1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "src/hydrogen.h"
9 #include "src/allocation-site-scopes.h"
10 #include "src/ast-numbering.h"
11 #include "src/full-codegen/full-codegen.h"
12 #include "src/hydrogen-bce.h"
13 #include "src/hydrogen-bch.h"
14 #include "src/hydrogen-canonicalize.h"
15 #include "src/hydrogen-check-elimination.h"
16 #include "src/hydrogen-dce.h"
17 #include "src/hydrogen-dehoist.h"
18 #include "src/hydrogen-environment-liveness.h"
19 #include "src/hydrogen-escape-analysis.h"
20 #include "src/hydrogen-gvn.h"
21 #include "src/hydrogen-infer-representation.h"
22 #include "src/hydrogen-infer-types.h"
23 #include "src/hydrogen-load-elimination.h"
24 #include "src/hydrogen-mark-deoptimize.h"
25 #include "src/hydrogen-mark-unreachable.h"
26 #include "src/hydrogen-osr.h"
27 #include "src/hydrogen-range-analysis.h"
28 #include "src/hydrogen-redundant-phi.h"
29 #include "src/hydrogen-removable-simulates.h"
30 #include "src/hydrogen-representation-changes.h"
31 #include "src/hydrogen-sce.h"
32 #include "src/hydrogen-store-elimination.h"
33 #include "src/hydrogen-uint32-analysis.h"
34 #include "src/ic/call-optimization.h"
35 #include "src/ic/ic.h"
37 #include "src/ic/ic-inl.h"
38 #include "src/lithium-allocator.h"
39 #include "src/parser.h"
40 #include "src/runtime/runtime.h"
41 #include "src/scopeinfo.h"
42 #include "src/typing.h"
44 #if V8_TARGET_ARCH_IA32
45 #include "src/ia32/lithium-codegen-ia32.h" // NOLINT
46 #elif V8_TARGET_ARCH_X64
47 #include "src/x64/lithium-codegen-x64.h" // NOLINT
48 #elif V8_TARGET_ARCH_ARM64
49 #include "src/arm64/lithium-codegen-arm64.h" // NOLINT
50 #elif V8_TARGET_ARCH_ARM
51 #include "src/arm/lithium-codegen-arm.h" // NOLINT
52 #elif V8_TARGET_ARCH_PPC
53 #include "src/ppc/lithium-codegen-ppc.h" // NOLINT
54 #elif V8_TARGET_ARCH_MIPS
55 #include "src/mips/lithium-codegen-mips.h" // NOLINT
56 #elif V8_TARGET_ARCH_MIPS64
57 #include "src/mips64/lithium-codegen-mips64.h" // NOLINT
58 #elif V8_TARGET_ARCH_X87
59 #include "src/x87/lithium-codegen-x87.h" // NOLINT
61 #error Unsupported target architecture.
67 HBasicBlock::HBasicBlock(HGraph* graph)
68 : block_id_(graph->GetNextBlockID()),
70 phis_(4, graph->zone()),
74 loop_information_(NULL),
75 predecessors_(2, graph->zone()),
77 dominated_blocks_(4, graph->zone()),
78 last_environment_(NULL),
80 first_instruction_index_(-1),
81 last_instruction_index_(-1),
82 deleted_phis_(4, graph->zone()),
83 parent_loop_header_(NULL),
84 inlined_entry_block_(NULL),
85 is_inline_return_target_(false),
87 dominates_loop_successors_(false),
89 is_ordered_(false) { }
92 Isolate* HBasicBlock::isolate() const {
93 return graph_->isolate();
97 void HBasicBlock::MarkUnreachable() {
98 is_reachable_ = false;
102 void HBasicBlock::AttachLoopInformation() {
103 DCHECK(!IsLoopHeader());
104 loop_information_ = new(zone()) HLoopInformation(this, zone());
108 void HBasicBlock::DetachLoopInformation() {
109 DCHECK(IsLoopHeader());
110 loop_information_ = NULL;
114 void HBasicBlock::AddPhi(HPhi* phi) {
115 DCHECK(!IsStartBlock());
116 phis_.Add(phi, zone());
121 void HBasicBlock::RemovePhi(HPhi* phi) {
122 DCHECK(phi->block() == this);
123 DCHECK(phis_.Contains(phi));
125 phis_.RemoveElement(phi);
130 void HBasicBlock::AddInstruction(HInstruction* instr, SourcePosition position) {
131 DCHECK(!IsStartBlock() || !IsFinished());
132 DCHECK(!instr->IsLinked());
133 DCHECK(!IsFinished());
135 if (!position.IsUnknown()) {
136 instr->set_position(position);
138 if (first_ == NULL) {
139 DCHECK(last_environment() != NULL);
140 DCHECK(!last_environment()->ast_id().IsNone());
141 HBlockEntry* entry = new(zone()) HBlockEntry();
142 entry->InitializeAsFirst(this);
143 if (!position.IsUnknown()) {
144 entry->set_position(position);
146 DCHECK(!FLAG_hydrogen_track_positions ||
147 !graph()->info()->IsOptimizing() || instr->IsAbnormalExit());
149 first_ = last_ = entry;
151 instr->InsertAfter(last_);
155 HPhi* HBasicBlock::AddNewPhi(int merged_index) {
156 if (graph()->IsInsideNoSideEffectsScope()) {
157 merged_index = HPhi::kInvalidMergedIndex;
159 HPhi* phi = new(zone()) HPhi(merged_index, zone());
165 HSimulate* HBasicBlock::CreateSimulate(BailoutId ast_id,
166 RemovableSimulate removable) {
167 DCHECK(HasEnvironment());
168 HEnvironment* environment = last_environment();
169 DCHECK(ast_id.IsNone() ||
170 ast_id == BailoutId::StubEntry() ||
171 environment->closure()->shared()->VerifyBailoutId(ast_id));
173 int push_count = environment->push_count();
174 int pop_count = environment->pop_count();
177 new(zone()) HSimulate(ast_id, pop_count, zone(), removable);
179 instr->set_closure(environment->closure());
181 // Order of pushed values: newest (top of stack) first. This allows
182 // HSimulate::MergeWith() to easily append additional pushed values
183 // that are older (from further down the stack).
184 for (int i = 0; i < push_count; ++i) {
185 instr->AddPushedValue(environment->ExpressionStackAt(i));
187 for (GrowableBitVector::Iterator it(environment->assigned_variables(),
191 int index = it.Current();
192 instr->AddAssignedValue(index, environment->Lookup(index));
194 environment->ClearHistory();
199 void HBasicBlock::Finish(HControlInstruction* end, SourcePosition position) {
200 DCHECK(!IsFinished());
201 AddInstruction(end, position);
203 for (HSuccessorIterator it(end); !it.Done(); it.Advance()) {
204 it.Current()->RegisterPredecessor(this);
209 void HBasicBlock::Goto(HBasicBlock* block, SourcePosition position,
210 FunctionState* state, bool add_simulate) {
211 bool drop_extra = state != NULL &&
212 state->inlining_kind() == NORMAL_RETURN;
214 if (block->IsInlineReturnTarget()) {
215 HEnvironment* env = last_environment();
216 int argument_count = env->arguments_environment()->parameter_count();
217 AddInstruction(new(zone())
218 HLeaveInlined(state->entry(), argument_count),
220 UpdateEnvironment(last_environment()->DiscardInlined(drop_extra));
223 if (add_simulate) AddNewSimulate(BailoutId::None(), position);
224 HGoto* instr = new(zone()) HGoto(block);
225 Finish(instr, position);
229 void HBasicBlock::AddLeaveInlined(HValue* return_value, FunctionState* state,
230 SourcePosition position) {
231 HBasicBlock* target = state->function_return();
232 bool drop_extra = state->inlining_kind() == NORMAL_RETURN;
234 DCHECK(target->IsInlineReturnTarget());
235 DCHECK(return_value != NULL);
236 HEnvironment* env = last_environment();
237 int argument_count = env->arguments_environment()->parameter_count();
238 AddInstruction(new(zone()) HLeaveInlined(state->entry(), argument_count),
240 UpdateEnvironment(last_environment()->DiscardInlined(drop_extra));
241 last_environment()->Push(return_value);
242 AddNewSimulate(BailoutId::None(), position);
243 HGoto* instr = new(zone()) HGoto(target);
244 Finish(instr, position);
248 void HBasicBlock::SetInitialEnvironment(HEnvironment* env) {
249 DCHECK(!HasEnvironment());
250 DCHECK(first() == NULL);
251 UpdateEnvironment(env);
255 void HBasicBlock::UpdateEnvironment(HEnvironment* env) {
256 last_environment_ = env;
257 graph()->update_maximum_environment_size(env->first_expression_index());
261 void HBasicBlock::SetJoinId(BailoutId ast_id) {
262 int length = predecessors_.length();
264 for (int i = 0; i < length; i++) {
265 HBasicBlock* predecessor = predecessors_[i];
266 DCHECK(predecessor->end()->IsGoto());
267 HSimulate* simulate = HSimulate::cast(predecessor->end()->previous());
269 (predecessor->last_environment()->closure().is_null() ||
270 predecessor->last_environment()->closure()->shared()
271 ->VerifyBailoutId(ast_id)));
272 simulate->set_ast_id(ast_id);
273 predecessor->last_environment()->set_ast_id(ast_id);
278 bool HBasicBlock::Dominates(HBasicBlock* other) const {
279 HBasicBlock* current = other->dominator();
280 while (current != NULL) {
281 if (current == this) return true;
282 current = current->dominator();
288 bool HBasicBlock::EqualToOrDominates(HBasicBlock* other) const {
289 if (this == other) return true;
290 return Dominates(other);
294 int HBasicBlock::LoopNestingDepth() const {
295 const HBasicBlock* current = this;
296 int result = (current->IsLoopHeader()) ? 1 : 0;
297 while (current->parent_loop_header() != NULL) {
298 current = current->parent_loop_header();
305 void HBasicBlock::PostProcessLoopHeader(IterationStatement* stmt) {
306 DCHECK(IsLoopHeader());
308 SetJoinId(stmt->EntryId());
309 if (predecessors()->length() == 1) {
310 // This is a degenerated loop.
311 DetachLoopInformation();
315 // Only the first entry into the loop is from outside the loop. All other
316 // entries must be back edges.
317 for (int i = 1; i < predecessors()->length(); ++i) {
318 loop_information()->RegisterBackEdge(predecessors()->at(i));
323 void HBasicBlock::MarkSuccEdgeUnreachable(int succ) {
324 DCHECK(IsFinished());
325 HBasicBlock* succ_block = end()->SuccessorAt(succ);
327 DCHECK(succ_block->predecessors()->length() == 1);
328 succ_block->MarkUnreachable();
332 void HBasicBlock::RegisterPredecessor(HBasicBlock* pred) {
333 if (HasPredecessor()) {
334 // Only loop header blocks can have a predecessor added after
335 // instructions have been added to the block (they have phis for all
336 // values in the environment, these phis may be eliminated later).
337 DCHECK(IsLoopHeader() || first_ == NULL);
338 HEnvironment* incoming_env = pred->last_environment();
339 if (IsLoopHeader()) {
340 DCHECK_EQ(phis()->length(), incoming_env->length());
341 for (int i = 0; i < phis_.length(); ++i) {
342 phis_[i]->AddInput(incoming_env->values()->at(i));
345 last_environment()->AddIncomingEdge(this, pred->last_environment());
347 } else if (!HasEnvironment() && !IsFinished()) {
348 DCHECK(!IsLoopHeader());
349 SetInitialEnvironment(pred->last_environment()->Copy());
352 predecessors_.Add(pred, zone());
356 void HBasicBlock::AddDominatedBlock(HBasicBlock* block) {
357 DCHECK(!dominated_blocks_.Contains(block));
358 // Keep the list of dominated blocks sorted such that if there is two
359 // succeeding block in this list, the predecessor is before the successor.
361 while (index < dominated_blocks_.length() &&
362 dominated_blocks_[index]->block_id() < block->block_id()) {
365 dominated_blocks_.InsertAt(index, block, zone());
369 void HBasicBlock::AssignCommonDominator(HBasicBlock* other) {
370 if (dominator_ == NULL) {
372 other->AddDominatedBlock(this);
373 } else if (other->dominator() != NULL) {
374 HBasicBlock* first = dominator_;
375 HBasicBlock* second = other;
377 while (first != second) {
378 if (first->block_id() > second->block_id()) {
379 first = first->dominator();
381 second = second->dominator();
383 DCHECK(first != NULL && second != NULL);
386 if (dominator_ != first) {
387 DCHECK(dominator_->dominated_blocks_.Contains(this));
388 dominator_->dominated_blocks_.RemoveElement(this);
390 first->AddDominatedBlock(this);
396 void HBasicBlock::AssignLoopSuccessorDominators() {
397 // Mark blocks that dominate all subsequent reachable blocks inside their
398 // loop. Exploit the fact that blocks are sorted in reverse post order. When
399 // the loop is visited in increasing block id order, if the number of
400 // non-loop-exiting successor edges at the dominator_candidate block doesn't
401 // exceed the number of previously encountered predecessor edges, there is no
402 // path from the loop header to any block with higher id that doesn't go
403 // through the dominator_candidate block. In this case, the
404 // dominator_candidate block is guaranteed to dominate all blocks reachable
405 // from it with higher ids.
406 HBasicBlock* last = loop_information()->GetLastBackEdge();
407 int outstanding_successors = 1; // one edge from the pre-header
408 // Header always dominates everything.
409 MarkAsLoopSuccessorDominator();
410 for (int j = block_id(); j <= last->block_id(); ++j) {
411 HBasicBlock* dominator_candidate = graph_->blocks()->at(j);
412 for (HPredecessorIterator it(dominator_candidate); !it.Done();
414 HBasicBlock* predecessor = it.Current();
415 // Don't count back edges.
416 if (predecessor->block_id() < dominator_candidate->block_id()) {
417 outstanding_successors--;
421 // If more successors than predecessors have been seen in the loop up to
422 // now, it's not possible to guarantee that the current block dominates
423 // all of the blocks with higher IDs. In this case, assume conservatively
424 // that those paths through loop that don't go through the current block
425 // contain all of the loop's dependencies. Also be careful to record
426 // dominator information about the current loop that's being processed,
427 // and not nested loops, which will be processed when
428 // AssignLoopSuccessorDominators gets called on their header.
429 DCHECK(outstanding_successors >= 0);
430 HBasicBlock* parent_loop_header = dominator_candidate->parent_loop_header();
431 if (outstanding_successors == 0 &&
432 (parent_loop_header == this && !dominator_candidate->IsLoopHeader())) {
433 dominator_candidate->MarkAsLoopSuccessorDominator();
435 HControlInstruction* end = dominator_candidate->end();
436 for (HSuccessorIterator it(end); !it.Done(); it.Advance()) {
437 HBasicBlock* successor = it.Current();
438 // Only count successors that remain inside the loop and don't loop back
440 if (successor->block_id() > dominator_candidate->block_id() &&
441 successor->block_id() <= last->block_id()) {
442 // Backwards edges must land on loop headers.
443 DCHECK(successor->block_id() > dominator_candidate->block_id() ||
444 successor->IsLoopHeader());
445 outstanding_successors++;
452 int HBasicBlock::PredecessorIndexOf(HBasicBlock* predecessor) const {
453 for (int i = 0; i < predecessors_.length(); ++i) {
454 if (predecessors_[i] == predecessor) return i;
462 void HBasicBlock::Verify() {
463 // Check that every block is finished.
464 DCHECK(IsFinished());
465 DCHECK(block_id() >= 0);
467 // Check that the incoming edges are in edge split form.
468 if (predecessors_.length() > 1) {
469 for (int i = 0; i < predecessors_.length(); ++i) {
470 DCHECK(predecessors_[i]->end()->SecondSuccessor() == NULL);
477 void HLoopInformation::RegisterBackEdge(HBasicBlock* block) {
478 this->back_edges_.Add(block, block->zone());
483 HBasicBlock* HLoopInformation::GetLastBackEdge() const {
485 HBasicBlock* result = NULL;
486 for (int i = 0; i < back_edges_.length(); ++i) {
487 HBasicBlock* cur = back_edges_[i];
488 if (cur->block_id() > max_id) {
489 max_id = cur->block_id();
497 void HLoopInformation::AddBlock(HBasicBlock* block) {
498 if (block == loop_header()) return;
499 if (block->parent_loop_header() == loop_header()) return;
500 if (block->parent_loop_header() != NULL) {
501 AddBlock(block->parent_loop_header());
503 block->set_parent_loop_header(loop_header());
504 blocks_.Add(block, block->zone());
505 for (int i = 0; i < block->predecessors()->length(); ++i) {
506 AddBlock(block->predecessors()->at(i));
514 // Checks reachability of the blocks in this graph and stores a bit in
515 // the BitVector "reachable()" for every block that can be reached
516 // from the start block of the graph. If "dont_visit" is non-null, the given
517 // block is treated as if it would not be part of the graph. "visited_count()"
518 // returns the number of reachable blocks.
519 class ReachabilityAnalyzer BASE_EMBEDDED {
521 ReachabilityAnalyzer(HBasicBlock* entry_block,
523 HBasicBlock* dont_visit)
525 stack_(16, entry_block->zone()),
526 reachable_(block_count, entry_block->zone()),
527 dont_visit_(dont_visit) {
528 PushBlock(entry_block);
532 int visited_count() const { return visited_count_; }
533 const BitVector* reachable() const { return &reachable_; }
536 void PushBlock(HBasicBlock* block) {
537 if (block != NULL && block != dont_visit_ &&
538 !reachable_.Contains(block->block_id())) {
539 reachable_.Add(block->block_id());
540 stack_.Add(block, block->zone());
546 while (!stack_.is_empty()) {
547 HControlInstruction* end = stack_.RemoveLast()->end();
548 for (HSuccessorIterator it(end); !it.Done(); it.Advance()) {
549 PushBlock(it.Current());
555 ZoneList<HBasicBlock*> stack_;
556 BitVector reachable_;
557 HBasicBlock* dont_visit_;
561 void HGraph::Verify(bool do_full_verify) const {
562 Heap::RelocationLock relocation_lock(isolate()->heap());
563 AllowHandleDereference allow_deref;
564 AllowDeferredHandleDereference allow_deferred_deref;
565 for (int i = 0; i < blocks_.length(); i++) {
566 HBasicBlock* block = blocks_.at(i);
570 // Check that every block contains at least one node and that only the last
571 // node is a control instruction.
572 HInstruction* current = block->first();
573 DCHECK(current != NULL && current->IsBlockEntry());
574 while (current != NULL) {
575 DCHECK((current->next() == NULL) == current->IsControlInstruction());
576 DCHECK(current->block() == block);
578 current = current->next();
581 // Check that successors are correctly set.
582 HBasicBlock* first = block->end()->FirstSuccessor();
583 HBasicBlock* second = block->end()->SecondSuccessor();
584 DCHECK(second == NULL || first != NULL);
586 // Check that the predecessor array is correct.
588 DCHECK(first->predecessors()->Contains(block));
589 if (second != NULL) {
590 DCHECK(second->predecessors()->Contains(block));
594 // Check that phis have correct arguments.
595 for (int j = 0; j < block->phis()->length(); j++) {
596 HPhi* phi = block->phis()->at(j);
600 // Check that all join blocks have predecessors that end with an
601 // unconditional goto and agree on their environment node id.
602 if (block->predecessors()->length() >= 2) {
604 block->predecessors()->first()->last_environment()->ast_id();
605 for (int k = 0; k < block->predecessors()->length(); k++) {
606 HBasicBlock* predecessor = block->predecessors()->at(k);
607 DCHECK(predecessor->end()->IsGoto() ||
608 predecessor->end()->IsDeoptimize());
609 DCHECK(predecessor->last_environment()->ast_id() == id);
614 // Check special property of first block to have no predecessors.
615 DCHECK(blocks_.at(0)->predecessors()->is_empty());
617 if (do_full_verify) {
618 // Check that the graph is fully connected.
619 ReachabilityAnalyzer analyzer(entry_block_, blocks_.length(), NULL);
620 DCHECK(analyzer.visited_count() == blocks_.length());
622 // Check that entry block dominator is NULL.
623 DCHECK(entry_block_->dominator() == NULL);
626 for (int i = 0; i < blocks_.length(); ++i) {
627 HBasicBlock* block = blocks_.at(i);
628 if (block->dominator() == NULL) {
629 // Only start block may have no dominator assigned to.
632 // Assert that block is unreachable if dominator must not be visited.
633 ReachabilityAnalyzer dominator_analyzer(entry_block_,
636 DCHECK(!dominator_analyzer.reachable()->Contains(block->block_id()));
645 HConstant* HGraph::GetConstant(SetOncePointer<HConstant>* pointer,
647 if (!pointer->is_set()) {
648 // Can't pass GetInvalidContext() to HConstant::New, because that will
649 // recursively call GetConstant
650 HConstant* constant = HConstant::New(isolate(), zone(), NULL, value);
651 constant->InsertAfter(entry_block()->first());
652 pointer->set(constant);
655 return ReinsertConstantIfNecessary(pointer->get());
659 HConstant* HGraph::ReinsertConstantIfNecessary(HConstant* constant) {
660 if (!constant->IsLinked()) {
661 // The constant was removed from the graph. Reinsert.
662 constant->ClearFlag(HValue::kIsDead);
663 constant->InsertAfter(entry_block()->first());
669 HConstant* HGraph::GetConstant0() {
670 return GetConstant(&constant_0_, 0);
674 HConstant* HGraph::GetConstant1() {
675 return GetConstant(&constant_1_, 1);
679 HConstant* HGraph::GetConstantMinus1() {
680 return GetConstant(&constant_minus1_, -1);
684 HConstant* HGraph::GetConstantBool(bool value) {
685 return value ? GetConstantTrue() : GetConstantFalse();
689 #define DEFINE_GET_CONSTANT(Name, name, type, htype, boolean_value) \
690 HConstant* HGraph::GetConstant##Name() { \
691 if (!constant_##name##_.is_set()) { \
692 HConstant* constant = new(zone()) HConstant( \
693 Unique<Object>::CreateImmovable(isolate()->factory()->name##_value()), \
694 Unique<Map>::CreateImmovable(isolate()->factory()->type##_map()), \
696 Representation::Tagged(), \
702 constant->InsertAfter(entry_block()->first()); \
703 constant_##name##_.set(constant); \
705 return ReinsertConstantIfNecessary(constant_##name##_.get()); \
709 DEFINE_GET_CONSTANT(Undefined, undefined, undefined, HType::Undefined(), false)
710 DEFINE_GET_CONSTANT(True, true, boolean, HType::Boolean(), true)
711 DEFINE_GET_CONSTANT(False, false, boolean, HType::Boolean(), false)
712 DEFINE_GET_CONSTANT(Hole, the_hole, the_hole, HType::None(), false)
713 DEFINE_GET_CONSTANT(Null, null, null, HType::Null(), false)
716 #undef DEFINE_GET_CONSTANT
718 #define DEFINE_IS_CONSTANT(Name, name) \
719 bool HGraph::IsConstant##Name(HConstant* constant) { \
720 return constant_##name##_.is_set() && constant == constant_##name##_.get(); \
722 DEFINE_IS_CONSTANT(Undefined, undefined)
723 DEFINE_IS_CONSTANT(0, 0)
724 DEFINE_IS_CONSTANT(1, 1)
725 DEFINE_IS_CONSTANT(Minus1, minus1)
726 DEFINE_IS_CONSTANT(True, true)
727 DEFINE_IS_CONSTANT(False, false)
728 DEFINE_IS_CONSTANT(Hole, the_hole)
729 DEFINE_IS_CONSTANT(Null, null)
731 #undef DEFINE_IS_CONSTANT
734 HConstant* HGraph::GetInvalidContext() {
735 return GetConstant(&constant_invalid_context_, 0xFFFFC0C7);
739 bool HGraph::IsStandardConstant(HConstant* constant) {
740 if (IsConstantUndefined(constant)) return true;
741 if (IsConstant0(constant)) return true;
742 if (IsConstant1(constant)) return true;
743 if (IsConstantMinus1(constant)) return true;
744 if (IsConstantTrue(constant)) return true;
745 if (IsConstantFalse(constant)) return true;
746 if (IsConstantHole(constant)) return true;
747 if (IsConstantNull(constant)) return true;
752 HGraphBuilder::IfBuilder::IfBuilder() : builder_(NULL), needs_compare_(true) {}
755 HGraphBuilder::IfBuilder::IfBuilder(HGraphBuilder* builder)
756 : needs_compare_(true) {
761 HGraphBuilder::IfBuilder::IfBuilder(HGraphBuilder* builder,
762 HIfContinuation* continuation)
763 : needs_compare_(false), first_true_block_(NULL), first_false_block_(NULL) {
764 InitializeDontCreateBlocks(builder);
765 continuation->Continue(&first_true_block_, &first_false_block_);
769 void HGraphBuilder::IfBuilder::InitializeDontCreateBlocks(
770 HGraphBuilder* builder) {
775 did_else_if_ = false;
779 pending_merge_block_ = false;
780 split_edge_merge_block_ = NULL;
781 merge_at_join_blocks_ = NULL;
782 normal_merge_at_join_block_count_ = 0;
783 deopt_merge_at_join_block_count_ = 0;
787 void HGraphBuilder::IfBuilder::Initialize(HGraphBuilder* builder) {
788 InitializeDontCreateBlocks(builder);
789 HEnvironment* env = builder->environment();
790 first_true_block_ = builder->CreateBasicBlock(env->Copy());
791 first_false_block_ = builder->CreateBasicBlock(env->Copy());
795 HControlInstruction* HGraphBuilder::IfBuilder::AddCompare(
796 HControlInstruction* compare) {
797 DCHECK(did_then_ == did_else_);
799 // Handle if-then-elseif
805 pending_merge_block_ = false;
806 split_edge_merge_block_ = NULL;
807 HEnvironment* env = builder()->environment();
808 first_true_block_ = builder()->CreateBasicBlock(env->Copy());
809 first_false_block_ = builder()->CreateBasicBlock(env->Copy());
811 if (split_edge_merge_block_ != NULL) {
812 HEnvironment* env = first_false_block_->last_environment();
813 HBasicBlock* split_edge = builder()->CreateBasicBlock(env->Copy());
815 compare->SetSuccessorAt(0, split_edge);
816 compare->SetSuccessorAt(1, first_false_block_);
818 compare->SetSuccessorAt(0, first_true_block_);
819 compare->SetSuccessorAt(1, split_edge);
821 builder()->GotoNoSimulate(split_edge, split_edge_merge_block_);
823 compare->SetSuccessorAt(0, first_true_block_);
824 compare->SetSuccessorAt(1, first_false_block_);
826 builder()->FinishCurrentBlock(compare);
827 needs_compare_ = false;
832 void HGraphBuilder::IfBuilder::Or() {
833 DCHECK(!needs_compare_);
836 HEnvironment* env = first_false_block_->last_environment();
837 if (split_edge_merge_block_ == NULL) {
838 split_edge_merge_block_ = builder()->CreateBasicBlock(env->Copy());
839 builder()->GotoNoSimulate(first_true_block_, split_edge_merge_block_);
840 first_true_block_ = split_edge_merge_block_;
842 builder()->set_current_block(first_false_block_);
843 first_false_block_ = builder()->CreateBasicBlock(env->Copy());
847 void HGraphBuilder::IfBuilder::And() {
848 DCHECK(!needs_compare_);
851 HEnvironment* env = first_false_block_->last_environment();
852 if (split_edge_merge_block_ == NULL) {
853 split_edge_merge_block_ = builder()->CreateBasicBlock(env->Copy());
854 builder()->GotoNoSimulate(first_false_block_, split_edge_merge_block_);
855 first_false_block_ = split_edge_merge_block_;
857 builder()->set_current_block(first_true_block_);
858 first_true_block_ = builder()->CreateBasicBlock(env->Copy());
862 void HGraphBuilder::IfBuilder::CaptureContinuation(
863 HIfContinuation* continuation) {
864 DCHECK(!did_else_if_);
868 HBasicBlock* true_block = NULL;
869 HBasicBlock* false_block = NULL;
870 Finish(&true_block, &false_block);
871 DCHECK(true_block != NULL);
872 DCHECK(false_block != NULL);
873 continuation->Capture(true_block, false_block);
875 builder()->set_current_block(NULL);
880 void HGraphBuilder::IfBuilder::JoinContinuation(HIfContinuation* continuation) {
881 DCHECK(!did_else_if_);
884 HBasicBlock* true_block = NULL;
885 HBasicBlock* false_block = NULL;
886 Finish(&true_block, &false_block);
887 merge_at_join_blocks_ = NULL;
888 if (true_block != NULL && !true_block->IsFinished()) {
889 DCHECK(continuation->IsTrueReachable());
890 builder()->GotoNoSimulate(true_block, continuation->true_branch());
892 if (false_block != NULL && !false_block->IsFinished()) {
893 DCHECK(continuation->IsFalseReachable());
894 builder()->GotoNoSimulate(false_block, continuation->false_branch());
901 void HGraphBuilder::IfBuilder::Then() {
905 if (needs_compare_) {
906 // Handle if's without any expressions, they jump directly to the "else"
907 // branch. However, we must pretend that the "then" branch is reachable,
908 // so that the graph builder visits it and sees any live range extending
909 // constructs within it.
910 HConstant* constant_false = builder()->graph()->GetConstantFalse();
911 ToBooleanStub::Types boolean_type = ToBooleanStub::Types();
912 boolean_type.Add(ToBooleanStub::BOOLEAN);
913 HBranch* branch = builder()->New<HBranch>(
914 constant_false, boolean_type, first_true_block_, first_false_block_);
915 builder()->FinishCurrentBlock(branch);
917 builder()->set_current_block(first_true_block_);
918 pending_merge_block_ = true;
922 void HGraphBuilder::IfBuilder::Else() {
926 AddMergeAtJoinBlock(false);
927 builder()->set_current_block(first_false_block_);
928 pending_merge_block_ = true;
933 void HGraphBuilder::IfBuilder::Deopt(Deoptimizer::DeoptReason reason) {
935 builder()->Add<HDeoptimize>(reason, Deoptimizer::EAGER);
936 AddMergeAtJoinBlock(true);
940 void HGraphBuilder::IfBuilder::Return(HValue* value) {
941 HValue* parameter_count = builder()->graph()->GetConstantMinus1();
942 builder()->FinishExitCurrentBlock(
943 builder()->New<HReturn>(value, parameter_count));
944 AddMergeAtJoinBlock(false);
948 void HGraphBuilder::IfBuilder::AddMergeAtJoinBlock(bool deopt) {
949 if (!pending_merge_block_) return;
950 HBasicBlock* block = builder()->current_block();
951 DCHECK(block == NULL || !block->IsFinished());
952 MergeAtJoinBlock* record = new (builder()->zone())
953 MergeAtJoinBlock(block, deopt, merge_at_join_blocks_);
954 merge_at_join_blocks_ = record;
956 DCHECK(block->end() == NULL);
958 normal_merge_at_join_block_count_++;
960 deopt_merge_at_join_block_count_++;
963 builder()->set_current_block(NULL);
964 pending_merge_block_ = false;
968 void HGraphBuilder::IfBuilder::Finish() {
973 AddMergeAtJoinBlock(false);
976 AddMergeAtJoinBlock(false);
982 void HGraphBuilder::IfBuilder::Finish(HBasicBlock** then_continuation,
983 HBasicBlock** else_continuation) {
986 MergeAtJoinBlock* else_record = merge_at_join_blocks_;
987 if (else_continuation != NULL) {
988 *else_continuation = else_record->block_;
990 MergeAtJoinBlock* then_record = else_record->next_;
991 if (then_continuation != NULL) {
992 *then_continuation = then_record->block_;
994 DCHECK(then_record->next_ == NULL);
998 void HGraphBuilder::IfBuilder::EndUnreachable() {
999 if (captured_) return;
1001 builder()->set_current_block(nullptr);
1005 void HGraphBuilder::IfBuilder::End() {
1006 if (captured_) return;
1009 int total_merged_blocks = normal_merge_at_join_block_count_ +
1010 deopt_merge_at_join_block_count_;
1011 DCHECK(total_merged_blocks >= 1);
1012 HBasicBlock* merge_block =
1013 total_merged_blocks == 1 ? NULL : builder()->graph()->CreateBasicBlock();
1015 // Merge non-deopt blocks first to ensure environment has right size for
1017 MergeAtJoinBlock* current = merge_at_join_blocks_;
1018 while (current != NULL) {
1019 if (!current->deopt_ && current->block_ != NULL) {
1020 // If there is only one block that makes it through to the end of the
1021 // if, then just set it as the current block and continue rather then
1022 // creating an unnecessary merge block.
1023 if (total_merged_blocks == 1) {
1024 builder()->set_current_block(current->block_);
1027 builder()->GotoNoSimulate(current->block_, merge_block);
1029 current = current->next_;
1032 // Merge deopt blocks, padding when necessary.
1033 current = merge_at_join_blocks_;
1034 while (current != NULL) {
1035 if (current->deopt_ && current->block_ != NULL) {
1036 current->block_->FinishExit(
1037 HAbnormalExit::New(builder()->isolate(), builder()->zone(), NULL),
1038 SourcePosition::Unknown());
1040 current = current->next_;
1042 builder()->set_current_block(merge_block);
1046 HGraphBuilder::LoopBuilder::LoopBuilder(HGraphBuilder* builder) {
1047 Initialize(builder, NULL, kWhileTrue, NULL);
1051 HGraphBuilder::LoopBuilder::LoopBuilder(HGraphBuilder* builder, HValue* context,
1052 LoopBuilder::Direction direction) {
1053 Initialize(builder, context, direction, builder->graph()->GetConstant1());
1057 HGraphBuilder::LoopBuilder::LoopBuilder(HGraphBuilder* builder, HValue* context,
1058 LoopBuilder::Direction direction,
1059 HValue* increment_amount) {
1060 Initialize(builder, context, direction, increment_amount);
1061 increment_amount_ = increment_amount;
1065 void HGraphBuilder::LoopBuilder::Initialize(HGraphBuilder* builder,
1067 Direction direction,
1068 HValue* increment_amount) {
1071 direction_ = direction;
1072 increment_amount_ = increment_amount;
1075 header_block_ = builder->CreateLoopHeaderBlock();
1078 exit_trampoline_block_ = NULL;
1082 HValue* HGraphBuilder::LoopBuilder::BeginBody(
1084 HValue* terminating,
1085 Token::Value token) {
1086 DCHECK(direction_ != kWhileTrue);
1087 HEnvironment* env = builder_->environment();
1088 phi_ = header_block_->AddNewPhi(env->values()->length());
1089 phi_->AddInput(initial);
1091 builder_->GotoNoSimulate(header_block_);
1093 HEnvironment* body_env = env->Copy();
1094 HEnvironment* exit_env = env->Copy();
1095 // Remove the phi from the expression stack
1098 body_block_ = builder_->CreateBasicBlock(body_env);
1099 exit_block_ = builder_->CreateBasicBlock(exit_env);
1101 builder_->set_current_block(header_block_);
1103 builder_->FinishCurrentBlock(builder_->New<HCompareNumericAndBranch>(
1104 phi_, terminating, token, body_block_, exit_block_));
1106 builder_->set_current_block(body_block_);
1107 if (direction_ == kPreIncrement || direction_ == kPreDecrement) {
1108 Isolate* isolate = builder_->isolate();
1109 HValue* one = builder_->graph()->GetConstant1();
1110 if (direction_ == kPreIncrement) {
1111 increment_ = HAdd::New(isolate, zone(), context_, phi_, one);
1113 increment_ = HSub::New(isolate, zone(), context_, phi_, one);
1115 increment_->ClearFlag(HValue::kCanOverflow);
1116 builder_->AddInstruction(increment_);
1124 void HGraphBuilder::LoopBuilder::BeginBody(int drop_count) {
1125 DCHECK(direction_ == kWhileTrue);
1126 HEnvironment* env = builder_->environment();
1127 builder_->GotoNoSimulate(header_block_);
1128 builder_->set_current_block(header_block_);
1129 env->Drop(drop_count);
1133 void HGraphBuilder::LoopBuilder::Break() {
1134 if (exit_trampoline_block_ == NULL) {
1135 // Its the first time we saw a break.
1136 if (direction_ == kWhileTrue) {
1137 HEnvironment* env = builder_->environment()->Copy();
1138 exit_trampoline_block_ = builder_->CreateBasicBlock(env);
1140 HEnvironment* env = exit_block_->last_environment()->Copy();
1141 exit_trampoline_block_ = builder_->CreateBasicBlock(env);
1142 builder_->GotoNoSimulate(exit_block_, exit_trampoline_block_);
1146 builder_->GotoNoSimulate(exit_trampoline_block_);
1147 builder_->set_current_block(NULL);
1151 void HGraphBuilder::LoopBuilder::EndBody() {
1154 if (direction_ == kPostIncrement || direction_ == kPostDecrement) {
1155 Isolate* isolate = builder_->isolate();
1156 if (direction_ == kPostIncrement) {
1158 HAdd::New(isolate, zone(), context_, phi_, increment_amount_);
1161 HSub::New(isolate, zone(), context_, phi_, increment_amount_);
1163 increment_->ClearFlag(HValue::kCanOverflow);
1164 builder_->AddInstruction(increment_);
1167 if (direction_ != kWhileTrue) {
1168 // Push the new increment value on the expression stack to merge into
1170 builder_->environment()->Push(increment_);
1172 HBasicBlock* last_block = builder_->current_block();
1173 builder_->GotoNoSimulate(last_block, header_block_);
1174 header_block_->loop_information()->RegisterBackEdge(last_block);
1176 if (exit_trampoline_block_ != NULL) {
1177 builder_->set_current_block(exit_trampoline_block_);
1179 builder_->set_current_block(exit_block_);
1185 HGraph* HGraphBuilder::CreateGraph() {
1186 graph_ = new(zone()) HGraph(info_);
1187 if (FLAG_hydrogen_stats) isolate()->GetHStatistics()->Initialize(info_);
1188 CompilationPhase phase("H_Block building", info_);
1189 set_current_block(graph()->entry_block());
1190 if (!BuildGraph()) return NULL;
1191 graph()->FinalizeUniqueness();
1196 HInstruction* HGraphBuilder::AddInstruction(HInstruction* instr) {
1197 DCHECK(current_block() != NULL);
1198 DCHECK(!FLAG_hydrogen_track_positions ||
1199 !position_.IsUnknown() ||
1200 !info_->IsOptimizing());
1201 current_block()->AddInstruction(instr, source_position());
1202 if (graph()->IsInsideNoSideEffectsScope()) {
1203 instr->SetFlag(HValue::kHasNoObservableSideEffects);
1209 void HGraphBuilder::FinishCurrentBlock(HControlInstruction* last) {
1210 DCHECK(!FLAG_hydrogen_track_positions ||
1211 !info_->IsOptimizing() ||
1212 !position_.IsUnknown());
1213 current_block()->Finish(last, source_position());
1214 if (last->IsReturn() || last->IsAbnormalExit()) {
1215 set_current_block(NULL);
1220 void HGraphBuilder::FinishExitCurrentBlock(HControlInstruction* instruction) {
1221 DCHECK(!FLAG_hydrogen_track_positions || !info_->IsOptimizing() ||
1222 !position_.IsUnknown());
1223 current_block()->FinishExit(instruction, source_position());
1224 if (instruction->IsReturn() || instruction->IsAbnormalExit()) {
1225 set_current_block(NULL);
1230 void HGraphBuilder::AddIncrementCounter(StatsCounter* counter) {
1231 if (FLAG_native_code_counters && counter->Enabled()) {
1232 HValue* reference = Add<HConstant>(ExternalReference(counter));
1234 Add<HLoadNamedField>(reference, nullptr, HObjectAccess::ForCounter());
1235 HValue* new_value = AddUncasted<HAdd>(old_value, graph()->GetConstant1());
1236 new_value->ClearFlag(HValue::kCanOverflow); // Ignore counter overflow
1237 Add<HStoreNamedField>(reference, HObjectAccess::ForCounter(),
1238 new_value, STORE_TO_INITIALIZED_ENTRY);
1243 void HGraphBuilder::AddSimulate(BailoutId id,
1244 RemovableSimulate removable) {
1245 DCHECK(current_block() != NULL);
1246 DCHECK(!graph()->IsInsideNoSideEffectsScope());
1247 current_block()->AddNewSimulate(id, source_position(), removable);
1251 HBasicBlock* HGraphBuilder::CreateBasicBlock(HEnvironment* env) {
1252 HBasicBlock* b = graph()->CreateBasicBlock();
1253 b->SetInitialEnvironment(env);
1258 HBasicBlock* HGraphBuilder::CreateLoopHeaderBlock() {
1259 HBasicBlock* header = graph()->CreateBasicBlock();
1260 HEnvironment* entry_env = environment()->CopyAsLoopHeader(header);
1261 header->SetInitialEnvironment(entry_env);
1262 header->AttachLoopInformation();
1267 HValue* HGraphBuilder::BuildGetElementsKind(HValue* object) {
1268 HValue* map = Add<HLoadNamedField>(object, nullptr, HObjectAccess::ForMap());
1270 HValue* bit_field2 =
1271 Add<HLoadNamedField>(map, nullptr, HObjectAccess::ForMapBitField2());
1272 return BuildDecodeField<Map::ElementsKindBits>(bit_field2);
1276 HValue* HGraphBuilder::BuildCheckHeapObject(HValue* obj) {
1277 if (obj->type().IsHeapObject()) return obj;
1278 return Add<HCheckHeapObject>(obj);
1282 void HGraphBuilder::FinishExitWithHardDeoptimization(
1283 Deoptimizer::DeoptReason reason) {
1284 Add<HDeoptimize>(reason, Deoptimizer::EAGER);
1285 FinishExitCurrentBlock(New<HAbnormalExit>());
1289 HValue* HGraphBuilder::BuildCheckString(HValue* string) {
1290 if (!string->type().IsString()) {
1291 DCHECK(!string->IsConstant() ||
1292 !HConstant::cast(string)->HasStringValue());
1293 BuildCheckHeapObject(string);
1294 return Add<HCheckInstanceType>(string, HCheckInstanceType::IS_STRING);
1300 HValue* HGraphBuilder::BuildWrapReceiver(HValue* object, HValue* function) {
1301 if (object->type().IsJSObject()) return object;
1302 if (function->IsConstant() &&
1303 HConstant::cast(function)->handle(isolate())->IsJSFunction()) {
1304 Handle<JSFunction> f = Handle<JSFunction>::cast(
1305 HConstant::cast(function)->handle(isolate()));
1306 SharedFunctionInfo* shared = f->shared();
1307 if (is_strict(shared->language_mode()) || shared->native()) return object;
1309 return Add<HWrapReceiver>(object, function);
1313 HValue* HGraphBuilder::BuildCheckAndGrowElementsCapacity(
1314 HValue* object, HValue* elements, ElementsKind kind, HValue* length,
1315 HValue* capacity, HValue* key) {
1316 HValue* max_gap = Add<HConstant>(static_cast<int32_t>(JSObject::kMaxGap));
1317 HValue* max_capacity = AddUncasted<HAdd>(capacity, max_gap);
1318 Add<HBoundsCheck>(key, max_capacity);
1320 HValue* new_capacity = BuildNewElementsCapacity(key);
1321 HValue* new_elements = BuildGrowElementsCapacity(object, elements, kind, kind,
1322 length, new_capacity);
1323 return new_elements;
1327 HValue* HGraphBuilder::BuildCheckForCapacityGrow(
1334 PropertyAccessType access_type) {
1335 IfBuilder length_checker(this);
1337 Token::Value token = IsHoleyElementsKind(kind) ? Token::GTE : Token::EQ;
1338 length_checker.If<HCompareNumericAndBranch>(key, length, token);
1340 length_checker.Then();
1342 HValue* current_capacity = AddLoadFixedArrayLength(elements);
1344 if (top_info()->IsStub()) {
1345 IfBuilder capacity_checker(this);
1346 capacity_checker.If<HCompareNumericAndBranch>(key, current_capacity,
1348 capacity_checker.Then();
1349 HValue* new_elements = BuildCheckAndGrowElementsCapacity(
1350 object, elements, kind, length, current_capacity, key);
1351 environment()->Push(new_elements);
1352 capacity_checker.Else();
1353 environment()->Push(elements);
1354 capacity_checker.End();
1356 HValue* result = Add<HMaybeGrowElements>(
1357 object, elements, key, current_capacity, is_js_array, kind);
1358 environment()->Push(result);
1362 HValue* new_length = AddUncasted<HAdd>(key, graph_->GetConstant1());
1363 new_length->ClearFlag(HValue::kCanOverflow);
1365 Add<HStoreNamedField>(object, HObjectAccess::ForArrayLength(kind),
1369 if (access_type == STORE && kind == FAST_SMI_ELEMENTS) {
1370 HValue* checked_elements = environment()->Top();
1372 // Write zero to ensure that the new element is initialized with some smi.
1373 Add<HStoreKeyed>(checked_elements, key, graph()->GetConstant0(), kind);
1376 length_checker.Else();
1377 Add<HBoundsCheck>(key, length);
1379 environment()->Push(elements);
1380 length_checker.End();
1382 return environment()->Pop();
1386 HValue* HGraphBuilder::BuildCopyElementsOnWrite(HValue* object,
1390 Factory* factory = isolate()->factory();
1392 IfBuilder cow_checker(this);
1394 cow_checker.If<HCompareMap>(elements, factory->fixed_cow_array_map());
1397 HValue* capacity = AddLoadFixedArrayLength(elements);
1399 HValue* new_elements = BuildGrowElementsCapacity(object, elements, kind,
1400 kind, length, capacity);
1402 environment()->Push(new_elements);
1406 environment()->Push(elements);
1410 return environment()->Pop();
1414 void HGraphBuilder::BuildTransitionElementsKind(HValue* object,
1416 ElementsKind from_kind,
1417 ElementsKind to_kind,
1419 DCHECK(!IsFastHoleyElementsKind(from_kind) ||
1420 IsFastHoleyElementsKind(to_kind));
1422 if (AllocationSite::GetMode(from_kind, to_kind) == TRACK_ALLOCATION_SITE) {
1423 Add<HTrapAllocationMemento>(object);
1426 if (!IsSimpleMapChangeTransition(from_kind, to_kind)) {
1427 HInstruction* elements = AddLoadElements(object);
1429 HInstruction* empty_fixed_array = Add<HConstant>(
1430 isolate()->factory()->empty_fixed_array());
1432 IfBuilder if_builder(this);
1434 if_builder.IfNot<HCompareObjectEqAndBranch>(elements, empty_fixed_array);
1438 HInstruction* elements_length = AddLoadFixedArrayLength(elements);
1440 HInstruction* array_length =
1442 ? Add<HLoadNamedField>(object, nullptr,
1443 HObjectAccess::ForArrayLength(from_kind))
1446 BuildGrowElementsCapacity(object, elements, from_kind, to_kind,
1447 array_length, elements_length);
1452 Add<HStoreNamedField>(object, HObjectAccess::ForMap(), map);
1456 void HGraphBuilder::BuildJSObjectCheck(HValue* receiver,
1457 int bit_field_mask) {
1458 // Check that the object isn't a smi.
1459 Add<HCheckHeapObject>(receiver);
1461 // Get the map of the receiver.
1463 Add<HLoadNamedField>(receiver, nullptr, HObjectAccess::ForMap());
1465 // Check the instance type and if an access check is needed, this can be
1466 // done with a single load, since both bytes are adjacent in the map.
1467 HObjectAccess access(HObjectAccess::ForMapInstanceTypeAndBitField());
1468 HValue* instance_type_and_bit_field =
1469 Add<HLoadNamedField>(map, nullptr, access);
1471 HValue* mask = Add<HConstant>(0x00FF | (bit_field_mask << 8));
1472 HValue* and_result = AddUncasted<HBitwise>(Token::BIT_AND,
1473 instance_type_and_bit_field,
1475 HValue* sub_result = AddUncasted<HSub>(and_result,
1476 Add<HConstant>(JS_OBJECT_TYPE));
1477 Add<HBoundsCheck>(sub_result,
1478 Add<HConstant>(LAST_JS_OBJECT_TYPE + 1 - JS_OBJECT_TYPE));
1482 void HGraphBuilder::BuildKeyedIndexCheck(HValue* key,
1483 HIfContinuation* join_continuation) {
1484 // The sometimes unintuitively backward ordering of the ifs below is
1485 // convoluted, but necessary. All of the paths must guarantee that the
1486 // if-true of the continuation returns a smi element index and the if-false of
1487 // the continuation returns either a symbol or a unique string key. All other
1488 // object types cause a deopt to fall back to the runtime.
1490 IfBuilder key_smi_if(this);
1491 key_smi_if.If<HIsSmiAndBranch>(key);
1494 Push(key); // Nothing to do, just continue to true of continuation.
1498 HValue* map = Add<HLoadNamedField>(key, nullptr, HObjectAccess::ForMap());
1499 HValue* instance_type =
1500 Add<HLoadNamedField>(map, nullptr, HObjectAccess::ForMapInstanceType());
1502 // Non-unique string, check for a string with a hash code that is actually
1504 STATIC_ASSERT(LAST_UNIQUE_NAME_TYPE == FIRST_NONSTRING_TYPE);
1505 IfBuilder not_string_or_name_if(this);
1506 not_string_or_name_if.If<HCompareNumericAndBranch>(
1508 Add<HConstant>(LAST_UNIQUE_NAME_TYPE),
1511 not_string_or_name_if.Then();
1513 // Non-smi, non-Name, non-String: Try to convert to smi in case of
1515 // TODO(danno): This could call some variant of ToString
1516 Push(AddUncasted<HForceRepresentation>(key, Representation::Smi()));
1518 not_string_or_name_if.Else();
1520 // String or Name: check explicitly for Name, they can short-circuit
1521 // directly to unique non-index key path.
1522 IfBuilder not_symbol_if(this);
1523 not_symbol_if.If<HCompareNumericAndBranch>(
1525 Add<HConstant>(SYMBOL_TYPE),
1528 not_symbol_if.Then();
1530 // String: check whether the String is a String of an index. If it is,
1531 // extract the index value from the hash.
1532 HValue* hash = Add<HLoadNamedField>(key, nullptr,
1533 HObjectAccess::ForNameHashField());
1534 HValue* not_index_mask = Add<HConstant>(static_cast<int>(
1535 String::kContainsCachedArrayIndexMask));
1537 HValue* not_index_test = AddUncasted<HBitwise>(
1538 Token::BIT_AND, hash, not_index_mask);
1540 IfBuilder string_index_if(this);
1541 string_index_if.If<HCompareNumericAndBranch>(not_index_test,
1542 graph()->GetConstant0(),
1544 string_index_if.Then();
1546 // String with index in hash: extract string and merge to index path.
1547 Push(BuildDecodeField<String::ArrayIndexValueBits>(hash));
1549 string_index_if.Else();
1551 // Key is a non-index String, check for uniqueness/internalization.
1552 // If it's not internalized yet, internalize it now.
1553 HValue* not_internalized_bit = AddUncasted<HBitwise>(
1556 Add<HConstant>(static_cast<int>(kIsNotInternalizedMask)));
1558 IfBuilder internalized(this);
1559 internalized.If<HCompareNumericAndBranch>(not_internalized_bit,
1560 graph()->GetConstant0(),
1562 internalized.Then();
1565 internalized.Else();
1566 Add<HPushArguments>(key);
1567 HValue* intern_key = Add<HCallRuntime>(
1568 isolate()->factory()->empty_string(),
1569 Runtime::FunctionForId(Runtime::kInternalizeString), 1);
1573 // Key guaranteed to be a unique string
1575 string_index_if.JoinContinuation(join_continuation);
1577 not_symbol_if.Else();
1579 Push(key); // Key is symbol
1581 not_symbol_if.JoinContinuation(join_continuation);
1583 not_string_or_name_if.JoinContinuation(join_continuation);
1585 key_smi_if.JoinContinuation(join_continuation);
1589 void HGraphBuilder::BuildNonGlobalObjectCheck(HValue* receiver) {
1590 // Get the the instance type of the receiver, and make sure that it is
1591 // not one of the global object types.
1593 Add<HLoadNamedField>(receiver, nullptr, HObjectAccess::ForMap());
1594 HValue* instance_type =
1595 Add<HLoadNamedField>(map, nullptr, HObjectAccess::ForMapInstanceType());
1596 STATIC_ASSERT(JS_BUILTINS_OBJECT_TYPE == JS_GLOBAL_OBJECT_TYPE + 1);
1597 HValue* min_global_type = Add<HConstant>(JS_GLOBAL_OBJECT_TYPE);
1598 HValue* max_global_type = Add<HConstant>(JS_BUILTINS_OBJECT_TYPE);
1600 IfBuilder if_global_object(this);
1601 if_global_object.If<HCompareNumericAndBranch>(instance_type,
1604 if_global_object.And();
1605 if_global_object.If<HCompareNumericAndBranch>(instance_type,
1608 if_global_object.ThenDeopt(Deoptimizer::kReceiverWasAGlobalObject);
1609 if_global_object.End();
1613 void HGraphBuilder::BuildTestForDictionaryProperties(
1615 HIfContinuation* continuation) {
1616 HValue* properties = Add<HLoadNamedField>(
1617 object, nullptr, HObjectAccess::ForPropertiesPointer());
1618 HValue* properties_map =
1619 Add<HLoadNamedField>(properties, nullptr, HObjectAccess::ForMap());
1620 HValue* hash_map = Add<HLoadRoot>(Heap::kHashTableMapRootIndex);
1621 IfBuilder builder(this);
1622 builder.If<HCompareObjectEqAndBranch>(properties_map, hash_map);
1623 builder.CaptureContinuation(continuation);
1627 HValue* HGraphBuilder::BuildKeyedLookupCacheHash(HValue* object,
1629 // Load the map of the receiver, compute the keyed lookup cache hash
1630 // based on 32 bits of the map pointer and the string hash.
1631 HValue* object_map =
1632 Add<HLoadNamedField>(object, nullptr, HObjectAccess::ForMapAsInteger32());
1633 HValue* shifted_map = AddUncasted<HShr>(
1634 object_map, Add<HConstant>(KeyedLookupCache::kMapHashShift));
1635 HValue* string_hash =
1636 Add<HLoadNamedField>(key, nullptr, HObjectAccess::ForStringHashField());
1637 HValue* shifted_hash = AddUncasted<HShr>(
1638 string_hash, Add<HConstant>(String::kHashShift));
1639 HValue* xor_result = AddUncasted<HBitwise>(Token::BIT_XOR, shifted_map,
1641 int mask = (KeyedLookupCache::kCapacityMask & KeyedLookupCache::kHashMask);
1642 return AddUncasted<HBitwise>(Token::BIT_AND, xor_result,
1643 Add<HConstant>(mask));
1647 HValue* HGraphBuilder::BuildElementIndexHash(HValue* index) {
1648 int32_t seed_value = static_cast<uint32_t>(isolate()->heap()->HashSeed());
1649 HValue* seed = Add<HConstant>(seed_value);
1650 HValue* hash = AddUncasted<HBitwise>(Token::BIT_XOR, index, seed);
1652 // hash = ~hash + (hash << 15);
1653 HValue* shifted_hash = AddUncasted<HShl>(hash, Add<HConstant>(15));
1654 HValue* not_hash = AddUncasted<HBitwise>(Token::BIT_XOR, hash,
1655 graph()->GetConstantMinus1());
1656 hash = AddUncasted<HAdd>(shifted_hash, not_hash);
1658 // hash = hash ^ (hash >> 12);
1659 shifted_hash = AddUncasted<HShr>(hash, Add<HConstant>(12));
1660 hash = AddUncasted<HBitwise>(Token::BIT_XOR, hash, shifted_hash);
1662 // hash = hash + (hash << 2);
1663 shifted_hash = AddUncasted<HShl>(hash, Add<HConstant>(2));
1664 hash = AddUncasted<HAdd>(hash, shifted_hash);
1666 // hash = hash ^ (hash >> 4);
1667 shifted_hash = AddUncasted<HShr>(hash, Add<HConstant>(4));
1668 hash = AddUncasted<HBitwise>(Token::BIT_XOR, hash, shifted_hash);
1670 // hash = hash * 2057;
1671 hash = AddUncasted<HMul>(hash, Add<HConstant>(2057));
1672 hash->ClearFlag(HValue::kCanOverflow);
1674 // hash = hash ^ (hash >> 16);
1675 shifted_hash = AddUncasted<HShr>(hash, Add<HConstant>(16));
1676 return AddUncasted<HBitwise>(Token::BIT_XOR, hash, shifted_hash);
1680 HValue* HGraphBuilder::BuildUncheckedDictionaryElementLoad(
1681 HValue* receiver, HValue* elements, HValue* key, HValue* hash,
1682 LanguageMode language_mode) {
1684 Add<HLoadKeyed>(elements, Add<HConstant>(NameDictionary::kCapacityIndex),
1685 nullptr, FAST_ELEMENTS);
1687 HValue* mask = AddUncasted<HSub>(capacity, graph()->GetConstant1());
1688 mask->ChangeRepresentation(Representation::Integer32());
1689 mask->ClearFlag(HValue::kCanOverflow);
1691 HValue* entry = hash;
1692 HValue* count = graph()->GetConstant1();
1696 HIfContinuation return_or_loop_continuation(graph()->CreateBasicBlock(),
1697 graph()->CreateBasicBlock());
1698 HIfContinuation found_key_match_continuation(graph()->CreateBasicBlock(),
1699 graph()->CreateBasicBlock());
1700 LoopBuilder probe_loop(this);
1701 probe_loop.BeginBody(2); // Drop entry, count from last environment to
1702 // appease live range building without simulates.
1706 entry = AddUncasted<HBitwise>(Token::BIT_AND, entry, mask);
1707 int entry_size = SeededNumberDictionary::kEntrySize;
1708 HValue* base_index = AddUncasted<HMul>(entry, Add<HConstant>(entry_size));
1709 base_index->ClearFlag(HValue::kCanOverflow);
1710 int start_offset = SeededNumberDictionary::kElementsStartIndex;
1712 AddUncasted<HAdd>(base_index, Add<HConstant>(start_offset));
1713 key_index->ClearFlag(HValue::kCanOverflow);
1715 HValue* candidate_key =
1716 Add<HLoadKeyed>(elements, key_index, nullptr, FAST_ELEMENTS);
1717 IfBuilder if_undefined(this);
1718 if_undefined.If<HCompareObjectEqAndBranch>(candidate_key,
1719 graph()->GetConstantUndefined());
1720 if_undefined.Then();
1722 // element == undefined means "not found". Call the runtime.
1723 // TODO(jkummerow): walk the prototype chain instead.
1724 Add<HPushArguments>(receiver, key);
1725 Push(Add<HCallRuntime>(
1726 isolate()->factory()->empty_string(),
1727 Runtime::FunctionForId(is_strong(language_mode)
1728 ? Runtime::kKeyedGetPropertyStrong
1729 : Runtime::kKeyedGetProperty),
1732 if_undefined.Else();
1734 IfBuilder if_match(this);
1735 if_match.If<HCompareObjectEqAndBranch>(candidate_key, key);
1739 // Update non-internalized string in the dictionary with internalized key?
1740 IfBuilder if_update_with_internalized(this);
1742 if_update_with_internalized.IfNot<HIsSmiAndBranch>(candidate_key);
1743 if_update_with_internalized.And();
1744 HValue* map = AddLoadMap(candidate_key, smi_check);
1745 HValue* instance_type =
1746 Add<HLoadNamedField>(map, nullptr, HObjectAccess::ForMapInstanceType());
1747 HValue* not_internalized_bit = AddUncasted<HBitwise>(
1748 Token::BIT_AND, instance_type,
1749 Add<HConstant>(static_cast<int>(kIsNotInternalizedMask)));
1750 if_update_with_internalized.If<HCompareNumericAndBranch>(
1751 not_internalized_bit, graph()->GetConstant0(), Token::NE);
1752 if_update_with_internalized.And();
1753 if_update_with_internalized.IfNot<HCompareObjectEqAndBranch>(
1754 candidate_key, graph()->GetConstantHole());
1755 if_update_with_internalized.AndIf<HStringCompareAndBranch>(candidate_key,
1757 if_update_with_internalized.Then();
1758 // Replace a key that is a non-internalized string by the equivalent
1759 // internalized string for faster further lookups.
1760 Add<HStoreKeyed>(elements, key_index, key, FAST_ELEMENTS);
1761 if_update_with_internalized.Else();
1763 if_update_with_internalized.JoinContinuation(&found_key_match_continuation);
1764 if_match.JoinContinuation(&found_key_match_continuation);
1766 IfBuilder found_key_match(this, &found_key_match_continuation);
1767 found_key_match.Then();
1768 // Key at current probe matches. Relevant bits in the |details| field must
1769 // be zero, otherwise the dictionary element requires special handling.
1770 HValue* details_index =
1771 AddUncasted<HAdd>(base_index, Add<HConstant>(start_offset + 2));
1772 details_index->ClearFlag(HValue::kCanOverflow);
1774 Add<HLoadKeyed>(elements, details_index, nullptr, FAST_ELEMENTS);
1775 int details_mask = PropertyDetails::TypeField::kMask;
1776 details = AddUncasted<HBitwise>(Token::BIT_AND, details,
1777 Add<HConstant>(details_mask));
1778 IfBuilder details_compare(this);
1779 details_compare.If<HCompareNumericAndBranch>(
1780 details, graph()->GetConstant0(), Token::EQ);
1781 details_compare.Then();
1782 HValue* result_index =
1783 AddUncasted<HAdd>(base_index, Add<HConstant>(start_offset + 1));
1784 result_index->ClearFlag(HValue::kCanOverflow);
1785 Push(Add<HLoadKeyed>(elements, result_index, nullptr, FAST_ELEMENTS));
1786 details_compare.Else();
1787 Add<HPushArguments>(receiver, key);
1788 Push(Add<HCallRuntime>(
1789 isolate()->factory()->empty_string(),
1790 Runtime::FunctionForId(is_strong(language_mode)
1791 ? Runtime::kKeyedGetPropertyStrong
1792 : Runtime::kKeyedGetProperty),
1794 details_compare.End();
1796 found_key_match.Else();
1797 found_key_match.JoinContinuation(&return_or_loop_continuation);
1799 if_undefined.JoinContinuation(&return_or_loop_continuation);
1801 IfBuilder return_or_loop(this, &return_or_loop_continuation);
1802 return_or_loop.Then();
1805 return_or_loop.Else();
1806 entry = AddUncasted<HAdd>(entry, count);
1807 entry->ClearFlag(HValue::kCanOverflow);
1808 count = AddUncasted<HAdd>(count, graph()->GetConstant1());
1809 count->ClearFlag(HValue::kCanOverflow);
1813 probe_loop.EndBody();
1815 return_or_loop.End();
1821 HValue* HGraphBuilder::BuildRegExpConstructResult(HValue* length,
1824 NoObservableSideEffectsScope scope(this);
1825 HConstant* max_length = Add<HConstant>(JSObject::kInitialMaxFastElementArray);
1826 Add<HBoundsCheck>(length, max_length);
1828 // Generate size calculation code here in order to make it dominate
1829 // the JSRegExpResult allocation.
1830 ElementsKind elements_kind = FAST_ELEMENTS;
1831 HValue* size = BuildCalculateElementsSize(elements_kind, length);
1833 // Allocate the JSRegExpResult and the FixedArray in one step.
1834 HValue* result = Add<HAllocate>(
1835 Add<HConstant>(JSRegExpResult::kSize), HType::JSArray(),
1836 NOT_TENURED, JS_ARRAY_TYPE);
1838 // Initialize the JSRegExpResult header.
1839 HValue* global_object = Add<HLoadNamedField>(
1841 HObjectAccess::ForContextSlot(Context::GLOBAL_OBJECT_INDEX));
1842 HValue* native_context = Add<HLoadNamedField>(
1843 global_object, nullptr, HObjectAccess::ForGlobalObjectNativeContext());
1844 Add<HStoreNamedField>(
1845 result, HObjectAccess::ForMap(),
1846 Add<HLoadNamedField>(
1847 native_context, nullptr,
1848 HObjectAccess::ForContextSlot(Context::REGEXP_RESULT_MAP_INDEX)));
1849 HConstant* empty_fixed_array =
1850 Add<HConstant>(isolate()->factory()->empty_fixed_array());
1851 Add<HStoreNamedField>(
1852 result, HObjectAccess::ForJSArrayOffset(JSArray::kPropertiesOffset),
1854 Add<HStoreNamedField>(
1855 result, HObjectAccess::ForJSArrayOffset(JSArray::kElementsOffset),
1857 Add<HStoreNamedField>(
1858 result, HObjectAccess::ForJSArrayOffset(JSArray::kLengthOffset), length);
1860 // Initialize the additional fields.
1861 Add<HStoreNamedField>(
1862 result, HObjectAccess::ForJSArrayOffset(JSRegExpResult::kIndexOffset),
1864 Add<HStoreNamedField>(
1865 result, HObjectAccess::ForJSArrayOffset(JSRegExpResult::kInputOffset),
1868 // Allocate and initialize the elements header.
1869 HAllocate* elements = BuildAllocateElements(elements_kind, size);
1870 BuildInitializeElementsHeader(elements, elements_kind, length);
1872 if (!elements->has_size_upper_bound()) {
1873 HConstant* size_in_bytes_upper_bound = EstablishElementsAllocationSize(
1874 elements_kind, max_length->Integer32Value());
1875 elements->set_size_upper_bound(size_in_bytes_upper_bound);
1878 Add<HStoreNamedField>(
1879 result, HObjectAccess::ForJSArrayOffset(JSArray::kElementsOffset),
1882 // Initialize the elements contents with undefined.
1883 BuildFillElementsWithValue(
1884 elements, elements_kind, graph()->GetConstant0(), length,
1885 graph()->GetConstantUndefined());
1891 HValue* HGraphBuilder::BuildNumberToString(HValue* object, Type* type) {
1892 NoObservableSideEffectsScope scope(this);
1894 // Convert constant numbers at compile time.
1895 if (object->IsConstant() && HConstant::cast(object)->HasNumberValue()) {
1896 Handle<Object> number = HConstant::cast(object)->handle(isolate());
1897 Handle<String> result = isolate()->factory()->NumberToString(number);
1898 return Add<HConstant>(result);
1901 // Create a joinable continuation.
1902 HIfContinuation found(graph()->CreateBasicBlock(),
1903 graph()->CreateBasicBlock());
1905 // Load the number string cache.
1906 HValue* number_string_cache =
1907 Add<HLoadRoot>(Heap::kNumberStringCacheRootIndex);
1909 // Make the hash mask from the length of the number string cache. It
1910 // contains two elements (number and string) for each cache entry.
1911 HValue* mask = AddLoadFixedArrayLength(number_string_cache);
1912 mask->set_type(HType::Smi());
1913 mask = AddUncasted<HSar>(mask, graph()->GetConstant1());
1914 mask = AddUncasted<HSub>(mask, graph()->GetConstant1());
1916 // Check whether object is a smi.
1917 IfBuilder if_objectissmi(this);
1918 if_objectissmi.If<HIsSmiAndBranch>(object);
1919 if_objectissmi.Then();
1921 // Compute hash for smi similar to smi_get_hash().
1922 HValue* hash = AddUncasted<HBitwise>(Token::BIT_AND, object, mask);
1925 HValue* key_index = AddUncasted<HShl>(hash, graph()->GetConstant1());
1926 HValue* key = Add<HLoadKeyed>(number_string_cache, key_index, nullptr,
1927 FAST_ELEMENTS, ALLOW_RETURN_HOLE);
1929 // Check if object == key.
1930 IfBuilder if_objectiskey(this);
1931 if_objectiskey.If<HCompareObjectEqAndBranch>(object, key);
1932 if_objectiskey.Then();
1934 // Make the key_index available.
1937 if_objectiskey.JoinContinuation(&found);
1939 if_objectissmi.Else();
1941 if (type->Is(Type::SignedSmall())) {
1942 if_objectissmi.Deopt(Deoptimizer::kExpectedSmi);
1944 // Check if the object is a heap number.
1945 IfBuilder if_objectisnumber(this);
1946 HValue* objectisnumber = if_objectisnumber.If<HCompareMap>(
1947 object, isolate()->factory()->heap_number_map());
1948 if_objectisnumber.Then();
1950 // Compute hash for heap number similar to double_get_hash().
1951 HValue* low = Add<HLoadNamedField>(
1952 object, objectisnumber,
1953 HObjectAccess::ForHeapNumberValueLowestBits());
1954 HValue* high = Add<HLoadNamedField>(
1955 object, objectisnumber,
1956 HObjectAccess::ForHeapNumberValueHighestBits());
1957 HValue* hash = AddUncasted<HBitwise>(Token::BIT_XOR, low, high);
1958 hash = AddUncasted<HBitwise>(Token::BIT_AND, hash, mask);
1961 HValue* key_index = AddUncasted<HShl>(hash, graph()->GetConstant1());
1962 HValue* key = Add<HLoadKeyed>(number_string_cache, key_index, nullptr,
1963 FAST_ELEMENTS, ALLOW_RETURN_HOLE);
1965 // Check if the key is a heap number and compare it with the object.
1966 IfBuilder if_keyisnotsmi(this);
1967 HValue* keyisnotsmi = if_keyisnotsmi.IfNot<HIsSmiAndBranch>(key);
1968 if_keyisnotsmi.Then();
1970 IfBuilder if_keyisheapnumber(this);
1971 if_keyisheapnumber.If<HCompareMap>(
1972 key, isolate()->factory()->heap_number_map());
1973 if_keyisheapnumber.Then();
1975 // Check if values of key and object match.
1976 IfBuilder if_keyeqobject(this);
1977 if_keyeqobject.If<HCompareNumericAndBranch>(
1978 Add<HLoadNamedField>(key, keyisnotsmi,
1979 HObjectAccess::ForHeapNumberValue()),
1980 Add<HLoadNamedField>(object, objectisnumber,
1981 HObjectAccess::ForHeapNumberValue()),
1983 if_keyeqobject.Then();
1985 // Make the key_index available.
1988 if_keyeqobject.JoinContinuation(&found);
1990 if_keyisheapnumber.JoinContinuation(&found);
1992 if_keyisnotsmi.JoinContinuation(&found);
1994 if_objectisnumber.Else();
1996 if (type->Is(Type::Number())) {
1997 if_objectisnumber.Deopt(Deoptimizer::kExpectedHeapNumber);
2000 if_objectisnumber.JoinContinuation(&found);
2003 if_objectissmi.JoinContinuation(&found);
2005 // Check for cache hit.
2006 IfBuilder if_found(this, &found);
2009 // Count number to string operation in native code.
2010 AddIncrementCounter(isolate()->counters()->number_to_string_native());
2012 // Load the value in case of cache hit.
2013 HValue* key_index = Pop();
2014 HValue* value_index = AddUncasted<HAdd>(key_index, graph()->GetConstant1());
2015 Push(Add<HLoadKeyed>(number_string_cache, value_index, nullptr,
2016 FAST_ELEMENTS, ALLOW_RETURN_HOLE));
2020 // Cache miss, fallback to runtime.
2021 Add<HPushArguments>(object);
2022 Push(Add<HCallRuntime>(
2023 isolate()->factory()->empty_string(),
2024 Runtime::FunctionForId(Runtime::kNumberToStringSkipCache),
2033 HValue* HGraphBuilder::BuildToObject(HValue* receiver) {
2034 NoObservableSideEffectsScope scope(this);
2036 // Create a joinable continuation.
2037 HIfContinuation wrap(graph()->CreateBasicBlock(),
2038 graph()->CreateBasicBlock());
2040 // Determine the proper global constructor function required to wrap
2041 // {receiver} into a JSValue, unless {receiver} is already a {JSReceiver}, in
2042 // which case we just return it. Deopts to Runtime::kToObject if {receiver}
2043 // is undefined or null.
2044 IfBuilder receiver_is_smi(this);
2045 receiver_is_smi.If<HIsSmiAndBranch>(receiver);
2046 receiver_is_smi.Then();
2048 // Use global Number function.
2049 Push(Add<HConstant>(Context::NUMBER_FUNCTION_INDEX));
2051 receiver_is_smi.Else();
2053 // Determine {receiver} map and instance type.
2054 HValue* receiver_map =
2055 Add<HLoadNamedField>(receiver, nullptr, HObjectAccess::ForMap());
2056 HValue* receiver_instance_type = Add<HLoadNamedField>(
2057 receiver_map, nullptr, HObjectAccess::ForMapInstanceType());
2059 // First check whether {receiver} is already a spec object (fast case).
2060 IfBuilder receiver_is_not_spec_object(this);
2061 receiver_is_not_spec_object.If<HCompareNumericAndBranch>(
2062 receiver_instance_type, Add<HConstant>(FIRST_SPEC_OBJECT_TYPE),
2064 receiver_is_not_spec_object.Then();
2066 // Load the constructor function index from the {receiver} map.
2067 HValue* constructor_function_index = Add<HLoadNamedField>(
2068 receiver_map, nullptr,
2069 HObjectAccess::ForMapInObjectPropertiesOrConstructorFunctionIndex());
2071 // Check if {receiver} has a constructor (null and undefined have no
2072 // constructors, so we deoptimize to the runtime to throw an exception).
2073 IfBuilder constructor_function_index_is_invalid(this);
2074 constructor_function_index_is_invalid.If<HCompareNumericAndBranch>(
2075 constructor_function_index,
2076 Add<HConstant>(Map::kNoConstructorFunctionIndex), Token::EQ);
2077 constructor_function_index_is_invalid.ThenDeopt(
2078 Deoptimizer::kUndefinedOrNullInToObject);
2079 constructor_function_index_is_invalid.End();
2081 // Use the global constructor function.
2082 Push(constructor_function_index);
2084 receiver_is_not_spec_object.JoinContinuation(&wrap);
2086 receiver_is_smi.JoinContinuation(&wrap);
2088 // Wrap the receiver if necessary.
2089 IfBuilder if_wrap(this, &wrap);
2092 // Grab the constructor function index.
2093 HValue* constructor_index = Pop();
2095 // Load native context.
2096 HValue* native_context = BuildGetNativeContext();
2098 // Determine the initial map for the global constructor.
2099 HValue* constructor = Add<HLoadKeyed>(native_context, constructor_index,
2100 nullptr, FAST_ELEMENTS);
2101 HValue* constructor_initial_map = Add<HLoadNamedField>(
2102 constructor, nullptr, HObjectAccess::ForPrototypeOrInitialMap());
2103 // Allocate and initialize a JSValue wrapper.
2105 BuildAllocate(Add<HConstant>(JSValue::kSize), HType::JSObject(),
2106 JS_VALUE_TYPE, HAllocationMode());
2107 Add<HStoreNamedField>(value, HObjectAccess::ForMap(),
2108 constructor_initial_map);
2109 HValue* empty_fixed_array = Add<HLoadRoot>(Heap::kEmptyFixedArrayRootIndex);
2110 Add<HStoreNamedField>(value, HObjectAccess::ForPropertiesPointer(),
2112 Add<HStoreNamedField>(value, HObjectAccess::ForElementsPointer(),
2114 Add<HStoreNamedField>(value, HObjectAccess::ForObservableJSObjectOffset(
2115 JSValue::kValueOffset),
2126 HAllocate* HGraphBuilder::BuildAllocate(
2127 HValue* object_size,
2129 InstanceType instance_type,
2130 HAllocationMode allocation_mode) {
2131 // Compute the effective allocation size.
2132 HValue* size = object_size;
2133 if (allocation_mode.CreateAllocationMementos()) {
2134 size = AddUncasted<HAdd>(size, Add<HConstant>(AllocationMemento::kSize));
2135 size->ClearFlag(HValue::kCanOverflow);
2138 // Perform the actual allocation.
2139 HAllocate* object = Add<HAllocate>(
2140 size, type, allocation_mode.GetPretenureMode(),
2141 instance_type, allocation_mode.feedback_site());
2143 // Setup the allocation memento.
2144 if (allocation_mode.CreateAllocationMementos()) {
2145 BuildCreateAllocationMemento(
2146 object, object_size, allocation_mode.current_site());
2153 HValue* HGraphBuilder::BuildAddStringLengths(HValue* left_length,
2154 HValue* right_length) {
2155 // Compute the combined string length and check against max string length.
2156 HValue* length = AddUncasted<HAdd>(left_length, right_length);
2157 // Check that length <= kMaxLength <=> length < MaxLength + 1.
2158 HValue* max_length = Add<HConstant>(String::kMaxLength + 1);
2159 Add<HBoundsCheck>(length, max_length);
2164 HValue* HGraphBuilder::BuildCreateConsString(
2168 HAllocationMode allocation_mode) {
2169 // Determine the string instance types.
2170 HInstruction* left_instance_type = AddLoadStringInstanceType(left);
2171 HInstruction* right_instance_type = AddLoadStringInstanceType(right);
2173 // Allocate the cons string object. HAllocate does not care whether we
2174 // pass CONS_STRING_TYPE or CONS_ONE_BYTE_STRING_TYPE here, so we just use
2175 // CONS_STRING_TYPE here. Below we decide whether the cons string is
2176 // one-byte or two-byte and set the appropriate map.
2177 DCHECK(HAllocate::CompatibleInstanceTypes(CONS_STRING_TYPE,
2178 CONS_ONE_BYTE_STRING_TYPE));
2179 HAllocate* result = BuildAllocate(Add<HConstant>(ConsString::kSize),
2180 HType::String(), CONS_STRING_TYPE,
2183 // Compute intersection and difference of instance types.
2184 HValue* anded_instance_types = AddUncasted<HBitwise>(
2185 Token::BIT_AND, left_instance_type, right_instance_type);
2186 HValue* xored_instance_types = AddUncasted<HBitwise>(
2187 Token::BIT_XOR, left_instance_type, right_instance_type);
2189 // We create a one-byte cons string if
2190 // 1. both strings are one-byte, or
2191 // 2. at least one of the strings is two-byte, but happens to contain only
2192 // one-byte characters.
2193 // To do this, we check
2194 // 1. if both strings are one-byte, or if the one-byte data hint is set in
2196 // 2. if one of the strings has the one-byte data hint set and the other
2197 // string is one-byte.
2198 IfBuilder if_onebyte(this);
2199 STATIC_ASSERT(kOneByteStringTag != 0);
2200 STATIC_ASSERT(kOneByteDataHintMask != 0);
2201 if_onebyte.If<HCompareNumericAndBranch>(
2202 AddUncasted<HBitwise>(
2203 Token::BIT_AND, anded_instance_types,
2204 Add<HConstant>(static_cast<int32_t>(
2205 kStringEncodingMask | kOneByteDataHintMask))),
2206 graph()->GetConstant0(), Token::NE);
2208 STATIC_ASSERT(kOneByteStringTag != 0 &&
2209 kOneByteDataHintTag != 0 &&
2210 kOneByteDataHintTag != kOneByteStringTag);
2211 if_onebyte.If<HCompareNumericAndBranch>(
2212 AddUncasted<HBitwise>(
2213 Token::BIT_AND, xored_instance_types,
2214 Add<HConstant>(static_cast<int32_t>(
2215 kOneByteStringTag | kOneByteDataHintTag))),
2216 Add<HConstant>(static_cast<int32_t>(
2217 kOneByteStringTag | kOneByteDataHintTag)), Token::EQ);
2220 // We can safely skip the write barrier for storing the map here.
2221 Add<HStoreNamedField>(
2222 result, HObjectAccess::ForMap(),
2223 Add<HConstant>(isolate()->factory()->cons_one_byte_string_map()));
2227 // We can safely skip the write barrier for storing the map here.
2228 Add<HStoreNamedField>(
2229 result, HObjectAccess::ForMap(),
2230 Add<HConstant>(isolate()->factory()->cons_string_map()));
2234 // Initialize the cons string fields.
2235 Add<HStoreNamedField>(result, HObjectAccess::ForStringHashField(),
2236 Add<HConstant>(String::kEmptyHashField));
2237 Add<HStoreNamedField>(result, HObjectAccess::ForStringLength(), length);
2238 Add<HStoreNamedField>(result, HObjectAccess::ForConsStringFirst(), left);
2239 Add<HStoreNamedField>(result, HObjectAccess::ForConsStringSecond(), right);
2241 // Count the native string addition.
2242 AddIncrementCounter(isolate()->counters()->string_add_native());
2248 void HGraphBuilder::BuildCopySeqStringChars(HValue* src,
2250 String::Encoding src_encoding,
2253 String::Encoding dst_encoding,
2255 DCHECK(dst_encoding != String::ONE_BYTE_ENCODING ||
2256 src_encoding == String::ONE_BYTE_ENCODING);
2257 LoopBuilder loop(this, context(), LoopBuilder::kPostIncrement);
2258 HValue* index = loop.BeginBody(graph()->GetConstant0(), length, Token::LT);
2260 HValue* src_index = AddUncasted<HAdd>(src_offset, index);
2262 AddUncasted<HSeqStringGetChar>(src_encoding, src, src_index);
2263 HValue* dst_index = AddUncasted<HAdd>(dst_offset, index);
2264 Add<HSeqStringSetChar>(dst_encoding, dst, dst_index, value);
2270 HValue* HGraphBuilder::BuildObjectSizeAlignment(
2271 HValue* unaligned_size, int header_size) {
2272 DCHECK((header_size & kObjectAlignmentMask) == 0);
2273 HValue* size = AddUncasted<HAdd>(
2274 unaligned_size, Add<HConstant>(static_cast<int32_t>(
2275 header_size + kObjectAlignmentMask)));
2276 size->ClearFlag(HValue::kCanOverflow);
2277 return AddUncasted<HBitwise>(
2278 Token::BIT_AND, size, Add<HConstant>(static_cast<int32_t>(
2279 ~kObjectAlignmentMask)));
2283 HValue* HGraphBuilder::BuildUncheckedStringAdd(
2286 HAllocationMode allocation_mode) {
2287 // Determine the string lengths.
2288 HValue* left_length = AddLoadStringLength(left);
2289 HValue* right_length = AddLoadStringLength(right);
2291 // Compute the combined string length.
2292 HValue* length = BuildAddStringLengths(left_length, right_length);
2294 // Do some manual constant folding here.
2295 if (left_length->IsConstant()) {
2296 HConstant* c_left_length = HConstant::cast(left_length);
2297 DCHECK_NE(0, c_left_length->Integer32Value());
2298 if (c_left_length->Integer32Value() + 1 >= ConsString::kMinLength) {
2299 // The right string contains at least one character.
2300 return BuildCreateConsString(length, left, right, allocation_mode);
2302 } else if (right_length->IsConstant()) {
2303 HConstant* c_right_length = HConstant::cast(right_length);
2304 DCHECK_NE(0, c_right_length->Integer32Value());
2305 if (c_right_length->Integer32Value() + 1 >= ConsString::kMinLength) {
2306 // The left string contains at least one character.
2307 return BuildCreateConsString(length, left, right, allocation_mode);
2311 // Check if we should create a cons string.
2312 IfBuilder if_createcons(this);
2313 if_createcons.If<HCompareNumericAndBranch>(
2314 length, Add<HConstant>(ConsString::kMinLength), Token::GTE);
2315 if_createcons.Then();
2317 // Create a cons string.
2318 Push(BuildCreateConsString(length, left, right, allocation_mode));
2320 if_createcons.Else();
2322 // Determine the string instance types.
2323 HValue* left_instance_type = AddLoadStringInstanceType(left);
2324 HValue* right_instance_type = AddLoadStringInstanceType(right);
2326 // Compute union and difference of instance types.
2327 HValue* ored_instance_types = AddUncasted<HBitwise>(
2328 Token::BIT_OR, left_instance_type, right_instance_type);
2329 HValue* xored_instance_types = AddUncasted<HBitwise>(
2330 Token::BIT_XOR, left_instance_type, right_instance_type);
2332 // Check if both strings have the same encoding and both are
2334 IfBuilder if_sameencodingandsequential(this);
2335 if_sameencodingandsequential.If<HCompareNumericAndBranch>(
2336 AddUncasted<HBitwise>(
2337 Token::BIT_AND, xored_instance_types,
2338 Add<HConstant>(static_cast<int32_t>(kStringEncodingMask))),
2339 graph()->GetConstant0(), Token::EQ);
2340 if_sameencodingandsequential.And();
2341 STATIC_ASSERT(kSeqStringTag == 0);
2342 if_sameencodingandsequential.If<HCompareNumericAndBranch>(
2343 AddUncasted<HBitwise>(
2344 Token::BIT_AND, ored_instance_types,
2345 Add<HConstant>(static_cast<int32_t>(kStringRepresentationMask))),
2346 graph()->GetConstant0(), Token::EQ);
2347 if_sameencodingandsequential.Then();
2349 HConstant* string_map =
2350 Add<HConstant>(isolate()->factory()->string_map());
2351 HConstant* one_byte_string_map =
2352 Add<HConstant>(isolate()->factory()->one_byte_string_map());
2354 // Determine map and size depending on whether result is one-byte string.
2355 IfBuilder if_onebyte(this);
2356 STATIC_ASSERT(kOneByteStringTag != 0);
2357 if_onebyte.If<HCompareNumericAndBranch>(
2358 AddUncasted<HBitwise>(
2359 Token::BIT_AND, ored_instance_types,
2360 Add<HConstant>(static_cast<int32_t>(kStringEncodingMask))),
2361 graph()->GetConstant0(), Token::NE);
2364 // Allocate sequential one-byte string object.
2366 Push(one_byte_string_map);
2370 // Allocate sequential two-byte string object.
2371 HValue* size = AddUncasted<HShl>(length, graph()->GetConstant1());
2372 size->ClearFlag(HValue::kCanOverflow);
2373 size->SetFlag(HValue::kUint32);
2378 HValue* map = Pop();
2380 // Calculate the number of bytes needed for the characters in the
2381 // string while observing object alignment.
2382 STATIC_ASSERT((SeqString::kHeaderSize & kObjectAlignmentMask) == 0);
2383 HValue* size = BuildObjectSizeAlignment(Pop(), SeqString::kHeaderSize);
2385 // Allocate the string object. HAllocate does not care whether we pass
2386 // STRING_TYPE or ONE_BYTE_STRING_TYPE here, so we just use STRING_TYPE.
2387 HAllocate* result = BuildAllocate(
2388 size, HType::String(), STRING_TYPE, allocation_mode);
2389 Add<HStoreNamedField>(result, HObjectAccess::ForMap(), map);
2391 // Initialize the string fields.
2392 Add<HStoreNamedField>(result, HObjectAccess::ForStringHashField(),
2393 Add<HConstant>(String::kEmptyHashField));
2394 Add<HStoreNamedField>(result, HObjectAccess::ForStringLength(), length);
2396 // Copy characters to the result string.
2397 IfBuilder if_twobyte(this);
2398 if_twobyte.If<HCompareObjectEqAndBranch>(map, string_map);
2401 // Copy characters from the left string.
2402 BuildCopySeqStringChars(
2403 left, graph()->GetConstant0(), String::TWO_BYTE_ENCODING,
2404 result, graph()->GetConstant0(), String::TWO_BYTE_ENCODING,
2407 // Copy characters from the right string.
2408 BuildCopySeqStringChars(
2409 right, graph()->GetConstant0(), String::TWO_BYTE_ENCODING,
2410 result, left_length, String::TWO_BYTE_ENCODING,
2415 // Copy characters from the left string.
2416 BuildCopySeqStringChars(
2417 left, graph()->GetConstant0(), String::ONE_BYTE_ENCODING,
2418 result, graph()->GetConstant0(), String::ONE_BYTE_ENCODING,
2421 // Copy characters from the right string.
2422 BuildCopySeqStringChars(
2423 right, graph()->GetConstant0(), String::ONE_BYTE_ENCODING,
2424 result, left_length, String::ONE_BYTE_ENCODING,
2429 // Count the native string addition.
2430 AddIncrementCounter(isolate()->counters()->string_add_native());
2432 // Return the sequential string.
2435 if_sameencodingandsequential.Else();
2437 // Fallback to the runtime to add the two strings.
2438 Add<HPushArguments>(left, right);
2439 Push(Add<HCallRuntime>(isolate()->factory()->empty_string(),
2440 Runtime::FunctionForId(Runtime::kStringAdd), 2));
2442 if_sameencodingandsequential.End();
2444 if_createcons.End();
2450 HValue* HGraphBuilder::BuildStringAdd(
2453 HAllocationMode allocation_mode) {
2454 NoObservableSideEffectsScope no_effects(this);
2456 // Determine string lengths.
2457 HValue* left_length = AddLoadStringLength(left);
2458 HValue* right_length = AddLoadStringLength(right);
2460 // Check if left string is empty.
2461 IfBuilder if_leftempty(this);
2462 if_leftempty.If<HCompareNumericAndBranch>(
2463 left_length, graph()->GetConstant0(), Token::EQ);
2464 if_leftempty.Then();
2466 // Count the native string addition.
2467 AddIncrementCounter(isolate()->counters()->string_add_native());
2469 // Just return the right string.
2472 if_leftempty.Else();
2474 // Check if right string is empty.
2475 IfBuilder if_rightempty(this);
2476 if_rightempty.If<HCompareNumericAndBranch>(
2477 right_length, graph()->GetConstant0(), Token::EQ);
2478 if_rightempty.Then();
2480 // Count the native string addition.
2481 AddIncrementCounter(isolate()->counters()->string_add_native());
2483 // Just return the left string.
2486 if_rightempty.Else();
2488 // Add the two non-empty strings.
2489 Push(BuildUncheckedStringAdd(left, right, allocation_mode));
2491 if_rightempty.End();
2499 HInstruction* HGraphBuilder::BuildUncheckedMonomorphicElementAccess(
2500 HValue* checked_object,
2504 ElementsKind elements_kind,
2505 PropertyAccessType access_type,
2506 LoadKeyedHoleMode load_mode,
2507 KeyedAccessStoreMode store_mode) {
2508 DCHECK(top_info()->IsStub() || checked_object->IsCompareMap() ||
2509 checked_object->IsCheckMaps());
2510 DCHECK(!IsFixedTypedArrayElementsKind(elements_kind) || !is_js_array);
2511 // No GVNFlag is necessary for ElementsKind if there is an explicit dependency
2512 // on a HElementsTransition instruction. The flag can also be removed if the
2513 // map to check has FAST_HOLEY_ELEMENTS, since there can be no further
2514 // ElementsKind transitions. Finally, the dependency can be removed for stores
2515 // for FAST_ELEMENTS, since a transition to HOLEY elements won't change the
2516 // generated store code.
2517 if ((elements_kind == FAST_HOLEY_ELEMENTS) ||
2518 (elements_kind == FAST_ELEMENTS && access_type == STORE)) {
2519 checked_object->ClearDependsOnFlag(kElementsKind);
2522 bool fast_smi_only_elements = IsFastSmiElementsKind(elements_kind);
2523 bool fast_elements = IsFastObjectElementsKind(elements_kind);
2524 HValue* elements = AddLoadElements(checked_object);
2525 if (access_type == STORE && (fast_elements || fast_smi_only_elements) &&
2526 store_mode != STORE_NO_TRANSITION_HANDLE_COW) {
2527 HCheckMaps* check_cow_map = Add<HCheckMaps>(
2528 elements, isolate()->factory()->fixed_array_map());
2529 check_cow_map->ClearDependsOnFlag(kElementsKind);
2531 HInstruction* length = NULL;
2533 length = Add<HLoadNamedField>(
2534 checked_object->ActualValue(), checked_object,
2535 HObjectAccess::ForArrayLength(elements_kind));
2537 length = AddLoadFixedArrayLength(elements);
2539 length->set_type(HType::Smi());
2540 HValue* checked_key = NULL;
2541 if (IsFixedTypedArrayElementsKind(elements_kind)) {
2542 checked_object = Add<HCheckArrayBufferNotNeutered>(checked_object);
2544 HValue* external_pointer = Add<HLoadNamedField>(
2546 HObjectAccess::ForFixedTypedArrayBaseExternalPointer());
2547 HValue* base_pointer = Add<HLoadNamedField>(
2548 elements, nullptr, HObjectAccess::ForFixedTypedArrayBaseBasePointer());
2549 HValue* backing_store = AddUncasted<HAdd>(
2550 external_pointer, base_pointer, Strength::WEAK, AddOfExternalAndTagged);
2552 if (store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) {
2553 NoObservableSideEffectsScope no_effects(this);
2554 IfBuilder length_checker(this);
2555 length_checker.If<HCompareNumericAndBranch>(key, length, Token::LT);
2556 length_checker.Then();
2557 IfBuilder negative_checker(this);
2558 HValue* bounds_check = negative_checker.If<HCompareNumericAndBranch>(
2559 key, graph()->GetConstant0(), Token::GTE);
2560 negative_checker.Then();
2561 HInstruction* result = AddElementAccess(
2562 backing_store, key, val, bounds_check, elements_kind, access_type);
2563 negative_checker.ElseDeopt(Deoptimizer::kNegativeKeyEncountered);
2564 negative_checker.End();
2565 length_checker.End();
2568 DCHECK(store_mode == STANDARD_STORE);
2569 checked_key = Add<HBoundsCheck>(key, length);
2570 return AddElementAccess(
2571 backing_store, checked_key, val,
2572 checked_object, elements_kind, access_type);
2575 DCHECK(fast_smi_only_elements ||
2577 IsFastDoubleElementsKind(elements_kind));
2579 // In case val is stored into a fast smi array, assure that the value is a smi
2580 // before manipulating the backing store. Otherwise the actual store may
2581 // deopt, leaving the backing store in an invalid state.
2582 if (access_type == STORE && IsFastSmiElementsKind(elements_kind) &&
2583 !val->type().IsSmi()) {
2584 val = AddUncasted<HForceRepresentation>(val, Representation::Smi());
2587 if (IsGrowStoreMode(store_mode)) {
2588 NoObservableSideEffectsScope no_effects(this);
2589 Representation representation = HStoreKeyed::RequiredValueRepresentation(
2590 elements_kind, STORE_TO_INITIALIZED_ENTRY);
2591 val = AddUncasted<HForceRepresentation>(val, representation);
2592 elements = BuildCheckForCapacityGrow(checked_object, elements,
2593 elements_kind, length, key,
2594 is_js_array, access_type);
2597 checked_key = Add<HBoundsCheck>(key, length);
2599 if (access_type == STORE && (fast_elements || fast_smi_only_elements)) {
2600 if (store_mode == STORE_NO_TRANSITION_HANDLE_COW) {
2601 NoObservableSideEffectsScope no_effects(this);
2602 elements = BuildCopyElementsOnWrite(checked_object, elements,
2603 elements_kind, length);
2605 HCheckMaps* check_cow_map = Add<HCheckMaps>(
2606 elements, isolate()->factory()->fixed_array_map());
2607 check_cow_map->ClearDependsOnFlag(kElementsKind);
2611 return AddElementAccess(elements, checked_key, val, checked_object,
2612 elements_kind, access_type, load_mode);
2616 HValue* HGraphBuilder::BuildAllocateArrayFromLength(
2617 JSArrayBuilder* array_builder,
2618 HValue* length_argument) {
2619 if (length_argument->IsConstant() &&
2620 HConstant::cast(length_argument)->HasSmiValue()) {
2621 int array_length = HConstant::cast(length_argument)->Integer32Value();
2622 if (array_length == 0) {
2623 return array_builder->AllocateEmptyArray();
2625 return array_builder->AllocateArray(length_argument,
2631 HValue* constant_zero = graph()->GetConstant0();
2632 HConstant* max_alloc_length =
2633 Add<HConstant>(JSObject::kInitialMaxFastElementArray);
2634 HInstruction* checked_length = Add<HBoundsCheck>(length_argument,
2636 IfBuilder if_builder(this);
2637 if_builder.If<HCompareNumericAndBranch>(checked_length, constant_zero,
2640 const int initial_capacity = JSArray::kPreallocatedArrayElements;
2641 HConstant* initial_capacity_node = Add<HConstant>(initial_capacity);
2642 Push(initial_capacity_node); // capacity
2643 Push(constant_zero); // length
2645 if (!(top_info()->IsStub()) &&
2646 IsFastPackedElementsKind(array_builder->kind())) {
2647 // We'll come back later with better (holey) feedback.
2649 Deoptimizer::kHoleyArrayDespitePackedElements_kindFeedback);
2651 Push(checked_length); // capacity
2652 Push(checked_length); // length
2656 // Figure out total size
2657 HValue* length = Pop();
2658 HValue* capacity = Pop();
2659 return array_builder->AllocateArray(capacity, max_alloc_length, length);
2663 HValue* HGraphBuilder::BuildCalculateElementsSize(ElementsKind kind,
2665 int elements_size = IsFastDoubleElementsKind(kind)
2669 HConstant* elements_size_value = Add<HConstant>(elements_size);
2671 HMul::NewImul(isolate(), zone(), context(), capacity->ActualValue(),
2672 elements_size_value);
2673 AddInstruction(mul);
2674 mul->ClearFlag(HValue::kCanOverflow);
2676 STATIC_ASSERT(FixedDoubleArray::kHeaderSize == FixedArray::kHeaderSize);
2678 HConstant* header_size = Add<HConstant>(FixedArray::kHeaderSize);
2679 HValue* total_size = AddUncasted<HAdd>(mul, header_size);
2680 total_size->ClearFlag(HValue::kCanOverflow);
2685 HAllocate* HGraphBuilder::AllocateJSArrayObject(AllocationSiteMode mode) {
2686 int base_size = JSArray::kSize;
2687 if (mode == TRACK_ALLOCATION_SITE) {
2688 base_size += AllocationMemento::kSize;
2690 HConstant* size_in_bytes = Add<HConstant>(base_size);
2691 return Add<HAllocate>(
2692 size_in_bytes, HType::JSArray(), NOT_TENURED, JS_OBJECT_TYPE);
2696 HConstant* HGraphBuilder::EstablishElementsAllocationSize(
2699 int base_size = IsFastDoubleElementsKind(kind)
2700 ? FixedDoubleArray::SizeFor(capacity)
2701 : FixedArray::SizeFor(capacity);
2703 return Add<HConstant>(base_size);
2707 HAllocate* HGraphBuilder::BuildAllocateElements(ElementsKind kind,
2708 HValue* size_in_bytes) {
2709 InstanceType instance_type = IsFastDoubleElementsKind(kind)
2710 ? FIXED_DOUBLE_ARRAY_TYPE
2713 return Add<HAllocate>(size_in_bytes, HType::HeapObject(), NOT_TENURED,
2718 void HGraphBuilder::BuildInitializeElementsHeader(HValue* elements,
2721 Factory* factory = isolate()->factory();
2722 Handle<Map> map = IsFastDoubleElementsKind(kind)
2723 ? factory->fixed_double_array_map()
2724 : factory->fixed_array_map();
2726 Add<HStoreNamedField>(elements, HObjectAccess::ForMap(), Add<HConstant>(map));
2727 Add<HStoreNamedField>(elements, HObjectAccess::ForFixedArrayLength(),
2732 HValue* HGraphBuilder::BuildAllocateAndInitializeArray(ElementsKind kind,
2734 // The HForceRepresentation is to prevent possible deopt on int-smi
2735 // conversion after allocation but before the new object fields are set.
2736 capacity = AddUncasted<HForceRepresentation>(capacity, Representation::Smi());
2737 HValue* size_in_bytes = BuildCalculateElementsSize(kind, capacity);
2738 HValue* new_array = BuildAllocateElements(kind, size_in_bytes);
2739 BuildInitializeElementsHeader(new_array, kind, capacity);
2744 void HGraphBuilder::BuildJSArrayHeader(HValue* array,
2747 AllocationSiteMode mode,
2748 ElementsKind elements_kind,
2749 HValue* allocation_site_payload,
2750 HValue* length_field) {
2751 Add<HStoreNamedField>(array, HObjectAccess::ForMap(), array_map);
2753 HConstant* empty_fixed_array =
2754 Add<HConstant>(isolate()->factory()->empty_fixed_array());
2756 Add<HStoreNamedField>(
2757 array, HObjectAccess::ForPropertiesPointer(), empty_fixed_array);
2759 Add<HStoreNamedField>(
2760 array, HObjectAccess::ForElementsPointer(),
2761 elements != NULL ? elements : empty_fixed_array);
2763 Add<HStoreNamedField>(
2764 array, HObjectAccess::ForArrayLength(elements_kind), length_field);
2766 if (mode == TRACK_ALLOCATION_SITE) {
2767 BuildCreateAllocationMemento(
2768 array, Add<HConstant>(JSArray::kSize), allocation_site_payload);
2773 HInstruction* HGraphBuilder::AddElementAccess(
2775 HValue* checked_key,
2778 ElementsKind elements_kind,
2779 PropertyAccessType access_type,
2780 LoadKeyedHoleMode load_mode) {
2781 if (access_type == STORE) {
2782 DCHECK(val != NULL);
2783 if (elements_kind == UINT8_CLAMPED_ELEMENTS) {
2784 val = Add<HClampToUint8>(val);
2786 return Add<HStoreKeyed>(elements, checked_key, val, elements_kind,
2787 STORE_TO_INITIALIZED_ENTRY);
2790 DCHECK(access_type == LOAD);
2791 DCHECK(val == NULL);
2792 HLoadKeyed* load = Add<HLoadKeyed>(
2793 elements, checked_key, dependency, elements_kind, load_mode);
2794 if (elements_kind == UINT32_ELEMENTS) {
2795 graph()->RecordUint32Instruction(load);
2801 HLoadNamedField* HGraphBuilder::AddLoadMap(HValue* object,
2802 HValue* dependency) {
2803 return Add<HLoadNamedField>(object, dependency, HObjectAccess::ForMap());
2807 HLoadNamedField* HGraphBuilder::AddLoadElements(HValue* object,
2808 HValue* dependency) {
2809 return Add<HLoadNamedField>(
2810 object, dependency, HObjectAccess::ForElementsPointer());
2814 HLoadNamedField* HGraphBuilder::AddLoadFixedArrayLength(
2816 HValue* dependency) {
2817 return Add<HLoadNamedField>(
2818 array, dependency, HObjectAccess::ForFixedArrayLength());
2822 HLoadNamedField* HGraphBuilder::AddLoadArrayLength(HValue* array,
2824 HValue* dependency) {
2825 return Add<HLoadNamedField>(
2826 array, dependency, HObjectAccess::ForArrayLength(kind));
2830 HValue* HGraphBuilder::BuildNewElementsCapacity(HValue* old_capacity) {
2831 HValue* half_old_capacity = AddUncasted<HShr>(old_capacity,
2832 graph_->GetConstant1());
2834 HValue* new_capacity = AddUncasted<HAdd>(half_old_capacity, old_capacity);
2835 new_capacity->ClearFlag(HValue::kCanOverflow);
2837 HValue* min_growth = Add<HConstant>(16);
2839 new_capacity = AddUncasted<HAdd>(new_capacity, min_growth);
2840 new_capacity->ClearFlag(HValue::kCanOverflow);
2842 return new_capacity;
2846 HValue* HGraphBuilder::BuildGrowElementsCapacity(HValue* object,
2849 ElementsKind new_kind,
2851 HValue* new_capacity) {
2852 Add<HBoundsCheck>(new_capacity, Add<HConstant>(
2853 (Page::kMaxRegularHeapObjectSize - FixedArray::kHeaderSize) >>
2854 ElementsKindToShiftSize(new_kind)));
2856 HValue* new_elements =
2857 BuildAllocateAndInitializeArray(new_kind, new_capacity);
2859 BuildCopyElements(elements, kind, new_elements,
2860 new_kind, length, new_capacity);
2862 Add<HStoreNamedField>(object, HObjectAccess::ForElementsPointer(),
2865 return new_elements;
2869 void HGraphBuilder::BuildFillElementsWithValue(HValue* elements,
2870 ElementsKind elements_kind,
2875 to = AddLoadFixedArrayLength(elements);
2878 // Special loop unfolding case
2879 STATIC_ASSERT(JSArray::kPreallocatedArrayElements <=
2880 kElementLoopUnrollThreshold);
2881 int initial_capacity = -1;
2882 if (from->IsInteger32Constant() && to->IsInteger32Constant()) {
2883 int constant_from = from->GetInteger32Constant();
2884 int constant_to = to->GetInteger32Constant();
2886 if (constant_from == 0 && constant_to <= kElementLoopUnrollThreshold) {
2887 initial_capacity = constant_to;
2891 if (initial_capacity >= 0) {
2892 for (int i = 0; i < initial_capacity; i++) {
2893 HInstruction* key = Add<HConstant>(i);
2894 Add<HStoreKeyed>(elements, key, value, elements_kind);
2897 // Carefully loop backwards so that the "from" remains live through the loop
2898 // rather than the to. This often corresponds to keeping length live rather
2899 // then capacity, which helps register allocation, since length is used more
2900 // other than capacity after filling with holes.
2901 LoopBuilder builder(this, context(), LoopBuilder::kPostDecrement);
2903 HValue* key = builder.BeginBody(to, from, Token::GT);
2905 HValue* adjusted_key = AddUncasted<HSub>(key, graph()->GetConstant1());
2906 adjusted_key->ClearFlag(HValue::kCanOverflow);
2908 Add<HStoreKeyed>(elements, adjusted_key, value, elements_kind);
2915 void HGraphBuilder::BuildFillElementsWithHole(HValue* elements,
2916 ElementsKind elements_kind,
2919 // Fast elements kinds need to be initialized in case statements below cause a
2920 // garbage collection.
2922 HValue* hole = IsFastSmiOrObjectElementsKind(elements_kind)
2923 ? graph()->GetConstantHole()
2924 : Add<HConstant>(HConstant::kHoleNaN);
2926 // Since we're about to store a hole value, the store instruction below must
2927 // assume an elements kind that supports heap object values.
2928 if (IsFastSmiOrObjectElementsKind(elements_kind)) {
2929 elements_kind = FAST_HOLEY_ELEMENTS;
2932 BuildFillElementsWithValue(elements, elements_kind, from, to, hole);
2936 void HGraphBuilder::BuildCopyProperties(HValue* from_properties,
2937 HValue* to_properties, HValue* length,
2939 ElementsKind kind = FAST_ELEMENTS;
2941 BuildFillElementsWithValue(to_properties, kind, length, capacity,
2942 graph()->GetConstantUndefined());
2944 LoopBuilder builder(this, context(), LoopBuilder::kPostDecrement);
2946 HValue* key = builder.BeginBody(length, graph()->GetConstant0(), Token::GT);
2948 key = AddUncasted<HSub>(key, graph()->GetConstant1());
2949 key->ClearFlag(HValue::kCanOverflow);
2951 HValue* element = Add<HLoadKeyed>(from_properties, key, nullptr, kind);
2953 Add<HStoreKeyed>(to_properties, key, element, kind);
2959 void HGraphBuilder::BuildCopyElements(HValue* from_elements,
2960 ElementsKind from_elements_kind,
2961 HValue* to_elements,
2962 ElementsKind to_elements_kind,
2965 int constant_capacity = -1;
2966 if (capacity != NULL &&
2967 capacity->IsConstant() &&
2968 HConstant::cast(capacity)->HasInteger32Value()) {
2969 int constant_candidate = HConstant::cast(capacity)->Integer32Value();
2970 if (constant_candidate <= kElementLoopUnrollThreshold) {
2971 constant_capacity = constant_candidate;
2975 bool pre_fill_with_holes =
2976 IsFastDoubleElementsKind(from_elements_kind) &&
2977 IsFastObjectElementsKind(to_elements_kind);
2978 if (pre_fill_with_holes) {
2979 // If the copy might trigger a GC, make sure that the FixedArray is
2980 // pre-initialized with holes to make sure that it's always in a
2981 // consistent state.
2982 BuildFillElementsWithHole(to_elements, to_elements_kind,
2983 graph()->GetConstant0(), NULL);
2986 if (constant_capacity != -1) {
2987 // Unroll the loop for small elements kinds.
2988 for (int i = 0; i < constant_capacity; i++) {
2989 HValue* key_constant = Add<HConstant>(i);
2990 HInstruction* value = Add<HLoadKeyed>(from_elements, key_constant,
2991 nullptr, from_elements_kind);
2992 Add<HStoreKeyed>(to_elements, key_constant, value, to_elements_kind);
2995 if (!pre_fill_with_holes &&
2996 (capacity == NULL || !length->Equals(capacity))) {
2997 BuildFillElementsWithHole(to_elements, to_elements_kind,
3001 LoopBuilder builder(this, context(), LoopBuilder::kPostDecrement);
3003 HValue* key = builder.BeginBody(length, graph()->GetConstant0(),
3006 key = AddUncasted<HSub>(key, graph()->GetConstant1());
3007 key->ClearFlag(HValue::kCanOverflow);
3009 HValue* element = Add<HLoadKeyed>(from_elements, key, nullptr,
3010 from_elements_kind, ALLOW_RETURN_HOLE);
3012 ElementsKind kind = (IsHoleyElementsKind(from_elements_kind) &&
3013 IsFastSmiElementsKind(to_elements_kind))
3014 ? FAST_HOLEY_ELEMENTS : to_elements_kind;
3016 if (IsHoleyElementsKind(from_elements_kind) &&
3017 from_elements_kind != to_elements_kind) {
3018 IfBuilder if_hole(this);
3019 if_hole.If<HCompareHoleAndBranch>(element);
3021 HConstant* hole_constant = IsFastDoubleElementsKind(to_elements_kind)
3022 ? Add<HConstant>(HConstant::kHoleNaN)
3023 : graph()->GetConstantHole();
3024 Add<HStoreKeyed>(to_elements, key, hole_constant, kind);
3026 HStoreKeyed* store = Add<HStoreKeyed>(to_elements, key, element, kind);
3027 store->SetFlag(HValue::kAllowUndefinedAsNaN);
3030 HStoreKeyed* store = Add<HStoreKeyed>(to_elements, key, element, kind);
3031 store->SetFlag(HValue::kAllowUndefinedAsNaN);
3037 Counters* counters = isolate()->counters();
3038 AddIncrementCounter(counters->inlined_copied_elements());
3042 HValue* HGraphBuilder::BuildCloneShallowArrayCow(HValue* boilerplate,
3043 HValue* allocation_site,
3044 AllocationSiteMode mode,
3045 ElementsKind kind) {
3046 HAllocate* array = AllocateJSArrayObject(mode);
3048 HValue* map = AddLoadMap(boilerplate);
3049 HValue* elements = AddLoadElements(boilerplate);
3050 HValue* length = AddLoadArrayLength(boilerplate, kind);
3052 BuildJSArrayHeader(array,
3063 HValue* HGraphBuilder::BuildCloneShallowArrayEmpty(HValue* boilerplate,
3064 HValue* allocation_site,
3065 AllocationSiteMode mode) {
3066 HAllocate* array = AllocateJSArrayObject(mode);
3068 HValue* map = AddLoadMap(boilerplate);
3070 BuildJSArrayHeader(array,
3072 NULL, // set elements to empty fixed array
3076 graph()->GetConstant0());
3081 HValue* HGraphBuilder::BuildCloneShallowArrayNonEmpty(HValue* boilerplate,
3082 HValue* allocation_site,
3083 AllocationSiteMode mode,
3084 ElementsKind kind) {
3085 HValue* boilerplate_elements = AddLoadElements(boilerplate);
3086 HValue* capacity = AddLoadFixedArrayLength(boilerplate_elements);
3088 // Generate size calculation code here in order to make it dominate
3089 // the JSArray allocation.
3090 HValue* elements_size = BuildCalculateElementsSize(kind, capacity);
3092 // Create empty JSArray object for now, store elimination should remove
3093 // redundant initialization of elements and length fields and at the same
3094 // time the object will be fully prepared for GC if it happens during
3095 // elements allocation.
3096 HValue* result = BuildCloneShallowArrayEmpty(
3097 boilerplate, allocation_site, mode);
3099 HAllocate* elements = BuildAllocateElements(kind, elements_size);
3101 // This function implicitly relies on the fact that the
3102 // FastCloneShallowArrayStub is called only for literals shorter than
3103 // JSObject::kInitialMaxFastElementArray.
3104 // Can't add HBoundsCheck here because otherwise the stub will eager a frame.
3105 HConstant* size_upper_bound = EstablishElementsAllocationSize(
3106 kind, JSObject::kInitialMaxFastElementArray);
3107 elements->set_size_upper_bound(size_upper_bound);
3109 Add<HStoreNamedField>(result, HObjectAccess::ForElementsPointer(), elements);
3111 // The allocation for the cloned array above causes register pressure on
3112 // machines with low register counts. Force a reload of the boilerplate
3113 // elements here to free up a register for the allocation to avoid unnecessary
3115 boilerplate_elements = AddLoadElements(boilerplate);
3116 boilerplate_elements->SetFlag(HValue::kCantBeReplaced);
3118 // Copy the elements array header.
3119 for (int i = 0; i < FixedArrayBase::kHeaderSize; i += kPointerSize) {
3120 HObjectAccess access = HObjectAccess::ForFixedArrayHeader(i);
3121 Add<HStoreNamedField>(
3123 Add<HLoadNamedField>(boilerplate_elements, nullptr, access));
3126 // And the result of the length
3127 HValue* length = AddLoadArrayLength(boilerplate, kind);
3128 Add<HStoreNamedField>(result, HObjectAccess::ForArrayLength(kind), length);
3130 BuildCopyElements(boilerplate_elements, kind, elements,
3131 kind, length, NULL);
3136 void HGraphBuilder::BuildCompareNil(HValue* value, Type* type,
3137 HIfContinuation* continuation,
3138 MapEmbedding map_embedding) {
3139 IfBuilder if_nil(this);
3140 bool some_case_handled = false;
3141 bool some_case_missing = false;
3143 if (type->Maybe(Type::Null())) {
3144 if (some_case_handled) if_nil.Or();
3145 if_nil.If<HCompareObjectEqAndBranch>(value, graph()->GetConstantNull());
3146 some_case_handled = true;
3148 some_case_missing = true;
3151 if (type->Maybe(Type::Undefined())) {
3152 if (some_case_handled) if_nil.Or();
3153 if_nil.If<HCompareObjectEqAndBranch>(value,
3154 graph()->GetConstantUndefined());
3155 some_case_handled = true;
3157 some_case_missing = true;
3160 if (type->Maybe(Type::Undetectable())) {
3161 if (some_case_handled) if_nil.Or();
3162 if_nil.If<HIsUndetectableAndBranch>(value);
3163 some_case_handled = true;
3165 some_case_missing = true;
3168 if (some_case_missing) {
3171 if (type->NumClasses() == 1) {
3172 BuildCheckHeapObject(value);
3173 // For ICs, the map checked below is a sentinel map that gets replaced by
3174 // the monomorphic map when the code is used as a template to generate a
3175 // new IC. For optimized functions, there is no sentinel map, the map
3176 // emitted below is the actual monomorphic map.
3177 if (map_embedding == kEmbedMapsViaWeakCells) {
3179 Add<HConstant>(Map::WeakCellForMap(type->Classes().Current()));
3180 HValue* expected_map = Add<HLoadNamedField>(
3181 cell, nullptr, HObjectAccess::ForWeakCellValue());
3183 Add<HLoadNamedField>(value, nullptr, HObjectAccess::ForMap());
3184 IfBuilder map_check(this);
3185 map_check.IfNot<HCompareObjectEqAndBranch>(expected_map, map);
3186 map_check.ThenDeopt(Deoptimizer::kUnknownMap);
3189 DCHECK(map_embedding == kEmbedMapsDirectly);
3190 Add<HCheckMaps>(value, type->Classes().Current());
3193 if_nil.Deopt(Deoptimizer::kTooManyUndetectableTypes);
3197 if_nil.CaptureContinuation(continuation);
3201 void HGraphBuilder::BuildCreateAllocationMemento(
3202 HValue* previous_object,
3203 HValue* previous_object_size,
3204 HValue* allocation_site) {
3205 DCHECK(allocation_site != NULL);
3206 HInnerAllocatedObject* allocation_memento = Add<HInnerAllocatedObject>(
3207 previous_object, previous_object_size, HType::HeapObject());
3208 AddStoreMapConstant(
3209 allocation_memento, isolate()->factory()->allocation_memento_map());
3210 Add<HStoreNamedField>(
3212 HObjectAccess::ForAllocationMementoSite(),
3214 if (FLAG_allocation_site_pretenuring) {
3215 HValue* memento_create_count =
3216 Add<HLoadNamedField>(allocation_site, nullptr,
3217 HObjectAccess::ForAllocationSiteOffset(
3218 AllocationSite::kPretenureCreateCountOffset));
3219 memento_create_count = AddUncasted<HAdd>(
3220 memento_create_count, graph()->GetConstant1());
3221 // This smi value is reset to zero after every gc, overflow isn't a problem
3222 // since the counter is bounded by the new space size.
3223 memento_create_count->ClearFlag(HValue::kCanOverflow);
3224 Add<HStoreNamedField>(
3225 allocation_site, HObjectAccess::ForAllocationSiteOffset(
3226 AllocationSite::kPretenureCreateCountOffset), memento_create_count);
3231 HInstruction* HGraphBuilder::BuildGetNativeContext() {
3232 // Get the global object, then the native context
3233 HValue* global_object = Add<HLoadNamedField>(
3235 HObjectAccess::ForContextSlot(Context::GLOBAL_OBJECT_INDEX));
3236 return Add<HLoadNamedField>(global_object, nullptr,
3237 HObjectAccess::ForObservableJSObjectOffset(
3238 GlobalObject::kNativeContextOffset));
3242 HInstruction* HGraphBuilder::BuildGetNativeContext(HValue* closure) {
3243 // Get the global object, then the native context
3244 HInstruction* context = Add<HLoadNamedField>(
3245 closure, nullptr, HObjectAccess::ForFunctionContextPointer());
3246 HInstruction* global_object = Add<HLoadNamedField>(
3248 HObjectAccess::ForContextSlot(Context::GLOBAL_OBJECT_INDEX));
3249 HObjectAccess access = HObjectAccess::ForObservableJSObjectOffset(
3250 GlobalObject::kNativeContextOffset);
3251 return Add<HLoadNamedField>(global_object, nullptr, access);
3255 HInstruction* HGraphBuilder::BuildGetScriptContext(int context_index) {
3256 HValue* native_context = BuildGetNativeContext();
3257 HValue* script_context_table = Add<HLoadNamedField>(
3258 native_context, nullptr,
3259 HObjectAccess::ForContextSlot(Context::SCRIPT_CONTEXT_TABLE_INDEX));
3260 return Add<HLoadNamedField>(script_context_table, nullptr,
3261 HObjectAccess::ForScriptContext(context_index));
3265 HValue* HGraphBuilder::BuildGetParentContext(HValue* depth, int depth_value) {
3266 HValue* script_context = context();
3267 if (depth != NULL) {
3268 HValue* zero = graph()->GetConstant0();
3270 Push(script_context);
3273 LoopBuilder loop(this);
3274 loop.BeginBody(2); // Drop script_context and depth from last environment
3275 // to appease live range building without simulates.
3277 script_context = Pop();
3279 script_context = Add<HLoadNamedField>(
3280 script_context, nullptr,
3281 HObjectAccess::ForContextSlot(Context::PREVIOUS_INDEX));
3282 depth = AddUncasted<HSub>(depth, graph()->GetConstant1());
3283 depth->ClearFlag(HValue::kCanOverflow);
3285 IfBuilder if_break(this);
3286 if_break.If<HCompareNumericAndBranch, HValue*>(depth, zero, Token::EQ);
3289 Push(script_context); // The result.
3294 Push(script_context);
3300 script_context = Pop();
3301 } else if (depth_value > 0) {
3302 // Unroll the above loop.
3303 for (int i = 0; i < depth_value; i++) {
3304 script_context = Add<HLoadNamedField>(
3305 script_context, nullptr,
3306 HObjectAccess::ForContextSlot(Context::PREVIOUS_INDEX));
3309 return script_context;
3313 HInstruction* HGraphBuilder::BuildGetArrayFunction() {
3314 HInstruction* native_context = BuildGetNativeContext();
3315 HInstruction* index =
3316 Add<HConstant>(static_cast<int32_t>(Context::ARRAY_FUNCTION_INDEX));
3317 return Add<HLoadKeyed>(native_context, index, nullptr, FAST_ELEMENTS);
3321 HValue* HGraphBuilder::BuildArrayBufferViewFieldAccessor(HValue* object,
3322 HValue* checked_object,
3324 NoObservableSideEffectsScope scope(this);
3325 HObjectAccess access = HObjectAccess::ForObservableJSObjectOffset(
3326 index.offset(), Representation::Tagged());
3327 HInstruction* buffer = Add<HLoadNamedField>(
3328 object, checked_object, HObjectAccess::ForJSArrayBufferViewBuffer());
3329 HInstruction* field = Add<HLoadNamedField>(object, checked_object, access);
3331 HInstruction* flags = Add<HLoadNamedField>(
3332 buffer, nullptr, HObjectAccess::ForJSArrayBufferBitField());
3333 HValue* was_neutered_mask =
3334 Add<HConstant>(1 << JSArrayBuffer::WasNeutered::kShift);
3335 HValue* was_neutered_test =
3336 AddUncasted<HBitwise>(Token::BIT_AND, flags, was_neutered_mask);
3338 IfBuilder if_was_neutered(this);
3339 if_was_neutered.If<HCompareNumericAndBranch>(
3340 was_neutered_test, graph()->GetConstant0(), Token::NE);
3341 if_was_neutered.Then();
3342 Push(graph()->GetConstant0());
3343 if_was_neutered.Else();
3345 if_was_neutered.End();
3351 HGraphBuilder::JSArrayBuilder::JSArrayBuilder(HGraphBuilder* builder,
3353 HValue* allocation_site_payload,
3354 HValue* constructor_function,
3355 AllocationSiteOverrideMode override_mode) :
3358 allocation_site_payload_(allocation_site_payload),
3359 constructor_function_(constructor_function) {
3360 DCHECK(!allocation_site_payload->IsConstant() ||
3361 HConstant::cast(allocation_site_payload)->handle(
3362 builder_->isolate())->IsAllocationSite());
3363 mode_ = override_mode == DISABLE_ALLOCATION_SITES
3364 ? DONT_TRACK_ALLOCATION_SITE
3365 : AllocationSite::GetMode(kind);
3369 HGraphBuilder::JSArrayBuilder::JSArrayBuilder(HGraphBuilder* builder,
3371 HValue* constructor_function) :
3374 mode_(DONT_TRACK_ALLOCATION_SITE),
3375 allocation_site_payload_(NULL),
3376 constructor_function_(constructor_function) {
3380 HValue* HGraphBuilder::JSArrayBuilder::EmitMapCode() {
3381 if (!builder()->top_info()->IsStub()) {
3382 // A constant map is fine.
3383 Handle<Map> map(builder()->isolate()->get_initial_js_array_map(kind_),
3384 builder()->isolate());
3385 return builder()->Add<HConstant>(map);
3388 if (constructor_function_ != NULL && kind_ == GetInitialFastElementsKind()) {
3389 // No need for a context lookup if the kind_ matches the initial
3390 // map, because we can just load the map in that case.
3391 HObjectAccess access = HObjectAccess::ForPrototypeOrInitialMap();
3392 return builder()->Add<HLoadNamedField>(constructor_function_, nullptr,
3396 // TODO(mvstanton): we should always have a constructor function if we
3397 // are creating a stub.
3398 HInstruction* native_context = constructor_function_ != NULL
3399 ? builder()->BuildGetNativeContext(constructor_function_)
3400 : builder()->BuildGetNativeContext();
3402 HInstruction* index = builder()->Add<HConstant>(
3403 static_cast<int32_t>(Context::JS_ARRAY_MAPS_INDEX));
3405 HInstruction* map_array =
3406 builder()->Add<HLoadKeyed>(native_context, index, nullptr, FAST_ELEMENTS);
3408 HInstruction* kind_index = builder()->Add<HConstant>(kind_);
3410 return builder()->Add<HLoadKeyed>(map_array, kind_index, nullptr,
3415 HValue* HGraphBuilder::JSArrayBuilder::EmitInternalMapCode() {
3416 // Find the map near the constructor function
3417 HObjectAccess access = HObjectAccess::ForPrototypeOrInitialMap();
3418 return builder()->Add<HLoadNamedField>(constructor_function_, nullptr,
3423 HAllocate* HGraphBuilder::JSArrayBuilder::AllocateEmptyArray() {
3424 HConstant* capacity = builder()->Add<HConstant>(initial_capacity());
3425 return AllocateArray(capacity,
3427 builder()->graph()->GetConstant0());
3431 HAllocate* HGraphBuilder::JSArrayBuilder::AllocateArray(
3433 HConstant* capacity_upper_bound,
3434 HValue* length_field,
3435 FillMode fill_mode) {
3436 return AllocateArray(capacity,
3437 capacity_upper_bound->GetInteger32Constant(),
3443 HAllocate* HGraphBuilder::JSArrayBuilder::AllocateArray(
3445 int capacity_upper_bound,
3446 HValue* length_field,
3447 FillMode fill_mode) {
3448 HConstant* elememts_size_upper_bound = capacity->IsInteger32Constant()
3449 ? HConstant::cast(capacity)
3450 : builder()->EstablishElementsAllocationSize(kind_, capacity_upper_bound);
3452 HAllocate* array = AllocateArray(capacity, length_field, fill_mode);
3453 if (!elements_location_->has_size_upper_bound()) {
3454 elements_location_->set_size_upper_bound(elememts_size_upper_bound);
3460 HAllocate* HGraphBuilder::JSArrayBuilder::AllocateArray(
3462 HValue* length_field,
3463 FillMode fill_mode) {
3464 // These HForceRepresentations are because we store these as fields in the
3465 // objects we construct, and an int32-to-smi HChange could deopt. Accept
3466 // the deopt possibility now, before allocation occurs.
3468 builder()->AddUncasted<HForceRepresentation>(capacity,
3469 Representation::Smi());
3471 builder()->AddUncasted<HForceRepresentation>(length_field,
3472 Representation::Smi());
3474 // Generate size calculation code here in order to make it dominate
3475 // the JSArray allocation.
3476 HValue* elements_size =
3477 builder()->BuildCalculateElementsSize(kind_, capacity);
3479 // Allocate (dealing with failure appropriately)
3480 HAllocate* array_object = builder()->AllocateJSArrayObject(mode_);
3482 // Fill in the fields: map, properties, length
3484 if (allocation_site_payload_ == NULL) {
3485 map = EmitInternalMapCode();
3487 map = EmitMapCode();
3490 builder()->BuildJSArrayHeader(array_object,
3492 NULL, // set elements to empty fixed array
3495 allocation_site_payload_,
3498 // Allocate and initialize the elements
3499 elements_location_ = builder()->BuildAllocateElements(kind_, elements_size);
3501 builder()->BuildInitializeElementsHeader(elements_location_, kind_, capacity);
3504 builder()->Add<HStoreNamedField>(
3505 array_object, HObjectAccess::ForElementsPointer(), elements_location_);
3507 if (fill_mode == FILL_WITH_HOLE) {
3508 builder()->BuildFillElementsWithHole(elements_location_, kind_,
3509 graph()->GetConstant0(), capacity);
3512 return array_object;
3516 HValue* HGraphBuilder::AddLoadJSBuiltin(Builtins::JavaScript builtin) {
3517 HValue* global_object = Add<HLoadNamedField>(
3519 HObjectAccess::ForContextSlot(Context::GLOBAL_OBJECT_INDEX));
3520 HObjectAccess access = HObjectAccess::ForObservableJSObjectOffset(
3521 GlobalObject::kBuiltinsOffset);
3522 HValue* builtins = Add<HLoadNamedField>(global_object, nullptr, access);
3523 HObjectAccess function_access = HObjectAccess::ForObservableJSObjectOffset(
3524 JSBuiltinsObject::OffsetOfFunctionWithId(builtin));
3525 return Add<HLoadNamedField>(builtins, nullptr, function_access);
3529 HOptimizedGraphBuilder::HOptimizedGraphBuilder(CompilationInfo* info)
3530 : HGraphBuilder(info),
3531 function_state_(NULL),
3532 initial_function_state_(this, info, NORMAL_RETURN, 0),
3536 globals_(10, info->zone()),
3537 osr_(new(info->zone()) HOsrBuilder(this)) {
3538 // This is not initialized in the initializer list because the
3539 // constructor for the initial state relies on function_state_ == NULL
3540 // to know it's the initial state.
3541 function_state_ = &initial_function_state_;
3542 InitializeAstVisitor(info->isolate(), info->zone());
3543 if (top_info()->is_tracking_positions()) {
3544 SetSourcePosition(info->shared_info()->start_position());
3549 HBasicBlock* HOptimizedGraphBuilder::CreateJoin(HBasicBlock* first,
3550 HBasicBlock* second,
3551 BailoutId join_id) {
3552 if (first == NULL) {
3554 } else if (second == NULL) {
3557 HBasicBlock* join_block = graph()->CreateBasicBlock();
3558 Goto(first, join_block);
3559 Goto(second, join_block);
3560 join_block->SetJoinId(join_id);
3566 HBasicBlock* HOptimizedGraphBuilder::JoinContinue(IterationStatement* statement,
3567 HBasicBlock* exit_block,
3568 HBasicBlock* continue_block) {
3569 if (continue_block != NULL) {
3570 if (exit_block != NULL) Goto(exit_block, continue_block);
3571 continue_block->SetJoinId(statement->ContinueId());
3572 return continue_block;
3578 HBasicBlock* HOptimizedGraphBuilder::CreateLoop(IterationStatement* statement,
3579 HBasicBlock* loop_entry,
3580 HBasicBlock* body_exit,
3581 HBasicBlock* loop_successor,
3582 HBasicBlock* break_block) {
3583 if (body_exit != NULL) Goto(body_exit, loop_entry);
3584 loop_entry->PostProcessLoopHeader(statement);
3585 if (break_block != NULL) {
3586 if (loop_successor != NULL) Goto(loop_successor, break_block);
3587 break_block->SetJoinId(statement->ExitId());
3590 return loop_successor;
3594 // Build a new loop header block and set it as the current block.
3595 HBasicBlock* HOptimizedGraphBuilder::BuildLoopEntry() {
3596 HBasicBlock* loop_entry = CreateLoopHeaderBlock();
3598 set_current_block(loop_entry);
3603 HBasicBlock* HOptimizedGraphBuilder::BuildLoopEntry(
3604 IterationStatement* statement) {
3605 HBasicBlock* loop_entry = osr()->HasOsrEntryAt(statement)
3606 ? osr()->BuildOsrLoopEntry(statement)
3612 void HBasicBlock::FinishExit(HControlInstruction* instruction,
3613 SourcePosition position) {
3614 Finish(instruction, position);
3619 std::ostream& operator<<(std::ostream& os, const HBasicBlock& b) {
3620 return os << "B" << b.block_id();
3624 HGraph::HGraph(CompilationInfo* info)
3625 : isolate_(info->isolate()),
3628 blocks_(8, info->zone()),
3629 values_(16, info->zone()),
3631 uint32_instructions_(NULL),
3634 zone_(info->zone()),
3635 is_recursive_(false),
3636 use_optimistic_licm_(false),
3637 depends_on_empty_array_proto_elements_(false),
3638 type_change_checksum_(0),
3639 maximum_environment_size_(0),
3640 no_side_effects_scope_count_(0),
3641 disallow_adding_new_values_(false) {
3642 if (info->IsStub()) {
3643 CallInterfaceDescriptor descriptor =
3644 info->code_stub()->GetCallInterfaceDescriptor();
3645 start_environment_ =
3646 new (zone_) HEnvironment(zone_, descriptor.GetRegisterParameterCount());
3648 if (info->is_tracking_positions()) {
3649 info->TraceInlinedFunction(info->shared_info(), SourcePosition::Unknown(),
3650 InlinedFunctionInfo::kNoParentId);
3652 start_environment_ =
3653 new(zone_) HEnvironment(NULL, info->scope(), info->closure(), zone_);
3655 start_environment_->set_ast_id(BailoutId::FunctionEntry());
3656 entry_block_ = CreateBasicBlock();
3657 entry_block_->SetInitialEnvironment(start_environment_);
3661 HBasicBlock* HGraph::CreateBasicBlock() {
3662 HBasicBlock* result = new(zone()) HBasicBlock(this);
3663 blocks_.Add(result, zone());
3668 void HGraph::FinalizeUniqueness() {
3669 DisallowHeapAllocation no_gc;
3670 for (int i = 0; i < blocks()->length(); ++i) {
3671 for (HInstructionIterator it(blocks()->at(i)); !it.Done(); it.Advance()) {
3672 it.Current()->FinalizeUniqueness();
3678 int HGraph::SourcePositionToScriptPosition(SourcePosition pos) {
3679 return (FLAG_hydrogen_track_positions && !pos.IsUnknown())
3680 ? info()->start_position_for(pos.inlining_id()) + pos.position()
3685 // Block ordering was implemented with two mutually recursive methods,
3686 // HGraph::Postorder and HGraph::PostorderLoopBlocks.
3687 // The recursion could lead to stack overflow so the algorithm has been
3688 // implemented iteratively.
3689 // At a high level the algorithm looks like this:
3691 // Postorder(block, loop_header) : {
3692 // if (block has already been visited or is of another loop) return;
3693 // mark block as visited;
3694 // if (block is a loop header) {
3695 // VisitLoopMembers(block, loop_header);
3696 // VisitSuccessorsOfLoopHeader(block);
3698 // VisitSuccessors(block)
3700 // put block in result list;
3703 // VisitLoopMembers(block, outer_loop_header) {
3704 // foreach (block b in block loop members) {
3705 // VisitSuccessorsOfLoopMember(b, outer_loop_header);
3706 // if (b is loop header) VisitLoopMembers(b);
3710 // VisitSuccessorsOfLoopMember(block, outer_loop_header) {
3711 // foreach (block b in block successors) Postorder(b, outer_loop_header)
3714 // VisitSuccessorsOfLoopHeader(block) {
3715 // foreach (block b in block successors) Postorder(b, block)
3718 // VisitSuccessors(block, loop_header) {
3719 // foreach (block b in block successors) Postorder(b, loop_header)
3722 // The ordering is started calling Postorder(entry, NULL).
3724 // Each instance of PostorderProcessor represents the "stack frame" of the
3725 // recursion, and particularly keeps the state of the loop (iteration) of the
3726 // "Visit..." function it represents.
3727 // To recycle memory we keep all the frames in a double linked list but
3728 // this means that we cannot use constructors to initialize the frames.
3730 class PostorderProcessor : public ZoneObject {
3732 // Back link (towards the stack bottom).
3733 PostorderProcessor* parent() {return father_; }
3734 // Forward link (towards the stack top).
3735 PostorderProcessor* child() {return child_; }
3736 HBasicBlock* block() { return block_; }
3737 HLoopInformation* loop() { return loop_; }
3738 HBasicBlock* loop_header() { return loop_header_; }
3740 static PostorderProcessor* CreateEntryProcessor(Zone* zone,
3741 HBasicBlock* block) {
3742 PostorderProcessor* result = new(zone) PostorderProcessor(NULL);
3743 return result->SetupSuccessors(zone, block, NULL);
3746 PostorderProcessor* PerformStep(Zone* zone,
3747 ZoneList<HBasicBlock*>* order) {
3748 PostorderProcessor* next =
3749 PerformNonBacktrackingStep(zone, order);
3753 return Backtrack(zone, order);
3758 explicit PostorderProcessor(PostorderProcessor* father)
3759 : father_(father), child_(NULL), successor_iterator(NULL) { }
3761 // Each enum value states the cycle whose state is kept by this instance.
3765 SUCCESSORS_OF_LOOP_HEADER,
3767 SUCCESSORS_OF_LOOP_MEMBER
3770 // Each "Setup..." method is like a constructor for a cycle state.
3771 PostorderProcessor* SetupSuccessors(Zone* zone,
3773 HBasicBlock* loop_header) {
3774 if (block == NULL || block->IsOrdered() ||
3775 block->parent_loop_header() != loop_header) {
3779 loop_header_ = NULL;
3784 block->MarkAsOrdered();
3786 if (block->IsLoopHeader()) {
3787 kind_ = SUCCESSORS_OF_LOOP_HEADER;
3788 loop_header_ = block;
3789 InitializeSuccessors();
3790 PostorderProcessor* result = Push(zone);
3791 return result->SetupLoopMembers(zone, block, block->loop_information(),
3794 DCHECK(block->IsFinished());
3796 loop_header_ = loop_header;
3797 InitializeSuccessors();
3803 PostorderProcessor* SetupLoopMembers(Zone* zone,
3805 HLoopInformation* loop,
3806 HBasicBlock* loop_header) {
3807 kind_ = LOOP_MEMBERS;
3810 loop_header_ = loop_header;
3811 InitializeLoopMembers();
3815 PostorderProcessor* SetupSuccessorsOfLoopMember(
3817 HLoopInformation* loop,
3818 HBasicBlock* loop_header) {
3819 kind_ = SUCCESSORS_OF_LOOP_MEMBER;
3822 loop_header_ = loop_header;
3823 InitializeSuccessors();
3827 // This method "allocates" a new stack frame.
3828 PostorderProcessor* Push(Zone* zone) {
3829 if (child_ == NULL) {
3830 child_ = new(zone) PostorderProcessor(this);
3835 void ClosePostorder(ZoneList<HBasicBlock*>* order, Zone* zone) {
3836 DCHECK(block_->end()->FirstSuccessor() == NULL ||
3837 order->Contains(block_->end()->FirstSuccessor()) ||
3838 block_->end()->FirstSuccessor()->IsLoopHeader());
3839 DCHECK(block_->end()->SecondSuccessor() == NULL ||
3840 order->Contains(block_->end()->SecondSuccessor()) ||
3841 block_->end()->SecondSuccessor()->IsLoopHeader());
3842 order->Add(block_, zone);
3845 // This method is the basic block to walk up the stack.
3846 PostorderProcessor* Pop(Zone* zone,
3847 ZoneList<HBasicBlock*>* order) {
3850 case SUCCESSORS_OF_LOOP_HEADER:
3851 ClosePostorder(order, zone);
3855 case SUCCESSORS_OF_LOOP_MEMBER:
3856 if (block()->IsLoopHeader() && block() != loop_->loop_header()) {
3857 // In this case we need to perform a LOOP_MEMBERS cycle so we
3858 // initialize it and return this instead of father.
3859 return SetupLoopMembers(zone, block(),
3860 block()->loop_information(), loop_header_);
3871 // Walks up the stack.
3872 PostorderProcessor* Backtrack(Zone* zone,
3873 ZoneList<HBasicBlock*>* order) {
3874 PostorderProcessor* parent = Pop(zone, order);
3875 while (parent != NULL) {
3876 PostorderProcessor* next =
3877 parent->PerformNonBacktrackingStep(zone, order);
3881 parent = parent->Pop(zone, order);
3887 PostorderProcessor* PerformNonBacktrackingStep(
3889 ZoneList<HBasicBlock*>* order) {
3890 HBasicBlock* next_block;
3893 next_block = AdvanceSuccessors();
3894 if (next_block != NULL) {
3895 PostorderProcessor* result = Push(zone);
3896 return result->SetupSuccessors(zone, next_block, loop_header_);
3899 case SUCCESSORS_OF_LOOP_HEADER:
3900 next_block = AdvanceSuccessors();
3901 if (next_block != NULL) {
3902 PostorderProcessor* result = Push(zone);
3903 return result->SetupSuccessors(zone, next_block, block());
3907 next_block = AdvanceLoopMembers();
3908 if (next_block != NULL) {
3909 PostorderProcessor* result = Push(zone);
3910 return result->SetupSuccessorsOfLoopMember(next_block,
3911 loop_, loop_header_);
3914 case SUCCESSORS_OF_LOOP_MEMBER:
3915 next_block = AdvanceSuccessors();
3916 if (next_block != NULL) {
3917 PostorderProcessor* result = Push(zone);
3918 return result->SetupSuccessors(zone, next_block, loop_header_);
3927 // The following two methods implement a "foreach b in successors" cycle.
3928 void InitializeSuccessors() {
3931 successor_iterator = HSuccessorIterator(block_->end());
3934 HBasicBlock* AdvanceSuccessors() {
3935 if (!successor_iterator.Done()) {
3936 HBasicBlock* result = successor_iterator.Current();
3937 successor_iterator.Advance();
3943 // The following two methods implement a "foreach b in loop members" cycle.
3944 void InitializeLoopMembers() {
3946 loop_length = loop_->blocks()->length();
3949 HBasicBlock* AdvanceLoopMembers() {
3950 if (loop_index < loop_length) {
3951 HBasicBlock* result = loop_->blocks()->at(loop_index);
3960 PostorderProcessor* father_;
3961 PostorderProcessor* child_;
3962 HLoopInformation* loop_;
3963 HBasicBlock* block_;
3964 HBasicBlock* loop_header_;
3967 HSuccessorIterator successor_iterator;
3971 void HGraph::OrderBlocks() {
3972 CompilationPhase phase("H_Block ordering", info());
3975 // Initially the blocks must not be ordered.
3976 for (int i = 0; i < blocks_.length(); ++i) {
3977 DCHECK(!blocks_[i]->IsOrdered());
3981 PostorderProcessor* postorder =
3982 PostorderProcessor::CreateEntryProcessor(zone(), blocks_[0]);
3985 postorder = postorder->PerformStep(zone(), &blocks_);
3989 // Now all blocks must be marked as ordered.
3990 for (int i = 0; i < blocks_.length(); ++i) {
3991 DCHECK(blocks_[i]->IsOrdered());
3995 // Reverse block list and assign block IDs.
3996 for (int i = 0, j = blocks_.length(); --j >= i; ++i) {
3997 HBasicBlock* bi = blocks_[i];
3998 HBasicBlock* bj = blocks_[j];
3999 bi->set_block_id(j);
4000 bj->set_block_id(i);
4007 void HGraph::AssignDominators() {
4008 HPhase phase("H_Assign dominators", this);
4009 for (int i = 0; i < blocks_.length(); ++i) {
4010 HBasicBlock* block = blocks_[i];
4011 if (block->IsLoopHeader()) {
4012 // Only the first predecessor of a loop header is from outside the loop.
4013 // All others are back edges, and thus cannot dominate the loop header.
4014 block->AssignCommonDominator(block->predecessors()->first());
4015 block->AssignLoopSuccessorDominators();
4017 for (int j = blocks_[i]->predecessors()->length() - 1; j >= 0; --j) {
4018 blocks_[i]->AssignCommonDominator(blocks_[i]->predecessors()->at(j));
4025 bool HGraph::CheckArgumentsPhiUses() {
4026 int block_count = blocks_.length();
4027 for (int i = 0; i < block_count; ++i) {
4028 for (int j = 0; j < blocks_[i]->phis()->length(); ++j) {
4029 HPhi* phi = blocks_[i]->phis()->at(j);
4030 // We don't support phi uses of arguments for now.
4031 if (phi->CheckFlag(HValue::kIsArguments)) return false;
4038 bool HGraph::CheckConstPhiUses() {
4039 int block_count = blocks_.length();
4040 for (int i = 0; i < block_count; ++i) {
4041 for (int j = 0; j < blocks_[i]->phis()->length(); ++j) {
4042 HPhi* phi = blocks_[i]->phis()->at(j);
4043 // Check for the hole value (from an uninitialized const).
4044 for (int k = 0; k < phi->OperandCount(); k++) {
4045 if (phi->OperandAt(k) == GetConstantHole()) return false;
4053 void HGraph::CollectPhis() {
4054 int block_count = blocks_.length();
4055 phi_list_ = new(zone()) ZoneList<HPhi*>(block_count, zone());
4056 for (int i = 0; i < block_count; ++i) {
4057 for (int j = 0; j < blocks_[i]->phis()->length(); ++j) {
4058 HPhi* phi = blocks_[i]->phis()->at(j);
4059 phi_list_->Add(phi, zone());
4065 // Implementation of utility class to encapsulate the translation state for
4066 // a (possibly inlined) function.
4067 FunctionState::FunctionState(HOptimizedGraphBuilder* owner,
4068 CompilationInfo* info, InliningKind inlining_kind,
4071 compilation_info_(info),
4072 call_context_(NULL),
4073 inlining_kind_(inlining_kind),
4074 function_return_(NULL),
4075 test_context_(NULL),
4077 arguments_object_(NULL),
4078 arguments_elements_(NULL),
4079 inlining_id_(inlining_id),
4080 outer_source_position_(SourcePosition::Unknown()),
4081 outer_(owner->function_state()) {
4082 if (outer_ != NULL) {
4083 // State for an inline function.
4084 if (owner->ast_context()->IsTest()) {
4085 HBasicBlock* if_true = owner->graph()->CreateBasicBlock();
4086 HBasicBlock* if_false = owner->graph()->CreateBasicBlock();
4087 if_true->MarkAsInlineReturnTarget(owner->current_block());
4088 if_false->MarkAsInlineReturnTarget(owner->current_block());
4089 TestContext* outer_test_context = TestContext::cast(owner->ast_context());
4090 Expression* cond = outer_test_context->condition();
4091 // The AstContext constructor pushed on the context stack. This newed
4092 // instance is the reason that AstContext can't be BASE_EMBEDDED.
4093 test_context_ = new TestContext(owner, cond, if_true, if_false);
4095 function_return_ = owner->graph()->CreateBasicBlock();
4096 function_return()->MarkAsInlineReturnTarget(owner->current_block());
4098 // Set this after possibly allocating a new TestContext above.
4099 call_context_ = owner->ast_context();
4102 // Push on the state stack.
4103 owner->set_function_state(this);
4105 if (compilation_info_->is_tracking_positions()) {
4106 outer_source_position_ = owner->source_position();
4107 owner->EnterInlinedSource(
4108 info->shared_info()->start_position(),
4110 owner->SetSourcePosition(info->shared_info()->start_position());
4115 FunctionState::~FunctionState() {
4116 delete test_context_;
4117 owner_->set_function_state(outer_);
4119 if (compilation_info_->is_tracking_positions()) {
4120 owner_->set_source_position(outer_source_position_);
4121 owner_->EnterInlinedSource(
4122 outer_->compilation_info()->shared_info()->start_position(),
4123 outer_->inlining_id());
4128 // Implementation of utility classes to represent an expression's context in
4130 AstContext::AstContext(HOptimizedGraphBuilder* owner, Expression::Context kind)
4133 outer_(owner->ast_context()),
4134 typeof_mode_(NOT_INSIDE_TYPEOF) {
4135 owner->set_ast_context(this); // Push.
4137 DCHECK(owner->environment()->frame_type() == JS_FUNCTION);
4138 original_length_ = owner->environment()->length();
4143 AstContext::~AstContext() {
4144 owner_->set_ast_context(outer_); // Pop.
4148 EffectContext::~EffectContext() {
4149 DCHECK(owner()->HasStackOverflow() ||
4150 owner()->current_block() == NULL ||
4151 (owner()->environment()->length() == original_length_ &&
4152 owner()->environment()->frame_type() == JS_FUNCTION));
4156 ValueContext::~ValueContext() {
4157 DCHECK(owner()->HasStackOverflow() ||
4158 owner()->current_block() == NULL ||
4159 (owner()->environment()->length() == original_length_ + 1 &&
4160 owner()->environment()->frame_type() == JS_FUNCTION));
4164 void EffectContext::ReturnValue(HValue* value) {
4165 // The value is simply ignored.
4169 void ValueContext::ReturnValue(HValue* value) {
4170 // The value is tracked in the bailout environment, and communicated
4171 // through the environment as the result of the expression.
4172 if (value->CheckFlag(HValue::kIsArguments)) {
4173 if (flag_ == ARGUMENTS_FAKED) {
4174 value = owner()->graph()->GetConstantUndefined();
4175 } else if (!arguments_allowed()) {
4176 owner()->Bailout(kBadValueContextForArgumentsValue);
4179 owner()->Push(value);
4183 void TestContext::ReturnValue(HValue* value) {
4188 void EffectContext::ReturnInstruction(HInstruction* instr, BailoutId ast_id) {
4189 DCHECK(!instr->IsControlInstruction());
4190 owner()->AddInstruction(instr);
4191 if (instr->HasObservableSideEffects()) {
4192 owner()->Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
4197 void EffectContext::ReturnControl(HControlInstruction* instr,
4199 DCHECK(!instr->HasObservableSideEffects());
4200 HBasicBlock* empty_true = owner()->graph()->CreateBasicBlock();
4201 HBasicBlock* empty_false = owner()->graph()->CreateBasicBlock();
4202 instr->SetSuccessorAt(0, empty_true);
4203 instr->SetSuccessorAt(1, empty_false);
4204 owner()->FinishCurrentBlock(instr);
4205 HBasicBlock* join = owner()->CreateJoin(empty_true, empty_false, ast_id);
4206 owner()->set_current_block(join);
4210 void EffectContext::ReturnContinuation(HIfContinuation* continuation,
4212 HBasicBlock* true_branch = NULL;
4213 HBasicBlock* false_branch = NULL;
4214 continuation->Continue(&true_branch, &false_branch);
4215 if (!continuation->IsTrueReachable()) {
4216 owner()->set_current_block(false_branch);
4217 } else if (!continuation->IsFalseReachable()) {
4218 owner()->set_current_block(true_branch);
4220 HBasicBlock* join = owner()->CreateJoin(true_branch, false_branch, ast_id);
4221 owner()->set_current_block(join);
4226 void ValueContext::ReturnInstruction(HInstruction* instr, BailoutId ast_id) {
4227 DCHECK(!instr->IsControlInstruction());
4228 if (!arguments_allowed() && instr->CheckFlag(HValue::kIsArguments)) {
4229 return owner()->Bailout(kBadValueContextForArgumentsObjectValue);
4231 owner()->AddInstruction(instr);
4232 owner()->Push(instr);
4233 if (instr->HasObservableSideEffects()) {
4234 owner()->Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
4239 void ValueContext::ReturnControl(HControlInstruction* instr, BailoutId ast_id) {
4240 DCHECK(!instr->HasObservableSideEffects());
4241 if (!arguments_allowed() && instr->CheckFlag(HValue::kIsArguments)) {
4242 return owner()->Bailout(kBadValueContextForArgumentsObjectValue);
4244 HBasicBlock* materialize_false = owner()->graph()->CreateBasicBlock();
4245 HBasicBlock* materialize_true = owner()->graph()->CreateBasicBlock();
4246 instr->SetSuccessorAt(0, materialize_true);
4247 instr->SetSuccessorAt(1, materialize_false);
4248 owner()->FinishCurrentBlock(instr);
4249 owner()->set_current_block(materialize_true);
4250 owner()->Push(owner()->graph()->GetConstantTrue());
4251 owner()->set_current_block(materialize_false);
4252 owner()->Push(owner()->graph()->GetConstantFalse());
4254 owner()->CreateJoin(materialize_true, materialize_false, ast_id);
4255 owner()->set_current_block(join);
4259 void ValueContext::ReturnContinuation(HIfContinuation* continuation,
4261 HBasicBlock* materialize_true = NULL;
4262 HBasicBlock* materialize_false = NULL;
4263 continuation->Continue(&materialize_true, &materialize_false);
4264 if (continuation->IsTrueReachable()) {
4265 owner()->set_current_block(materialize_true);
4266 owner()->Push(owner()->graph()->GetConstantTrue());
4267 owner()->set_current_block(materialize_true);
4269 if (continuation->IsFalseReachable()) {
4270 owner()->set_current_block(materialize_false);
4271 owner()->Push(owner()->graph()->GetConstantFalse());
4272 owner()->set_current_block(materialize_false);
4274 if (continuation->TrueAndFalseReachable()) {
4276 owner()->CreateJoin(materialize_true, materialize_false, ast_id);
4277 owner()->set_current_block(join);
4282 void TestContext::ReturnInstruction(HInstruction* instr, BailoutId ast_id) {
4283 DCHECK(!instr->IsControlInstruction());
4284 HOptimizedGraphBuilder* builder = owner();
4285 builder->AddInstruction(instr);
4286 // We expect a simulate after every expression with side effects, though
4287 // this one isn't actually needed (and wouldn't work if it were targeted).
4288 if (instr->HasObservableSideEffects()) {
4289 builder->Push(instr);
4290 builder->Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
4297 void TestContext::ReturnControl(HControlInstruction* instr, BailoutId ast_id) {
4298 DCHECK(!instr->HasObservableSideEffects());
4299 HBasicBlock* empty_true = owner()->graph()->CreateBasicBlock();
4300 HBasicBlock* empty_false = owner()->graph()->CreateBasicBlock();
4301 instr->SetSuccessorAt(0, empty_true);
4302 instr->SetSuccessorAt(1, empty_false);
4303 owner()->FinishCurrentBlock(instr);
4304 owner()->Goto(empty_true, if_true(), owner()->function_state());
4305 owner()->Goto(empty_false, if_false(), owner()->function_state());
4306 owner()->set_current_block(NULL);
4310 void TestContext::ReturnContinuation(HIfContinuation* continuation,
4312 HBasicBlock* true_branch = NULL;
4313 HBasicBlock* false_branch = NULL;
4314 continuation->Continue(&true_branch, &false_branch);
4315 if (continuation->IsTrueReachable()) {
4316 owner()->Goto(true_branch, if_true(), owner()->function_state());
4318 if (continuation->IsFalseReachable()) {
4319 owner()->Goto(false_branch, if_false(), owner()->function_state());
4321 owner()->set_current_block(NULL);
4325 void TestContext::BuildBranch(HValue* value) {
4326 // We expect the graph to be in edge-split form: there is no edge that
4327 // connects a branch node to a join node. We conservatively ensure that
4328 // property by always adding an empty block on the outgoing edges of this
4330 HOptimizedGraphBuilder* builder = owner();
4331 if (value != NULL && value->CheckFlag(HValue::kIsArguments)) {
4332 builder->Bailout(kArgumentsObjectValueInATestContext);
4334 ToBooleanStub::Types expected(condition()->to_boolean_types());
4335 ReturnControl(owner()->New<HBranch>(value, expected), BailoutId::None());
4339 // HOptimizedGraphBuilder infrastructure for bailing out and checking bailouts.
4340 #define CHECK_BAILOUT(call) \
4343 if (HasStackOverflow()) return; \
4347 #define CHECK_ALIVE(call) \
4350 if (HasStackOverflow() || current_block() == NULL) return; \
4354 #define CHECK_ALIVE_OR_RETURN(call, value) \
4357 if (HasStackOverflow() || current_block() == NULL) return value; \
4361 void HOptimizedGraphBuilder::Bailout(BailoutReason reason) {
4362 current_info()->AbortOptimization(reason);
4367 void HOptimizedGraphBuilder::VisitForEffect(Expression* expr) {
4368 EffectContext for_effect(this);
4373 void HOptimizedGraphBuilder::VisitForValue(Expression* expr,
4374 ArgumentsAllowedFlag flag) {
4375 ValueContext for_value(this, flag);
4380 void HOptimizedGraphBuilder::VisitForTypeOf(Expression* expr) {
4381 ValueContext for_value(this, ARGUMENTS_NOT_ALLOWED);
4382 for_value.set_typeof_mode(INSIDE_TYPEOF);
4387 void HOptimizedGraphBuilder::VisitForControl(Expression* expr,
4388 HBasicBlock* true_block,
4389 HBasicBlock* false_block) {
4390 TestContext for_test(this, expr, true_block, false_block);
4395 void HOptimizedGraphBuilder::VisitExpressions(
4396 ZoneList<Expression*>* exprs) {
4397 for (int i = 0; i < exprs->length(); ++i) {
4398 CHECK_ALIVE(VisitForValue(exprs->at(i)));
4403 void HOptimizedGraphBuilder::VisitExpressions(ZoneList<Expression*>* exprs,
4404 ArgumentsAllowedFlag flag) {
4405 for (int i = 0; i < exprs->length(); ++i) {
4406 CHECK_ALIVE(VisitForValue(exprs->at(i), flag));
4411 bool HOptimizedGraphBuilder::BuildGraph() {
4412 if (IsSubclassConstructor(current_info()->literal()->kind())) {
4413 Bailout(kSuperReference);
4417 int slots = current_info()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
4418 if (current_info()->scope()->is_script_scope() && slots > 0) {
4419 Bailout(kScriptContext);
4423 Scope* scope = current_info()->scope();
4426 // Add an edge to the body entry. This is warty: the graph's start
4427 // environment will be used by the Lithium translation as the initial
4428 // environment on graph entry, but it has now been mutated by the
4429 // Hydrogen translation of the instructions in the start block. This
4430 // environment uses values which have not been defined yet. These
4431 // Hydrogen instructions will then be replayed by the Lithium
4432 // translation, so they cannot have an environment effect. The edge to
4433 // the body's entry block (along with some special logic for the start
4434 // block in HInstruction::InsertAfter) seals the start block from
4435 // getting unwanted instructions inserted.
4437 // TODO(kmillikin): Fix this. Stop mutating the initial environment.
4438 // Make the Hydrogen instructions in the initial block into Hydrogen
4439 // values (but not instructions), present in the initial environment and
4440 // not replayed by the Lithium translation.
4441 HEnvironment* initial_env = environment()->CopyWithoutHistory();
4442 HBasicBlock* body_entry = CreateBasicBlock(initial_env);
4444 body_entry->SetJoinId(BailoutId::FunctionEntry());
4445 set_current_block(body_entry);
4447 VisitDeclarations(scope->declarations());
4448 Add<HSimulate>(BailoutId::Declarations());
4450 Add<HStackCheck>(HStackCheck::kFunctionEntry);
4452 VisitStatements(current_info()->literal()->body());
4453 if (HasStackOverflow()) return false;
4455 if (current_block() != NULL) {
4456 Add<HReturn>(graph()->GetConstantUndefined());
4457 set_current_block(NULL);
4460 // If the checksum of the number of type info changes is the same as the
4461 // last time this function was compiled, then this recompile is likely not
4462 // due to missing/inadequate type feedback, but rather too aggressive
4463 // optimization. Disable optimistic LICM in that case.
4464 Handle<Code> unoptimized_code(current_info()->shared_info()->code());
4465 DCHECK(unoptimized_code->kind() == Code::FUNCTION);
4466 Handle<TypeFeedbackInfo> type_info(
4467 TypeFeedbackInfo::cast(unoptimized_code->type_feedback_info()));
4468 int checksum = type_info->own_type_change_checksum();
4469 int composite_checksum = graph()->update_type_change_checksum(checksum);
4470 graph()->set_use_optimistic_licm(
4471 !type_info->matches_inlined_type_change_checksum(composite_checksum));
4472 type_info->set_inlined_type_change_checksum(composite_checksum);
4474 // Perform any necessary OSR-specific cleanups or changes to the graph.
4475 osr()->FinishGraph();
4481 bool HGraph::Optimize(BailoutReason* bailout_reason) {
4485 // We need to create a HConstant "zero" now so that GVN will fold every
4486 // zero-valued constant in the graph together.
4487 // The constant is needed to make idef-based bounds check work: the pass
4488 // evaluates relations with "zero" and that zero cannot be created after GVN.
4492 // Do a full verify after building the graph and computing dominators.
4496 if (FLAG_analyze_environment_liveness && maximum_environment_size() != 0) {
4497 Run<HEnvironmentLivenessAnalysisPhase>();
4500 if (!CheckConstPhiUses()) {
4501 *bailout_reason = kUnsupportedPhiUseOfConstVariable;
4504 Run<HRedundantPhiEliminationPhase>();
4505 if (!CheckArgumentsPhiUses()) {
4506 *bailout_reason = kUnsupportedPhiUseOfArguments;
4510 // Find and mark unreachable code to simplify optimizations, especially gvn,
4511 // where unreachable code could unnecessarily defeat LICM.
4512 Run<HMarkUnreachableBlocksPhase>();
4514 if (FLAG_dead_code_elimination) Run<HDeadCodeEliminationPhase>();
4515 if (FLAG_use_escape_analysis) Run<HEscapeAnalysisPhase>();
4517 if (FLAG_load_elimination) Run<HLoadEliminationPhase>();
4521 if (has_osr()) osr()->FinishOsrValues();
4523 Run<HInferRepresentationPhase>();
4525 // Remove HSimulate instructions that have turned out not to be needed
4526 // after all by folding them into the following HSimulate.
4527 // This must happen after inferring representations.
4528 Run<HMergeRemovableSimulatesPhase>();
4530 Run<HMarkDeoptimizeOnUndefinedPhase>();
4531 Run<HRepresentationChangesPhase>();
4533 Run<HInferTypesPhase>();
4535 // Must be performed before canonicalization to ensure that Canonicalize
4536 // will not remove semantically meaningful ToInt32 operations e.g. BIT_OR with
4538 Run<HUint32AnalysisPhase>();
4540 if (FLAG_use_canonicalizing) Run<HCanonicalizePhase>();
4542 if (FLAG_use_gvn) Run<HGlobalValueNumberingPhase>();
4544 if (FLAG_check_elimination) Run<HCheckEliminationPhase>();
4546 if (FLAG_store_elimination) Run<HStoreEliminationPhase>();
4548 Run<HRangeAnalysisPhase>();
4550 Run<HComputeChangeUndefinedToNaN>();
4552 // Eliminate redundant stack checks on backwards branches.
4553 Run<HStackCheckEliminationPhase>();
4555 if (FLAG_array_bounds_checks_elimination) Run<HBoundsCheckEliminationPhase>();
4556 if (FLAG_array_bounds_checks_hoisting) Run<HBoundsCheckHoistingPhase>();
4557 if (FLAG_array_index_dehoisting) Run<HDehoistIndexComputationsPhase>();
4558 if (FLAG_dead_code_elimination) Run<HDeadCodeEliminationPhase>();
4560 RestoreActualValues();
4562 // Find unreachable code a second time, GVN and other optimizations may have
4563 // made blocks unreachable that were previously reachable.
4564 Run<HMarkUnreachableBlocksPhase>();
4570 void HGraph::RestoreActualValues() {
4571 HPhase phase("H_Restore actual values", this);
4573 for (int block_index = 0; block_index < blocks()->length(); block_index++) {
4574 HBasicBlock* block = blocks()->at(block_index);
4577 for (int i = 0; i < block->phis()->length(); i++) {
4578 HPhi* phi = block->phis()->at(i);
4579 DCHECK(phi->ActualValue() == phi);
4583 for (HInstructionIterator it(block); !it.Done(); it.Advance()) {
4584 HInstruction* instruction = it.Current();
4585 if (instruction->ActualValue() == instruction) continue;
4586 if (instruction->CheckFlag(HValue::kIsDead)) {
4587 // The instruction was marked as deleted but left in the graph
4588 // as a control flow dependency point for subsequent
4590 instruction->DeleteAndReplaceWith(instruction->ActualValue());
4592 DCHECK(instruction->IsInformativeDefinition());
4593 if (instruction->IsPurelyInformativeDefinition()) {
4594 instruction->DeleteAndReplaceWith(instruction->RedefinedOperand());
4596 instruction->ReplaceAllUsesWith(instruction->ActualValue());
4604 void HOptimizedGraphBuilder::PushArgumentsFromEnvironment(int count) {
4605 ZoneList<HValue*> arguments(count, zone());
4606 for (int i = 0; i < count; ++i) {
4607 arguments.Add(Pop(), zone());
4610 HPushArguments* push_args = New<HPushArguments>();
4611 while (!arguments.is_empty()) {
4612 push_args->AddInput(arguments.RemoveLast());
4614 AddInstruction(push_args);
4618 template <class Instruction>
4619 HInstruction* HOptimizedGraphBuilder::PreProcessCall(Instruction* call) {
4620 PushArgumentsFromEnvironment(call->argument_count());
4625 void HOptimizedGraphBuilder::SetUpScope(Scope* scope) {
4626 // First special is HContext.
4627 HInstruction* context = Add<HContext>();
4628 environment()->BindContext(context);
4630 // Create an arguments object containing the initial parameters. Set the
4631 // initial values of parameters including "this" having parameter index 0.
4632 DCHECK_EQ(scope->num_parameters() + 1, environment()->parameter_count());
4633 HArgumentsObject* arguments_object =
4634 New<HArgumentsObject>(environment()->parameter_count());
4635 for (int i = 0; i < environment()->parameter_count(); ++i) {
4636 HInstruction* parameter = Add<HParameter>(i);
4637 arguments_object->AddArgument(parameter, zone());
4638 environment()->Bind(i, parameter);
4640 AddInstruction(arguments_object);
4641 graph()->SetArgumentsObject(arguments_object);
4643 HConstant* undefined_constant = graph()->GetConstantUndefined();
4644 // Initialize specials and locals to undefined.
4645 for (int i = environment()->parameter_count() + 1;
4646 i < environment()->length();
4648 environment()->Bind(i, undefined_constant);
4651 // Handle the arguments and arguments shadow variables specially (they do
4652 // not have declarations).
4653 if (scope->arguments() != NULL) {
4654 environment()->Bind(scope->arguments(),
4655 graph()->GetArgumentsObject());
4659 Variable* rest = scope->rest_parameter(&rest_index);
4661 return Bailout(kRestParameter);
4664 if (scope->this_function_var() != nullptr ||
4665 scope->new_target_var() != nullptr) {
4666 return Bailout(kSuperReference);
4671 void HOptimizedGraphBuilder::VisitStatements(ZoneList<Statement*>* statements) {
4672 for (int i = 0; i < statements->length(); i++) {
4673 Statement* stmt = statements->at(i);
4674 CHECK_ALIVE(Visit(stmt));
4675 if (stmt->IsJump()) break;
4680 void HOptimizedGraphBuilder::VisitBlock(Block* stmt) {
4681 DCHECK(!HasStackOverflow());
4682 DCHECK(current_block() != NULL);
4683 DCHECK(current_block()->HasPredecessor());
4685 Scope* outer_scope = scope();
4686 Scope* scope = stmt->scope();
4687 BreakAndContinueInfo break_info(stmt, outer_scope);
4689 { BreakAndContinueScope push(&break_info, this);
4690 if (scope != NULL) {
4691 if (scope->NeedsContext()) {
4692 // Load the function object.
4693 Scope* declaration_scope = scope->DeclarationScope();
4694 HInstruction* function;
4695 HValue* outer_context = environment()->context();
4696 if (declaration_scope->is_script_scope() ||
4697 declaration_scope->is_eval_scope()) {
4698 function = new (zone())
4699 HLoadContextSlot(outer_context, Context::CLOSURE_INDEX,
4700 HLoadContextSlot::kNoCheck);
4702 function = New<HThisFunction>();
4704 AddInstruction(function);
4705 // Allocate a block context and store it to the stack frame.
4706 HInstruction* inner_context = Add<HAllocateBlockContext>(
4707 outer_context, function, scope->GetScopeInfo(isolate()));
4708 HInstruction* instr = Add<HStoreFrameContext>(inner_context);
4710 environment()->BindContext(inner_context);
4711 if (instr->HasObservableSideEffects()) {
4712 AddSimulate(stmt->EntryId(), REMOVABLE_SIMULATE);
4715 VisitDeclarations(scope->declarations());
4716 AddSimulate(stmt->DeclsId(), REMOVABLE_SIMULATE);
4718 CHECK_BAILOUT(VisitStatements(stmt->statements()));
4720 set_scope(outer_scope);
4721 if (scope != NULL && current_block() != NULL &&
4722 scope->ContextLocalCount() > 0) {
4723 HValue* inner_context = environment()->context();
4724 HValue* outer_context = Add<HLoadNamedField>(
4725 inner_context, nullptr,
4726 HObjectAccess::ForContextSlot(Context::PREVIOUS_INDEX));
4728 HInstruction* instr = Add<HStoreFrameContext>(outer_context);
4729 environment()->BindContext(outer_context);
4730 if (instr->HasObservableSideEffects()) {
4731 AddSimulate(stmt->ExitId(), REMOVABLE_SIMULATE);
4734 HBasicBlock* break_block = break_info.break_block();
4735 if (break_block != NULL) {
4736 if (current_block() != NULL) Goto(break_block);
4737 break_block->SetJoinId(stmt->ExitId());
4738 set_current_block(break_block);
4743 void HOptimizedGraphBuilder::VisitExpressionStatement(
4744 ExpressionStatement* stmt) {
4745 DCHECK(!HasStackOverflow());
4746 DCHECK(current_block() != NULL);
4747 DCHECK(current_block()->HasPredecessor());
4748 VisitForEffect(stmt->expression());
4752 void HOptimizedGraphBuilder::VisitEmptyStatement(EmptyStatement* stmt) {
4753 DCHECK(!HasStackOverflow());
4754 DCHECK(current_block() != NULL);
4755 DCHECK(current_block()->HasPredecessor());
4759 void HOptimizedGraphBuilder::VisitIfStatement(IfStatement* stmt) {
4760 DCHECK(!HasStackOverflow());
4761 DCHECK(current_block() != NULL);
4762 DCHECK(current_block()->HasPredecessor());
4763 if (stmt->condition()->ToBooleanIsTrue()) {
4764 Add<HSimulate>(stmt->ThenId());
4765 Visit(stmt->then_statement());
4766 } else if (stmt->condition()->ToBooleanIsFalse()) {
4767 Add<HSimulate>(stmt->ElseId());
4768 Visit(stmt->else_statement());
4770 HBasicBlock* cond_true = graph()->CreateBasicBlock();
4771 HBasicBlock* cond_false = graph()->CreateBasicBlock();
4772 CHECK_BAILOUT(VisitForControl(stmt->condition(), cond_true, cond_false));
4774 if (cond_true->HasPredecessor()) {
4775 cond_true->SetJoinId(stmt->ThenId());
4776 set_current_block(cond_true);
4777 CHECK_BAILOUT(Visit(stmt->then_statement()));
4778 cond_true = current_block();
4783 if (cond_false->HasPredecessor()) {
4784 cond_false->SetJoinId(stmt->ElseId());
4785 set_current_block(cond_false);
4786 CHECK_BAILOUT(Visit(stmt->else_statement()));
4787 cond_false = current_block();
4792 HBasicBlock* join = CreateJoin(cond_true, cond_false, stmt->IfId());
4793 set_current_block(join);
4798 HBasicBlock* HOptimizedGraphBuilder::BreakAndContinueScope::Get(
4799 BreakableStatement* stmt,
4804 BreakAndContinueScope* current = this;
4805 while (current != NULL && current->info()->target() != stmt) {
4806 *drop_extra += current->info()->drop_extra();
4807 current = current->next();
4809 DCHECK(current != NULL); // Always found (unless stack is malformed).
4810 *scope = current->info()->scope();
4812 if (type == BREAK) {
4813 *drop_extra += current->info()->drop_extra();
4816 HBasicBlock* block = NULL;
4819 block = current->info()->break_block();
4820 if (block == NULL) {
4821 block = current->owner()->graph()->CreateBasicBlock();
4822 current->info()->set_break_block(block);
4827 block = current->info()->continue_block();
4828 if (block == NULL) {
4829 block = current->owner()->graph()->CreateBasicBlock();
4830 current->info()->set_continue_block(block);
4839 void HOptimizedGraphBuilder::VisitContinueStatement(
4840 ContinueStatement* stmt) {
4841 DCHECK(!HasStackOverflow());
4842 DCHECK(current_block() != NULL);
4843 DCHECK(current_block()->HasPredecessor());
4844 Scope* outer_scope = NULL;
4845 Scope* inner_scope = scope();
4847 HBasicBlock* continue_block = break_scope()->Get(
4848 stmt->target(), BreakAndContinueScope::CONTINUE,
4849 &outer_scope, &drop_extra);
4850 HValue* context = environment()->context();
4852 int context_pop_count = inner_scope->ContextChainLength(outer_scope);
4853 if (context_pop_count > 0) {
4854 while (context_pop_count-- > 0) {
4855 HInstruction* context_instruction = Add<HLoadNamedField>(
4857 HObjectAccess::ForContextSlot(Context::PREVIOUS_INDEX));
4858 context = context_instruction;
4860 HInstruction* instr = Add<HStoreFrameContext>(context);
4861 if (instr->HasObservableSideEffects()) {
4862 AddSimulate(stmt->target()->EntryId(), REMOVABLE_SIMULATE);
4864 environment()->BindContext(context);
4867 Goto(continue_block);
4868 set_current_block(NULL);
4872 void HOptimizedGraphBuilder::VisitBreakStatement(BreakStatement* stmt) {
4873 DCHECK(!HasStackOverflow());
4874 DCHECK(current_block() != NULL);
4875 DCHECK(current_block()->HasPredecessor());
4876 Scope* outer_scope = NULL;
4877 Scope* inner_scope = scope();
4879 HBasicBlock* break_block = break_scope()->Get(
4880 stmt->target(), BreakAndContinueScope::BREAK,
4881 &outer_scope, &drop_extra);
4882 HValue* context = environment()->context();
4884 int context_pop_count = inner_scope->ContextChainLength(outer_scope);
4885 if (context_pop_count > 0) {
4886 while (context_pop_count-- > 0) {
4887 HInstruction* context_instruction = Add<HLoadNamedField>(
4889 HObjectAccess::ForContextSlot(Context::PREVIOUS_INDEX));
4890 context = context_instruction;
4892 HInstruction* instr = Add<HStoreFrameContext>(context);
4893 if (instr->HasObservableSideEffects()) {
4894 AddSimulate(stmt->target()->ExitId(), REMOVABLE_SIMULATE);
4896 environment()->BindContext(context);
4899 set_current_block(NULL);
4903 void HOptimizedGraphBuilder::VisitReturnStatement(ReturnStatement* stmt) {
4904 DCHECK(!HasStackOverflow());
4905 DCHECK(current_block() != NULL);
4906 DCHECK(current_block()->HasPredecessor());
4907 FunctionState* state = function_state();
4908 AstContext* context = call_context();
4909 if (context == NULL) {
4910 // Not an inlined return, so an actual one.
4911 CHECK_ALIVE(VisitForValue(stmt->expression()));
4912 HValue* result = environment()->Pop();
4913 Add<HReturn>(result);
4914 } else if (state->inlining_kind() == CONSTRUCT_CALL_RETURN) {
4915 // Return from an inlined construct call. In a test context the return value
4916 // will always evaluate to true, in a value context the return value needs
4917 // to be a JSObject.
4918 if (context->IsTest()) {
4919 TestContext* test = TestContext::cast(context);
4920 CHECK_ALIVE(VisitForEffect(stmt->expression()));
4921 Goto(test->if_true(), state);
4922 } else if (context->IsEffect()) {
4923 CHECK_ALIVE(VisitForEffect(stmt->expression()));
4924 Goto(function_return(), state);
4926 DCHECK(context->IsValue());
4927 CHECK_ALIVE(VisitForValue(stmt->expression()));
4928 HValue* return_value = Pop();
4929 HValue* receiver = environment()->arguments_environment()->Lookup(0);
4930 HHasInstanceTypeAndBranch* typecheck =
4931 New<HHasInstanceTypeAndBranch>(return_value,
4932 FIRST_SPEC_OBJECT_TYPE,
4933 LAST_SPEC_OBJECT_TYPE);
4934 HBasicBlock* if_spec_object = graph()->CreateBasicBlock();
4935 HBasicBlock* not_spec_object = graph()->CreateBasicBlock();
4936 typecheck->SetSuccessorAt(0, if_spec_object);
4937 typecheck->SetSuccessorAt(1, not_spec_object);
4938 FinishCurrentBlock(typecheck);
4939 AddLeaveInlined(if_spec_object, return_value, state);
4940 AddLeaveInlined(not_spec_object, receiver, state);
4942 } else if (state->inlining_kind() == SETTER_CALL_RETURN) {
4943 // Return from an inlined setter call. The returned value is never used, the
4944 // value of an assignment is always the value of the RHS of the assignment.
4945 CHECK_ALIVE(VisitForEffect(stmt->expression()));
4946 if (context->IsTest()) {
4947 HValue* rhs = environment()->arguments_environment()->Lookup(1);
4948 context->ReturnValue(rhs);
4949 } else if (context->IsEffect()) {
4950 Goto(function_return(), state);
4952 DCHECK(context->IsValue());
4953 HValue* rhs = environment()->arguments_environment()->Lookup(1);
4954 AddLeaveInlined(rhs, state);
4957 // Return from a normal inlined function. Visit the subexpression in the
4958 // expression context of the call.
4959 if (context->IsTest()) {
4960 TestContext* test = TestContext::cast(context);
4961 VisitForControl(stmt->expression(), test->if_true(), test->if_false());
4962 } else if (context->IsEffect()) {
4963 // Visit in value context and ignore the result. This is needed to keep
4964 // environment in sync with full-codegen since some visitors (e.g.
4965 // VisitCountOperation) use the operand stack differently depending on
4967 CHECK_ALIVE(VisitForValue(stmt->expression()));
4969 Goto(function_return(), state);
4971 DCHECK(context->IsValue());
4972 CHECK_ALIVE(VisitForValue(stmt->expression()));
4973 AddLeaveInlined(Pop(), state);
4976 set_current_block(NULL);
4980 void HOptimizedGraphBuilder::VisitWithStatement(WithStatement* stmt) {
4981 DCHECK(!HasStackOverflow());
4982 DCHECK(current_block() != NULL);
4983 DCHECK(current_block()->HasPredecessor());
4984 return Bailout(kWithStatement);
4988 void HOptimizedGraphBuilder::VisitSwitchStatement(SwitchStatement* stmt) {
4989 DCHECK(!HasStackOverflow());
4990 DCHECK(current_block() != NULL);
4991 DCHECK(current_block()->HasPredecessor());
4993 ZoneList<CaseClause*>* clauses = stmt->cases();
4994 int clause_count = clauses->length();
4995 ZoneList<HBasicBlock*> body_blocks(clause_count, zone());
4997 CHECK_ALIVE(VisitForValue(stmt->tag()));
4998 Add<HSimulate>(stmt->EntryId());
4999 HValue* tag_value = Top();
5000 Type* tag_type = stmt->tag()->bounds().lower;
5002 // 1. Build all the tests, with dangling true branches
5003 BailoutId default_id = BailoutId::None();
5004 for (int i = 0; i < clause_count; ++i) {
5005 CaseClause* clause = clauses->at(i);
5006 if (clause->is_default()) {
5007 body_blocks.Add(NULL, zone());
5008 if (default_id.IsNone()) default_id = clause->EntryId();
5012 // Generate a compare and branch.
5013 CHECK_ALIVE(VisitForValue(clause->label()));
5014 HValue* label_value = Pop();
5016 Type* label_type = clause->label()->bounds().lower;
5017 Type* combined_type = clause->compare_type();
5018 HControlInstruction* compare = BuildCompareInstruction(
5019 Token::EQ_STRICT, tag_value, label_value, tag_type, label_type,
5021 ScriptPositionToSourcePosition(stmt->tag()->position()),
5022 ScriptPositionToSourcePosition(clause->label()->position()),
5023 PUSH_BEFORE_SIMULATE, clause->id());
5025 HBasicBlock* next_test_block = graph()->CreateBasicBlock();
5026 HBasicBlock* body_block = graph()->CreateBasicBlock();
5027 body_blocks.Add(body_block, zone());
5028 compare->SetSuccessorAt(0, body_block);
5029 compare->SetSuccessorAt(1, next_test_block);
5030 FinishCurrentBlock(compare);
5032 set_current_block(body_block);
5033 Drop(1); // tag_value
5035 set_current_block(next_test_block);
5038 // Save the current block to use for the default or to join with the
5040 HBasicBlock* last_block = current_block();
5041 Drop(1); // tag_value
5043 // 2. Loop over the clauses and the linked list of tests in lockstep,
5044 // translating the clause bodies.
5045 HBasicBlock* fall_through_block = NULL;
5047 BreakAndContinueInfo break_info(stmt, scope());
5048 { BreakAndContinueScope push(&break_info, this);
5049 for (int i = 0; i < clause_count; ++i) {
5050 CaseClause* clause = clauses->at(i);
5052 // Identify the block where normal (non-fall-through) control flow
5054 HBasicBlock* normal_block = NULL;
5055 if (clause->is_default()) {
5056 if (last_block == NULL) continue;
5057 normal_block = last_block;
5058 last_block = NULL; // Cleared to indicate we've handled it.
5060 normal_block = body_blocks[i];
5063 if (fall_through_block == NULL) {
5064 set_current_block(normal_block);
5066 HBasicBlock* join = CreateJoin(fall_through_block,
5069 set_current_block(join);
5072 CHECK_BAILOUT(VisitStatements(clause->statements()));
5073 fall_through_block = current_block();
5077 // Create an up-to-3-way join. Use the break block if it exists since
5078 // it's already a join block.
5079 HBasicBlock* break_block = break_info.break_block();
5080 if (break_block == NULL) {
5081 set_current_block(CreateJoin(fall_through_block,
5085 if (fall_through_block != NULL) Goto(fall_through_block, break_block);
5086 if (last_block != NULL) Goto(last_block, break_block);
5087 break_block->SetJoinId(stmt->ExitId());
5088 set_current_block(break_block);
5093 void HOptimizedGraphBuilder::VisitLoopBody(IterationStatement* stmt,
5094 HBasicBlock* loop_entry) {
5095 Add<HSimulate>(stmt->StackCheckId());
5096 HStackCheck* stack_check =
5097 HStackCheck::cast(Add<HStackCheck>(HStackCheck::kBackwardsBranch));
5098 DCHECK(loop_entry->IsLoopHeader());
5099 loop_entry->loop_information()->set_stack_check(stack_check);
5100 CHECK_BAILOUT(Visit(stmt->body()));
5104 void HOptimizedGraphBuilder::VisitDoWhileStatement(DoWhileStatement* stmt) {
5105 DCHECK(!HasStackOverflow());
5106 DCHECK(current_block() != NULL);
5107 DCHECK(current_block()->HasPredecessor());
5108 DCHECK(current_block() != NULL);
5109 HBasicBlock* loop_entry = BuildLoopEntry(stmt);
5111 BreakAndContinueInfo break_info(stmt, scope());
5113 BreakAndContinueScope push(&break_info, this);
5114 CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry));
5116 HBasicBlock* body_exit =
5117 JoinContinue(stmt, current_block(), break_info.continue_block());
5118 HBasicBlock* loop_successor = NULL;
5119 if (body_exit != NULL && !stmt->cond()->ToBooleanIsTrue()) {
5120 set_current_block(body_exit);
5121 loop_successor = graph()->CreateBasicBlock();
5122 if (stmt->cond()->ToBooleanIsFalse()) {
5123 loop_entry->loop_information()->stack_check()->Eliminate();
5124 Goto(loop_successor);
5127 // The block for a true condition, the actual predecessor block of the
5129 body_exit = graph()->CreateBasicBlock();
5130 CHECK_BAILOUT(VisitForControl(stmt->cond(), body_exit, loop_successor));
5132 if (body_exit != NULL && body_exit->HasPredecessor()) {
5133 body_exit->SetJoinId(stmt->BackEdgeId());
5137 if (loop_successor->HasPredecessor()) {
5138 loop_successor->SetJoinId(stmt->ExitId());
5140 loop_successor = NULL;
5143 HBasicBlock* loop_exit = CreateLoop(stmt,
5147 break_info.break_block());
5148 set_current_block(loop_exit);
5152 void HOptimizedGraphBuilder::VisitWhileStatement(WhileStatement* stmt) {
5153 DCHECK(!HasStackOverflow());
5154 DCHECK(current_block() != NULL);
5155 DCHECK(current_block()->HasPredecessor());
5156 DCHECK(current_block() != NULL);
5157 HBasicBlock* loop_entry = BuildLoopEntry(stmt);
5159 // If the condition is constant true, do not generate a branch.
5160 HBasicBlock* loop_successor = NULL;
5161 if (!stmt->cond()->ToBooleanIsTrue()) {
5162 HBasicBlock* body_entry = graph()->CreateBasicBlock();
5163 loop_successor = graph()->CreateBasicBlock();
5164 CHECK_BAILOUT(VisitForControl(stmt->cond(), body_entry, loop_successor));
5165 if (body_entry->HasPredecessor()) {
5166 body_entry->SetJoinId(stmt->BodyId());
5167 set_current_block(body_entry);
5169 if (loop_successor->HasPredecessor()) {
5170 loop_successor->SetJoinId(stmt->ExitId());
5172 loop_successor = NULL;
5176 BreakAndContinueInfo break_info(stmt, scope());
5177 if (current_block() != NULL) {
5178 BreakAndContinueScope push(&break_info, this);
5179 CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry));
5181 HBasicBlock* body_exit =
5182 JoinContinue(stmt, current_block(), break_info.continue_block());
5183 HBasicBlock* loop_exit = CreateLoop(stmt,
5187 break_info.break_block());
5188 set_current_block(loop_exit);
5192 void HOptimizedGraphBuilder::VisitForStatement(ForStatement* stmt) {
5193 DCHECK(!HasStackOverflow());
5194 DCHECK(current_block() != NULL);
5195 DCHECK(current_block()->HasPredecessor());
5196 if (stmt->init() != NULL) {
5197 CHECK_ALIVE(Visit(stmt->init()));
5199 DCHECK(current_block() != NULL);
5200 HBasicBlock* loop_entry = BuildLoopEntry(stmt);
5202 HBasicBlock* loop_successor = NULL;
5203 if (stmt->cond() != NULL) {
5204 HBasicBlock* body_entry = graph()->CreateBasicBlock();
5205 loop_successor = graph()->CreateBasicBlock();
5206 CHECK_BAILOUT(VisitForControl(stmt->cond(), body_entry, loop_successor));
5207 if (body_entry->HasPredecessor()) {
5208 body_entry->SetJoinId(stmt->BodyId());
5209 set_current_block(body_entry);
5211 if (loop_successor->HasPredecessor()) {
5212 loop_successor->SetJoinId(stmt->ExitId());
5214 loop_successor = NULL;
5218 BreakAndContinueInfo break_info(stmt, scope());
5219 if (current_block() != NULL) {
5220 BreakAndContinueScope push(&break_info, this);
5221 CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry));
5223 HBasicBlock* body_exit =
5224 JoinContinue(stmt, current_block(), break_info.continue_block());
5226 if (stmt->next() != NULL && body_exit != NULL) {
5227 set_current_block(body_exit);
5228 CHECK_BAILOUT(Visit(stmt->next()));
5229 body_exit = current_block();
5232 HBasicBlock* loop_exit = CreateLoop(stmt,
5236 break_info.break_block());
5237 set_current_block(loop_exit);
5241 void HOptimizedGraphBuilder::VisitForInStatement(ForInStatement* stmt) {
5242 DCHECK(!HasStackOverflow());
5243 DCHECK(current_block() != NULL);
5244 DCHECK(current_block()->HasPredecessor());
5246 if (!FLAG_optimize_for_in) {
5247 return Bailout(kForInStatementOptimizationIsDisabled);
5250 if (!stmt->each()->IsVariableProxy() ||
5251 !stmt->each()->AsVariableProxy()->var()->IsStackLocal()) {
5252 return Bailout(kForInStatementWithNonLocalEachVariable);
5255 Variable* each_var = stmt->each()->AsVariableProxy()->var();
5257 CHECK_ALIVE(VisitForValue(stmt->enumerable()));
5258 HValue* enumerable = Top(); // Leave enumerable at the top.
5260 IfBuilder if_undefined_or_null(this);
5261 if_undefined_or_null.If<HCompareObjectEqAndBranch>(
5262 enumerable, graph()->GetConstantUndefined());
5263 if_undefined_or_null.Or();
5264 if_undefined_or_null.If<HCompareObjectEqAndBranch>(
5265 enumerable, graph()->GetConstantNull());
5266 if_undefined_or_null.ThenDeopt(Deoptimizer::kUndefinedOrNullInForIn);
5267 if_undefined_or_null.End();
5268 BuildForInBody(stmt, each_var, enumerable);
5272 void HOptimizedGraphBuilder::BuildForInBody(ForInStatement* stmt,
5274 HValue* enumerable) {
5276 HInstruction* array;
5277 HInstruction* enum_length;
5278 bool fast = stmt->for_in_type() == ForInStatement::FAST_FOR_IN;
5280 map = Add<HForInPrepareMap>(enumerable);
5281 Add<HSimulate>(stmt->PrepareId());
5283 array = Add<HForInCacheArray>(enumerable, map,
5284 DescriptorArray::kEnumCacheBridgeCacheIndex);
5285 enum_length = Add<HMapEnumLength>(map);
5287 HInstruction* index_cache = Add<HForInCacheArray>(
5288 enumerable, map, DescriptorArray::kEnumCacheBridgeIndicesCacheIndex);
5289 HForInCacheArray::cast(array)
5290 ->set_index_cache(HForInCacheArray::cast(index_cache));
5292 Add<HSimulate>(stmt->PrepareId());
5294 NoObservableSideEffectsScope no_effects(this);
5295 BuildJSObjectCheck(enumerable, 0);
5297 Add<HSimulate>(stmt->ToObjectId());
5299 map = graph()->GetConstant1();
5300 Runtime::FunctionId function_id = Runtime::kGetPropertyNamesFast;
5301 Add<HPushArguments>(enumerable);
5302 array = Add<HCallRuntime>(isolate()->factory()->empty_string(),
5303 Runtime::FunctionForId(function_id), 1);
5305 Add<HSimulate>(stmt->EnumId());
5307 Handle<Map> array_map = isolate()->factory()->fixed_array_map();
5308 HValue* check = Add<HCheckMaps>(array, array_map);
5309 enum_length = AddLoadFixedArrayLength(array, check);
5312 HInstruction* start_index = Add<HConstant>(0);
5319 HBasicBlock* loop_entry = BuildLoopEntry(stmt);
5321 // Reload the values to ensure we have up-to-date values inside of the loop.
5322 // This is relevant especially for OSR where the values don't come from the
5323 // computation above, but from the OSR entry block.
5324 enumerable = environment()->ExpressionStackAt(4);
5325 HValue* index = environment()->ExpressionStackAt(0);
5326 HValue* limit = environment()->ExpressionStackAt(1);
5328 // Check that we still have more keys.
5329 HCompareNumericAndBranch* compare_index =
5330 New<HCompareNumericAndBranch>(index, limit, Token::LT);
5331 compare_index->set_observed_input_representation(
5332 Representation::Smi(), Representation::Smi());
5334 HBasicBlock* loop_body = graph()->CreateBasicBlock();
5335 HBasicBlock* loop_successor = graph()->CreateBasicBlock();
5337 compare_index->SetSuccessorAt(0, loop_body);
5338 compare_index->SetSuccessorAt(1, loop_successor);
5339 FinishCurrentBlock(compare_index);
5341 set_current_block(loop_successor);
5344 set_current_block(loop_body);
5347 Add<HLoadKeyed>(environment()->ExpressionStackAt(2), // Enum cache.
5348 index, index, FAST_ELEMENTS);
5351 // Check if the expected map still matches that of the enumerable.
5352 // If not just deoptimize.
5353 Add<HCheckMapValue>(enumerable, environment()->ExpressionStackAt(3));
5354 Bind(each_var, key);
5356 Add<HPushArguments>(enumerable, key);
5357 Runtime::FunctionId function_id = Runtime::kForInFilter;
5358 key = Add<HCallRuntime>(isolate()->factory()->empty_string(),
5359 Runtime::FunctionForId(function_id), 2);
5361 Add<HSimulate>(stmt->FilterId());
5363 Bind(each_var, key);
5364 IfBuilder if_undefined(this);
5365 if_undefined.If<HCompareObjectEqAndBranch>(key,
5366 graph()->GetConstantUndefined());
5367 if_undefined.ThenDeopt(Deoptimizer::kUndefined);
5369 Add<HSimulate>(stmt->AssignmentId());
5372 BreakAndContinueInfo break_info(stmt, scope(), 5);
5374 BreakAndContinueScope push(&break_info, this);
5375 CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry));
5378 HBasicBlock* body_exit =
5379 JoinContinue(stmt, current_block(), break_info.continue_block());
5381 if (body_exit != NULL) {
5382 set_current_block(body_exit);
5384 HValue* current_index = Pop();
5385 Push(AddUncasted<HAdd>(current_index, graph()->GetConstant1()));
5386 body_exit = current_block();
5389 HBasicBlock* loop_exit = CreateLoop(stmt,
5393 break_info.break_block());
5395 set_current_block(loop_exit);
5399 void HOptimizedGraphBuilder::VisitForOfStatement(ForOfStatement* stmt) {
5400 DCHECK(!HasStackOverflow());
5401 DCHECK(current_block() != NULL);
5402 DCHECK(current_block()->HasPredecessor());
5403 return Bailout(kForOfStatement);
5407 void HOptimizedGraphBuilder::VisitTryCatchStatement(TryCatchStatement* stmt) {
5408 DCHECK(!HasStackOverflow());
5409 DCHECK(current_block() != NULL);
5410 DCHECK(current_block()->HasPredecessor());
5411 return Bailout(kTryCatchStatement);
5415 void HOptimizedGraphBuilder::VisitTryFinallyStatement(
5416 TryFinallyStatement* stmt) {
5417 DCHECK(!HasStackOverflow());
5418 DCHECK(current_block() != NULL);
5419 DCHECK(current_block()->HasPredecessor());
5420 return Bailout(kTryFinallyStatement);
5424 void HOptimizedGraphBuilder::VisitDebuggerStatement(DebuggerStatement* stmt) {
5425 DCHECK(!HasStackOverflow());
5426 DCHECK(current_block() != NULL);
5427 DCHECK(current_block()->HasPredecessor());
5428 return Bailout(kDebuggerStatement);
5432 void HOptimizedGraphBuilder::VisitCaseClause(CaseClause* clause) {
5437 void HOptimizedGraphBuilder::VisitFunctionLiteral(FunctionLiteral* expr) {
5438 DCHECK(!HasStackOverflow());
5439 DCHECK(current_block() != NULL);
5440 DCHECK(current_block()->HasPredecessor());
5441 Handle<SharedFunctionInfo> shared_info = Compiler::GetSharedFunctionInfo(
5442 expr, current_info()->script(), top_info());
5443 // We also have a stack overflow if the recursive compilation did.
5444 if (HasStackOverflow()) return;
5445 HFunctionLiteral* instr =
5446 New<HFunctionLiteral>(shared_info, expr->pretenure());
5447 return ast_context()->ReturnInstruction(instr, expr->id());
5451 void HOptimizedGraphBuilder::VisitClassLiteral(ClassLiteral* lit) {
5452 DCHECK(!HasStackOverflow());
5453 DCHECK(current_block() != NULL);
5454 DCHECK(current_block()->HasPredecessor());
5455 return Bailout(kClassLiteral);
5459 void HOptimizedGraphBuilder::VisitNativeFunctionLiteral(
5460 NativeFunctionLiteral* expr) {
5461 DCHECK(!HasStackOverflow());
5462 DCHECK(current_block() != NULL);
5463 DCHECK(current_block()->HasPredecessor());
5464 return Bailout(kNativeFunctionLiteral);
5468 void HOptimizedGraphBuilder::VisitConditional(Conditional* expr) {
5469 DCHECK(!HasStackOverflow());
5470 DCHECK(current_block() != NULL);
5471 DCHECK(current_block()->HasPredecessor());
5472 HBasicBlock* cond_true = graph()->CreateBasicBlock();
5473 HBasicBlock* cond_false = graph()->CreateBasicBlock();
5474 CHECK_BAILOUT(VisitForControl(expr->condition(), cond_true, cond_false));
5476 // Visit the true and false subexpressions in the same AST context as the
5477 // whole expression.
5478 if (cond_true->HasPredecessor()) {
5479 cond_true->SetJoinId(expr->ThenId());
5480 set_current_block(cond_true);
5481 CHECK_BAILOUT(Visit(expr->then_expression()));
5482 cond_true = current_block();
5487 if (cond_false->HasPredecessor()) {
5488 cond_false->SetJoinId(expr->ElseId());
5489 set_current_block(cond_false);
5490 CHECK_BAILOUT(Visit(expr->else_expression()));
5491 cond_false = current_block();
5496 if (!ast_context()->IsTest()) {
5497 HBasicBlock* join = CreateJoin(cond_true, cond_false, expr->id());
5498 set_current_block(join);
5499 if (join != NULL && !ast_context()->IsEffect()) {
5500 return ast_context()->ReturnValue(Pop());
5506 HOptimizedGraphBuilder::GlobalPropertyAccess
5507 HOptimizedGraphBuilder::LookupGlobalProperty(Variable* var, LookupIterator* it,
5508 PropertyAccessType access_type) {
5509 if (var->is_this() || !current_info()->has_global_object()) {
5513 switch (it->state()) {
5514 case LookupIterator::ACCESSOR:
5515 case LookupIterator::ACCESS_CHECK:
5516 case LookupIterator::INTERCEPTOR:
5517 case LookupIterator::INTEGER_INDEXED_EXOTIC:
5518 case LookupIterator::NOT_FOUND:
5520 case LookupIterator::DATA:
5521 if (access_type == STORE && it->IsReadOnly()) return kUseGeneric;
5523 case LookupIterator::JSPROXY:
5524 case LookupIterator::TRANSITION:
5532 HValue* HOptimizedGraphBuilder::BuildContextChainWalk(Variable* var) {
5533 DCHECK(var->IsContextSlot());
5534 HValue* context = environment()->context();
5535 int length = scope()->ContextChainLength(var->scope());
5536 while (length-- > 0) {
5537 context = Add<HLoadNamedField>(
5539 HObjectAccess::ForContextSlot(Context::PREVIOUS_INDEX));
5545 void HOptimizedGraphBuilder::VisitVariableProxy(VariableProxy* expr) {
5546 DCHECK(!HasStackOverflow());
5547 DCHECK(current_block() != NULL);
5548 DCHECK(current_block()->HasPredecessor());
5549 Variable* variable = expr->var();
5550 switch (variable->location()) {
5551 case VariableLocation::GLOBAL:
5552 case VariableLocation::UNALLOCATED: {
5553 if (IsLexicalVariableMode(variable->mode())) {
5554 // TODO(rossberg): should this be an DCHECK?
5555 return Bailout(kReferenceToGlobalLexicalVariable);
5557 // Handle known global constants like 'undefined' specially to avoid a
5558 // load from a global cell for them.
5559 Handle<Object> constant_value =
5560 isolate()->factory()->GlobalConstantFor(variable->name());
5561 if (!constant_value.is_null()) {
5562 HConstant* instr = New<HConstant>(constant_value);
5563 return ast_context()->ReturnInstruction(instr, expr->id());
5566 Handle<GlobalObject> global(current_info()->global_object());
5568 // Lookup in script contexts.
5570 Handle<ScriptContextTable> script_contexts(
5571 global->native_context()->script_context_table());
5572 ScriptContextTable::LookupResult lookup;
5573 if (ScriptContextTable::Lookup(script_contexts, variable->name(),
5575 Handle<Context> script_context = ScriptContextTable::GetContext(
5576 script_contexts, lookup.context_index);
5577 Handle<Object> current_value =
5578 FixedArray::get(script_context, lookup.slot_index);
5580 // If the values is not the hole, it will stay initialized,
5581 // so no need to generate a check.
5582 if (*current_value == *isolate()->factory()->the_hole_value()) {
5583 return Bailout(kReferenceToUninitializedVariable);
5585 HInstruction* result = New<HLoadNamedField>(
5586 Add<HConstant>(script_context), nullptr,
5587 HObjectAccess::ForContextSlot(lookup.slot_index));
5588 return ast_context()->ReturnInstruction(result, expr->id());
5592 LookupIterator it(global, variable->name(), LookupIterator::OWN);
5593 GlobalPropertyAccess type = LookupGlobalProperty(variable, &it, LOAD);
5595 if (type == kUseCell) {
5596 Handle<PropertyCell> cell = it.GetPropertyCell();
5597 top_info()->dependencies()->AssumePropertyCell(cell);
5598 auto cell_type = it.property_details().cell_type();
5599 if (cell_type == PropertyCellType::kConstant ||
5600 cell_type == PropertyCellType::kUndefined) {
5601 Handle<Object> constant_object(cell->value(), isolate());
5602 if (constant_object->IsConsString()) {
5604 String::Flatten(Handle<String>::cast(constant_object));
5606 HConstant* constant = New<HConstant>(constant_object);
5607 return ast_context()->ReturnInstruction(constant, expr->id());
5609 auto access = HObjectAccess::ForPropertyCellValue();
5610 UniqueSet<Map>* field_maps = nullptr;
5611 if (cell_type == PropertyCellType::kConstantType) {
5612 switch (cell->GetConstantType()) {
5613 case PropertyCellConstantType::kSmi:
5614 access = access.WithRepresentation(Representation::Smi());
5616 case PropertyCellConstantType::kStableMap: {
5617 // Check that the map really is stable. The heap object could
5618 // have mutated without the cell updating state. In that case,
5619 // make no promises about the loaded value except that it's a
5622 access.WithRepresentation(Representation::HeapObject());
5623 Handle<Map> map(HeapObject::cast(cell->value())->map());
5624 if (map->is_stable()) {
5625 field_maps = new (zone())
5626 UniqueSet<Map>(Unique<Map>::CreateImmovable(map), zone());
5632 HConstant* cell_constant = Add<HConstant>(cell);
5633 HLoadNamedField* instr;
5634 if (field_maps == nullptr) {
5635 instr = New<HLoadNamedField>(cell_constant, nullptr, access);
5637 instr = New<HLoadNamedField>(cell_constant, nullptr, access,
5638 field_maps, HType::HeapObject());
5640 instr->ClearDependsOnFlag(kInobjectFields);
5641 instr->SetDependsOnFlag(kGlobalVars);
5642 return ast_context()->ReturnInstruction(instr, expr->id());
5644 } else if (variable->IsGlobalSlot()) {
5645 DCHECK(variable->index() > 0);
5646 DCHECK(variable->IsStaticGlobalObjectProperty());
5647 int slot_index = variable->index();
5648 int depth = scope()->ContextChainLength(variable->scope());
5650 HLoadGlobalViaContext* instr =
5651 New<HLoadGlobalViaContext>(depth, slot_index);
5652 return ast_context()->ReturnInstruction(instr, expr->id());
5655 HValue* global_object = Add<HLoadNamedField>(
5657 HObjectAccess::ForContextSlot(Context::GLOBAL_OBJECT_INDEX));
5658 HLoadGlobalGeneric* instr = New<HLoadGlobalGeneric>(
5659 global_object, variable->name(), ast_context()->typeof_mode());
5660 instr->SetVectorAndSlot(handle(current_feedback_vector(), isolate()),
5661 expr->VariableFeedbackSlot());
5662 return ast_context()->ReturnInstruction(instr, expr->id());
5666 case VariableLocation::PARAMETER:
5667 case VariableLocation::LOCAL: {
5668 HValue* value = LookupAndMakeLive(variable);
5669 if (value == graph()->GetConstantHole()) {
5670 DCHECK(IsDeclaredVariableMode(variable->mode()) &&
5671 variable->mode() != VAR);
5672 return Bailout(kReferenceToUninitializedVariable);
5674 return ast_context()->ReturnValue(value);
5677 case VariableLocation::CONTEXT: {
5678 HValue* context = BuildContextChainWalk(variable);
5679 HLoadContextSlot::Mode mode;
5680 switch (variable->mode()) {
5683 mode = HLoadContextSlot::kCheckDeoptimize;
5686 mode = HLoadContextSlot::kCheckReturnUndefined;
5689 mode = HLoadContextSlot::kNoCheck;
5692 HLoadContextSlot* instr =
5693 new(zone()) HLoadContextSlot(context, variable->index(), mode);
5694 return ast_context()->ReturnInstruction(instr, expr->id());
5697 case VariableLocation::LOOKUP:
5698 return Bailout(kReferenceToAVariableWhichRequiresDynamicLookup);
5703 void HOptimizedGraphBuilder::VisitLiteral(Literal* expr) {
5704 DCHECK(!HasStackOverflow());
5705 DCHECK(current_block() != NULL);
5706 DCHECK(current_block()->HasPredecessor());
5707 HConstant* instr = New<HConstant>(expr->value());
5708 return ast_context()->ReturnInstruction(instr, expr->id());
5712 void HOptimizedGraphBuilder::VisitRegExpLiteral(RegExpLiteral* expr) {
5713 DCHECK(!HasStackOverflow());
5714 DCHECK(current_block() != NULL);
5715 DCHECK(current_block()->HasPredecessor());
5716 Handle<JSFunction> closure = function_state()->compilation_info()->closure();
5717 Handle<FixedArray> literals(closure->literals());
5718 HRegExpLiteral* instr = New<HRegExpLiteral>(literals,
5721 expr->literal_index());
5722 return ast_context()->ReturnInstruction(instr, expr->id());
5726 static bool CanInlinePropertyAccess(Handle<Map> map) {
5727 if (map->instance_type() == HEAP_NUMBER_TYPE) return true;
5728 if (map->instance_type() < FIRST_NONSTRING_TYPE) return true;
5729 return map->IsJSObjectMap() && !map->is_dictionary_map() &&
5730 !map->has_named_interceptor() &&
5731 // TODO(verwaest): Whitelist contexts to which we have access.
5732 !map->is_access_check_needed();
5736 // Determines whether the given array or object literal boilerplate satisfies
5737 // all limits to be considered for fast deep-copying and computes the total
5738 // size of all objects that are part of the graph.
5739 static bool IsFastLiteral(Handle<JSObject> boilerplate,
5741 int* max_properties) {
5742 if (boilerplate->map()->is_deprecated() &&
5743 !JSObject::TryMigrateInstance(boilerplate)) {
5747 DCHECK(max_depth >= 0 && *max_properties >= 0);
5748 if (max_depth == 0) return false;
5750 Isolate* isolate = boilerplate->GetIsolate();
5751 Handle<FixedArrayBase> elements(boilerplate->elements());
5752 if (elements->length() > 0 &&
5753 elements->map() != isolate->heap()->fixed_cow_array_map()) {
5754 if (boilerplate->HasFastSmiOrObjectElements()) {
5755 Handle<FixedArray> fast_elements = Handle<FixedArray>::cast(elements);
5756 int length = elements->length();
5757 for (int i = 0; i < length; i++) {
5758 if ((*max_properties)-- == 0) return false;
5759 Handle<Object> value(fast_elements->get(i), isolate);
5760 if (value->IsJSObject()) {
5761 Handle<JSObject> value_object = Handle<JSObject>::cast(value);
5762 if (!IsFastLiteral(value_object,
5769 } else if (!boilerplate->HasFastDoubleElements()) {
5774 Handle<FixedArray> properties(boilerplate->properties());
5775 if (properties->length() > 0) {
5778 Handle<DescriptorArray> descriptors(
5779 boilerplate->map()->instance_descriptors());
5780 int limit = boilerplate->map()->NumberOfOwnDescriptors();
5781 for (int i = 0; i < limit; i++) {
5782 PropertyDetails details = descriptors->GetDetails(i);
5783 if (details.type() != DATA) continue;
5784 if ((*max_properties)-- == 0) return false;
5785 FieldIndex field_index = FieldIndex::ForDescriptor(boilerplate->map(), i);
5786 if (boilerplate->IsUnboxedDoubleField(field_index)) continue;
5787 Handle<Object> value(boilerplate->RawFastPropertyAt(field_index),
5789 if (value->IsJSObject()) {
5790 Handle<JSObject> value_object = Handle<JSObject>::cast(value);
5791 if (!IsFastLiteral(value_object,
5803 void HOptimizedGraphBuilder::VisitObjectLiteral(ObjectLiteral* expr) {
5804 DCHECK(!HasStackOverflow());
5805 DCHECK(current_block() != NULL);
5806 DCHECK(current_block()->HasPredecessor());
5808 Handle<JSFunction> closure = function_state()->compilation_info()->closure();
5809 HInstruction* literal;
5811 // Check whether to use fast or slow deep-copying for boilerplate.
5812 int max_properties = kMaxFastLiteralProperties;
5813 Handle<Object> literals_cell(closure->literals()->get(expr->literal_index()),
5815 Handle<AllocationSite> site;
5816 Handle<JSObject> boilerplate;
5817 if (!literals_cell->IsUndefined()) {
5818 // Retrieve the boilerplate
5819 site = Handle<AllocationSite>::cast(literals_cell);
5820 boilerplate = Handle<JSObject>(JSObject::cast(site->transition_info()),
5824 if (!boilerplate.is_null() &&
5825 IsFastLiteral(boilerplate, kMaxFastLiteralDepth, &max_properties)) {
5826 AllocationSiteUsageContext site_context(isolate(), site, false);
5827 site_context.EnterNewScope();
5828 literal = BuildFastLiteral(boilerplate, &site_context);
5829 site_context.ExitScope(site, boilerplate);
5831 NoObservableSideEffectsScope no_effects(this);
5832 Handle<FixedArray> closure_literals(closure->literals(), isolate());
5833 Handle<FixedArray> constant_properties = expr->constant_properties();
5834 int literal_index = expr->literal_index();
5835 int flags = expr->ComputeFlags(true);
5837 Add<HPushArguments>(Add<HConstant>(closure_literals),
5838 Add<HConstant>(literal_index),
5839 Add<HConstant>(constant_properties),
5840 Add<HConstant>(flags));
5842 Runtime::FunctionId function_id = Runtime::kCreateObjectLiteral;
5843 literal = Add<HCallRuntime>(isolate()->factory()->empty_string(),
5844 Runtime::FunctionForId(function_id),
5848 // The object is expected in the bailout environment during computation
5849 // of the property values and is the value of the entire expression.
5851 int store_slot_index = 0;
5852 for (int i = 0; i < expr->properties()->length(); i++) {
5853 ObjectLiteral::Property* property = expr->properties()->at(i);
5854 if (property->is_computed_name()) return Bailout(kComputedPropertyName);
5855 if (property->IsCompileTimeValue()) continue;
5857 Literal* key = property->key()->AsLiteral();
5858 Expression* value = property->value();
5860 switch (property->kind()) {
5861 case ObjectLiteral::Property::MATERIALIZED_LITERAL:
5862 DCHECK(!CompileTimeValue::IsCompileTimeValue(value));
5864 case ObjectLiteral::Property::COMPUTED:
5865 // It is safe to use [[Put]] here because the boilerplate already
5866 // contains computed properties with an uninitialized value.
5867 if (key->value()->IsInternalizedString()) {
5868 if (property->emit_store()) {
5869 CHECK_ALIVE(VisitForValue(value));
5870 HValue* value = Pop();
5872 Handle<Map> map = property->GetReceiverType();
5873 Handle<String> name = key->AsPropertyName();
5875 FeedbackVectorICSlot slot = expr->GetNthSlot(store_slot_index++);
5876 if (map.is_null()) {
5877 // If we don't know the monomorphic type, do a generic store.
5878 CHECK_ALIVE(store = BuildNamedGeneric(STORE, NULL, slot, literal,
5881 PropertyAccessInfo info(this, STORE, map, name);
5882 if (info.CanAccessMonomorphic()) {
5883 HValue* checked_literal = Add<HCheckMaps>(literal, map);
5884 DCHECK(!info.IsAccessorConstant());
5885 store = BuildMonomorphicAccess(
5886 &info, literal, checked_literal, value,
5887 BailoutId::None(), BailoutId::None());
5889 CHECK_ALIVE(store = BuildNamedGeneric(STORE, NULL, slot,
5890 literal, name, value));
5893 if (store->IsInstruction()) {
5894 AddInstruction(HInstruction::cast(store));
5896 DCHECK(store->HasObservableSideEffects());
5897 Add<HSimulate>(key->id(), REMOVABLE_SIMULATE);
5899 // Add [[HomeObject]] to function literals.
5900 if (FunctionLiteral::NeedsHomeObject(property->value())) {
5901 Handle<Symbol> sym = isolate()->factory()->home_object_symbol();
5902 HInstruction* store_home = BuildNamedGeneric(
5903 STORE, NULL, expr->GetNthSlot(store_slot_index++), value, sym,
5905 AddInstruction(store_home);
5906 DCHECK(store_home->HasObservableSideEffects());
5907 Add<HSimulate>(property->value()->id(), REMOVABLE_SIMULATE);
5910 CHECK_ALIVE(VisitForEffect(value));
5915 case ObjectLiteral::Property::PROTOTYPE:
5916 case ObjectLiteral::Property::SETTER:
5917 case ObjectLiteral::Property::GETTER:
5918 return Bailout(kObjectLiteralWithComplexProperty);
5919 default: UNREACHABLE();
5923 // Crankshaft may not consume all the slots because it doesn't emit accessors.
5924 DCHECK(!FLAG_vector_stores || store_slot_index <= expr->slot_count());
5926 if (expr->has_function()) {
5927 // Return the result of the transformation to fast properties
5928 // instead of the original since this operation changes the map
5929 // of the object. This makes sure that the original object won't
5930 // be used by other optimized code before it is transformed
5931 // (e.g. because of code motion).
5932 HToFastProperties* result = Add<HToFastProperties>(Pop());
5933 return ast_context()->ReturnValue(result);
5935 return ast_context()->ReturnValue(Pop());
5940 void HOptimizedGraphBuilder::VisitArrayLiteral(ArrayLiteral* expr) {
5941 DCHECK(!HasStackOverflow());
5942 DCHECK(current_block() != NULL);
5943 DCHECK(current_block()->HasPredecessor());
5944 expr->BuildConstantElements(isolate());
5945 ZoneList<Expression*>* subexprs = expr->values();
5946 int length = subexprs->length();
5947 HInstruction* literal;
5949 Handle<AllocationSite> site;
5950 Handle<FixedArray> literals(environment()->closure()->literals(), isolate());
5951 bool uninitialized = false;
5952 Handle<Object> literals_cell(literals->get(expr->literal_index()),
5954 Handle<JSObject> boilerplate_object;
5955 if (literals_cell->IsUndefined()) {
5956 uninitialized = true;
5957 Handle<Object> raw_boilerplate;
5958 ASSIGN_RETURN_ON_EXCEPTION_VALUE(
5959 isolate(), raw_boilerplate,
5960 Runtime::CreateArrayLiteralBoilerplate(
5961 isolate(), literals, expr->constant_elements(),
5962 is_strong(function_language_mode())),
5963 Bailout(kArrayBoilerplateCreationFailed));
5965 boilerplate_object = Handle<JSObject>::cast(raw_boilerplate);
5966 AllocationSiteCreationContext creation_context(isolate());
5967 site = creation_context.EnterNewScope();
5968 if (JSObject::DeepWalk(boilerplate_object, &creation_context).is_null()) {
5969 return Bailout(kArrayBoilerplateCreationFailed);
5971 creation_context.ExitScope(site, boilerplate_object);
5972 literals->set(expr->literal_index(), *site);
5974 if (boilerplate_object->elements()->map() ==
5975 isolate()->heap()->fixed_cow_array_map()) {
5976 isolate()->counters()->cow_arrays_created_runtime()->Increment();
5979 DCHECK(literals_cell->IsAllocationSite());
5980 site = Handle<AllocationSite>::cast(literals_cell);
5981 boilerplate_object = Handle<JSObject>(
5982 JSObject::cast(site->transition_info()), isolate());
5985 DCHECK(!boilerplate_object.is_null());
5986 DCHECK(site->SitePointsToLiteral());
5988 ElementsKind boilerplate_elements_kind =
5989 boilerplate_object->GetElementsKind();
5991 // Check whether to use fast or slow deep-copying for boilerplate.
5992 int max_properties = kMaxFastLiteralProperties;
5993 if (IsFastLiteral(boilerplate_object,
5994 kMaxFastLiteralDepth,
5996 AllocationSiteUsageContext site_context(isolate(), site, false);
5997 site_context.EnterNewScope();
5998 literal = BuildFastLiteral(boilerplate_object, &site_context);
5999 site_context.ExitScope(site, boilerplate_object);
6001 NoObservableSideEffectsScope no_effects(this);
6002 // Boilerplate already exists and constant elements are never accessed,
6003 // pass an empty fixed array to the runtime function instead.
6004 Handle<FixedArray> constants = isolate()->factory()->empty_fixed_array();
6005 int literal_index = expr->literal_index();
6006 int flags = expr->ComputeFlags(true);
6008 Add<HPushArguments>(Add<HConstant>(literals),
6009 Add<HConstant>(literal_index),
6010 Add<HConstant>(constants),
6011 Add<HConstant>(flags));
6013 Runtime::FunctionId function_id = Runtime::kCreateArrayLiteral;
6014 literal = Add<HCallRuntime>(isolate()->factory()->empty_string(),
6015 Runtime::FunctionForId(function_id),
6018 // Register to deopt if the boilerplate ElementsKind changes.
6019 top_info()->dependencies()->AssumeTransitionStable(site);
6022 // The array is expected in the bailout environment during computation
6023 // of the property values and is the value of the entire expression.
6025 // The literal index is on the stack, too.
6026 Push(Add<HConstant>(expr->literal_index()));
6028 HInstruction* elements = NULL;
6030 for (int i = 0; i < length; i++) {
6031 Expression* subexpr = subexprs->at(i);
6032 if (subexpr->IsSpread()) {
6033 return Bailout(kSpread);
6036 // If the subexpression is a literal or a simple materialized literal it
6037 // is already set in the cloned array.
6038 if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
6040 CHECK_ALIVE(VisitForValue(subexpr));
6041 HValue* value = Pop();
6042 if (!Smi::IsValid(i)) return Bailout(kNonSmiKeyInArrayLiteral);
6044 elements = AddLoadElements(literal);
6046 HValue* key = Add<HConstant>(i);
6048 switch (boilerplate_elements_kind) {
6049 case FAST_SMI_ELEMENTS:
6050 case FAST_HOLEY_SMI_ELEMENTS:
6052 case FAST_HOLEY_ELEMENTS:
6053 case FAST_DOUBLE_ELEMENTS:
6054 case FAST_HOLEY_DOUBLE_ELEMENTS: {
6055 HStoreKeyed* instr = Add<HStoreKeyed>(elements, key, value,
6056 boilerplate_elements_kind);
6057 instr->SetUninitialized(uninitialized);
6065 Add<HSimulate>(expr->GetIdForElement(i));
6068 Drop(1); // array literal index
6069 return ast_context()->ReturnValue(Pop());
6073 HCheckMaps* HOptimizedGraphBuilder::AddCheckMap(HValue* object,
6075 BuildCheckHeapObject(object);
6076 return Add<HCheckMaps>(object, map);
6080 HInstruction* HOptimizedGraphBuilder::BuildLoadNamedField(
6081 PropertyAccessInfo* info,
6082 HValue* checked_object) {
6083 // See if this is a load for an immutable property
6084 if (checked_object->ActualValue()->IsConstant()) {
6085 Handle<Object> object(
6086 HConstant::cast(checked_object->ActualValue())->handle(isolate()));
6088 if (object->IsJSObject()) {
6089 LookupIterator it(object, info->name(),
6090 LookupIterator::OWN_SKIP_INTERCEPTOR);
6091 Handle<Object> value = JSReceiver::GetDataProperty(&it);
6092 if (it.IsFound() && it.IsReadOnly() && !it.IsConfigurable()) {
6093 return New<HConstant>(value);
6098 HObjectAccess access = info->access();
6099 if (access.representation().IsDouble() &&
6100 (!FLAG_unbox_double_fields || !access.IsInobject())) {
6101 // Load the heap number.
6102 checked_object = Add<HLoadNamedField>(
6103 checked_object, nullptr,
6104 access.WithRepresentation(Representation::Tagged()));
6105 // Load the double value from it.
6106 access = HObjectAccess::ForHeapNumberValue();
6109 SmallMapList* map_list = info->field_maps();
6110 if (map_list->length() == 0) {
6111 return New<HLoadNamedField>(checked_object, checked_object, access);
6114 UniqueSet<Map>* maps = new(zone()) UniqueSet<Map>(map_list->length(), zone());
6115 for (int i = 0; i < map_list->length(); ++i) {
6116 maps->Add(Unique<Map>::CreateImmovable(map_list->at(i)), zone());
6118 return New<HLoadNamedField>(
6119 checked_object, checked_object, access, maps, info->field_type());
6123 HInstruction* HOptimizedGraphBuilder::BuildStoreNamedField(
6124 PropertyAccessInfo* info,
6125 HValue* checked_object,
6127 bool transition_to_field = info->IsTransition();
6128 // TODO(verwaest): Move this logic into PropertyAccessInfo.
6129 HObjectAccess field_access = info->access();
6131 HStoreNamedField *instr;
6132 if (field_access.representation().IsDouble() &&
6133 (!FLAG_unbox_double_fields || !field_access.IsInobject())) {
6134 HObjectAccess heap_number_access =
6135 field_access.WithRepresentation(Representation::Tagged());
6136 if (transition_to_field) {
6137 // The store requires a mutable HeapNumber to be allocated.
6138 NoObservableSideEffectsScope no_side_effects(this);
6139 HInstruction* heap_number_size = Add<HConstant>(HeapNumber::kSize);
6141 // TODO(hpayer): Allocation site pretenuring support.
6142 HInstruction* heap_number = Add<HAllocate>(heap_number_size,
6143 HType::HeapObject(),
6145 MUTABLE_HEAP_NUMBER_TYPE);
6146 AddStoreMapConstant(
6147 heap_number, isolate()->factory()->mutable_heap_number_map());
6148 Add<HStoreNamedField>(heap_number, HObjectAccess::ForHeapNumberValue(),
6150 instr = New<HStoreNamedField>(checked_object->ActualValue(),
6154 // Already holds a HeapNumber; load the box and write its value field.
6155 HInstruction* heap_number =
6156 Add<HLoadNamedField>(checked_object, nullptr, heap_number_access);
6157 instr = New<HStoreNamedField>(heap_number,
6158 HObjectAccess::ForHeapNumberValue(),
6159 value, STORE_TO_INITIALIZED_ENTRY);
6162 if (field_access.representation().IsHeapObject()) {
6163 BuildCheckHeapObject(value);
6166 if (!info->field_maps()->is_empty()) {
6167 DCHECK(field_access.representation().IsHeapObject());
6168 value = Add<HCheckMaps>(value, info->field_maps());
6171 // This is a normal store.
6172 instr = New<HStoreNamedField>(
6173 checked_object->ActualValue(), field_access, value,
6174 transition_to_field ? INITIALIZING_STORE : STORE_TO_INITIALIZED_ENTRY);
6177 if (transition_to_field) {
6178 Handle<Map> transition(info->transition());
6179 DCHECK(!transition->is_deprecated());
6180 instr->SetTransition(Add<HConstant>(transition));
6186 bool HOptimizedGraphBuilder::PropertyAccessInfo::IsCompatible(
6187 PropertyAccessInfo* info) {
6188 if (!CanInlinePropertyAccess(map_)) return false;
6190 // Currently only handle Type::Number as a polymorphic case.
6191 // TODO(verwaest): Support monomorphic handling of numbers with a HCheckNumber
6193 if (IsNumberType()) return false;
6195 // Values are only compatible for monomorphic load if they all behave the same
6196 // regarding value wrappers.
6197 if (IsValueWrapped() != info->IsValueWrapped()) return false;
6199 if (!LookupDescriptor()) return false;
6202 return (!info->IsFound() || info->has_holder()) &&
6203 map()->prototype() == info->map()->prototype();
6206 // Mismatch if the other access info found the property in the prototype
6208 if (info->has_holder()) return false;
6210 if (IsAccessorConstant()) {
6211 return accessor_.is_identical_to(info->accessor_) &&
6212 api_holder_.is_identical_to(info->api_holder_);
6215 if (IsDataConstant()) {
6216 return constant_.is_identical_to(info->constant_);
6220 if (!info->IsData()) return false;
6222 Representation r = access_.representation();
6224 if (!info->access_.representation().IsCompatibleForLoad(r)) return false;
6226 if (!info->access_.representation().IsCompatibleForStore(r)) return false;
6228 if (info->access_.offset() != access_.offset()) return false;
6229 if (info->access_.IsInobject() != access_.IsInobject()) return false;
6231 if (field_maps_.is_empty()) {
6232 info->field_maps_.Clear();
6233 } else if (!info->field_maps_.is_empty()) {
6234 for (int i = 0; i < field_maps_.length(); ++i) {
6235 info->field_maps_.AddMapIfMissing(field_maps_.at(i), info->zone());
6237 info->field_maps_.Sort();
6240 // We can only merge stores that agree on their field maps. The comparison
6241 // below is safe, since we keep the field maps sorted.
6242 if (field_maps_.length() != info->field_maps_.length()) return false;
6243 for (int i = 0; i < field_maps_.length(); ++i) {
6244 if (!field_maps_.at(i).is_identical_to(info->field_maps_.at(i))) {
6249 info->GeneralizeRepresentation(r);
6250 info->field_type_ = info->field_type_.Combine(field_type_);
6255 bool HOptimizedGraphBuilder::PropertyAccessInfo::LookupDescriptor() {
6256 if (!map_->IsJSObjectMap()) return true;
6257 LookupDescriptor(*map_, *name_);
6258 return LoadResult(map_);
6262 bool HOptimizedGraphBuilder::PropertyAccessInfo::LoadResult(Handle<Map> map) {
6263 if (!IsLoad() && IsProperty() && IsReadOnly()) {
6268 // Construct the object field access.
6269 int index = GetLocalFieldIndexFromMap(map);
6270 access_ = HObjectAccess::ForField(map, index, representation(), name_);
6272 // Load field map for heap objects.
6273 return LoadFieldMaps(map);
6274 } else if (IsAccessorConstant()) {
6275 Handle<Object> accessors = GetAccessorsFromMap(map);
6276 if (!accessors->IsAccessorPair()) return false;
6277 Object* raw_accessor =
6278 IsLoad() ? Handle<AccessorPair>::cast(accessors)->getter()
6279 : Handle<AccessorPair>::cast(accessors)->setter();
6280 if (!raw_accessor->IsJSFunction()) return false;
6281 Handle<JSFunction> accessor = handle(JSFunction::cast(raw_accessor));
6282 if (accessor->shared()->IsApiFunction()) {
6283 CallOptimization call_optimization(accessor);
6284 if (call_optimization.is_simple_api_call()) {
6285 CallOptimization::HolderLookup holder_lookup;
6287 call_optimization.LookupHolderOfExpectedType(map_, &holder_lookup);
6290 accessor_ = accessor;
6291 } else if (IsDataConstant()) {
6292 constant_ = GetConstantFromMap(map);
6299 bool HOptimizedGraphBuilder::PropertyAccessInfo::LoadFieldMaps(
6301 // Clear any previously collected field maps/type.
6302 field_maps_.Clear();
6303 field_type_ = HType::Tagged();
6305 // Figure out the field type from the accessor map.
6306 Handle<HeapType> field_type = GetFieldTypeFromMap(map);
6308 // Collect the (stable) maps from the field type.
6309 int num_field_maps = field_type->NumClasses();
6310 if (num_field_maps > 0) {
6311 DCHECK(access_.representation().IsHeapObject());
6312 field_maps_.Reserve(num_field_maps, zone());
6313 HeapType::Iterator<Map> it = field_type->Classes();
6314 while (!it.Done()) {
6315 Handle<Map> field_map = it.Current();
6316 if (!field_map->is_stable()) {
6317 field_maps_.Clear();
6320 field_maps_.Add(field_map, zone());
6325 if (field_maps_.is_empty()) {
6326 // Store is not safe if the field map was cleared.
6327 return IsLoad() || !field_type->Is(HeapType::None());
6331 DCHECK_EQ(num_field_maps, field_maps_.length());
6333 // Determine field HType from field HeapType.
6334 field_type_ = HType::FromType<HeapType>(field_type);
6335 DCHECK(field_type_.IsHeapObject());
6337 // Add dependency on the map that introduced the field.
6338 top_info()->dependencies()->AssumeFieldType(GetFieldOwnerFromMap(map));
6343 bool HOptimizedGraphBuilder::PropertyAccessInfo::LookupInPrototypes() {
6344 Handle<Map> map = this->map();
6346 while (map->prototype()->IsJSObject()) {
6347 holder_ = handle(JSObject::cast(map->prototype()));
6348 if (holder_->map()->is_deprecated()) {
6349 JSObject::TryMigrateInstance(holder_);
6351 map = Handle<Map>(holder_->map());
6352 if (!CanInlinePropertyAccess(map)) {
6356 LookupDescriptor(*map, *name_);
6357 if (IsFound()) return LoadResult(map);
6361 return !map->prototype()->IsJSReceiver();
6365 bool HOptimizedGraphBuilder::PropertyAccessInfo::IsIntegerIndexedExotic() {
6366 InstanceType instance_type = map_->instance_type();
6367 return instance_type == JS_TYPED_ARRAY_TYPE &&
6368 IsSpecialIndex(isolate()->unicode_cache(), *name_);
6372 bool HOptimizedGraphBuilder::PropertyAccessInfo::CanAccessMonomorphic() {
6373 if (!CanInlinePropertyAccess(map_)) return false;
6374 if (IsJSObjectFieldAccessor()) return IsLoad();
6375 if (IsJSArrayBufferViewFieldAccessor()) return IsLoad();
6376 if (map_->function_with_prototype() && !map_->has_non_instance_prototype() &&
6377 name_.is_identical_to(isolate()->factory()->prototype_string())) {
6380 if (!LookupDescriptor()) return false;
6381 if (IsFound()) return IsLoad() || !IsReadOnly();
6382 if (IsIntegerIndexedExotic()) return false;
6383 if (!LookupInPrototypes()) return false;
6384 if (IsLoad()) return true;
6386 if (IsAccessorConstant()) return true;
6387 LookupTransition(*map_, *name_, NONE);
6388 if (IsTransitionToData() && map_->unused_property_fields() > 0) {
6389 // Construct the object field access.
6390 int descriptor = transition()->LastAdded();
6392 transition()->instance_descriptors()->GetFieldIndex(descriptor) -
6393 map_->GetInObjectProperties();
6394 PropertyDetails details =
6395 transition()->instance_descriptors()->GetDetails(descriptor);
6396 Representation representation = details.representation();
6397 access_ = HObjectAccess::ForField(map_, index, representation, name_);
6399 // Load field map for heap objects.
6400 return LoadFieldMaps(transition());
6406 bool HOptimizedGraphBuilder::PropertyAccessInfo::CanAccessAsMonomorphic(
6407 SmallMapList* maps) {
6408 DCHECK(map_.is_identical_to(maps->first()));
6409 if (!CanAccessMonomorphic()) return false;
6410 STATIC_ASSERT(kMaxLoadPolymorphism == kMaxStorePolymorphism);
6411 if (maps->length() > kMaxLoadPolymorphism) return false;
6412 HObjectAccess access = HObjectAccess::ForMap(); // bogus default
6413 if (GetJSObjectFieldAccess(&access)) {
6414 for (int i = 1; i < maps->length(); ++i) {
6415 PropertyAccessInfo test_info(builder_, access_type_, maps->at(i), name_);
6416 HObjectAccess test_access = HObjectAccess::ForMap(); // bogus default
6417 if (!test_info.GetJSObjectFieldAccess(&test_access)) return false;
6418 if (!access.Equals(test_access)) return false;
6422 if (GetJSArrayBufferViewFieldAccess(&access)) {
6423 for (int i = 1; i < maps->length(); ++i) {
6424 PropertyAccessInfo test_info(builder_, access_type_, maps->at(i), name_);
6425 HObjectAccess test_access = HObjectAccess::ForMap(); // bogus default
6426 if (!test_info.GetJSArrayBufferViewFieldAccess(&test_access)) {
6429 if (!access.Equals(test_access)) return false;
6434 // Currently only handle numbers as a polymorphic case.
6435 // TODO(verwaest): Support monomorphic handling of numbers with a HCheckNumber
6437 if (IsNumberType()) return false;
6439 // Multiple maps cannot transition to the same target map.
6440 DCHECK(!IsLoad() || !IsTransition());
6441 if (IsTransition() && maps->length() > 1) return false;
6443 for (int i = 1; i < maps->length(); ++i) {
6444 PropertyAccessInfo test_info(builder_, access_type_, maps->at(i), name_);
6445 if (!test_info.IsCompatible(this)) return false;
6452 Handle<Map> HOptimizedGraphBuilder::PropertyAccessInfo::map() {
6453 JSFunction* ctor = IC::GetRootConstructor(
6454 *map_, current_info()->closure()->context()->native_context());
6455 if (ctor != NULL) return handle(ctor->initial_map());
6460 static bool NeedsWrapping(Handle<Map> map, Handle<JSFunction> target) {
6461 return !map->IsJSObjectMap() &&
6462 is_sloppy(target->shared()->language_mode()) &&
6463 !target->shared()->native();
6467 bool HOptimizedGraphBuilder::PropertyAccessInfo::NeedsWrappingFor(
6468 Handle<JSFunction> target) const {
6469 return NeedsWrapping(map_, target);
6473 HValue* HOptimizedGraphBuilder::BuildMonomorphicAccess(
6474 PropertyAccessInfo* info, HValue* object, HValue* checked_object,
6475 HValue* value, BailoutId ast_id, BailoutId return_id,
6476 bool can_inline_accessor) {
6477 HObjectAccess access = HObjectAccess::ForMap(); // bogus default
6478 if (info->GetJSObjectFieldAccess(&access)) {
6479 DCHECK(info->IsLoad());
6480 return New<HLoadNamedField>(object, checked_object, access);
6483 if (info->GetJSArrayBufferViewFieldAccess(&access)) {
6484 DCHECK(info->IsLoad());
6485 checked_object = Add<HCheckArrayBufferNotNeutered>(checked_object);
6486 return New<HLoadNamedField>(object, checked_object, access);
6489 if (info->name().is_identical_to(isolate()->factory()->prototype_string()) &&
6490 info->map()->function_with_prototype()) {
6491 DCHECK(!info->map()->has_non_instance_prototype());
6492 return New<HLoadFunctionPrototype>(checked_object);
6495 HValue* checked_holder = checked_object;
6496 if (info->has_holder()) {
6497 Handle<JSObject> prototype(JSObject::cast(info->map()->prototype()));
6498 checked_holder = BuildCheckPrototypeMaps(prototype, info->holder());
6501 if (!info->IsFound()) {
6502 DCHECK(info->IsLoad());
6503 if (is_strong(function_language_mode())) {
6504 return New<HCallRuntime>(
6505 isolate()->factory()->empty_string(),
6506 Runtime::FunctionForId(Runtime::kThrowStrongModeImplicitConversion),
6509 return graph()->GetConstantUndefined();
6513 if (info->IsData()) {
6514 if (info->IsLoad()) {
6515 return BuildLoadNamedField(info, checked_holder);
6517 return BuildStoreNamedField(info, checked_object, value);
6521 if (info->IsTransition()) {
6522 DCHECK(!info->IsLoad());
6523 return BuildStoreNamedField(info, checked_object, value);
6526 if (info->IsAccessorConstant()) {
6527 Push(checked_object);
6528 int argument_count = 1;
6529 if (!info->IsLoad()) {
6534 if (info->NeedsWrappingFor(info->accessor())) {
6535 HValue* function = Add<HConstant>(info->accessor());
6536 PushArgumentsFromEnvironment(argument_count);
6537 return New<HCallFunction>(function, argument_count, WRAP_AND_CALL);
6538 } else if (FLAG_inline_accessors && can_inline_accessor) {
6539 bool success = info->IsLoad()
6540 ? TryInlineGetter(info->accessor(), info->map(), ast_id, return_id)
6542 info->accessor(), info->map(), ast_id, return_id, value);
6543 if (success || HasStackOverflow()) return NULL;
6546 PushArgumentsFromEnvironment(argument_count);
6547 return BuildCallConstantFunction(info->accessor(), argument_count);
6550 DCHECK(info->IsDataConstant());
6551 if (info->IsLoad()) {
6552 return New<HConstant>(info->constant());
6554 return New<HCheckValue>(value, Handle<JSFunction>::cast(info->constant()));
6559 void HOptimizedGraphBuilder::HandlePolymorphicNamedFieldAccess(
6560 PropertyAccessType access_type, Expression* expr, FeedbackVectorICSlot slot,
6561 BailoutId ast_id, BailoutId return_id, HValue* object, HValue* value,
6562 SmallMapList* maps, Handle<String> name) {
6563 // Something did not match; must use a polymorphic load.
6565 HBasicBlock* join = NULL;
6566 HBasicBlock* number_block = NULL;
6567 bool handled_string = false;
6569 bool handle_smi = false;
6570 STATIC_ASSERT(kMaxLoadPolymorphism == kMaxStorePolymorphism);
6572 for (i = 0; i < maps->length() && count < kMaxLoadPolymorphism; ++i) {
6573 PropertyAccessInfo info(this, access_type, maps->at(i), name);
6574 if (info.IsStringType()) {
6575 if (handled_string) continue;
6576 handled_string = true;
6578 if (info.CanAccessMonomorphic()) {
6580 if (info.IsNumberType()) {
6587 if (i < maps->length()) {
6593 HControlInstruction* smi_check = NULL;
6594 handled_string = false;
6596 for (i = 0; i < maps->length() && count < kMaxLoadPolymorphism; ++i) {
6597 PropertyAccessInfo info(this, access_type, maps->at(i), name);
6598 if (info.IsStringType()) {
6599 if (handled_string) continue;
6600 handled_string = true;
6602 if (!info.CanAccessMonomorphic()) continue;
6605 join = graph()->CreateBasicBlock();
6607 HBasicBlock* empty_smi_block = graph()->CreateBasicBlock();
6608 HBasicBlock* not_smi_block = graph()->CreateBasicBlock();
6609 number_block = graph()->CreateBasicBlock();
6610 smi_check = New<HIsSmiAndBranch>(
6611 object, empty_smi_block, not_smi_block);
6612 FinishCurrentBlock(smi_check);
6613 GotoNoSimulate(empty_smi_block, number_block);
6614 set_current_block(not_smi_block);
6616 BuildCheckHeapObject(object);
6620 HBasicBlock* if_true = graph()->CreateBasicBlock();
6621 HBasicBlock* if_false = graph()->CreateBasicBlock();
6622 HUnaryControlInstruction* compare;
6625 if (info.IsNumberType()) {
6626 Handle<Map> heap_number_map = isolate()->factory()->heap_number_map();
6627 compare = New<HCompareMap>(object, heap_number_map, if_true, if_false);
6628 dependency = smi_check;
6629 } else if (info.IsStringType()) {
6630 compare = New<HIsStringAndBranch>(object, if_true, if_false);
6631 dependency = compare;
6633 compare = New<HCompareMap>(object, info.map(), if_true, if_false);
6634 dependency = compare;
6636 FinishCurrentBlock(compare);
6638 if (info.IsNumberType()) {
6639 GotoNoSimulate(if_true, number_block);
6640 if_true = number_block;
6643 set_current_block(if_true);
6646 BuildMonomorphicAccess(&info, object, dependency, value, ast_id,
6647 return_id, FLAG_polymorphic_inlining);
6649 HValue* result = NULL;
6650 switch (access_type) {
6659 if (access == NULL) {
6660 if (HasStackOverflow()) return;
6662 if (access->IsInstruction()) {
6663 HInstruction* instr = HInstruction::cast(access);
6664 if (!instr->IsLinked()) AddInstruction(instr);
6666 if (!ast_context()->IsEffect()) Push(result);
6669 if (current_block() != NULL) Goto(join);
6670 set_current_block(if_false);
6673 // Finish up. Unconditionally deoptimize if we've handled all the maps we
6674 // know about and do not want to handle ones we've never seen. Otherwise
6675 // use a generic IC.
6676 if (count == maps->length() && FLAG_deoptimize_uncommon_cases) {
6677 FinishExitWithHardDeoptimization(
6678 Deoptimizer::kUnknownMapInPolymorphicAccess);
6680 HInstruction* instr =
6681 BuildNamedGeneric(access_type, expr, slot, object, name, value);
6682 AddInstruction(instr);
6683 if (!ast_context()->IsEffect()) Push(access_type == LOAD ? instr : value);
6688 Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
6689 if (!ast_context()->IsEffect()) ast_context()->ReturnValue(Pop());
6694 DCHECK(join != NULL);
6695 if (join->HasPredecessor()) {
6696 join->SetJoinId(ast_id);
6697 set_current_block(join);
6698 if (!ast_context()->IsEffect()) ast_context()->ReturnValue(Pop());
6700 set_current_block(NULL);
6705 static bool ComputeReceiverTypes(Expression* expr,
6709 SmallMapList* maps = expr->GetReceiverTypes();
6711 bool monomorphic = expr->IsMonomorphic();
6712 if (maps != NULL && receiver->HasMonomorphicJSObjectType()) {
6713 Map* root_map = receiver->GetMonomorphicJSObjectMap()->FindRootMap();
6714 maps->FilterForPossibleTransitions(root_map);
6715 monomorphic = maps->length() == 1;
6717 return monomorphic && CanInlinePropertyAccess(maps->first());
6721 static bool AreStringTypes(SmallMapList* maps) {
6722 for (int i = 0; i < maps->length(); i++) {
6723 if (maps->at(i)->instance_type() >= FIRST_NONSTRING_TYPE) return false;
6729 void HOptimizedGraphBuilder::BuildStore(Expression* expr, Property* prop,
6730 FeedbackVectorICSlot slot,
6731 BailoutId ast_id, BailoutId return_id,
6732 bool is_uninitialized) {
6733 if (!prop->key()->IsPropertyName()) {
6735 HValue* value = Pop();
6736 HValue* key = Pop();
6737 HValue* object = Pop();
6738 bool has_side_effects = false;
6740 HandleKeyedElementAccess(object, key, value, expr, slot, ast_id,
6741 return_id, STORE, &has_side_effects);
6742 if (has_side_effects) {
6743 if (!ast_context()->IsEffect()) Push(value);
6744 Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
6745 if (!ast_context()->IsEffect()) Drop(1);
6747 if (result == NULL) return;
6748 return ast_context()->ReturnValue(value);
6752 HValue* value = Pop();
6753 HValue* object = Pop();
6755 Literal* key = prop->key()->AsLiteral();
6756 Handle<String> name = Handle<String>::cast(key->value());
6757 DCHECK(!name.is_null());
6759 HValue* access = BuildNamedAccess(STORE, ast_id, return_id, expr, slot,
6760 object, name, value, is_uninitialized);
6761 if (access == NULL) return;
6763 if (!ast_context()->IsEffect()) Push(value);
6764 if (access->IsInstruction()) AddInstruction(HInstruction::cast(access));
6765 if (access->HasObservableSideEffects()) {
6766 Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
6768 if (!ast_context()->IsEffect()) Drop(1);
6769 return ast_context()->ReturnValue(value);
6773 void HOptimizedGraphBuilder::HandlePropertyAssignment(Assignment* expr) {
6774 Property* prop = expr->target()->AsProperty();
6775 DCHECK(prop != NULL);
6776 CHECK_ALIVE(VisitForValue(prop->obj()));
6777 if (!prop->key()->IsPropertyName()) {
6778 CHECK_ALIVE(VisitForValue(prop->key()));
6780 CHECK_ALIVE(VisitForValue(expr->value()));
6781 BuildStore(expr, prop, expr->AssignmentSlot(), expr->id(),
6782 expr->AssignmentId(), expr->IsUninitialized());
6786 // Because not every expression has a position and there is not common
6787 // superclass of Assignment and CountOperation, we cannot just pass the
6788 // owning expression instead of position and ast_id separately.
6789 void HOptimizedGraphBuilder::HandleGlobalVariableAssignment(
6790 Variable* var, HValue* value, FeedbackVectorICSlot ic_slot,
6792 Handle<GlobalObject> global(current_info()->global_object());
6794 // Lookup in script contexts.
6796 Handle<ScriptContextTable> script_contexts(
6797 global->native_context()->script_context_table());
6798 ScriptContextTable::LookupResult lookup;
6799 if (ScriptContextTable::Lookup(script_contexts, var->name(), &lookup)) {
6800 if (lookup.mode == CONST) {
6801 return Bailout(kNonInitializerAssignmentToConst);
6803 Handle<Context> script_context =
6804 ScriptContextTable::GetContext(script_contexts, lookup.context_index);
6806 Handle<Object> current_value =
6807 FixedArray::get(script_context, lookup.slot_index);
6809 // If the values is not the hole, it will stay initialized,
6810 // so no need to generate a check.
6811 if (*current_value == *isolate()->factory()->the_hole_value()) {
6812 return Bailout(kReferenceToUninitializedVariable);
6815 HStoreNamedField* instr = Add<HStoreNamedField>(
6816 Add<HConstant>(script_context),
6817 HObjectAccess::ForContextSlot(lookup.slot_index), value);
6819 DCHECK(instr->HasObservableSideEffects());
6820 Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
6825 LookupIterator it(global, var->name(), LookupIterator::OWN);
6826 GlobalPropertyAccess type = LookupGlobalProperty(var, &it, STORE);
6827 if (type == kUseCell) {
6828 Handle<PropertyCell> cell = it.GetPropertyCell();
6829 top_info()->dependencies()->AssumePropertyCell(cell);
6830 auto cell_type = it.property_details().cell_type();
6831 if (cell_type == PropertyCellType::kConstant ||
6832 cell_type == PropertyCellType::kUndefined) {
6833 Handle<Object> constant(cell->value(), isolate());
6834 if (value->IsConstant()) {
6835 HConstant* c_value = HConstant::cast(value);
6836 if (!constant.is_identical_to(c_value->handle(isolate()))) {
6837 Add<HDeoptimize>(Deoptimizer::kConstantGlobalVariableAssignment,
6838 Deoptimizer::EAGER);
6841 HValue* c_constant = Add<HConstant>(constant);
6842 IfBuilder builder(this);
6843 if (constant->IsNumber()) {
6844 builder.If<HCompareNumericAndBranch>(value, c_constant, Token::EQ);
6846 builder.If<HCompareObjectEqAndBranch>(value, c_constant);
6850 Add<HDeoptimize>(Deoptimizer::kConstantGlobalVariableAssignment,
6851 Deoptimizer::EAGER);
6855 HConstant* cell_constant = Add<HConstant>(cell);
6856 auto access = HObjectAccess::ForPropertyCellValue();
6857 if (cell_type == PropertyCellType::kConstantType) {
6858 switch (cell->GetConstantType()) {
6859 case PropertyCellConstantType::kSmi:
6860 access = access.WithRepresentation(Representation::Smi());
6862 case PropertyCellConstantType::kStableMap: {
6863 // The map may no longer be stable, deopt if it's ever different from
6864 // what is currently there, which will allow for restablization.
6865 Handle<Map> map(HeapObject::cast(cell->value())->map());
6866 Add<HCheckHeapObject>(value);
6867 value = Add<HCheckMaps>(value, map);
6868 access = access.WithRepresentation(Representation::HeapObject());
6873 HInstruction* instr = Add<HStoreNamedField>(cell_constant, access, value);
6874 instr->ClearChangesFlag(kInobjectFields);
6875 instr->SetChangesFlag(kGlobalVars);
6876 if (instr->HasObservableSideEffects()) {
6877 Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
6879 } else if (var->IsGlobalSlot()) {
6880 DCHECK(var->index() > 0);
6881 DCHECK(var->IsStaticGlobalObjectProperty());
6882 int slot_index = var->index();
6883 int depth = scope()->ContextChainLength(var->scope());
6885 HStoreGlobalViaContext* instr = Add<HStoreGlobalViaContext>(
6886 value, depth, slot_index, function_language_mode());
6888 DCHECK(instr->HasObservableSideEffects());
6889 Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
6892 HValue* global_object = Add<HLoadNamedField>(
6894 HObjectAccess::ForContextSlot(Context::GLOBAL_OBJECT_INDEX));
6895 HStoreNamedGeneric* instr =
6896 Add<HStoreNamedGeneric>(global_object, var->name(), value,
6897 function_language_mode(), PREMONOMORPHIC);
6898 if (FLAG_vector_stores) {
6899 Handle<TypeFeedbackVector> vector =
6900 handle(current_feedback_vector(), isolate());
6901 instr->SetVectorAndSlot(vector, ic_slot);
6904 DCHECK(instr->HasObservableSideEffects());
6905 Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
6910 void HOptimizedGraphBuilder::HandleCompoundAssignment(Assignment* expr) {
6911 Expression* target = expr->target();
6912 VariableProxy* proxy = target->AsVariableProxy();
6913 Property* prop = target->AsProperty();
6914 DCHECK(proxy == NULL || prop == NULL);
6916 // We have a second position recorded in the FullCodeGenerator to have
6917 // type feedback for the binary operation.
6918 BinaryOperation* operation = expr->binary_operation();
6920 if (proxy != NULL) {
6921 Variable* var = proxy->var();
6922 if (var->mode() == LET) {
6923 return Bailout(kUnsupportedLetCompoundAssignment);
6926 CHECK_ALIVE(VisitForValue(operation));
6928 switch (var->location()) {
6929 case VariableLocation::GLOBAL:
6930 case VariableLocation::UNALLOCATED:
6931 HandleGlobalVariableAssignment(var, Top(), expr->AssignmentSlot(),
6932 expr->AssignmentId());
6935 case VariableLocation::PARAMETER:
6936 case VariableLocation::LOCAL:
6937 if (var->mode() == CONST_LEGACY) {
6938 return Bailout(kUnsupportedConstCompoundAssignment);
6940 if (var->mode() == CONST) {
6941 return Bailout(kNonInitializerAssignmentToConst);
6943 BindIfLive(var, Top());
6946 case VariableLocation::CONTEXT: {
6947 // Bail out if we try to mutate a parameter value in a function
6948 // using the arguments object. We do not (yet) correctly handle the
6949 // arguments property of the function.
6950 if (current_info()->scope()->arguments() != NULL) {
6951 // Parameters will be allocated to context slots. We have no
6952 // direct way to detect that the variable is a parameter so we do
6953 // a linear search of the parameter variables.
6954 int count = current_info()->scope()->num_parameters();
6955 for (int i = 0; i < count; ++i) {
6956 if (var == current_info()->scope()->parameter(i)) {
6957 Bailout(kAssignmentToParameterFunctionUsesArgumentsObject);
6962 HStoreContextSlot::Mode mode;
6964 switch (var->mode()) {
6966 mode = HStoreContextSlot::kCheckDeoptimize;
6969 return Bailout(kNonInitializerAssignmentToConst);
6971 return ast_context()->ReturnValue(Pop());
6973 mode = HStoreContextSlot::kNoCheck;
6976 HValue* context = BuildContextChainWalk(var);
6977 HStoreContextSlot* instr = Add<HStoreContextSlot>(
6978 context, var->index(), mode, Top());
6979 if (instr->HasObservableSideEffects()) {
6980 Add<HSimulate>(expr->AssignmentId(), REMOVABLE_SIMULATE);
6985 case VariableLocation::LOOKUP:
6986 return Bailout(kCompoundAssignmentToLookupSlot);
6988 return ast_context()->ReturnValue(Pop());
6990 } else if (prop != NULL) {
6991 CHECK_ALIVE(VisitForValue(prop->obj()));
6992 HValue* object = Top();
6994 if (!prop->key()->IsPropertyName() || prop->IsStringAccess()) {
6995 CHECK_ALIVE(VisitForValue(prop->key()));
6999 CHECK_ALIVE(PushLoad(prop, object, key));
7001 CHECK_ALIVE(VisitForValue(expr->value()));
7002 HValue* right = Pop();
7003 HValue* left = Pop();
7005 Push(BuildBinaryOperation(operation, left, right, PUSH_BEFORE_SIMULATE));
7007 BuildStore(expr, prop, expr->AssignmentSlot(), expr->id(),
7008 expr->AssignmentId(), expr->IsUninitialized());
7010 return Bailout(kInvalidLhsInCompoundAssignment);
7015 void HOptimizedGraphBuilder::VisitAssignment(Assignment* expr) {
7016 DCHECK(!HasStackOverflow());
7017 DCHECK(current_block() != NULL);
7018 DCHECK(current_block()->HasPredecessor());
7019 VariableProxy* proxy = expr->target()->AsVariableProxy();
7020 Property* prop = expr->target()->AsProperty();
7021 DCHECK(proxy == NULL || prop == NULL);
7023 if (expr->is_compound()) {
7024 HandleCompoundAssignment(expr);
7029 HandlePropertyAssignment(expr);
7030 } else if (proxy != NULL) {
7031 Variable* var = proxy->var();
7033 if (var->mode() == CONST) {
7034 if (expr->op() != Token::INIT_CONST) {
7035 return Bailout(kNonInitializerAssignmentToConst);
7037 } else if (var->mode() == CONST_LEGACY) {
7038 if (expr->op() != Token::INIT_CONST_LEGACY) {
7039 CHECK_ALIVE(VisitForValue(expr->value()));
7040 return ast_context()->ReturnValue(Pop());
7043 if (var->IsStackAllocated()) {
7044 // We insert a use of the old value to detect unsupported uses of const
7045 // variables (e.g. initialization inside a loop).
7046 HValue* old_value = environment()->Lookup(var);
7047 Add<HUseConst>(old_value);
7051 if (proxy->IsArguments()) return Bailout(kAssignmentToArguments);
7053 // Handle the assignment.
7054 switch (var->location()) {
7055 case VariableLocation::GLOBAL:
7056 case VariableLocation::UNALLOCATED:
7057 CHECK_ALIVE(VisitForValue(expr->value()));
7058 HandleGlobalVariableAssignment(var, Top(), expr->AssignmentSlot(),
7059 expr->AssignmentId());
7060 return ast_context()->ReturnValue(Pop());
7062 case VariableLocation::PARAMETER:
7063 case VariableLocation::LOCAL: {
7064 // Perform an initialization check for let declared variables
7066 if (var->mode() == LET && expr->op() == Token::ASSIGN) {
7067 HValue* env_value = environment()->Lookup(var);
7068 if (env_value == graph()->GetConstantHole()) {
7069 return Bailout(kAssignmentToLetVariableBeforeInitialization);
7072 // We do not allow the arguments object to occur in a context where it
7073 // may escape, but assignments to stack-allocated locals are
7075 CHECK_ALIVE(VisitForValue(expr->value(), ARGUMENTS_ALLOWED));
7076 HValue* value = Pop();
7077 BindIfLive(var, value);
7078 return ast_context()->ReturnValue(value);
7081 case VariableLocation::CONTEXT: {
7082 // Bail out if we try to mutate a parameter value in a function using
7083 // the arguments object. We do not (yet) correctly handle the
7084 // arguments property of the function.
7085 if (current_info()->scope()->arguments() != NULL) {
7086 // Parameters will rewrite to context slots. We have no direct way
7087 // to detect that the variable is a parameter.
7088 int count = current_info()->scope()->num_parameters();
7089 for (int i = 0; i < count; ++i) {
7090 if (var == current_info()->scope()->parameter(i)) {
7091 return Bailout(kAssignmentToParameterInArgumentsObject);
7096 CHECK_ALIVE(VisitForValue(expr->value()));
7097 HStoreContextSlot::Mode mode;
7098 if (expr->op() == Token::ASSIGN) {
7099 switch (var->mode()) {
7101 mode = HStoreContextSlot::kCheckDeoptimize;
7104 // This case is checked statically so no need to
7105 // perform checks here
7108 return ast_context()->ReturnValue(Pop());
7110 mode = HStoreContextSlot::kNoCheck;
7112 } else if (expr->op() == Token::INIT_VAR ||
7113 expr->op() == Token::INIT_LET ||
7114 expr->op() == Token::INIT_CONST) {
7115 mode = HStoreContextSlot::kNoCheck;
7117 DCHECK(expr->op() == Token::INIT_CONST_LEGACY);
7119 mode = HStoreContextSlot::kCheckIgnoreAssignment;
7122 HValue* context = BuildContextChainWalk(var);
7123 HStoreContextSlot* instr = Add<HStoreContextSlot>(
7124 context, var->index(), mode, Top());
7125 if (instr->HasObservableSideEffects()) {
7126 Add<HSimulate>(expr->AssignmentId(), REMOVABLE_SIMULATE);
7128 return ast_context()->ReturnValue(Pop());
7131 case VariableLocation::LOOKUP:
7132 return Bailout(kAssignmentToLOOKUPVariable);
7135 return Bailout(kInvalidLeftHandSideInAssignment);
7140 void HOptimizedGraphBuilder::VisitYield(Yield* expr) {
7141 // Generators are not optimized, so we should never get here.
7146 void HOptimizedGraphBuilder::VisitThrow(Throw* expr) {
7147 DCHECK(!HasStackOverflow());
7148 DCHECK(current_block() != NULL);
7149 DCHECK(current_block()->HasPredecessor());
7150 if (!ast_context()->IsEffect()) {
7151 // The parser turns invalid left-hand sides in assignments into throw
7152 // statements, which may not be in effect contexts. We might still try
7153 // to optimize such functions; bail out now if we do.
7154 return Bailout(kInvalidLeftHandSideInAssignment);
7156 CHECK_ALIVE(VisitForValue(expr->exception()));
7158 HValue* value = environment()->Pop();
7159 if (!top_info()->is_tracking_positions()) SetSourcePosition(expr->position());
7160 Add<HPushArguments>(value);
7161 Add<HCallRuntime>(isolate()->factory()->empty_string(),
7162 Runtime::FunctionForId(Runtime::kThrow), 1);
7163 Add<HSimulate>(expr->id());
7165 // If the throw definitely exits the function, we can finish with a dummy
7166 // control flow at this point. This is not the case if the throw is inside
7167 // an inlined function which may be replaced.
7168 if (call_context() == NULL) {
7169 FinishExitCurrentBlock(New<HAbnormalExit>());
7174 HInstruction* HGraphBuilder::AddLoadStringInstanceType(HValue* string) {
7175 if (string->IsConstant()) {
7176 HConstant* c_string = HConstant::cast(string);
7177 if (c_string->HasStringValue()) {
7178 return Add<HConstant>(c_string->StringValue()->map()->instance_type());
7181 return Add<HLoadNamedField>(
7182 Add<HLoadNamedField>(string, nullptr, HObjectAccess::ForMap()), nullptr,
7183 HObjectAccess::ForMapInstanceType());
7187 HInstruction* HGraphBuilder::AddLoadStringLength(HValue* string) {
7188 return AddInstruction(BuildLoadStringLength(string));
7192 HInstruction* HGraphBuilder::BuildLoadStringLength(HValue* string) {
7193 if (string->IsConstant()) {
7194 HConstant* c_string = HConstant::cast(string);
7195 if (c_string->HasStringValue()) {
7196 return New<HConstant>(c_string->StringValue()->length());
7199 return New<HLoadNamedField>(string, nullptr,
7200 HObjectAccess::ForStringLength());
7204 HInstruction* HOptimizedGraphBuilder::BuildNamedGeneric(
7205 PropertyAccessType access_type, Expression* expr, FeedbackVectorICSlot slot,
7206 HValue* object, Handle<Name> name, HValue* value, bool is_uninitialized) {
7207 if (is_uninitialized) {
7209 Deoptimizer::kInsufficientTypeFeedbackForGenericNamedAccess,
7212 if (access_type == LOAD) {
7213 Handle<TypeFeedbackVector> vector =
7214 handle(current_feedback_vector(), isolate());
7216 if (!expr->AsProperty()->key()->IsPropertyName()) {
7217 // It's possible that a keyed load of a constant string was converted
7218 // to a named load. Here, at the last minute, we need to make sure to
7219 // use a generic Keyed Load if we are using the type vector, because
7220 // it has to share information with full code.
7221 HConstant* key = Add<HConstant>(name);
7222 HLoadKeyedGeneric* result = New<HLoadKeyedGeneric>(
7223 object, key, function_language_mode(), PREMONOMORPHIC);
7224 result->SetVectorAndSlot(vector, slot);
7228 HLoadNamedGeneric* result = New<HLoadNamedGeneric>(
7229 object, name, function_language_mode(), PREMONOMORPHIC);
7230 result->SetVectorAndSlot(vector, slot);
7233 if (FLAG_vector_stores &&
7234 current_feedback_vector()->GetKind(slot) == Code::KEYED_STORE_IC) {
7235 // It's possible that a keyed store of a constant string was converted
7236 // to a named store. Here, at the last minute, we need to make sure to
7237 // use a generic Keyed Store if we are using the type vector, because
7238 // it has to share information with full code.
7239 HConstant* key = Add<HConstant>(name);
7240 HStoreKeyedGeneric* result = New<HStoreKeyedGeneric>(
7241 object, key, value, function_language_mode(), PREMONOMORPHIC);
7242 Handle<TypeFeedbackVector> vector =
7243 handle(current_feedback_vector(), isolate());
7244 result->SetVectorAndSlot(vector, slot);
7248 HStoreNamedGeneric* result = New<HStoreNamedGeneric>(
7249 object, name, value, function_language_mode(), PREMONOMORPHIC);
7250 if (FLAG_vector_stores) {
7251 Handle<TypeFeedbackVector> vector =
7252 handle(current_feedback_vector(), isolate());
7253 result->SetVectorAndSlot(vector, slot);
7260 HInstruction* HOptimizedGraphBuilder::BuildKeyedGeneric(
7261 PropertyAccessType access_type, Expression* expr, FeedbackVectorICSlot slot,
7262 HValue* object, HValue* key, HValue* value) {
7263 if (access_type == LOAD) {
7264 InlineCacheState initial_state = expr->AsProperty()->GetInlineCacheState();
7265 HLoadKeyedGeneric* result = New<HLoadKeyedGeneric>(
7266 object, key, function_language_mode(), initial_state);
7267 // HLoadKeyedGeneric with vector ics benefits from being encoded as
7268 // MEGAMORPHIC because the vector/slot combo becomes unnecessary.
7269 if (initial_state != MEGAMORPHIC) {
7270 // We need to pass vector information.
7271 Handle<TypeFeedbackVector> vector =
7272 handle(current_feedback_vector(), isolate());
7273 result->SetVectorAndSlot(vector, slot);
7277 HStoreKeyedGeneric* result = New<HStoreKeyedGeneric>(
7278 object, key, value, function_language_mode(), PREMONOMORPHIC);
7279 if (FLAG_vector_stores) {
7280 Handle<TypeFeedbackVector> vector =
7281 handle(current_feedback_vector(), isolate());
7282 result->SetVectorAndSlot(vector, slot);
7289 LoadKeyedHoleMode HOptimizedGraphBuilder::BuildKeyedHoleMode(Handle<Map> map) {
7290 // Loads from a "stock" fast holey double arrays can elide the hole check.
7291 // Loads from a "stock" fast holey array can convert the hole to undefined
7293 LoadKeyedHoleMode load_mode = NEVER_RETURN_HOLE;
7294 bool holey_double_elements =
7295 *map == isolate()->get_initial_js_array_map(FAST_HOLEY_DOUBLE_ELEMENTS);
7296 bool holey_elements =
7297 *map == isolate()->get_initial_js_array_map(FAST_HOLEY_ELEMENTS);
7298 if ((holey_double_elements || holey_elements) &&
7299 isolate()->IsFastArrayConstructorPrototypeChainIntact()) {
7301 holey_double_elements ? ALLOW_RETURN_HOLE : CONVERT_HOLE_TO_UNDEFINED;
7303 Handle<JSObject> prototype(JSObject::cast(map->prototype()), isolate());
7304 Handle<JSObject> object_prototype = isolate()->initial_object_prototype();
7305 BuildCheckPrototypeMaps(prototype, object_prototype);
7306 graph()->MarkDependsOnEmptyArrayProtoElements();
7312 HInstruction* HOptimizedGraphBuilder::BuildMonomorphicElementAccess(
7318 PropertyAccessType access_type,
7319 KeyedAccessStoreMode store_mode) {
7320 HCheckMaps* checked_object = Add<HCheckMaps>(object, map, dependency);
7322 if (access_type == STORE && map->prototype()->IsJSObject()) {
7323 // monomorphic stores need a prototype chain check because shape
7324 // changes could allow callbacks on elements in the chain that
7325 // aren't compatible with monomorphic keyed stores.
7326 PrototypeIterator iter(map);
7327 JSObject* holder = NULL;
7328 while (!iter.IsAtEnd()) {
7329 holder = JSObject::cast(*PrototypeIterator::GetCurrent(iter));
7332 DCHECK(holder && holder->IsJSObject());
7334 BuildCheckPrototypeMaps(handle(JSObject::cast(map->prototype())),
7335 Handle<JSObject>(holder));
7338 LoadKeyedHoleMode load_mode = BuildKeyedHoleMode(map);
7339 return BuildUncheckedMonomorphicElementAccess(
7340 checked_object, key, val,
7341 map->instance_type() == JS_ARRAY_TYPE,
7342 map->elements_kind(), access_type,
7343 load_mode, store_mode);
7347 static bool CanInlineElementAccess(Handle<Map> map) {
7348 return map->IsJSObjectMap() && !map->has_dictionary_elements() &&
7349 !map->has_sloppy_arguments_elements() &&
7350 !map->has_indexed_interceptor() && !map->is_access_check_needed();
7354 HInstruction* HOptimizedGraphBuilder::TryBuildConsolidatedElementLoad(
7358 SmallMapList* maps) {
7359 // For polymorphic loads of similar elements kinds (i.e. all tagged or all
7360 // double), always use the "worst case" code without a transition. This is
7361 // much faster than transitioning the elements to the worst case, trading a
7362 // HTransitionElements for a HCheckMaps, and avoiding mutation of the array.
7363 bool has_double_maps = false;
7364 bool has_smi_or_object_maps = false;
7365 bool has_js_array_access = false;
7366 bool has_non_js_array_access = false;
7367 bool has_seen_holey_elements = false;
7368 Handle<Map> most_general_consolidated_map;
7369 for (int i = 0; i < maps->length(); ++i) {
7370 Handle<Map> map = maps->at(i);
7371 if (!CanInlineElementAccess(map)) return NULL;
7372 // Don't allow mixing of JSArrays with JSObjects.
7373 if (map->instance_type() == JS_ARRAY_TYPE) {
7374 if (has_non_js_array_access) return NULL;
7375 has_js_array_access = true;
7376 } else if (has_js_array_access) {
7379 has_non_js_array_access = true;
7381 // Don't allow mixed, incompatible elements kinds.
7382 if (map->has_fast_double_elements()) {
7383 if (has_smi_or_object_maps) return NULL;
7384 has_double_maps = true;
7385 } else if (map->has_fast_smi_or_object_elements()) {
7386 if (has_double_maps) return NULL;
7387 has_smi_or_object_maps = true;
7391 // Remember if we've ever seen holey elements.
7392 if (IsHoleyElementsKind(map->elements_kind())) {
7393 has_seen_holey_elements = true;
7395 // Remember the most general elements kind, the code for its load will
7396 // properly handle all of the more specific cases.
7397 if ((i == 0) || IsMoreGeneralElementsKindTransition(
7398 most_general_consolidated_map->elements_kind(),
7399 map->elements_kind())) {
7400 most_general_consolidated_map = map;
7403 if (!has_double_maps && !has_smi_or_object_maps) return NULL;
7405 HCheckMaps* checked_object = Add<HCheckMaps>(object, maps);
7406 // FAST_ELEMENTS is considered more general than FAST_HOLEY_SMI_ELEMENTS.
7407 // If we've seen both, the consolidated load must use FAST_HOLEY_ELEMENTS.
7408 ElementsKind consolidated_elements_kind = has_seen_holey_elements
7409 ? GetHoleyElementsKind(most_general_consolidated_map->elements_kind())
7410 : most_general_consolidated_map->elements_kind();
7411 HInstruction* instr = BuildUncheckedMonomorphicElementAccess(
7412 checked_object, key, val,
7413 most_general_consolidated_map->instance_type() == JS_ARRAY_TYPE,
7414 consolidated_elements_kind,
7415 LOAD, NEVER_RETURN_HOLE, STANDARD_STORE);
7420 HValue* HOptimizedGraphBuilder::HandlePolymorphicElementAccess(
7421 Expression* expr, FeedbackVectorICSlot slot, HValue* object, HValue* key,
7422 HValue* val, SmallMapList* maps, PropertyAccessType access_type,
7423 KeyedAccessStoreMode store_mode, bool* has_side_effects) {
7424 *has_side_effects = false;
7425 BuildCheckHeapObject(object);
7427 if (access_type == LOAD) {
7428 HInstruction* consolidated_load =
7429 TryBuildConsolidatedElementLoad(object, key, val, maps);
7430 if (consolidated_load != NULL) {
7431 *has_side_effects |= consolidated_load->HasObservableSideEffects();
7432 return consolidated_load;
7436 // Elements_kind transition support.
7437 MapHandleList transition_target(maps->length());
7438 // Collect possible transition targets.
7439 MapHandleList possible_transitioned_maps(maps->length());
7440 for (int i = 0; i < maps->length(); ++i) {
7441 Handle<Map> map = maps->at(i);
7442 // Loads from strings or loads with a mix of string and non-string maps
7443 // shouldn't be handled polymorphically.
7444 DCHECK(access_type != LOAD || !map->IsStringMap());
7445 ElementsKind elements_kind = map->elements_kind();
7446 if (CanInlineElementAccess(map) && IsFastElementsKind(elements_kind) &&
7447 elements_kind != GetInitialFastElementsKind()) {
7448 possible_transitioned_maps.Add(map);
7450 if (IsSloppyArgumentsElements(elements_kind)) {
7451 HInstruction* result =
7452 BuildKeyedGeneric(access_type, expr, slot, object, key, val);
7453 *has_side_effects = result->HasObservableSideEffects();
7454 return AddInstruction(result);
7457 // Get transition target for each map (NULL == no transition).
7458 for (int i = 0; i < maps->length(); ++i) {
7459 Handle<Map> map = maps->at(i);
7460 Handle<Map> transitioned_map =
7461 Map::FindTransitionedMap(map, &possible_transitioned_maps);
7462 transition_target.Add(transitioned_map);
7465 MapHandleList untransitionable_maps(maps->length());
7466 HTransitionElementsKind* transition = NULL;
7467 for (int i = 0; i < maps->length(); ++i) {
7468 Handle<Map> map = maps->at(i);
7469 DCHECK(map->IsMap());
7470 if (!transition_target.at(i).is_null()) {
7471 DCHECK(Map::IsValidElementsTransition(
7472 map->elements_kind(),
7473 transition_target.at(i)->elements_kind()));
7474 transition = Add<HTransitionElementsKind>(object, map,
7475 transition_target.at(i));
7477 untransitionable_maps.Add(map);
7481 // If only one map is left after transitioning, handle this case
7483 DCHECK(untransitionable_maps.length() >= 1);
7484 if (untransitionable_maps.length() == 1) {
7485 Handle<Map> untransitionable_map = untransitionable_maps[0];
7486 HInstruction* instr = NULL;
7487 if (!CanInlineElementAccess(untransitionable_map)) {
7488 instr = AddInstruction(
7489 BuildKeyedGeneric(access_type, expr, slot, object, key, val));
7491 instr = BuildMonomorphicElementAccess(
7492 object, key, val, transition, untransitionable_map, access_type,
7495 *has_side_effects |= instr->HasObservableSideEffects();
7496 return access_type == STORE ? val : instr;
7499 HBasicBlock* join = graph()->CreateBasicBlock();
7501 for (int i = 0; i < untransitionable_maps.length(); ++i) {
7502 Handle<Map> map = untransitionable_maps[i];
7503 ElementsKind elements_kind = map->elements_kind();
7504 HBasicBlock* this_map = graph()->CreateBasicBlock();
7505 HBasicBlock* other_map = graph()->CreateBasicBlock();
7506 HCompareMap* mapcompare =
7507 New<HCompareMap>(object, map, this_map, other_map);
7508 FinishCurrentBlock(mapcompare);
7510 set_current_block(this_map);
7511 HInstruction* access = NULL;
7512 if (!CanInlineElementAccess(map)) {
7513 access = AddInstruction(
7514 BuildKeyedGeneric(access_type, expr, slot, object, key, val));
7516 DCHECK(IsFastElementsKind(elements_kind) ||
7517 IsFixedTypedArrayElementsKind(elements_kind));
7518 LoadKeyedHoleMode load_mode = BuildKeyedHoleMode(map);
7519 // Happily, mapcompare is a checked object.
7520 access = BuildUncheckedMonomorphicElementAccess(
7521 mapcompare, key, val,
7522 map->instance_type() == JS_ARRAY_TYPE,
7523 elements_kind, access_type,
7527 *has_side_effects |= access->HasObservableSideEffects();
7528 // The caller will use has_side_effects and add a correct Simulate.
7529 access->SetFlag(HValue::kHasNoObservableSideEffects);
7530 if (access_type == LOAD) {
7533 NoObservableSideEffectsScope scope(this);
7534 GotoNoSimulate(join);
7535 set_current_block(other_map);
7538 // Ensure that we visited at least one map above that goes to join. This is
7539 // necessary because FinishExitWithHardDeoptimization does an AbnormalExit
7540 // rather than joining the join block. If this becomes an issue, insert a
7541 // generic access in the case length() == 0.
7542 DCHECK(join->predecessors()->length() > 0);
7543 // Deopt if none of the cases matched.
7544 NoObservableSideEffectsScope scope(this);
7545 FinishExitWithHardDeoptimization(
7546 Deoptimizer::kUnknownMapInPolymorphicElementAccess);
7547 set_current_block(join);
7548 return access_type == STORE ? val : Pop();
7552 HValue* HOptimizedGraphBuilder::HandleKeyedElementAccess(
7553 HValue* obj, HValue* key, HValue* val, Expression* expr,
7554 FeedbackVectorICSlot slot, BailoutId ast_id, BailoutId return_id,
7555 PropertyAccessType access_type, bool* has_side_effects) {
7556 if (key->ActualValue()->IsConstant()) {
7557 Handle<Object> constant =
7558 HConstant::cast(key->ActualValue())->handle(isolate());
7559 uint32_t array_index;
7560 if (constant->IsString() &&
7561 !Handle<String>::cast(constant)->AsArrayIndex(&array_index)) {
7562 if (!constant->IsUniqueName()) {
7563 constant = isolate()->factory()->InternalizeString(
7564 Handle<String>::cast(constant));
7567 BuildNamedAccess(access_type, ast_id, return_id, expr, slot, obj,
7568 Handle<String>::cast(constant), val, false);
7569 if (access == NULL || access->IsPhi() ||
7570 HInstruction::cast(access)->IsLinked()) {
7571 *has_side_effects = false;
7573 HInstruction* instr = HInstruction::cast(access);
7574 AddInstruction(instr);
7575 *has_side_effects = instr->HasObservableSideEffects();
7581 DCHECK(!expr->IsPropertyName());
7582 HInstruction* instr = NULL;
7585 bool monomorphic = ComputeReceiverTypes(expr, obj, &maps, zone());
7587 bool force_generic = false;
7588 if (expr->GetKeyType() == PROPERTY) {
7589 // Non-Generic accesses assume that elements are being accessed, and will
7590 // deopt for non-index keys, which the IC knows will occur.
7591 // TODO(jkummerow): Consider adding proper support for property accesses.
7592 force_generic = true;
7593 monomorphic = false;
7594 } else if (access_type == STORE &&
7595 (monomorphic || (maps != NULL && !maps->is_empty()))) {
7596 // Stores can't be mono/polymorphic if their prototype chain has dictionary
7597 // elements. However a receiver map that has dictionary elements itself
7598 // should be left to normal mono/poly behavior (the other maps may benefit
7599 // from highly optimized stores).
7600 for (int i = 0; i < maps->length(); i++) {
7601 Handle<Map> current_map = maps->at(i);
7602 if (current_map->DictionaryElementsInPrototypeChainOnly()) {
7603 force_generic = true;
7604 monomorphic = false;
7608 } else if (access_type == LOAD && !monomorphic &&
7609 (maps != NULL && !maps->is_empty())) {
7610 // Polymorphic loads have to go generic if any of the maps are strings.
7611 // If some, but not all of the maps are strings, we should go generic
7612 // because polymorphic access wants to key on ElementsKind and isn't
7613 // compatible with strings.
7614 for (int i = 0; i < maps->length(); i++) {
7615 Handle<Map> current_map = maps->at(i);
7616 if (current_map->IsStringMap()) {
7617 force_generic = true;
7624 Handle<Map> map = maps->first();
7625 if (!CanInlineElementAccess(map)) {
7626 instr = AddInstruction(
7627 BuildKeyedGeneric(access_type, expr, slot, obj, key, val));
7629 BuildCheckHeapObject(obj);
7630 instr = BuildMonomorphicElementAccess(
7631 obj, key, val, NULL, map, access_type, expr->GetStoreMode());
7633 } else if (!force_generic && (maps != NULL && !maps->is_empty())) {
7634 return HandlePolymorphicElementAccess(expr, slot, obj, key, val, maps,
7635 access_type, expr->GetStoreMode(),
7638 if (access_type == STORE) {
7639 if (expr->IsAssignment() &&
7640 expr->AsAssignment()->HasNoTypeInformation()) {
7641 Add<HDeoptimize>(Deoptimizer::kInsufficientTypeFeedbackForKeyedStore,
7645 if (expr->AsProperty()->HasNoTypeInformation()) {
7646 Add<HDeoptimize>(Deoptimizer::kInsufficientTypeFeedbackForKeyedLoad,
7650 instr = AddInstruction(
7651 BuildKeyedGeneric(access_type, expr, slot, obj, key, val));
7653 *has_side_effects = instr->HasObservableSideEffects();
7658 void HOptimizedGraphBuilder::EnsureArgumentsArePushedForAccess() {
7659 // Outermost function already has arguments on the stack.
7660 if (function_state()->outer() == NULL) return;
7662 if (function_state()->arguments_pushed()) return;
7664 // Push arguments when entering inlined function.
7665 HEnterInlined* entry = function_state()->entry();
7666 entry->set_arguments_pushed();
7668 HArgumentsObject* arguments = entry->arguments_object();
7669 const ZoneList<HValue*>* arguments_values = arguments->arguments_values();
7671 HInstruction* insert_after = entry;
7672 for (int i = 0; i < arguments_values->length(); i++) {
7673 HValue* argument = arguments_values->at(i);
7674 HInstruction* push_argument = New<HPushArguments>(argument);
7675 push_argument->InsertAfter(insert_after);
7676 insert_after = push_argument;
7679 HArgumentsElements* arguments_elements = New<HArgumentsElements>(true);
7680 arguments_elements->ClearFlag(HValue::kUseGVN);
7681 arguments_elements->InsertAfter(insert_after);
7682 function_state()->set_arguments_elements(arguments_elements);
7686 bool HOptimizedGraphBuilder::TryArgumentsAccess(Property* expr) {
7687 VariableProxy* proxy = expr->obj()->AsVariableProxy();
7688 if (proxy == NULL) return false;
7689 if (!proxy->var()->IsStackAllocated()) return false;
7690 if (!environment()->Lookup(proxy->var())->CheckFlag(HValue::kIsArguments)) {
7694 HInstruction* result = NULL;
7695 if (expr->key()->IsPropertyName()) {
7696 Handle<String> name = expr->key()->AsLiteral()->AsPropertyName();
7697 if (!String::Equals(name, isolate()->factory()->length_string())) {
7701 if (function_state()->outer() == NULL) {
7702 HInstruction* elements = Add<HArgumentsElements>(false);
7703 result = New<HArgumentsLength>(elements);
7705 // Number of arguments without receiver.
7706 int argument_count = environment()->
7707 arguments_environment()->parameter_count() - 1;
7708 result = New<HConstant>(argument_count);
7711 Push(graph()->GetArgumentsObject());
7712 CHECK_ALIVE_OR_RETURN(VisitForValue(expr->key()), true);
7713 HValue* key = Pop();
7714 Drop(1); // Arguments object.
7715 if (function_state()->outer() == NULL) {
7716 HInstruction* elements = Add<HArgumentsElements>(false);
7717 HInstruction* length = Add<HArgumentsLength>(elements);
7718 HInstruction* checked_key = Add<HBoundsCheck>(key, length);
7719 result = New<HAccessArgumentsAt>(elements, length, checked_key);
7721 EnsureArgumentsArePushedForAccess();
7723 // Number of arguments without receiver.
7724 HInstruction* elements = function_state()->arguments_elements();
7725 int argument_count = environment()->
7726 arguments_environment()->parameter_count() - 1;
7727 HInstruction* length = Add<HConstant>(argument_count);
7728 HInstruction* checked_key = Add<HBoundsCheck>(key, length);
7729 result = New<HAccessArgumentsAt>(elements, length, checked_key);
7732 ast_context()->ReturnInstruction(result, expr->id());
7737 HValue* HOptimizedGraphBuilder::BuildNamedAccess(
7738 PropertyAccessType access, BailoutId ast_id, BailoutId return_id,
7739 Expression* expr, FeedbackVectorICSlot slot, HValue* object,
7740 Handle<String> name, HValue* value, bool is_uninitialized) {
7742 ComputeReceiverTypes(expr, object, &maps, zone());
7743 DCHECK(maps != NULL);
7745 if (maps->length() > 0) {
7746 PropertyAccessInfo info(this, access, maps->first(), name);
7747 if (!info.CanAccessAsMonomorphic(maps)) {
7748 HandlePolymorphicNamedFieldAccess(access, expr, slot, ast_id, return_id,
7749 object, value, maps, name);
7753 HValue* checked_object;
7754 // Type::Number() is only supported by polymorphic load/call handling.
7755 DCHECK(!info.IsNumberType());
7756 BuildCheckHeapObject(object);
7757 if (AreStringTypes(maps)) {
7759 Add<HCheckInstanceType>(object, HCheckInstanceType::IS_STRING);
7761 checked_object = Add<HCheckMaps>(object, maps);
7763 return BuildMonomorphicAccess(
7764 &info, object, checked_object, value, ast_id, return_id);
7767 return BuildNamedGeneric(access, expr, slot, object, name, value,
7772 void HOptimizedGraphBuilder::PushLoad(Property* expr,
7775 ValueContext for_value(this, ARGUMENTS_NOT_ALLOWED);
7777 if (key != NULL) Push(key);
7778 BuildLoad(expr, expr->LoadId());
7782 void HOptimizedGraphBuilder::BuildLoad(Property* expr,
7784 HInstruction* instr = NULL;
7785 if (expr->IsStringAccess()) {
7786 HValue* index = Pop();
7787 HValue* string = Pop();
7788 HInstruction* char_code = BuildStringCharCodeAt(string, index);
7789 AddInstruction(char_code);
7790 instr = NewUncasted<HStringCharFromCode>(char_code);
7792 } else if (expr->key()->IsPropertyName()) {
7793 Handle<String> name = expr->key()->AsLiteral()->AsPropertyName();
7794 HValue* object = Pop();
7796 HValue* value = BuildNamedAccess(LOAD, ast_id, expr->LoadId(), expr,
7797 expr->PropertyFeedbackSlot(), object, name,
7798 NULL, expr->IsUninitialized());
7799 if (value == NULL) return;
7800 if (value->IsPhi()) return ast_context()->ReturnValue(value);
7801 instr = HInstruction::cast(value);
7802 if (instr->IsLinked()) return ast_context()->ReturnValue(instr);
7805 HValue* key = Pop();
7806 HValue* obj = Pop();
7808 bool has_side_effects = false;
7809 HValue* load = HandleKeyedElementAccess(
7810 obj, key, NULL, expr, expr->PropertyFeedbackSlot(), ast_id,
7811 expr->LoadId(), LOAD, &has_side_effects);
7812 if (has_side_effects) {
7813 if (ast_context()->IsEffect()) {
7814 Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
7817 Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
7821 if (load == NULL) return;
7822 return ast_context()->ReturnValue(load);
7824 return ast_context()->ReturnInstruction(instr, ast_id);
7828 void HOptimizedGraphBuilder::VisitProperty(Property* expr) {
7829 DCHECK(!HasStackOverflow());
7830 DCHECK(current_block() != NULL);
7831 DCHECK(current_block()->HasPredecessor());
7833 if (TryArgumentsAccess(expr)) return;
7835 CHECK_ALIVE(VisitForValue(expr->obj()));
7836 if (!expr->key()->IsPropertyName() || expr->IsStringAccess()) {
7837 CHECK_ALIVE(VisitForValue(expr->key()));
7840 BuildLoad(expr, expr->id());
7844 HInstruction* HGraphBuilder::BuildConstantMapCheck(Handle<JSObject> constant) {
7845 HCheckMaps* check = Add<HCheckMaps>(
7846 Add<HConstant>(constant), handle(constant->map()));
7847 check->ClearDependsOnFlag(kElementsKind);
7852 HInstruction* HGraphBuilder::BuildCheckPrototypeMaps(Handle<JSObject> prototype,
7853 Handle<JSObject> holder) {
7854 PrototypeIterator iter(isolate(), prototype,
7855 PrototypeIterator::START_AT_RECEIVER);
7856 while (holder.is_null() ||
7857 !PrototypeIterator::GetCurrent(iter).is_identical_to(holder)) {
7858 BuildConstantMapCheck(
7859 Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)));
7861 if (iter.IsAtEnd()) {
7865 return BuildConstantMapCheck(
7866 Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)));
7870 void HOptimizedGraphBuilder::AddCheckPrototypeMaps(Handle<JSObject> holder,
7871 Handle<Map> receiver_map) {
7872 if (!holder.is_null()) {
7873 Handle<JSObject> prototype(JSObject::cast(receiver_map->prototype()));
7874 BuildCheckPrototypeMaps(prototype, holder);
7879 HInstruction* HOptimizedGraphBuilder::NewPlainFunctionCall(
7880 HValue* fun, int argument_count, bool pass_argument_count) {
7881 return New<HCallJSFunction>(fun, argument_count, pass_argument_count);
7885 HInstruction* HOptimizedGraphBuilder::NewArgumentAdaptorCall(
7886 HValue* fun, HValue* context,
7887 int argument_count, HValue* expected_param_count) {
7888 ArgumentAdaptorDescriptor descriptor(isolate());
7889 HValue* arity = Add<HConstant>(argument_count - 1);
7891 HValue* op_vals[] = { context, fun, arity, expected_param_count };
7893 Handle<Code> adaptor =
7894 isolate()->builtins()->ArgumentsAdaptorTrampoline();
7895 HConstant* adaptor_value = Add<HConstant>(adaptor);
7897 return New<HCallWithDescriptor>(adaptor_value, argument_count, descriptor,
7898 Vector<HValue*>(op_vals, arraysize(op_vals)));
7902 HInstruction* HOptimizedGraphBuilder::BuildCallConstantFunction(
7903 Handle<JSFunction> jsfun, int argument_count) {
7904 HValue* target = Add<HConstant>(jsfun);
7905 // For constant functions, we try to avoid calling the
7906 // argument adaptor and instead call the function directly
7907 int formal_parameter_count =
7908 jsfun->shared()->internal_formal_parameter_count();
7909 bool dont_adapt_arguments =
7910 (formal_parameter_count ==
7911 SharedFunctionInfo::kDontAdaptArgumentsSentinel);
7912 int arity = argument_count - 1;
7913 bool can_invoke_directly =
7914 dont_adapt_arguments || formal_parameter_count == arity;
7915 if (can_invoke_directly) {
7916 if (jsfun.is_identical_to(current_info()->closure())) {
7917 graph()->MarkRecursive();
7919 return NewPlainFunctionCall(target, argument_count, dont_adapt_arguments);
7921 HValue* param_count_value = Add<HConstant>(formal_parameter_count);
7922 HValue* context = Add<HLoadNamedField>(
7923 target, nullptr, HObjectAccess::ForFunctionContextPointer());
7924 return NewArgumentAdaptorCall(target, context,
7925 argument_count, param_count_value);
7932 class FunctionSorter {
7934 explicit FunctionSorter(int index = 0, int ticks = 0, int size = 0)
7935 : index_(index), ticks_(ticks), size_(size) {}
7937 int index() const { return index_; }
7938 int ticks() const { return ticks_; }
7939 int size() const { return size_; }
7948 inline bool operator<(const FunctionSorter& lhs, const FunctionSorter& rhs) {
7949 int diff = lhs.ticks() - rhs.ticks();
7950 if (diff != 0) return diff > 0;
7951 return lhs.size() < rhs.size();
7955 void HOptimizedGraphBuilder::HandlePolymorphicCallNamed(Call* expr,
7958 Handle<String> name) {
7959 int argument_count = expr->arguments()->length() + 1; // Includes receiver.
7960 FunctionSorter order[kMaxCallPolymorphism];
7962 bool handle_smi = false;
7963 bool handled_string = false;
7964 int ordered_functions = 0;
7967 for (i = 0; i < maps->length() && ordered_functions < kMaxCallPolymorphism;
7969 PropertyAccessInfo info(this, LOAD, maps->at(i), name);
7970 if (info.CanAccessMonomorphic() && info.IsDataConstant() &&
7971 info.constant()->IsJSFunction()) {
7972 if (info.IsStringType()) {
7973 if (handled_string) continue;
7974 handled_string = true;
7976 Handle<JSFunction> target = Handle<JSFunction>::cast(info.constant());
7977 if (info.IsNumberType()) {
7980 expr->set_target(target);
7981 order[ordered_functions++] = FunctionSorter(
7982 i, target->shared()->profiler_ticks(), InliningAstSize(target));
7986 std::sort(order, order + ordered_functions);
7988 if (i < maps->length()) {
7990 ordered_functions = -1;
7993 HBasicBlock* number_block = NULL;
7994 HBasicBlock* join = NULL;
7995 handled_string = false;
7998 for (int fn = 0; fn < ordered_functions; ++fn) {
7999 int i = order[fn].index();
8000 PropertyAccessInfo info(this, LOAD, maps->at(i), name);
8001 if (info.IsStringType()) {
8002 if (handled_string) continue;
8003 handled_string = true;
8005 // Reloads the target.
8006 info.CanAccessMonomorphic();
8007 Handle<JSFunction> target = Handle<JSFunction>::cast(info.constant());
8009 expr->set_target(target);
8011 // Only needed once.
8012 join = graph()->CreateBasicBlock();
8014 HBasicBlock* empty_smi_block = graph()->CreateBasicBlock();
8015 HBasicBlock* not_smi_block = graph()->CreateBasicBlock();
8016 number_block = graph()->CreateBasicBlock();
8017 FinishCurrentBlock(New<HIsSmiAndBranch>(
8018 receiver, empty_smi_block, not_smi_block));
8019 GotoNoSimulate(empty_smi_block, number_block);
8020 set_current_block(not_smi_block);
8022 BuildCheckHeapObject(receiver);
8026 HBasicBlock* if_true = graph()->CreateBasicBlock();
8027 HBasicBlock* if_false = graph()->CreateBasicBlock();
8028 HUnaryControlInstruction* compare;
8030 Handle<Map> map = info.map();
8031 if (info.IsNumberType()) {
8032 Handle<Map> heap_number_map = isolate()->factory()->heap_number_map();
8033 compare = New<HCompareMap>(receiver, heap_number_map, if_true, if_false);
8034 } else if (info.IsStringType()) {
8035 compare = New<HIsStringAndBranch>(receiver, if_true, if_false);
8037 compare = New<HCompareMap>(receiver, map, if_true, if_false);
8039 FinishCurrentBlock(compare);
8041 if (info.IsNumberType()) {
8042 GotoNoSimulate(if_true, number_block);
8043 if_true = number_block;
8046 set_current_block(if_true);
8048 AddCheckPrototypeMaps(info.holder(), map);
8050 HValue* function = Add<HConstant>(expr->target());
8051 environment()->SetExpressionStackAt(0, function);
8053 CHECK_ALIVE(VisitExpressions(expr->arguments()));
8054 bool needs_wrapping = info.NeedsWrappingFor(target);
8055 bool try_inline = FLAG_polymorphic_inlining && !needs_wrapping;
8056 if (FLAG_trace_inlining && try_inline) {
8057 Handle<JSFunction> caller = current_info()->closure();
8058 base::SmartArrayPointer<char> caller_name =
8059 caller->shared()->DebugName()->ToCString();
8060 PrintF("Trying to inline the polymorphic call to %s from %s\n",
8061 name->ToCString().get(),
8064 if (try_inline && TryInlineCall(expr)) {
8065 // Trying to inline will signal that we should bailout from the
8066 // entire compilation by setting stack overflow on the visitor.
8067 if (HasStackOverflow()) return;
8069 // Since HWrapReceiver currently cannot actually wrap numbers and strings,
8070 // use the regular CallFunctionStub for method calls to wrap the receiver.
8071 // TODO(verwaest): Support creation of value wrappers directly in
8073 HInstruction* call = needs_wrapping
8074 ? NewUncasted<HCallFunction>(
8075 function, argument_count, WRAP_AND_CALL)
8076 : BuildCallConstantFunction(target, argument_count);
8077 PushArgumentsFromEnvironment(argument_count);
8078 AddInstruction(call);
8079 Drop(1); // Drop the function.
8080 if (!ast_context()->IsEffect()) Push(call);
8083 if (current_block() != NULL) Goto(join);
8084 set_current_block(if_false);
8087 // Finish up. Unconditionally deoptimize if we've handled all the maps we
8088 // know about and do not want to handle ones we've never seen. Otherwise
8089 // use a generic IC.
8090 if (ordered_functions == maps->length() && FLAG_deoptimize_uncommon_cases) {
8091 FinishExitWithHardDeoptimization(Deoptimizer::kUnknownMapInPolymorphicCall);
8093 Property* prop = expr->expression()->AsProperty();
8094 HInstruction* function =
8095 BuildNamedGeneric(LOAD, prop, prop->PropertyFeedbackSlot(), receiver,
8096 name, NULL, prop->IsUninitialized());
8097 AddInstruction(function);
8099 AddSimulate(prop->LoadId(), REMOVABLE_SIMULATE);
8101 environment()->SetExpressionStackAt(1, function);
8102 environment()->SetExpressionStackAt(0, receiver);
8103 CHECK_ALIVE(VisitExpressions(expr->arguments()));
8105 CallFunctionFlags flags = receiver->type().IsJSObject()
8106 ? NO_CALL_FUNCTION_FLAGS : CALL_AS_METHOD;
8107 HInstruction* call = New<HCallFunction>(
8108 function, argument_count, flags);
8110 PushArgumentsFromEnvironment(argument_count);
8112 Drop(1); // Function.
8115 AddInstruction(call);
8116 if (!ast_context()->IsEffect()) Push(call);
8119 return ast_context()->ReturnInstruction(call, expr->id());
8123 // We assume that control flow is always live after an expression. So
8124 // even without predecessors to the join block, we set it as the exit
8125 // block and continue by adding instructions there.
8126 DCHECK(join != NULL);
8127 if (join->HasPredecessor()) {
8128 set_current_block(join);
8129 join->SetJoinId(expr->id());
8130 if (!ast_context()->IsEffect()) return ast_context()->ReturnValue(Pop());
8132 set_current_block(NULL);
8137 void HOptimizedGraphBuilder::TraceInline(Handle<JSFunction> target,
8138 Handle<JSFunction> caller,
8139 const char* reason) {
8140 if (FLAG_trace_inlining) {
8141 base::SmartArrayPointer<char> target_name =
8142 target->shared()->DebugName()->ToCString();
8143 base::SmartArrayPointer<char> caller_name =
8144 caller->shared()->DebugName()->ToCString();
8145 if (reason == NULL) {
8146 PrintF("Inlined %s called from %s.\n", target_name.get(),
8149 PrintF("Did not inline %s called from %s (%s).\n",
8150 target_name.get(), caller_name.get(), reason);
8156 static const int kNotInlinable = 1000000000;
8159 int HOptimizedGraphBuilder::InliningAstSize(Handle<JSFunction> target) {
8160 if (!FLAG_use_inlining) return kNotInlinable;
8162 // Precondition: call is monomorphic and we have found a target with the
8163 // appropriate arity.
8164 Handle<JSFunction> caller = current_info()->closure();
8165 Handle<SharedFunctionInfo> target_shared(target->shared());
8167 // Always inline functions that force inlining.
8168 if (target_shared->force_inline()) {
8171 if (target->IsBuiltin()) {
8172 return kNotInlinable;
8175 if (target_shared->IsApiFunction()) {
8176 TraceInline(target, caller, "target is api function");
8177 return kNotInlinable;
8180 // Do a quick check on source code length to avoid parsing large
8181 // inlining candidates.
8182 if (target_shared->SourceSize() >
8183 Min(FLAG_max_inlined_source_size, kUnlimitedMaxInlinedSourceSize)) {
8184 TraceInline(target, caller, "target text too big");
8185 return kNotInlinable;
8188 // Target must be inlineable.
8189 if (!target_shared->IsInlineable()) {
8190 TraceInline(target, caller, "target not inlineable");
8191 return kNotInlinable;
8193 if (target_shared->disable_optimization_reason() != kNoReason) {
8194 TraceInline(target, caller, "target contains unsupported syntax [early]");
8195 return kNotInlinable;
8198 int nodes_added = target_shared->ast_node_count();
8203 bool HOptimizedGraphBuilder::TryInline(Handle<JSFunction> target,
8204 int arguments_count,
8205 HValue* implicit_return_value,
8206 BailoutId ast_id, BailoutId return_id,
8207 InliningKind inlining_kind) {
8208 if (target->context()->native_context() !=
8209 top_info()->closure()->context()->native_context()) {
8212 int nodes_added = InliningAstSize(target);
8213 if (nodes_added == kNotInlinable) return false;
8215 Handle<JSFunction> caller = current_info()->closure();
8217 if (nodes_added > Min(FLAG_max_inlined_nodes, kUnlimitedMaxInlinedNodes)) {
8218 TraceInline(target, caller, "target AST is too large [early]");
8222 // Don't inline deeper than the maximum number of inlining levels.
8223 HEnvironment* env = environment();
8224 int current_level = 1;
8225 while (env->outer() != NULL) {
8226 if (current_level == FLAG_max_inlining_levels) {
8227 TraceInline(target, caller, "inline depth limit reached");
8230 if (env->outer()->frame_type() == JS_FUNCTION) {
8236 // Don't inline recursive functions.
8237 for (FunctionState* state = function_state();
8239 state = state->outer()) {
8240 if (*state->compilation_info()->closure() == *target) {
8241 TraceInline(target, caller, "target is recursive");
8246 // We don't want to add more than a certain number of nodes from inlining.
8247 // Always inline small methods (<= 10 nodes).
8248 if (inlined_count_ > Min(FLAG_max_inlined_nodes_cumulative,
8249 kUnlimitedMaxInlinedNodesCumulative)) {
8250 TraceInline(target, caller, "cumulative AST node limit reached");
8254 // Parse and allocate variables.
8255 // Use the same AstValueFactory for creating strings in the sub-compilation
8256 // step, but don't transfer ownership to target_info.
8257 ParseInfo parse_info(zone(), target);
8258 parse_info.set_ast_value_factory(
8259 top_info()->parse_info()->ast_value_factory());
8260 parse_info.set_ast_value_factory_owned(false);
8262 CompilationInfo target_info(&parse_info);
8263 Handle<SharedFunctionInfo> target_shared(target->shared());
8264 if (target_shared->HasDebugInfo()) {
8265 TraceInline(target, caller, "target is being debugged");
8268 if (!Compiler::ParseAndAnalyze(target_info.parse_info())) {
8269 if (target_info.isolate()->has_pending_exception()) {
8270 // Parse or scope error, never optimize this function.
8272 target_shared->DisableOptimization(kParseScopeError);
8274 TraceInline(target, caller, "parse failure");
8278 if (target_info.scope()->num_heap_slots() > 0) {
8279 TraceInline(target, caller, "target has context-allocated variables");
8282 FunctionLiteral* function = target_info.literal();
8284 // The following conditions must be checked again after re-parsing, because
8285 // earlier the information might not have been complete due to lazy parsing.
8286 nodes_added = function->ast_node_count();
8287 if (nodes_added > Min(FLAG_max_inlined_nodes, kUnlimitedMaxInlinedNodes)) {
8288 TraceInline(target, caller, "target AST is too large [late]");
8291 if (function->dont_optimize()) {
8292 TraceInline(target, caller, "target contains unsupported syntax [late]");
8296 // If the function uses the arguments object check that inlining of functions
8297 // with arguments object is enabled and the arguments-variable is
8299 if (function->scope()->arguments() != NULL) {
8300 if (!FLAG_inline_arguments) {
8301 TraceInline(target, caller, "target uses arguments object");
8306 // All declarations must be inlineable.
8307 ZoneList<Declaration*>* decls = target_info.scope()->declarations();
8308 int decl_count = decls->length();
8309 for (int i = 0; i < decl_count; ++i) {
8310 if (!decls->at(i)->IsInlineable()) {
8311 TraceInline(target, caller, "target has non-trivial declaration");
8316 // Generate the deoptimization data for the unoptimized version of
8317 // the target function if we don't already have it.
8318 if (!Compiler::EnsureDeoptimizationSupport(&target_info)) {
8319 TraceInline(target, caller, "could not generate deoptimization info");
8323 // In strong mode it is an error to call a function with too few arguments.
8324 // In that case do not inline because then the arity check would be skipped.
8325 if (is_strong(function->language_mode()) &&
8326 arguments_count < function->parameter_count()) {
8327 TraceInline(target, caller,
8328 "too few arguments passed to a strong function");
8332 // ----------------------------------------------------------------
8333 // After this point, we've made a decision to inline this function (so
8334 // TryInline should always return true).
8336 // Type-check the inlined function.
8337 DCHECK(target_shared->has_deoptimization_support());
8338 AstTyper(&target_info).Run();
8340 int inlining_id = 0;
8341 if (top_info()->is_tracking_positions()) {
8342 inlining_id = top_info()->TraceInlinedFunction(
8343 target_shared, source_position(), function_state()->inlining_id());
8346 // Save the pending call context. Set up new one for the inlined function.
8347 // The function state is new-allocated because we need to delete it
8348 // in two different places.
8349 FunctionState* target_state =
8350 new FunctionState(this, &target_info, inlining_kind, inlining_id);
8352 HConstant* undefined = graph()->GetConstantUndefined();
8354 HEnvironment* inner_env =
8355 environment()->CopyForInlining(target,
8359 function_state()->inlining_kind());
8361 HConstant* context = Add<HConstant>(Handle<Context>(target->context()));
8362 inner_env->BindContext(context);
8364 // Create a dematerialized arguments object for the function, also copy the
8365 // current arguments values to use them for materialization.
8366 HEnvironment* arguments_env = inner_env->arguments_environment();
8367 int parameter_count = arguments_env->parameter_count();
8368 HArgumentsObject* arguments_object = Add<HArgumentsObject>(parameter_count);
8369 for (int i = 0; i < parameter_count; i++) {
8370 arguments_object->AddArgument(arguments_env->Lookup(i), zone());
8373 // If the function uses arguments object then bind bind one.
8374 if (function->scope()->arguments() != NULL) {
8375 DCHECK(function->scope()->arguments()->IsStackAllocated());
8376 inner_env->Bind(function->scope()->arguments(), arguments_object);
8379 // Capture the state before invoking the inlined function for deopt in the
8380 // inlined function. This simulate has no bailout-id since it's not directly
8381 // reachable for deopt, and is only used to capture the state. If the simulate
8382 // becomes reachable by merging, the ast id of the simulate merged into it is
8384 Add<HSimulate>(BailoutId::None());
8386 current_block()->UpdateEnvironment(inner_env);
8387 Scope* saved_scope = scope();
8388 set_scope(target_info.scope());
8389 HEnterInlined* enter_inlined =
8390 Add<HEnterInlined>(return_id, target, context, arguments_count, function,
8391 function_state()->inlining_kind(),
8392 function->scope()->arguments(), arguments_object);
8393 if (top_info()->is_tracking_positions()) {
8394 enter_inlined->set_inlining_id(inlining_id);
8396 function_state()->set_entry(enter_inlined);
8398 VisitDeclarations(target_info.scope()->declarations());
8399 VisitStatements(function->body());
8400 set_scope(saved_scope);
8401 if (HasStackOverflow()) {
8402 // Bail out if the inline function did, as we cannot residualize a call
8403 // instead, but do not disable optimization for the outer function.
8404 TraceInline(target, caller, "inline graph construction failed");
8405 target_shared->DisableOptimization(kInliningBailedOut);
8406 current_info()->RetryOptimization(kInliningBailedOut);
8407 delete target_state;
8411 // Update inlined nodes count.
8412 inlined_count_ += nodes_added;
8414 Handle<Code> unoptimized_code(target_shared->code());
8415 DCHECK(unoptimized_code->kind() == Code::FUNCTION);
8416 Handle<TypeFeedbackInfo> type_info(
8417 TypeFeedbackInfo::cast(unoptimized_code->type_feedback_info()));
8418 graph()->update_type_change_checksum(type_info->own_type_change_checksum());
8420 TraceInline(target, caller, NULL);
8422 if (current_block() != NULL) {
8423 FunctionState* state = function_state();
8424 if (state->inlining_kind() == CONSTRUCT_CALL_RETURN) {
8425 // Falling off the end of an inlined construct call. In a test context the
8426 // return value will always evaluate to true, in a value context the
8427 // return value is the newly allocated receiver.
8428 if (call_context()->IsTest()) {
8429 Goto(inlined_test_context()->if_true(), state);
8430 } else if (call_context()->IsEffect()) {
8431 Goto(function_return(), state);
8433 DCHECK(call_context()->IsValue());
8434 AddLeaveInlined(implicit_return_value, state);
8436 } else if (state->inlining_kind() == SETTER_CALL_RETURN) {
8437 // Falling off the end of an inlined setter call. The returned value is
8438 // never used, the value of an assignment is always the value of the RHS
8439 // of the assignment.
8440 if (call_context()->IsTest()) {
8441 inlined_test_context()->ReturnValue(implicit_return_value);
8442 } else if (call_context()->IsEffect()) {
8443 Goto(function_return(), state);
8445 DCHECK(call_context()->IsValue());
8446 AddLeaveInlined(implicit_return_value, state);
8449 // Falling off the end of a normal inlined function. This basically means
8450 // returning undefined.
8451 if (call_context()->IsTest()) {
8452 Goto(inlined_test_context()->if_false(), state);
8453 } else if (call_context()->IsEffect()) {
8454 Goto(function_return(), state);
8456 DCHECK(call_context()->IsValue());
8457 AddLeaveInlined(undefined, state);
8462 // Fix up the function exits.
8463 if (inlined_test_context() != NULL) {
8464 HBasicBlock* if_true = inlined_test_context()->if_true();
8465 HBasicBlock* if_false = inlined_test_context()->if_false();
8467 HEnterInlined* entry = function_state()->entry();
8469 // Pop the return test context from the expression context stack.
8470 DCHECK(ast_context() == inlined_test_context());
8471 ClearInlinedTestContext();
8472 delete target_state;
8474 // Forward to the real test context.
8475 if (if_true->HasPredecessor()) {
8476 entry->RegisterReturnTarget(if_true, zone());
8477 if_true->SetJoinId(ast_id);
8478 HBasicBlock* true_target = TestContext::cast(ast_context())->if_true();
8479 Goto(if_true, true_target, function_state());
8481 if (if_false->HasPredecessor()) {
8482 entry->RegisterReturnTarget(if_false, zone());
8483 if_false->SetJoinId(ast_id);
8484 HBasicBlock* false_target = TestContext::cast(ast_context())->if_false();
8485 Goto(if_false, false_target, function_state());
8487 set_current_block(NULL);
8490 } else if (function_return()->HasPredecessor()) {
8491 function_state()->entry()->RegisterReturnTarget(function_return(), zone());
8492 function_return()->SetJoinId(ast_id);
8493 set_current_block(function_return());
8495 set_current_block(NULL);
8497 delete target_state;
8502 bool HOptimizedGraphBuilder::TryInlineCall(Call* expr) {
8503 return TryInline(expr->target(), expr->arguments()->length(), NULL,
8504 expr->id(), expr->ReturnId(), NORMAL_RETURN);
8508 bool HOptimizedGraphBuilder::TryInlineConstruct(CallNew* expr,
8509 HValue* implicit_return_value) {
8510 return TryInline(expr->target(), expr->arguments()->length(),
8511 implicit_return_value, expr->id(), expr->ReturnId(),
8512 CONSTRUCT_CALL_RETURN);
8516 bool HOptimizedGraphBuilder::TryInlineGetter(Handle<JSFunction> getter,
8517 Handle<Map> receiver_map,
8519 BailoutId return_id) {
8520 if (TryInlineApiGetter(getter, receiver_map, ast_id)) return true;
8521 return TryInline(getter, 0, NULL, ast_id, return_id, GETTER_CALL_RETURN);
8525 bool HOptimizedGraphBuilder::TryInlineSetter(Handle<JSFunction> setter,
8526 Handle<Map> receiver_map,
8528 BailoutId assignment_id,
8529 HValue* implicit_return_value) {
8530 if (TryInlineApiSetter(setter, receiver_map, id)) return true;
8531 return TryInline(setter, 1, implicit_return_value, id, assignment_id,
8532 SETTER_CALL_RETURN);
8536 bool HOptimizedGraphBuilder::TryInlineIndirectCall(Handle<JSFunction> function,
8538 int arguments_count) {
8539 return TryInline(function, arguments_count, NULL, expr->id(),
8540 expr->ReturnId(), NORMAL_RETURN);
8544 bool HOptimizedGraphBuilder::TryInlineBuiltinFunctionCall(Call* expr) {
8545 if (!expr->target()->shared()->HasBuiltinFunctionId()) return false;
8546 BuiltinFunctionId id = expr->target()->shared()->builtin_function_id();
8549 if (!FLAG_fast_math) break;
8550 // Fall through if FLAG_fast_math.
8558 if (expr->arguments()->length() == 1) {
8559 HValue* argument = Pop();
8560 Drop(2); // Receiver and function.
8561 HInstruction* op = NewUncasted<HUnaryMathOperation>(argument, id);
8562 ast_context()->ReturnInstruction(op, expr->id());
8567 if (expr->arguments()->length() == 2) {
8568 HValue* right = Pop();
8569 HValue* left = Pop();
8570 Drop(2); // Receiver and function.
8572 HMul::NewImul(isolate(), zone(), context(), left, right);
8573 ast_context()->ReturnInstruction(op, expr->id());
8578 // Not supported for inlining yet.
8586 bool HOptimizedGraphBuilder::IsReadOnlyLengthDescriptor(
8587 Handle<Map> jsarray_map) {
8588 DCHECK(!jsarray_map->is_dictionary_map());
8589 Isolate* isolate = jsarray_map->GetIsolate();
8590 Handle<Name> length_string = isolate->factory()->length_string();
8591 DescriptorArray* descriptors = jsarray_map->instance_descriptors();
8592 int number = descriptors->SearchWithCache(*length_string, *jsarray_map);
8593 DCHECK_NE(DescriptorArray::kNotFound, number);
8594 return descriptors->GetDetails(number).IsReadOnly();
8599 bool HOptimizedGraphBuilder::CanInlineArrayResizeOperation(
8600 Handle<Map> receiver_map) {
8601 return !receiver_map.is_null() &&
8602 receiver_map->instance_type() == JS_ARRAY_TYPE &&
8603 IsFastElementsKind(receiver_map->elements_kind()) &&
8604 !receiver_map->is_dictionary_map() &&
8605 !IsReadOnlyLengthDescriptor(receiver_map) &&
8606 !receiver_map->is_observed() && receiver_map->is_extensible();
8610 bool HOptimizedGraphBuilder::TryInlineBuiltinMethodCall(
8611 Call* expr, Handle<JSFunction> function, Handle<Map> receiver_map,
8612 int args_count_no_receiver) {
8613 if (!function->shared()->HasBuiltinFunctionId()) return false;
8614 BuiltinFunctionId id = function->shared()->builtin_function_id();
8615 int argument_count = args_count_no_receiver + 1; // Plus receiver.
8617 if (receiver_map.is_null()) {
8618 HValue* receiver = environment()->ExpressionStackAt(args_count_no_receiver);
8619 if (receiver->IsConstant() &&
8620 HConstant::cast(receiver)->handle(isolate())->IsHeapObject()) {
8622 handle(Handle<HeapObject>::cast(
8623 HConstant::cast(receiver)->handle(isolate()))->map());
8626 // Try to inline calls like Math.* as operations in the calling function.
8628 case kStringCharCodeAt:
8630 if (argument_count == 2) {
8631 HValue* index = Pop();
8632 HValue* string = Pop();
8633 Drop(1); // Function.
8634 HInstruction* char_code =
8635 BuildStringCharCodeAt(string, index);
8636 if (id == kStringCharCodeAt) {
8637 ast_context()->ReturnInstruction(char_code, expr->id());
8640 AddInstruction(char_code);
8641 HInstruction* result = NewUncasted<HStringCharFromCode>(char_code);
8642 ast_context()->ReturnInstruction(result, expr->id());
8646 case kStringFromCharCode:
8647 if (argument_count == 2) {
8648 HValue* argument = Pop();
8649 Drop(2); // Receiver and function.
8650 HInstruction* result = NewUncasted<HStringCharFromCode>(argument);
8651 ast_context()->ReturnInstruction(result, expr->id());
8656 if (!FLAG_fast_math) break;
8657 // Fall through if FLAG_fast_math.
8665 if (argument_count == 2) {
8666 HValue* argument = Pop();
8667 Drop(2); // Receiver and function.
8668 HInstruction* op = NewUncasted<HUnaryMathOperation>(argument, id);
8669 ast_context()->ReturnInstruction(op, expr->id());
8674 if (argument_count == 3) {
8675 HValue* right = Pop();
8676 HValue* left = Pop();
8677 Drop(2); // Receiver and function.
8678 HInstruction* result = NULL;
8679 // Use sqrt() if exponent is 0.5 or -0.5.
8680 if (right->IsConstant() && HConstant::cast(right)->HasDoubleValue()) {
8681 double exponent = HConstant::cast(right)->DoubleValue();
8682 if (exponent == 0.5) {
8683 result = NewUncasted<HUnaryMathOperation>(left, kMathPowHalf);
8684 } else if (exponent == -0.5) {
8685 HValue* one = graph()->GetConstant1();
8686 HInstruction* sqrt = AddUncasted<HUnaryMathOperation>(
8687 left, kMathPowHalf);
8688 // MathPowHalf doesn't have side effects so there's no need for
8689 // an environment simulation here.
8690 DCHECK(!sqrt->HasObservableSideEffects());
8691 result = NewUncasted<HDiv>(one, sqrt);
8692 } else if (exponent == 2.0) {
8693 result = NewUncasted<HMul>(left, left);
8697 if (result == NULL) {
8698 result = NewUncasted<HPower>(left, right);
8700 ast_context()->ReturnInstruction(result, expr->id());
8706 if (argument_count == 3) {
8707 HValue* right = Pop();
8708 HValue* left = Pop();
8709 Drop(2); // Receiver and function.
8710 HMathMinMax::Operation op = (id == kMathMin) ? HMathMinMax::kMathMin
8711 : HMathMinMax::kMathMax;
8712 HInstruction* result = NewUncasted<HMathMinMax>(left, right, op);
8713 ast_context()->ReturnInstruction(result, expr->id());
8718 if (argument_count == 3) {
8719 HValue* right = Pop();
8720 HValue* left = Pop();
8721 Drop(2); // Receiver and function.
8722 HInstruction* result =
8723 HMul::NewImul(isolate(), zone(), context(), left, right);
8724 ast_context()->ReturnInstruction(result, expr->id());
8729 if (!CanInlineArrayResizeOperation(receiver_map)) return false;
8730 ElementsKind elements_kind = receiver_map->elements_kind();
8732 Drop(args_count_no_receiver);
8734 HValue* reduced_length;
8735 HValue* receiver = Pop();
8737 HValue* checked_object = AddCheckMap(receiver, receiver_map);
8739 Add<HLoadNamedField>(checked_object, nullptr,
8740 HObjectAccess::ForArrayLength(elements_kind));
8742 Drop(1); // Function.
8744 { NoObservableSideEffectsScope scope(this);
8745 IfBuilder length_checker(this);
8747 HValue* bounds_check = length_checker.If<HCompareNumericAndBranch>(
8748 length, graph()->GetConstant0(), Token::EQ);
8749 length_checker.Then();
8751 if (!ast_context()->IsEffect()) Push(graph()->GetConstantUndefined());
8753 length_checker.Else();
8754 HValue* elements = AddLoadElements(checked_object);
8755 // Ensure that we aren't popping from a copy-on-write array.
8756 if (IsFastSmiOrObjectElementsKind(elements_kind)) {
8757 elements = BuildCopyElementsOnWrite(checked_object, elements,
8758 elements_kind, length);
8760 reduced_length = AddUncasted<HSub>(length, graph()->GetConstant1());
8761 result = AddElementAccess(elements, reduced_length, NULL,
8762 bounds_check, elements_kind, LOAD);
8763 HValue* hole = IsFastSmiOrObjectElementsKind(elements_kind)
8764 ? graph()->GetConstantHole()
8765 : Add<HConstant>(HConstant::kHoleNaN);
8766 if (IsFastSmiOrObjectElementsKind(elements_kind)) {
8767 elements_kind = FAST_HOLEY_ELEMENTS;
8770 elements, reduced_length, hole, bounds_check, elements_kind, STORE);
8771 Add<HStoreNamedField>(
8772 checked_object, HObjectAccess::ForArrayLength(elements_kind),
8773 reduced_length, STORE_TO_INITIALIZED_ENTRY);
8775 if (!ast_context()->IsEffect()) Push(result);
8777 length_checker.End();
8779 result = ast_context()->IsEffect() ? graph()->GetConstant0() : Top();
8780 Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
8781 if (!ast_context()->IsEffect()) Drop(1);
8783 ast_context()->ReturnValue(result);
8787 if (!CanInlineArrayResizeOperation(receiver_map)) return false;
8788 ElementsKind elements_kind = receiver_map->elements_kind();
8790 // If there may be elements accessors in the prototype chain, the fast
8791 // inlined version can't be used.
8792 if (receiver_map->DictionaryElementsInPrototypeChainOnly()) return false;
8793 // If there currently can be no elements accessors on the prototype chain,
8794 // it doesn't mean that there won't be any later. Install a full prototype
8795 // chain check to trap element accessors being installed on the prototype
8796 // chain, which would cause elements to go to dictionary mode and result
8798 Handle<JSObject> prototype(JSObject::cast(receiver_map->prototype()));
8799 BuildCheckPrototypeMaps(prototype, Handle<JSObject>());
8801 // Protect against adding elements to the Array prototype, which needs to
8802 // route through appropriate bottlenecks.
8803 if (isolate()->IsFastArrayConstructorPrototypeChainIntact() &&
8804 !prototype->IsJSArray()) {
8808 const int argc = args_count_no_receiver;
8809 if (argc != 1) return false;
8811 HValue* value_to_push = Pop();
8812 HValue* array = Pop();
8813 Drop(1); // Drop function.
8815 HInstruction* new_size = NULL;
8816 HValue* length = NULL;
8819 NoObservableSideEffectsScope scope(this);
8821 length = Add<HLoadNamedField>(
8822 array, nullptr, HObjectAccess::ForArrayLength(elements_kind));
8824 new_size = AddUncasted<HAdd>(length, graph()->GetConstant1());
8826 bool is_array = receiver_map->instance_type() == JS_ARRAY_TYPE;
8827 HValue* checked_array = Add<HCheckMaps>(array, receiver_map);
8828 BuildUncheckedMonomorphicElementAccess(
8829 checked_array, length, value_to_push, is_array, elements_kind,
8830 STORE, NEVER_RETURN_HOLE, STORE_AND_GROW_NO_TRANSITION);
8832 if (!ast_context()->IsEffect()) Push(new_size);
8833 Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
8834 if (!ast_context()->IsEffect()) Drop(1);
8837 ast_context()->ReturnValue(new_size);
8841 if (!CanInlineArrayResizeOperation(receiver_map)) return false;
8842 ElementsKind kind = receiver_map->elements_kind();
8844 // If there may be elements accessors in the prototype chain, the fast
8845 // inlined version can't be used.
8846 if (receiver_map->DictionaryElementsInPrototypeChainOnly()) return false;
8848 // If there currently can be no elements accessors on the prototype chain,
8849 // it doesn't mean that there won't be any later. Install a full prototype
8850 // chain check to trap element accessors being installed on the prototype
8851 // chain, which would cause elements to go to dictionary mode and result
8853 BuildCheckPrototypeMaps(
8854 handle(JSObject::cast(receiver_map->prototype()), isolate()),
8855 Handle<JSObject>::null());
8857 // Threshold for fast inlined Array.shift().
8858 HConstant* inline_threshold = Add<HConstant>(static_cast<int32_t>(16));
8860 Drop(args_count_no_receiver);
8861 HValue* receiver = Pop();
8862 HValue* function = Pop();
8866 NoObservableSideEffectsScope scope(this);
8868 HValue* length = Add<HLoadNamedField>(
8869 receiver, nullptr, HObjectAccess::ForArrayLength(kind));
8871 IfBuilder if_lengthiszero(this);
8872 HValue* lengthiszero = if_lengthiszero.If<HCompareNumericAndBranch>(
8873 length, graph()->GetConstant0(), Token::EQ);
8874 if_lengthiszero.Then();
8876 if (!ast_context()->IsEffect()) Push(graph()->GetConstantUndefined());
8878 if_lengthiszero.Else();
8880 HValue* elements = AddLoadElements(receiver);
8882 // Check if we can use the fast inlined Array.shift().
8883 IfBuilder if_inline(this);
8884 if_inline.If<HCompareNumericAndBranch>(
8885 length, inline_threshold, Token::LTE);
8886 if (IsFastSmiOrObjectElementsKind(kind)) {
8887 // We cannot handle copy-on-write backing stores here.
8888 if_inline.AndIf<HCompareMap>(
8889 elements, isolate()->factory()->fixed_array_map());
8893 // Remember the result.
8894 if (!ast_context()->IsEffect()) {
8895 Push(AddElementAccess(elements, graph()->GetConstant0(), NULL,
8896 lengthiszero, kind, LOAD));
8899 // Compute the new length.
8900 HValue* new_length = AddUncasted<HSub>(
8901 length, graph()->GetConstant1());
8902 new_length->ClearFlag(HValue::kCanOverflow);
8904 // Copy the remaining elements.
8905 LoopBuilder loop(this, context(), LoopBuilder::kPostIncrement);
8907 HValue* new_key = loop.BeginBody(
8908 graph()->GetConstant0(), new_length, Token::LT);
8909 HValue* key = AddUncasted<HAdd>(new_key, graph()->GetConstant1());
8910 key->ClearFlag(HValue::kCanOverflow);
8911 ElementsKind copy_kind =
8912 kind == FAST_HOLEY_SMI_ELEMENTS ? FAST_HOLEY_ELEMENTS : kind;
8913 HValue* element = AddUncasted<HLoadKeyed>(
8914 elements, key, lengthiszero, copy_kind, ALLOW_RETURN_HOLE);
8915 HStoreKeyed* store =
8916 Add<HStoreKeyed>(elements, new_key, element, copy_kind);
8917 store->SetFlag(HValue::kAllowUndefinedAsNaN);
8921 // Put a hole at the end.
8922 HValue* hole = IsFastSmiOrObjectElementsKind(kind)
8923 ? graph()->GetConstantHole()
8924 : Add<HConstant>(HConstant::kHoleNaN);
8925 if (IsFastSmiOrObjectElementsKind(kind)) kind = FAST_HOLEY_ELEMENTS;
8927 elements, new_length, hole, kind, INITIALIZING_STORE);
8929 // Remember new length.
8930 Add<HStoreNamedField>(
8931 receiver, HObjectAccess::ForArrayLength(kind),
8932 new_length, STORE_TO_INITIALIZED_ENTRY);
8936 Add<HPushArguments>(receiver);
8937 result = Add<HCallJSFunction>(function, 1, true);
8938 if (!ast_context()->IsEffect()) Push(result);
8942 if_lengthiszero.End();
8944 result = ast_context()->IsEffect() ? graph()->GetConstant0() : Top();
8945 Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
8946 if (!ast_context()->IsEffect()) Drop(1);
8947 ast_context()->ReturnValue(result);
8951 case kArrayLastIndexOf: {
8952 if (receiver_map.is_null()) return false;
8953 if (receiver_map->instance_type() != JS_ARRAY_TYPE) return false;
8954 ElementsKind kind = receiver_map->elements_kind();
8955 if (!IsFastElementsKind(kind)) return false;
8956 if (receiver_map->is_observed()) return false;
8957 if (argument_count != 2) return false;
8958 if (!receiver_map->is_extensible()) return false;
8960 // If there may be elements accessors in the prototype chain, the fast
8961 // inlined version can't be used.
8962 if (receiver_map->DictionaryElementsInPrototypeChainOnly()) return false;
8964 // If there currently can be no elements accessors on the prototype chain,
8965 // it doesn't mean that there won't be any later. Install a full prototype
8966 // chain check to trap element accessors being installed on the prototype
8967 // chain, which would cause elements to go to dictionary mode and result
8969 BuildCheckPrototypeMaps(
8970 handle(JSObject::cast(receiver_map->prototype()), isolate()),
8971 Handle<JSObject>::null());
8973 HValue* search_element = Pop();
8974 HValue* receiver = Pop();
8975 Drop(1); // Drop function.
8977 ArrayIndexOfMode mode = (id == kArrayIndexOf)
8978 ? kFirstIndexOf : kLastIndexOf;
8979 HValue* index = BuildArrayIndexOf(receiver, search_element, kind, mode);
8981 if (!ast_context()->IsEffect()) Push(index);
8982 Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
8983 if (!ast_context()->IsEffect()) Drop(1);
8984 ast_context()->ReturnValue(index);
8988 // Not yet supported for inlining.
8995 bool HOptimizedGraphBuilder::TryInlineApiFunctionCall(Call* expr,
8997 Handle<JSFunction> function = expr->target();
8998 int argc = expr->arguments()->length();
8999 SmallMapList receiver_maps;
9000 return TryInlineApiCall(function,
9009 bool HOptimizedGraphBuilder::TryInlineApiMethodCall(
9012 SmallMapList* receiver_maps) {
9013 Handle<JSFunction> function = expr->target();
9014 int argc = expr->arguments()->length();
9015 return TryInlineApiCall(function,
9024 bool HOptimizedGraphBuilder::TryInlineApiGetter(Handle<JSFunction> function,
9025 Handle<Map> receiver_map,
9027 SmallMapList receiver_maps(1, zone());
9028 receiver_maps.Add(receiver_map, zone());
9029 return TryInlineApiCall(function,
9030 NULL, // Receiver is on expression stack.
9038 bool HOptimizedGraphBuilder::TryInlineApiSetter(Handle<JSFunction> function,
9039 Handle<Map> receiver_map,
9041 SmallMapList receiver_maps(1, zone());
9042 receiver_maps.Add(receiver_map, zone());
9043 return TryInlineApiCall(function,
9044 NULL, // Receiver is on expression stack.
9052 bool HOptimizedGraphBuilder::TryInlineApiCall(Handle<JSFunction> function,
9054 SmallMapList* receiver_maps,
9057 ApiCallType call_type) {
9058 if (function->context()->native_context() !=
9059 top_info()->closure()->context()->native_context()) {
9062 CallOptimization optimization(function);
9063 if (!optimization.is_simple_api_call()) return false;
9064 Handle<Map> holder_map;
9065 for (int i = 0; i < receiver_maps->length(); ++i) {
9066 auto map = receiver_maps->at(i);
9067 // Don't inline calls to receivers requiring accesschecks.
9068 if (map->is_access_check_needed()) return false;
9070 if (call_type == kCallApiFunction) {
9071 // Cannot embed a direct reference to the global proxy map
9072 // as it maybe dropped on deserialization.
9073 CHECK(!isolate()->serializer_enabled());
9074 DCHECK_EQ(0, receiver_maps->length());
9075 receiver_maps->Add(handle(function->global_proxy()->map()), zone());
9077 CallOptimization::HolderLookup holder_lookup =
9078 CallOptimization::kHolderNotFound;
9079 Handle<JSObject> api_holder = optimization.LookupHolderOfExpectedType(
9080 receiver_maps->first(), &holder_lookup);
9081 if (holder_lookup == CallOptimization::kHolderNotFound) return false;
9083 if (FLAG_trace_inlining) {
9084 PrintF("Inlining api function ");
9085 function->ShortPrint();
9089 bool is_function = false;
9090 bool is_store = false;
9091 switch (call_type) {
9092 case kCallApiFunction:
9093 case kCallApiMethod:
9094 // Need to check that none of the receiver maps could have changed.
9095 Add<HCheckMaps>(receiver, receiver_maps);
9096 // Need to ensure the chain between receiver and api_holder is intact.
9097 if (holder_lookup == CallOptimization::kHolderFound) {
9098 AddCheckPrototypeMaps(api_holder, receiver_maps->first());
9100 DCHECK_EQ(holder_lookup, CallOptimization::kHolderIsReceiver);
9102 // Includes receiver.
9103 PushArgumentsFromEnvironment(argc + 1);
9106 case kCallApiGetter:
9107 // Receiver and prototype chain cannot have changed.
9109 DCHECK_NULL(receiver);
9110 // Receiver is on expression stack.
9112 Add<HPushArguments>(receiver);
9114 case kCallApiSetter:
9117 // Receiver and prototype chain cannot have changed.
9119 DCHECK_NULL(receiver);
9120 // Receiver and value are on expression stack.
9121 HValue* value = Pop();
9123 Add<HPushArguments>(receiver, value);
9128 HValue* holder = NULL;
9129 switch (holder_lookup) {
9130 case CallOptimization::kHolderFound:
9131 holder = Add<HConstant>(api_holder);
9133 case CallOptimization::kHolderIsReceiver:
9136 case CallOptimization::kHolderNotFound:
9140 Handle<CallHandlerInfo> api_call_info = optimization.api_call_info();
9141 Handle<Object> call_data_obj(api_call_info->data(), isolate());
9142 bool call_data_undefined = call_data_obj->IsUndefined();
9143 HValue* call_data = Add<HConstant>(call_data_obj);
9144 ApiFunction fun(v8::ToCData<Address>(api_call_info->callback()));
9145 ExternalReference ref = ExternalReference(&fun,
9146 ExternalReference::DIRECT_API_CALL,
9148 HValue* api_function_address = Add<HConstant>(ExternalReference(ref));
9150 HValue* op_vals[] = {context(), Add<HConstant>(function), call_data, holder,
9151 api_function_address, nullptr};
9153 HInstruction* call = nullptr;
9155 CallApiAccessorStub stub(isolate(), is_store, call_data_undefined);
9156 Handle<Code> code = stub.GetCode();
9157 HConstant* code_value = Add<HConstant>(code);
9158 ApiAccessorDescriptor descriptor(isolate());
9159 call = New<HCallWithDescriptor>(
9160 code_value, argc + 1, descriptor,
9161 Vector<HValue*>(op_vals, arraysize(op_vals) - 1));
9162 } else if (argc <= CallApiFunctionWithFixedArgsStub::kMaxFixedArgs) {
9163 CallApiFunctionWithFixedArgsStub stub(isolate(), argc, call_data_undefined);
9164 Handle<Code> code = stub.GetCode();
9165 HConstant* code_value = Add<HConstant>(code);
9166 ApiFunctionWithFixedArgsDescriptor descriptor(isolate());
9167 call = New<HCallWithDescriptor>(
9168 code_value, argc + 1, descriptor,
9169 Vector<HValue*>(op_vals, arraysize(op_vals) - 1));
9170 Drop(1); // Drop function.
9172 op_vals[arraysize(op_vals) - 1] = Add<HConstant>(argc);
9173 CallApiFunctionStub stub(isolate(), call_data_undefined);
9174 Handle<Code> code = stub.GetCode();
9175 HConstant* code_value = Add<HConstant>(code);
9176 ApiFunctionDescriptor descriptor(isolate());
9178 New<HCallWithDescriptor>(code_value, argc + 1, descriptor,
9179 Vector<HValue*>(op_vals, arraysize(op_vals)));
9180 Drop(1); // Drop function.
9183 ast_context()->ReturnInstruction(call, ast_id);
9188 void HOptimizedGraphBuilder::HandleIndirectCall(Call* expr, HValue* function,
9189 int arguments_count) {
9190 Handle<JSFunction> known_function;
9191 int args_count_no_receiver = arguments_count - 1;
9192 if (function->IsConstant() &&
9193 HConstant::cast(function)->handle(isolate())->IsJSFunction()) {
9195 Handle<JSFunction>::cast(HConstant::cast(function)->handle(isolate()));
9196 if (TryInlineBuiltinMethodCall(expr, known_function, Handle<Map>(),
9197 args_count_no_receiver)) {
9198 if (FLAG_trace_inlining) {
9199 PrintF("Inlining builtin ");
9200 known_function->ShortPrint();
9206 if (TryInlineIndirectCall(known_function, expr, args_count_no_receiver)) {
9211 PushArgumentsFromEnvironment(arguments_count);
9212 HInvokeFunction* call =
9213 New<HInvokeFunction>(function, known_function, arguments_count);
9214 Drop(1); // Function
9215 ast_context()->ReturnInstruction(call, expr->id());
9219 bool HOptimizedGraphBuilder::TryIndirectCall(Call* expr) {
9220 DCHECK(expr->expression()->IsProperty());
9222 if (!expr->IsMonomorphic()) {
9225 Handle<Map> function_map = expr->GetReceiverTypes()->first();
9226 if (function_map->instance_type() != JS_FUNCTION_TYPE ||
9227 !expr->target()->shared()->HasBuiltinFunctionId()) {
9231 switch (expr->target()->shared()->builtin_function_id()) {
9232 case kFunctionCall: {
9233 if (expr->arguments()->length() == 0) return false;
9234 BuildFunctionCall(expr);
9237 case kFunctionApply: {
9238 // For .apply, only the pattern f.apply(receiver, arguments)
9240 if (current_info()->scope()->arguments() == NULL) return false;
9242 if (!CanBeFunctionApplyArguments(expr)) return false;
9244 BuildFunctionApply(expr);
9247 default: { return false; }
9253 void HOptimizedGraphBuilder::BuildFunctionApply(Call* expr) {
9254 ZoneList<Expression*>* args = expr->arguments();
9255 CHECK_ALIVE(VisitForValue(args->at(0)));
9256 HValue* receiver = Pop(); // receiver
9257 HValue* function = Pop(); // f
9260 Handle<Map> function_map = expr->GetReceiverTypes()->first();
9261 HValue* checked_function = AddCheckMap(function, function_map);
9263 if (function_state()->outer() == NULL) {
9264 HInstruction* elements = Add<HArgumentsElements>(false);
9265 HInstruction* length = Add<HArgumentsLength>(elements);
9266 HValue* wrapped_receiver = BuildWrapReceiver(receiver, checked_function);
9267 HInstruction* result = New<HApplyArguments>(function,
9271 ast_context()->ReturnInstruction(result, expr->id());
9273 // We are inside inlined function and we know exactly what is inside
9274 // arguments object. But we need to be able to materialize at deopt.
9275 DCHECK_EQ(environment()->arguments_environment()->parameter_count(),
9276 function_state()->entry()->arguments_object()->arguments_count());
9277 HArgumentsObject* args = function_state()->entry()->arguments_object();
9278 const ZoneList<HValue*>* arguments_values = args->arguments_values();
9279 int arguments_count = arguments_values->length();
9281 Push(BuildWrapReceiver(receiver, checked_function));
9282 for (int i = 1; i < arguments_count; i++) {
9283 Push(arguments_values->at(i));
9285 HandleIndirectCall(expr, function, arguments_count);
9291 void HOptimizedGraphBuilder::BuildFunctionCall(Call* expr) {
9292 HValue* function = Top(); // f
9293 Handle<Map> function_map = expr->GetReceiverTypes()->first();
9294 HValue* checked_function = AddCheckMap(function, function_map);
9296 // f and call are on the stack in the unoptimized code
9297 // during evaluation of the arguments.
9298 CHECK_ALIVE(VisitExpressions(expr->arguments()));
9300 int args_length = expr->arguments()->length();
9301 int receiver_index = args_length - 1;
9302 // Patch the receiver.
9303 HValue* receiver = BuildWrapReceiver(
9304 environment()->ExpressionStackAt(receiver_index), checked_function);
9305 environment()->SetExpressionStackAt(receiver_index, receiver);
9307 // Call must not be on the stack from now on.
9308 int call_index = args_length + 1;
9309 environment()->RemoveExpressionStackAt(call_index);
9311 HandleIndirectCall(expr, function, args_length);
9315 HValue* HOptimizedGraphBuilder::ImplicitReceiverFor(HValue* function,
9316 Handle<JSFunction> target) {
9317 SharedFunctionInfo* shared = target->shared();
9318 if (is_sloppy(shared->language_mode()) && !shared->native()) {
9319 // Cannot embed a direct reference to the global proxy
9320 // as is it dropped on deserialization.
9321 CHECK(!isolate()->serializer_enabled());
9322 Handle<JSObject> global_proxy(target->context()->global_proxy());
9323 return Add<HConstant>(global_proxy);
9325 return graph()->GetConstantUndefined();
9329 void HOptimizedGraphBuilder::BuildArrayCall(Expression* expression,
9330 int arguments_count,
9332 Handle<AllocationSite> site) {
9333 Add<HCheckValue>(function, array_function());
9335 if (IsCallArrayInlineable(arguments_count, site)) {
9336 BuildInlinedCallArray(expression, arguments_count, site);
9340 HInstruction* call = PreProcessCall(New<HCallNewArray>(
9341 function, arguments_count + 1, site->GetElementsKind(), site));
9342 if (expression->IsCall()) {
9345 ast_context()->ReturnInstruction(call, expression->id());
9349 HValue* HOptimizedGraphBuilder::BuildArrayIndexOf(HValue* receiver,
9350 HValue* search_element,
9352 ArrayIndexOfMode mode) {
9353 DCHECK(IsFastElementsKind(kind));
9355 NoObservableSideEffectsScope no_effects(this);
9357 HValue* elements = AddLoadElements(receiver);
9358 HValue* length = AddLoadArrayLength(receiver, kind);
9361 HValue* terminating;
9363 LoopBuilder::Direction direction;
9364 if (mode == kFirstIndexOf) {
9365 initial = graph()->GetConstant0();
9366 terminating = length;
9368 direction = LoopBuilder::kPostIncrement;
9370 DCHECK_EQ(kLastIndexOf, mode);
9372 terminating = graph()->GetConstant0();
9374 direction = LoopBuilder::kPreDecrement;
9377 Push(graph()->GetConstantMinus1());
9378 if (IsFastDoubleElementsKind(kind) || IsFastSmiElementsKind(kind)) {
9379 // Make sure that we can actually compare numbers correctly below, see
9380 // https://code.google.com/p/chromium/issues/detail?id=407946 for details.
9381 search_element = AddUncasted<HForceRepresentation>(
9382 search_element, IsFastSmiElementsKind(kind) ? Representation::Smi()
9383 : Representation::Double());
9385 LoopBuilder loop(this, context(), direction);
9387 HValue* index = loop.BeginBody(initial, terminating, token);
9388 HValue* element = AddUncasted<HLoadKeyed>(elements, index, nullptr, kind,
9390 IfBuilder if_issame(this);
9391 if_issame.If<HCompareNumericAndBranch>(element, search_element,
9403 IfBuilder if_isstring(this);
9404 if_isstring.If<HIsStringAndBranch>(search_element);
9407 LoopBuilder loop(this, context(), direction);
9409 HValue* index = loop.BeginBody(initial, terminating, token);
9410 HValue* element = AddUncasted<HLoadKeyed>(elements, index, nullptr,
9411 kind, ALLOW_RETURN_HOLE);
9412 IfBuilder if_issame(this);
9413 if_issame.If<HIsStringAndBranch>(element);
9414 if_issame.AndIf<HStringCompareAndBranch>(
9415 element, search_element, Token::EQ_STRICT);
9428 IfBuilder if_isnumber(this);
9429 if_isnumber.If<HIsSmiAndBranch>(search_element);
9430 if_isnumber.OrIf<HCompareMap>(
9431 search_element, isolate()->factory()->heap_number_map());
9434 HValue* search_number =
9435 AddUncasted<HForceRepresentation>(search_element,
9436 Representation::Double());
9437 LoopBuilder loop(this, context(), direction);
9439 HValue* index = loop.BeginBody(initial, terminating, token);
9440 HValue* element = AddUncasted<HLoadKeyed>(elements, index, nullptr,
9441 kind, ALLOW_RETURN_HOLE);
9443 IfBuilder if_element_isnumber(this);
9444 if_element_isnumber.If<HIsSmiAndBranch>(element);
9445 if_element_isnumber.OrIf<HCompareMap>(
9446 element, isolate()->factory()->heap_number_map());
9447 if_element_isnumber.Then();
9450 AddUncasted<HForceRepresentation>(element,
9451 Representation::Double());
9452 IfBuilder if_issame(this);
9453 if_issame.If<HCompareNumericAndBranch>(
9454 number, search_number, Token::EQ_STRICT);
9463 if_element_isnumber.End();
9469 LoopBuilder loop(this, context(), direction);
9471 HValue* index = loop.BeginBody(initial, terminating, token);
9472 HValue* element = AddUncasted<HLoadKeyed>(elements, index, nullptr,
9473 kind, ALLOW_RETURN_HOLE);
9474 IfBuilder if_issame(this);
9475 if_issame.If<HCompareObjectEqAndBranch>(
9476 element, search_element);
9496 bool HOptimizedGraphBuilder::TryHandleArrayCall(Call* expr, HValue* function) {
9497 if (!array_function().is_identical_to(expr->target())) {
9501 Handle<AllocationSite> site = expr->allocation_site();
9502 if (site.is_null()) return false;
9504 BuildArrayCall(expr,
9505 expr->arguments()->length(),
9512 bool HOptimizedGraphBuilder::TryHandleArrayCallNew(CallNew* expr,
9514 if (!array_function().is_identical_to(expr->target())) {
9518 Handle<AllocationSite> site = expr->allocation_site();
9519 if (site.is_null()) return false;
9521 BuildArrayCall(expr, expr->arguments()->length(), function, site);
9526 bool HOptimizedGraphBuilder::CanBeFunctionApplyArguments(Call* expr) {
9527 ZoneList<Expression*>* args = expr->arguments();
9528 if (args->length() != 2) return false;
9529 VariableProxy* arg_two = args->at(1)->AsVariableProxy();
9530 if (arg_two == NULL || !arg_two->var()->IsStackAllocated()) return false;
9531 HValue* arg_two_value = LookupAndMakeLive(arg_two->var());
9532 if (!arg_two_value->CheckFlag(HValue::kIsArguments)) return false;
9537 void HOptimizedGraphBuilder::VisitCall(Call* expr) {
9538 DCHECK(!HasStackOverflow());
9539 DCHECK(current_block() != NULL);
9540 DCHECK(current_block()->HasPredecessor());
9541 if (!top_info()->is_tracking_positions()) SetSourcePosition(expr->position());
9542 Expression* callee = expr->expression();
9543 int argument_count = expr->arguments()->length() + 1; // Plus receiver.
9544 HInstruction* call = NULL;
9546 Property* prop = callee->AsProperty();
9548 CHECK_ALIVE(VisitForValue(prop->obj()));
9549 HValue* receiver = Top();
9552 ComputeReceiverTypes(expr, receiver, &maps, zone());
9554 if (prop->key()->IsPropertyName() && maps->length() > 0) {
9555 Handle<String> name = prop->key()->AsLiteral()->AsPropertyName();
9556 PropertyAccessInfo info(this, LOAD, maps->first(), name);
9557 if (!info.CanAccessAsMonomorphic(maps)) {
9558 HandlePolymorphicCallNamed(expr, receiver, maps, name);
9563 if (!prop->key()->IsPropertyName()) {
9564 CHECK_ALIVE(VisitForValue(prop->key()));
9568 CHECK_ALIVE(PushLoad(prop, receiver, key));
9569 HValue* function = Pop();
9571 if (function->IsConstant() &&
9572 HConstant::cast(function)->handle(isolate())->IsJSFunction()) {
9573 // Push the function under the receiver.
9574 environment()->SetExpressionStackAt(0, function);
9577 Handle<JSFunction> known_function = Handle<JSFunction>::cast(
9578 HConstant::cast(function)->handle(isolate()));
9579 expr->set_target(known_function);
9581 if (TryIndirectCall(expr)) return;
9582 CHECK_ALIVE(VisitExpressions(expr->arguments()));
9584 Handle<Map> map = maps->length() == 1 ? maps->first() : Handle<Map>();
9585 if (TryInlineBuiltinMethodCall(expr, known_function, map,
9586 expr->arguments()->length())) {
9587 if (FLAG_trace_inlining) {
9588 PrintF("Inlining builtin ");
9589 known_function->ShortPrint();
9594 if (TryInlineApiMethodCall(expr, receiver, maps)) return;
9596 // Wrap the receiver if necessary.
9597 if (NeedsWrapping(maps->first(), known_function)) {
9598 // Since HWrapReceiver currently cannot actually wrap numbers and
9599 // strings, use the regular CallFunctionStub for method calls to wrap
9601 // TODO(verwaest): Support creation of value wrappers directly in
9603 call = New<HCallFunction>(
9604 function, argument_count, WRAP_AND_CALL);
9605 } else if (TryInlineCall(expr)) {
9608 call = BuildCallConstantFunction(known_function, argument_count);
9612 ArgumentsAllowedFlag arguments_flag = ARGUMENTS_NOT_ALLOWED;
9613 if (CanBeFunctionApplyArguments(expr) && expr->is_uninitialized()) {
9614 // We have to use EAGER deoptimization here because Deoptimizer::SOFT
9615 // gets ignored by the always-opt flag, which leads to incorrect code.
9617 Deoptimizer::kInsufficientTypeFeedbackForCallWithArguments,
9618 Deoptimizer::EAGER);
9619 arguments_flag = ARGUMENTS_FAKED;
9622 // Push the function under the receiver.
9623 environment()->SetExpressionStackAt(0, function);
9626 CHECK_ALIVE(VisitExpressions(expr->arguments(), arguments_flag));
9627 CallFunctionFlags flags = receiver->type().IsJSObject()
9628 ? NO_CALL_FUNCTION_FLAGS : CALL_AS_METHOD;
9629 call = New<HCallFunction>(function, argument_count, flags);
9631 PushArgumentsFromEnvironment(argument_count);
9634 VariableProxy* proxy = expr->expression()->AsVariableProxy();
9635 if (proxy != NULL && proxy->var()->is_possibly_eval(isolate())) {
9636 return Bailout(kPossibleDirectCallToEval);
9639 // The function is on the stack in the unoptimized code during
9640 // evaluation of the arguments.
9641 CHECK_ALIVE(VisitForValue(expr->expression()));
9642 HValue* function = Top();
9643 if (function->IsConstant() &&
9644 HConstant::cast(function)->handle(isolate())->IsJSFunction()) {
9645 Handle<Object> constant = HConstant::cast(function)->handle(isolate());
9646 Handle<JSFunction> target = Handle<JSFunction>::cast(constant);
9647 expr->SetKnownGlobalTarget(target);
9650 // Placeholder for the receiver.
9651 Push(graph()->GetConstantUndefined());
9652 CHECK_ALIVE(VisitExpressions(expr->arguments()));
9654 if (expr->IsMonomorphic()) {
9655 Add<HCheckValue>(function, expr->target());
9657 // Patch the global object on the stack by the expected receiver.
9658 HValue* receiver = ImplicitReceiverFor(function, expr->target());
9659 const int receiver_index = argument_count - 1;
9660 environment()->SetExpressionStackAt(receiver_index, receiver);
9662 if (TryInlineBuiltinFunctionCall(expr)) {
9663 if (FLAG_trace_inlining) {
9664 PrintF("Inlining builtin ");
9665 expr->target()->ShortPrint();
9670 if (TryInlineApiFunctionCall(expr, receiver)) return;
9671 if (TryHandleArrayCall(expr, function)) return;
9672 if (TryInlineCall(expr)) return;
9674 PushArgumentsFromEnvironment(argument_count);
9675 call = BuildCallConstantFunction(expr->target(), argument_count);
9677 PushArgumentsFromEnvironment(argument_count);
9678 HCallFunction* call_function =
9679 New<HCallFunction>(function, argument_count);
9680 call = call_function;
9681 if (expr->is_uninitialized() &&
9682 expr->IsUsingCallFeedbackICSlot(isolate())) {
9683 // We've never seen this call before, so let's have Crankshaft learn
9684 // through the type vector.
9685 Handle<TypeFeedbackVector> vector =
9686 handle(current_feedback_vector(), isolate());
9687 FeedbackVectorICSlot slot = expr->CallFeedbackICSlot();
9688 call_function->SetVectorAndSlot(vector, slot);
9693 Drop(1); // Drop the function.
9694 return ast_context()->ReturnInstruction(call, expr->id());
9698 void HOptimizedGraphBuilder::BuildInlinedCallArray(
9699 Expression* expression,
9701 Handle<AllocationSite> site) {
9702 DCHECK(!site.is_null());
9703 DCHECK(argument_count >= 0 && argument_count <= 1);
9704 NoObservableSideEffectsScope no_effects(this);
9706 // We should at least have the constructor on the expression stack.
9707 HValue* constructor = environment()->ExpressionStackAt(argument_count);
9709 // Register on the site for deoptimization if the transition feedback changes.
9710 top_info()->dependencies()->AssumeTransitionStable(site);
9711 ElementsKind kind = site->GetElementsKind();
9712 HInstruction* site_instruction = Add<HConstant>(site);
9714 // In the single constant argument case, we may have to adjust elements kind
9715 // to avoid creating a packed non-empty array.
9716 if (argument_count == 1 && !IsHoleyElementsKind(kind)) {
9717 HValue* argument = environment()->Top();
9718 if (argument->IsConstant()) {
9719 HConstant* constant_argument = HConstant::cast(argument);
9720 DCHECK(constant_argument->HasSmiValue());
9721 int constant_array_size = constant_argument->Integer32Value();
9722 if (constant_array_size != 0) {
9723 kind = GetHoleyElementsKind(kind);
9729 JSArrayBuilder array_builder(this,
9733 DISABLE_ALLOCATION_SITES);
9734 HValue* new_object = argument_count == 0
9735 ? array_builder.AllocateEmptyArray()
9736 : BuildAllocateArrayFromLength(&array_builder, Top());
9738 int args_to_drop = argument_count + (expression->IsCall() ? 2 : 1);
9740 ast_context()->ReturnValue(new_object);
9744 // Checks whether allocation using the given constructor can be inlined.
9745 static bool IsAllocationInlineable(Handle<JSFunction> constructor) {
9746 return constructor->has_initial_map() &&
9747 constructor->initial_map()->instance_type() == JS_OBJECT_TYPE &&
9748 constructor->initial_map()->instance_size() <
9749 HAllocate::kMaxInlineSize;
9753 bool HOptimizedGraphBuilder::IsCallArrayInlineable(
9755 Handle<AllocationSite> site) {
9756 Handle<JSFunction> caller = current_info()->closure();
9757 Handle<JSFunction> target = array_function();
9758 // We should have the function plus array arguments on the environment stack.
9759 DCHECK(environment()->length() >= (argument_count + 1));
9760 DCHECK(!site.is_null());
9762 bool inline_ok = false;
9763 if (site->CanInlineCall()) {
9764 // We also want to avoid inlining in certain 1 argument scenarios.
9765 if (argument_count == 1) {
9766 HValue* argument = Top();
9767 if (argument->IsConstant()) {
9768 // Do not inline if the constant length argument is not a smi or
9769 // outside the valid range for unrolled loop initialization.
9770 HConstant* constant_argument = HConstant::cast(argument);
9771 if (constant_argument->HasSmiValue()) {
9772 int value = constant_argument->Integer32Value();
9773 inline_ok = value >= 0 && value <= kElementLoopUnrollThreshold;
9775 TraceInline(target, caller,
9776 "Constant length outside of valid inlining range.");
9780 TraceInline(target, caller,
9781 "Dont inline [new] Array(n) where n isn't constant.");
9783 } else if (argument_count == 0) {
9786 TraceInline(target, caller, "Too many arguments to inline.");
9789 TraceInline(target, caller, "AllocationSite requested no inlining.");
9793 TraceInline(target, caller, NULL);
9799 void HOptimizedGraphBuilder::VisitCallNew(CallNew* expr) {
9800 DCHECK(!HasStackOverflow());
9801 DCHECK(current_block() != NULL);
9802 DCHECK(current_block()->HasPredecessor());
9803 if (!top_info()->is_tracking_positions()) SetSourcePosition(expr->position());
9804 int argument_count = expr->arguments()->length() + 1; // Plus constructor.
9805 Factory* factory = isolate()->factory();
9807 // The constructor function is on the stack in the unoptimized code
9808 // during evaluation of the arguments.
9809 CHECK_ALIVE(VisitForValue(expr->expression()));
9810 HValue* function = Top();
9811 CHECK_ALIVE(VisitExpressions(expr->arguments()));
9813 if (function->IsConstant() &&
9814 HConstant::cast(function)->handle(isolate())->IsJSFunction()) {
9815 Handle<Object> constant = HConstant::cast(function)->handle(isolate());
9816 expr->SetKnownGlobalTarget(Handle<JSFunction>::cast(constant));
9819 if (FLAG_inline_construct &&
9820 expr->IsMonomorphic() &&
9821 IsAllocationInlineable(expr->target())) {
9822 Handle<JSFunction> constructor = expr->target();
9823 HValue* check = Add<HCheckValue>(function, constructor);
9825 // Force completion of inobject slack tracking before generating
9826 // allocation code to finalize instance size.
9827 if (constructor->IsInobjectSlackTrackingInProgress()) {
9828 constructor->CompleteInobjectSlackTracking();
9831 // Calculate instance size from initial map of constructor.
9832 DCHECK(constructor->has_initial_map());
9833 Handle<Map> initial_map(constructor->initial_map());
9834 int instance_size = initial_map->instance_size();
9836 // Allocate an instance of the implicit receiver object.
9837 HValue* size_in_bytes = Add<HConstant>(instance_size);
9838 HAllocationMode allocation_mode;
9839 if (FLAG_pretenuring_call_new) {
9840 if (FLAG_allocation_site_pretenuring) {
9841 // Try to use pretenuring feedback.
9842 Handle<AllocationSite> allocation_site = expr->allocation_site();
9843 allocation_mode = HAllocationMode(allocation_site);
9844 // Take a dependency on allocation site.
9845 top_info()->dependencies()->AssumeTenuringDecision(allocation_site);
9849 HAllocate* receiver = BuildAllocate(
9850 size_in_bytes, HType::JSObject(), JS_OBJECT_TYPE, allocation_mode);
9851 receiver->set_known_initial_map(initial_map);
9853 // Initialize map and fields of the newly allocated object.
9854 { NoObservableSideEffectsScope no_effects(this);
9855 DCHECK(initial_map->instance_type() == JS_OBJECT_TYPE);
9856 Add<HStoreNamedField>(receiver,
9857 HObjectAccess::ForMapAndOffset(initial_map, JSObject::kMapOffset),
9858 Add<HConstant>(initial_map));
9859 HValue* empty_fixed_array = Add<HConstant>(factory->empty_fixed_array());
9860 Add<HStoreNamedField>(receiver,
9861 HObjectAccess::ForMapAndOffset(initial_map,
9862 JSObject::kPropertiesOffset),
9864 Add<HStoreNamedField>(receiver,
9865 HObjectAccess::ForMapAndOffset(initial_map,
9866 JSObject::kElementsOffset),
9868 BuildInitializeInobjectProperties(receiver, initial_map);
9871 // Replace the constructor function with a newly allocated receiver using
9872 // the index of the receiver from the top of the expression stack.
9873 const int receiver_index = argument_count - 1;
9874 DCHECK(environment()->ExpressionStackAt(receiver_index) == function);
9875 environment()->SetExpressionStackAt(receiver_index, receiver);
9877 if (TryInlineConstruct(expr, receiver)) {
9878 // Inlining worked, add a dependency on the initial map to make sure that
9879 // this code is deoptimized whenever the initial map of the constructor
9881 top_info()->dependencies()->AssumeInitialMapCantChange(initial_map);
9885 // TODO(mstarzinger): For now we remove the previous HAllocate and all
9886 // corresponding instructions and instead add HPushArguments for the
9887 // arguments in case inlining failed. What we actually should do is for
9888 // inlining to try to build a subgraph without mutating the parent graph.
9889 HInstruction* instr = current_block()->last();
9891 HInstruction* prev_instr = instr->previous();
9892 instr->DeleteAndReplaceWith(NULL);
9894 } while (instr != check);
9895 environment()->SetExpressionStackAt(receiver_index, function);
9896 HInstruction* call =
9897 PreProcessCall(New<HCallNew>(function, argument_count));
9898 return ast_context()->ReturnInstruction(call, expr->id());
9900 // The constructor function is both an operand to the instruction and an
9901 // argument to the construct call.
9902 if (TryHandleArrayCallNew(expr, function)) return;
9904 HInstruction* call =
9905 PreProcessCall(New<HCallNew>(function, argument_count));
9906 return ast_context()->ReturnInstruction(call, expr->id());
9911 void HOptimizedGraphBuilder::BuildInitializeInobjectProperties(
9912 HValue* receiver, Handle<Map> initial_map) {
9913 if (initial_map->GetInObjectProperties() != 0) {
9914 HConstant* undefined = graph()->GetConstantUndefined();
9915 for (int i = 0; i < initial_map->GetInObjectProperties(); i++) {
9916 int property_offset = initial_map->GetInObjectPropertyOffset(i);
9917 Add<HStoreNamedField>(receiver, HObjectAccess::ForMapAndOffset(
9918 initial_map, property_offset),
9925 HValue* HGraphBuilder::BuildAllocateEmptyArrayBuffer(HValue* byte_length) {
9926 // We HForceRepresentation here to avoid allocations during an *-to-tagged
9927 // HChange that could cause GC while the array buffer object is not fully
9929 HObjectAccess byte_length_access(HObjectAccess::ForJSArrayBufferByteLength());
9930 byte_length = AddUncasted<HForceRepresentation>(
9931 byte_length, byte_length_access.representation());
9933 BuildAllocate(Add<HConstant>(JSArrayBuffer::kSizeWithInternalFields),
9934 HType::JSObject(), JS_ARRAY_BUFFER_TYPE, HAllocationMode());
9936 HValue* global_object = Add<HLoadNamedField>(
9938 HObjectAccess::ForContextSlot(Context::GLOBAL_OBJECT_INDEX));
9939 HValue* native_context = Add<HLoadNamedField>(
9940 global_object, nullptr, HObjectAccess::ForGlobalObjectNativeContext());
9941 Add<HStoreNamedField>(
9942 result, HObjectAccess::ForMap(),
9943 Add<HLoadNamedField>(
9944 native_context, nullptr,
9945 HObjectAccess::ForContextSlot(Context::ARRAY_BUFFER_MAP_INDEX)));
9947 HConstant* empty_fixed_array =
9948 Add<HConstant>(isolate()->factory()->empty_fixed_array());
9949 Add<HStoreNamedField>(
9950 result, HObjectAccess::ForJSArrayOffset(JSArray::kPropertiesOffset),
9952 Add<HStoreNamedField>(
9953 result, HObjectAccess::ForJSArrayOffset(JSArray::kElementsOffset),
9955 Add<HStoreNamedField>(
9956 result, HObjectAccess::ForJSArrayBufferBackingStore().WithRepresentation(
9957 Representation::Smi()),
9958 graph()->GetConstant0());
9959 Add<HStoreNamedField>(result, byte_length_access, byte_length);
9960 Add<HStoreNamedField>(result, HObjectAccess::ForJSArrayBufferBitFieldSlot(),
9961 graph()->GetConstant0());
9962 Add<HStoreNamedField>(
9963 result, HObjectAccess::ForJSArrayBufferBitField(),
9964 Add<HConstant>((1 << JSArrayBuffer::IsExternal::kShift) |
9965 (1 << JSArrayBuffer::IsNeuterable::kShift)));
9967 for (int field = 0; field < v8::ArrayBuffer::kInternalFieldCount; ++field) {
9968 Add<HStoreNamedField>(
9970 HObjectAccess::ForObservableJSObjectOffset(
9971 JSArrayBuffer::kSize + field * kPointerSize, Representation::Smi()),
9972 graph()->GetConstant0());
9979 template <class ViewClass>
9980 void HGraphBuilder::BuildArrayBufferViewInitialization(
9983 HValue* byte_offset,
9984 HValue* byte_length) {
9986 for (int offset = ViewClass::kSize;
9987 offset < ViewClass::kSizeWithInternalFields;
9988 offset += kPointerSize) {
9989 Add<HStoreNamedField>(obj,
9990 HObjectAccess::ForObservableJSObjectOffset(offset),
9991 graph()->GetConstant0());
9994 Add<HStoreNamedField>(
9996 HObjectAccess::ForJSArrayBufferViewByteOffset(),
9998 Add<HStoreNamedField>(
10000 HObjectAccess::ForJSArrayBufferViewByteLength(),
10002 Add<HStoreNamedField>(obj, HObjectAccess::ForJSArrayBufferViewBuffer(),
10007 void HOptimizedGraphBuilder::GenerateDataViewInitialize(
10008 CallRuntime* expr) {
10009 ZoneList<Expression*>* arguments = expr->arguments();
10011 DCHECK(arguments->length()== 4);
10012 CHECK_ALIVE(VisitForValue(arguments->at(0)));
10013 HValue* obj = Pop();
10015 CHECK_ALIVE(VisitForValue(arguments->at(1)));
10016 HValue* buffer = Pop();
10018 CHECK_ALIVE(VisitForValue(arguments->at(2)));
10019 HValue* byte_offset = Pop();
10021 CHECK_ALIVE(VisitForValue(arguments->at(3)));
10022 HValue* byte_length = Pop();
10025 NoObservableSideEffectsScope scope(this);
10026 BuildArrayBufferViewInitialization<JSDataView>(
10027 obj, buffer, byte_offset, byte_length);
10032 static Handle<Map> TypedArrayMap(Isolate* isolate,
10033 ExternalArrayType array_type,
10034 ElementsKind target_kind) {
10035 Handle<Context> native_context = isolate->native_context();
10036 Handle<JSFunction> fun;
10037 switch (array_type) {
10038 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
10039 case kExternal##Type##Array: \
10040 fun = Handle<JSFunction>(native_context->type##_array_fun()); \
10043 TYPED_ARRAYS(TYPED_ARRAY_CASE)
10044 #undef TYPED_ARRAY_CASE
10046 Handle<Map> map(fun->initial_map());
10047 return Map::AsElementsKind(map, target_kind);
10051 HValue* HOptimizedGraphBuilder::BuildAllocateExternalElements(
10052 ExternalArrayType array_type,
10053 bool is_zero_byte_offset,
10054 HValue* buffer, HValue* byte_offset, HValue* length) {
10055 Handle<Map> external_array_map(
10056 isolate()->heap()->MapForFixedTypedArray(array_type));
10058 // The HForceRepresentation is to prevent possible deopt on int-smi
10059 // conversion after allocation but before the new object fields are set.
10060 length = AddUncasted<HForceRepresentation>(length, Representation::Smi());
10061 HValue* elements = Add<HAllocate>(
10062 Add<HConstant>(FixedTypedArrayBase::kHeaderSize), HType::HeapObject(),
10063 NOT_TENURED, external_array_map->instance_type());
10065 AddStoreMapConstant(elements, external_array_map);
10066 Add<HStoreNamedField>(elements,
10067 HObjectAccess::ForFixedArrayLength(), length);
10069 HValue* backing_store = Add<HLoadNamedField>(
10070 buffer, nullptr, HObjectAccess::ForJSArrayBufferBackingStore());
10072 HValue* typed_array_start;
10073 if (is_zero_byte_offset) {
10074 typed_array_start = backing_store;
10076 HInstruction* external_pointer =
10077 AddUncasted<HAdd>(backing_store, byte_offset);
10078 // Arguments are checked prior to call to TypedArrayInitialize,
10079 // including byte_offset.
10080 external_pointer->ClearFlag(HValue::kCanOverflow);
10081 typed_array_start = external_pointer;
10084 Add<HStoreNamedField>(elements,
10085 HObjectAccess::ForFixedTypedArrayBaseBasePointer(),
10086 graph()->GetConstant0());
10087 Add<HStoreNamedField>(elements,
10088 HObjectAccess::ForFixedTypedArrayBaseExternalPointer(),
10089 typed_array_start);
10095 HValue* HOptimizedGraphBuilder::BuildAllocateFixedTypedArray(
10096 ExternalArrayType array_type, size_t element_size,
10097 ElementsKind fixed_elements_kind, HValue* byte_length, HValue* length,
10100 (FixedTypedArrayBase::kHeaderSize & kObjectAlignmentMask) == 0);
10101 HValue* total_size;
10103 // if fixed array's elements are not aligned to object's alignment,
10104 // we need to align the whole array to object alignment.
10105 if (element_size % kObjectAlignment != 0) {
10106 total_size = BuildObjectSizeAlignment(
10107 byte_length, FixedTypedArrayBase::kHeaderSize);
10109 total_size = AddUncasted<HAdd>(byte_length,
10110 Add<HConstant>(FixedTypedArrayBase::kHeaderSize));
10111 total_size->ClearFlag(HValue::kCanOverflow);
10114 // The HForceRepresentation is to prevent possible deopt on int-smi
10115 // conversion after allocation but before the new object fields are set.
10116 length = AddUncasted<HForceRepresentation>(length, Representation::Smi());
10117 Handle<Map> fixed_typed_array_map(
10118 isolate()->heap()->MapForFixedTypedArray(array_type));
10119 HAllocate* elements =
10120 Add<HAllocate>(total_size, HType::HeapObject(), NOT_TENURED,
10121 fixed_typed_array_map->instance_type());
10123 #ifndef V8_HOST_ARCH_64_BIT
10124 if (array_type == kExternalFloat64Array) {
10125 elements->MakeDoubleAligned();
10129 AddStoreMapConstant(elements, fixed_typed_array_map);
10131 Add<HStoreNamedField>(elements,
10132 HObjectAccess::ForFixedArrayLength(),
10134 Add<HStoreNamedField>(
10135 elements, HObjectAccess::ForFixedTypedArrayBaseBasePointer(), elements);
10137 Add<HStoreNamedField>(
10138 elements, HObjectAccess::ForFixedTypedArrayBaseExternalPointer(),
10139 Add<HConstant>(ExternalReference::fixed_typed_array_base_data_offset()));
10141 HValue* filler = Add<HConstant>(static_cast<int32_t>(0));
10144 LoopBuilder builder(this, context(), LoopBuilder::kPostIncrement);
10146 HValue* backing_store = AddUncasted<HAdd>(
10147 Add<HConstant>(ExternalReference::fixed_typed_array_base_data_offset()),
10148 elements, Strength::WEAK, AddOfExternalAndTagged);
10150 HValue* key = builder.BeginBody(
10151 Add<HConstant>(static_cast<int32_t>(0)),
10152 length, Token::LT);
10153 Add<HStoreKeyed>(backing_store, key, filler, fixed_elements_kind);
10161 void HOptimizedGraphBuilder::GenerateTypedArrayInitialize(
10162 CallRuntime* expr) {
10163 ZoneList<Expression*>* arguments = expr->arguments();
10165 static const int kObjectArg = 0;
10166 static const int kArrayIdArg = 1;
10167 static const int kBufferArg = 2;
10168 static const int kByteOffsetArg = 3;
10169 static const int kByteLengthArg = 4;
10170 static const int kInitializeArg = 5;
10171 static const int kArgsLength = 6;
10172 DCHECK(arguments->length() == kArgsLength);
10175 CHECK_ALIVE(VisitForValue(arguments->at(kObjectArg)));
10176 HValue* obj = Pop();
10178 if (!arguments->at(kArrayIdArg)->IsLiteral()) {
10179 // This should never happen in real use, but can happen when fuzzing.
10181 Bailout(kNeedSmiLiteral);
10184 Handle<Object> value =
10185 static_cast<Literal*>(arguments->at(kArrayIdArg))->value();
10186 if (!value->IsSmi()) {
10187 // This should never happen in real use, but can happen when fuzzing.
10189 Bailout(kNeedSmiLiteral);
10192 int array_id = Smi::cast(*value)->value();
10195 if (!arguments->at(kBufferArg)->IsNullLiteral()) {
10196 CHECK_ALIVE(VisitForValue(arguments->at(kBufferArg)));
10202 HValue* byte_offset;
10203 bool is_zero_byte_offset;
10205 if (arguments->at(kByteOffsetArg)->IsLiteral()
10206 && Smi::FromInt(0) ==
10207 *static_cast<Literal*>(arguments->at(kByteOffsetArg))->value()) {
10208 byte_offset = Add<HConstant>(static_cast<int32_t>(0));
10209 is_zero_byte_offset = true;
10211 CHECK_ALIVE(VisitForValue(arguments->at(kByteOffsetArg)));
10212 byte_offset = Pop();
10213 is_zero_byte_offset = false;
10214 DCHECK(buffer != NULL);
10217 CHECK_ALIVE(VisitForValue(arguments->at(kByteLengthArg)));
10218 HValue* byte_length = Pop();
10220 CHECK(arguments->at(kInitializeArg)->IsLiteral());
10221 bool initialize = static_cast<Literal*>(arguments->at(kInitializeArg))
10225 NoObservableSideEffectsScope scope(this);
10226 IfBuilder byte_offset_smi(this);
10228 if (!is_zero_byte_offset) {
10229 byte_offset_smi.If<HIsSmiAndBranch>(byte_offset);
10230 byte_offset_smi.Then();
10233 ExternalArrayType array_type =
10234 kExternalInt8Array; // Bogus initialization.
10235 size_t element_size = 1; // Bogus initialization.
10236 ElementsKind fixed_elements_kind = // Bogus initialization.
10238 Runtime::ArrayIdToTypeAndSize(array_id,
10240 &fixed_elements_kind,
10244 { // byte_offset is Smi.
10245 HValue* allocated_buffer = buffer;
10246 if (buffer == NULL) {
10247 allocated_buffer = BuildAllocateEmptyArrayBuffer(byte_length);
10249 BuildArrayBufferViewInitialization<JSTypedArray>(obj, allocated_buffer,
10250 byte_offset, byte_length);
10253 HInstruction* length = AddUncasted<HDiv>(byte_length,
10254 Add<HConstant>(static_cast<int32_t>(element_size)));
10256 Add<HStoreNamedField>(obj,
10257 HObjectAccess::ForJSTypedArrayLength(),
10261 if (buffer != NULL) {
10262 elements = BuildAllocateExternalElements(
10263 array_type, is_zero_byte_offset, buffer, byte_offset, length);
10264 Handle<Map> obj_map =
10265 TypedArrayMap(isolate(), array_type, fixed_elements_kind);
10266 AddStoreMapConstant(obj, obj_map);
10268 DCHECK(is_zero_byte_offset);
10269 elements = BuildAllocateFixedTypedArray(array_type, element_size,
10270 fixed_elements_kind, byte_length,
10271 length, initialize);
10273 Add<HStoreNamedField>(
10274 obj, HObjectAccess::ForElementsPointer(), elements);
10277 if (!is_zero_byte_offset) {
10278 byte_offset_smi.Else();
10279 { // byte_offset is not Smi.
10281 CHECK_ALIVE(VisitForValue(arguments->at(kArrayIdArg)));
10285 CHECK_ALIVE(VisitForValue(arguments->at(kInitializeArg)));
10286 PushArgumentsFromEnvironment(kArgsLength);
10287 Add<HCallRuntime>(expr->name(), expr->function(), kArgsLength);
10290 byte_offset_smi.End();
10294 void HOptimizedGraphBuilder::GenerateMaxSmi(CallRuntime* expr) {
10295 DCHECK(expr->arguments()->length() == 0);
10296 HConstant* max_smi = New<HConstant>(static_cast<int32_t>(Smi::kMaxValue));
10297 return ast_context()->ReturnInstruction(max_smi, expr->id());
10301 void HOptimizedGraphBuilder::GenerateTypedArrayMaxSizeInHeap(
10302 CallRuntime* expr) {
10303 DCHECK(expr->arguments()->length() == 0);
10304 HConstant* result = New<HConstant>(static_cast<int32_t>(
10305 FLAG_typed_array_max_size_in_heap));
10306 return ast_context()->ReturnInstruction(result, expr->id());
10310 void HOptimizedGraphBuilder::GenerateArrayBufferGetByteLength(
10311 CallRuntime* expr) {
10312 DCHECK(expr->arguments()->length() == 1);
10313 CHECK_ALIVE(VisitForValue(expr->arguments()->at(0)));
10314 HValue* buffer = Pop();
10315 HInstruction* result = New<HLoadNamedField>(
10316 buffer, nullptr, HObjectAccess::ForJSArrayBufferByteLength());
10317 return ast_context()->ReturnInstruction(result, expr->id());
10321 void HOptimizedGraphBuilder::GenerateArrayBufferViewGetByteLength(
10322 CallRuntime* expr) {
10323 NoObservableSideEffectsScope scope(this);
10324 DCHECK(expr->arguments()->length() == 1);
10325 CHECK_ALIVE(VisitForValue(expr->arguments()->at(0)));
10326 HValue* view = Pop();
10328 return ast_context()->ReturnValue(BuildArrayBufferViewFieldAccessor(
10330 FieldIndex::ForInObjectOffset(JSArrayBufferView::kByteLengthOffset)));
10334 void HOptimizedGraphBuilder::GenerateArrayBufferViewGetByteOffset(
10335 CallRuntime* expr) {
10336 NoObservableSideEffectsScope scope(this);
10337 DCHECK(expr->arguments()->length() == 1);
10338 CHECK_ALIVE(VisitForValue(expr->arguments()->at(0)));
10339 HValue* view = Pop();
10341 return ast_context()->ReturnValue(BuildArrayBufferViewFieldAccessor(
10343 FieldIndex::ForInObjectOffset(JSArrayBufferView::kByteOffsetOffset)));
10347 void HOptimizedGraphBuilder::GenerateTypedArrayGetLength(
10348 CallRuntime* expr) {
10349 NoObservableSideEffectsScope scope(this);
10350 DCHECK(expr->arguments()->length() == 1);
10351 CHECK_ALIVE(VisitForValue(expr->arguments()->at(0)));
10352 HValue* view = Pop();
10354 return ast_context()->ReturnValue(BuildArrayBufferViewFieldAccessor(
10356 FieldIndex::ForInObjectOffset(JSTypedArray::kLengthOffset)));
10360 void HOptimizedGraphBuilder::VisitCallRuntime(CallRuntime* expr) {
10361 DCHECK(!HasStackOverflow());
10362 DCHECK(current_block() != NULL);
10363 DCHECK(current_block()->HasPredecessor());
10364 if (expr->is_jsruntime()) {
10365 return Bailout(kCallToAJavaScriptRuntimeFunction);
10368 const Runtime::Function* function = expr->function();
10369 DCHECK(function != NULL);
10370 switch (function->function_id) {
10371 #define CALL_INTRINSIC_GENERATOR(Name) \
10372 case Runtime::kInline##Name: \
10373 return Generate##Name(expr);
10375 FOR_EACH_HYDROGEN_INTRINSIC(CALL_INTRINSIC_GENERATOR)
10376 #undef CALL_INTRINSIC_GENERATOR
10378 Handle<String> name = expr->name();
10379 int argument_count = expr->arguments()->length();
10380 CHECK_ALIVE(VisitExpressions(expr->arguments()));
10381 PushArgumentsFromEnvironment(argument_count);
10382 HCallRuntime* call = New<HCallRuntime>(name, function, argument_count);
10383 return ast_context()->ReturnInstruction(call, expr->id());
10389 void HOptimizedGraphBuilder::VisitUnaryOperation(UnaryOperation* expr) {
10390 DCHECK(!HasStackOverflow());
10391 DCHECK(current_block() != NULL);
10392 DCHECK(current_block()->HasPredecessor());
10393 switch (expr->op()) {
10394 case Token::DELETE: return VisitDelete(expr);
10395 case Token::VOID: return VisitVoid(expr);
10396 case Token::TYPEOF: return VisitTypeof(expr);
10397 case Token::NOT: return VisitNot(expr);
10398 default: UNREACHABLE();
10403 void HOptimizedGraphBuilder::VisitDelete(UnaryOperation* expr) {
10404 Property* prop = expr->expression()->AsProperty();
10405 VariableProxy* proxy = expr->expression()->AsVariableProxy();
10406 if (prop != NULL) {
10407 CHECK_ALIVE(VisitForValue(prop->obj()));
10408 CHECK_ALIVE(VisitForValue(prop->key()));
10409 HValue* key = Pop();
10410 HValue* obj = Pop();
10411 Add<HPushArguments>(obj, key);
10412 HInstruction* instr = New<HCallRuntime>(
10413 isolate()->factory()->empty_string(),
10414 Runtime::FunctionForId(is_strict(function_language_mode())
10415 ? Runtime::kDeleteProperty_Strict
10416 : Runtime::kDeleteProperty_Sloppy),
10418 return ast_context()->ReturnInstruction(instr, expr->id());
10419 } else if (proxy != NULL) {
10420 Variable* var = proxy->var();
10421 if (var->IsUnallocatedOrGlobalSlot()) {
10422 Bailout(kDeleteWithGlobalVariable);
10423 } else if (var->IsStackAllocated() || var->IsContextSlot()) {
10424 // Result of deleting non-global variables is false. 'this' is not really
10425 // a variable, though we implement it as one. The subexpression does not
10426 // have side effects.
10427 HValue* value = var->HasThisName(isolate()) ? graph()->GetConstantTrue()
10428 : graph()->GetConstantFalse();
10429 return ast_context()->ReturnValue(value);
10431 Bailout(kDeleteWithNonGlobalVariable);
10434 // Result of deleting non-property, non-variable reference is true.
10435 // Evaluate the subexpression for side effects.
10436 CHECK_ALIVE(VisitForEffect(expr->expression()));
10437 return ast_context()->ReturnValue(graph()->GetConstantTrue());
10442 void HOptimizedGraphBuilder::VisitVoid(UnaryOperation* expr) {
10443 CHECK_ALIVE(VisitForEffect(expr->expression()));
10444 return ast_context()->ReturnValue(graph()->GetConstantUndefined());
10448 void HOptimizedGraphBuilder::VisitTypeof(UnaryOperation* expr) {
10449 CHECK_ALIVE(VisitForTypeOf(expr->expression()));
10450 HValue* value = Pop();
10451 HInstruction* instr = New<HTypeof>(value);
10452 return ast_context()->ReturnInstruction(instr, expr->id());
10456 void HOptimizedGraphBuilder::VisitNot(UnaryOperation* expr) {
10457 if (ast_context()->IsTest()) {
10458 TestContext* context = TestContext::cast(ast_context());
10459 VisitForControl(expr->expression(),
10460 context->if_false(),
10461 context->if_true());
10465 if (ast_context()->IsEffect()) {
10466 VisitForEffect(expr->expression());
10470 DCHECK(ast_context()->IsValue());
10471 HBasicBlock* materialize_false = graph()->CreateBasicBlock();
10472 HBasicBlock* materialize_true = graph()->CreateBasicBlock();
10473 CHECK_BAILOUT(VisitForControl(expr->expression(),
10475 materialize_true));
10477 if (materialize_false->HasPredecessor()) {
10478 materialize_false->SetJoinId(expr->MaterializeFalseId());
10479 set_current_block(materialize_false);
10480 Push(graph()->GetConstantFalse());
10482 materialize_false = NULL;
10485 if (materialize_true->HasPredecessor()) {
10486 materialize_true->SetJoinId(expr->MaterializeTrueId());
10487 set_current_block(materialize_true);
10488 Push(graph()->GetConstantTrue());
10490 materialize_true = NULL;
10493 HBasicBlock* join =
10494 CreateJoin(materialize_false, materialize_true, expr->id());
10495 set_current_block(join);
10496 if (join != NULL) return ast_context()->ReturnValue(Pop());
10500 static Representation RepresentationFor(Type* type) {
10501 DisallowHeapAllocation no_allocation;
10502 if (type->Is(Type::None())) return Representation::None();
10503 if (type->Is(Type::SignedSmall())) return Representation::Smi();
10504 if (type->Is(Type::Signed32())) return Representation::Integer32();
10505 if (type->Is(Type::Number())) return Representation::Double();
10506 return Representation::Tagged();
10510 HInstruction* HOptimizedGraphBuilder::BuildIncrement(
10511 bool returns_original_input,
10512 CountOperation* expr) {
10513 // The input to the count operation is on top of the expression stack.
10514 Representation rep = RepresentationFor(expr->type());
10515 if (rep.IsNone() || rep.IsTagged()) {
10516 rep = Representation::Smi();
10519 if (returns_original_input && !is_strong(function_language_mode())) {
10520 // We need an explicit HValue representing ToNumber(input). The
10521 // actual HChange instruction we need is (sometimes) added in a later
10522 // phase, so it is not available now to be used as an input to HAdd and
10523 // as the return value.
10524 HInstruction* number_input = AddUncasted<HForceRepresentation>(Pop(), rep);
10525 if (!rep.IsDouble()) {
10526 number_input->SetFlag(HInstruction::kFlexibleRepresentation);
10527 number_input->SetFlag(HInstruction::kCannotBeTagged);
10529 Push(number_input);
10532 // The addition has no side effects, so we do not need
10533 // to simulate the expression stack after this instruction.
10534 // Any later failures deopt to the load of the input or earlier.
10535 HConstant* delta = (expr->op() == Token::INC)
10536 ? graph()->GetConstant1()
10537 : graph()->GetConstantMinus1();
10538 HInstruction* instr =
10539 AddUncasted<HAdd>(Top(), delta, strength(function_language_mode()));
10540 if (instr->IsAdd()) {
10541 HAdd* add = HAdd::cast(instr);
10542 add->set_observed_input_representation(1, rep);
10543 add->set_observed_input_representation(2, Representation::Smi());
10545 if (!is_strong(function_language_mode())) {
10546 instr->ClearAllSideEffects();
10548 Add<HSimulate>(expr->ToNumberId(), REMOVABLE_SIMULATE);
10550 instr->SetFlag(HInstruction::kCannotBeTagged);
10555 void HOptimizedGraphBuilder::BuildStoreForEffect(
10556 Expression* expr, Property* prop, FeedbackVectorICSlot slot,
10557 BailoutId ast_id, BailoutId return_id, HValue* object, HValue* key,
10559 EffectContext for_effect(this);
10561 if (key != NULL) Push(key);
10563 BuildStore(expr, prop, slot, ast_id, return_id);
10567 void HOptimizedGraphBuilder::VisitCountOperation(CountOperation* expr) {
10568 DCHECK(!HasStackOverflow());
10569 DCHECK(current_block() != NULL);
10570 DCHECK(current_block()->HasPredecessor());
10571 if (!top_info()->is_tracking_positions()) SetSourcePosition(expr->position());
10572 Expression* target = expr->expression();
10573 VariableProxy* proxy = target->AsVariableProxy();
10574 Property* prop = target->AsProperty();
10575 if (proxy == NULL && prop == NULL) {
10576 return Bailout(kInvalidLhsInCountOperation);
10579 // Match the full code generator stack by simulating an extra stack
10580 // element for postfix operations in a non-effect context. The return
10581 // value is ToNumber(input).
10582 bool returns_original_input =
10583 expr->is_postfix() && !ast_context()->IsEffect();
10584 HValue* input = NULL; // ToNumber(original_input).
10585 HValue* after = NULL; // The result after incrementing or decrementing.
10587 if (proxy != NULL) {
10588 Variable* var = proxy->var();
10589 if (var->mode() == CONST_LEGACY) {
10590 return Bailout(kUnsupportedCountOperationWithConst);
10592 if (var->mode() == CONST) {
10593 return Bailout(kNonInitializerAssignmentToConst);
10595 // Argument of the count operation is a variable, not a property.
10596 DCHECK(prop == NULL);
10597 CHECK_ALIVE(VisitForValue(target));
10599 after = BuildIncrement(returns_original_input, expr);
10600 input = returns_original_input ? Top() : Pop();
10603 switch (var->location()) {
10604 case VariableLocation::GLOBAL:
10605 case VariableLocation::UNALLOCATED:
10606 HandleGlobalVariableAssignment(var, after, expr->CountSlot(),
10607 expr->AssignmentId());
10610 case VariableLocation::PARAMETER:
10611 case VariableLocation::LOCAL:
10612 BindIfLive(var, after);
10615 case VariableLocation::CONTEXT: {
10616 // Bail out if we try to mutate a parameter value in a function
10617 // using the arguments object. We do not (yet) correctly handle the
10618 // arguments property of the function.
10619 if (current_info()->scope()->arguments() != NULL) {
10620 // Parameters will rewrite to context slots. We have no direct
10621 // way to detect that the variable is a parameter so we use a
10622 // linear search of the parameter list.
10623 int count = current_info()->scope()->num_parameters();
10624 for (int i = 0; i < count; ++i) {
10625 if (var == current_info()->scope()->parameter(i)) {
10626 return Bailout(kAssignmentToParameterInArgumentsObject);
10631 HValue* context = BuildContextChainWalk(var);
10632 HStoreContextSlot::Mode mode = IsLexicalVariableMode(var->mode())
10633 ? HStoreContextSlot::kCheckDeoptimize : HStoreContextSlot::kNoCheck;
10634 HStoreContextSlot* instr = Add<HStoreContextSlot>(context, var->index(),
10636 if (instr->HasObservableSideEffects()) {
10637 Add<HSimulate>(expr->AssignmentId(), REMOVABLE_SIMULATE);
10642 case VariableLocation::LOOKUP:
10643 return Bailout(kLookupVariableInCountOperation);
10646 Drop(returns_original_input ? 2 : 1);
10647 return ast_context()->ReturnValue(expr->is_postfix() ? input : after);
10650 // Argument of the count operation is a property.
10651 DCHECK(prop != NULL);
10652 if (returns_original_input) Push(graph()->GetConstantUndefined());
10654 CHECK_ALIVE(VisitForValue(prop->obj()));
10655 HValue* object = Top();
10657 HValue* key = NULL;
10658 if (!prop->key()->IsPropertyName() || prop->IsStringAccess()) {
10659 CHECK_ALIVE(VisitForValue(prop->key()));
10663 CHECK_ALIVE(PushLoad(prop, object, key));
10665 after = BuildIncrement(returns_original_input, expr);
10667 if (returns_original_input) {
10669 // Drop object and key to push it again in the effect context below.
10670 Drop(key == NULL ? 1 : 2);
10671 environment()->SetExpressionStackAt(0, input);
10672 CHECK_ALIVE(BuildStoreForEffect(expr, prop, expr->CountSlot(), expr->id(),
10673 expr->AssignmentId(), object, key, after));
10674 return ast_context()->ReturnValue(Pop());
10677 environment()->SetExpressionStackAt(0, after);
10678 return BuildStore(expr, prop, expr->CountSlot(), expr->id(),
10679 expr->AssignmentId());
10683 HInstruction* HOptimizedGraphBuilder::BuildStringCharCodeAt(
10686 if (string->IsConstant() && index->IsConstant()) {
10687 HConstant* c_string = HConstant::cast(string);
10688 HConstant* c_index = HConstant::cast(index);
10689 if (c_string->HasStringValue() && c_index->HasNumberValue()) {
10690 int32_t i = c_index->NumberValueAsInteger32();
10691 Handle<String> s = c_string->StringValue();
10692 if (i < 0 || i >= s->length()) {
10693 return New<HConstant>(std::numeric_limits<double>::quiet_NaN());
10695 return New<HConstant>(s->Get(i));
10698 string = BuildCheckString(string);
10699 index = Add<HBoundsCheck>(index, AddLoadStringLength(string));
10700 return New<HStringCharCodeAt>(string, index);
10704 // Checks if the given shift amounts have following forms:
10705 // (N1) and (N2) with N1 + N2 = 32; (sa) and (32 - sa).
10706 static bool ShiftAmountsAllowReplaceByRotate(HValue* sa,
10707 HValue* const32_minus_sa) {
10708 if (sa->IsConstant() && const32_minus_sa->IsConstant()) {
10709 const HConstant* c1 = HConstant::cast(sa);
10710 const HConstant* c2 = HConstant::cast(const32_minus_sa);
10711 return c1->HasInteger32Value() && c2->HasInteger32Value() &&
10712 (c1->Integer32Value() + c2->Integer32Value() == 32);
10714 if (!const32_minus_sa->IsSub()) return false;
10715 HSub* sub = HSub::cast(const32_minus_sa);
10716 return sub->left()->EqualsInteger32Constant(32) && sub->right() == sa;
10720 // Checks if the left and the right are shift instructions with the oposite
10721 // directions that can be replaced by one rotate right instruction or not.
10722 // Returns the operand and the shift amount for the rotate instruction in the
10724 bool HGraphBuilder::MatchRotateRight(HValue* left,
10727 HValue** shift_amount) {
10730 if (left->IsShl() && right->IsShr()) {
10731 shl = HShl::cast(left);
10732 shr = HShr::cast(right);
10733 } else if (left->IsShr() && right->IsShl()) {
10734 shl = HShl::cast(right);
10735 shr = HShr::cast(left);
10739 if (shl->left() != shr->left()) return false;
10741 if (!ShiftAmountsAllowReplaceByRotate(shl->right(), shr->right()) &&
10742 !ShiftAmountsAllowReplaceByRotate(shr->right(), shl->right())) {
10745 *operand = shr->left();
10746 *shift_amount = shr->right();
10751 bool CanBeZero(HValue* right) {
10752 if (right->IsConstant()) {
10753 HConstant* right_const = HConstant::cast(right);
10754 if (right_const->HasInteger32Value() &&
10755 (right_const->Integer32Value() & 0x1f) != 0) {
10763 HValue* HGraphBuilder::EnforceNumberType(HValue* number,
10765 if (expected->Is(Type::SignedSmall())) {
10766 return AddUncasted<HForceRepresentation>(number, Representation::Smi());
10768 if (expected->Is(Type::Signed32())) {
10769 return AddUncasted<HForceRepresentation>(number,
10770 Representation::Integer32());
10776 HValue* HGraphBuilder::TruncateToNumber(HValue* value, Type** expected) {
10777 if (value->IsConstant()) {
10778 HConstant* constant = HConstant::cast(value);
10779 Maybe<HConstant*> number =
10780 constant->CopyToTruncatedNumber(isolate(), zone());
10781 if (number.IsJust()) {
10782 *expected = Type::Number(zone());
10783 return AddInstruction(number.FromJust());
10787 // We put temporary values on the stack, which don't correspond to anything
10788 // in baseline code. Since nothing is observable we avoid recording those
10789 // pushes with a NoObservableSideEffectsScope.
10790 NoObservableSideEffectsScope no_effects(this);
10792 Type* expected_type = *expected;
10794 // Separate the number type from the rest.
10795 Type* expected_obj =
10796 Type::Intersect(expected_type, Type::NonNumber(zone()), zone());
10797 Type* expected_number =
10798 Type::Intersect(expected_type, Type::Number(zone()), zone());
10800 // We expect to get a number.
10801 // (We need to check first, since Type::None->Is(Type::Any()) == true.
10802 if (expected_obj->Is(Type::None())) {
10803 DCHECK(!expected_number->Is(Type::None(zone())));
10807 if (expected_obj->Is(Type::Undefined(zone()))) {
10808 // This is already done by HChange.
10809 *expected = Type::Union(expected_number, Type::Number(zone()), zone());
10817 HValue* HOptimizedGraphBuilder::BuildBinaryOperation(
10818 BinaryOperation* expr,
10821 PushBeforeSimulateBehavior push_sim_result) {
10822 Type* left_type = expr->left()->bounds().lower;
10823 Type* right_type = expr->right()->bounds().lower;
10824 Type* result_type = expr->bounds().lower;
10825 Maybe<int> fixed_right_arg = expr->fixed_right_arg();
10826 Handle<AllocationSite> allocation_site = expr->allocation_site();
10828 HAllocationMode allocation_mode;
10829 if (FLAG_allocation_site_pretenuring && !allocation_site.is_null()) {
10830 allocation_mode = HAllocationMode(allocation_site);
10832 HValue* result = HGraphBuilder::BuildBinaryOperation(
10833 expr->op(), left, right, left_type, right_type, result_type,
10834 fixed_right_arg, allocation_mode, strength(function_language_mode()),
10836 // Add a simulate after instructions with observable side effects, and
10837 // after phis, which are the result of BuildBinaryOperation when we
10838 // inlined some complex subgraph.
10839 if (result->HasObservableSideEffects() || result->IsPhi()) {
10840 if (push_sim_result == PUSH_BEFORE_SIMULATE) {
10842 Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
10845 Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
10852 HValue* HGraphBuilder::BuildBinaryOperation(
10853 Token::Value op, HValue* left, HValue* right, Type* left_type,
10854 Type* right_type, Type* result_type, Maybe<int> fixed_right_arg,
10855 HAllocationMode allocation_mode, Strength strength, BailoutId opt_id) {
10856 bool maybe_string_add = false;
10857 if (op == Token::ADD) {
10858 // If we are adding constant string with something for which we don't have
10859 // a feedback yet, assume that it's also going to be a string and don't
10860 // generate deopt instructions.
10861 if (!left_type->IsInhabited() && right->IsConstant() &&
10862 HConstant::cast(right)->HasStringValue()) {
10863 left_type = Type::String();
10866 if (!right_type->IsInhabited() && left->IsConstant() &&
10867 HConstant::cast(left)->HasStringValue()) {
10868 right_type = Type::String();
10871 maybe_string_add = (left_type->Maybe(Type::String()) ||
10872 left_type->Maybe(Type::Receiver()) ||
10873 right_type->Maybe(Type::String()) ||
10874 right_type->Maybe(Type::Receiver()));
10877 Representation left_rep = RepresentationFor(left_type);
10878 Representation right_rep = RepresentationFor(right_type);
10880 if (!left_type->IsInhabited()) {
10882 Deoptimizer::kInsufficientTypeFeedbackForLHSOfBinaryOperation,
10883 Deoptimizer::SOFT);
10884 left_type = Type::Any(zone());
10885 left_rep = RepresentationFor(left_type);
10886 maybe_string_add = op == Token::ADD;
10889 if (!right_type->IsInhabited()) {
10891 Deoptimizer::kInsufficientTypeFeedbackForRHSOfBinaryOperation,
10892 Deoptimizer::SOFT);
10893 right_type = Type::Any(zone());
10894 right_rep = RepresentationFor(right_type);
10895 maybe_string_add = op == Token::ADD;
10898 if (!maybe_string_add && !is_strong(strength)) {
10899 left = TruncateToNumber(left, &left_type);
10900 right = TruncateToNumber(right, &right_type);
10903 // Special case for string addition here.
10904 if (op == Token::ADD &&
10905 (left_type->Is(Type::String()) || right_type->Is(Type::String()))) {
10906 if (is_strong(strength)) {
10907 // In strong mode, if the one side of an addition is a string,
10908 // the other side must be a string too.
10909 left = BuildCheckString(left);
10910 right = BuildCheckString(right);
10912 // Validate type feedback for left argument.
10913 if (left_type->Is(Type::String())) {
10914 left = BuildCheckString(left);
10917 // Validate type feedback for right argument.
10918 if (right_type->Is(Type::String())) {
10919 right = BuildCheckString(right);
10922 // Convert left argument as necessary.
10923 if (left_type->Is(Type::Number())) {
10924 DCHECK(right_type->Is(Type::String()));
10925 left = BuildNumberToString(left, left_type);
10926 } else if (!left_type->Is(Type::String())) {
10927 DCHECK(right_type->Is(Type::String()));
10928 HValue* function = AddLoadJSBuiltin(Builtins::STRING_ADD_RIGHT);
10929 Add<HPushArguments>(left, right);
10930 return AddUncasted<HInvokeFunction>(function, 2);
10933 // Convert right argument as necessary.
10934 if (right_type->Is(Type::Number())) {
10935 DCHECK(left_type->Is(Type::String()));
10936 right = BuildNumberToString(right, right_type);
10937 } else if (!right_type->Is(Type::String())) {
10938 DCHECK(left_type->Is(Type::String()));
10939 HValue* function = AddLoadJSBuiltin(Builtins::STRING_ADD_LEFT);
10940 Add<HPushArguments>(left, right);
10941 return AddUncasted<HInvokeFunction>(function, 2);
10945 // Fast paths for empty constant strings.
10946 Handle<String> left_string =
10947 left->IsConstant() && HConstant::cast(left)->HasStringValue()
10948 ? HConstant::cast(left)->StringValue()
10949 : Handle<String>();
10950 Handle<String> right_string =
10951 right->IsConstant() && HConstant::cast(right)->HasStringValue()
10952 ? HConstant::cast(right)->StringValue()
10953 : Handle<String>();
10954 if (!left_string.is_null() && left_string->length() == 0) return right;
10955 if (!right_string.is_null() && right_string->length() == 0) return left;
10956 if (!left_string.is_null() && !right_string.is_null()) {
10957 return AddUncasted<HStringAdd>(
10958 left, right, strength, allocation_mode.GetPretenureMode(),
10959 STRING_ADD_CHECK_NONE, allocation_mode.feedback_site());
10962 // Register the dependent code with the allocation site.
10963 if (!allocation_mode.feedback_site().is_null()) {
10964 DCHECK(!graph()->info()->IsStub());
10965 Handle<AllocationSite> site(allocation_mode.feedback_site());
10966 top_info()->dependencies()->AssumeTenuringDecision(site);
10969 // Inline the string addition into the stub when creating allocation
10970 // mementos to gather allocation site feedback, or if we can statically
10971 // infer that we're going to create a cons string.
10972 if ((graph()->info()->IsStub() &&
10973 allocation_mode.CreateAllocationMementos()) ||
10974 (left->IsConstant() &&
10975 HConstant::cast(left)->HasStringValue() &&
10976 HConstant::cast(left)->StringValue()->length() + 1 >=
10977 ConsString::kMinLength) ||
10978 (right->IsConstant() &&
10979 HConstant::cast(right)->HasStringValue() &&
10980 HConstant::cast(right)->StringValue()->length() + 1 >=
10981 ConsString::kMinLength)) {
10982 return BuildStringAdd(left, right, allocation_mode);
10985 // Fallback to using the string add stub.
10986 return AddUncasted<HStringAdd>(
10987 left, right, strength, allocation_mode.GetPretenureMode(),
10988 STRING_ADD_CHECK_NONE, allocation_mode.feedback_site());
10991 if (graph()->info()->IsStub()) {
10992 left = EnforceNumberType(left, left_type);
10993 right = EnforceNumberType(right, right_type);
10996 Representation result_rep = RepresentationFor(result_type);
10998 bool is_non_primitive = (left_rep.IsTagged() && !left_rep.IsSmi()) ||
10999 (right_rep.IsTagged() && !right_rep.IsSmi());
11001 HInstruction* instr = NULL;
11002 // Only the stub is allowed to call into the runtime, since otherwise we would
11003 // inline several instructions (including the two pushes) for every tagged
11004 // operation in optimized code, which is more expensive, than a stub call.
11005 if (graph()->info()->IsStub() && is_non_primitive) {
11007 AddLoadJSBuiltin(BinaryOpIC::TokenToJSBuiltin(op, strength));
11008 Add<HPushArguments>(left, right);
11009 instr = AddUncasted<HInvokeFunction>(function, 2);
11011 if (is_strong(strength) && Token::IsBitOp(op)) {
11012 // TODO(conradw): This is not efficient, but is necessary to prevent
11013 // conversion of oddball values to numbers in strong mode. It would be
11014 // better to prevent the conversion rather than adding a runtime check.
11015 IfBuilder if_builder(this);
11016 if_builder.If<HHasInstanceTypeAndBranch>(left, ODDBALL_TYPE);
11017 if_builder.OrIf<HHasInstanceTypeAndBranch>(right, ODDBALL_TYPE);
11020 isolate()->factory()->empty_string(),
11021 Runtime::FunctionForId(Runtime::kThrowStrongModeImplicitConversion),
11023 if (!graph()->info()->IsStub()) {
11024 Add<HSimulate>(opt_id, REMOVABLE_SIMULATE);
11030 instr = AddUncasted<HAdd>(left, right, strength);
11033 instr = AddUncasted<HSub>(left, right, strength);
11036 instr = AddUncasted<HMul>(left, right, strength);
11039 if (fixed_right_arg.IsJust() &&
11040 !right->EqualsInteger32Constant(fixed_right_arg.FromJust())) {
11041 HConstant* fixed_right =
11042 Add<HConstant>(static_cast<int>(fixed_right_arg.FromJust()));
11043 IfBuilder if_same(this);
11044 if_same.If<HCompareNumericAndBranch>(right, fixed_right, Token::EQ);
11046 if_same.ElseDeopt(Deoptimizer::kUnexpectedRHSOfBinaryOperation);
11047 right = fixed_right;
11049 instr = AddUncasted<HMod>(left, right, strength);
11053 instr = AddUncasted<HDiv>(left, right, strength);
11055 case Token::BIT_XOR:
11056 case Token::BIT_AND:
11057 instr = AddUncasted<HBitwise>(op, left, right, strength);
11059 case Token::BIT_OR: {
11060 HValue* operand, *shift_amount;
11061 if (left_type->Is(Type::Signed32()) &&
11062 right_type->Is(Type::Signed32()) &&
11063 MatchRotateRight(left, right, &operand, &shift_amount)) {
11064 instr = AddUncasted<HRor>(operand, shift_amount, strength);
11066 instr = AddUncasted<HBitwise>(op, left, right, strength);
11071 instr = AddUncasted<HSar>(left, right, strength);
11074 instr = AddUncasted<HShr>(left, right, strength);
11075 if (instr->IsShr() && CanBeZero(right)) {
11076 graph()->RecordUint32Instruction(instr);
11080 instr = AddUncasted<HShl>(left, right, strength);
11087 if (instr->IsBinaryOperation()) {
11088 HBinaryOperation* binop = HBinaryOperation::cast(instr);
11089 binop->set_observed_input_representation(1, left_rep);
11090 binop->set_observed_input_representation(2, right_rep);
11091 binop->initialize_output_representation(result_rep);
11092 if (graph()->info()->IsStub()) {
11093 // Stub should not call into stub.
11094 instr->SetFlag(HValue::kCannotBeTagged);
11095 // And should truncate on HForceRepresentation already.
11096 if (left->IsForceRepresentation()) {
11097 left->CopyFlag(HValue::kTruncatingToSmi, instr);
11098 left->CopyFlag(HValue::kTruncatingToInt32, instr);
11100 if (right->IsForceRepresentation()) {
11101 right->CopyFlag(HValue::kTruncatingToSmi, instr);
11102 right->CopyFlag(HValue::kTruncatingToInt32, instr);
11110 // Check for the form (%_ClassOf(foo) === 'BarClass').
11111 static bool IsClassOfTest(CompareOperation* expr) {
11112 if (expr->op() != Token::EQ_STRICT) return false;
11113 CallRuntime* call = expr->left()->AsCallRuntime();
11114 if (call == NULL) return false;
11115 Literal* literal = expr->right()->AsLiteral();
11116 if (literal == NULL) return false;
11117 if (!literal->value()->IsString()) return false;
11118 if (!call->name()->IsOneByteEqualTo(STATIC_CHAR_VECTOR("_ClassOf"))) {
11121 DCHECK(call->arguments()->length() == 1);
11126 void HOptimizedGraphBuilder::VisitBinaryOperation(BinaryOperation* expr) {
11127 DCHECK(!HasStackOverflow());
11128 DCHECK(current_block() != NULL);
11129 DCHECK(current_block()->HasPredecessor());
11130 switch (expr->op()) {
11132 return VisitComma(expr);
11135 return VisitLogicalExpression(expr);
11137 return VisitArithmeticExpression(expr);
11142 void HOptimizedGraphBuilder::VisitComma(BinaryOperation* expr) {
11143 CHECK_ALIVE(VisitForEffect(expr->left()));
11144 // Visit the right subexpression in the same AST context as the entire
11146 Visit(expr->right());
11150 void HOptimizedGraphBuilder::VisitLogicalExpression(BinaryOperation* expr) {
11151 bool is_logical_and = expr->op() == Token::AND;
11152 if (ast_context()->IsTest()) {
11153 TestContext* context = TestContext::cast(ast_context());
11154 // Translate left subexpression.
11155 HBasicBlock* eval_right = graph()->CreateBasicBlock();
11156 if (is_logical_and) {
11157 CHECK_BAILOUT(VisitForControl(expr->left(),
11159 context->if_false()));
11161 CHECK_BAILOUT(VisitForControl(expr->left(),
11162 context->if_true(),
11166 // Translate right subexpression by visiting it in the same AST
11167 // context as the entire expression.
11168 if (eval_right->HasPredecessor()) {
11169 eval_right->SetJoinId(expr->RightId());
11170 set_current_block(eval_right);
11171 Visit(expr->right());
11174 } else if (ast_context()->IsValue()) {
11175 CHECK_ALIVE(VisitForValue(expr->left()));
11176 DCHECK(current_block() != NULL);
11177 HValue* left_value = Top();
11179 // Short-circuit left values that always evaluate to the same boolean value.
11180 if (expr->left()->ToBooleanIsTrue() || expr->left()->ToBooleanIsFalse()) {
11181 // l (evals true) && r -> r
11182 // l (evals true) || r -> l
11183 // l (evals false) && r -> l
11184 // l (evals false) || r -> r
11185 if (is_logical_and == expr->left()->ToBooleanIsTrue()) {
11187 CHECK_ALIVE(VisitForValue(expr->right()));
11189 return ast_context()->ReturnValue(Pop());
11192 // We need an extra block to maintain edge-split form.
11193 HBasicBlock* empty_block = graph()->CreateBasicBlock();
11194 HBasicBlock* eval_right = graph()->CreateBasicBlock();
11195 ToBooleanStub::Types expected(expr->left()->to_boolean_types());
11196 HBranch* test = is_logical_and
11197 ? New<HBranch>(left_value, expected, eval_right, empty_block)
11198 : New<HBranch>(left_value, expected, empty_block, eval_right);
11199 FinishCurrentBlock(test);
11201 set_current_block(eval_right);
11202 Drop(1); // Value of the left subexpression.
11203 CHECK_BAILOUT(VisitForValue(expr->right()));
11205 HBasicBlock* join_block =
11206 CreateJoin(empty_block, current_block(), expr->id());
11207 set_current_block(join_block);
11208 return ast_context()->ReturnValue(Pop());
11211 DCHECK(ast_context()->IsEffect());
11212 // In an effect context, we don't need the value of the left subexpression,
11213 // only its control flow and side effects. We need an extra block to
11214 // maintain edge-split form.
11215 HBasicBlock* empty_block = graph()->CreateBasicBlock();
11216 HBasicBlock* right_block = graph()->CreateBasicBlock();
11217 if (is_logical_and) {
11218 CHECK_BAILOUT(VisitForControl(expr->left(), right_block, empty_block));
11220 CHECK_BAILOUT(VisitForControl(expr->left(), empty_block, right_block));
11223 // TODO(kmillikin): Find a way to fix this. It's ugly that there are
11224 // actually two empty blocks (one here and one inserted by
11225 // TestContext::BuildBranch, and that they both have an HSimulate though the
11226 // second one is not a merge node, and that we really have no good AST ID to
11227 // put on that first HSimulate.
11229 if (empty_block->HasPredecessor()) {
11230 empty_block->SetJoinId(expr->id());
11232 empty_block = NULL;
11235 if (right_block->HasPredecessor()) {
11236 right_block->SetJoinId(expr->RightId());
11237 set_current_block(right_block);
11238 CHECK_BAILOUT(VisitForEffect(expr->right()));
11239 right_block = current_block();
11241 right_block = NULL;
11244 HBasicBlock* join_block =
11245 CreateJoin(empty_block, right_block, expr->id());
11246 set_current_block(join_block);
11247 // We did not materialize any value in the predecessor environments,
11248 // so there is no need to handle it here.
11253 void HOptimizedGraphBuilder::VisitArithmeticExpression(BinaryOperation* expr) {
11254 CHECK_ALIVE(VisitForValue(expr->left()));
11255 CHECK_ALIVE(VisitForValue(expr->right()));
11256 SetSourcePosition(expr->position());
11257 HValue* right = Pop();
11258 HValue* left = Pop();
11260 BuildBinaryOperation(expr, left, right,
11261 ast_context()->IsEffect() ? NO_PUSH_BEFORE_SIMULATE
11262 : PUSH_BEFORE_SIMULATE);
11263 if (top_info()->is_tracking_positions() && result->IsBinaryOperation()) {
11264 HBinaryOperation::cast(result)->SetOperandPositions(
11266 ScriptPositionToSourcePosition(expr->left()->position()),
11267 ScriptPositionToSourcePosition(expr->right()->position()));
11269 return ast_context()->ReturnValue(result);
11273 void HOptimizedGraphBuilder::HandleLiteralCompareTypeof(CompareOperation* expr,
11274 Expression* sub_expr,
11275 Handle<String> check) {
11276 CHECK_ALIVE(VisitForTypeOf(sub_expr));
11277 SetSourcePosition(expr->position());
11278 HValue* value = Pop();
11279 HTypeofIsAndBranch* instr = New<HTypeofIsAndBranch>(value, check);
11280 return ast_context()->ReturnControl(instr, expr->id());
11284 static bool IsLiteralCompareBool(Isolate* isolate,
11288 return op == Token::EQ_STRICT &&
11289 ((left->IsConstant() &&
11290 HConstant::cast(left)->handle(isolate)->IsBoolean()) ||
11291 (right->IsConstant() &&
11292 HConstant::cast(right)->handle(isolate)->IsBoolean()));
11296 void HOptimizedGraphBuilder::VisitCompareOperation(CompareOperation* expr) {
11297 DCHECK(!HasStackOverflow());
11298 DCHECK(current_block() != NULL);
11299 DCHECK(current_block()->HasPredecessor());
11301 if (!top_info()->is_tracking_positions()) SetSourcePosition(expr->position());
11303 // Check for a few fast cases. The AST visiting behavior must be in sync
11304 // with the full codegen: We don't push both left and right values onto
11305 // the expression stack when one side is a special-case literal.
11306 Expression* sub_expr = NULL;
11307 Handle<String> check;
11308 if (expr->IsLiteralCompareTypeof(&sub_expr, &check)) {
11309 return HandleLiteralCompareTypeof(expr, sub_expr, check);
11311 if (expr->IsLiteralCompareUndefined(&sub_expr, isolate())) {
11312 return HandleLiteralCompareNil(expr, sub_expr, kUndefinedValue);
11314 if (expr->IsLiteralCompareNull(&sub_expr)) {
11315 return HandleLiteralCompareNil(expr, sub_expr, kNullValue);
11318 if (IsClassOfTest(expr)) {
11319 CallRuntime* call = expr->left()->AsCallRuntime();
11320 DCHECK(call->arguments()->length() == 1);
11321 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11322 HValue* value = Pop();
11323 Literal* literal = expr->right()->AsLiteral();
11324 Handle<String> rhs = Handle<String>::cast(literal->value());
11325 HClassOfTestAndBranch* instr = New<HClassOfTestAndBranch>(value, rhs);
11326 return ast_context()->ReturnControl(instr, expr->id());
11329 Type* left_type = expr->left()->bounds().lower;
11330 Type* right_type = expr->right()->bounds().lower;
11331 Type* combined_type = expr->combined_type();
11333 CHECK_ALIVE(VisitForValue(expr->left()));
11334 CHECK_ALIVE(VisitForValue(expr->right()));
11336 HValue* right = Pop();
11337 HValue* left = Pop();
11338 Token::Value op = expr->op();
11340 if (IsLiteralCompareBool(isolate(), left, op, right)) {
11341 HCompareObjectEqAndBranch* result =
11342 New<HCompareObjectEqAndBranch>(left, right);
11343 return ast_context()->ReturnControl(result, expr->id());
11346 if (op == Token::INSTANCEOF) {
11347 // Check to see if the rhs of the instanceof is a known function.
11348 if (right->IsConstant() &&
11349 HConstant::cast(right)->handle(isolate())->IsJSFunction()) {
11350 Handle<JSFunction> constructor =
11351 Handle<JSFunction>::cast(HConstant::cast(right)->handle(isolate()));
11352 if (!constructor->map()->has_non_instance_prototype()) {
11353 JSFunction::EnsureHasInitialMap(constructor);
11354 DCHECK(constructor->has_initial_map());
11355 Handle<Map> initial_map(constructor->initial_map(), isolate());
11356 top_info()->dependencies()->AssumeInitialMapCantChange(initial_map);
11357 HInstruction* prototype =
11358 Add<HConstant>(handle(initial_map->prototype(), isolate()));
11359 HHasInPrototypeChainAndBranch* result =
11360 New<HHasInPrototypeChainAndBranch>(left, prototype);
11361 return ast_context()->ReturnControl(result, expr->id());
11365 HInstanceOf* result = New<HInstanceOf>(left, right);
11366 return ast_context()->ReturnInstruction(result, expr->id());
11368 } else if (op == Token::IN) {
11369 HValue* function = AddLoadJSBuiltin(Builtins::IN);
11370 Add<HPushArguments>(left, right);
11371 // TODO(olivf) InvokeFunction produces a check for the parameter count,
11372 // even though we are certain to pass the correct number of arguments here.
11373 HInstruction* result = New<HInvokeFunction>(function, 2);
11374 return ast_context()->ReturnInstruction(result, expr->id());
11377 PushBeforeSimulateBehavior push_behavior =
11378 ast_context()->IsEffect() ? NO_PUSH_BEFORE_SIMULATE
11379 : PUSH_BEFORE_SIMULATE;
11380 HControlInstruction* compare = BuildCompareInstruction(
11381 op, left, right, left_type, right_type, combined_type,
11382 ScriptPositionToSourcePosition(expr->left()->position()),
11383 ScriptPositionToSourcePosition(expr->right()->position()),
11384 push_behavior, expr->id());
11385 if (compare == NULL) return; // Bailed out.
11386 return ast_context()->ReturnControl(compare, expr->id());
11390 HControlInstruction* HOptimizedGraphBuilder::BuildCompareInstruction(
11391 Token::Value op, HValue* left, HValue* right, Type* left_type,
11392 Type* right_type, Type* combined_type, SourcePosition left_position,
11393 SourcePosition right_position, PushBeforeSimulateBehavior push_sim_result,
11394 BailoutId bailout_id) {
11395 // Cases handled below depend on collected type feedback. They should
11396 // soft deoptimize when there is no type feedback.
11397 if (!combined_type->IsInhabited()) {
11399 Deoptimizer::kInsufficientTypeFeedbackForCombinedTypeOfBinaryOperation,
11400 Deoptimizer::SOFT);
11401 combined_type = left_type = right_type = Type::Any(zone());
11404 Representation left_rep = RepresentationFor(left_type);
11405 Representation right_rep = RepresentationFor(right_type);
11406 Representation combined_rep = RepresentationFor(combined_type);
11408 if (combined_type->Is(Type::Receiver())) {
11409 if (Token::IsEqualityOp(op)) {
11410 // HCompareObjectEqAndBranch can only deal with object, so
11411 // exclude numbers.
11412 if ((left->IsConstant() &&
11413 HConstant::cast(left)->HasNumberValue()) ||
11414 (right->IsConstant() &&
11415 HConstant::cast(right)->HasNumberValue())) {
11416 Add<HDeoptimize>(Deoptimizer::kTypeMismatchBetweenFeedbackAndConstant,
11417 Deoptimizer::SOFT);
11418 // The caller expects a branch instruction, so make it happy.
11419 return New<HBranch>(graph()->GetConstantTrue());
11421 // Can we get away with map check and not instance type check?
11422 HValue* operand_to_check =
11423 left->block()->block_id() < right->block()->block_id() ? left : right;
11424 if (combined_type->IsClass()) {
11425 Handle<Map> map = combined_type->AsClass()->Map();
11426 AddCheckMap(operand_to_check, map);
11427 HCompareObjectEqAndBranch* result =
11428 New<HCompareObjectEqAndBranch>(left, right);
11429 if (top_info()->is_tracking_positions()) {
11430 result->set_operand_position(zone(), 0, left_position);
11431 result->set_operand_position(zone(), 1, right_position);
11435 BuildCheckHeapObject(operand_to_check);
11436 Add<HCheckInstanceType>(operand_to_check,
11437 HCheckInstanceType::IS_SPEC_OBJECT);
11438 HCompareObjectEqAndBranch* result =
11439 New<HCompareObjectEqAndBranch>(left, right);
11443 Bailout(kUnsupportedNonPrimitiveCompare);
11446 } else if (combined_type->Is(Type::InternalizedString()) &&
11447 Token::IsEqualityOp(op)) {
11448 // If we have a constant argument, it should be consistent with the type
11449 // feedback (otherwise we fail assertions in HCompareObjectEqAndBranch).
11450 if ((left->IsConstant() &&
11451 !HConstant::cast(left)->HasInternalizedStringValue()) ||
11452 (right->IsConstant() &&
11453 !HConstant::cast(right)->HasInternalizedStringValue())) {
11454 Add<HDeoptimize>(Deoptimizer::kTypeMismatchBetweenFeedbackAndConstant,
11455 Deoptimizer::SOFT);
11456 // The caller expects a branch instruction, so make it happy.
11457 return New<HBranch>(graph()->GetConstantTrue());
11459 BuildCheckHeapObject(left);
11460 Add<HCheckInstanceType>(left, HCheckInstanceType::IS_INTERNALIZED_STRING);
11461 BuildCheckHeapObject(right);
11462 Add<HCheckInstanceType>(right, HCheckInstanceType::IS_INTERNALIZED_STRING);
11463 HCompareObjectEqAndBranch* result =
11464 New<HCompareObjectEqAndBranch>(left, right);
11466 } else if (combined_type->Is(Type::String())) {
11467 BuildCheckHeapObject(left);
11468 Add<HCheckInstanceType>(left, HCheckInstanceType::IS_STRING);
11469 BuildCheckHeapObject(right);
11470 Add<HCheckInstanceType>(right, HCheckInstanceType::IS_STRING);
11471 HStringCompareAndBranch* result =
11472 New<HStringCompareAndBranch>(left, right, op);
11475 if (combined_rep.IsTagged() || combined_rep.IsNone()) {
11476 HCompareGeneric* result = Add<HCompareGeneric>(
11477 left, right, op, strength(function_language_mode()));
11478 result->set_observed_input_representation(1, left_rep);
11479 result->set_observed_input_representation(2, right_rep);
11480 if (result->HasObservableSideEffects()) {
11481 if (push_sim_result == PUSH_BEFORE_SIMULATE) {
11483 AddSimulate(bailout_id, REMOVABLE_SIMULATE);
11486 AddSimulate(bailout_id, REMOVABLE_SIMULATE);
11489 // TODO(jkummerow): Can we make this more efficient?
11490 HBranch* branch = New<HBranch>(result);
11493 HCompareNumericAndBranch* result = New<HCompareNumericAndBranch>(
11494 left, right, op, strength(function_language_mode()));
11495 result->set_observed_input_representation(left_rep, right_rep);
11496 if (top_info()->is_tracking_positions()) {
11497 result->SetOperandPositions(zone(), left_position, right_position);
11505 void HOptimizedGraphBuilder::HandleLiteralCompareNil(CompareOperation* expr,
11506 Expression* sub_expr,
11508 DCHECK(!HasStackOverflow());
11509 DCHECK(current_block() != NULL);
11510 DCHECK(current_block()->HasPredecessor());
11511 DCHECK(expr->op() == Token::EQ || expr->op() == Token::EQ_STRICT);
11512 if (!top_info()->is_tracking_positions()) SetSourcePosition(expr->position());
11513 CHECK_ALIVE(VisitForValue(sub_expr));
11514 HValue* value = Pop();
11515 if (expr->op() == Token::EQ_STRICT) {
11516 HConstant* nil_constant = nil == kNullValue
11517 ? graph()->GetConstantNull()
11518 : graph()->GetConstantUndefined();
11519 HCompareObjectEqAndBranch* instr =
11520 New<HCompareObjectEqAndBranch>(value, nil_constant);
11521 return ast_context()->ReturnControl(instr, expr->id());
11523 DCHECK_EQ(Token::EQ, expr->op());
11524 Type* type = expr->combined_type()->Is(Type::None())
11525 ? Type::Any(zone()) : expr->combined_type();
11526 HIfContinuation continuation;
11527 BuildCompareNil(value, type, &continuation);
11528 return ast_context()->ReturnContinuation(&continuation, expr->id());
11533 void HOptimizedGraphBuilder::VisitSpread(Spread* expr) { UNREACHABLE(); }
11536 HInstruction* HOptimizedGraphBuilder::BuildThisFunction() {
11537 // If we share optimized code between different closures, the
11538 // this-function is not a constant, except inside an inlined body.
11539 if (function_state()->outer() != NULL) {
11540 return New<HConstant>(
11541 function_state()->compilation_info()->closure());
11543 return New<HThisFunction>();
11548 HInstruction* HOptimizedGraphBuilder::BuildFastLiteral(
11549 Handle<JSObject> boilerplate_object,
11550 AllocationSiteUsageContext* site_context) {
11551 NoObservableSideEffectsScope no_effects(this);
11552 Handle<Map> initial_map(boilerplate_object->map());
11553 InstanceType instance_type = initial_map->instance_type();
11554 DCHECK(instance_type == JS_ARRAY_TYPE || instance_type == JS_OBJECT_TYPE);
11556 HType type = instance_type == JS_ARRAY_TYPE
11557 ? HType::JSArray() : HType::JSObject();
11558 HValue* object_size_constant = Add<HConstant>(initial_map->instance_size());
11560 PretenureFlag pretenure_flag = NOT_TENURED;
11561 Handle<AllocationSite> top_site(*site_context->top(), isolate());
11562 if (FLAG_allocation_site_pretenuring) {
11563 pretenure_flag = top_site->GetPretenureMode();
11566 Handle<AllocationSite> current_site(*site_context->current(), isolate());
11567 if (*top_site == *current_site) {
11568 // We install a dependency for pretenuring only on the outermost literal.
11569 top_info()->dependencies()->AssumeTenuringDecision(top_site);
11571 top_info()->dependencies()->AssumeTransitionStable(current_site);
11573 HInstruction* object = Add<HAllocate>(
11574 object_size_constant, type, pretenure_flag, instance_type, top_site);
11576 // If allocation folding reaches Page::kMaxRegularHeapObjectSize the
11577 // elements array may not get folded into the object. Hence, we set the
11578 // elements pointer to empty fixed array and let store elimination remove
11579 // this store in the folding case.
11580 HConstant* empty_fixed_array = Add<HConstant>(
11581 isolate()->factory()->empty_fixed_array());
11582 Add<HStoreNamedField>(object, HObjectAccess::ForElementsPointer(),
11583 empty_fixed_array);
11585 BuildEmitObjectHeader(boilerplate_object, object);
11587 // Similarly to the elements pointer, there is no guarantee that all
11588 // property allocations can get folded, so pre-initialize all in-object
11589 // properties to a safe value.
11590 BuildInitializeInobjectProperties(object, initial_map);
11592 Handle<FixedArrayBase> elements(boilerplate_object->elements());
11593 int elements_size = (elements->length() > 0 &&
11594 elements->map() != isolate()->heap()->fixed_cow_array_map()) ?
11595 elements->Size() : 0;
11597 if (pretenure_flag == TENURED &&
11598 elements->map() == isolate()->heap()->fixed_cow_array_map() &&
11599 isolate()->heap()->InNewSpace(*elements)) {
11600 // If we would like to pretenure a fixed cow array, we must ensure that the
11601 // array is already in old space, otherwise we'll create too many old-to-
11602 // new-space pointers (overflowing the store buffer).
11603 elements = Handle<FixedArrayBase>(
11604 isolate()->factory()->CopyAndTenureFixedCOWArray(
11605 Handle<FixedArray>::cast(elements)));
11606 boilerplate_object->set_elements(*elements);
11609 HInstruction* object_elements = NULL;
11610 if (elements_size > 0) {
11611 HValue* object_elements_size = Add<HConstant>(elements_size);
11612 InstanceType instance_type = boilerplate_object->HasFastDoubleElements()
11613 ? FIXED_DOUBLE_ARRAY_TYPE : FIXED_ARRAY_TYPE;
11614 object_elements = Add<HAllocate>(object_elements_size, HType::HeapObject(),
11615 pretenure_flag, instance_type, top_site);
11616 BuildEmitElements(boilerplate_object, elements, object_elements,
11618 Add<HStoreNamedField>(object, HObjectAccess::ForElementsPointer(),
11621 Handle<Object> elements_field =
11622 Handle<Object>(boilerplate_object->elements(), isolate());
11623 HInstruction* object_elements_cow = Add<HConstant>(elements_field);
11624 Add<HStoreNamedField>(object, HObjectAccess::ForElementsPointer(),
11625 object_elements_cow);
11628 // Copy in-object properties.
11629 if (initial_map->NumberOfFields() != 0 ||
11630 initial_map->unused_property_fields() > 0) {
11631 BuildEmitInObjectProperties(boilerplate_object, object, site_context,
11638 void HOptimizedGraphBuilder::BuildEmitObjectHeader(
11639 Handle<JSObject> boilerplate_object,
11640 HInstruction* object) {
11641 DCHECK(boilerplate_object->properties()->length() == 0);
11643 Handle<Map> boilerplate_object_map(boilerplate_object->map());
11644 AddStoreMapConstant(object, boilerplate_object_map);
11646 Handle<Object> properties_field =
11647 Handle<Object>(boilerplate_object->properties(), isolate());
11648 DCHECK(*properties_field == isolate()->heap()->empty_fixed_array());
11649 HInstruction* properties = Add<HConstant>(properties_field);
11650 HObjectAccess access = HObjectAccess::ForPropertiesPointer();
11651 Add<HStoreNamedField>(object, access, properties);
11653 if (boilerplate_object->IsJSArray()) {
11654 Handle<JSArray> boilerplate_array =
11655 Handle<JSArray>::cast(boilerplate_object);
11656 Handle<Object> length_field =
11657 Handle<Object>(boilerplate_array->length(), isolate());
11658 HInstruction* length = Add<HConstant>(length_field);
11660 DCHECK(boilerplate_array->length()->IsSmi());
11661 Add<HStoreNamedField>(object, HObjectAccess::ForArrayLength(
11662 boilerplate_array->GetElementsKind()), length);
11667 void HOptimizedGraphBuilder::BuildEmitInObjectProperties(
11668 Handle<JSObject> boilerplate_object,
11669 HInstruction* object,
11670 AllocationSiteUsageContext* site_context,
11671 PretenureFlag pretenure_flag) {
11672 Handle<Map> boilerplate_map(boilerplate_object->map());
11673 Handle<DescriptorArray> descriptors(boilerplate_map->instance_descriptors());
11674 int limit = boilerplate_map->NumberOfOwnDescriptors();
11676 int copied_fields = 0;
11677 for (int i = 0; i < limit; i++) {
11678 PropertyDetails details = descriptors->GetDetails(i);
11679 if (details.type() != DATA) continue;
11681 FieldIndex field_index = FieldIndex::ForDescriptor(*boilerplate_map, i);
11684 int property_offset = field_index.offset();
11685 Handle<Name> name(descriptors->GetKey(i));
11687 // The access for the store depends on the type of the boilerplate.
11688 HObjectAccess access = boilerplate_object->IsJSArray() ?
11689 HObjectAccess::ForJSArrayOffset(property_offset) :
11690 HObjectAccess::ForMapAndOffset(boilerplate_map, property_offset);
11692 if (boilerplate_object->IsUnboxedDoubleField(field_index)) {
11693 CHECK(!boilerplate_object->IsJSArray());
11694 double value = boilerplate_object->RawFastDoublePropertyAt(field_index);
11695 access = access.WithRepresentation(Representation::Double());
11696 Add<HStoreNamedField>(object, access, Add<HConstant>(value));
11699 Handle<Object> value(boilerplate_object->RawFastPropertyAt(field_index),
11702 if (value->IsJSObject()) {
11703 Handle<JSObject> value_object = Handle<JSObject>::cast(value);
11704 Handle<AllocationSite> current_site = site_context->EnterNewScope();
11705 HInstruction* result =
11706 BuildFastLiteral(value_object, site_context);
11707 site_context->ExitScope(current_site, value_object);
11708 Add<HStoreNamedField>(object, access, result);
11710 Representation representation = details.representation();
11711 HInstruction* value_instruction;
11713 if (representation.IsDouble()) {
11714 // Allocate a HeapNumber box and store the value into it.
11715 HValue* heap_number_constant = Add<HConstant>(HeapNumber::kSize);
11716 HInstruction* double_box =
11717 Add<HAllocate>(heap_number_constant, HType::HeapObject(),
11718 pretenure_flag, MUTABLE_HEAP_NUMBER_TYPE);
11719 AddStoreMapConstant(double_box,
11720 isolate()->factory()->mutable_heap_number_map());
11721 // Unwrap the mutable heap number from the boilerplate.
11722 HValue* double_value =
11723 Add<HConstant>(Handle<HeapNumber>::cast(value)->value());
11724 Add<HStoreNamedField>(
11725 double_box, HObjectAccess::ForHeapNumberValue(), double_value);
11726 value_instruction = double_box;
11727 } else if (representation.IsSmi()) {
11728 value_instruction = value->IsUninitialized()
11729 ? graph()->GetConstant0()
11730 : Add<HConstant>(value);
11731 // Ensure that value is stored as smi.
11732 access = access.WithRepresentation(representation);
11734 value_instruction = Add<HConstant>(value);
11737 Add<HStoreNamedField>(object, access, value_instruction);
11741 int inobject_properties = boilerplate_object->map()->GetInObjectProperties();
11742 HInstruction* value_instruction =
11743 Add<HConstant>(isolate()->factory()->one_pointer_filler_map());
11744 for (int i = copied_fields; i < inobject_properties; i++) {
11745 DCHECK(boilerplate_object->IsJSObject());
11746 int property_offset = boilerplate_object->GetInObjectPropertyOffset(i);
11747 HObjectAccess access =
11748 HObjectAccess::ForMapAndOffset(boilerplate_map, property_offset);
11749 Add<HStoreNamedField>(object, access, value_instruction);
11754 void HOptimizedGraphBuilder::BuildEmitElements(
11755 Handle<JSObject> boilerplate_object,
11756 Handle<FixedArrayBase> elements,
11757 HValue* object_elements,
11758 AllocationSiteUsageContext* site_context) {
11759 ElementsKind kind = boilerplate_object->map()->elements_kind();
11760 int elements_length = elements->length();
11761 HValue* object_elements_length = Add<HConstant>(elements_length);
11762 BuildInitializeElementsHeader(object_elements, kind, object_elements_length);
11764 // Copy elements backing store content.
11765 if (elements->IsFixedDoubleArray()) {
11766 BuildEmitFixedDoubleArray(elements, kind, object_elements);
11767 } else if (elements->IsFixedArray()) {
11768 BuildEmitFixedArray(elements, kind, object_elements,
11776 void HOptimizedGraphBuilder::BuildEmitFixedDoubleArray(
11777 Handle<FixedArrayBase> elements,
11779 HValue* object_elements) {
11780 HInstruction* boilerplate_elements = Add<HConstant>(elements);
11781 int elements_length = elements->length();
11782 for (int i = 0; i < elements_length; i++) {
11783 HValue* key_constant = Add<HConstant>(i);
11784 HInstruction* value_instruction = Add<HLoadKeyed>(
11785 boilerplate_elements, key_constant, nullptr, kind, ALLOW_RETURN_HOLE);
11786 HInstruction* store = Add<HStoreKeyed>(object_elements, key_constant,
11787 value_instruction, kind);
11788 store->SetFlag(HValue::kAllowUndefinedAsNaN);
11793 void HOptimizedGraphBuilder::BuildEmitFixedArray(
11794 Handle<FixedArrayBase> elements,
11796 HValue* object_elements,
11797 AllocationSiteUsageContext* site_context) {
11798 HInstruction* boilerplate_elements = Add<HConstant>(elements);
11799 int elements_length = elements->length();
11800 Handle<FixedArray> fast_elements = Handle<FixedArray>::cast(elements);
11801 for (int i = 0; i < elements_length; i++) {
11802 Handle<Object> value(fast_elements->get(i), isolate());
11803 HValue* key_constant = Add<HConstant>(i);
11804 if (value->IsJSObject()) {
11805 Handle<JSObject> value_object = Handle<JSObject>::cast(value);
11806 Handle<AllocationSite> current_site = site_context->EnterNewScope();
11807 HInstruction* result =
11808 BuildFastLiteral(value_object, site_context);
11809 site_context->ExitScope(current_site, value_object);
11810 Add<HStoreKeyed>(object_elements, key_constant, result, kind);
11812 ElementsKind copy_kind =
11813 kind == FAST_HOLEY_SMI_ELEMENTS ? FAST_HOLEY_ELEMENTS : kind;
11814 HInstruction* value_instruction =
11815 Add<HLoadKeyed>(boilerplate_elements, key_constant, nullptr,
11816 copy_kind, ALLOW_RETURN_HOLE);
11817 Add<HStoreKeyed>(object_elements, key_constant, value_instruction,
11824 void HOptimizedGraphBuilder::VisitThisFunction(ThisFunction* expr) {
11825 DCHECK(!HasStackOverflow());
11826 DCHECK(current_block() != NULL);
11827 DCHECK(current_block()->HasPredecessor());
11828 HInstruction* instr = BuildThisFunction();
11829 return ast_context()->ReturnInstruction(instr, expr->id());
11833 void HOptimizedGraphBuilder::VisitSuperPropertyReference(
11834 SuperPropertyReference* expr) {
11835 DCHECK(!HasStackOverflow());
11836 DCHECK(current_block() != NULL);
11837 DCHECK(current_block()->HasPredecessor());
11838 return Bailout(kSuperReference);
11842 void HOptimizedGraphBuilder::VisitSuperCallReference(SuperCallReference* expr) {
11843 DCHECK(!HasStackOverflow());
11844 DCHECK(current_block() != NULL);
11845 DCHECK(current_block()->HasPredecessor());
11846 return Bailout(kSuperReference);
11850 void HOptimizedGraphBuilder::VisitDeclarations(
11851 ZoneList<Declaration*>* declarations) {
11852 DCHECK(globals_.is_empty());
11853 AstVisitor::VisitDeclarations(declarations);
11854 if (!globals_.is_empty()) {
11855 Handle<FixedArray> array =
11856 isolate()->factory()->NewFixedArray(globals_.length(), TENURED);
11857 for (int i = 0; i < globals_.length(); ++i) array->set(i, *globals_.at(i));
11859 DeclareGlobalsEvalFlag::encode(current_info()->is_eval()) |
11860 DeclareGlobalsNativeFlag::encode(current_info()->is_native()) |
11861 DeclareGlobalsLanguageMode::encode(current_info()->language_mode());
11862 Add<HDeclareGlobals>(array, flags);
11863 globals_.Rewind(0);
11868 void HOptimizedGraphBuilder::VisitVariableDeclaration(
11869 VariableDeclaration* declaration) {
11870 VariableProxy* proxy = declaration->proxy();
11871 VariableMode mode = declaration->mode();
11872 Variable* variable = proxy->var();
11873 bool hole_init = mode == LET || mode == CONST || mode == CONST_LEGACY;
11874 switch (variable->location()) {
11875 case VariableLocation::GLOBAL:
11876 case VariableLocation::UNALLOCATED:
11877 globals_.Add(variable->name(), zone());
11878 globals_.Add(variable->binding_needs_init()
11879 ? isolate()->factory()->the_hole_value()
11880 : isolate()->factory()->undefined_value(), zone());
11882 case VariableLocation::PARAMETER:
11883 case VariableLocation::LOCAL:
11885 HValue* value = graph()->GetConstantHole();
11886 environment()->Bind(variable, value);
11889 case VariableLocation::CONTEXT:
11891 HValue* value = graph()->GetConstantHole();
11892 HValue* context = environment()->context();
11893 HStoreContextSlot* store = Add<HStoreContextSlot>(
11894 context, variable->index(), HStoreContextSlot::kNoCheck, value);
11895 if (store->HasObservableSideEffects()) {
11896 Add<HSimulate>(proxy->id(), REMOVABLE_SIMULATE);
11900 case VariableLocation::LOOKUP:
11901 return Bailout(kUnsupportedLookupSlotInDeclaration);
11906 void HOptimizedGraphBuilder::VisitFunctionDeclaration(
11907 FunctionDeclaration* declaration) {
11908 VariableProxy* proxy = declaration->proxy();
11909 Variable* variable = proxy->var();
11910 switch (variable->location()) {
11911 case VariableLocation::GLOBAL:
11912 case VariableLocation::UNALLOCATED: {
11913 globals_.Add(variable->name(), zone());
11914 Handle<SharedFunctionInfo> function = Compiler::GetSharedFunctionInfo(
11915 declaration->fun(), current_info()->script(), top_info());
11916 // Check for stack-overflow exception.
11917 if (function.is_null()) return SetStackOverflow();
11918 globals_.Add(function, zone());
11921 case VariableLocation::PARAMETER:
11922 case VariableLocation::LOCAL: {
11923 CHECK_ALIVE(VisitForValue(declaration->fun()));
11924 HValue* value = Pop();
11925 BindIfLive(variable, value);
11928 case VariableLocation::CONTEXT: {
11929 CHECK_ALIVE(VisitForValue(declaration->fun()));
11930 HValue* value = Pop();
11931 HValue* context = environment()->context();
11932 HStoreContextSlot* store = Add<HStoreContextSlot>(
11933 context, variable->index(), HStoreContextSlot::kNoCheck, value);
11934 if (store->HasObservableSideEffects()) {
11935 Add<HSimulate>(proxy->id(), REMOVABLE_SIMULATE);
11939 case VariableLocation::LOOKUP:
11940 return Bailout(kUnsupportedLookupSlotInDeclaration);
11945 void HOptimizedGraphBuilder::VisitImportDeclaration(
11946 ImportDeclaration* declaration) {
11951 void HOptimizedGraphBuilder::VisitExportDeclaration(
11952 ExportDeclaration* declaration) {
11957 // Generators for inline runtime functions.
11958 // Support for types.
11959 void HOptimizedGraphBuilder::GenerateIsSmi(CallRuntime* call) {
11960 DCHECK(call->arguments()->length() == 1);
11961 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11962 HValue* value = Pop();
11963 HIsSmiAndBranch* result = New<HIsSmiAndBranch>(value);
11964 return ast_context()->ReturnControl(result, call->id());
11968 void HOptimizedGraphBuilder::GenerateIsSpecObject(CallRuntime* call) {
11969 DCHECK(call->arguments()->length() == 1);
11970 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11971 HValue* value = Pop();
11972 HHasInstanceTypeAndBranch* result =
11973 New<HHasInstanceTypeAndBranch>(value,
11974 FIRST_SPEC_OBJECT_TYPE,
11975 LAST_SPEC_OBJECT_TYPE);
11976 return ast_context()->ReturnControl(result, call->id());
11980 void HOptimizedGraphBuilder::GenerateIsFunction(CallRuntime* call) {
11981 DCHECK(call->arguments()->length() == 1);
11982 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11983 HValue* value = Pop();
11984 HHasInstanceTypeAndBranch* result =
11985 New<HHasInstanceTypeAndBranch>(value, JS_FUNCTION_TYPE);
11986 return ast_context()->ReturnControl(result, call->id());
11990 void HOptimizedGraphBuilder::GenerateIsMinusZero(CallRuntime* call) {
11991 DCHECK(call->arguments()->length() == 1);
11992 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11993 HValue* value = Pop();
11994 HCompareMinusZeroAndBranch* result = New<HCompareMinusZeroAndBranch>(value);
11995 return ast_context()->ReturnControl(result, call->id());
11999 void HOptimizedGraphBuilder::GenerateHasCachedArrayIndex(CallRuntime* call) {
12000 DCHECK(call->arguments()->length() == 1);
12001 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12002 HValue* value = Pop();
12003 HHasCachedArrayIndexAndBranch* result =
12004 New<HHasCachedArrayIndexAndBranch>(value);
12005 return ast_context()->ReturnControl(result, call->id());
12009 void HOptimizedGraphBuilder::GenerateIsArray(CallRuntime* call) {
12010 DCHECK(call->arguments()->length() == 1);
12011 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12012 HValue* value = Pop();
12013 HHasInstanceTypeAndBranch* result =
12014 New<HHasInstanceTypeAndBranch>(value, JS_ARRAY_TYPE);
12015 return ast_context()->ReturnControl(result, call->id());
12019 void HOptimizedGraphBuilder::GenerateIsTypedArray(CallRuntime* call) {
12020 DCHECK(call->arguments()->length() == 1);
12021 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12022 HValue* value = Pop();
12023 HHasInstanceTypeAndBranch* result =
12024 New<HHasInstanceTypeAndBranch>(value, JS_TYPED_ARRAY_TYPE);
12025 return ast_context()->ReturnControl(result, call->id());
12029 void HOptimizedGraphBuilder::GenerateIsRegExp(CallRuntime* call) {
12030 DCHECK(call->arguments()->length() == 1);
12031 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12032 HValue* value = Pop();
12033 HHasInstanceTypeAndBranch* result =
12034 New<HHasInstanceTypeAndBranch>(value, JS_REGEXP_TYPE);
12035 return ast_context()->ReturnControl(result, call->id());
12039 void HOptimizedGraphBuilder::GenerateIsObject(CallRuntime* call) {
12040 DCHECK(call->arguments()->length() == 1);
12041 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12042 HValue* value = Pop();
12043 HIsObjectAndBranch* result = New<HIsObjectAndBranch>(value);
12044 return ast_context()->ReturnControl(result, call->id());
12048 void HOptimizedGraphBuilder::GenerateToObject(CallRuntime* call) {
12049 DCHECK_EQ(1, call->arguments()->length());
12050 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12051 HValue* value = Pop();
12052 HValue* result = BuildToObject(value);
12053 return ast_context()->ReturnValue(result);
12057 void HOptimizedGraphBuilder::GenerateIsJSProxy(CallRuntime* call) {
12058 DCHECK(call->arguments()->length() == 1);
12059 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12060 HValue* value = Pop();
12061 HIfContinuation continuation;
12062 IfBuilder if_proxy(this);
12064 HValue* smicheck = if_proxy.IfNot<HIsSmiAndBranch>(value);
12066 HValue* map = Add<HLoadNamedField>(value, smicheck, HObjectAccess::ForMap());
12067 HValue* instance_type =
12068 Add<HLoadNamedField>(map, nullptr, HObjectAccess::ForMapInstanceType());
12069 if_proxy.If<HCompareNumericAndBranch>(
12070 instance_type, Add<HConstant>(FIRST_JS_PROXY_TYPE), Token::GTE);
12072 if_proxy.If<HCompareNumericAndBranch>(
12073 instance_type, Add<HConstant>(LAST_JS_PROXY_TYPE), Token::LTE);
12075 if_proxy.CaptureContinuation(&continuation);
12076 return ast_context()->ReturnContinuation(&continuation, call->id());
12080 void HOptimizedGraphBuilder::GenerateHasFastPackedElements(CallRuntime* call) {
12081 DCHECK(call->arguments()->length() == 1);
12082 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12083 HValue* object = Pop();
12084 HIfContinuation continuation(graph()->CreateBasicBlock(),
12085 graph()->CreateBasicBlock());
12086 IfBuilder if_not_smi(this);
12087 if_not_smi.IfNot<HIsSmiAndBranch>(object);
12090 NoObservableSideEffectsScope no_effects(this);
12092 IfBuilder if_fast_packed(this);
12093 HValue* elements_kind = BuildGetElementsKind(object);
12094 if_fast_packed.If<HCompareNumericAndBranch>(
12095 elements_kind, Add<HConstant>(FAST_SMI_ELEMENTS), Token::EQ);
12096 if_fast_packed.Or();
12097 if_fast_packed.If<HCompareNumericAndBranch>(
12098 elements_kind, Add<HConstant>(FAST_ELEMENTS), Token::EQ);
12099 if_fast_packed.Or();
12100 if_fast_packed.If<HCompareNumericAndBranch>(
12101 elements_kind, Add<HConstant>(FAST_DOUBLE_ELEMENTS), Token::EQ);
12102 if_fast_packed.JoinContinuation(&continuation);
12104 if_not_smi.JoinContinuation(&continuation);
12105 return ast_context()->ReturnContinuation(&continuation, call->id());
12109 // Support for construct call checks.
12110 void HOptimizedGraphBuilder::GenerateIsConstructCall(CallRuntime* call) {
12111 DCHECK(call->arguments()->length() == 0);
12112 if (function_state()->outer() != NULL) {
12113 // We are generating graph for inlined function.
12114 HValue* value = function_state()->inlining_kind() == CONSTRUCT_CALL_RETURN
12115 ? graph()->GetConstantTrue()
12116 : graph()->GetConstantFalse();
12117 return ast_context()->ReturnValue(value);
12119 return ast_context()->ReturnControl(New<HIsConstructCallAndBranch>(),
12125 // Support for arguments.length and arguments[?].
12126 void HOptimizedGraphBuilder::GenerateArgumentsLength(CallRuntime* call) {
12127 DCHECK(call->arguments()->length() == 0);
12128 HInstruction* result = NULL;
12129 if (function_state()->outer() == NULL) {
12130 HInstruction* elements = Add<HArgumentsElements>(false);
12131 result = New<HArgumentsLength>(elements);
12133 // Number of arguments without receiver.
12134 int argument_count = environment()->
12135 arguments_environment()->parameter_count() - 1;
12136 result = New<HConstant>(argument_count);
12138 return ast_context()->ReturnInstruction(result, call->id());
12142 void HOptimizedGraphBuilder::GenerateArguments(CallRuntime* call) {
12143 DCHECK(call->arguments()->length() == 1);
12144 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12145 HValue* index = Pop();
12146 HInstruction* result = NULL;
12147 if (function_state()->outer() == NULL) {
12148 HInstruction* elements = Add<HArgumentsElements>(false);
12149 HInstruction* length = Add<HArgumentsLength>(elements);
12150 HInstruction* checked_index = Add<HBoundsCheck>(index, length);
12151 result = New<HAccessArgumentsAt>(elements, length, checked_index);
12153 EnsureArgumentsArePushedForAccess();
12155 // Number of arguments without receiver.
12156 HInstruction* elements = function_state()->arguments_elements();
12157 int argument_count = environment()->
12158 arguments_environment()->parameter_count() - 1;
12159 HInstruction* length = Add<HConstant>(argument_count);
12160 HInstruction* checked_key = Add<HBoundsCheck>(index, length);
12161 result = New<HAccessArgumentsAt>(elements, length, checked_key);
12163 return ast_context()->ReturnInstruction(result, call->id());
12167 void HOptimizedGraphBuilder::GenerateValueOf(CallRuntime* call) {
12168 DCHECK(call->arguments()->length() == 1);
12169 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12170 HValue* object = Pop();
12172 IfBuilder if_objectisvalue(this);
12173 HValue* objectisvalue = if_objectisvalue.If<HHasInstanceTypeAndBranch>(
12174 object, JS_VALUE_TYPE);
12175 if_objectisvalue.Then();
12177 // Return the actual value.
12178 Push(Add<HLoadNamedField>(
12179 object, objectisvalue,
12180 HObjectAccess::ForObservableJSObjectOffset(
12181 JSValue::kValueOffset)));
12182 Add<HSimulate>(call->id(), FIXED_SIMULATE);
12184 if_objectisvalue.Else();
12186 // If the object is not a value return the object.
12188 Add<HSimulate>(call->id(), FIXED_SIMULATE);
12190 if_objectisvalue.End();
12191 return ast_context()->ReturnValue(Pop());
12195 void HOptimizedGraphBuilder::GenerateJSValueGetValue(CallRuntime* call) {
12196 DCHECK(call->arguments()->length() == 1);
12197 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12198 HValue* value = Pop();
12199 HInstruction* result = Add<HLoadNamedField>(
12201 HObjectAccess::ForObservableJSObjectOffset(JSValue::kValueOffset));
12202 return ast_context()->ReturnInstruction(result, call->id());
12206 void HOptimizedGraphBuilder::GenerateIsDate(CallRuntime* call) {
12207 DCHECK_EQ(1, call->arguments()->length());
12208 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12209 HValue* value = Pop();
12210 HHasInstanceTypeAndBranch* result =
12211 New<HHasInstanceTypeAndBranch>(value, JS_DATE_TYPE);
12212 return ast_context()->ReturnControl(result, call->id());
12216 void HOptimizedGraphBuilder::GenerateThrowNotDateError(CallRuntime* call) {
12217 DCHECK_EQ(0, call->arguments()->length());
12218 Add<HDeoptimize>(Deoptimizer::kNotADateObject, Deoptimizer::EAGER);
12219 Add<HSimulate>(call->id(), FIXED_SIMULATE);
12220 return ast_context()->ReturnValue(graph()->GetConstantUndefined());
12224 void HOptimizedGraphBuilder::GenerateDateField(CallRuntime* call) {
12225 DCHECK(call->arguments()->length() == 2);
12226 DCHECK_NOT_NULL(call->arguments()->at(1)->AsLiteral());
12227 Smi* index = Smi::cast(*(call->arguments()->at(1)->AsLiteral()->value()));
12228 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12229 HValue* date = Pop();
12230 HDateField* result = New<HDateField>(date, index);
12231 return ast_context()->ReturnInstruction(result, call->id());
12235 void HOptimizedGraphBuilder::GenerateOneByteSeqStringSetChar(
12236 CallRuntime* call) {
12237 DCHECK(call->arguments()->length() == 3);
12238 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12239 CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12240 CHECK_ALIVE(VisitForValue(call->arguments()->at(2)));
12241 HValue* string = Pop();
12242 HValue* value = Pop();
12243 HValue* index = Pop();
12244 Add<HSeqStringSetChar>(String::ONE_BYTE_ENCODING, string,
12246 Add<HSimulate>(call->id(), FIXED_SIMULATE);
12247 return ast_context()->ReturnValue(graph()->GetConstantUndefined());
12251 void HOptimizedGraphBuilder::GenerateTwoByteSeqStringSetChar(
12252 CallRuntime* call) {
12253 DCHECK(call->arguments()->length() == 3);
12254 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12255 CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12256 CHECK_ALIVE(VisitForValue(call->arguments()->at(2)));
12257 HValue* string = Pop();
12258 HValue* value = Pop();
12259 HValue* index = Pop();
12260 Add<HSeqStringSetChar>(String::TWO_BYTE_ENCODING, string,
12262 Add<HSimulate>(call->id(), FIXED_SIMULATE);
12263 return ast_context()->ReturnValue(graph()->GetConstantUndefined());
12267 void HOptimizedGraphBuilder::GenerateSetValueOf(CallRuntime* call) {
12268 DCHECK(call->arguments()->length() == 2);
12269 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12270 CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12271 HValue* value = Pop();
12272 HValue* object = Pop();
12274 // Check if object is a JSValue.
12275 IfBuilder if_objectisvalue(this);
12276 if_objectisvalue.If<HHasInstanceTypeAndBranch>(object, JS_VALUE_TYPE);
12277 if_objectisvalue.Then();
12279 // Create in-object property store to kValueOffset.
12280 Add<HStoreNamedField>(object,
12281 HObjectAccess::ForObservableJSObjectOffset(JSValue::kValueOffset),
12283 if (!ast_context()->IsEffect()) {
12286 Add<HSimulate>(call->id(), FIXED_SIMULATE);
12288 if_objectisvalue.Else();
12290 // Nothing to do in this case.
12291 if (!ast_context()->IsEffect()) {
12294 Add<HSimulate>(call->id(), FIXED_SIMULATE);
12296 if_objectisvalue.End();
12297 if (!ast_context()->IsEffect()) {
12300 return ast_context()->ReturnValue(value);
12304 // Fast support for charCodeAt(n).
12305 void HOptimizedGraphBuilder::GenerateStringCharCodeAt(CallRuntime* call) {
12306 DCHECK(call->arguments()->length() == 2);
12307 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12308 CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12309 HValue* index = Pop();
12310 HValue* string = Pop();
12311 HInstruction* result = BuildStringCharCodeAt(string, index);
12312 return ast_context()->ReturnInstruction(result, call->id());
12316 // Fast support for string.charAt(n) and string[n].
12317 void HOptimizedGraphBuilder::GenerateStringCharFromCode(CallRuntime* call) {
12318 DCHECK(call->arguments()->length() == 1);
12319 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12320 HValue* char_code = Pop();
12321 HInstruction* result = NewUncasted<HStringCharFromCode>(char_code);
12322 return ast_context()->ReturnInstruction(result, call->id());
12326 // Fast support for string.charAt(n) and string[n].
12327 void HOptimizedGraphBuilder::GenerateStringCharAt(CallRuntime* call) {
12328 DCHECK(call->arguments()->length() == 2);
12329 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12330 CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12331 HValue* index = Pop();
12332 HValue* string = Pop();
12333 HInstruction* char_code = BuildStringCharCodeAt(string, index);
12334 AddInstruction(char_code);
12335 HInstruction* result = NewUncasted<HStringCharFromCode>(char_code);
12336 return ast_context()->ReturnInstruction(result, call->id());
12340 // Fast support for object equality testing.
12341 void HOptimizedGraphBuilder::GenerateObjectEquals(CallRuntime* call) {
12342 DCHECK(call->arguments()->length() == 2);
12343 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12344 CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12345 HValue* right = Pop();
12346 HValue* left = Pop();
12347 HCompareObjectEqAndBranch* result =
12348 New<HCompareObjectEqAndBranch>(left, right);
12349 return ast_context()->ReturnControl(result, call->id());
12353 // Fast support for StringAdd.
12354 void HOptimizedGraphBuilder::GenerateStringAdd(CallRuntime* call) {
12355 DCHECK_EQ(2, call->arguments()->length());
12356 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12357 CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12358 HValue* right = Pop();
12359 HValue* left = Pop();
12360 HInstruction* result =
12361 NewUncasted<HStringAdd>(left, right, strength(function_language_mode()));
12362 return ast_context()->ReturnInstruction(result, call->id());
12366 // Fast support for SubString.
12367 void HOptimizedGraphBuilder::GenerateSubString(CallRuntime* call) {
12368 DCHECK_EQ(3, call->arguments()->length());
12369 CHECK_ALIVE(VisitExpressions(call->arguments()));
12370 PushArgumentsFromEnvironment(call->arguments()->length());
12371 HCallStub* result = New<HCallStub>(CodeStub::SubString, 3);
12372 return ast_context()->ReturnInstruction(result, call->id());
12376 // Fast support for StringCompare.
12377 void HOptimizedGraphBuilder::GenerateStringCompare(CallRuntime* call) {
12378 DCHECK_EQ(2, call->arguments()->length());
12379 CHECK_ALIVE(VisitExpressions(call->arguments()));
12380 PushArgumentsFromEnvironment(call->arguments()->length());
12381 HCallStub* result = New<HCallStub>(CodeStub::StringCompare, 2);
12382 return ast_context()->ReturnInstruction(result, call->id());
12386 void HOptimizedGraphBuilder::GenerateStringGetLength(CallRuntime* call) {
12387 DCHECK(call->arguments()->length() == 1);
12388 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12389 HValue* string = Pop();
12390 HInstruction* result = BuildLoadStringLength(string);
12391 return ast_context()->ReturnInstruction(result, call->id());
12395 // Support for direct calls from JavaScript to native RegExp code.
12396 void HOptimizedGraphBuilder::GenerateRegExpExec(CallRuntime* call) {
12397 DCHECK_EQ(4, call->arguments()->length());
12398 CHECK_ALIVE(VisitExpressions(call->arguments()));
12399 PushArgumentsFromEnvironment(call->arguments()->length());
12400 HCallStub* result = New<HCallStub>(CodeStub::RegExpExec, 4);
12401 return ast_context()->ReturnInstruction(result, call->id());
12405 void HOptimizedGraphBuilder::GenerateDoubleLo(CallRuntime* call) {
12406 DCHECK_EQ(1, call->arguments()->length());
12407 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12408 HValue* value = Pop();
12409 HInstruction* result = NewUncasted<HDoubleBits>(value, HDoubleBits::LOW);
12410 return ast_context()->ReturnInstruction(result, call->id());
12414 void HOptimizedGraphBuilder::GenerateDoubleHi(CallRuntime* call) {
12415 DCHECK_EQ(1, call->arguments()->length());
12416 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12417 HValue* value = Pop();
12418 HInstruction* result = NewUncasted<HDoubleBits>(value, HDoubleBits::HIGH);
12419 return ast_context()->ReturnInstruction(result, call->id());
12423 void HOptimizedGraphBuilder::GenerateConstructDouble(CallRuntime* call) {
12424 DCHECK_EQ(2, call->arguments()->length());
12425 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12426 CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12427 HValue* lo = Pop();
12428 HValue* hi = Pop();
12429 HInstruction* result = NewUncasted<HConstructDouble>(hi, lo);
12430 return ast_context()->ReturnInstruction(result, call->id());
12434 // Construct a RegExp exec result with two in-object properties.
12435 void HOptimizedGraphBuilder::GenerateRegExpConstructResult(CallRuntime* call) {
12436 DCHECK_EQ(3, call->arguments()->length());
12437 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12438 CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12439 CHECK_ALIVE(VisitForValue(call->arguments()->at(2)));
12440 HValue* input = Pop();
12441 HValue* index = Pop();
12442 HValue* length = Pop();
12443 HValue* result = BuildRegExpConstructResult(length, index, input);
12444 return ast_context()->ReturnValue(result);
12448 // Fast support for number to string.
12449 void HOptimizedGraphBuilder::GenerateNumberToString(CallRuntime* call) {
12450 DCHECK_EQ(1, call->arguments()->length());
12451 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12452 HValue* number = Pop();
12453 HValue* result = BuildNumberToString(number, Type::Any(zone()));
12454 return ast_context()->ReturnValue(result);
12458 // Fast call for custom callbacks.
12459 void HOptimizedGraphBuilder::GenerateCallFunction(CallRuntime* call) {
12460 // 1 ~ The function to call is not itself an argument to the call.
12461 int arg_count = call->arguments()->length() - 1;
12462 DCHECK(arg_count >= 1); // There's always at least a receiver.
12464 CHECK_ALIVE(VisitExpressions(call->arguments()));
12465 // The function is the last argument
12466 HValue* function = Pop();
12467 // Push the arguments to the stack
12468 PushArgumentsFromEnvironment(arg_count);
12470 IfBuilder if_is_jsfunction(this);
12471 if_is_jsfunction.If<HHasInstanceTypeAndBranch>(function, JS_FUNCTION_TYPE);
12473 if_is_jsfunction.Then();
12475 HInstruction* invoke_result =
12476 Add<HInvokeFunction>(function, arg_count);
12477 if (!ast_context()->IsEffect()) {
12478 Push(invoke_result);
12480 Add<HSimulate>(call->id(), FIXED_SIMULATE);
12483 if_is_jsfunction.Else();
12485 HInstruction* call_result =
12486 Add<HCallFunction>(function, arg_count);
12487 if (!ast_context()->IsEffect()) {
12490 Add<HSimulate>(call->id(), FIXED_SIMULATE);
12492 if_is_jsfunction.End();
12494 if (ast_context()->IsEffect()) {
12495 // EffectContext::ReturnValue ignores the value, so we can just pass
12496 // 'undefined' (as we do not have the call result anymore).
12497 return ast_context()->ReturnValue(graph()->GetConstantUndefined());
12499 return ast_context()->ReturnValue(Pop());
12504 // Fast call to math functions.
12505 void HOptimizedGraphBuilder::GenerateMathPow(CallRuntime* call) {
12506 DCHECK_EQ(2, call->arguments()->length());
12507 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12508 CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12509 HValue* right = Pop();
12510 HValue* left = Pop();
12511 HInstruction* result = NewUncasted<HPower>(left, right);
12512 return ast_context()->ReturnInstruction(result, call->id());
12516 void HOptimizedGraphBuilder::GenerateMathClz32(CallRuntime* call) {
12517 DCHECK(call->arguments()->length() == 1);
12518 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12519 HValue* value = Pop();
12520 HInstruction* result = NewUncasted<HUnaryMathOperation>(value, kMathClz32);
12521 return ast_context()->ReturnInstruction(result, call->id());
12525 void HOptimizedGraphBuilder::GenerateMathFloor(CallRuntime* call) {
12526 DCHECK(call->arguments()->length() == 1);
12527 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12528 HValue* value = Pop();
12529 HInstruction* result = NewUncasted<HUnaryMathOperation>(value, kMathFloor);
12530 return ast_context()->ReturnInstruction(result, call->id());
12534 void HOptimizedGraphBuilder::GenerateMathLogRT(CallRuntime* call) {
12535 DCHECK(call->arguments()->length() == 1);
12536 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12537 HValue* value = Pop();
12538 HInstruction* result = NewUncasted<HUnaryMathOperation>(value, kMathLog);
12539 return ast_context()->ReturnInstruction(result, call->id());
12543 void HOptimizedGraphBuilder::GenerateMathSqrt(CallRuntime* call) {
12544 DCHECK(call->arguments()->length() == 1);
12545 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12546 HValue* value = Pop();
12547 HInstruction* result = NewUncasted<HUnaryMathOperation>(value, kMathSqrt);
12548 return ast_context()->ReturnInstruction(result, call->id());
12552 void HOptimizedGraphBuilder::GenerateLikely(CallRuntime* call) {
12553 DCHECK(call->arguments()->length() == 1);
12554 Visit(call->arguments()->at(0));
12558 void HOptimizedGraphBuilder::GenerateUnlikely(CallRuntime* call) {
12559 return GenerateLikely(call);
12563 void HOptimizedGraphBuilder::GenerateHasInPrototypeChain(CallRuntime* call) {
12564 DCHECK_EQ(2, call->arguments()->length());
12565 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12566 CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12567 HValue* prototype = Pop();
12568 HValue* object = Pop();
12569 HHasInPrototypeChainAndBranch* result =
12570 New<HHasInPrototypeChainAndBranch>(object, prototype);
12571 return ast_context()->ReturnControl(result, call->id());
12575 void HOptimizedGraphBuilder::GenerateFixedArrayGet(CallRuntime* call) {
12576 DCHECK(call->arguments()->length() == 2);
12577 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12578 CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12579 HValue* index = Pop();
12580 HValue* object = Pop();
12581 HInstruction* result = New<HLoadKeyed>(
12582 object, index, nullptr, FAST_HOLEY_ELEMENTS, ALLOW_RETURN_HOLE);
12583 return ast_context()->ReturnInstruction(result, call->id());
12587 void HOptimizedGraphBuilder::GenerateFixedArraySet(CallRuntime* call) {
12588 DCHECK(call->arguments()->length() == 3);
12589 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12590 CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12591 CHECK_ALIVE(VisitForValue(call->arguments()->at(2)));
12592 HValue* value = Pop();
12593 HValue* index = Pop();
12594 HValue* object = Pop();
12595 NoObservableSideEffectsScope no_effects(this);
12596 Add<HStoreKeyed>(object, index, value, FAST_HOLEY_ELEMENTS);
12597 return ast_context()->ReturnValue(graph()->GetConstantUndefined());
12601 void HOptimizedGraphBuilder::GenerateTheHole(CallRuntime* call) {
12602 DCHECK(call->arguments()->length() == 0);
12603 return ast_context()->ReturnValue(graph()->GetConstantHole());
12607 void HOptimizedGraphBuilder::GenerateJSCollectionGetTable(CallRuntime* call) {
12608 DCHECK(call->arguments()->length() == 1);
12609 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12610 HValue* receiver = Pop();
12611 HInstruction* result = New<HLoadNamedField>(
12612 receiver, nullptr, HObjectAccess::ForJSCollectionTable());
12613 return ast_context()->ReturnInstruction(result, call->id());
12617 void HOptimizedGraphBuilder::GenerateStringGetRawHashField(CallRuntime* call) {
12618 DCHECK(call->arguments()->length() == 1);
12619 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12620 HValue* object = Pop();
12621 HInstruction* result = New<HLoadNamedField>(
12622 object, nullptr, HObjectAccess::ForStringHashField());
12623 return ast_context()->ReturnInstruction(result, call->id());
12627 template <typename CollectionType>
12628 HValue* HOptimizedGraphBuilder::BuildAllocateOrderedHashTable() {
12629 static const int kCapacity = CollectionType::kMinCapacity;
12630 static const int kBucketCount = kCapacity / CollectionType::kLoadFactor;
12631 static const int kFixedArrayLength = CollectionType::kHashTableStartIndex +
12633 (kCapacity * CollectionType::kEntrySize);
12634 static const int kSizeInBytes =
12635 FixedArray::kHeaderSize + (kFixedArrayLength * kPointerSize);
12637 // Allocate the table and add the proper map.
12639 Add<HAllocate>(Add<HConstant>(kSizeInBytes), HType::HeapObject(),
12640 NOT_TENURED, FIXED_ARRAY_TYPE);
12641 AddStoreMapConstant(table, isolate()->factory()->ordered_hash_table_map());
12643 // Initialize the FixedArray...
12644 HValue* length = Add<HConstant>(kFixedArrayLength);
12645 Add<HStoreNamedField>(table, HObjectAccess::ForFixedArrayLength(), length);
12647 // ...and the OrderedHashTable fields.
12648 Add<HStoreNamedField>(
12650 HObjectAccess::ForOrderedHashTableNumberOfBuckets<CollectionType>(),
12651 Add<HConstant>(kBucketCount));
12652 Add<HStoreNamedField>(
12654 HObjectAccess::ForOrderedHashTableNumberOfElements<CollectionType>(),
12655 graph()->GetConstant0());
12656 Add<HStoreNamedField>(
12657 table, HObjectAccess::ForOrderedHashTableNumberOfDeletedElements<
12659 graph()->GetConstant0());
12661 // Fill the buckets with kNotFound.
12662 HValue* not_found = Add<HConstant>(CollectionType::kNotFound);
12663 for (int i = 0; i < kBucketCount; ++i) {
12664 Add<HStoreNamedField>(
12665 table, HObjectAccess::ForOrderedHashTableBucket<CollectionType>(i),
12669 // Fill the data table with undefined.
12670 HValue* undefined = graph()->GetConstantUndefined();
12671 for (int i = 0; i < (kCapacity * CollectionType::kEntrySize); ++i) {
12672 Add<HStoreNamedField>(table,
12673 HObjectAccess::ForOrderedHashTableDataTableIndex<
12674 CollectionType, kBucketCount>(i),
12682 void HOptimizedGraphBuilder::GenerateSetInitialize(CallRuntime* call) {
12683 DCHECK(call->arguments()->length() == 1);
12684 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12685 HValue* receiver = Pop();
12687 NoObservableSideEffectsScope no_effects(this);
12688 HValue* table = BuildAllocateOrderedHashTable<OrderedHashSet>();
12689 Add<HStoreNamedField>(receiver, HObjectAccess::ForJSCollectionTable(), table);
12690 return ast_context()->ReturnValue(receiver);
12694 void HOptimizedGraphBuilder::GenerateMapInitialize(CallRuntime* call) {
12695 DCHECK(call->arguments()->length() == 1);
12696 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12697 HValue* receiver = Pop();
12699 NoObservableSideEffectsScope no_effects(this);
12700 HValue* table = BuildAllocateOrderedHashTable<OrderedHashMap>();
12701 Add<HStoreNamedField>(receiver, HObjectAccess::ForJSCollectionTable(), table);
12702 return ast_context()->ReturnValue(receiver);
12706 template <typename CollectionType>
12707 void HOptimizedGraphBuilder::BuildOrderedHashTableClear(HValue* receiver) {
12708 HValue* old_table = Add<HLoadNamedField>(
12709 receiver, nullptr, HObjectAccess::ForJSCollectionTable());
12710 HValue* new_table = BuildAllocateOrderedHashTable<CollectionType>();
12711 Add<HStoreNamedField>(
12712 old_table, HObjectAccess::ForOrderedHashTableNextTable<CollectionType>(),
12714 Add<HStoreNamedField>(
12715 old_table, HObjectAccess::ForOrderedHashTableNumberOfDeletedElements<
12717 Add<HConstant>(CollectionType::kClearedTableSentinel));
12718 Add<HStoreNamedField>(receiver, HObjectAccess::ForJSCollectionTable(),
12723 void HOptimizedGraphBuilder::GenerateSetClear(CallRuntime* call) {
12724 DCHECK(call->arguments()->length() == 1);
12725 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12726 HValue* receiver = Pop();
12728 NoObservableSideEffectsScope no_effects(this);
12729 BuildOrderedHashTableClear<OrderedHashSet>(receiver);
12730 return ast_context()->ReturnValue(graph()->GetConstantUndefined());
12734 void HOptimizedGraphBuilder::GenerateMapClear(CallRuntime* call) {
12735 DCHECK(call->arguments()->length() == 1);
12736 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12737 HValue* receiver = Pop();
12739 NoObservableSideEffectsScope no_effects(this);
12740 BuildOrderedHashTableClear<OrderedHashMap>(receiver);
12741 return ast_context()->ReturnValue(graph()->GetConstantUndefined());
12745 void HOptimizedGraphBuilder::GenerateGetCachedArrayIndex(CallRuntime* call) {
12746 DCHECK(call->arguments()->length() == 1);
12747 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12748 HValue* value = Pop();
12749 HGetCachedArrayIndex* result = New<HGetCachedArrayIndex>(value);
12750 return ast_context()->ReturnInstruction(result, call->id());
12754 void HOptimizedGraphBuilder::GenerateFastOneByteArrayJoin(CallRuntime* call) {
12755 // Simply returning undefined here would be semantically correct and even
12756 // avoid the bailout. Nevertheless, some ancient benchmarks like SunSpider's
12757 // string-fasta would tank, because fullcode contains an optimized version.
12758 // Obviously the fullcode => Crankshaft => bailout => fullcode dance is
12759 // faster... *sigh*
12760 return Bailout(kInlinedRuntimeFunctionFastOneByteArrayJoin);
12764 void HOptimizedGraphBuilder::GenerateDebugBreakInOptimizedCode(
12765 CallRuntime* call) {
12766 Add<HDebugBreak>();
12767 return ast_context()->ReturnValue(graph()->GetConstant0());
12771 void HOptimizedGraphBuilder::GenerateDebugIsActive(CallRuntime* call) {
12772 DCHECK(call->arguments()->length() == 0);
12774 Add<HConstant>(ExternalReference::debug_is_active_address(isolate()));
12776 Add<HLoadNamedField>(ref, nullptr, HObjectAccess::ForExternalUInteger8());
12777 return ast_context()->ReturnValue(value);
12781 void HOptimizedGraphBuilder::GenerateGetPrototype(CallRuntime* call) {
12782 DCHECK(call->arguments()->length() == 1);
12783 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12784 HValue* object = Pop();
12786 NoObservableSideEffectsScope no_effects(this);
12788 HValue* map = Add<HLoadNamedField>(object, nullptr, HObjectAccess::ForMap());
12789 HValue* bit_field =
12790 Add<HLoadNamedField>(map, nullptr, HObjectAccess::ForMapBitField());
12791 HValue* is_access_check_needed_mask =
12792 Add<HConstant>(1 << Map::kIsAccessCheckNeeded);
12793 HValue* is_access_check_needed_test = AddUncasted<HBitwise>(
12794 Token::BIT_AND, bit_field, is_access_check_needed_mask);
12797 Add<HLoadNamedField>(map, nullptr, HObjectAccess::ForPrototype());
12798 HValue* proto_map =
12799 Add<HLoadNamedField>(proto, nullptr, HObjectAccess::ForMap());
12800 HValue* proto_bit_field =
12801 Add<HLoadNamedField>(proto_map, nullptr, HObjectAccess::ForMapBitField());
12802 HValue* is_hidden_prototype_mask =
12803 Add<HConstant>(1 << Map::kIsHiddenPrototype);
12804 HValue* is_hidden_prototype_test = AddUncasted<HBitwise>(
12805 Token::BIT_AND, proto_bit_field, is_hidden_prototype_mask);
12808 IfBuilder needs_runtime(this);
12809 needs_runtime.If<HCompareNumericAndBranch>(
12810 is_access_check_needed_test, graph()->GetConstant0(), Token::NE);
12811 needs_runtime.OrIf<HCompareNumericAndBranch>(
12812 is_hidden_prototype_test, graph()->GetConstant0(), Token::NE);
12814 needs_runtime.Then();
12816 Add<HPushArguments>(object);
12817 Push(Add<HCallRuntime>(
12818 call->name(), Runtime::FunctionForId(Runtime::kGetPrototype), 1));
12821 needs_runtime.Else();
12824 return ast_context()->ReturnValue(Pop());
12828 #undef CHECK_BAILOUT
12832 HEnvironment::HEnvironment(HEnvironment* outer,
12834 Handle<JSFunction> closure,
12836 : closure_(closure),
12838 frame_type_(JS_FUNCTION),
12839 parameter_count_(0),
12840 specials_count_(1),
12846 ast_id_(BailoutId::None()),
12848 Scope* declaration_scope = scope->DeclarationScope();
12849 Initialize(declaration_scope->num_parameters() + 1,
12850 declaration_scope->num_stack_slots(), 0);
12854 HEnvironment::HEnvironment(Zone* zone, int parameter_count)
12855 : values_(0, zone),
12857 parameter_count_(parameter_count),
12858 specials_count_(1),
12864 ast_id_(BailoutId::None()),
12866 Initialize(parameter_count, 0, 0);
12870 HEnvironment::HEnvironment(const HEnvironment* other, Zone* zone)
12871 : values_(0, zone),
12872 frame_type_(JS_FUNCTION),
12873 parameter_count_(0),
12874 specials_count_(0),
12880 ast_id_(other->ast_id()),
12886 HEnvironment::HEnvironment(HEnvironment* outer,
12887 Handle<JSFunction> closure,
12888 FrameType frame_type,
12891 : closure_(closure),
12892 values_(arguments, zone),
12893 frame_type_(frame_type),
12894 parameter_count_(arguments),
12895 specials_count_(0),
12901 ast_id_(BailoutId::None()),
12906 void HEnvironment::Initialize(int parameter_count,
12908 int stack_height) {
12909 parameter_count_ = parameter_count;
12910 local_count_ = local_count;
12912 // Avoid reallocating the temporaries' backing store on the first Push.
12913 int total = parameter_count + specials_count_ + local_count + stack_height;
12914 values_.Initialize(total + 4, zone());
12915 for (int i = 0; i < total; ++i) values_.Add(NULL, zone());
12919 void HEnvironment::Initialize(const HEnvironment* other) {
12920 closure_ = other->closure();
12921 values_.AddAll(other->values_, zone());
12922 assigned_variables_.Union(other->assigned_variables_, zone());
12923 frame_type_ = other->frame_type_;
12924 parameter_count_ = other->parameter_count_;
12925 local_count_ = other->local_count_;
12926 if (other->outer_ != NULL) outer_ = other->outer_->Copy(); // Deep copy.
12927 entry_ = other->entry_;
12928 pop_count_ = other->pop_count_;
12929 push_count_ = other->push_count_;
12930 specials_count_ = other->specials_count_;
12931 ast_id_ = other->ast_id_;
12935 void HEnvironment::AddIncomingEdge(HBasicBlock* block, HEnvironment* other) {
12936 DCHECK(!block->IsLoopHeader());
12937 DCHECK(values_.length() == other->values_.length());
12939 int length = values_.length();
12940 for (int i = 0; i < length; ++i) {
12941 HValue* value = values_[i];
12942 if (value != NULL && value->IsPhi() && value->block() == block) {
12943 // There is already a phi for the i'th value.
12944 HPhi* phi = HPhi::cast(value);
12945 // Assert index is correct and that we haven't missed an incoming edge.
12946 DCHECK(phi->merged_index() == i || !phi->HasMergedIndex());
12947 DCHECK(phi->OperandCount() == block->predecessors()->length());
12948 phi->AddInput(other->values_[i]);
12949 } else if (values_[i] != other->values_[i]) {
12950 // There is a fresh value on the incoming edge, a phi is needed.
12951 DCHECK(values_[i] != NULL && other->values_[i] != NULL);
12952 HPhi* phi = block->AddNewPhi(i);
12953 HValue* old_value = values_[i];
12954 for (int j = 0; j < block->predecessors()->length(); j++) {
12955 phi->AddInput(old_value);
12957 phi->AddInput(other->values_[i]);
12958 this->values_[i] = phi;
12964 void HEnvironment::Bind(int index, HValue* value) {
12965 DCHECK(value != NULL);
12966 assigned_variables_.Add(index, zone());
12967 values_[index] = value;
12971 bool HEnvironment::HasExpressionAt(int index) const {
12972 return index >= parameter_count_ + specials_count_ + local_count_;
12976 bool HEnvironment::ExpressionStackIsEmpty() const {
12977 DCHECK(length() >= first_expression_index());
12978 return length() == first_expression_index();
12982 void HEnvironment::SetExpressionStackAt(int index_from_top, HValue* value) {
12983 int count = index_from_top + 1;
12984 int index = values_.length() - count;
12985 DCHECK(HasExpressionAt(index));
12986 // The push count must include at least the element in question or else
12987 // the new value will not be included in this environment's history.
12988 if (push_count_ < count) {
12989 // This is the same effect as popping then re-pushing 'count' elements.
12990 pop_count_ += (count - push_count_);
12991 push_count_ = count;
12993 values_[index] = value;
12997 HValue* HEnvironment::RemoveExpressionStackAt(int index_from_top) {
12998 int count = index_from_top + 1;
12999 int index = values_.length() - count;
13000 DCHECK(HasExpressionAt(index));
13001 // Simulate popping 'count' elements and then
13002 // pushing 'count - 1' elements back.
13003 pop_count_ += Max(count - push_count_, 0);
13004 push_count_ = Max(push_count_ - count, 0) + (count - 1);
13005 return values_.Remove(index);
13009 void HEnvironment::Drop(int count) {
13010 for (int i = 0; i < count; ++i) {
13016 HEnvironment* HEnvironment::Copy() const {
13017 return new(zone()) HEnvironment(this, zone());
13021 HEnvironment* HEnvironment::CopyWithoutHistory() const {
13022 HEnvironment* result = Copy();
13023 result->ClearHistory();
13028 HEnvironment* HEnvironment::CopyAsLoopHeader(HBasicBlock* loop_header) const {
13029 HEnvironment* new_env = Copy();
13030 for (int i = 0; i < values_.length(); ++i) {
13031 HPhi* phi = loop_header->AddNewPhi(i);
13032 phi->AddInput(values_[i]);
13033 new_env->values_[i] = phi;
13035 new_env->ClearHistory();
13040 HEnvironment* HEnvironment::CreateStubEnvironment(HEnvironment* outer,
13041 Handle<JSFunction> target,
13042 FrameType frame_type,
13043 int arguments) const {
13044 HEnvironment* new_env =
13045 new(zone()) HEnvironment(outer, target, frame_type,
13046 arguments + 1, zone());
13047 for (int i = 0; i <= arguments; ++i) { // Include receiver.
13048 new_env->Push(ExpressionStackAt(arguments - i));
13050 new_env->ClearHistory();
13055 HEnvironment* HEnvironment::CopyForInlining(
13056 Handle<JSFunction> target,
13058 FunctionLiteral* function,
13059 HConstant* undefined,
13060 InliningKind inlining_kind) const {
13061 DCHECK(frame_type() == JS_FUNCTION);
13063 // Outer environment is a copy of this one without the arguments.
13064 int arity = function->scope()->num_parameters();
13066 HEnvironment* outer = Copy();
13067 outer->Drop(arguments + 1); // Including receiver.
13068 outer->ClearHistory();
13070 if (inlining_kind == CONSTRUCT_CALL_RETURN) {
13071 // Create artificial constructor stub environment. The receiver should
13072 // actually be the constructor function, but we pass the newly allocated
13073 // object instead, DoComputeConstructStubFrame() relies on that.
13074 outer = CreateStubEnvironment(outer, target, JS_CONSTRUCT, arguments);
13075 } else if (inlining_kind == GETTER_CALL_RETURN) {
13076 // We need an additional StackFrame::INTERNAL frame for restoring the
13077 // correct context.
13078 outer = CreateStubEnvironment(outer, target, JS_GETTER, arguments);
13079 } else if (inlining_kind == SETTER_CALL_RETURN) {
13080 // We need an additional StackFrame::INTERNAL frame for temporarily saving
13081 // the argument of the setter, see StoreStubCompiler::CompileStoreViaSetter.
13082 outer = CreateStubEnvironment(outer, target, JS_SETTER, arguments);
13085 if (arity != arguments) {
13086 // Create artificial arguments adaptation environment.
13087 outer = CreateStubEnvironment(outer, target, ARGUMENTS_ADAPTOR, arguments);
13090 HEnvironment* inner =
13091 new(zone()) HEnvironment(outer, function->scope(), target, zone());
13092 // Get the argument values from the original environment.
13093 for (int i = 0; i <= arity; ++i) { // Include receiver.
13094 HValue* push = (i <= arguments) ?
13095 ExpressionStackAt(arguments - i) : undefined;
13096 inner->SetValueAt(i, push);
13098 inner->SetValueAt(arity + 1, context());
13099 for (int i = arity + 2; i < inner->length(); ++i) {
13100 inner->SetValueAt(i, undefined);
13103 inner->set_ast_id(BailoutId::FunctionEntry());
13108 std::ostream& operator<<(std::ostream& os, const HEnvironment& env) {
13109 for (int i = 0; i < env.length(); i++) {
13110 if (i == 0) os << "parameters\n";
13111 if (i == env.parameter_count()) os << "specials\n";
13112 if (i == env.parameter_count() + env.specials_count()) os << "locals\n";
13113 if (i == env.parameter_count() + env.specials_count() + env.local_count()) {
13114 os << "expressions\n";
13116 HValue* val = env.values()->at(i);
13129 void HTracer::TraceCompilation(CompilationInfo* info) {
13130 Tag tag(this, "compilation");
13131 base::SmartArrayPointer<char> name = info->GetDebugName();
13132 if (info->IsOptimizing()) {
13133 PrintStringProperty("name", name.get());
13135 trace_.Add("method \"%s:%d\"\n", name.get(), info->optimization_id());
13137 PrintStringProperty("name", name.get());
13138 PrintStringProperty("method", "stub");
13140 PrintLongProperty("date",
13141 static_cast<int64_t>(base::OS::TimeCurrentMillis()));
13145 void HTracer::TraceLithium(const char* name, LChunk* chunk) {
13146 DCHECK(!chunk->isolate()->concurrent_recompilation_enabled());
13147 AllowHandleDereference allow_deref;
13148 AllowDeferredHandleDereference allow_deferred_deref;
13149 Trace(name, chunk->graph(), chunk);
13153 void HTracer::TraceHydrogen(const char* name, HGraph* graph) {
13154 DCHECK(!graph->isolate()->concurrent_recompilation_enabled());
13155 AllowHandleDereference allow_deref;
13156 AllowDeferredHandleDereference allow_deferred_deref;
13157 Trace(name, graph, NULL);
13161 void HTracer::Trace(const char* name, HGraph* graph, LChunk* chunk) {
13162 Tag tag(this, "cfg");
13163 PrintStringProperty("name", name);
13164 const ZoneList<HBasicBlock*>* blocks = graph->blocks();
13165 for (int i = 0; i < blocks->length(); i++) {
13166 HBasicBlock* current = blocks->at(i);
13167 Tag block_tag(this, "block");
13168 PrintBlockProperty("name", current->block_id());
13169 PrintIntProperty("from_bci", -1);
13170 PrintIntProperty("to_bci", -1);
13172 if (!current->predecessors()->is_empty()) {
13174 trace_.Add("predecessors");
13175 for (int j = 0; j < current->predecessors()->length(); ++j) {
13176 trace_.Add(" \"B%d\"", current->predecessors()->at(j)->block_id());
13180 PrintEmptyProperty("predecessors");
13183 if (current->end()->SuccessorCount() == 0) {
13184 PrintEmptyProperty("successors");
13187 trace_.Add("successors");
13188 for (HSuccessorIterator it(current->end()); !it.Done(); it.Advance()) {
13189 trace_.Add(" \"B%d\"", it.Current()->block_id());
13194 PrintEmptyProperty("xhandlers");
13198 trace_.Add("flags");
13199 if (current->IsLoopSuccessorDominator()) {
13200 trace_.Add(" \"dom-loop-succ\"");
13202 if (current->IsUnreachable()) {
13203 trace_.Add(" \"dead\"");
13205 if (current->is_osr_entry()) {
13206 trace_.Add(" \"osr\"");
13211 if (current->dominator() != NULL) {
13212 PrintBlockProperty("dominator", current->dominator()->block_id());
13215 PrintIntProperty("loop_depth", current->LoopNestingDepth());
13217 if (chunk != NULL) {
13218 int first_index = current->first_instruction_index();
13219 int last_index = current->last_instruction_index();
13222 LifetimePosition::FromInstructionIndex(first_index).Value());
13225 LifetimePosition::FromInstructionIndex(last_index).Value());
13229 Tag states_tag(this, "states");
13230 Tag locals_tag(this, "locals");
13231 int total = current->phis()->length();
13232 PrintIntProperty("size", current->phis()->length());
13233 PrintStringProperty("method", "None");
13234 for (int j = 0; j < total; ++j) {
13235 HPhi* phi = current->phis()->at(j);
13237 std::ostringstream os;
13238 os << phi->merged_index() << " " << NameOf(phi) << " " << *phi << "\n";
13239 trace_.Add(os.str().c_str());
13244 Tag HIR_tag(this, "HIR");
13245 for (HInstructionIterator it(current); !it.Done(); it.Advance()) {
13246 HInstruction* instruction = it.Current();
13247 int uses = instruction->UseCount();
13249 std::ostringstream os;
13250 os << "0 " << uses << " " << NameOf(instruction) << " " << *instruction;
13251 if (graph->info()->is_tracking_positions() &&
13252 instruction->has_position() && instruction->position().raw() != 0) {
13253 const SourcePosition pos = instruction->position();
13255 if (pos.inlining_id() != 0) os << pos.inlining_id() << "_";
13256 os << pos.position();
13259 trace_.Add(os.str().c_str());
13264 if (chunk != NULL) {
13265 Tag LIR_tag(this, "LIR");
13266 int first_index = current->first_instruction_index();
13267 int last_index = current->last_instruction_index();
13268 if (first_index != -1 && last_index != -1) {
13269 const ZoneList<LInstruction*>* instructions = chunk->instructions();
13270 for (int i = first_index; i <= last_index; ++i) {
13271 LInstruction* linstr = instructions->at(i);
13272 if (linstr != NULL) {
13275 LifetimePosition::FromInstructionIndex(i).Value());
13276 linstr->PrintTo(&trace_);
13277 std::ostringstream os;
13278 os << " [hir:" << NameOf(linstr->hydrogen_value()) << "] <|@\n";
13279 trace_.Add(os.str().c_str());
13288 void HTracer::TraceLiveRanges(const char* name, LAllocator* allocator) {
13289 Tag tag(this, "intervals");
13290 PrintStringProperty("name", name);
13292 const Vector<LiveRange*>* fixed_d = allocator->fixed_double_live_ranges();
13293 for (int i = 0; i < fixed_d->length(); ++i) {
13294 TraceLiveRange(fixed_d->at(i), "fixed", allocator->zone());
13297 const Vector<LiveRange*>* fixed = allocator->fixed_live_ranges();
13298 for (int i = 0; i < fixed->length(); ++i) {
13299 TraceLiveRange(fixed->at(i), "fixed", allocator->zone());
13302 const ZoneList<LiveRange*>* live_ranges = allocator->live_ranges();
13303 for (int i = 0; i < live_ranges->length(); ++i) {
13304 TraceLiveRange(live_ranges->at(i), "object", allocator->zone());
13309 void HTracer::TraceLiveRange(LiveRange* range, const char* type,
13311 if (range != NULL && !range->IsEmpty()) {
13313 trace_.Add("%d %s", range->id(), type);
13314 if (range->HasRegisterAssigned()) {
13315 LOperand* op = range->CreateAssignedOperand(zone);
13316 int assigned_reg = op->index();
13317 if (op->IsDoubleRegister()) {
13318 trace_.Add(" \"%s\"",
13319 DoubleRegister::AllocationIndexToString(assigned_reg));
13321 DCHECK(op->IsRegister());
13322 trace_.Add(" \"%s\"", Register::AllocationIndexToString(assigned_reg));
13324 } else if (range->IsSpilled()) {
13325 LOperand* op = range->TopLevel()->GetSpillOperand();
13326 if (op->IsDoubleStackSlot()) {
13327 trace_.Add(" \"double_stack:%d\"", op->index());
13329 DCHECK(op->IsStackSlot());
13330 trace_.Add(" \"stack:%d\"", op->index());
13333 int parent_index = -1;
13334 if (range->IsChild()) {
13335 parent_index = range->parent()->id();
13337 parent_index = range->id();
13339 LOperand* op = range->FirstHint();
13340 int hint_index = -1;
13341 if (op != NULL && op->IsUnallocated()) {
13342 hint_index = LUnallocated::cast(op)->virtual_register();
13344 trace_.Add(" %d %d", parent_index, hint_index);
13345 UseInterval* cur_interval = range->first_interval();
13346 while (cur_interval != NULL && range->Covers(cur_interval->start())) {
13347 trace_.Add(" [%d, %d[",
13348 cur_interval->start().Value(),
13349 cur_interval->end().Value());
13350 cur_interval = cur_interval->next();
13353 UsePosition* current_pos = range->first_pos();
13354 while (current_pos != NULL) {
13355 if (current_pos->RegisterIsBeneficial() || FLAG_trace_all_uses) {
13356 trace_.Add(" %d M", current_pos->pos().Value());
13358 current_pos = current_pos->next();
13361 trace_.Add(" \"\"\n");
13366 void HTracer::FlushToFile() {
13367 AppendChars(filename_.start(), trace_.ToCString().get(), trace_.length(),
13373 void HStatistics::Initialize(CompilationInfo* info) {
13374 if (info->shared_info().is_null()) return;
13375 source_size_ += info->shared_info()->SourceSize();
13379 void HStatistics::Print() {
13382 "----------------------------------------"
13383 "----------------------------------------\n"
13384 "--- Hydrogen timing results:\n"
13385 "----------------------------------------"
13386 "----------------------------------------\n");
13387 base::TimeDelta sum;
13388 for (int i = 0; i < times_.length(); ++i) {
13392 for (int i = 0; i < names_.length(); ++i) {
13393 PrintF("%33s", names_[i]);
13394 double ms = times_[i].InMillisecondsF();
13395 double percent = times_[i].PercentOf(sum);
13396 PrintF(" %8.3f ms / %4.1f %% ", ms, percent);
13398 size_t size = sizes_[i];
13399 double size_percent = static_cast<double>(size) * 100 / total_size_;
13400 PrintF(" %9zu bytes / %4.1f %%\n", size, size_percent);
13404 "----------------------------------------"
13405 "----------------------------------------\n");
13406 base::TimeDelta total = create_graph_ + optimize_graph_ + generate_code_;
13407 PrintF("%33s %8.3f ms / %4.1f %% \n", "Create graph",
13408 create_graph_.InMillisecondsF(), create_graph_.PercentOf(total));
13409 PrintF("%33s %8.3f ms / %4.1f %% \n", "Optimize graph",
13410 optimize_graph_.InMillisecondsF(), optimize_graph_.PercentOf(total));
13411 PrintF("%33s %8.3f ms / %4.1f %% \n", "Generate and install code",
13412 generate_code_.InMillisecondsF(), generate_code_.PercentOf(total));
13414 "----------------------------------------"
13415 "----------------------------------------\n");
13416 PrintF("%33s %8.3f ms %9zu bytes\n", "Total",
13417 total.InMillisecondsF(), total_size_);
13418 PrintF("%33s (%.1f times slower than full code gen)\n", "",
13419 total.TimesOf(full_code_gen_));
13421 double source_size_in_kb = static_cast<double>(source_size_) / 1024;
13422 double normalized_time = source_size_in_kb > 0
13423 ? total.InMillisecondsF() / source_size_in_kb
13425 double normalized_size_in_kb =
13426 source_size_in_kb > 0
13427 ? static_cast<double>(total_size_) / 1024 / source_size_in_kb
13429 PrintF("%33s %8.3f ms %7.3f kB allocated\n",
13430 "Average per kB source", normalized_time, normalized_size_in_kb);
13434 void HStatistics::SaveTiming(const char* name, base::TimeDelta time,
13436 total_size_ += size;
13437 for (int i = 0; i < names_.length(); ++i) {
13438 if (strcmp(names_[i], name) == 0) {
13450 HPhase::~HPhase() {
13451 if (ShouldProduceTraceOutput()) {
13452 isolate()->GetHTracer()->TraceHydrogen(name(), graph_);
13456 graph_->Verify(false); // No full verify.
13460 } // namespace internal