
10441     return Generate##Name(expr);
10442
10443     FOR_EACH_HYDROGEN_INTRINSIC(CALL_INTRINSIC_GENERATOR)
10444 #undef CALL_INTRINSIC_GENERATOR
10445     default: {
10446       Handle<String> name = expr->name();
10447       int argument_count = expr->arguments()->length();
10448       CHECK_ALIVE(VisitExpressions(expr->arguments()));
10449       PushArgumentsFromEnvironment(argument_count);
10450       HCallRuntime* call = New<HCallRuntime>(name, function, argument_count);
10451       return ast_context()->ReturnInstruction(call, expr->id());
10452     }
10453   }
10454 }
10455
10456
10457 void HOptimizedGraphBuilder::VisitUnaryOperation(UnaryOperation* expr) {
10458   DCHECK(!HasStackOverflow());
10459   DCHECK(current_block() != NULL);
10460   DCHECK(current_block()->HasPredecessor());
10461   switch (expr->op()) {
10462     case Token::DELETE: return VisitDelete(expr);
10463     case Token::VOID: return VisitVoid(expr);
10464     case Token::TYPEOF: return VisitTypeof(expr);
10465     case Token::NOT: return VisitNot(expr);
10466     default: UNREACHABLE();
10467   }
10468 }
10469
10470
10471 void HOptimizedGraphBuilder::VisitDelete(UnaryOperation* expr) {
10472   Property* prop = expr->expression()->AsProperty();
10473   VariableProxy* proxy = expr->expression()->AsVariableProxy();
10474   if (prop != NULL) {
10475     CHECK_ALIVE(VisitForValue(prop->obj()));
10476     CHECK_ALIVE(VisitForValue(prop->key()));
10477     HValue* key = Pop();
10478     HValue* obj = Pop();
10479     HValue* function = AddLoadJSBuiltin(Builtins::DELETE);
10480     Add<HPushArguments>(obj, key, Add<HConstant>(function_language_mode()));
10481     // TODO(olivf) InvokeFunction produces a check for the parameter count,
10482     // even though we are certain to pass the correct number of arguments here.
10483     HInstruction* instr = New<HInvokeFunction>(function, 3);
10484     return ast_context()->ReturnInstruction(instr, expr->id());
10485   } else if (proxy != NULL) {
10486     Variable* var = proxy->var();
10487     if (var->IsUnallocatedOrGlobalSlot()) {
10488       Bailout(kDeleteWithGlobalVariable);
10489     } else if (var->IsStackAllocated() || var->IsContextSlot()) {
10490       // Result of deleting non-global variables is false.  'this' is not really
10491       // a variable, though we implement it as one.  The subexpression does not
10492       // have side effects.
10493       HValue* value = var->HasThisName(isolate()) ? graph()->GetConstantTrue()
10494                                                   : graph()->GetConstantFalse();
10495       return ast_context()->ReturnValue(value);
10496     } else {
10497       Bailout(kDeleteWithNonGlobalVariable);
10498     }
10499   } else {
10500     // Result of deleting non-property, non-variable reference is true.
10501     // Evaluate the subexpression for side effects.
10502     CHECK_ALIVE(VisitForEffect(expr->expression()));
10503     return ast_context()->ReturnValue(graph()->GetConstantTrue());
10504   }
10505 }
10506
10507
10508 void HOptimizedGraphBuilder::VisitVoid(UnaryOperation* expr) {
10509   CHECK_ALIVE(VisitForEffect(expr->expression()));
10510   return ast_context()->ReturnValue(graph()->GetConstantUndefined());
10511 }
10512
10513
10514 void HOptimizedGraphBuilder::VisitTypeof(UnaryOperation* expr) {
10515   CHECK_ALIVE(VisitForTypeOf(expr->expression()));
10516   HValue* value = Pop();
10517   HInstruction* instr = New<HTypeof>(value);
10518   return ast_context()->ReturnInstruction(instr, expr->id());
10519 }
10520
10521
10522 void HOptimizedGraphBuilder::VisitNot(UnaryOperation* expr) {
10523   if (ast_context()->IsTest()) {
10524     TestContext* context = TestContext::cast(ast_context());
10525     VisitForControl(expr->expression(),
10526                     context->if_false(),
10527                     context->if_true());
10528     return;
10529   }
10530
10531   if (ast_context()->IsEffect()) {
10532     VisitForEffect(expr->expression());
10533     return;
10534   }
10535
10536   DCHECK(ast_context()->IsValue());
10537   HBasicBlock* materialize_false = graph()->CreateBasicBlock();
10538   HBasicBlock* materialize_true = graph()->CreateBasicBlock();
10539   CHECK_BAILOUT(VisitForControl(expr->expression(),
10540                                 materialize_false,
10541                                 materialize_true));
10542
10543   if (materialize_false->HasPredecessor()) {
10544     materialize_false->SetJoinId(expr->MaterializeFalseId());
10545     set_current_block(materialize_false);
10546     Push(graph()->GetConstantFalse());
10547   } else {
10548     materialize_false = NULL;
10549   }
10550
10551   if (materialize_true->HasPredecessor()) {
10552     materialize_true->SetJoinId(expr->MaterializeTrueId());
10553     set_current_block(materialize_true);
10554     Push(graph()->GetConstantTrue());
10555   } else {
10556     materialize_true = NULL;
10557   }
10558
10559   HBasicBlock* join =
10560     CreateJoin(materialize_false, materialize_true, expr->id());
10561   set_current_block(join);
10562   if (join != NULL) return ast_context()->ReturnValue(Pop());
10563 }
10564
10565
10566 static Representation RepresentationFor(Type* type) {
10567   DisallowHeapAllocation no_allocation;
10568   if (type->Is(Type::None())) return Representation::None();
10569   if (type->Is(Type::SignedSmall())) return Representation::Smi();
10570   if (type->Is(Type::Signed32())) return Representation::Integer32();
10571   if (type->Is(Type::Number())) return Representation::Double();
10572   return Representation::Tagged();
10573 }
10574
10575
10576 HInstruction* HOptimizedGraphBuilder::BuildIncrement(
10577     bool returns_original_input,
10578     CountOperation* expr) {
10579   // The input to the count operation is on top of the expression stack.
10580   Representation rep = RepresentationFor(expr->type());
10581   if (rep.IsNone() || rep.IsTagged()) {
10582     rep = Representation::Smi();
10583   }
10584
10585   if (returns_original_input && !is_strong(function_language_mode())) {
10586     // We need an explicit HValue representing ToNumber(input).  The
10587     // actual HChange instruction we need is (sometimes) added in a later
10588     // phase, so it is not available now to be used as an input to HAdd and
10589     // as the return value.
10590     HInstruction* number_input = AddUncasted<HForceRepresentation>(Pop(), rep);
10591     if (!rep.IsDouble()) {
10592       number_input->SetFlag(HInstruction::kFlexibleRepresentation);
10593       number_input->SetFlag(HInstruction::kCannotBeTagged);
10594     }
10595     Push(number_input);
10596   }
10597
10598   // The addition has no side effects, so we do not need
10599   // to simulate the expression stack after this instruction.
10600   // Any later failures deopt to the load of the input or earlier.
10601   HConstant* delta = (expr->op() == Token::INC)
10602       ? graph()->GetConstant1()
10603       : graph()->GetConstantMinus1();
10604   HInstruction* instr =
10605       AddUncasted<HAdd>(Top(), delta, strength(function_language_mode()));
10606   if (instr->IsAdd()) {
10607     HAdd* add = HAdd::cast(instr);
10608     add->set_observed_input_representation(1, rep);
10609     add->set_observed_input_representation(2, Representation::Smi());
10610   }
10611   if (!is_strong(function_language_mode())) {
10612     instr->ClearAllSideEffects();
10613   } else {
10614     Add<HSimulate>(expr->ToNumberId(), REMOVABLE_SIMULATE);
10615   }
10616   instr->SetFlag(HInstruction::kCannotBeTagged);
10617   return instr;
10618 }
10619
10620
10621 void HOptimizedGraphBuilder::BuildStoreForEffect(
10622     Expression* expr, Property* prop, FeedbackVectorICSlot slot,
10623     BailoutId ast_id, BailoutId return_id, HValue* object, HValue* key,
10624     HValue* value) {
10625   EffectContext for_effect(this);
10626   Push(object);
10627   if (key != NULL) Push(key);
10628   Push(value);
10629   BuildStore(expr, prop, slot, ast_id, return_id);
10630 }
10631
10632
10633 void HOptimizedGraphBuilder::VisitCountOperation(CountOperation* expr) {
10634   DCHECK(!HasStackOverflow());
10635   DCHECK(current_block() != NULL);
10636   DCHECK(current_block()->HasPredecessor());
10637   if (!top_info()->is_tracking_positions()) SetSourcePosition(expr->position());
10638   Expression* target = expr->expression();
10639   VariableProxy* proxy = target->AsVariableProxy();
10640   Property* prop = target->AsProperty();
10641   if (proxy == NULL && prop == NULL) {
10642     return Bailout(kInvalidLhsInCountOperation);
10643   }
10644
10645   // Match the full code generator stack by simulating an extra stack
10646   // element for postfix operations in a non-effect context.  The return
10647   // value is ToNumber(input).
10648   bool returns_original_input =
10649       expr->is_postfix() && !ast_context()->IsEffect();
10650   HValue* input = NULL;  // ToNumber(original_input).
10651   HValue* after = NULL;  // The result after incrementing or decrementing.
10652
10653   if (proxy != NULL) {
10654     Variable* var = proxy->var();
10655     if (var->mode() == CONST_LEGACY)  {
10656       return Bailout(kUnsupportedCountOperationWithConst);
10657     }
10658     if (var->mode() == CONST) {
10659       return Bailout(kNonInitializerAssignmentToConst);
10660     }
10661     // Argument of the count operation is a variable, not a property.
10662     DCHECK(prop == NULL);
10663     CHECK_ALIVE(VisitForValue(target));
10664
10665     after = BuildIncrement(returns_original_input, expr);
10666     input = returns_original_input ? Top() : Pop();
10667     Push(after);
10668
10669     switch (var->location()) {
10670       case VariableLocation::GLOBAL:
10671       case VariableLocation::UNALLOCATED:
10672         HandleGlobalVariableAssignment(var, after, expr->CountSlot(),
10673                                        expr->AssignmentId());
10674         break;
10675
10676       case VariableLocation::PARAMETER:
10677       case VariableLocation::LOCAL:
10678         BindIfLive(var, after);
10679         break;
10680
10681       case VariableLocation::CONTEXT: {
10682         // Bail out if we try to mutate a parameter value in a function
10683         // using the arguments object.  We do not (yet) correctly handle the
10684         // arguments property of the function.
10685         if (current_info()->scope()->arguments() != NULL) {
10686           // Parameters will rewrite to context slots.  We have no direct
10687           // way to detect that the variable is a parameter so we use a
10688           // linear search of the parameter list.
10689           int count = current_info()->scope()->num_parameters();
10690           for (int i = 0; i < count; ++i) {
10691             if (var == current_info()->scope()->parameter(i)) {
10692               return Bailout(kAssignmentToParameterInArgumentsObject);
10693             }
10694           }
10695         }
10696
10697         HValue* context = BuildContextChainWalk(var);
10698         HStoreContextSlot::Mode mode = IsLexicalVariableMode(var->mode())
10699             ? HStoreContextSlot::kCheckDeoptimize : HStoreContextSlot::kNoCheck;
10700         HStoreContextSlot* instr = Add<HStoreContextSlot>(context, var->index(),
10701                                                           mode, after);
10702         if (instr->HasObservableSideEffects()) {
10703           Add<HSimulate>(expr->AssignmentId(), REMOVABLE_SIMULATE);
10704         }
10705         break;
10706       }
10707
10708       case VariableLocation::LOOKUP:
10709         return Bailout(kLookupVariableInCountOperation);
10710     }
10711
10712     Drop(returns_original_input ? 2 : 1);
10713     return ast_context()->ReturnValue(expr->is_postfix() ? input : after);
10714   }
10715
10716   // Argument of the count operation is a property.
10717   DCHECK(prop != NULL);
10718   if (returns_original_input) Push(graph()->GetConstantUndefined());
10719
10720   CHECK_ALIVE(VisitForValue(prop->obj()));
10721   HValue* object = Top();
10722
10723   HValue* key = NULL;
10724   if (!prop->key()->IsPropertyName() || prop->IsStringAccess()) {
10725     CHECK_ALIVE(VisitForValue(prop->key()));
10726     key = Top();
10727   }
10728
10729   CHECK_ALIVE(PushLoad(prop, object, key));
10730
10731   after = BuildIncrement(returns_original_input, expr);
10732
10733   if (returns_original_input) {
10734     input = Pop();
10735     // Drop object and key to push it again in the effect context below.
10736     Drop(key == NULL ? 1 : 2);
10737     environment()->SetExpressionStackAt(0, input);
10738     CHECK_ALIVE(BuildStoreForEffect(expr, prop, expr->CountSlot(), expr->id(),
10739                                     expr->AssignmentId(), object, key, after));
10740     return ast_context()->ReturnValue(Pop());
10741   }
10742
10743   environment()->SetExpressionStackAt(0, after);
10744   return BuildStore(expr, prop, expr->CountSlot(), expr->id(),
10745                     expr->AssignmentId());
10746 }
10747
10748
10749 HInstruction* HOptimizedGraphBuilder::BuildStringCharCodeAt(
10750     HValue* string,
10751     HValue* index) {
10752   if (string->IsConstant() && index->IsConstant()) {
10753     HConstant* c_string = HConstant::cast(string);
10754     HConstant* c_index = HConstant::cast(index);
10755     if (c_string->HasStringValue() && c_index->HasNumberValue()) {
10756       int32_t i = c_index->NumberValueAsInteger32();
10757       Handle<String> s = c_string->StringValue();
10758       if (i < 0 || i >= s->length()) {
10759         return New<HConstant>(std::numeric_limits<double>::quiet_NaN());
10760       }
10761       return New<HConstant>(s->Get(i));
10762     }
10763   }
10764   string = BuildCheckString(string);
10765   index = Add<HBoundsCheck>(index, AddLoadStringLength(string));
10766   return New<HStringCharCodeAt>(string, index);
10767 }
10768
10769
10770 // Checks if the given shift amounts have following forms:
10771 // (N1) and (N2) with N1 + N2 = 32; (sa) and (32 - sa).
10772 static bool ShiftAmountsAllowReplaceByRotate(HValue* sa,
10773                                              HValue* const32_minus_sa) {
10774   if (sa->IsConstant() && const32_minus_sa->IsConstant()) {
10775     const HConstant* c1 = HConstant::cast(sa);
10776     const HConstant* c2 = HConstant::cast(const32_minus_sa);
10777     return c1->HasInteger32Value() && c2->HasInteger32Value() &&
10778         (c1->Integer32Value() + c2->Integer32Value() == 32);
10779   }
10780   if (!const32_minus_sa->IsSub()) return false;
10781   HSub* sub = HSub::cast(const32_minus_sa);
10782   return sub->left()->EqualsInteger32Constant(32) && sub->right() == sa;
10783 }
10784
10785
10786 // Checks if the left and the right are shift instructions with the oposite
10787 // directions that can be replaced by one rotate right instruction or not.
10788 // Returns the operand and the shift amount for the rotate instruction in the
10789 // former case.
10790 bool HGraphBuilder::MatchRotateRight(HValue* left,
10791                                      HValue* right,
10792                                      HValue** operand,
10793                                      HValue** shift_amount) {
10794   HShl* shl;
10795   HShr* shr;
10796   if (left->IsShl() && right->IsShr()) {
10797     shl = HShl::cast(left);
10798     shr = HShr::cast(right);
10799   } else if (left->IsShr() && right->IsShl()) {
10800     shl = HShl::cast(right);
10801     shr = HShr::cast(left);
10802   } else {
10803     return false;
10804   }
10805   if (shl->left() != shr->left()) return false;
10806
10807   if (!ShiftAmountsAllowReplaceByRotate(shl->right(), shr->right()) &&
10808       !ShiftAmountsAllowReplaceByRotate(shr->right(), shl->right())) {
10809     return false;
10810   }
10811   *operand = shr->left();
10812   *shift_amount = shr->right();
10813   return true;
10814 }
10815
10816
10817 bool CanBeZero(HValue* right) {
10818   if (right->IsConstant()) {
10819     HConstant* right_const = HConstant::cast(right);
10820     if (right_const->HasInteger32Value() &&
10821        (right_const->Integer32Value() & 0x1f) != 0) {
10822       return false;
10823     }
10824   }
10825   return true;
10826 }
10827
10828
10829 HValue* HGraphBuilder::EnforceNumberType(HValue* number,
10830                                          Type* expected) {
10831   if (expected->Is(Type::SignedSmall())) {
10832     return AddUncasted<HForceRepresentation>(number, Representation::Smi());
10833   }
10834   if (expected->Is(Type::Signed32())) {
10835     return AddUncasted<HForceRepresentation>(number,
10836                                              Representation::Integer32());
10837   }
10838   return number;
10839 }
10840
10841
10842 HValue* HGraphBuilder::TruncateToNumber(HValue* value, Type** expected) {
10843   if (value->IsConstant()) {
10844     HConstant* constant = HConstant::cast(value);
10845     Maybe<HConstant*> number =
10846         constant->CopyToTruncatedNumber(isolate(), zone());
10847     if (number.IsJust()) {
10848       *expected = Type::Number(zone());
10849       return AddInstruction(number.FromJust());
10850     }
10851   }
10852
10853   // We put temporary values on the stack, which don't correspond to anything
10854   // in baseline code. Since nothing is observable we avoid recording those
10855   // pushes with a NoObservableSideEffectsScope.
10856   NoObservableSideEffectsScope no_effects(this);
10857
10858   Type* expected_type = *expected;
10859
10860   // Separate the number type from the rest.
10861   Type* expected_obj =
10862       Type::Intersect(expected_type, Type::NonNumber(zone()), zone());
10863   Type* expected_number =
10864       Type::Intersect(expected_type, Type::Number(zone()), zone());
10865
10866   // We expect to get a number.
10867   // (We need to check first, since Type::None->Is(Type::Any()) == true.
10868   if (expected_obj->Is(Type::None())) {
10869     DCHECK(!expected_number->Is(Type::None(zone())));
10870     return value;
10871   }
10872
10873   if (expected_obj->Is(Type::Undefined(zone()))) {
10874     // This is already done by HChange.
10875     *expected = Type::Union(expected_number, Type::Number(zone()), zone());
10876     return value;
10877   }
10878
10879   return value;
10880 }
10881
10882
10883 HValue* HOptimizedGraphBuilder::BuildBinaryOperation(
10884     BinaryOperation* expr,
10885     HValue* left,
10886     HValue* right,
10887     PushBeforeSimulateBehavior push_sim_result) {
10888   Type* left_type = expr->left()->bounds().lower;
10889   Type* right_type = expr->right()->bounds().lower;
10890   Type* result_type = expr->bounds().lower;
10891   Maybe<int> fixed_right_arg = expr->fixed_right_arg();
10892   Handle<AllocationSite> allocation_site = expr->allocation_site();
10893
10894   HAllocationMode allocation_mode;
10895   if (FLAG_allocation_site_pretenuring && !allocation_site.is_null()) {
10896     allocation_mode = HAllocationMode(allocation_site);
10897   }
10898   HValue* result = HGraphBuilder::BuildBinaryOperation(
10899       expr->op(), left, right, left_type, right_type, result_type,
10900       fixed_right_arg, allocation_mode, strength(function_language_mode()),
10901       expr->id());
10902   // Add a simulate after instructions with observable side effects, and
10903   // after phis, which are the result of BuildBinaryOperation when we
10904   // inlined some complex subgraph.
10905   if (result->HasObservableSideEffects() || result->IsPhi()) {
10906     if (push_sim_result == PUSH_BEFORE_SIMULATE) {
10907       Push(result);
10908       Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
10909       Drop(1);
10910     } else {
10911       Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
10912     }
10913   }
10914   return result;
10915 }
10916
10917
10918 HValue* HGraphBuilder::BuildBinaryOperation(
10919     Token::Value op, HValue* left, HValue* right, Type* left_type,
10920     Type* right_type, Type* result_type, Maybe<int> fixed_right_arg,
10921     HAllocationMode allocation_mode, Strength strength, BailoutId opt_id) {
10922   bool maybe_string_add = false;
10923   if (op == Token::ADD) {
10924     // If we are adding constant string with something for which we don't have
10925     // a feedback yet, assume that it's also going to be a string and don't
10926     // generate deopt instructions.
10927     if (!left_type->IsInhabited() && right->IsConstant() &&
10928         HConstant::cast(right)->HasStringValue()) {
10929       left_type = Type::String();
10930     }
10931
10932     if (!right_type->IsInhabited() && left->IsConstant() &&
10933         HConstant::cast(left)->HasStringValue()) {
10934       right_type = Type::String();
10935     }
10936
10937     maybe_string_add = (left_type->Maybe(Type::String()) ||
10938                         left_type->Maybe(Type::Receiver()) ||
10939                         right_type->Maybe(Type::String()) ||
10940                         right_type->Maybe(Type::Receiver()));
10941   }
10942
10943   Representation left_rep = RepresentationFor(left_type);
10944   Representation right_rep = RepresentationFor(right_type);
10945
10946   if (!left_type->IsInhabited()) {
10947     Add<HDeoptimize>(
10948         Deoptimizer::kInsufficientTypeFeedbackForLHSOfBinaryOperation,
10949         Deoptimizer::SOFT);
10950     left_type = Type::Any(zone());
10951     left_rep = RepresentationFor(left_type);
10952     maybe_string_add = op == Token::ADD;
10953   }
10954
10955   if (!right_type->IsInhabited()) {
10956     Add<HDeoptimize>(
10957         Deoptimizer::kInsufficientTypeFeedbackForRHSOfBinaryOperation,
10958         Deoptimizer::SOFT);
10959     right_type = Type::Any(zone());
10960     right_rep = RepresentationFor(right_type);
10961     maybe_string_add = op == Token::ADD;
10962   }
10963
10964   if (!maybe_string_add && !is_strong(strength)) {
10965     left = TruncateToNumber(left, &left_type);
10966     right = TruncateToNumber(right, &right_type);
10967   }
10968
10969   // Special case for string addition here.
10970   if (op == Token::ADD &&
10971       (left_type->Is(Type::String()) || right_type->Is(Type::String()))) {
10972     // Validate type feedback for left argument.
10973     if (left_type->Is(Type::String())) {
10974       left = BuildCheckString(left);
10975     }
10976
10977     // Validate type feedback for right argument.
10978     if (right_type->Is(Type::String())) {
10979       right = BuildCheckString(right);
10980     }
10981
10982     // Convert left argument as necessary.
10983     if (left_type->Is(Type::Number()) && !is_strong(strength)) {
10984       DCHECK(right_type->Is(Type::String()));
10985       left = BuildNumberToString(left, left_type);
10986     } else if (!left_type->Is(Type::String())) {
10987       DCHECK(right_type->Is(Type::String()));
10988       HValue* function = AddLoadJSBuiltin(
10989           is_strong(strength) ? Builtins::STRING_ADD_RIGHT_STRONG
10990                               : Builtins::STRING_ADD_RIGHT);
10991       Add<HPushArguments>(left, right);
10992       return AddUncasted<HInvokeFunction>(function, 2);
10993     }
10994
10995     // Convert right argument as necessary.
10996     if (right_type->Is(Type::Number()) && !is_strong(strength)) {
10997       DCHECK(left_type->Is(Type::String()));
10998       right = BuildNumberToString(right, right_type);
10999     } else if (!right_type->Is(Type::String())) {
11000       DCHECK(left_type->Is(Type::String()));
11001       HValue* function = AddLoadJSBuiltin(is_strong(strength)
11002                                               ? Builtins::STRING_ADD_LEFT_STRONG
11003                                               : Builtins::STRING_ADD_LEFT);
11004       Add<HPushArguments>(left, right);
11005       return AddUncasted<HInvokeFunction>(function, 2);
11006     }
11007
11008     // Fast paths for empty constant strings.
11009     Handle<String> left_string =
11010         left->IsConstant() && HConstant::cast(left)->HasStringValue()
11011             ? HConstant::cast(left)->StringValue()
11012             : Handle<String>();
11013     Handle<String> right_string =
11014         right->IsConstant() && HConstant::cast(right)->HasStringValue()
11015             ? HConstant::cast(right)->StringValue()
11016             : Handle<String>();
11017     if (!left_string.is_null() && left_string->length() == 0) return right;
11018     if (!right_string.is_null() && right_string->length() == 0) return left;
11019     if (!left_string.is_null() && !right_string.is_null()) {
11020       return AddUncasted<HStringAdd>(
11021           left, right, strength, allocation_mode.GetPretenureMode(),
11022           STRING_ADD_CHECK_NONE, allocation_mode.feedback_site());
11023     }
11024
11025     // Register the dependent code with the allocation site.
11026     if (!allocation_mode.feedback_site().is_null()) {
11027       DCHECK(!graph()->info()->IsStub());
11028       Handle<AllocationSite> site(allocation_mode.feedback_site());
11029       top_info()->dependencies()->AssumeTenuringDecision(site);
11030     }
11031
11032     // Inline the string addition into the stub when creating allocation
11033     // mementos to gather allocation site feedback, or if we can statically
11034     // infer that we're going to create a cons string.
11035     if ((graph()->info()->IsStub() &&
11036          allocation_mode.CreateAllocationMementos()) ||
11037         (left->IsConstant() &&
11038          HConstant::cast(left)->HasStringValue() &&
11039          HConstant::cast(left)->StringValue()->length() + 1 >=
11040            ConsString::kMinLength) ||
11041         (right->IsConstant() &&
11042          HConstant::cast(right)->HasStringValue() &&
11043          HConstant::cast(right)->StringValue()->length() + 1 >=
11044            ConsString::kMinLength)) {
11045       return BuildStringAdd(left, right, allocation_mode);
11046     }
11047
11048     // Fallback to using the string add stub.
11049     return AddUncasted<HStringAdd>(
11050         left, right, strength, allocation_mode.GetPretenureMode(),
11051         STRING_ADD_CHECK_NONE, allocation_mode.feedback_site());
11052   }
11053
11054   if (graph()->info()->IsStub()) {
11055     left = EnforceNumberType(left, left_type);
11056     right = EnforceNumberType(right, right_type);
11057   }
11058
11059   Representation result_rep = RepresentationFor(result_type);
11060
11061   bool is_non_primitive = (left_rep.IsTagged() && !left_rep.IsSmi()) ||
11062                           (right_rep.IsTagged() && !right_rep.IsSmi());
11063
11064   HInstruction* instr = NULL;
11065   // Only the stub is allowed to call into the runtime, since otherwise we would
11066   // inline several instructions (including the two pushes) for every tagged
11067   // operation in optimized code, which is more expensive, than a stub call.
11068   if (graph()->info()->IsStub() && is_non_primitive) {
11069     HValue* function =
11070         AddLoadJSBuiltin(BinaryOpIC::TokenToJSBuiltin(op, strength));
11071     Add<HPushArguments>(left, right);
11072     instr = AddUncasted<HInvokeFunction>(function, 2);
11073   } else {
11074     if (is_strong(strength) && Token::IsBitOp(op)) {
11075       // TODO(conradw): This is not efficient, but is necessary to prevent
11076       // conversion of oddball values to numbers in strong mode. It would be
11077       // better to prevent the conversion rather than adding a runtime check.
11078       IfBuilder if_builder(this);
11079       if_builder.If<HHasInstanceTypeAndBranch>(left, ODDBALL_TYPE);
11080       if_builder.OrIf<HHasInstanceTypeAndBranch>(right, ODDBALL_TYPE);
11081       if_builder.Then();
11082       Add<HCallRuntime>(
11083           isolate()->factory()->empty_string(),
11084           Runtime::FunctionForId(Runtime::kThrowStrongModeImplicitConversion),
11085           0);
11086       if (!graph()->info()->IsStub()) {
11087         Add<HSimulate>(opt_id, REMOVABLE_SIMULATE);
11088       }
11089       if_builder.End();
11090     }
11091     switch (op) {
11092       case Token::ADD:
11093         instr = AddUncasted<HAdd>(left, right, strength);
11094         break;
11095       case Token::SUB:
11096         instr = AddUncasted<HSub>(left, right, strength);
11097         break;
11098       case Token::MUL:
11099         instr = AddUncasted<HMul>(left, right, strength);
11100         break;
11101       case Token::MOD: {
11102         if (fixed_right_arg.IsJust() &&
11103             !right->EqualsInteger32Constant(fixed_right_arg.FromJust())) {
11104           HConstant* fixed_right =
11105               Add<HConstant>(static_cast<int>(fixed_right_arg.FromJust()));
11106           IfBuilder if_same(this);
11107           if_same.If<HCompareNumericAndBranch>(right, fixed_right, Token::EQ);
11108           if_same.Then();
11109           if_same.ElseDeopt(Deoptimizer::kUnexpectedRHSOfBinaryOperation);
11110           right = fixed_right;
11111         }
11112         instr = AddUncasted<HMod>(left, right, strength);
11113         break;
11114       }
11115       case Token::DIV:
11116         instr = AddUncasted<HDiv>(left, right, strength);
11117         break;
11118       case Token::BIT_XOR:
11119       case Token::BIT_AND:
11120         instr = AddUncasted<HBitwise>(op, left, right, strength);
11121         break;
11122       case Token::BIT_OR: {
11123         HValue* operand, *shift_amount;
11124         if (left_type->Is(Type::Signed32()) &&
11125             right_type->Is(Type::Signed32()) &&
11126             MatchRotateRight(left, right, &operand, &shift_amount)) {
11127           instr = AddUncasted<HRor>(operand, shift_amount, strength);
11128         } else {
11129           instr = AddUncasted<HBitwise>(op, left, right, strength);
11130         }
11131         break;
11132       }
11133       case Token::SAR:
11134         instr = AddUncasted<HSar>(left, right, strength);
11135         break;
11136       case Token::SHR:
11137         instr = AddUncasted<HShr>(left, right, strength);
11138         if (instr->IsShr() && CanBeZero(right)) {
11139           graph()->RecordUint32Instruction(instr);
11140         }
11141         break;
11142       case Token::SHL:
11143         instr = AddUncasted<HShl>(left, right, strength);
11144         break;
11145       default:
11146         UNREACHABLE();
11147     }
11148   }
11149
11150   if (instr->IsBinaryOperation()) {
11151     HBinaryOperation* binop = HBinaryOperation::cast(instr);
11152     binop->set_observed_input_representation(1, left_rep);
11153     binop->set_observed_input_representation(2, right_rep);
11154     binop->initialize_output_representation(result_rep);
11155     if (graph()->info()->IsStub()) {
11156       // Stub should not call into stub.
11157       instr->SetFlag(HValue::kCannotBeTagged);
11158       // And should truncate on HForceRepresentation already.
11159       if (left->IsForceRepresentation()) {
11160         left->CopyFlag(HValue::kTruncatingToSmi, instr);
11161         left->CopyFlag(HValue::kTruncatingToInt32, instr);
11162       }
11163       if (right->IsForceRepresentation()) {
11164         right->CopyFlag(HValue::kTruncatingToSmi, instr);
11165         right->CopyFlag(HValue::kTruncatingToInt32, instr);
11166       }
11167     }
11168   }
11169   return instr;
11170 }
11171
11172
11173 // Check for the form (%_ClassOf(foo) === 'BarClass').
11174 static bool IsClassOfTest(CompareOperation* expr) {
11175   if (expr->op() != Token::EQ_STRICT) return false;
11176   CallRuntime* call = expr->left()->AsCallRuntime();
11177   if (call == NULL) return false;
11178   Literal* literal = expr->right()->AsLiteral();
11179   if (literal == NULL) return false;
11180   if (!literal->value()->IsString()) return false;
11181   if (!call->name()->IsOneByteEqualTo(STATIC_CHAR_VECTOR("_ClassOf"))) {
11182     return false;
11183   }
11184   DCHECK(call->arguments()->length() == 1);
11185   return true;
11186 }
11187
11188
11189 void HOptimizedGraphBuilder::VisitBinaryOperation(BinaryOperation* expr) {
11190   DCHECK(!HasStackOverflow());
11191   DCHECK(current_block() != NULL);
11192   DCHECK(current_block()->HasPredecessor());
11193   switch (expr->op()) {
11194     case Token::COMMA:
11195       return VisitComma(expr);
11196     case Token::OR:
11197     case Token::AND:
11198       return VisitLogicalExpression(expr);
11199     default:
11200       return VisitArithmeticExpression(expr);
11201   }
11202 }
11203
11204
11205 void HOptimizedGraphBuilder::VisitComma(BinaryOperation* expr) {
11206   CHECK_ALIVE(VisitForEffect(expr->left()));
11207   // Visit the right subexpression in the same AST context as the entire
11208   // expression.
11209   Visit(expr->right());
11210 }
11211
11212
11213 void HOptimizedGraphBuilder::VisitLogicalExpression(BinaryOperation* expr) {
11214   bool is_logical_and = expr->op() == Token::AND;
11215   if (ast_context()->IsTest()) {
11216     TestContext* context = TestContext::cast(ast_context());
11217     // Translate left subexpression.
11218     HBasicBlock* eval_right = graph()->CreateBasicBlock();
11219     if (is_logical_and) {
11220       CHECK_BAILOUT(VisitForControl(expr->left(),
11221                                     eval_right,
11222                                     context->if_false()));
11223     } else {
11224       CHECK_BAILOUT(VisitForControl(expr->left(),
11225                                     context->if_true(),
11226                                     eval_right));
11227     }
11228
11229     // Translate right subexpression by visiting it in the same AST
11230     // context as the entire expression.
11231     if (eval_right->HasPredecessor()) {
11232       eval_right->SetJoinId(expr->RightId());
11233       set_current_block(eval_right);
11234       Visit(expr->right());
11235     }
11236
11237   } else if (ast_context()->IsValue()) {
11238     CHECK_ALIVE(VisitForValue(expr->left()));
11239     DCHECK(current_block() != NULL);
11240     HValue* left_value = Top();
11241
11242     // Short-circuit left values that always evaluate to the same boolean value.
11243     if (expr->left()->ToBooleanIsTrue() || expr->left()->ToBooleanIsFalse()) {
11244       // l (evals true)  && r -> r
11245       // l (evals true)  || r -> l
11246       // l (evals false) && r -> l
11247       // l (evals false) || r -> r
11248       if (is_logical_and == expr->left()->ToBooleanIsTrue()) {
11249         Drop(1);
11250         CHECK_ALIVE(VisitForValue(expr->right()));
11251       }
11252       return ast_context()->ReturnValue(Pop());
11253     }
11254
11255     // We need an extra block to maintain edge-split form.
11256     HBasicBlock* empty_block = graph()->CreateBasicBlock();
11257     HBasicBlock* eval_right = graph()->CreateBasicBlock();
11258     ToBooleanStub::Types expected(expr->left()->to_boolean_types());
11259     HBranch* test = is_logical_and
11260         ? New<HBranch>(left_value, expected, eval_right, empty_block)
11261         : New<HBranch>(left_value, expected, empty_block, eval_right);
11262     FinishCurrentBlock(test);
11263
11264     set_current_block(eval_right);
11265     Drop(1);  // Value of the left subexpression.
11266     CHECK_BAILOUT(VisitForValue(expr->right()));
11267
11268     HBasicBlock* join_block =
11269       CreateJoin(empty_block, current_block(), expr->id());
11270     set_current_block(join_block);
11271     return ast_context()->ReturnValue(Pop());
11272
11273   } else {
11274     DCHECK(ast_context()->IsEffect());
11275     // In an effect context, we don't need the value of the left subexpression,
11276     // only its control flow and side effects.  We need an extra block to
11277     // maintain edge-split form.
11278     HBasicBlock* empty_block = graph()->CreateBasicBlock();
11279     HBasicBlock* right_block = graph()->CreateBasicBlock();
11280     if (is_logical_and) {
11281       CHECK_BAILOUT(VisitForControl(expr->left(), right_block, empty_block));
11282     } else {
11283       CHECK_BAILOUT(VisitForControl(expr->left(), empty_block, right_block));
11284     }
11285
11286     // TODO(kmillikin): Find a way to fix this.  It's ugly that there are
11287     // actually two empty blocks (one here and one inserted by
11288     // TestContext::BuildBranch, and that they both have an HSimulate though the
11289     // second one is not a merge node, and that we really have no good AST ID to
11290     // put on that first HSimulate.
11291
11292     if (empty_block->HasPredecessor()) {
11293       empty_block->SetJoinId(expr->id());
11294     } else {
11295       empty_block = NULL;
11296     }
11297
11298     if (right_block->HasPredecessor()) {
11299       right_block->SetJoinId(expr->RightId());
11300       set_current_block(right_block);
11301       CHECK_BAILOUT(VisitForEffect(expr->right()));
11302       right_block = current_block();
11303     } else {
11304       right_block = NULL;
11305     }
11306
11307     HBasicBlock* join_block =
11308       CreateJoin(empty_block, right_block, expr->id());
11309     set_current_block(join_block);
11310     // We did not materialize any value in the predecessor environments,
11311     // so there is no need to handle it here.
11312   }
11313 }
11314
11315
11316 void HOptimizedGraphBuilder::VisitArithmeticExpression(BinaryOperation* expr) {
11317   CHECK_ALIVE(VisitForValue(expr->left()));
11318   CHECK_ALIVE(VisitForValue(expr->right()));
11319   SetSourcePosition(expr->position());
11320   HValue* right = Pop();
11321   HValue* left = Pop();
11322   HValue* result =
11323       BuildBinaryOperation(expr, left, right,
11324           ast_context()->IsEffect() ? NO_PUSH_BEFORE_SIMULATE
11325                                     : PUSH_BEFORE_SIMULATE);
11326   if (top_info()->is_tracking_positions() && result->IsBinaryOperation()) {
11327     HBinaryOperation::cast(result)->SetOperandPositions(
11328         zone(),
11329         ScriptPositionToSourcePosition(expr->left()->position()),
11330         ScriptPositionToSourcePosition(expr->right()->position()));
11331   }
11332   return ast_context()->ReturnValue(result);
11333 }
11334
11335
11336 void HOptimizedGraphBuilder::HandleLiteralCompareTypeof(CompareOperation* expr,
11337                                                         Expression* sub_expr,
11338                                                         Handle<String> check) {
11339   CHECK_ALIVE(VisitForTypeOf(sub_expr));
11340   SetSourcePosition(expr->position());
11341   HValue* value = Pop();
11342   HTypeofIsAndBranch* instr = New<HTypeofIsAndBranch>(value, check);
11343   return ast_context()->ReturnControl(instr, expr->id());
11344 }
11345
11346
11347 static bool IsLiteralCompareBool(Isolate* isolate,
11348                                  HValue* left,
11349                                  Token::Value op,
11350                                  HValue* right) {
11351   return op == Token::EQ_STRICT &&
11352       ((left->IsConstant() &&
11353           HConstant::cast(left)->handle(isolate)->IsBoolean()) ||
11354        (right->IsConstant() &&
11355            HConstant::cast(right)->handle(isolate)->IsBoolean()));
11356 }
11357
11358
11359 void HOptimizedGraphBuilder::VisitCompareOperation(CompareOperation* expr) {
11360   DCHECK(!HasStackOverflow());
11361   DCHECK(current_block() != NULL);
11362   DCHECK(current_block()->HasPredecessor());
11363
11364   if (!top_info()->is_tracking_positions()) SetSourcePosition(expr->position());
11365
11366   // Check for a few fast cases. The AST visiting behavior must be in sync
11367   // with the full codegen: We don't push both left and right values onto
11368   // the expression stack when one side is a special-case literal.
11369   Expression* sub_expr = NULL;
11370   Handle<String> check;
11371   if (expr->IsLiteralCompareTypeof(&sub_expr, &check)) {
11372     return HandleLiteralCompareTypeof(expr, sub_expr, check);
11373   }
11374   if (expr->IsLiteralCompareUndefined(&sub_expr, isolate())) {
11375     return HandleLiteralCompareNil(expr, sub_expr, kUndefinedValue);
11376   }
11377   if (expr->IsLiteralCompareNull(&sub_expr)) {
11378     return HandleLiteralCompareNil(expr, sub_expr, kNullValue);
11379   }
11380
11381   if (IsClassOfTest(expr)) {
11382     CallRuntime* call = expr->left()->AsCallRuntime();
11383     DCHECK(call->arguments()->length() == 1);
11384     CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11385     HValue* value = Pop();
11386     Literal* literal = expr->right()->AsLiteral();
11387     Handle<String> rhs = Handle<String>::cast(literal->value());
11388     HClassOfTestAndBranch* instr = New<HClassOfTestAndBranch>(value, rhs);
11389     return ast_context()->ReturnControl(instr, expr->id());
11390   }
11391
11392   Type* left_type = expr->left()->bounds().lower;
11393   Type* right_type = expr->right()->bounds().lower;
11394   Type* combined_type = expr->combined_type();
11395
11396   CHECK_ALIVE(VisitForValue(expr->left()));
11397   CHECK_ALIVE(VisitForValue(expr->right()));
11398
11399   HValue* right = Pop();
11400   HValue* left = Pop();
11401   Token::Value op = expr->op();
11402
11403   if (IsLiteralCompareBool(isolate(), left, op, right)) {
11404     HCompareObjectEqAndBranch* result =
11405         New<HCompareObjectEqAndBranch>(left, right);
11406     return ast_context()->ReturnControl(result, expr->id());
11407   }
11408
11409   if (op == Token::INSTANCEOF) {
11410     // Check to see if the rhs of the instanceof is a known function.
11411     if (right->IsConstant() &&
11412         HConstant::cast(right)->handle(isolate())->IsJSFunction()) {
11413       Handle<Object> function = HConstant::cast(right)->handle(isolate());
11414       Handle<JSFunction> target = Handle<JSFunction>::cast(function);
11415       HInstanceOfKnownGlobal* result =
11416           New<HInstanceOfKnownGlobal>(left, target);
11417       return ast_context()->ReturnInstruction(result, expr->id());
11418     }
11419
11420     HInstanceOf* result = New<HInstanceOf>(left, right);
11421     return ast_context()->ReturnInstruction(result, expr->id());
11422
11423   } else if (op == Token::IN) {
11424     HValue* function = AddLoadJSBuiltin(Builtins::IN);
11425     Add<HPushArguments>(left, right);
11426     // TODO(olivf) InvokeFunction produces a check for the parameter count,
11427     // even though we are certain to pass the correct number of arguments here.
11428     HInstruction* result = New<HInvokeFunction>(function, 2);
11429     return ast_context()->ReturnInstruction(result, expr->id());
11430   }
11431
11432   PushBeforeSimulateBehavior push_behavior =
11433     ast_context()->IsEffect() ? NO_PUSH_BEFORE_SIMULATE
11434                               : PUSH_BEFORE_SIMULATE;
11435   HControlInstruction* compare = BuildCompareInstruction(
11436       op, left, right, left_type, right_type, combined_type,
11437       ScriptPositionToSourcePosition(expr->left()->position()),
11438       ScriptPositionToSourcePosition(expr->right()->position()),
11439       push_behavior, expr->id());
11440   if (compare == NULL) return;  // Bailed out.
11441   return ast_context()->ReturnControl(compare, expr->id());
11442 }
11443
11444
11445 HControlInstruction* HOptimizedGraphBuilder::BuildCompareInstruction(
11446     Token::Value op, HValue* left, HValue* right, Type* left_type,
11447     Type* right_type, Type* combined_type, SourcePosition left_position,
11448     SourcePosition right_position, PushBeforeSimulateBehavior push_sim_result,
11449     BailoutId bailout_id) {
11450   // Cases handled below depend on collected type feedback. They should
11451   // soft deoptimize when there is no type feedback.
11452   if (!combined_type->IsInhabited()) {
11453     Add<HDeoptimize>(
11454         Deoptimizer::kInsufficientTypeFeedbackForCombinedTypeOfBinaryOperation,
11455         Deoptimizer::SOFT);
11456     combined_type = left_type = right_type = Type::Any(zone());
11457   }
11458
11459   Representation left_rep = RepresentationFor(left_type);
11460   Representation right_rep = RepresentationFor(right_type);
11461   Representation combined_rep = RepresentationFor(combined_type);
11462
11463   if (combined_type->Is(Type::Receiver())) {
11464     if (Token::IsEqualityOp(op)) {
11465       // HCompareObjectEqAndBranch can only deal with object, so
11466       // exclude numbers.
11467       if ((left->IsConstant() &&
11468            HConstant::cast(left)->HasNumberValue()) ||
11469           (right->IsConstant() &&
11470            HConstant::cast(right)->HasNumberValue())) {
11471         Add<HDeoptimize>(Deoptimizer::kTypeMismatchBetweenFeedbackAndConstant,
11472                          Deoptimizer::SOFT);
11473         // The caller expects a branch instruction, so make it happy.
11474         return New<HBranch>(graph()->GetConstantTrue());
11475       }
11476       // Can we get away with map check and not instance type check?
11477       HValue* operand_to_check =
11478           left->block()->block_id() < right->block()->block_id() ? left : right;
11479       if (combined_type->IsClass()) {
11480         Handle<Map> map = combined_type->AsClass()->Map();
11481         AddCheckMap(operand_to_check, map);
11482         HCompareObjectEqAndBranch* result =
11483             New<HCompareObjectEqAndBranch>(left, right);
11484         if (top_info()->is_tracking_positions()) {
11485           result->set_operand_position(zone(), 0, left_position);
11486           result->set_operand_position(zone(), 1, right_position);
11487         }
11488         return result;
11489       } else {
11490         BuildCheckHeapObject(operand_to_check);
11491         Add<HCheckInstanceType>(operand_to_check,
11492                                 HCheckInstanceType::IS_SPEC_OBJECT);
11493         HCompareObjectEqAndBranch* result =
11494             New<HCompareObjectEqAndBranch>(left, right);
11495         return result;
11496       }
11497     } else {
11498       Bailout(kUnsupportedNonPrimitiveCompare);
11499       return NULL;
11500     }
11501   } else if (combined_type->Is(Type::InternalizedString()) &&
11502              Token::IsEqualityOp(op)) {
11503     // If we have a constant argument, it should be consistent with the type
11504     // feedback (otherwise we fail assertions in HCompareObjectEqAndBranch).
11505     if ((left->IsConstant() &&
11506          !HConstant::cast(left)->HasInternalizedStringValue()) ||
11507         (right->IsConstant() &&
11508          !HConstant::cast(right)->HasInternalizedStringValue())) {
11509       Add<HDeoptimize>(Deoptimizer::kTypeMismatchBetweenFeedbackAndConstant,
11510                        Deoptimizer::SOFT);
11511       // The caller expects a branch instruction, so make it happy.
11512       return New<HBranch>(graph()->GetConstantTrue());
11513     }
11514     BuildCheckHeapObject(left);
11515     Add<HCheckInstanceType>(left, HCheckInstanceType::IS_INTERNALIZED_STRING);
11516     BuildCheckHeapObject(right);
11517     Add<HCheckInstanceType>(right, HCheckInstanceType::IS_INTERNALIZED_STRING);
11518     HCompareObjectEqAndBranch* result =
11519         New<HCompareObjectEqAndBranch>(left, right);
11520     return result;
11521   } else if (combined_type->Is(Type::String())) {
11522     BuildCheckHeapObject(left);
11523     Add<HCheckInstanceType>(left, HCheckInstanceType::IS_STRING);
11524     BuildCheckHeapObject(right);
11525     Add<HCheckInstanceType>(right, HCheckInstanceType::IS_STRING);
11526     HStringCompareAndBranch* result =
11527         New<HStringCompareAndBranch>(left, right, op);
11528     return result;
11529   } else {
11530     if (combined_rep.IsTagged() || combined_rep.IsNone()) {
11531       HCompareGeneric* result = Add<HCompareGeneric>(
11532           left, right, op, strength(function_language_mode()));
11533       result->set_observed_input_representation(1, left_rep);
11534       result->set_observed_input_representation(2, right_rep);
11535       if (result->HasObservableSideEffects()) {
11536         if (push_sim_result == PUSH_BEFORE_SIMULATE) {
11537           Push(result);
11538           AddSimulate(bailout_id, REMOVABLE_SIMULATE);
11539           Drop(1);
11540         } else {
11541           AddSimulate(bailout_id, REMOVABLE_SIMULATE);
11542         }
11543       }
11544       // TODO(jkummerow): Can we make this more efficient?
11545       HBranch* branch = New<HBranch>(result);
11546       return branch;
11547     } else {
11548       HCompareNumericAndBranch* result = New<HCompareNumericAndBranch>(
11549           left, right, op, strength(function_language_mode()));
11550       result->set_observed_input_representation(left_rep, right_rep);
11551       if (top_info()->is_tracking_positions()) {
11552         result->SetOperandPositions(zone(), left_position, right_position);
11553       }
11554       return result;
11555     }
11556   }
11557 }
11558
11559
11560 void HOptimizedGraphBuilder::HandleLiteralCompareNil(CompareOperation* expr,
11561                                                      Expression* sub_expr,
11562                                                      NilValue nil) {
11563   DCHECK(!HasStackOverflow());
11564   DCHECK(current_block() != NULL);
11565   DCHECK(current_block()->HasPredecessor());
11566   DCHECK(expr->op() == Token::EQ || expr->op() == Token::EQ_STRICT);
11567   if (!top_info()->is_tracking_positions()) SetSourcePosition(expr->position());
11568   CHECK_ALIVE(VisitForValue(sub_expr));
11569   HValue* value = Pop();
11570   if (expr->op() == Token::EQ_STRICT) {
11571     HConstant* nil_constant = nil == kNullValue
11572         ? graph()->GetConstantNull()
11573         : graph()->GetConstantUndefined();
11574     HCompareObjectEqAndBranch* instr =
11575         New<HCompareObjectEqAndBranch>(value, nil_constant);
11576     return ast_context()->ReturnControl(instr, expr->id());
11577   } else {
11578     DCHECK_EQ(Token::EQ, expr->op());
11579     Type* type = expr->combined_type()->Is(Type::None())
11580         ? Type::Any(zone()) : expr->combined_type();
11581     HIfContinuation continuation;
11582     BuildCompareNil(value, type, &continuation);
11583     return ast_context()->ReturnContinuation(&continuation, expr->id());
11584   }
11585 }
11586
11587
11588 void HOptimizedGraphBuilder::VisitSpread(Spread* expr) { UNREACHABLE(); }
11589
11590
11591 HInstruction* HOptimizedGraphBuilder::BuildThisFunction() {
11592   // If we share optimized code between different closures, the
11593   // this-function is not a constant, except inside an inlined body.
11594   if (function_state()->outer() != NULL) {
11595       return New<HConstant>(
11596           function_state()->compilation_info()->closure());
11597   } else {
11598       return New<HThisFunction>();
11599   }
11600 }
11601
11602
11603 HInstruction* HOptimizedGraphBuilder::BuildFastLiteral(
11604     Handle<JSObject> boilerplate_object,
11605     AllocationSiteUsageContext* site_context) {
11606   NoObservableSideEffectsScope no_effects(this);
11607   Handle<Map> initial_map(boilerplate_object->map());
11608   InstanceType instance_type = initial_map->instance_type();
11609   DCHECK(instance_type == JS_ARRAY_TYPE || instance_type == JS_OBJECT_TYPE);
11610
11611   HType type = instance_type == JS_ARRAY_TYPE
11612       ? HType::JSArray() : HType::JSObject();
11613   HValue* object_size_constant = Add<HConstant>(initial_map->instance_size());
11614
11615   PretenureFlag pretenure_flag = NOT_TENURED;
11616   Handle<AllocationSite> top_site(*site_context->top(), isolate());
11617   if (FLAG_allocation_site_pretenuring) {
11618     pretenure_flag = top_site->GetPretenureMode();
11619   }
11620
11621   Handle<AllocationSite> current_site(*site_context->current(), isolate());
11622   if (*top_site == *current_site) {
11623     // We install a dependency for pretenuring only on the outermost literal.
11624     top_info()->dependencies()->AssumeTenuringDecision(top_site);
11625   }
11626   top_info()->dependencies()->AssumeTransitionStable(current_site);
11627
11628   HInstruction* object = Add<HAllocate>(
11629       object_size_constant, type, pretenure_flag, instance_type, top_site);
11630
11631   // If allocation folding reaches Page::kMaxRegularHeapObjectSize the
11632   // elements array may not get folded into the object. Hence, we set the
11633   // elements pointer to empty fixed array and let store elimination remove
11634   // this store in the folding case.
11635   HConstant* empty_fixed_array = Add<HConstant>(
11636       isolate()->factory()->empty_fixed_array());
11637   Add<HStoreNamedField>(object, HObjectAccess::ForElementsPointer(),
11638       empty_fixed_array);
11639
11640   BuildEmitObjectHeader(boilerplate_object, object);
11641
11642   // Similarly to the elements pointer, there is no guarantee that all
11643   // property allocations can get folded, so pre-initialize all in-object
11644   // properties to a safe value.
11645   BuildInitializeInobjectProperties(object, initial_map);
11646
11647   Handle<FixedArrayBase> elements(boilerplate_object->elements());
11648   int elements_size = (elements->length() > 0 &&
11649       elements->map() != isolate()->heap()->fixed_cow_array_map()) ?
11650           elements->Size() : 0;
11651
11652   if (pretenure_flag == TENURED &&
11653       elements->map() == isolate()->heap()->fixed_cow_array_map() &&
11654       isolate()->heap()->InNewSpace(*elements)) {
11655     // If we would like to pretenure a fixed cow array, we must ensure that the
11656     // array is already in old space, otherwise we'll create too many old-to-
11657     // new-space pointers (overflowing the store buffer).
11658     elements = Handle<FixedArrayBase>(
11659         isolate()->factory()->CopyAndTenureFixedCOWArray(
11660             Handle<FixedArray>::cast(elements)));
11661     boilerplate_object->set_elements(*elements);
11662   }
11663
11664   HInstruction* object_elements = NULL;
11665   if (elements_size > 0) {
11666     HValue* object_elements_size = Add<HConstant>(elements_size);
11667     InstanceType instance_type = boilerplate_object->HasFastDoubleElements()
11668         ? FIXED_DOUBLE_ARRAY_TYPE : FIXED_ARRAY_TYPE;
11669     object_elements = Add<HAllocate>(object_elements_size, HType::HeapObject(),
11670                                      pretenure_flag, instance_type, top_site);
11671     BuildEmitElements(boilerplate_object, elements, object_elements,
11672                       site_context);
11673     Add<HStoreNamedField>(object, HObjectAccess::ForElementsPointer(),
11674                           object_elements);
11675   } else {
11676     Handle<Object> elements_field =
11677         Handle<Object>(boilerplate_object->elements(), isolate());
11678     HInstruction* object_elements_cow = Add<HConstant>(elements_field);
11679     Add<HStoreNamedField>(object, HObjectAccess::ForElementsPointer(),
11680                           object_elements_cow);
11681   }
11682
11683   // Copy in-object properties.
11684   if (initial_map->NumberOfFields() != 0 ||
11685       initial_map->unused_property_fields() > 0) {
11686     BuildEmitInObjectProperties(boilerplate_object, object, site_context,
11687                                 pretenure_flag);
11688   }
11689   return object;
11690 }
11691
11692
11693 void HOptimizedGraphBuilder::BuildEmitObjectHeader(
11694     Handle<JSObject> boilerplate_object,
11695     HInstruction* object) {
11696   DCHECK(boilerplate_object->properties()->length() == 0);
11697
11698   Handle<Map> boilerplate_object_map(boilerplate_object->map());
11699   AddStoreMapConstant(object, boilerplate_object_map);
11700
11701   Handle<Object> properties_field =
11702       Handle<Object>(boilerplate_object->properties(), isolate());
11703   DCHECK(*properties_field == isolate()->heap()->empty_fixed_array());
11704   HInstruction* properties = Add<HConstant>(properties_field);
11705   HObjectAccess access = HObjectAccess::ForPropertiesPointer();
11706   Add<HStoreNamedField>(object, access, properties);
11707
11708   if (boilerplate_object->IsJSArray()) {
11709     Handle<JSArray> boilerplate_array =
11710         Handle<JSArray>::cast(boilerplate_object);
11711     Handle<Object> length_field =
11712         Handle<Object>(boilerplate_array->length(), isolate());
11713     HInstruction* length = Add<HConstant>(length_field);
11714
11715     DCHECK(boilerplate_array->length()->IsSmi());
11716     Add<HStoreNamedField>(object, HObjectAccess::ForArrayLength(
11717         boilerplate_array->GetElementsKind()), length);
11718   }
11719 }
11720
11721
11722 void HOptimizedGraphBuilder::BuildEmitInObjectProperties(
11723     Handle<JSObject> boilerplate_object,
11724     HInstruction* object,
11725     AllocationSiteUsageContext* site_context,
11726     PretenureFlag pretenure_flag) {
11727   Handle<Map> boilerplate_map(boilerplate_object->map());
11728   Handle<DescriptorArray> descriptors(boilerplate_map->instance_descriptors());
11729   int limit = boilerplate_map->NumberOfOwnDescriptors();
11730
11731   int copied_fields = 0;
11732   for (int i = 0; i < limit; i++) {
11733     PropertyDetails details = descriptors->GetDetails(i);
11734     if (details.type() != DATA) continue;
11735     copied_fields++;
11736     FieldIndex field_index = FieldIndex::ForDescriptor(*boilerplate_map, i);
11737
11738
11739     int property_offset = field_index.offset();
11740     Handle<Name> name(descriptors->GetKey(i));
11741
11742     // The access for the store depends on the type of the boilerplate.
11743     HObjectAccess access = boilerplate_object->IsJSArray() ?
11744         HObjectAccess::ForJSArrayOffset(property_offset) :
11745         HObjectAccess::ForMapAndOffset(boilerplate_map, property_offset);
11746
11747     if (boilerplate_object->IsUnboxedDoubleField(field_index)) {
11748       CHECK(!boilerplate_object->IsJSArray());
11749       double value = boilerplate_object->RawFastDoublePropertyAt(field_index);
11750       access = access.WithRepresentation(Representation::Double());
11751       Add<HStoreNamedField>(object, access, Add<HConstant>(value));
11752       continue;
11753     }
11754     Handle<Object> value(boilerplate_object->RawFastPropertyAt(field_index),
11755                          isolate());
11756
11757     if (value->IsJSObject()) {
11758       Handle<JSObject> value_object = Handle<JSObject>::cast(value);
11759       Handle<AllocationSite> current_site = site_context->EnterNewScope();
11760       HInstruction* result =
11761           BuildFastLiteral(value_object, site_context);
11762       site_context->ExitScope(current_site, value_object);
11763       Add<HStoreNamedField>(object, access, result);
11764     } else {
11765       Representation representation = details.representation();
11766       HInstruction* value_instruction;
11767
11768       if (representation.IsDouble()) {
11769         // Allocate a HeapNumber box and store the value into it.
11770         HValue* heap_number_constant = Add<HConstant>(HeapNumber::kSize);
11771         HInstruction* double_box =
11772             Add<HAllocate>(heap_number_constant, HType::HeapObject(),
11773                 pretenure_flag, MUTABLE_HEAP_NUMBER_TYPE);
11774         AddStoreMapConstant(double_box,
11775             isolate()->factory()->mutable_heap_number_map());
11776         // Unwrap the mutable heap number from the boilerplate.
11777         HValue* double_value =
11778             Add<HConstant>(Handle<HeapNumber>::cast(value)->value());
11779         Add<HStoreNamedField>(
11780             double_box, HObjectAccess::ForHeapNumberValue(), double_value);
11781         value_instruction = double_box;
11782       } else if (representation.IsSmi()) {
11783         value_instruction = value->IsUninitialized()
11784             ? graph()->GetConstant0()
11785             : Add<HConstant>(value);
11786         // Ensure that value is stored as smi.
11787         access = access.WithRepresentation(representation);
11788       } else {
11789         value_instruction = Add<HConstant>(value);
11790       }
11791
11792       Add<HStoreNamedField>(object, access, value_instruction);
11793     }
11794   }
11795
11796   int inobject_properties = boilerplate_object->map()->inobject_properties();
11797   HInstruction* value_instruction =
11798       Add<HConstant>(isolate()->factory()->one_pointer_filler_map());
11799   for (int i = copied_fields; i < inobject_properties; i++) {
11800     DCHECK(boilerplate_object->IsJSObject());
11801     int property_offset = boilerplate_object->GetInObjectPropertyOffset(i);
11802     HObjectAccess access =
11803         HObjectAccess::ForMapAndOffset(boilerplate_map, property_offset);
11804     Add<HStoreNamedField>(object, access, value_instruction);
11805   }
11806 }
11807
11808
11809 void HOptimizedGraphBuilder::BuildEmitElements(
11810     Handle<JSObject> boilerplate_object,
11811     Handle<FixedArrayBase> elements,
11812     HValue* object_elements,
11813     AllocationSiteUsageContext* site_context) {
11814   ElementsKind kind = boilerplate_object->map()->elements_kind();
11815   int elements_length = elements->length();
11816   HValue* object_elements_length = Add<HConstant>(elements_length);
11817   BuildInitializeElementsHeader(object_elements, kind, object_elements_length);
11818
11819   // Copy elements backing store content.
11820   if (elements->IsFixedDoubleArray()) {
11821     BuildEmitFixedDoubleArray(elements, kind, object_elements);
11822   } else if (elements->IsFixedArray()) {
11823     BuildEmitFixedArray(elements, kind, object_elements,
11824                         site_context);
11825   } else {
11826     UNREACHABLE();
11827   }
11828 }
11829
11830
11831 void HOptimizedGraphBuilder::BuildEmitFixedDoubleArray(
11832     Handle<FixedArrayBase> elements,
11833     ElementsKind kind,
11834     HValue* object_elements) {
11835   HInstruction* boilerplate_elements = Add<HConstant>(elements);
11836   int elements_length = elements->length();
11837   for (int i = 0; i < elements_length; i++) {
11838     HValue* key_constant = Add<HConstant>(i);
11839     HInstruction* value_instruction = Add<HLoadKeyed>(
11840         boilerplate_elements, key_constant, nullptr, kind, ALLOW_RETURN_HOLE);
11841     HInstruction* store = Add<HStoreKeyed>(object_elements, key_constant,
11842                                            value_instruction, kind);
11843     store->SetFlag(HValue::kAllowUndefinedAsNaN);
11844   }
11845 }
11846
11847
11848 void HOptimizedGraphBuilder::BuildEmitFixedArray(
11849     Handle<FixedArrayBase> elements,
11850     ElementsKind kind,
11851     HValue* object_elements,
11852     AllocationSiteUsageContext* site_context) {
11853   HInstruction* boilerplate_elements = Add<HConstant>(elements);
11854   int elements_length = elements->length();
11855   Handle<FixedArray> fast_elements = Handle<FixedArray>::cast(elements);
11856   for (int i = 0; i < elements_length; i++) {
11857     Handle<Object> value(fast_elements->get(i), isolate());
11858     HValue* key_constant = Add<HConstant>(i);
11859     if (value->IsJSObject()) {
11860       Handle<JSObject> value_object = Handle<JSObject>::cast(value);
11861       Handle<AllocationSite> current_site = site_context->EnterNewScope();
11862       HInstruction* result =
11863           BuildFastLiteral(value_object, site_context);
11864       site_context->ExitScope(current_site, value_object);
11865       Add<HStoreKeyed>(object_elements, key_constant, result, kind);
11866     } else {
11867       ElementsKind copy_kind =
11868           kind == FAST_HOLEY_SMI_ELEMENTS ? FAST_HOLEY_ELEMENTS : kind;
11869       HInstruction* value_instruction =
11870           Add<HLoadKeyed>(boilerplate_elements, key_constant, nullptr,
11871                           copy_kind, ALLOW_RETURN_HOLE);
11872       Add<HStoreKeyed>(object_elements, key_constant, value_instruction,
11873                        copy_kind);
11874     }
11875   }
11876 }
11877
11878
11879 void HOptimizedGraphBuilder::VisitThisFunction(ThisFunction* expr) {
11880   DCHECK(!HasStackOverflow());
11881   DCHECK(current_block() != NULL);
11882   DCHECK(current_block()->HasPredecessor());
11883   HInstruction* instr = BuildThisFunction();
11884   return ast_context()->ReturnInstruction(instr, expr->id());
11885 }
11886
11887
11888 void HOptimizedGraphBuilder::VisitSuperPropertyReference(
11889     SuperPropertyReference* expr) {
11890   DCHECK(!HasStackOverflow());
11891   DCHECK(current_block() != NULL);
11892   DCHECK(current_block()->HasPredecessor());
11893   return Bailout(kSuperReference);
11894 }
11895
11896
11897 void HOptimizedGraphBuilder::VisitSuperCallReference(SuperCallReference* expr) {
11898   DCHECK(!HasStackOverflow());
11899   DCHECK(current_block() != NULL);
11900   DCHECK(current_block()->HasPredecessor());
11901   return Bailout(kSuperReference);
11902 }
11903
11904
11905 void HOptimizedGraphBuilder::VisitDeclarations(
11906     ZoneList<Declaration*>* declarations) {
11907   DCHECK(globals_.is_empty());
11908   AstVisitor::VisitDeclarations(declarations);
11909   if (!globals_.is_empty()) {
11910     Handle<FixedArray> array =
11911        isolate()->factory()->NewFixedArray(globals_.length(), TENURED);
11912     for (int i = 0; i < globals_.length(); ++i) array->set(i, *globals_.at(i));
11913     int flags =
11914         DeclareGlobalsEvalFlag::encode(current_info()->is_eval()) |
11915         DeclareGlobalsNativeFlag::encode(current_info()->is_native()) |
11916         DeclareGlobalsLanguageMode::encode(current_info()->language_mode());
11917     Add<HDeclareGlobals>(array, flags);
11918     globals_.Rewind(0);
11919   }
11920 }
11921
11922
11923 void HOptimizedGraphBuilder::VisitVariableDeclaration(
11924     VariableDeclaration* declaration) {
11925   VariableProxy* proxy = declaration->proxy();
11926   VariableMode mode = declaration->mode();
11927   Variable* variable = proxy->var();
11928   bool hole_init = mode == LET || mode == CONST || mode == CONST_LEGACY;
11929   switch (variable->location()) {
11930     case VariableLocation::GLOBAL:
11931     case VariableLocation::UNALLOCATED:
11932       globals_.Add(variable->name(), zone());
11933       globals_.Add(variable->binding_needs_init()
11934                        ? isolate()->factory()->the_hole_value()
11935                        : isolate()->factory()->undefined_value(), zone());
11936       return;
11937     case VariableLocation::PARAMETER:
11938     case VariableLocation::LOCAL:
11939       if (hole_init) {
11940         HValue* value = graph()->GetConstantHole();
11941         environment()->Bind(variable, value);
11942       }
11943       break;
11944     case VariableLocation::CONTEXT:
11945       if (hole_init) {
11946         HValue* value = graph()->GetConstantHole();
11947         HValue* context = environment()->context();
11948         HStoreContextSlot* store = Add<HStoreContextSlot>(
11949             context, variable->index(), HStoreContextSlot::kNoCheck, value);
11950         if (store->HasObservableSideEffects()) {
11951           Add<HSimulate>(proxy->id(), REMOVABLE_SIMULATE);
11952         }
11953       }
11954       break;
11955     case VariableLocation::LOOKUP:
11956       return Bailout(kUnsupportedLookupSlotInDeclaration);
11957   }
11958 }
11959
11960
11961 void HOptimizedGraphBuilder::VisitFunctionDeclaration(
11962     FunctionDeclaration* declaration) {
11963   VariableProxy* proxy = declaration->proxy();
11964   Variable* variable = proxy->var();
11965   switch (variable->location()) {
11966     case VariableLocation::GLOBAL:
11967     case VariableLocation::UNALLOCATED: {
11968       globals_.Add(variable->name(), zone());
11969       Handle<SharedFunctionInfo> function = Compiler::GetSharedFunctionInfo(
11970           declaration->fun(), current_info()->script(), top_info());
11971       // Check for stack-overflow exception.
11972       if (function.is_null()) return SetStackOverflow();
11973       globals_.Add(function, zone());
11974       return;
11975     }
11976     case VariableLocation::PARAMETER:
11977     case VariableLocation::LOCAL: {
11978       CHECK_ALIVE(VisitForValue(declaration->fun()));
11979       HValue* value = Pop();
11980       BindIfLive(variable, value);
11981       break;
11982     }
11983     case VariableLocation::CONTEXT: {
11984       CHECK_ALIVE(VisitForValue(declaration->fun()));
11985       HValue* value = Pop();
11986       HValue* context = environment()->context();
11987       HStoreContextSlot* store = Add<HStoreContextSlot>(
11988           context, variable->index(), HStoreContextSlot::kNoCheck, value);
11989       if (store->HasObservableSideEffects()) {
11990         Add<HSimulate>(proxy->id(), REMOVABLE_SIMULATE);
11991       }
11992       break;
11993     }
11994     case VariableLocation::LOOKUP:
11995       return Bailout(kUnsupportedLookupSlotInDeclaration);
11996   }
11997 }
11998
11999
12000 void HOptimizedGraphBuilder::VisitImportDeclaration(
12001     ImportDeclaration* declaration) {
12002   UNREACHABLE();
12003 }
12004
12005
12006 void HOptimizedGraphBuilder::VisitExportDeclaration(
12007     ExportDeclaration* declaration) {
12008   UNREACHABLE();
12009 }
12010
12011
12012 // Generators for inline runtime functions.
12013 // Support for types.
12014 void HOptimizedGraphBuilder::GenerateIsSmi(CallRuntime* call) {
12015   DCHECK(call->arguments()->length() == 1);
12016   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12017   HValue* value = Pop();
12018   HIsSmiAndBranch* result = New<HIsSmiAndBranch>(value);
12019   return ast_context()->ReturnControl(result, call->id());
12020 }
12021
12022
12023 void HOptimizedGraphBuilder::GenerateIsSpecObject(CallRuntime* call) {
12024   DCHECK(call->arguments()->length() == 1);
12025   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12026   HValue* value = Pop();
12027   HHasInstanceTypeAndBranch* result =
12028       New<HHasInstanceTypeAndBranch>(value,
12029                                      FIRST_SPEC_OBJECT_TYPE,
12030                                      LAST_SPEC_OBJECT_TYPE);
12031   return ast_context()->ReturnControl(result, call->id());
12032 }
12033
12034
12035 void HOptimizedGraphBuilder::GenerateIsFunction(CallRuntime* call) {
12036   DCHECK(call->arguments()->length() == 1);
12037   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12038   HValue* value = Pop();
12039   HHasInstanceTypeAndBranch* result =
12040       New<HHasInstanceTypeAndBranch>(value, JS_FUNCTION_TYPE);
12041   return ast_context()->ReturnControl(result, call->id());
12042 }
12043
12044
12045 void HOptimizedGraphBuilder::GenerateIsMinusZero(CallRuntime* call) {
12046   DCHECK(call->arguments()->length() == 1);
12047   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12048   HValue* value = Pop();
12049   HCompareMinusZeroAndBranch* result = New<HCompareMinusZeroAndBranch>(value);
12050   return ast_context()->ReturnControl(result, call->id());
12051 }
12052
12053
12054 void HOptimizedGraphBuilder::GenerateHasCachedArrayIndex(CallRuntime* call) {
12055   DCHECK(call->arguments()->length() == 1);
12056   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12057   HValue* value = Pop();
12058   HHasCachedArrayIndexAndBranch* result =
12059       New<HHasCachedArrayIndexAndBranch>(value);
12060   return ast_context()->ReturnControl(result, call->id());
12061 }
12062
12063
12064 void HOptimizedGraphBuilder::GenerateIsArray(CallRuntime* call) {
12065   DCHECK(call->arguments()->length() == 1);
12066   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12067   HValue* value = Pop();
12068   HHasInstanceTypeAndBranch* result =
12069       New<HHasInstanceTypeAndBranch>(value, JS_ARRAY_TYPE);
12070   return ast_context()->ReturnControl(result, call->id());
12071 }
12072
12073
12074 void HOptimizedGraphBuilder::GenerateIsTypedArray(CallRuntime* call) {
12075   DCHECK(call->arguments()->length() == 1);
12076   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12077   HValue* value = Pop();
12078   HHasInstanceTypeAndBranch* result =
12079       New<HHasInstanceTypeAndBranch>(value, JS_TYPED_ARRAY_TYPE);
12080   return ast_context()->ReturnControl(result, call->id());
12081 }
12082
12083
12084 void HOptimizedGraphBuilder::GenerateIsRegExp(CallRuntime* call) {
12085   DCHECK(call->arguments()->length() == 1);
12086   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12087   HValue* value = Pop();
12088   HHasInstanceTypeAndBranch* result =
12089       New<HHasInstanceTypeAndBranch>(value, JS_REGEXP_TYPE);
12090   return ast_context()->ReturnControl(result, call->id());
12091 }
12092
12093
12094 void HOptimizedGraphBuilder::GenerateIsObject(CallRuntime* call) {
12095   DCHECK(call->arguments()->length() == 1);
12096   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12097   HValue* value = Pop();
12098   HIsObjectAndBranch* result = New<HIsObjectAndBranch>(value);
12099   return ast_context()->ReturnControl(result, call->id());
12100 }
12101
12102
12103 void HOptimizedGraphBuilder::GenerateIsJSProxy(CallRuntime* call) {
12104   DCHECK(call->arguments()->length() == 1);
12105   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12106   HValue* value = Pop();
12107   HIfContinuation continuation;
12108   IfBuilder if_proxy(this);
12109
12110   HValue* smicheck = if_proxy.IfNot<HIsSmiAndBranch>(value);
12111   if_proxy.And();
12112   HValue* map = Add<HLoadNamedField>(value, smicheck, HObjectAccess::ForMap());
12113   HValue* instance_type =
12114       Add<HLoadNamedField>(map, nullptr, HObjectAccess::ForMapInstanceType());
12115   if_proxy.If<HCompareNumericAndBranch>(
12116       instance_type, Add<HConstant>(FIRST_JS_PROXY_TYPE), Token::GTE);
12117   if_proxy.And();
12118   if_proxy.If<HCompareNumericAndBranch>(
12119       instance_type, Add<HConstant>(LAST_JS_PROXY_TYPE), Token::LTE);
12120
12121   if_proxy.CaptureContinuation(&continuation);
12122   return ast_context()->ReturnContinuation(&continuation, call->id());
12123 }
12124
12125
12126 void HOptimizedGraphBuilder::GenerateHasFastPackedElements(CallRuntime* call) {
12127   DCHECK(call->arguments()->length() == 1);
12128   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12129   HValue* object = Pop();
12130   HIfContinuation continuation(graph()->CreateBasicBlock(),
12131                                graph()->CreateBasicBlock());
12132   IfBuilder if_not_smi(this);
12133   if_not_smi.IfNot<HIsSmiAndBranch>(object);
12134   if_not_smi.Then();
12135   {
12136     NoObservableSideEffectsScope no_effects(this);
12137
12138     IfBuilder if_fast_packed(this);
12139     HValue* elements_kind = BuildGetElementsKind(object);
12140     if_fast_packed.If<HCompareNumericAndBranch>(
12141         elements_kind, Add<HConstant>(FAST_SMI_ELEMENTS), Token::EQ);
12142     if_fast_packed.Or();
12143     if_fast_packed.If<HCompareNumericAndBranch>(
12144         elements_kind, Add<HConstant>(FAST_ELEMENTS), Token::EQ);
12145     if_fast_packed.Or();
12146     if_fast_packed.If<HCompareNumericAndBranch>(
12147         elements_kind, Add<HConstant>(FAST_DOUBLE_ELEMENTS), Token::EQ);
12148     if_fast_packed.JoinContinuation(&continuation);
12149   }
12150   if_not_smi.JoinContinuation(&continuation);
12151   return ast_context()->ReturnContinuation(&continuation, call->id());
12152 }
12153
12154
12155 void HOptimizedGraphBuilder::GenerateIsUndetectableObject(CallRuntime* call) {
12156   DCHECK(call->arguments()->length() == 1);
12157   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12158   HValue* value = Pop();
12159   HIsUndetectableAndBranch* result = New<HIsUndetectableAndBranch>(value);
12160   return ast_context()->ReturnControl(result, call->id());
12161 }
12162
12163
12164 // Support for construct call checks.
12165 void HOptimizedGraphBuilder::GenerateIsConstructCall(CallRuntime* call) {
12166   DCHECK(call->arguments()->length() == 0);
12167   if (function_state()->outer() != NULL) {
12168     // We are generating graph for inlined function.
12169     HValue* value = function_state()->inlining_kind() == CONSTRUCT_CALL_RETURN
12170         ? graph()->GetConstantTrue()
12171         : graph()->GetConstantFalse();
12172     return ast_context()->ReturnValue(value);
12173   } else {
12174     return ast_context()->ReturnControl(New<HIsConstructCallAndBranch>(),
12175                                         call->id());
12176   }
12177 }
12178
12179
12180 // Support for arguments.length and arguments[?].
12181 void HOptimizedGraphBuilder::GenerateArgumentsLength(CallRuntime* call) {
12182   DCHECK(call->arguments()->length() == 0);
12183   HInstruction* result = NULL;
12184   if (function_state()->outer() == NULL) {
12185     HInstruction* elements = Add<HArgumentsElements>(false);
12186     result = New<HArgumentsLength>(elements);
12187   } else {
12188     // Number of arguments without receiver.
12189     int argument_count = environment()->
12190         arguments_environment()->parameter_count() - 1;
12191     result = New<HConstant>(argument_count);
12192   }
12193   return ast_context()->ReturnInstruction(result, call->id());
12194 }
12195
12196
12197 void HOptimizedGraphBuilder::GenerateArguments(CallRuntime* call) {
12198   DCHECK(call->arguments()->length() == 1);
12199   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12200   HValue* index = Pop();
12201   HInstruction* result = NULL;
12202   if (function_state()->outer() == NULL) {
12203     HInstruction* elements = Add<HArgumentsElements>(false);
12204     HInstruction* length = Add<HArgumentsLength>(elements);
12205     HInstruction* checked_index = Add<HBoundsCheck>(index, length);
12206     result = New<HAccessArgumentsAt>(elements, length, checked_index);
12207   } else {
12208     EnsureArgumentsArePushedForAccess();
12209
12210     // Number of arguments without receiver.
12211     HInstruction* elements = function_state()->arguments_elements();
12212     int argument_count = environment()->
12213         arguments_environment()->parameter_count() - 1;
12214     HInstruction* length = Add<HConstant>(argument_count);
12215     HInstruction* checked_key = Add<HBoundsCheck>(index, length);
12216     result = New<HAccessArgumentsAt>(elements, length, checked_key);
12217   }
12218   return ast_context()->ReturnInstruction(result, call->id());
12219 }
12220
12221
12222 void HOptimizedGraphBuilder::GenerateValueOf(CallRuntime* call) {
12223   DCHECK(call->arguments()->length() == 1);
12224   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12225   HValue* object = Pop();
12226
12227   IfBuilder if_objectisvalue(this);
12228   HValue* objectisvalue = if_objectisvalue.If<HHasInstanceTypeAndBranch>(
12229       object, JS_VALUE_TYPE);
12230   if_objectisvalue.Then();
12231   {
12232     // Return the actual value.
12233     Push(Add<HLoadNamedField>(
12234             object, objectisvalue,
12235             HObjectAccess::ForObservableJSObjectOffset(
12236                 JSValue::kValueOffset)));
12237     Add<HSimulate>(call->id(), FIXED_SIMULATE);
12238   }
12239   if_objectisvalue.Else();
12240   {
12241     // If the object is not a value return the object.
12242     Push(object);
12243     Add<HSimulate>(call->id(), FIXED_SIMULATE);
12244   }
12245   if_objectisvalue.End();
12246   return ast_context()->ReturnValue(Pop());
12247 }
12248
12249
12250 void HOptimizedGraphBuilder::GenerateJSValueGetValue(CallRuntime* call) {
12251   DCHECK(call->arguments()->length() == 1);
12252   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12253   HValue* value = Pop();
12254   HInstruction* result = Add<HLoadNamedField>(
12255       value, nullptr,
12256       HObjectAccess::ForObservableJSObjectOffset(JSValue::kValueOffset));
12257   return ast_context()->ReturnInstruction(result, call->id());
12258 }
12259
12260
12261 void HOptimizedGraphBuilder::GenerateIsDate(CallRuntime* call) {
12262   DCHECK_EQ(1, call->arguments()->length());
12263   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12264   HValue* value = Pop();
12265   HHasInstanceTypeAndBranch* result =
12266       New<HHasInstanceTypeAndBranch>(value, JS_DATE_TYPE);
12267   return ast_context()->ReturnControl(result, call->id());
12268 }
12269
12270
12271 void HOptimizedGraphBuilder::GenerateThrowNotDateError(CallRuntime* call) {
12272   DCHECK_EQ(0, call->arguments()->length());
12273   Add<HDeoptimize>(Deoptimizer::kNotADateObject, Deoptimizer::EAGER);
12274   Add<HSimulate>(call->id(), FIXED_SIMULATE);
12275   return ast_context()->ReturnValue(graph()->GetConstantUndefined());
12276 }
12277
12278
12279 void HOptimizedGraphBuilder::GenerateDateField(CallRuntime* call) {
12280   DCHECK(call->arguments()->length() == 2);
12281   DCHECK_NOT_NULL(call->arguments()->at(1)->AsLiteral());
12282   Smi* index = Smi::cast(*(call->arguments()->at(1)->AsLiteral()->value()));
12283   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12284   HValue* date = Pop();
12285   HDateField* result = New<HDateField>(date, index);
12286   return ast_context()->ReturnInstruction(result, call->id());
12287 }
12288
12289
12290 void HOptimizedGraphBuilder::GenerateOneByteSeqStringSetChar(
12291     CallRuntime* call) {
12292   DCHECK(call->arguments()->length() == 3);
12293   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12294   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12295   CHECK_ALIVE(VisitForValue(call->arguments()->at(2)));
12296   HValue* string = Pop();
12297   HValue* value = Pop();
12298   HValue* index = Pop();
12299   Add<HSeqStringSetChar>(String::ONE_BYTE_ENCODING, string,
12300                          index, value);
12301   Add<HSimulate>(call->id(), FIXED_SIMULATE);
12302   return ast_context()->ReturnValue(graph()->GetConstantUndefined());
12303 }
12304
12305
12306 void HOptimizedGraphBuilder::GenerateTwoByteSeqStringSetChar(
12307     CallRuntime* call) {
12308   DCHECK(call->arguments()->length() == 3);
12309   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12310   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12311   CHECK_ALIVE(VisitForValue(call->arguments()->at(2)));
12312   HValue* string = Pop();
12313   HValue* value = Pop();
12314   HValue* index = Pop();
12315   Add<HSeqStringSetChar>(String::TWO_BYTE_ENCODING, string,
12316                          index, value);
12317   Add<HSimulate>(call->id(), FIXED_SIMULATE);
12318   return ast_context()->ReturnValue(graph()->GetConstantUndefined());
12319 }
12320
12321
12322 void HOptimizedGraphBuilder::GenerateSetValueOf(CallRuntime* call) {
12323   DCHECK(call->arguments()->length() == 2);
12324   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12325   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12326   HValue* value = Pop();
12327   HValue* object = Pop();
12328
12329   // Check if object is a JSValue.
12330   IfBuilder if_objectisvalue(this);
12331   if_objectisvalue.If<HHasInstanceTypeAndBranch>(object, JS_VALUE_TYPE);
12332   if_objectisvalue.Then();
12333   {
12334     // Create in-object property store to kValueOffset.
12335     Add<HStoreNamedField>(object,
12336         HObjectAccess::ForObservableJSObjectOffset(JSValue::kValueOffset),
12337         value);
12338     if (!ast_context()->IsEffect()) {
12339       Push(value);
12340     }
12341     Add<HSimulate>(call->id(), FIXED_SIMULATE);
12342   }
12343   if_objectisvalue.Else();
12344   {
12345     // Nothing to do in this case.
12346     if (!ast_context()->IsEffect()) {
12347       Push(value);
12348     }
12349     Add<HSimulate>(call->id(), FIXED_SIMULATE);
12350   }
12351   if_objectisvalue.End();
12352   if (!ast_context()->IsEffect()) {
12353     Drop(1);
12354   }
12355   return ast_context()->ReturnValue(value);
12356 }
12357
12358
12359 // Fast support for charCodeAt(n).
12360 void HOptimizedGraphBuilder::GenerateStringCharCodeAt(CallRuntime* call) {
12361   DCHECK(call->arguments()->length() == 2);
12362   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12363   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12364   HValue* index = Pop();
12365   HValue* string = Pop();
12366   HInstruction* result = BuildStringCharCodeAt(string, index);
12367   return ast_context()->ReturnInstruction(result, call->id());
12368 }
12369
12370
12371 // Fast support for string.charAt(n) and string[n].
12372 void HOptimizedGraphBuilder::GenerateStringCharFromCode(CallRuntime* call) {
12373   DCHECK(call->arguments()->length() == 1);
12374   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12375   HValue* char_code = Pop();
12376   HInstruction* result = NewUncasted<HStringCharFromCode>(char_code);
12377   return ast_context()->ReturnInstruction(result, call->id());
12378 }
12379
12380
12381 // Fast support for string.charAt(n) and string[n].
12382 void HOptimizedGraphBuilder::GenerateStringCharAt(CallRuntime* call) {
12383   DCHECK(call->arguments()->length() == 2);
12384   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12385   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12386   HValue* index = Pop();
12387   HValue* string = Pop();
12388   HInstruction* char_code = BuildStringCharCodeAt(string, index);
12389   AddInstruction(char_code);
12390   HInstruction* result = NewUncasted<HStringCharFromCode>(char_code);
12391   return ast_context()->ReturnInstruction(result, call->id());
12392 }
12393
12394
12395 // Fast support for object equality testing.
12396 void HOptimizedGraphBuilder::GenerateObjectEquals(CallRuntime* call) {
12397   DCHECK(call->arguments()->length() == 2);
12398   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12399   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12400   HValue* right = Pop();
12401   HValue* left = Pop();
12402   HCompareObjectEqAndBranch* result =
12403       New<HCompareObjectEqAndBranch>(left, right);
12404   return ast_context()->ReturnControl(result, call->id());
12405 }
12406
12407
12408 // Fast support for StringAdd.
12409 void HOptimizedGraphBuilder::GenerateStringAdd(CallRuntime* call) {
12410   DCHECK_EQ(2, call->arguments()->length());
12411   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12412   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12413   HValue* right = Pop();
12414   HValue* left = Pop();
12415   HInstruction* result =
12416       NewUncasted<HStringAdd>(left, right, strength(function_language_mode()));
12417   return ast_context()->ReturnInstruction(result, call->id());
12418 }
12419
12420
12421 // Fast support for SubString.
12422 void HOptimizedGraphBuilder::GenerateSubString(CallRuntime* call) {
12423   DCHECK_EQ(3, call->arguments()->length());
12424   CHECK_ALIVE(VisitExpressions(call->arguments()));
12425   PushArgumentsFromEnvironment(call->arguments()->length());
12426   HCallStub* result = New<HCallStub>(CodeStub::SubString, 3);
12427   return ast_context()->ReturnInstruction(result, call->id());
12428 }
12429
12430
12431 // Fast support for StringCompare.
12432 void HOptimizedGraphBuilder::GenerateStringCompare(CallRuntime* call) {
12433   DCHECK_EQ(2, call->arguments()->length());
12434   CHECK_ALIVE(VisitExpressions(call->arguments()));
12435   PushArgumentsFromEnvironment(call->arguments()->length());
12436   HCallStub* result = New<HCallStub>(CodeStub::StringCompare, 2);
12437   return ast_context()->ReturnInstruction(result, call->id());
12438 }
12439
12440
12441 void HOptimizedGraphBuilder::GenerateStringGetLength(CallRuntime* call) {
12442   DCHECK(call->arguments()->length() == 1);
12443   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12444   HValue* string = Pop();
12445   HInstruction* result = BuildLoadStringLength(string);
12446   return ast_context()->ReturnInstruction(result, call->id());
12447 }
12448
12449
12450 // Support for direct calls from JavaScript to native RegExp code.
12451 void HOptimizedGraphBuilder::GenerateRegExpExec(CallRuntime* call) {
12452   DCHECK_EQ(4, call->arguments()->length());
12453   CHECK_ALIVE(VisitExpressions(call->arguments()));
12454   PushArgumentsFromEnvironment(call->arguments()->length());
12455   HCallStub* result = New<HCallStub>(CodeStub::RegExpExec, 4);
12456   return ast_context()->ReturnInstruction(result, call->id());
12457 }
12458
12459
12460 void HOptimizedGraphBuilder::GenerateDoubleLo(CallRuntime* call) {
12461   DCHECK_EQ(1, call->arguments()->length());
12462   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12463   HValue* value = Pop();
12464   HInstruction* result = NewUncasted<HDoubleBits>(value, HDoubleBits::LOW);
12465   return ast_context()->ReturnInstruction(result, call->id());
12466 }
12467
12468
12469 void HOptimizedGraphBuilder::GenerateDoubleHi(CallRuntime* call) {
12470   DCHECK_EQ(1, call->arguments()->length());
12471   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12472   HValue* value = Pop();
12473   HInstruction* result = NewUncasted<HDoubleBits>(value, HDoubleBits::HIGH);
12474   return ast_context()->ReturnInstruction(result, call->id());
12475 }
12476
12477
12478 void HOptimizedGraphBuilder::GenerateConstructDouble(CallRuntime* call) {
12479   DCHECK_EQ(2, call->arguments()->length());
12480   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12481   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12482   HValue* lo = Pop();
12483   HValue* hi = Pop();
12484   HInstruction* result = NewUncasted<HConstructDouble>(hi, lo);
12485   return ast_context()->ReturnInstruction(result, call->id());
12486 }
12487
12488
12489 // Construct a RegExp exec result with two in-object properties.
12490 void HOptimizedGraphBuilder::GenerateRegExpConstructResult(CallRuntime* call) {
12491   DCHECK_EQ(3, call->arguments()->length());
12492   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12493   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12494   CHECK_ALIVE(VisitForValue(call->arguments()->at(2)));
12495   HValue* input = Pop();
12496   HValue* index = Pop();
12497   HValue* length = Pop();
12498   HValue* result = BuildRegExpConstructResult(length, index, input);
12499   return ast_context()->ReturnValue(result);
12500 }
12501
12502
12503 // Fast support for number to string.
12504 void HOptimizedGraphBuilder::GenerateNumberToString(CallRuntime* call) {
12505   DCHECK_EQ(1, call->arguments()->length());
12506   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12507   HValue* number = Pop();
12508   HValue* result = BuildNumberToString(number, Type::Any(zone()));
12509   return ast_context()->ReturnValue(result);
12510 }
12511
12512
12513 // Fast call for custom callbacks.
12514 void HOptimizedGraphBuilder::GenerateCallFunction(CallRuntime* call) {
12515   // 1 ~ The function to call is not itself an argument to the call.
12516   int arg_count = call->arguments()->length() - 1;
12517   DCHECK(arg_count >= 1);  // There's always at least a receiver.
12518
12519   CHECK_ALIVE(VisitExpressions(call->arguments()));
12520   // The function is the last argument
12521   HValue* function = Pop();
12522   // Push the arguments to the stack
12523   PushArgumentsFromEnvironment(arg_count);
12524
12525   IfBuilder if_is_jsfunction(this);
12526   if_is_jsfunction.If<HHasInstanceTypeAndBranch>(function, JS_FUNCTION_TYPE);
12527
12528   if_is_jsfunction.Then();
12529   {
12530     HInstruction* invoke_result =
12531         Add<HInvokeFunction>(function, arg_count);
12532     if (!ast_context()->IsEffect()) {
12533       Push(invoke_result);
12534     }
12535     Add<HSimulate>(call->id(), FIXED_SIMULATE);
12536   }
12537
12538   if_is_jsfunction.Else();
12539   {
12540     HInstruction* call_result =
12541         Add<HCallFunction>(function, arg_count);
12542     if (!ast_context()->IsEffect()) {
12543       Push(call_result);
12544     }
12545     Add<HSimulate>(call->id(), FIXED_SIMULATE);
12546   }
12547   if_is_jsfunction.End();
12548
12549   if (ast_context()->IsEffect()) {
12550     // EffectContext::ReturnValue ignores the value, so we can just pass
12551     // 'undefined' (as we do not have the call result anymore).
12552     return ast_context()->ReturnValue(graph()->GetConstantUndefined());
12553   } else {
12554     return ast_context()->ReturnValue(Pop());
12555   }
12556 }
12557
12558
12559 // Fast call to math functions.
12560 void HOptimizedGraphBuilder::GenerateMathPow(CallRuntime* call) {
12561   DCHECK_EQ(2, call->arguments()->length());
12562   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12563   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12564   HValue* right = Pop();
12565   HValue* left = Pop();
12566   HInstruction* result = NewUncasted<HPower>(left, right);
12567   return ast_context()->ReturnInstruction(result, call->id());
12568 }
12569
12570
12571 void HOptimizedGraphBuilder::GenerateMathClz32(CallRuntime* call) {
12572   DCHECK(call->arguments()->length() == 1);
12573   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12574   HValue* value = Pop();
12575   HInstruction* result = NewUncasted<HUnaryMathOperation>(value, kMathClz32);
12576   return ast_context()->ReturnInstruction(result, call->id());
12577 }
12578
12579
12580 void HOptimizedGraphBuilder::GenerateMathFloor(CallRuntime* call) {
12581   DCHECK(call->arguments()->length() == 1);
12582   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12583   HValue* value = Pop();
12584   HInstruction* result = NewUncasted<HUnaryMathOperation>(value, kMathFloor);
12585   return ast_context()->ReturnInstruction(result, call->id());
12586 }
12587
12588
12589 void HOptimizedGraphBuilder::GenerateMathLogRT(CallRuntime* call) {
12590   DCHECK(call->arguments()->length() == 1);
12591   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12592   HValue* value = Pop();
12593   HInstruction* result = NewUncasted<HUnaryMathOperation>(value, kMathLog);
12594   return ast_context()->ReturnInstruction(result, call->id());
12595 }
12596
12597
12598 void HOptimizedGraphBuilder::GenerateMathSqrt(CallRuntime* call) {
12599   DCHECK(call->arguments()->length() == 1);
12600   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12601   HValue* value = Pop();
12602   HInstruction* result = NewUncasted<HUnaryMathOperation>(value, kMathSqrt);
12603   return ast_context()->ReturnInstruction(result, call->id());
12604 }
12605
12606
12607 void HOptimizedGraphBuilder::GenerateLikely(CallRuntime* call) {
12608   DCHECK(call->arguments()->length() == 1);
12609   Visit(call->arguments()->at(0));
12610 }
12611
12612
12613 void HOptimizedGraphBuilder::GenerateUnlikely(CallRuntime* call) {
12614   return GenerateLikely(call);
12615 }
12616
12617
12618 void HOptimizedGraphBuilder::GenerateFixedArrayGet(CallRuntime* call) {
12619   DCHECK(call->arguments()->length() == 2);
12620   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12621   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12622   HValue* index = Pop();
12623   HValue* object = Pop();
12624   HInstruction* result = New<HLoadKeyed>(
12625       object, index, nullptr, FAST_HOLEY_ELEMENTS, ALLOW_RETURN_HOLE);
12626   return ast_context()->ReturnInstruction(result, call->id());
12627 }
12628
12629
12630 void HOptimizedGraphBuilder::GenerateFixedArraySet(CallRuntime* call) {
12631   DCHECK(call->arguments()->length() == 3);
12632   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12633   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12634   CHECK_ALIVE(VisitForValue(call->arguments()->at(2)));
12635   HValue* value = Pop();
12636   HValue* index = Pop();
12637   HValue* object = Pop();
12638   NoObservableSideEffectsScope no_effects(this);
12639   Add<HStoreKeyed>(object, index, value, FAST_HOLEY_ELEMENTS);
12640   return ast_context()->ReturnValue(graph()->GetConstantUndefined());
12641 }
12642
12643
12644 void HOptimizedGraphBuilder::GenerateTheHole(CallRuntime* call) {
12645   DCHECK(call->arguments()->length() == 0);
12646   return ast_context()->ReturnValue(graph()->GetConstantHole());
12647 }
12648
12649
12650 void HOptimizedGraphBuilder::GenerateJSCollectionGetTable(CallRuntime* call) {
12651   DCHECK(call->arguments()->length() == 1);
12652   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12653   HValue* receiver = Pop();
12654   HInstruction* result = New<HLoadNamedField>(
12655       receiver, nullptr, HObjectAccess::ForJSCollectionTable());
12656   return ast_context()->ReturnInstruction(result, call->id());
12657 }
12658
12659
12660 void HOptimizedGraphBuilder::GenerateStringGetRawHashField(CallRuntime* call) {
12661   DCHECK(call->arguments()->length() == 1);
12662   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12663   HValue* object = Pop();
12664   HInstruction* result = New<HLoadNamedField>(
12665       object, nullptr, HObjectAccess::ForStringHashField());
12666   return ast_context()->ReturnInstruction(result, call->id());
12667 }
12668
12669
12670 template <typename CollectionType>
12671 HValue* HOptimizedGraphBuilder::BuildAllocateOrderedHashTable() {
12672   static const int kCapacity = CollectionType::kMinCapacity;
12673   static const int kBucketCount = kCapacity / CollectionType::kLoadFactor;
12674   static const int kFixedArrayLength = CollectionType::kHashTableStartIndex +
12675                                        kBucketCount +
12676                                        (kCapacity * CollectionType::kEntrySize);
12677   static const int kSizeInBytes =
12678       FixedArray::kHeaderSize + (kFixedArrayLength * kPointerSize);
12679
12680   // Allocate the table and add the proper map.
12681   HValue* table =
12682       Add<HAllocate>(Add<HConstant>(kSizeInBytes), HType::HeapObject(),
12683                      NOT_TENURED, FIXED_ARRAY_TYPE);
12684   AddStoreMapConstant(table, isolate()->factory()->ordered_hash_table_map());
12685
12686   // Initialize the FixedArray...
12687   HValue* length = Add<HConstant>(kFixedArrayLength);
12688   Add<HStoreNamedField>(table, HObjectAccess::ForFixedArrayLength(), length);
12689
12690   // ...and the OrderedHashTable fields.
12691   Add<HStoreNamedField>(
12692       table,
12693       HObjectAccess::ForOrderedHashTableNumberOfBuckets<CollectionType>(),
12694       Add<HConstant>(kBucketCount));
12695   Add<HStoreNamedField>(
12696       table,
12697       HObjectAccess::ForOrderedHashTableNumberOfElements<CollectionType>(),
12698       graph()->GetConstant0());
12699   Add<HStoreNamedField>(
12700       table, HObjectAccess::ForOrderedHashTableNumberOfDeletedElements<
12701                  CollectionType>(),
12702       graph()->GetConstant0());
12703
12704   // Fill the buckets with kNotFound.
12705   HValue* not_found = Add<HConstant>(CollectionType::kNotFound);
12706   for (int i = 0; i < kBucketCount; ++i) {
12707     Add<HStoreNamedField>(
12708         table, HObjectAccess::ForOrderedHashTableBucket<CollectionType>(i),
12709         not_found);
12710   }
12711
12712   // Fill the data table with undefined.
12713   HValue* undefined = graph()->GetConstantUndefined();
12714   for (int i = 0; i < (kCapacity * CollectionType::kEntrySize); ++i) {
12715     Add<HStoreNamedField>(table,
12716                           HObjectAccess::ForOrderedHashTableDataTableIndex<
12717                               CollectionType, kBucketCount>(i),
12718                           undefined);
12719   }
12720
12721   return table;
12722 }
12723
12724
12725 void HOptimizedGraphBuilder::GenerateSetInitialize(CallRuntime* call) {
12726   DCHECK(call->arguments()->length() == 1);
12727   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12728   HValue* receiver = Pop();
12729
12730   NoObservableSideEffectsScope no_effects(this);
12731   HValue* table = BuildAllocateOrderedHashTable<OrderedHashSet>();
12732   Add<HStoreNamedField>(receiver, HObjectAccess::ForJSCollectionTable(), table);
12733   return ast_context()->ReturnValue(receiver);
12734 }
12735
12736
12737 void HOptimizedGraphBuilder::GenerateMapInitialize(CallRuntime* call) {
12738   DCHECK(call->arguments()->length() == 1);
12739   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12740   HValue* receiver = Pop();
12741
12742   NoObservableSideEffectsScope no_effects(this);
12743   HValue* table = BuildAllocateOrderedHashTable<OrderedHashMap>();
12744   Add<HStoreNamedField>(receiver, HObjectAccess::ForJSCollectionTable(), table);
12745   return ast_context()->ReturnValue(receiver);
12746 }
12747
12748
12749 template <typename CollectionType>
12750 void HOptimizedGraphBuilder::BuildOrderedHashTableClear(HValue* receiver) {
12751   HValue* old_table = Add<HLoadNamedField>(
12752       receiver, nullptr, HObjectAccess::ForJSCollectionTable());
12753   HValue* new_table = BuildAllocateOrderedHashTable<CollectionType>();
12754   Add<HStoreNamedField>(
12755       old_table, HObjectAccess::ForOrderedHashTableNextTable<CollectionType>(),
12756       new_table);
12757   Add<HStoreNamedField>(
12758       old_table, HObjectAccess::ForOrderedHashTableNumberOfDeletedElements<
12759                      CollectionType>(),
12760       Add<HConstant>(CollectionType::kClearedTableSentinel));
12761   Add<HStoreNamedField>(receiver, HObjectAccess::ForJSCollectionTable(),
12762                         new_table);
12763 }
12764
12765
12766 void HOptimizedGraphBuilder::GenerateSetClear(CallRuntime* call) {
12767   DCHECK(call->arguments()->length() == 1);
12768   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12769   HValue* receiver = Pop();
12770
12771   NoObservableSideEffectsScope no_effects(this);
12772   BuildOrderedHashTableClear<OrderedHashSet>(receiver);
12773   return ast_context()->ReturnValue(graph()->GetConstantUndefined());
12774 }
12775
12776
12777 void HOptimizedGraphBuilder::GenerateMapClear(CallRuntime* call) {
12778   DCHECK(call->arguments()->length() == 1);
12779   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12780   HValue* receiver = Pop();
12781
12782   NoObservableSideEffectsScope no_effects(this);
12783   BuildOrderedHashTableClear<OrderedHashMap>(receiver);
12784   return ast_context()->ReturnValue(graph()->GetConstantUndefined());
12785 }
12786
12787
12788 void HOptimizedGraphBuilder::GenerateGetCachedArrayIndex(CallRuntime* call) {
12789   DCHECK(call->arguments()->length() == 1);
12790   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12791   HValue* value = Pop();
12792   HGetCachedArrayIndex* result = New<HGetCachedArrayIndex>(value);
12793   return ast_context()->ReturnInstruction(result, call->id());
12794 }
12795
12796
12797 void HOptimizedGraphBuilder::GenerateFastOneByteArrayJoin(CallRuntime* call) {
12798   // Simply returning undefined here would be semantically correct and even
12799   // avoid the bailout. Nevertheless, some ancient benchmarks like SunSpider's
12800   // string-fasta would tank, because fullcode contains an optimized version.
12801   // Obviously the fullcode => Crankshaft => bailout => fullcode dance is
12802   // faster... *sigh*
12803   return Bailout(kInlinedRuntimeFunctionFastOneByteArrayJoin);
12804 }
12805
12806
12807 void HOptimizedGraphBuilder::GenerateDebugBreakInOptimizedCode(
12808     CallRuntime* call) {
12809   Add<HDebugBreak>();
12810   return ast_context()->ReturnValue(graph()->GetConstant0());
12811 }
12812
12813
12814 void HOptimizedGraphBuilder::GenerateDebugIsActive(CallRuntime* call) {
12815   DCHECK(call->arguments()->length() == 0);
12816   HValue* ref =
12817       Add<HConstant>(ExternalReference::debug_is_active_address(isolate()));
12818   HValue* value =
12819       Add<HLoadNamedField>(ref, nullptr, HObjectAccess::ForExternalUInteger8());
12820   return ast_context()->ReturnValue(value);
12821 }
12822
12823
12824 void HOptimizedGraphBuilder::GenerateGetPrototype(CallRuntime* call) {
12825   DCHECK(call->arguments()->length() == 1);
12826   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12827   HValue* object = Pop();
12828
12829   NoObservableSideEffectsScope no_effects(this);
12830
12831   HValue* map = Add<HLoadNamedField>(object, nullptr, HObjectAccess::ForMap());
12832   HValue* bit_field =
12833       Add<HLoadNamedField>(map, nullptr, HObjectAccess::ForMapBitField());
12834   HValue* is_access_check_needed_mask =
12835       Add<HConstant>(1 << Map::kIsAccessCheckNeeded);
12836   HValue* is_access_check_needed_test = AddUncasted<HBitwise>(
12837       Token::BIT_AND, bit_field, is_access_check_needed_mask);
12838
12839   HValue* proto =
12840       Add<HLoadNamedField>(map, nullptr, HObjectAccess::ForPrototype());
12841   HValue* proto_map =
12842       Add<HLoadNamedField>(proto, nullptr, HObjectAccess::ForMap());
12843   HValue* proto_bit_field =
12844       Add<HLoadNamedField>(proto_map, nullptr, HObjectAccess::ForMapBitField());
12845   HValue* is_hidden_prototype_mask =
12846       Add<HConstant>(1 << Map::kIsHiddenPrototype);
12847   HValue* is_hidden_prototype_test = AddUncasted<HBitwise>(
12848       Token::BIT_AND, proto_bit_field, is_hidden_prototype_mask);
12849
12850   {
12851     IfBuilder needs_runtime(this);
12852     needs_runtime.If<HCompareNumericAndBranch>(
12853         is_access_check_needed_test, graph()->GetConstant0(), Token::NE);
12854     needs_runtime.OrIf<HCompareNumericAndBranch>(
12855         is_hidden_prototype_test, graph()->GetConstant0(), Token::NE);
12856
12857     needs_runtime.Then();
12858     {
12859       Add<HPushArguments>(object);
12860       Push(Add<HCallRuntime>(
12861           call->name(), Runtime::FunctionForId(Runtime::kGetPrototype), 1));
12862     }
12863
12864     needs_runtime.Else();
12865     Push(proto);
12866   }
12867   return ast_context()->ReturnValue(Pop());
12868 }
12869
12870
12871 #undef CHECK_BAILOUT
12872 #undef CHECK_ALIVE
12873
12874
12875 HEnvironment::HEnvironment(HEnvironment* outer,
12876                            Scope* scope,
12877                            Handle<JSFunction> closure,
12878                            Zone* zone)
12879     : closure_(closure),
12880       values_(0, zone),
12881       frame_type_(JS_FUNCTION),
12882       parameter_count_(0),
12883       specials_count_(1),
12884       local_count_(0),
12885       outer_(outer),
12886       entry_(NULL),
12887       pop_count_(0),
12888       push_count_(0),
12889       ast_id_(BailoutId::None()),
12890       zone_(zone) {
12891   Scope* declaration_scope = scope->DeclarationScope();
12892   Initialize(declaration_scope->num_parameters() + 1,
12893              declaration_scope->num_stack_slots(), 0);
12894 }
12895
12896
12897 HEnvironment::HEnvironment(Zone* zone, int parameter_count)
12898     : values_(0, zone),
12899       frame_type_(STUB),
12900       parameter_count_(parameter_count),
12901       specials_count_(1),
12902       local_count_(0),
12903       outer_(NULL),
12904       entry_(NULL),
12905       pop_count_(0),
12906       push_count_(0),
12907       ast_id_(BailoutId::None()),
12908       zone_(zone) {
12909   Initialize(parameter_count, 0, 0);
12910 }
12911
12912
12913 HEnvironment::HEnvironment(const HEnvironment* other, Zone* zone)
12914     : values_(0, zone),
12915       frame_type_(JS_FUNCTION),
12916       parameter_count_(0),
12917       specials_count_(0),
12918       local_count_(0),
12919       outer_(NULL),
12920       entry_(NULL),
12921       pop_count_(0),
12922       push_count_(0),
12923       ast_id_(other->ast_id()),
12924       zone_(zone) {
12925   Initialize(other);
12926 }
12927
12928
12929 HEnvironment::HEnvironment(HEnvironment* outer,
12930                            Handle<JSFunction> closure,
12931                            FrameType frame_type,
12932                            int arguments,
12933                            Zone* zone)
12934     : closure_(closure),
12935       values_(arguments, zone),
12936       frame_type_(frame_type),
12937       parameter_count_(arguments),
12938       specials_count_(0),
12939       local_count_(0),
12940       outer_(outer),
12941       entry_(NULL),
12942       pop_count_(0),
12943       push_count_(0),
12944       ast_id_(BailoutId::None()),
12945       zone_(zone) {
12946 }
12947
12948
12949 void HEnvironment::Initialize(int parameter_count,
12950                               int local_count,
12951                               int stack_height) {
12952   parameter_count_ = parameter_count;
12953   local_count_ = local_count;
12954
12955   // Avoid reallocating the temporaries' backing store on the first Push.
12956   int total = parameter_count + specials_count_ + local_count + stack_height;
12957   values_.Initialize(total + 4, zone());
12958   for (int i = 0; i < total; ++i) values_.Add(NULL, zone());
12959 }
12960
12961
12962 void HEnvironment::Initialize(const HEnvironment* other) {
12963   closure_ = other->closure();
12964   values_.AddAll(other->values_, zone());
12965   assigned_variables_.Union(other->assigned_variables_, zone());
12966   frame_type_ = other->frame_type_;
12967   parameter_count_ = other->parameter_count_;
12968   local_count_ = other->local_count_;
12969   if (other->outer_ != NULL) outer_ = other->outer_->Copy();  // Deep copy.
12970   entry_ = other->entry_;
12971   pop_count_ = other->pop_count_;
12972   push_count_ = other->push_count_;
12973   specials_count_ = other->specials_count_;
12974   ast_id_ = other->ast_id_;
12975 }
12976
12977
12978 void HEnvironment::AddIncomingEdge(HBasicBlock* block, HEnvironment* other) {
12979   DCHECK(!block->IsLoopHeader());
12980   DCHECK(values_.length() == other->values_.length());
12981
12982   int length = values_.length();
12983   for (int i = 0; i < length; ++i) {
12984     HValue* value = values_[i];
12985     if (value != NULL && value->IsPhi() && value->block() == block) {
12986       // There is already a phi for the i'th value.
12987       HPhi* phi = HPhi::cast(value);
12988       // Assert index is correct and that we haven't missed an incoming edge.
12989       DCHECK(phi->merged_index() == i || !phi->HasMergedIndex());
12990       DCHECK(phi->OperandCount() == block->predecessors()->length());
12991       phi->AddInput(other->values_[i]);
12992     } else if (values_[i] != other->values_[i]) {
12993       // There is a fresh value on the incoming edge, a phi is needed.
12994       DCHECK(values_[i] != NULL && other->values_[i] != NULL);
12995       HPhi* phi = block->AddNewPhi(i);
12996       HValue* old_value = values_[i];
12997       for (int j = 0; j < block->predecessors()->length(); j++) {
12998         phi->AddInput(old_value);
12999       }
13000       phi->AddInput(other->values_[i]);
13001       this->values_[i] = phi;
13002     }
13003   }
13004 }
13005
13006
13007 void HEnvironment::Bind(int index, HValue* value) {
13008   DCHECK(value != NULL);
13009   assigned_variables_.Add(index, zone());
13010   values_[index] = value;
13011 }
13012
13013
13014 bool HEnvironment::HasExpressionAt(int index) const {
13015   return index >= parameter_count_ + specials_count_ + local_count_;
13016 }
13017
13018
13019 bool HEnvironment::ExpressionStackIsEmpty() const {
13020   DCHECK(length() >= first_expression_index());
13021   return length() == first_expression_index();
13022 }
13023
13024
13025 void HEnvironment::SetExpressionStackAt(int index_from_top, HValue* value) {
13026   int count = index_from_top + 1;
13027   int index = values_.length() - count;
13028   DCHECK(HasExpressionAt(index));
13029   // The push count must include at least the element in question or else
13030   // the new value will not be included in this environment's history.
13031   if (push_count_ < count) {
13032     // This is the same effect as popping then re-pushing 'count' elements.
13033     pop_count_ += (count - push_count_);
13034     push_count_ = count;
13035   }
13036   values_[index] = value;
13037 }
13038
13039
13040 HValue* HEnvironment::RemoveExpressionStackAt(int index_from_top) {
13041   int count = index_from_top + 1;
13042   int index = values_.length() - count;
13043   DCHECK(HasExpressionAt(index));
13044   // Simulate popping 'count' elements and then
13045   // pushing 'count - 1' elements back.
13046   pop_count_ += Max(count - push_count_, 0);
13047   push_count_ = Max(push_count_ - count, 0) + (count - 1);
13048   return values_.Remove(index);
13049 }
13050
13051
13052 void HEnvironment::Drop(int count) {
13053   for (int i = 0; i < count; ++i) {
13054     Pop();
13055   }
13056 }
13057
13058
13059 HEnvironment* HEnvironment::Copy() const {
13060   return new(zone()) HEnvironment(this, zone());
13061 }
13062
13063
13064 HEnvironment* HEnvironment::CopyWithoutHistory() const {
13065   HEnvironment* result = Copy();
13066   result->ClearHistory();
13067   return result;
13068 }
13069
13070
13071 HEnvironment* HEnvironment::CopyAsLoopHeader(HBasicBlock* loop_header) const {
13072   HEnvironment* new_env = Copy();
13073   for (int i = 0; i < values_.length(); ++i) {
13074     HPhi* phi = loop_header->AddNewPhi(i);
13075     phi->AddInput(values_[i]);
13076     new_env->values_[i] = phi;
13077   }
13078   new_env->ClearHistory();
13079   return new_env;
13080 }
13081
13082
13083 HEnvironment* HEnvironment::CreateStubEnvironment(HEnvironment* outer,
13084                                                   Handle<JSFunction> target,
13085                                                   FrameType frame_type,
13086                                                   int arguments) const {
13087   HEnvironment* new_env =
13088       new(zone()) HEnvironment(outer, target, frame_type,
13089                                arguments + 1, zone());
13090   for (int i = 0; i <= arguments; ++i) {  // Include receiver.
13091     new_env->Push(ExpressionStackAt(arguments - i));
13092   }
13093   new_env->ClearHistory();
13094   return new_env;
13095 }
13096
13097
13098 HEnvironment* HEnvironment::CopyForInlining(
13099     Handle<JSFunction> target,
13100     int arguments,
13101     FunctionLiteral* function,
13102     HConstant* undefined,
13103     InliningKind inlining_kind) const {
13104   DCHECK(frame_type() == JS_FUNCTION);
13105
13106   // Outer environment is a copy of this one without the arguments.
13107   int arity = function->scope()->num_parameters();
13108
13109   HEnvironment* outer = Copy();
13110   outer->Drop(arguments + 1);  // Including receiver.
13111   outer->ClearHistory();
13112
13113   if (inlining_kind == CONSTRUCT_CALL_RETURN) {
13114     // Create artificial constructor stub environment.  The receiver should
13115     // actually be the constructor function, but we pass the newly allocated
13116     // object instead, DoComputeConstructStubFrame() relies on that.
13117     outer = CreateStubEnvironment(outer, target, JS_CONSTRUCT, arguments);
13118   } else if (inlining_kind == GETTER_CALL_RETURN) {
13119     // We need an additional StackFrame::INTERNAL frame for restoring the
13120     // correct context.
13121     outer = CreateStubEnvironment(outer, target, JS_GETTER, arguments);
13122   } else if (inlining_kind == SETTER_CALL_RETURN) {
13123     // We need an additional StackFrame::INTERNAL frame for temporarily saving
13124     // the argument of the setter, see StoreStubCompiler::CompileStoreViaSetter.
13125     outer = CreateStubEnvironment(outer, target, JS_SETTER, arguments);
13126   }
13127
13128   if (arity != arguments) {
13129     // Create artificial arguments adaptation environment.
13130     outer = CreateStubEnvironment(outer, target, ARGUMENTS_ADAPTOR, arguments);
13131   }
13132
13133   HEnvironment* inner =
13134       new(zone()) HEnvironment(outer, function->scope(), target, zone());
13135   // Get the argument values from the original environment.
13136   for (int i = 0; i <= arity; ++i) {  // Include receiver.
13137     HValue* push = (i <= arguments) ?
13138         ExpressionStackAt(arguments - i) : undefined;
13139     inner->SetValueAt(i, push);
13140   }
13141   inner->SetValueAt(arity + 1, context());
13142   for (int i = arity + 2; i < inner->length(); ++i) {
13143     inner->SetValueAt(i, undefined);
13144   }
13145
13146   inner->set_ast_id(BailoutId::FunctionEntry());
13147   return inner;
13148 }
13149
13150
13151 std::ostream& operator<<(std::ostream& os, const HEnvironment& env) {
13152   for (int i = 0; i < env.length(); i++) {
13153     if (i == 0) os << "parameters\n";
13154     if (i == env.parameter_count()) os << "specials\n";
13155     if (i == env.parameter_count() + env.specials_count()) os << "locals\n";
13156     if (i == env.parameter_count() + env.specials_count() + env.local_count()) {
13157       os << "expressions\n";
13158     }
13159     HValue* val = env.values()->at(i);
13160     os << i << ": ";
13161     if (val != NULL) {
13162       os << val;
13163     } else {
13164       os << "NULL";
13165     }
13166     os << "\n";
13167   }
13168   return os << "\n";
13169 }
13170
13171
13172 void HTracer::TraceCompilation(CompilationInfo* info) {
13173   Tag tag(this, "compilation");
13174   if (info->IsOptimizing()) {
13175     Handle<String> name = info->function()->debug_name();
13176     PrintStringProperty("name", name->ToCString().get());
13177     PrintIndent();
13178     trace_.Add("method \"%s:%d\"\n",
13179                name->ToCString().get(),
13180                info->optimization_id());
13181   } else {
13182     CodeStub::Major major_key = info->code_stub()->MajorKey();
13183     PrintStringProperty("name", CodeStub::MajorName(major_key, false));
13184     PrintStringProperty("method", "stub");
13185   }
13186   PrintLongProperty("date",
13187                     static_cast<int64_t>(base::OS::TimeCurrentMillis()));
13188 }
13189
13190
13191 void HTracer::TraceLithium(const char* name, LChunk* chunk) {
13192   DCHECK(!chunk->isolate()->concurrent_recompilation_enabled());
13193   AllowHandleDereference allow_deref;
13194   AllowDeferredHandleDereference allow_deferred_deref;
13195   Trace(name, chunk->graph(), chunk);
13196 }
13197
13198
13199 void HTracer::TraceHydrogen(const char* name, HGraph* graph) {
13200   DCHECK(!graph->isolate()->concurrent_recompilation_enabled());
13201   AllowHandleDereference allow_deref;
13202   AllowDeferredHandleDereference allow_deferred_deref;
13203   Trace(name, graph, NULL);
13204 }
13205
13206
13207 void HTracer::Trace(const char* name, HGraph* graph, LChunk* chunk) {
13208   Tag tag(this, "cfg");
13209   PrintStringProperty("name", name);
13210   const ZoneList<HBasicBlock*>* blocks = graph->blocks();
13211   for (int i = 0; i < blocks->length(); i++) {
13212     HBasicBlock* current = blocks->at(i);
13213     Tag block_tag(this, "block");
13214     PrintBlockProperty("name", current->block_id());
13215     PrintIntProperty("from_bci", -1);
13216     PrintIntProperty("to_bci", -1);
13217
13218     if (!current->predecessors()->is_empty()) {
13219       PrintIndent();
13220       trace_.Add("predecessors");
13221       for (int j = 0; j < current->predecessors()->length(); ++j) {
13222         trace_.Add(" \"B%d\"", current->predecessors()->at(j)->block_id());
13223       }
13224       trace_.Add("\n");
13225     } else {
13226       PrintEmptyProperty("predecessors");
13227     }
13228
13229     if (current->end()->SuccessorCount() == 0) {
13230       PrintEmptyProperty("successors");
13231     } else  {
13232       PrintIndent();
13233       trace_.Add("successors");
13234       for (HSuccessorIterator it(current->end()); !it.Done(); it.Advance()) {
13235         trace_.Add(" \"B%d\"", it.Current()->block_id());
13236       }
13237       trace_.Add("\n");
13238     }
13239
13240     PrintEmptyProperty("xhandlers");
13241
13242     {
13243       PrintIndent();
13244       trace_.Add("flags");
13245       if (current->IsLoopSuccessorDominator()) {
13246         trace_.Add(" \"dom-loop-succ\"");
13247       }
13248       if (current->IsUnreachable()) {
13249         trace_.Add(" \"dead\"");
13250       }
13251       if (current->is_osr_entry()) {
13252         trace_.Add(" \"osr\"");
13253       }
13254       trace_.Add("\n");
13255     }
13256
13257     if (current->dominator() != NULL) {
13258       PrintBlockProperty("dominator", current->dominator()->block_id());
13259     }
13260
13261     PrintIntProperty("loop_depth", current->LoopNestingDepth());
13262
13263     if (chunk != NULL) {
13264       int first_index = current->first_instruction_index();
13265       int last_index = current->last_instruction_index();
13266       PrintIntProperty(
13267           "first_lir_id",
13268           LifetimePosition::FromInstructionIndex(first_index).Value());
13269       PrintIntProperty(
13270           "last_lir_id",
13271           LifetimePosition::FromInstructionIndex(last_index).Value());
13272     }
13273
13274     {
13275       Tag states_tag(this, "states");
13276       Tag locals_tag(this, "locals");
13277       int total = current->phis()->length();
13278       PrintIntProperty("size", current->phis()->length());
13279       PrintStringProperty("method", "None");
13280       for (int j = 0; j < total; ++j) {
13281         HPhi* phi = current->phis()->at(j);
13282         PrintIndent();
13283         std::ostringstream os;
13284         os << phi->merged_index() << " " << NameOf(phi) << " " << *phi << "\n";
13285         trace_.Add(os.str().c_str());
13286       }
13287     }
13288
13289     {
13290       Tag HIR_tag(this, "HIR");
13291       for (HInstructionIterator it(current); !it.Done(); it.Advance()) {
13292         HInstruction* instruction = it.Current();
13293         int uses = instruction->UseCount();
13294         PrintIndent();
13295         std::ostringstream os;
13296         os << "0 " << uses << " " << NameOf(instruction) << " " << *instruction;
13297         if (graph->info()->is_tracking_positions() &&
13298             instruction->has_position() && instruction->position().raw() != 0) {
13299           const SourcePosition pos = instruction->position();
13300           os << " pos:";
13301           if (pos.inlining_id() != 0) os << pos.inlining_id() << "_";
13302           os << pos.position();
13303         }
13304         os << " <|@\n";
13305         trace_.Add(os.str().c_str());
13306       }
13307     }
13308
13309
13310     if (chunk != NULL) {
13311       Tag LIR_tag(this, "LIR");
13312       int first_index = current->first_instruction_index();
13313       int last_index = current->last_instruction_index();
13314       if (first_index != -1 && last_index != -1) {
13315         const ZoneList<LInstruction*>* instructions = chunk->instructions();
13316         for (int i = first_index; i <= last_index; ++i) {
13317           LInstruction* linstr = instructions->at(i);
13318           if (linstr != NULL) {
13319             PrintIndent();
13320             trace_.Add("%d ",
13321                        LifetimePosition::FromInstructionIndex(i).Value());
13322             linstr->PrintTo(&trace_);
13323             std::ostringstream os;
13324             os << " [hir:" << NameOf(linstr->hydrogen_value()) << "] <|@\n";
13325             trace_.Add(os.str().c_str());
13326           }
13327         }
13328       }
13329     }
13330   }
13331 }
13332
13333
13334 void HTracer::TraceLiveRanges(const char* name, LAllocator* allocator) {
13335   Tag tag(this, "intervals");
13336   PrintStringProperty("name", name);
13337
13338   const Vector<LiveRange*>* fixed_d = allocator->fixed_double_live_ranges();
13339   for (int i = 0; i < fixed_d->length(); ++i) {
13340     TraceLiveRange(fixed_d->at(i), "fixed", allocator->zone());
13341   }
13342
13343   const Vector<LiveRange*>* fixed = allocator->fixed_live_ranges();
13344   for (int i = 0; i < fixed->length(); ++i) {
13345     TraceLiveRange(fixed->at(i), "fixed", allocator->zone());
13346   }
13347
13348   const ZoneList<LiveRange*>* live_ranges = allocator->live_ranges();
13349   for (int i = 0; i < live_ranges->length(); ++i) {
13350     TraceLiveRange(live_ranges->at(i), "object", allocator->zone());
13351   }
13352 }
13353
13354
13355 void HTracer::TraceLiveRange(LiveRange* range, const char* type,
13356                              Zone* zone) {
13357   if (range != NULL && !range->IsEmpty()) {
13358     PrintIndent();
13359     trace_.Add("%d %s", range->id(), type);
13360     if (range->HasRegisterAssigned()) {
13361       LOperand* op = range->CreateAssignedOperand(zone);
13362       int assigned_reg = op->index();
13363       if (op->IsDoubleRegister()) {
13364         trace_.Add(" \"%s\"",
13365                    DoubleRegister::AllocationIndexToString(assigned_reg));
13366       } else {
13367         DCHECK(op->IsRegister());
13368         trace_.Add(" \"%s\"", Register::AllocationIndexToString(assigned_reg));
13369       }
13370     } else if (range->IsSpilled()) {
13371       LOperand* op = range->TopLevel()->GetSpillOperand();
13372       if (op->IsDoubleStackSlot()) {
13373         trace_.Add(" \"double_stack:%d\"", op->index());
13374       } else {
13375         DCHECK(op->IsStackSlot());
13376         trace_.Add(" \"stack:%d\"", op->index());
13377       }
13378     }
13379     int parent_index = -1;
13380     if (range->IsChild()) {
13381       parent_index = range->parent()->id();
13382     } else {
13383       parent_index = range->id();
13384     }
13385     LOperand* op = range->FirstHint();
13386     int hint_index = -1;
13387     if (op != NULL && op->IsUnallocated()) {
13388       hint_index = LUnallocated::cast(op)->virtual_register();
13389     }
13390     trace_.Add(" %d %d", parent_index, hint_index);
13391     UseInterval* cur_interval = range->first_interval();
13392     while (cur_interval != NULL && range->Covers(cur_interval->start())) {
13393       trace_.Add(" [%d, %d[",
13394                  cur_interval->start().Value(),
13395                  cur_interval->end().Value());
13396       cur_interval = cur_interval->next();
13397     }
13398
13399     UsePosition* current_pos = range->first_pos();
13400     while (current_pos != NULL) {
13401       if (current_pos->RegisterIsBeneficial() || FLAG_trace_all_uses) {
13402         trace_.Add(" %d M", current_pos->pos().Value());
13403       }
13404       current_pos = current_pos->next();
13405     }
13406
13407     trace_.Add(" \"\"\n");
13408   }
13409 }
13410
13411
13412 void HTracer::FlushToFile() {
13413   AppendChars(filename_.start(), trace_.ToCString().get(), trace_.length(),
13414               false);
13415   trace_.Reset();
13416 }
13417
13418
13419 void HStatistics::Initialize(CompilationInfo* info) {
13420   if (info->shared_info().is_null()) return;
13421   source_size_ += info->shared_info()->SourceSize();
13422 }
13423
13424
13425 void HStatistics::Print() {
13426   PrintF(
13427       "\n"
13428       "----------------------------------------"
13429       "----------------------------------------\n"
13430       "--- Hydrogen timing results:\n"
13431       "----------------------------------------"
13432       "----------------------------------------\n");
13433   base::TimeDelta sum;
13434   for (int i = 0; i < times_.length(); ++i) {
13435     sum += times_[i];
13436   }
13437
13438   for (int i = 0; i < names_.length(); ++i) {
13439     PrintF("%33s", names_[i]);
13440     double ms = times_[i].InMillisecondsF();
13441     double percent = times_[i].PercentOf(sum);
13442     PrintF(" %8.3f ms / %4.1f %% ", ms, percent);
13443
13444     size_t size = sizes_[i];
13445     double size_percent = static_cast<double>(size) * 100 / total_size_;
13446     PrintF(" %9zu bytes / %4.1f %%\n", size, size_percent);
13447   }
13448
13449   PrintF(
13450       "----------------------------------------"
13451       "----------------------------------------\n");
13452   base::TimeDelta total = create_graph_ + optimize_graph_ + generate_code_;
13453   PrintF("%33s %8.3f ms / %4.1f %% \n", "Create graph",
13454          create_graph_.InMillisecondsF(), create_graph_.PercentOf(total));
13455   PrintF("%33s %8.3f ms / %4.1f %% \n", "Optimize graph",
13456          optimize_graph_.InMillisecondsF(), optimize_graph_.PercentOf(total));
13457   PrintF("%33s %8.3f ms / %4.1f %% \n", "Generate and install code",
13458          generate_code_.InMillisecondsF(), generate_code_.PercentOf(total));
13459   PrintF(
13460       "----------------------------------------"
13461       "----------------------------------------\n");
13462   PrintF("%33s %8.3f ms           %9zu bytes\n", "Total",
13463          total.InMillisecondsF(), total_size_);
13464   PrintF("%33s     (%.1f times slower than full code gen)\n", "",
13465          total.TimesOf(full_code_gen_));
13466
13467   double source_size_in_kb = static_cast<double>(source_size_) / 1024;
13468   double normalized_time =  source_size_in_kb > 0
13469       ? total.InMillisecondsF() / source_size_in_kb
13470       : 0;
13471   double normalized_size_in_kb =
13472       source_size_in_kb > 0
13473           ? static_cast<double>(total_size_) / 1024 / source_size_in_kb
13474           : 0;
13475   PrintF("%33s %8.3f ms           %7.3f kB allocated\n",
13476          "Average per kB source", normalized_time, normalized_size_in_kb);
13477 }
13478
13479
13480 void HStatistics::SaveTiming(const char* name, base::TimeDelta time,
13481                              size_t size) {
13482   total_size_ += size;
13483   for (int i = 0; i < names_.length(); ++i) {
13484     if (strcmp(names_[i], name) == 0) {
13485       times_[i] += time;
13486       sizes_[i] += size;
13487       return;
13488     }
13489   }
13490   names_.Add(name);
13491   times_.Add(time);
13492   sizes_.Add(size);
13493 }
13494
13495
13496 HPhase::~HPhase() {
13497   if (ShouldProduceTraceOutput()) {
13498     isolate()->GetHTracer()->TraceHydrogen(name(), graph_);
13499   }
13500
13501 #ifdef DEBUG
13502   graph_->Verify(false);  // No full verify.
13503 #endif
13504 }
13505
13506 }  // namespace internal
13507 }  // namespace v8