1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "src/hydrogen.h"
11 #include "src/allocation-site-scopes.h"
12 #include "src/ast-numbering.h"
13 #include "src/full-codegen/full-codegen.h"
14 #include "src/hydrogen-bce.h"
15 #include "src/hydrogen-bch.h"
16 #include "src/hydrogen-canonicalize.h"
17 #include "src/hydrogen-check-elimination.h"
18 #include "src/hydrogen-dce.h"
19 #include "src/hydrogen-dehoist.h"
20 #include "src/hydrogen-environment-liveness.h"
21 #include "src/hydrogen-escape-analysis.h"
22 #include "src/hydrogen-gvn.h"
23 #include "src/hydrogen-infer-representation.h"
24 #include "src/hydrogen-infer-types.h"
25 #include "src/hydrogen-load-elimination.h"
26 #include "src/hydrogen-mark-deoptimize.h"
27 #include "src/hydrogen-mark-unreachable.h"
28 #include "src/hydrogen-osr.h"
29 #include "src/hydrogen-range-analysis.h"
30 #include "src/hydrogen-redundant-phi.h"
31 #include "src/hydrogen-removable-simulates.h"
32 #include "src/hydrogen-representation-changes.h"
33 #include "src/hydrogen-sce.h"
34 #include "src/hydrogen-store-elimination.h"
35 #include "src/hydrogen-uint32-analysis.h"
36 #include "src/ic/call-optimization.h"
37 #include "src/ic/ic.h"
39 #include "src/ic/ic-inl.h"
40 #include "src/lithium-allocator.h"
41 #include "src/parser.h"
42 #include "src/runtime/runtime.h"
43 #include "src/scopeinfo.h"
44 #include "src/typing.h"
46 #if V8_TARGET_ARCH_IA32
47 #include "src/ia32/lithium-codegen-ia32.h" // NOLINT
48 #elif V8_TARGET_ARCH_X64
49 #include "src/x64/lithium-codegen-x64.h" // NOLINT
50 #elif V8_TARGET_ARCH_ARM64
51 #include "src/arm64/lithium-codegen-arm64.h" // NOLINT
52 #elif V8_TARGET_ARCH_ARM
53 #include "src/arm/lithium-codegen-arm.h" // NOLINT
54 #elif V8_TARGET_ARCH_PPC
55 #include "src/ppc/lithium-codegen-ppc.h" // NOLINT
56 #elif V8_TARGET_ARCH_MIPS
57 #include "src/mips/lithium-codegen-mips.h" // NOLINT
58 #elif V8_TARGET_ARCH_MIPS64
59 #include "src/mips64/lithium-codegen-mips64.h" // NOLINT
60 #elif V8_TARGET_ARCH_X87
61 #include "src/x87/lithium-codegen-x87.h" // NOLINT
63 #error Unsupported target architecture.
69 HBasicBlock::HBasicBlock(HGraph* graph)
70 : block_id_(graph->GetNextBlockID()),
72 phis_(4, graph->zone()),
76 loop_information_(NULL),
77 predecessors_(2, graph->zone()),
79 dominated_blocks_(4, graph->zone()),
80 last_environment_(NULL),
82 first_instruction_index_(-1),
83 last_instruction_index_(-1),
84 deleted_phis_(4, graph->zone()),
85 parent_loop_header_(NULL),
86 inlined_entry_block_(NULL),
87 is_inline_return_target_(false),
89 dominates_loop_successors_(false),
91 is_ordered_(false) { }
94 Isolate* HBasicBlock::isolate() const {
95 return graph_->isolate();
99 void HBasicBlock::MarkUnreachable() {
100 is_reachable_ = false;
104 void HBasicBlock::AttachLoopInformation() {
105 DCHECK(!IsLoopHeader());
106 loop_information_ = new(zone()) HLoopInformation(this, zone());
110 void HBasicBlock::DetachLoopInformation() {
111 DCHECK(IsLoopHeader());
112 loop_information_ = NULL;
116 void HBasicBlock::AddPhi(HPhi* phi) {
117 DCHECK(!IsStartBlock());
118 phis_.Add(phi, zone());
123 void HBasicBlock::RemovePhi(HPhi* phi) {
124 DCHECK(phi->block() == this);
125 DCHECK(phis_.Contains(phi));
127 phis_.RemoveElement(phi);
132 void HBasicBlock::AddInstruction(HInstruction* instr, SourcePosition position) {
133 DCHECK(!IsStartBlock() || !IsFinished());
134 DCHECK(!instr->IsLinked());
135 DCHECK(!IsFinished());
137 if (!position.IsUnknown()) {
138 instr->set_position(position);
140 if (first_ == NULL) {
141 DCHECK(last_environment() != NULL);
142 DCHECK(!last_environment()->ast_id().IsNone());
143 HBlockEntry* entry = new(zone()) HBlockEntry();
144 entry->InitializeAsFirst(this);
145 if (!position.IsUnknown()) {
146 entry->set_position(position);
148 DCHECK(!FLAG_hydrogen_track_positions ||
149 !graph()->info()->IsOptimizing() || instr->IsAbnormalExit());
151 first_ = last_ = entry;
153 instr->InsertAfter(last_);
157 HPhi* HBasicBlock::AddNewPhi(int merged_index) {
158 if (graph()->IsInsideNoSideEffectsScope()) {
159 merged_index = HPhi::kInvalidMergedIndex;
161 HPhi* phi = new(zone()) HPhi(merged_index, zone());
167 HSimulate* HBasicBlock::CreateSimulate(BailoutId ast_id,
168 RemovableSimulate removable) {
169 DCHECK(HasEnvironment());
170 HEnvironment* environment = last_environment();
171 DCHECK(ast_id.IsNone() ||
172 ast_id == BailoutId::StubEntry() ||
173 environment->closure()->shared()->VerifyBailoutId(ast_id));
175 int push_count = environment->push_count();
176 int pop_count = environment->pop_count();
179 new(zone()) HSimulate(ast_id, pop_count, zone(), removable);
181 instr->set_closure(environment->closure());
183 // Order of pushed values: newest (top of stack) first. This allows
184 // HSimulate::MergeWith() to easily append additional pushed values
185 // that are older (from further down the stack).
186 for (int i = 0; i < push_count; ++i) {
187 instr->AddPushedValue(environment->ExpressionStackAt(i));
189 for (GrowableBitVector::Iterator it(environment->assigned_variables(),
193 int index = it.Current();
194 instr->AddAssignedValue(index, environment->Lookup(index));
196 environment->ClearHistory();
201 void HBasicBlock::Finish(HControlInstruction* end, SourcePosition position) {
202 DCHECK(!IsFinished());
203 AddInstruction(end, position);
205 for (HSuccessorIterator it(end); !it.Done(); it.Advance()) {
206 it.Current()->RegisterPredecessor(this);
211 void HBasicBlock::Goto(HBasicBlock* block, SourcePosition position,
212 FunctionState* state, bool add_simulate) {
213 bool drop_extra = state != NULL &&
214 state->inlining_kind() == NORMAL_RETURN;
216 if (block->IsInlineReturnTarget()) {
217 HEnvironment* env = last_environment();
218 int argument_count = env->arguments_environment()->parameter_count();
219 AddInstruction(new(zone())
220 HLeaveInlined(state->entry(), argument_count),
222 UpdateEnvironment(last_environment()->DiscardInlined(drop_extra));
225 if (add_simulate) AddNewSimulate(BailoutId::None(), position);
226 HGoto* instr = new(zone()) HGoto(block);
227 Finish(instr, position);
231 void HBasicBlock::AddLeaveInlined(HValue* return_value, FunctionState* state,
232 SourcePosition position) {
233 HBasicBlock* target = state->function_return();
234 bool drop_extra = state->inlining_kind() == NORMAL_RETURN;
236 DCHECK(target->IsInlineReturnTarget());
237 DCHECK(return_value != NULL);
238 HEnvironment* env = last_environment();
239 int argument_count = env->arguments_environment()->parameter_count();
240 AddInstruction(new(zone()) HLeaveInlined(state->entry(), argument_count),
242 UpdateEnvironment(last_environment()->DiscardInlined(drop_extra));
243 last_environment()->Push(return_value);
244 AddNewSimulate(BailoutId::None(), position);
245 HGoto* instr = new(zone()) HGoto(target);
246 Finish(instr, position);
250 void HBasicBlock::SetInitialEnvironment(HEnvironment* env) {
251 DCHECK(!HasEnvironment());
252 DCHECK(first() == NULL);
253 UpdateEnvironment(env);
257 void HBasicBlock::UpdateEnvironment(HEnvironment* env) {
258 last_environment_ = env;
259 graph()->update_maximum_environment_size(env->first_expression_index());
263 void HBasicBlock::SetJoinId(BailoutId ast_id) {
264 int length = predecessors_.length();
266 for (int i = 0; i < length; i++) {
267 HBasicBlock* predecessor = predecessors_[i];
268 DCHECK(predecessor->end()->IsGoto());
269 HSimulate* simulate = HSimulate::cast(predecessor->end()->previous());
271 (predecessor->last_environment()->closure().is_null() ||
272 predecessor->last_environment()->closure()->shared()
273 ->VerifyBailoutId(ast_id)));
274 simulate->set_ast_id(ast_id);
275 predecessor->last_environment()->set_ast_id(ast_id);
280 bool HBasicBlock::Dominates(HBasicBlock* other) const {
281 HBasicBlock* current = other->dominator();
282 while (current != NULL) {
283 if (current == this) return true;
284 current = current->dominator();
290 bool HBasicBlock::EqualToOrDominates(HBasicBlock* other) const {
291 if (this == other) return true;
292 return Dominates(other);
296 int HBasicBlock::LoopNestingDepth() const {
297 const HBasicBlock* current = this;
298 int result = (current->IsLoopHeader()) ? 1 : 0;
299 while (current->parent_loop_header() != NULL) {
300 current = current->parent_loop_header();
307 void HBasicBlock::PostProcessLoopHeader(IterationStatement* stmt) {
308 DCHECK(IsLoopHeader());
310 SetJoinId(stmt->EntryId());
311 if (predecessors()->length() == 1) {
312 // This is a degenerated loop.
313 DetachLoopInformation();
317 // Only the first entry into the loop is from outside the loop. All other
318 // entries must be back edges.
319 for (int i = 1; i < predecessors()->length(); ++i) {
320 loop_information()->RegisterBackEdge(predecessors()->at(i));
325 void HBasicBlock::MarkSuccEdgeUnreachable(int succ) {
326 DCHECK(IsFinished());
327 HBasicBlock* succ_block = end()->SuccessorAt(succ);
329 DCHECK(succ_block->predecessors()->length() == 1);
330 succ_block->MarkUnreachable();
334 void HBasicBlock::RegisterPredecessor(HBasicBlock* pred) {
335 if (HasPredecessor()) {
336 // Only loop header blocks can have a predecessor added after
337 // instructions have been added to the block (they have phis for all
338 // values in the environment, these phis may be eliminated later).
339 DCHECK(IsLoopHeader() || first_ == NULL);
340 HEnvironment* incoming_env = pred->last_environment();
341 if (IsLoopHeader()) {
342 DCHECK_EQ(phis()->length(), incoming_env->length());
343 for (int i = 0; i < phis_.length(); ++i) {
344 phis_[i]->AddInput(incoming_env->values()->at(i));
347 last_environment()->AddIncomingEdge(this, pred->last_environment());
349 } else if (!HasEnvironment() && !IsFinished()) {
350 DCHECK(!IsLoopHeader());
351 SetInitialEnvironment(pred->last_environment()->Copy());
354 predecessors_.Add(pred, zone());
358 void HBasicBlock::AddDominatedBlock(HBasicBlock* block) {
359 DCHECK(!dominated_blocks_.Contains(block));
360 // Keep the list of dominated blocks sorted such that if there is two
361 // succeeding block in this list, the predecessor is before the successor.
363 while (index < dominated_blocks_.length() &&
364 dominated_blocks_[index]->block_id() < block->block_id()) {
367 dominated_blocks_.InsertAt(index, block, zone());
371 void HBasicBlock::AssignCommonDominator(HBasicBlock* other) {
372 if (dominator_ == NULL) {
374 other->AddDominatedBlock(this);
375 } else if (other->dominator() != NULL) {
376 HBasicBlock* first = dominator_;
377 HBasicBlock* second = other;
379 while (first != second) {
380 if (first->block_id() > second->block_id()) {
381 first = first->dominator();
383 second = second->dominator();
385 DCHECK(first != NULL && second != NULL);
388 if (dominator_ != first) {
389 DCHECK(dominator_->dominated_blocks_.Contains(this));
390 dominator_->dominated_blocks_.RemoveElement(this);
392 first->AddDominatedBlock(this);
398 void HBasicBlock::AssignLoopSuccessorDominators() {
399 // Mark blocks that dominate all subsequent reachable blocks inside their
400 // loop. Exploit the fact that blocks are sorted in reverse post order. When
401 // the loop is visited in increasing block id order, if the number of
402 // non-loop-exiting successor edges at the dominator_candidate block doesn't
403 // exceed the number of previously encountered predecessor edges, there is no
404 // path from the loop header to any block with higher id that doesn't go
405 // through the dominator_candidate block. In this case, the
406 // dominator_candidate block is guaranteed to dominate all blocks reachable
407 // from it with higher ids.
408 HBasicBlock* last = loop_information()->GetLastBackEdge();
409 int outstanding_successors = 1; // one edge from the pre-header
410 // Header always dominates everything.
411 MarkAsLoopSuccessorDominator();
412 for (int j = block_id(); j <= last->block_id(); ++j) {
413 HBasicBlock* dominator_candidate = graph_->blocks()->at(j);
414 for (HPredecessorIterator it(dominator_candidate); !it.Done();
416 HBasicBlock* predecessor = it.Current();
417 // Don't count back edges.
418 if (predecessor->block_id() < dominator_candidate->block_id()) {
419 outstanding_successors--;
423 // If more successors than predecessors have been seen in the loop up to
424 // now, it's not possible to guarantee that the current block dominates
425 // all of the blocks with higher IDs. In this case, assume conservatively
426 // that those paths through loop that don't go through the current block
427 // contain all of the loop's dependencies. Also be careful to record
428 // dominator information about the current loop that's being processed,
429 // and not nested loops, which will be processed when
430 // AssignLoopSuccessorDominators gets called on their header.
431 DCHECK(outstanding_successors >= 0);
432 HBasicBlock* parent_loop_header = dominator_candidate->parent_loop_header();
433 if (outstanding_successors == 0 &&
434 (parent_loop_header == this && !dominator_candidate->IsLoopHeader())) {
435 dominator_candidate->MarkAsLoopSuccessorDominator();
437 HControlInstruction* end = dominator_candidate->end();
438 for (HSuccessorIterator it(end); !it.Done(); it.Advance()) {
439 HBasicBlock* successor = it.Current();
440 // Only count successors that remain inside the loop and don't loop back
442 if (successor->block_id() > dominator_candidate->block_id() &&
443 successor->block_id() <= last->block_id()) {
444 // Backwards edges must land on loop headers.
445 DCHECK(successor->block_id() > dominator_candidate->block_id() ||
446 successor->IsLoopHeader());
447 outstanding_successors++;
454 int HBasicBlock::PredecessorIndexOf(HBasicBlock* predecessor) const {
455 for (int i = 0; i < predecessors_.length(); ++i) {
456 if (predecessors_[i] == predecessor) return i;
464 void HBasicBlock::Verify() {
465 // Check that every block is finished.
466 DCHECK(IsFinished());
467 DCHECK(block_id() >= 0);
469 // Check that the incoming edges are in edge split form.
470 if (predecessors_.length() > 1) {
471 for (int i = 0; i < predecessors_.length(); ++i) {
472 DCHECK(predecessors_[i]->end()->SecondSuccessor() == NULL);
479 void HLoopInformation::RegisterBackEdge(HBasicBlock* block) {
480 this->back_edges_.Add(block, block->zone());
485 HBasicBlock* HLoopInformation::GetLastBackEdge() const {
487 HBasicBlock* result = NULL;
488 for (int i = 0; i < back_edges_.length(); ++i) {
489 HBasicBlock* cur = back_edges_[i];
490 if (cur->block_id() > max_id) {
491 max_id = cur->block_id();
499 void HLoopInformation::AddBlock(HBasicBlock* block) {
500 if (block == loop_header()) return;
501 if (block->parent_loop_header() == loop_header()) return;
502 if (block->parent_loop_header() != NULL) {
503 AddBlock(block->parent_loop_header());
505 block->set_parent_loop_header(loop_header());
506 blocks_.Add(block, block->zone());
507 for (int i = 0; i < block->predecessors()->length(); ++i) {
508 AddBlock(block->predecessors()->at(i));
516 // Checks reachability of the blocks in this graph and stores a bit in
517 // the BitVector "reachable()" for every block that can be reached
518 // from the start block of the graph. If "dont_visit" is non-null, the given
519 // block is treated as if it would not be part of the graph. "visited_count()"
520 // returns the number of reachable blocks.
521 class ReachabilityAnalyzer BASE_EMBEDDED {
523 ReachabilityAnalyzer(HBasicBlock* entry_block,
525 HBasicBlock* dont_visit)
527 stack_(16, entry_block->zone()),
528 reachable_(block_count, entry_block->zone()),
529 dont_visit_(dont_visit) {
530 PushBlock(entry_block);
534 int visited_count() const { return visited_count_; }
535 const BitVector* reachable() const { return &reachable_; }
538 void PushBlock(HBasicBlock* block) {
539 if (block != NULL && block != dont_visit_ &&
540 !reachable_.Contains(block->block_id())) {
541 reachable_.Add(block->block_id());
542 stack_.Add(block, block->zone());
548 while (!stack_.is_empty()) {
549 HControlInstruction* end = stack_.RemoveLast()->end();
550 for (HSuccessorIterator it(end); !it.Done(); it.Advance()) {
551 PushBlock(it.Current());
557 ZoneList<HBasicBlock*> stack_;
558 BitVector reachable_;
559 HBasicBlock* dont_visit_;
563 void HGraph::Verify(bool do_full_verify) const {
564 Heap::RelocationLock relocation_lock(isolate()->heap());
565 AllowHandleDereference allow_deref;
566 AllowDeferredHandleDereference allow_deferred_deref;
567 for (int i = 0; i < blocks_.length(); i++) {
568 HBasicBlock* block = blocks_.at(i);
572 // Check that every block contains at least one node and that only the last
573 // node is a control instruction.
574 HInstruction* current = block->first();
575 DCHECK(current != NULL && current->IsBlockEntry());
576 while (current != NULL) {
577 DCHECK((current->next() == NULL) == current->IsControlInstruction());
578 DCHECK(current->block() == block);
580 current = current->next();
583 // Check that successors are correctly set.
584 HBasicBlock* first = block->end()->FirstSuccessor();
585 HBasicBlock* second = block->end()->SecondSuccessor();
586 DCHECK(second == NULL || first != NULL);
588 // Check that the predecessor array is correct.
590 DCHECK(first->predecessors()->Contains(block));
591 if (second != NULL) {
592 DCHECK(second->predecessors()->Contains(block));
596 // Check that phis have correct arguments.
597 for (int j = 0; j < block->phis()->length(); j++) {
598 HPhi* phi = block->phis()->at(j);
602 // Check that all join blocks have predecessors that end with an
603 // unconditional goto and agree on their environment node id.
604 if (block->predecessors()->length() >= 2) {
606 block->predecessors()->first()->last_environment()->ast_id();
607 for (int k = 0; k < block->predecessors()->length(); k++) {
608 HBasicBlock* predecessor = block->predecessors()->at(k);
609 DCHECK(predecessor->end()->IsGoto() ||
610 predecessor->end()->IsDeoptimize());
611 DCHECK(predecessor->last_environment()->ast_id() == id);
616 // Check special property of first block to have no predecessors.
617 DCHECK(blocks_.at(0)->predecessors()->is_empty());
619 if (do_full_verify) {
620 // Check that the graph is fully connected.
621 ReachabilityAnalyzer analyzer(entry_block_, blocks_.length(), NULL);
622 DCHECK(analyzer.visited_count() == blocks_.length());
624 // Check that entry block dominator is NULL.
625 DCHECK(entry_block_->dominator() == NULL);
628 for (int i = 0; i < blocks_.length(); ++i) {
629 HBasicBlock* block = blocks_.at(i);
630 if (block->dominator() == NULL) {
631 // Only start block may have no dominator assigned to.
634 // Assert that block is unreachable if dominator must not be visited.
635 ReachabilityAnalyzer dominator_analyzer(entry_block_,
638 DCHECK(!dominator_analyzer.reachable()->Contains(block->block_id()));
647 HConstant* HGraph::GetConstant(SetOncePointer<HConstant>* pointer,
649 if (!pointer->is_set()) {
650 // Can't pass GetInvalidContext() to HConstant::New, because that will
651 // recursively call GetConstant
652 HConstant* constant = HConstant::New(isolate(), zone(), NULL, value);
653 constant->InsertAfter(entry_block()->first());
654 pointer->set(constant);
657 return ReinsertConstantIfNecessary(pointer->get());
661 HConstant* HGraph::ReinsertConstantIfNecessary(HConstant* constant) {
662 if (!constant->IsLinked()) {
663 // The constant was removed from the graph. Reinsert.
664 constant->ClearFlag(HValue::kIsDead);
665 constant->InsertAfter(entry_block()->first());
671 HConstant* HGraph::GetConstant0() {
672 return GetConstant(&constant_0_, 0);
676 HConstant* HGraph::GetConstant1() {
677 return GetConstant(&constant_1_, 1);
681 HConstant* HGraph::GetConstantMinus1() {
682 return GetConstant(&constant_minus1_, -1);
686 HConstant* HGraph::GetConstantBool(bool value) {
687 return value ? GetConstantTrue() : GetConstantFalse();
691 #define DEFINE_GET_CONSTANT(Name, name, type, htype, boolean_value) \
692 HConstant* HGraph::GetConstant##Name() { \
693 if (!constant_##name##_.is_set()) { \
694 HConstant* constant = new(zone()) HConstant( \
695 Unique<Object>::CreateImmovable(isolate()->factory()->name##_value()), \
696 Unique<Map>::CreateImmovable(isolate()->factory()->type##_map()), \
698 Representation::Tagged(), \
704 constant->InsertAfter(entry_block()->first()); \
705 constant_##name##_.set(constant); \
707 return ReinsertConstantIfNecessary(constant_##name##_.get()); \
711 DEFINE_GET_CONSTANT(Undefined, undefined, undefined, HType::Undefined(), false)
712 DEFINE_GET_CONSTANT(True, true, boolean, HType::Boolean(), true)
713 DEFINE_GET_CONSTANT(False, false, boolean, HType::Boolean(), false)
714 DEFINE_GET_CONSTANT(Hole, the_hole, the_hole, HType::None(), false)
715 DEFINE_GET_CONSTANT(Null, null, null, HType::Null(), false)
718 #undef DEFINE_GET_CONSTANT
720 #define DEFINE_IS_CONSTANT(Name, name) \
721 bool HGraph::IsConstant##Name(HConstant* constant) { \
722 return constant_##name##_.is_set() && constant == constant_##name##_.get(); \
724 DEFINE_IS_CONSTANT(Undefined, undefined)
725 DEFINE_IS_CONSTANT(0, 0)
726 DEFINE_IS_CONSTANT(1, 1)
727 DEFINE_IS_CONSTANT(Minus1, minus1)
728 DEFINE_IS_CONSTANT(True, true)
729 DEFINE_IS_CONSTANT(False, false)
730 DEFINE_IS_CONSTANT(Hole, the_hole)
731 DEFINE_IS_CONSTANT(Null, null)
733 #undef DEFINE_IS_CONSTANT
736 HConstant* HGraph::GetInvalidContext() {
737 return GetConstant(&constant_invalid_context_, 0xFFFFC0C7);
741 bool HGraph::IsStandardConstant(HConstant* constant) {
742 if (IsConstantUndefined(constant)) return true;
743 if (IsConstant0(constant)) return true;
744 if (IsConstant1(constant)) return true;
745 if (IsConstantMinus1(constant)) return true;
746 if (IsConstantTrue(constant)) return true;
747 if (IsConstantFalse(constant)) return true;
748 if (IsConstantHole(constant)) return true;
749 if (IsConstantNull(constant)) return true;
754 HGraphBuilder::IfBuilder::IfBuilder() : builder_(NULL), needs_compare_(true) {}
757 HGraphBuilder::IfBuilder::IfBuilder(HGraphBuilder* builder)
758 : needs_compare_(true) {
763 HGraphBuilder::IfBuilder::IfBuilder(HGraphBuilder* builder,
764 HIfContinuation* continuation)
765 : needs_compare_(false), first_true_block_(NULL), first_false_block_(NULL) {
766 InitializeDontCreateBlocks(builder);
767 continuation->Continue(&first_true_block_, &first_false_block_);
771 void HGraphBuilder::IfBuilder::InitializeDontCreateBlocks(
772 HGraphBuilder* builder) {
777 did_else_if_ = false;
781 pending_merge_block_ = false;
782 split_edge_merge_block_ = NULL;
783 merge_at_join_blocks_ = NULL;
784 normal_merge_at_join_block_count_ = 0;
785 deopt_merge_at_join_block_count_ = 0;
789 void HGraphBuilder::IfBuilder::Initialize(HGraphBuilder* builder) {
790 InitializeDontCreateBlocks(builder);
791 HEnvironment* env = builder->environment();
792 first_true_block_ = builder->CreateBasicBlock(env->Copy());
793 first_false_block_ = builder->CreateBasicBlock(env->Copy());
797 HControlInstruction* HGraphBuilder::IfBuilder::AddCompare(
798 HControlInstruction* compare) {
799 DCHECK(did_then_ == did_else_);
801 // Handle if-then-elseif
807 pending_merge_block_ = false;
808 split_edge_merge_block_ = NULL;
809 HEnvironment* env = builder()->environment();
810 first_true_block_ = builder()->CreateBasicBlock(env->Copy());
811 first_false_block_ = builder()->CreateBasicBlock(env->Copy());
813 if (split_edge_merge_block_ != NULL) {
814 HEnvironment* env = first_false_block_->last_environment();
815 HBasicBlock* split_edge = builder()->CreateBasicBlock(env->Copy());
817 compare->SetSuccessorAt(0, split_edge);
818 compare->SetSuccessorAt(1, first_false_block_);
820 compare->SetSuccessorAt(0, first_true_block_);
821 compare->SetSuccessorAt(1, split_edge);
823 builder()->GotoNoSimulate(split_edge, split_edge_merge_block_);
825 compare->SetSuccessorAt(0, first_true_block_);
826 compare->SetSuccessorAt(1, first_false_block_);
828 builder()->FinishCurrentBlock(compare);
829 needs_compare_ = false;
834 void HGraphBuilder::IfBuilder::Or() {
835 DCHECK(!needs_compare_);
838 HEnvironment* env = first_false_block_->last_environment();
839 if (split_edge_merge_block_ == NULL) {
840 split_edge_merge_block_ = builder()->CreateBasicBlock(env->Copy());
841 builder()->GotoNoSimulate(first_true_block_, split_edge_merge_block_);
842 first_true_block_ = split_edge_merge_block_;
844 builder()->set_current_block(first_false_block_);
845 first_false_block_ = builder()->CreateBasicBlock(env->Copy());
849 void HGraphBuilder::IfBuilder::And() {
850 DCHECK(!needs_compare_);
853 HEnvironment* env = first_false_block_->last_environment();
854 if (split_edge_merge_block_ == NULL) {
855 split_edge_merge_block_ = builder()->CreateBasicBlock(env->Copy());
856 builder()->GotoNoSimulate(first_false_block_, split_edge_merge_block_);
857 first_false_block_ = split_edge_merge_block_;
859 builder()->set_current_block(first_true_block_);
860 first_true_block_ = builder()->CreateBasicBlock(env->Copy());
864 void HGraphBuilder::IfBuilder::CaptureContinuation(
865 HIfContinuation* continuation) {
866 DCHECK(!did_else_if_);
870 HBasicBlock* true_block = NULL;
871 HBasicBlock* false_block = NULL;
872 Finish(&true_block, &false_block);
873 DCHECK(true_block != NULL);
874 DCHECK(false_block != NULL);
875 continuation->Capture(true_block, false_block);
877 builder()->set_current_block(NULL);
882 void HGraphBuilder::IfBuilder::JoinContinuation(HIfContinuation* continuation) {
883 DCHECK(!did_else_if_);
886 HBasicBlock* true_block = NULL;
887 HBasicBlock* false_block = NULL;
888 Finish(&true_block, &false_block);
889 merge_at_join_blocks_ = NULL;
890 if (true_block != NULL && !true_block->IsFinished()) {
891 DCHECK(continuation->IsTrueReachable());
892 builder()->GotoNoSimulate(true_block, continuation->true_branch());
894 if (false_block != NULL && !false_block->IsFinished()) {
895 DCHECK(continuation->IsFalseReachable());
896 builder()->GotoNoSimulate(false_block, continuation->false_branch());
903 void HGraphBuilder::IfBuilder::Then() {
907 if (needs_compare_) {
908 // Handle if's without any expressions, they jump directly to the "else"
909 // branch. However, we must pretend that the "then" branch is reachable,
910 // so that the graph builder visits it and sees any live range extending
911 // constructs within it.
912 HConstant* constant_false = builder()->graph()->GetConstantFalse();
913 ToBooleanStub::Types boolean_type = ToBooleanStub::Types();
914 boolean_type.Add(ToBooleanStub::BOOLEAN);
915 HBranch* branch = builder()->New<HBranch>(
916 constant_false, boolean_type, first_true_block_, first_false_block_);
917 builder()->FinishCurrentBlock(branch);
919 builder()->set_current_block(first_true_block_);
920 pending_merge_block_ = true;
924 void HGraphBuilder::IfBuilder::Else() {
928 AddMergeAtJoinBlock(false);
929 builder()->set_current_block(first_false_block_);
930 pending_merge_block_ = true;
935 void HGraphBuilder::IfBuilder::Deopt(Deoptimizer::DeoptReason reason) {
937 builder()->Add<HDeoptimize>(reason, Deoptimizer::EAGER);
938 AddMergeAtJoinBlock(true);
942 void HGraphBuilder::IfBuilder::Return(HValue* value) {
943 HValue* parameter_count = builder()->graph()->GetConstantMinus1();
944 builder()->FinishExitCurrentBlock(
945 builder()->New<HReturn>(value, parameter_count));
946 AddMergeAtJoinBlock(false);
950 void HGraphBuilder::IfBuilder::AddMergeAtJoinBlock(bool deopt) {
951 if (!pending_merge_block_) return;
952 HBasicBlock* block = builder()->current_block();
953 DCHECK(block == NULL || !block->IsFinished());
954 MergeAtJoinBlock* record = new (builder()->zone())
955 MergeAtJoinBlock(block, deopt, merge_at_join_blocks_);
956 merge_at_join_blocks_ = record;
958 DCHECK(block->end() == NULL);
960 normal_merge_at_join_block_count_++;
962 deopt_merge_at_join_block_count_++;
965 builder()->set_current_block(NULL);
966 pending_merge_block_ = false;
970 void HGraphBuilder::IfBuilder::Finish() {
975 AddMergeAtJoinBlock(false);
978 AddMergeAtJoinBlock(false);
984 void HGraphBuilder::IfBuilder::Finish(HBasicBlock** then_continuation,
985 HBasicBlock** else_continuation) {
988 MergeAtJoinBlock* else_record = merge_at_join_blocks_;
989 if (else_continuation != NULL) {
990 *else_continuation = else_record->block_;
992 MergeAtJoinBlock* then_record = else_record->next_;
993 if (then_continuation != NULL) {
994 *then_continuation = then_record->block_;
996 DCHECK(then_record->next_ == NULL);
1000 void HGraphBuilder::IfBuilder::EndUnreachable() {
1001 if (captured_) return;
1003 builder()->set_current_block(nullptr);
1007 void HGraphBuilder::IfBuilder::End() {
1008 if (captured_) return;
1011 int total_merged_blocks = normal_merge_at_join_block_count_ +
1012 deopt_merge_at_join_block_count_;
1013 DCHECK(total_merged_blocks >= 1);
1014 HBasicBlock* merge_block =
1015 total_merged_blocks == 1 ? NULL : builder()->graph()->CreateBasicBlock();
1017 // Merge non-deopt blocks first to ensure environment has right size for
1019 MergeAtJoinBlock* current = merge_at_join_blocks_;
1020 while (current != NULL) {
1021 if (!current->deopt_ && current->block_ != NULL) {
1022 // If there is only one block that makes it through to the end of the
1023 // if, then just set it as the current block and continue rather then
1024 // creating an unnecessary merge block.
1025 if (total_merged_blocks == 1) {
1026 builder()->set_current_block(current->block_);
1029 builder()->GotoNoSimulate(current->block_, merge_block);
1031 current = current->next_;
1034 // Merge deopt blocks, padding when necessary.
1035 current = merge_at_join_blocks_;
1036 while (current != NULL) {
1037 if (current->deopt_ && current->block_ != NULL) {
1038 current->block_->FinishExit(
1039 HAbnormalExit::New(builder()->isolate(), builder()->zone(), NULL),
1040 SourcePosition::Unknown());
1042 current = current->next_;
1044 builder()->set_current_block(merge_block);
1048 HGraphBuilder::LoopBuilder::LoopBuilder(HGraphBuilder* builder) {
1049 Initialize(builder, NULL, kWhileTrue, NULL);
1053 HGraphBuilder::LoopBuilder::LoopBuilder(HGraphBuilder* builder, HValue* context,
1054 LoopBuilder::Direction direction) {
1055 Initialize(builder, context, direction, builder->graph()->GetConstant1());
1059 HGraphBuilder::LoopBuilder::LoopBuilder(HGraphBuilder* builder, HValue* context,
1060 LoopBuilder::Direction direction,
1061 HValue* increment_amount) {
1062 Initialize(builder, context, direction, increment_amount);
1063 increment_amount_ = increment_amount;
1067 void HGraphBuilder::LoopBuilder::Initialize(HGraphBuilder* builder,
1069 Direction direction,
1070 HValue* increment_amount) {
1073 direction_ = direction;
1074 increment_amount_ = increment_amount;
1077 header_block_ = builder->CreateLoopHeaderBlock();
1080 exit_trampoline_block_ = NULL;
1084 HValue* HGraphBuilder::LoopBuilder::BeginBody(
1086 HValue* terminating,
1087 Token::Value token) {
1088 DCHECK(direction_ != kWhileTrue);
1089 HEnvironment* env = builder_->environment();
1090 phi_ = header_block_->AddNewPhi(env->values()->length());
1091 phi_->AddInput(initial);
1093 builder_->GotoNoSimulate(header_block_);
1095 HEnvironment* body_env = env->Copy();
1096 HEnvironment* exit_env = env->Copy();
1097 // Remove the phi from the expression stack
1100 body_block_ = builder_->CreateBasicBlock(body_env);
1101 exit_block_ = builder_->CreateBasicBlock(exit_env);
1103 builder_->set_current_block(header_block_);
1105 builder_->FinishCurrentBlock(builder_->New<HCompareNumericAndBranch>(
1106 phi_, terminating, token, body_block_, exit_block_));
1108 builder_->set_current_block(body_block_);
1109 if (direction_ == kPreIncrement || direction_ == kPreDecrement) {
1110 Isolate* isolate = builder_->isolate();
1111 HValue* one = builder_->graph()->GetConstant1();
1112 if (direction_ == kPreIncrement) {
1113 increment_ = HAdd::New(isolate, zone(), context_, phi_, one);
1115 increment_ = HSub::New(isolate, zone(), context_, phi_, one);
1117 increment_->ClearFlag(HValue::kCanOverflow);
1118 builder_->AddInstruction(increment_);
1126 void HGraphBuilder::LoopBuilder::BeginBody(int drop_count) {
1127 DCHECK(direction_ == kWhileTrue);
1128 HEnvironment* env = builder_->environment();
1129 builder_->GotoNoSimulate(header_block_);
1130 builder_->set_current_block(header_block_);
1131 env->Drop(drop_count);
1135 void HGraphBuilder::LoopBuilder::Break() {
1136 if (exit_trampoline_block_ == NULL) {
1137 // Its the first time we saw a break.
1138 if (direction_ == kWhileTrue) {
1139 HEnvironment* env = builder_->environment()->Copy();
1140 exit_trampoline_block_ = builder_->CreateBasicBlock(env);
1142 HEnvironment* env = exit_block_->last_environment()->Copy();
1143 exit_trampoline_block_ = builder_->CreateBasicBlock(env);
1144 builder_->GotoNoSimulate(exit_block_, exit_trampoline_block_);
1148 builder_->GotoNoSimulate(exit_trampoline_block_);
1149 builder_->set_current_block(NULL);
1153 void HGraphBuilder::LoopBuilder::EndBody() {
1156 if (direction_ == kPostIncrement || direction_ == kPostDecrement) {
1157 Isolate* isolate = builder_->isolate();
1158 if (direction_ == kPostIncrement) {
1160 HAdd::New(isolate, zone(), context_, phi_, increment_amount_);
1163 HSub::New(isolate, zone(), context_, phi_, increment_amount_);
1165 increment_->ClearFlag(HValue::kCanOverflow);
1166 builder_->AddInstruction(increment_);
1169 if (direction_ != kWhileTrue) {
1170 // Push the new increment value on the expression stack to merge into
1172 builder_->environment()->Push(increment_);
1174 HBasicBlock* last_block = builder_->current_block();
1175 builder_->GotoNoSimulate(last_block, header_block_);
1176 header_block_->loop_information()->RegisterBackEdge(last_block);
1178 if (exit_trampoline_block_ != NULL) {
1179 builder_->set_current_block(exit_trampoline_block_);
1181 builder_->set_current_block(exit_block_);
1187 HGraph* HGraphBuilder::CreateGraph() {
1188 graph_ = new(zone()) HGraph(info_);
1189 if (FLAG_hydrogen_stats) isolate()->GetHStatistics()->Initialize(info_);
1190 CompilationPhase phase("H_Block building", info_);
1191 set_current_block(graph()->entry_block());
1192 if (!BuildGraph()) return NULL;
1193 graph()->FinalizeUniqueness();
1198 HInstruction* HGraphBuilder::AddInstruction(HInstruction* instr) {
1199 DCHECK(current_block() != NULL);
1200 DCHECK(!FLAG_hydrogen_track_positions ||
1201 !position_.IsUnknown() ||
1202 !info_->IsOptimizing());
1203 current_block()->AddInstruction(instr, source_position());
1204 if (graph()->IsInsideNoSideEffectsScope()) {
1205 instr->SetFlag(HValue::kHasNoObservableSideEffects);
1211 void HGraphBuilder::FinishCurrentBlock(HControlInstruction* last) {
1212 DCHECK(!FLAG_hydrogen_track_positions ||
1213 !info_->IsOptimizing() ||
1214 !position_.IsUnknown());
1215 current_block()->Finish(last, source_position());
1216 if (last->IsReturn() || last->IsAbnormalExit()) {
1217 set_current_block(NULL);
1222 void HGraphBuilder::FinishExitCurrentBlock(HControlInstruction* instruction) {
1223 DCHECK(!FLAG_hydrogen_track_positions || !info_->IsOptimizing() ||
1224 !position_.IsUnknown());
1225 current_block()->FinishExit(instruction, source_position());
1226 if (instruction->IsReturn() || instruction->IsAbnormalExit()) {
1227 set_current_block(NULL);
1232 void HGraphBuilder::AddIncrementCounter(StatsCounter* counter) {
1233 if (FLAG_native_code_counters && counter->Enabled()) {
1234 HValue* reference = Add<HConstant>(ExternalReference(counter));
1236 Add<HLoadNamedField>(reference, nullptr, HObjectAccess::ForCounter());
1237 HValue* new_value = AddUncasted<HAdd>(old_value, graph()->GetConstant1());
1238 new_value->ClearFlag(HValue::kCanOverflow); // Ignore counter overflow
1239 Add<HStoreNamedField>(reference, HObjectAccess::ForCounter(),
1240 new_value, STORE_TO_INITIALIZED_ENTRY);
1245 void HGraphBuilder::AddSimulate(BailoutId id,
1246 RemovableSimulate removable) {
1247 DCHECK(current_block() != NULL);
1248 DCHECK(!graph()->IsInsideNoSideEffectsScope());
1249 current_block()->AddNewSimulate(id, source_position(), removable);
1253 HBasicBlock* HGraphBuilder::CreateBasicBlock(HEnvironment* env) {
1254 HBasicBlock* b = graph()->CreateBasicBlock();
1255 b->SetInitialEnvironment(env);
1260 HBasicBlock* HGraphBuilder::CreateLoopHeaderBlock() {
1261 HBasicBlock* header = graph()->CreateBasicBlock();
1262 HEnvironment* entry_env = environment()->CopyAsLoopHeader(header);
1263 header->SetInitialEnvironment(entry_env);
1264 header->AttachLoopInformation();
1269 HValue* HGraphBuilder::BuildGetElementsKind(HValue* object) {
1270 HValue* map = Add<HLoadNamedField>(object, nullptr, HObjectAccess::ForMap());
1272 HValue* bit_field2 =
1273 Add<HLoadNamedField>(map, nullptr, HObjectAccess::ForMapBitField2());
1274 return BuildDecodeField<Map::ElementsKindBits>(bit_field2);
1278 HValue* HGraphBuilder::BuildCheckHeapObject(HValue* obj) {
1279 if (obj->type().IsHeapObject()) return obj;
1280 return Add<HCheckHeapObject>(obj);
1284 void HGraphBuilder::FinishExitWithHardDeoptimization(
1285 Deoptimizer::DeoptReason reason) {
1286 Add<HDeoptimize>(reason, Deoptimizer::EAGER);
1287 FinishExitCurrentBlock(New<HAbnormalExit>());
1291 HValue* HGraphBuilder::BuildCheckString(HValue* string) {
1292 if (!string->type().IsString()) {
1293 DCHECK(!string->IsConstant() ||
1294 !HConstant::cast(string)->HasStringValue());
1295 BuildCheckHeapObject(string);
1296 return Add<HCheckInstanceType>(string, HCheckInstanceType::IS_STRING);
1302 HValue* HGraphBuilder::BuildWrapReceiver(HValue* object, HValue* function) {
1303 if (object->type().IsJSObject()) return object;
1304 if (function->IsConstant() &&
1305 HConstant::cast(function)->handle(isolate())->IsJSFunction()) {
1306 Handle<JSFunction> f = Handle<JSFunction>::cast(
1307 HConstant::cast(function)->handle(isolate()));
1308 SharedFunctionInfo* shared = f->shared();
1309 if (is_strict(shared->language_mode()) || shared->native()) return object;
1311 return Add<HWrapReceiver>(object, function);
1315 HValue* HGraphBuilder::BuildCheckAndGrowElementsCapacity(
1316 HValue* object, HValue* elements, ElementsKind kind, HValue* length,
1317 HValue* capacity, HValue* key) {
1318 HValue* max_gap = Add<HConstant>(static_cast<int32_t>(JSObject::kMaxGap));
1319 HValue* max_capacity = AddUncasted<HAdd>(capacity, max_gap);
1320 Add<HBoundsCheck>(key, max_capacity);
1322 HValue* new_capacity = BuildNewElementsCapacity(key);
1323 HValue* new_elements = BuildGrowElementsCapacity(object, elements, kind, kind,
1324 length, new_capacity);
1325 return new_elements;
1329 HValue* HGraphBuilder::BuildCheckForCapacityGrow(
1336 PropertyAccessType access_type) {
1337 IfBuilder length_checker(this);
1339 Token::Value token = IsHoleyElementsKind(kind) ? Token::GTE : Token::EQ;
1340 length_checker.If<HCompareNumericAndBranch>(key, length, token);
1342 length_checker.Then();
1344 HValue* current_capacity = AddLoadFixedArrayLength(elements);
1346 if (top_info()->IsStub()) {
1347 IfBuilder capacity_checker(this);
1348 capacity_checker.If<HCompareNumericAndBranch>(key, current_capacity,
1350 capacity_checker.Then();
1351 HValue* new_elements = BuildCheckAndGrowElementsCapacity(
1352 object, elements, kind, length, current_capacity, key);
1353 environment()->Push(new_elements);
1354 capacity_checker.Else();
1355 environment()->Push(elements);
1356 capacity_checker.End();
1358 HValue* result = Add<HMaybeGrowElements>(
1359 object, elements, key, current_capacity, is_js_array, kind);
1360 environment()->Push(result);
1364 HValue* new_length = AddUncasted<HAdd>(key, graph_->GetConstant1());
1365 new_length->ClearFlag(HValue::kCanOverflow);
1367 Add<HStoreNamedField>(object, HObjectAccess::ForArrayLength(kind),
1371 if (access_type == STORE && kind == FAST_SMI_ELEMENTS) {
1372 HValue* checked_elements = environment()->Top();
1374 // Write zero to ensure that the new element is initialized with some smi.
1375 Add<HStoreKeyed>(checked_elements, key, graph()->GetConstant0(), kind);
1378 length_checker.Else();
1379 Add<HBoundsCheck>(key, length);
1381 environment()->Push(elements);
1382 length_checker.End();
1384 return environment()->Pop();
1388 HValue* HGraphBuilder::BuildCopyElementsOnWrite(HValue* object,
1392 Factory* factory = isolate()->factory();
1394 IfBuilder cow_checker(this);
1396 cow_checker.If<HCompareMap>(elements, factory->fixed_cow_array_map());
1399 HValue* capacity = AddLoadFixedArrayLength(elements);
1401 HValue* new_elements = BuildGrowElementsCapacity(object, elements, kind,
1402 kind, length, capacity);
1404 environment()->Push(new_elements);
1408 environment()->Push(elements);
1412 return environment()->Pop();
1416 void HGraphBuilder::BuildTransitionElementsKind(HValue* object,
1418 ElementsKind from_kind,
1419 ElementsKind to_kind,
1421 DCHECK(!IsFastHoleyElementsKind(from_kind) ||
1422 IsFastHoleyElementsKind(to_kind));
1424 if (AllocationSite::GetMode(from_kind, to_kind) == TRACK_ALLOCATION_SITE) {
1425 Add<HTrapAllocationMemento>(object);
1428 if (!IsSimpleMapChangeTransition(from_kind, to_kind)) {
1429 HInstruction* elements = AddLoadElements(object);
1431 HInstruction* empty_fixed_array = Add<HConstant>(
1432 isolate()->factory()->empty_fixed_array());
1434 IfBuilder if_builder(this);
1436 if_builder.IfNot<HCompareObjectEqAndBranch>(elements, empty_fixed_array);
1440 HInstruction* elements_length = AddLoadFixedArrayLength(elements);
1442 HInstruction* array_length =
1444 ? Add<HLoadNamedField>(object, nullptr,
1445 HObjectAccess::ForArrayLength(from_kind))
1448 BuildGrowElementsCapacity(object, elements, from_kind, to_kind,
1449 array_length, elements_length);
1454 Add<HStoreNamedField>(object, HObjectAccess::ForMap(), map);
1458 void HGraphBuilder::BuildJSObjectCheck(HValue* receiver,
1459 int bit_field_mask) {
1460 // Check that the object isn't a smi.
1461 Add<HCheckHeapObject>(receiver);
1463 // Get the map of the receiver.
1465 Add<HLoadNamedField>(receiver, nullptr, HObjectAccess::ForMap());
1467 // Check the instance type and if an access check is needed, this can be
1468 // done with a single load, since both bytes are adjacent in the map.
1469 HObjectAccess access(HObjectAccess::ForMapInstanceTypeAndBitField());
1470 HValue* instance_type_and_bit_field =
1471 Add<HLoadNamedField>(map, nullptr, access);
1473 HValue* mask = Add<HConstant>(0x00FF | (bit_field_mask << 8));
1474 HValue* and_result = AddUncasted<HBitwise>(Token::BIT_AND,
1475 instance_type_and_bit_field,
1477 HValue* sub_result = AddUncasted<HSub>(and_result,
1478 Add<HConstant>(JS_OBJECT_TYPE));
1479 Add<HBoundsCheck>(sub_result,
1480 Add<HConstant>(LAST_JS_OBJECT_TYPE + 1 - JS_OBJECT_TYPE));
1484 void HGraphBuilder::BuildKeyedIndexCheck(HValue* key,
1485 HIfContinuation* join_continuation) {
1486 // The sometimes unintuitively backward ordering of the ifs below is
1487 // convoluted, but necessary. All of the paths must guarantee that the
1488 // if-true of the continuation returns a smi element index and the if-false of
1489 // the continuation returns either a symbol or a unique string key. All other
1490 // object types cause a deopt to fall back to the runtime.
1492 IfBuilder key_smi_if(this);
1493 key_smi_if.If<HIsSmiAndBranch>(key);
1496 Push(key); // Nothing to do, just continue to true of continuation.
1500 HValue* map = Add<HLoadNamedField>(key, nullptr, HObjectAccess::ForMap());
1501 HValue* instance_type =
1502 Add<HLoadNamedField>(map, nullptr, HObjectAccess::ForMapInstanceType());
1504 // Non-unique string, check for a string with a hash code that is actually
1506 STATIC_ASSERT(LAST_UNIQUE_NAME_TYPE == FIRST_NONSTRING_TYPE);
1507 IfBuilder not_string_or_name_if(this);
1508 not_string_or_name_if.If<HCompareNumericAndBranch>(
1510 Add<HConstant>(LAST_UNIQUE_NAME_TYPE),
1513 not_string_or_name_if.Then();
1515 // Non-smi, non-Name, non-String: Try to convert to smi in case of
1517 // TODO(danno): This could call some variant of ToString
1518 Push(AddUncasted<HForceRepresentation>(key, Representation::Smi()));
1520 not_string_or_name_if.Else();
1522 // String or Name: check explicitly for Name, they can short-circuit
1523 // directly to unique non-index key path.
1524 IfBuilder not_symbol_if(this);
1525 not_symbol_if.If<HCompareNumericAndBranch>(
1527 Add<HConstant>(SYMBOL_TYPE),
1530 not_symbol_if.Then();
1532 // String: check whether the String is a String of an index. If it is,
1533 // extract the index value from the hash.
1534 HValue* hash = Add<HLoadNamedField>(key, nullptr,
1535 HObjectAccess::ForNameHashField());
1536 HValue* not_index_mask = Add<HConstant>(static_cast<int>(
1537 String::kContainsCachedArrayIndexMask));
1539 HValue* not_index_test = AddUncasted<HBitwise>(
1540 Token::BIT_AND, hash, not_index_mask);
1542 IfBuilder string_index_if(this);
1543 string_index_if.If<HCompareNumericAndBranch>(not_index_test,
1544 graph()->GetConstant0(),
1546 string_index_if.Then();
1548 // String with index in hash: extract string and merge to index path.
1549 Push(BuildDecodeField<String::ArrayIndexValueBits>(hash));
1551 string_index_if.Else();
1553 // Key is a non-index String, check for uniqueness/internalization.
1554 // If it's not internalized yet, internalize it now.
1555 HValue* not_internalized_bit = AddUncasted<HBitwise>(
1558 Add<HConstant>(static_cast<int>(kIsNotInternalizedMask)));
1560 IfBuilder internalized(this);
1561 internalized.If<HCompareNumericAndBranch>(not_internalized_bit,
1562 graph()->GetConstant0(),
1564 internalized.Then();
1567 internalized.Else();
1568 Add<HPushArguments>(key);
1569 HValue* intern_key = Add<HCallRuntime>(
1570 isolate()->factory()->empty_string(),
1571 Runtime::FunctionForId(Runtime::kInternalizeString), 1);
1575 // Key guaranteed to be a unique string
1577 string_index_if.JoinContinuation(join_continuation);
1579 not_symbol_if.Else();
1581 Push(key); // Key is symbol
1583 not_symbol_if.JoinContinuation(join_continuation);
1585 not_string_or_name_if.JoinContinuation(join_continuation);
1587 key_smi_if.JoinContinuation(join_continuation);
1591 void HGraphBuilder::BuildNonGlobalObjectCheck(HValue* receiver) {
1592 // Get the the instance type of the receiver, and make sure that it is
1593 // not one of the global object types.
1595 Add<HLoadNamedField>(receiver, nullptr, HObjectAccess::ForMap());
1596 HValue* instance_type =
1597 Add<HLoadNamedField>(map, nullptr, HObjectAccess::ForMapInstanceType());
1598 STATIC_ASSERT(JS_BUILTINS_OBJECT_TYPE == JS_GLOBAL_OBJECT_TYPE + 1);
1599 HValue* min_global_type = Add<HConstant>(JS_GLOBAL_OBJECT_TYPE);
1600 HValue* max_global_type = Add<HConstant>(JS_BUILTINS_OBJECT_TYPE);
1602 IfBuilder if_global_object(this);
1603 if_global_object.If<HCompareNumericAndBranch>(instance_type,
1606 if_global_object.And();
1607 if_global_object.If<HCompareNumericAndBranch>(instance_type,
1610 if_global_object.ThenDeopt(Deoptimizer::kReceiverWasAGlobalObject);
1611 if_global_object.End();
1615 void HGraphBuilder::BuildTestForDictionaryProperties(
1617 HIfContinuation* continuation) {
1618 HValue* properties = Add<HLoadNamedField>(
1619 object, nullptr, HObjectAccess::ForPropertiesPointer());
1620 HValue* properties_map =
1621 Add<HLoadNamedField>(properties, nullptr, HObjectAccess::ForMap());
1622 HValue* hash_map = Add<HLoadRoot>(Heap::kHashTableMapRootIndex);
1623 IfBuilder builder(this);
1624 builder.If<HCompareObjectEqAndBranch>(properties_map, hash_map);
1625 builder.CaptureContinuation(continuation);
1629 HValue* HGraphBuilder::BuildKeyedLookupCacheHash(HValue* object,
1631 // Load the map of the receiver, compute the keyed lookup cache hash
1632 // based on 32 bits of the map pointer and the string hash.
1633 HValue* object_map =
1634 Add<HLoadNamedField>(object, nullptr, HObjectAccess::ForMapAsInteger32());
1635 HValue* shifted_map = AddUncasted<HShr>(
1636 object_map, Add<HConstant>(KeyedLookupCache::kMapHashShift));
1637 HValue* string_hash =
1638 Add<HLoadNamedField>(key, nullptr, HObjectAccess::ForStringHashField());
1639 HValue* shifted_hash = AddUncasted<HShr>(
1640 string_hash, Add<HConstant>(String::kHashShift));
1641 HValue* xor_result = AddUncasted<HBitwise>(Token::BIT_XOR, shifted_map,
1643 int mask = (KeyedLookupCache::kCapacityMask & KeyedLookupCache::kHashMask);
1644 return AddUncasted<HBitwise>(Token::BIT_AND, xor_result,
1645 Add<HConstant>(mask));
1649 HValue* HGraphBuilder::BuildElementIndexHash(HValue* index) {
1650 int32_t seed_value = static_cast<uint32_t>(isolate()->heap()->HashSeed());
1651 HValue* seed = Add<HConstant>(seed_value);
1652 HValue* hash = AddUncasted<HBitwise>(Token::BIT_XOR, index, seed);
1654 // hash = ~hash + (hash << 15);
1655 HValue* shifted_hash = AddUncasted<HShl>(hash, Add<HConstant>(15));
1656 HValue* not_hash = AddUncasted<HBitwise>(Token::BIT_XOR, hash,
1657 graph()->GetConstantMinus1());
1658 hash = AddUncasted<HAdd>(shifted_hash, not_hash);
1660 // hash = hash ^ (hash >> 12);
1661 shifted_hash = AddUncasted<HShr>(hash, Add<HConstant>(12));
1662 hash = AddUncasted<HBitwise>(Token::BIT_XOR, hash, shifted_hash);
1664 // hash = hash + (hash << 2);
1665 shifted_hash = AddUncasted<HShl>(hash, Add<HConstant>(2));
1666 hash = AddUncasted<HAdd>(hash, shifted_hash);
1668 // hash = hash ^ (hash >> 4);
1669 shifted_hash = AddUncasted<HShr>(hash, Add<HConstant>(4));
1670 hash = AddUncasted<HBitwise>(Token::BIT_XOR, hash, shifted_hash);
1672 // hash = hash * 2057;
1673 hash = AddUncasted<HMul>(hash, Add<HConstant>(2057));
1674 hash->ClearFlag(HValue::kCanOverflow);
1676 // hash = hash ^ (hash >> 16);
1677 shifted_hash = AddUncasted<HShr>(hash, Add<HConstant>(16));
1678 return AddUncasted<HBitwise>(Token::BIT_XOR, hash, shifted_hash);
1682 HValue* HGraphBuilder::BuildUncheckedDictionaryElementLoad(
1683 HValue* receiver, HValue* elements, HValue* key, HValue* hash,
1684 LanguageMode language_mode) {
1686 Add<HLoadKeyed>(elements, Add<HConstant>(NameDictionary::kCapacityIndex),
1687 nullptr, FAST_ELEMENTS);
1689 HValue* mask = AddUncasted<HSub>(capacity, graph()->GetConstant1());
1690 mask->ChangeRepresentation(Representation::Integer32());
1691 mask->ClearFlag(HValue::kCanOverflow);
1693 HValue* entry = hash;
1694 HValue* count = graph()->GetConstant1();
1698 HIfContinuation return_or_loop_continuation(graph()->CreateBasicBlock(),
1699 graph()->CreateBasicBlock());
1700 HIfContinuation found_key_match_continuation(graph()->CreateBasicBlock(),
1701 graph()->CreateBasicBlock());
1702 LoopBuilder probe_loop(this);
1703 probe_loop.BeginBody(2); // Drop entry, count from last environment to
1704 // appease live range building without simulates.
1708 entry = AddUncasted<HBitwise>(Token::BIT_AND, entry, mask);
1709 int entry_size = SeededNumberDictionary::kEntrySize;
1710 HValue* base_index = AddUncasted<HMul>(entry, Add<HConstant>(entry_size));
1711 base_index->ClearFlag(HValue::kCanOverflow);
1712 int start_offset = SeededNumberDictionary::kElementsStartIndex;
1714 AddUncasted<HAdd>(base_index, Add<HConstant>(start_offset));
1715 key_index->ClearFlag(HValue::kCanOverflow);
1717 HValue* candidate_key =
1718 Add<HLoadKeyed>(elements, key_index, nullptr, FAST_ELEMENTS);
1719 IfBuilder if_undefined(this);
1720 if_undefined.If<HCompareObjectEqAndBranch>(candidate_key,
1721 graph()->GetConstantUndefined());
1722 if_undefined.Then();
1724 // element == undefined means "not found". Call the runtime.
1725 // TODO(jkummerow): walk the prototype chain instead.
1726 Add<HPushArguments>(receiver, key);
1727 Push(Add<HCallRuntime>(
1728 isolate()->factory()->empty_string(),
1729 Runtime::FunctionForId(is_strong(language_mode)
1730 ? Runtime::kKeyedGetPropertyStrong
1731 : Runtime::kKeyedGetProperty),
1734 if_undefined.Else();
1736 IfBuilder if_match(this);
1737 if_match.If<HCompareObjectEqAndBranch>(candidate_key, key);
1741 // Update non-internalized string in the dictionary with internalized key?
1742 IfBuilder if_update_with_internalized(this);
1744 if_update_with_internalized.IfNot<HIsSmiAndBranch>(candidate_key);
1745 if_update_with_internalized.And();
1746 HValue* map = AddLoadMap(candidate_key, smi_check);
1747 HValue* instance_type =
1748 Add<HLoadNamedField>(map, nullptr, HObjectAccess::ForMapInstanceType());
1749 HValue* not_internalized_bit = AddUncasted<HBitwise>(
1750 Token::BIT_AND, instance_type,
1751 Add<HConstant>(static_cast<int>(kIsNotInternalizedMask)));
1752 if_update_with_internalized.If<HCompareNumericAndBranch>(
1753 not_internalized_bit, graph()->GetConstant0(), Token::NE);
1754 if_update_with_internalized.And();
1755 if_update_with_internalized.IfNot<HCompareObjectEqAndBranch>(
1756 candidate_key, graph()->GetConstantHole());
1757 if_update_with_internalized.AndIf<HStringCompareAndBranch>(candidate_key,
1759 if_update_with_internalized.Then();
1760 // Replace a key that is a non-internalized string by the equivalent
1761 // internalized string for faster further lookups.
1762 Add<HStoreKeyed>(elements, key_index, key, FAST_ELEMENTS);
1763 if_update_with_internalized.Else();
1765 if_update_with_internalized.JoinContinuation(&found_key_match_continuation);
1766 if_match.JoinContinuation(&found_key_match_continuation);
1768 IfBuilder found_key_match(this, &found_key_match_continuation);
1769 found_key_match.Then();
1770 // Key at current probe matches. Relevant bits in the |details| field must
1771 // be zero, otherwise the dictionary element requires special handling.
1772 HValue* details_index =
1773 AddUncasted<HAdd>(base_index, Add<HConstant>(start_offset + 2));
1774 details_index->ClearFlag(HValue::kCanOverflow);
1776 Add<HLoadKeyed>(elements, details_index, nullptr, FAST_ELEMENTS);
1777 int details_mask = PropertyDetails::TypeField::kMask;
1778 details = AddUncasted<HBitwise>(Token::BIT_AND, details,
1779 Add<HConstant>(details_mask));
1780 IfBuilder details_compare(this);
1781 details_compare.If<HCompareNumericAndBranch>(
1782 details, graph()->GetConstant0(), Token::EQ);
1783 details_compare.Then();
1784 HValue* result_index =
1785 AddUncasted<HAdd>(base_index, Add<HConstant>(start_offset + 1));
1786 result_index->ClearFlag(HValue::kCanOverflow);
1787 Push(Add<HLoadKeyed>(elements, result_index, nullptr, FAST_ELEMENTS));
1788 details_compare.Else();
1789 Add<HPushArguments>(receiver, key);
1790 Push(Add<HCallRuntime>(
1791 isolate()->factory()->empty_string(),
1792 Runtime::FunctionForId(is_strong(language_mode)
1793 ? Runtime::kKeyedGetPropertyStrong
1794 : Runtime::kKeyedGetProperty),
1796 details_compare.End();
1798 found_key_match.Else();
1799 found_key_match.JoinContinuation(&return_or_loop_continuation);
1801 if_undefined.JoinContinuation(&return_or_loop_continuation);
1803 IfBuilder return_or_loop(this, &return_or_loop_continuation);
1804 return_or_loop.Then();
1807 return_or_loop.Else();
1808 entry = AddUncasted<HAdd>(entry, count);
1809 entry->ClearFlag(HValue::kCanOverflow);
1810 count = AddUncasted<HAdd>(count, graph()->GetConstant1());
1811 count->ClearFlag(HValue::kCanOverflow);
1815 probe_loop.EndBody();
1817 return_or_loop.End();
1823 HValue* HGraphBuilder::BuildRegExpConstructResult(HValue* length,
1826 NoObservableSideEffectsScope scope(this);
1827 HConstant* max_length = Add<HConstant>(JSObject::kInitialMaxFastElementArray);
1828 Add<HBoundsCheck>(length, max_length);
1830 // Generate size calculation code here in order to make it dominate
1831 // the JSRegExpResult allocation.
1832 ElementsKind elements_kind = FAST_ELEMENTS;
1833 HValue* size = BuildCalculateElementsSize(elements_kind, length);
1835 // Allocate the JSRegExpResult and the FixedArray in one step.
1836 HValue* result = Add<HAllocate>(
1837 Add<HConstant>(JSRegExpResult::kSize), HType::JSArray(),
1838 NOT_TENURED, JS_ARRAY_TYPE);
1840 // Initialize the JSRegExpResult header.
1841 HValue* global_object = Add<HLoadNamedField>(
1843 HObjectAccess::ForContextSlot(Context::GLOBAL_OBJECT_INDEX));
1844 HValue* native_context = Add<HLoadNamedField>(
1845 global_object, nullptr, HObjectAccess::ForGlobalObjectNativeContext());
1846 Add<HStoreNamedField>(
1847 result, HObjectAccess::ForMap(),
1848 Add<HLoadNamedField>(
1849 native_context, nullptr,
1850 HObjectAccess::ForContextSlot(Context::REGEXP_RESULT_MAP_INDEX)));
1851 HConstant* empty_fixed_array =
1852 Add<HConstant>(isolate()->factory()->empty_fixed_array());
1853 Add<HStoreNamedField>(
1854 result, HObjectAccess::ForJSArrayOffset(JSArray::kPropertiesOffset),
1856 Add<HStoreNamedField>(
1857 result, HObjectAccess::ForJSArrayOffset(JSArray::kElementsOffset),
1859 Add<HStoreNamedField>(
1860 result, HObjectAccess::ForJSArrayOffset(JSArray::kLengthOffset), length);
1862 // Initialize the additional fields.
1863 Add<HStoreNamedField>(
1864 result, HObjectAccess::ForJSArrayOffset(JSRegExpResult::kIndexOffset),
1866 Add<HStoreNamedField>(
1867 result, HObjectAccess::ForJSArrayOffset(JSRegExpResult::kInputOffset),
1870 // Allocate and initialize the elements header.
1871 HAllocate* elements = BuildAllocateElements(elements_kind, size);
1872 BuildInitializeElementsHeader(elements, elements_kind, length);
1874 if (!elements->has_size_upper_bound()) {
1875 HConstant* size_in_bytes_upper_bound = EstablishElementsAllocationSize(
1876 elements_kind, max_length->Integer32Value());
1877 elements->set_size_upper_bound(size_in_bytes_upper_bound);
1880 Add<HStoreNamedField>(
1881 result, HObjectAccess::ForJSArrayOffset(JSArray::kElementsOffset),
1884 // Initialize the elements contents with undefined.
1885 BuildFillElementsWithValue(
1886 elements, elements_kind, graph()->GetConstant0(), length,
1887 graph()->GetConstantUndefined());
1893 HValue* HGraphBuilder::BuildNumberToString(HValue* object, Type* type) {
1894 NoObservableSideEffectsScope scope(this);
1896 // Convert constant numbers at compile time.
1897 if (object->IsConstant() && HConstant::cast(object)->HasNumberValue()) {
1898 Handle<Object> number = HConstant::cast(object)->handle(isolate());
1899 Handle<String> result = isolate()->factory()->NumberToString(number);
1900 return Add<HConstant>(result);
1903 // Create a joinable continuation.
1904 HIfContinuation found(graph()->CreateBasicBlock(),
1905 graph()->CreateBasicBlock());
1907 // Load the number string cache.
1908 HValue* number_string_cache =
1909 Add<HLoadRoot>(Heap::kNumberStringCacheRootIndex);
1911 // Make the hash mask from the length of the number string cache. It
1912 // contains two elements (number and string) for each cache entry.
1913 HValue* mask = AddLoadFixedArrayLength(number_string_cache);
1914 mask->set_type(HType::Smi());
1915 mask = AddUncasted<HSar>(mask, graph()->GetConstant1());
1916 mask = AddUncasted<HSub>(mask, graph()->GetConstant1());
1918 // Check whether object is a smi.
1919 IfBuilder if_objectissmi(this);
1920 if_objectissmi.If<HIsSmiAndBranch>(object);
1921 if_objectissmi.Then();
1923 // Compute hash for smi similar to smi_get_hash().
1924 HValue* hash = AddUncasted<HBitwise>(Token::BIT_AND, object, mask);
1927 HValue* key_index = AddUncasted<HShl>(hash, graph()->GetConstant1());
1928 HValue* key = Add<HLoadKeyed>(number_string_cache, key_index, nullptr,
1929 FAST_ELEMENTS, ALLOW_RETURN_HOLE);
1931 // Check if object == key.
1932 IfBuilder if_objectiskey(this);
1933 if_objectiskey.If<HCompareObjectEqAndBranch>(object, key);
1934 if_objectiskey.Then();
1936 // Make the key_index available.
1939 if_objectiskey.JoinContinuation(&found);
1941 if_objectissmi.Else();
1943 if (type->Is(Type::SignedSmall())) {
1944 if_objectissmi.Deopt(Deoptimizer::kExpectedSmi);
1946 // Check if the object is a heap number.
1947 IfBuilder if_objectisnumber(this);
1948 HValue* objectisnumber = if_objectisnumber.If<HCompareMap>(
1949 object, isolate()->factory()->heap_number_map());
1950 if_objectisnumber.Then();
1952 // Compute hash for heap number similar to double_get_hash().
1953 HValue* low = Add<HLoadNamedField>(
1954 object, objectisnumber,
1955 HObjectAccess::ForHeapNumberValueLowestBits());
1956 HValue* high = Add<HLoadNamedField>(
1957 object, objectisnumber,
1958 HObjectAccess::ForHeapNumberValueHighestBits());
1959 HValue* hash = AddUncasted<HBitwise>(Token::BIT_XOR, low, high);
1960 hash = AddUncasted<HBitwise>(Token::BIT_AND, hash, mask);
1963 HValue* key_index = AddUncasted<HShl>(hash, graph()->GetConstant1());
1964 HValue* key = Add<HLoadKeyed>(number_string_cache, key_index, nullptr,
1965 FAST_ELEMENTS, ALLOW_RETURN_HOLE);
1967 // Check if the key is a heap number and compare it with the object.
1968 IfBuilder if_keyisnotsmi(this);
1969 HValue* keyisnotsmi = if_keyisnotsmi.IfNot<HIsSmiAndBranch>(key);
1970 if_keyisnotsmi.Then();
1972 IfBuilder if_keyisheapnumber(this);
1973 if_keyisheapnumber.If<HCompareMap>(
1974 key, isolate()->factory()->heap_number_map());
1975 if_keyisheapnumber.Then();
1977 // Check if values of key and object match.
1978 IfBuilder if_keyeqobject(this);
1979 if_keyeqobject.If<HCompareNumericAndBranch>(
1980 Add<HLoadNamedField>(key, keyisnotsmi,
1981 HObjectAccess::ForHeapNumberValue()),
1982 Add<HLoadNamedField>(object, objectisnumber,
1983 HObjectAccess::ForHeapNumberValue()),
1985 if_keyeqobject.Then();
1987 // Make the key_index available.
1990 if_keyeqobject.JoinContinuation(&found);
1992 if_keyisheapnumber.JoinContinuation(&found);
1994 if_keyisnotsmi.JoinContinuation(&found);
1996 if_objectisnumber.Else();
1998 if (type->Is(Type::Number())) {
1999 if_objectisnumber.Deopt(Deoptimizer::kExpectedHeapNumber);
2002 if_objectisnumber.JoinContinuation(&found);
2005 if_objectissmi.JoinContinuation(&found);
2007 // Check for cache hit.
2008 IfBuilder if_found(this, &found);
2011 // Count number to string operation in native code.
2012 AddIncrementCounter(isolate()->counters()->number_to_string_native());
2014 // Load the value in case of cache hit.
2015 HValue* key_index = Pop();
2016 HValue* value_index = AddUncasted<HAdd>(key_index, graph()->GetConstant1());
2017 Push(Add<HLoadKeyed>(number_string_cache, value_index, nullptr,
2018 FAST_ELEMENTS, ALLOW_RETURN_HOLE));
2022 // Cache miss, fallback to runtime.
2023 Add<HPushArguments>(object);
2024 Push(Add<HCallRuntime>(
2025 isolate()->factory()->empty_string(),
2026 Runtime::FunctionForId(Runtime::kNumberToStringSkipCache),
2035 HAllocate* HGraphBuilder::BuildAllocate(
2036 HValue* object_size,
2038 InstanceType instance_type,
2039 HAllocationMode allocation_mode) {
2040 // Compute the effective allocation size.
2041 HValue* size = object_size;
2042 if (allocation_mode.CreateAllocationMementos()) {
2043 size = AddUncasted<HAdd>(size, Add<HConstant>(AllocationMemento::kSize));
2044 size->ClearFlag(HValue::kCanOverflow);
2047 // Perform the actual allocation.
2048 HAllocate* object = Add<HAllocate>(
2049 size, type, allocation_mode.GetPretenureMode(),
2050 instance_type, allocation_mode.feedback_site());
2052 // Setup the allocation memento.
2053 if (allocation_mode.CreateAllocationMementos()) {
2054 BuildCreateAllocationMemento(
2055 object, object_size, allocation_mode.current_site());
2062 HValue* HGraphBuilder::BuildAddStringLengths(HValue* left_length,
2063 HValue* right_length) {
2064 // Compute the combined string length and check against max string length.
2065 HValue* length = AddUncasted<HAdd>(left_length, right_length);
2066 // Check that length <= kMaxLength <=> length < MaxLength + 1.
2067 HValue* max_length = Add<HConstant>(String::kMaxLength + 1);
2068 Add<HBoundsCheck>(length, max_length);
2073 HValue* HGraphBuilder::BuildCreateConsString(
2077 HAllocationMode allocation_mode) {
2078 // Determine the string instance types.
2079 HInstruction* left_instance_type = AddLoadStringInstanceType(left);
2080 HInstruction* right_instance_type = AddLoadStringInstanceType(right);
2082 // Allocate the cons string object. HAllocate does not care whether we
2083 // pass CONS_STRING_TYPE or CONS_ONE_BYTE_STRING_TYPE here, so we just use
2084 // CONS_STRING_TYPE here. Below we decide whether the cons string is
2085 // one-byte or two-byte and set the appropriate map.
2086 DCHECK(HAllocate::CompatibleInstanceTypes(CONS_STRING_TYPE,
2087 CONS_ONE_BYTE_STRING_TYPE));
2088 HAllocate* result = BuildAllocate(Add<HConstant>(ConsString::kSize),
2089 HType::String(), CONS_STRING_TYPE,
2092 // Compute intersection and difference of instance types.
2093 HValue* anded_instance_types = AddUncasted<HBitwise>(
2094 Token::BIT_AND, left_instance_type, right_instance_type);
2095 HValue* xored_instance_types = AddUncasted<HBitwise>(
2096 Token::BIT_XOR, left_instance_type, right_instance_type);
2098 // We create a one-byte cons string if
2099 // 1. both strings are one-byte, or
2100 // 2. at least one of the strings is two-byte, but happens to contain only
2101 // one-byte characters.
2102 // To do this, we check
2103 // 1. if both strings are one-byte, or if the one-byte data hint is set in
2105 // 2. if one of the strings has the one-byte data hint set and the other
2106 // string is one-byte.
2107 IfBuilder if_onebyte(this);
2108 STATIC_ASSERT(kOneByteStringTag != 0);
2109 STATIC_ASSERT(kOneByteDataHintMask != 0);
2110 if_onebyte.If<HCompareNumericAndBranch>(
2111 AddUncasted<HBitwise>(
2112 Token::BIT_AND, anded_instance_types,
2113 Add<HConstant>(static_cast<int32_t>(
2114 kStringEncodingMask | kOneByteDataHintMask))),
2115 graph()->GetConstant0(), Token::NE);
2117 STATIC_ASSERT(kOneByteStringTag != 0 &&
2118 kOneByteDataHintTag != 0 &&
2119 kOneByteDataHintTag != kOneByteStringTag);
2120 if_onebyte.If<HCompareNumericAndBranch>(
2121 AddUncasted<HBitwise>(
2122 Token::BIT_AND, xored_instance_types,
2123 Add<HConstant>(static_cast<int32_t>(
2124 kOneByteStringTag | kOneByteDataHintTag))),
2125 Add<HConstant>(static_cast<int32_t>(
2126 kOneByteStringTag | kOneByteDataHintTag)), Token::EQ);
2129 // We can safely skip the write barrier for storing the map here.
2130 Add<HStoreNamedField>(
2131 result, HObjectAccess::ForMap(),
2132 Add<HConstant>(isolate()->factory()->cons_one_byte_string_map()));
2136 // We can safely skip the write barrier for storing the map here.
2137 Add<HStoreNamedField>(
2138 result, HObjectAccess::ForMap(),
2139 Add<HConstant>(isolate()->factory()->cons_string_map()));
2143 // Initialize the cons string fields.
2144 Add<HStoreNamedField>(result, HObjectAccess::ForStringHashField(),
2145 Add<HConstant>(String::kEmptyHashField));
2146 Add<HStoreNamedField>(result, HObjectAccess::ForStringLength(), length);
2147 Add<HStoreNamedField>(result, HObjectAccess::ForConsStringFirst(), left);
2148 Add<HStoreNamedField>(result, HObjectAccess::ForConsStringSecond(), right);
2150 // Count the native string addition.
2151 AddIncrementCounter(isolate()->counters()->string_add_native());
2157 void HGraphBuilder::BuildCopySeqStringChars(HValue* src,
2159 String::Encoding src_encoding,
2162 String::Encoding dst_encoding,
2164 DCHECK(dst_encoding != String::ONE_BYTE_ENCODING ||
2165 src_encoding == String::ONE_BYTE_ENCODING);
2166 LoopBuilder loop(this, context(), LoopBuilder::kPostIncrement);
2167 HValue* index = loop.BeginBody(graph()->GetConstant0(), length, Token::LT);
2169 HValue* src_index = AddUncasted<HAdd>(src_offset, index);
2171 AddUncasted<HSeqStringGetChar>(src_encoding, src, src_index);
2172 HValue* dst_index = AddUncasted<HAdd>(dst_offset, index);
2173 Add<HSeqStringSetChar>(dst_encoding, dst, dst_index, value);
2179 HValue* HGraphBuilder::BuildObjectSizeAlignment(
2180 HValue* unaligned_size, int header_size) {
2181 DCHECK((header_size & kObjectAlignmentMask) == 0);
2182 HValue* size = AddUncasted<HAdd>(
2183 unaligned_size, Add<HConstant>(static_cast<int32_t>(
2184 header_size + kObjectAlignmentMask)));
2185 size->ClearFlag(HValue::kCanOverflow);
2186 return AddUncasted<HBitwise>(
2187 Token::BIT_AND, size, Add<HConstant>(static_cast<int32_t>(
2188 ~kObjectAlignmentMask)));
2192 HValue* HGraphBuilder::BuildUncheckedStringAdd(
2195 HAllocationMode allocation_mode) {
2196 // Determine the string lengths.
2197 HValue* left_length = AddLoadStringLength(left);
2198 HValue* right_length = AddLoadStringLength(right);
2200 // Compute the combined string length.
2201 HValue* length = BuildAddStringLengths(left_length, right_length);
2203 // Do some manual constant folding here.
2204 if (left_length->IsConstant()) {
2205 HConstant* c_left_length = HConstant::cast(left_length);
2206 DCHECK_NE(0, c_left_length->Integer32Value());
2207 if (c_left_length->Integer32Value() + 1 >= ConsString::kMinLength) {
2208 // The right string contains at least one character.
2209 return BuildCreateConsString(length, left, right, allocation_mode);
2211 } else if (right_length->IsConstant()) {
2212 HConstant* c_right_length = HConstant::cast(right_length);
2213 DCHECK_NE(0, c_right_length->Integer32Value());
2214 if (c_right_length->Integer32Value() + 1 >= ConsString::kMinLength) {
2215 // The left string contains at least one character.
2216 return BuildCreateConsString(length, left, right, allocation_mode);
2220 // Check if we should create a cons string.
2221 IfBuilder if_createcons(this);
2222 if_createcons.If<HCompareNumericAndBranch>(
2223 length, Add<HConstant>(ConsString::kMinLength), Token::GTE);
2224 if_createcons.Then();
2226 // Create a cons string.
2227 Push(BuildCreateConsString(length, left, right, allocation_mode));
2229 if_createcons.Else();
2231 // Determine the string instance types.
2232 HValue* left_instance_type = AddLoadStringInstanceType(left);
2233 HValue* right_instance_type = AddLoadStringInstanceType(right);
2235 // Compute union and difference of instance types.
2236 HValue* ored_instance_types = AddUncasted<HBitwise>(
2237 Token::BIT_OR, left_instance_type, right_instance_type);
2238 HValue* xored_instance_types = AddUncasted<HBitwise>(
2239 Token::BIT_XOR, left_instance_type, right_instance_type);
2241 // Check if both strings have the same encoding and both are
2243 IfBuilder if_sameencodingandsequential(this);
2244 if_sameencodingandsequential.If<HCompareNumericAndBranch>(
2245 AddUncasted<HBitwise>(
2246 Token::BIT_AND, xored_instance_types,
2247 Add<HConstant>(static_cast<int32_t>(kStringEncodingMask))),
2248 graph()->GetConstant0(), Token::EQ);
2249 if_sameencodingandsequential.And();
2250 STATIC_ASSERT(kSeqStringTag == 0);
2251 if_sameencodingandsequential.If<HCompareNumericAndBranch>(
2252 AddUncasted<HBitwise>(
2253 Token::BIT_AND, ored_instance_types,
2254 Add<HConstant>(static_cast<int32_t>(kStringRepresentationMask))),
2255 graph()->GetConstant0(), Token::EQ);
2256 if_sameencodingandsequential.Then();
2258 HConstant* string_map =
2259 Add<HConstant>(isolate()->factory()->string_map());
2260 HConstant* one_byte_string_map =
2261 Add<HConstant>(isolate()->factory()->one_byte_string_map());
2263 // Determine map and size depending on whether result is one-byte string.
2264 IfBuilder if_onebyte(this);
2265 STATIC_ASSERT(kOneByteStringTag != 0);
2266 if_onebyte.If<HCompareNumericAndBranch>(
2267 AddUncasted<HBitwise>(
2268 Token::BIT_AND, ored_instance_types,
2269 Add<HConstant>(static_cast<int32_t>(kStringEncodingMask))),
2270 graph()->GetConstant0(), Token::NE);
2273 // Allocate sequential one-byte string object.
2275 Push(one_byte_string_map);
2279 // Allocate sequential two-byte string object.
2280 HValue* size = AddUncasted<HShl>(length, graph()->GetConstant1());
2281 size->ClearFlag(HValue::kCanOverflow);
2282 size->SetFlag(HValue::kUint32);
2287 HValue* map = Pop();
2289 // Calculate the number of bytes needed for the characters in the
2290 // string while observing object alignment.
2291 STATIC_ASSERT((SeqString::kHeaderSize & kObjectAlignmentMask) == 0);
2292 HValue* size = BuildObjectSizeAlignment(Pop(), SeqString::kHeaderSize);
2294 // Allocate the string object. HAllocate does not care whether we pass
2295 // STRING_TYPE or ONE_BYTE_STRING_TYPE here, so we just use STRING_TYPE.
2296 HAllocate* result = BuildAllocate(
2297 size, HType::String(), STRING_TYPE, allocation_mode);
2298 Add<HStoreNamedField>(result, HObjectAccess::ForMap(), map);
2300 // Initialize the string fields.
2301 Add<HStoreNamedField>(result, HObjectAccess::ForStringHashField(),
2302 Add<HConstant>(String::kEmptyHashField));
2303 Add<HStoreNamedField>(result, HObjectAccess::ForStringLength(), length);
2305 // Copy characters to the result string.
2306 IfBuilder if_twobyte(this);
2307 if_twobyte.If<HCompareObjectEqAndBranch>(map, string_map);
2310 // Copy characters from the left string.
2311 BuildCopySeqStringChars(
2312 left, graph()->GetConstant0(), String::TWO_BYTE_ENCODING,
2313 result, graph()->GetConstant0(), String::TWO_BYTE_ENCODING,
2316 // Copy characters from the right string.
2317 BuildCopySeqStringChars(
2318 right, graph()->GetConstant0(), String::TWO_BYTE_ENCODING,
2319 result, left_length, String::TWO_BYTE_ENCODING,
2324 // Copy characters from the left string.
2325 BuildCopySeqStringChars(
2326 left, graph()->GetConstant0(), String::ONE_BYTE_ENCODING,
2327 result, graph()->GetConstant0(), String::ONE_BYTE_ENCODING,
2330 // Copy characters from the right string.
2331 BuildCopySeqStringChars(
2332 right, graph()->GetConstant0(), String::ONE_BYTE_ENCODING,
2333 result, left_length, String::ONE_BYTE_ENCODING,
2338 // Count the native string addition.
2339 AddIncrementCounter(isolate()->counters()->string_add_native());
2341 // Return the sequential string.
2344 if_sameencodingandsequential.Else();
2346 // Fallback to the runtime to add the two strings.
2347 Add<HPushArguments>(left, right);
2348 Push(Add<HCallRuntime>(isolate()->factory()->empty_string(),
2349 Runtime::FunctionForId(Runtime::kStringAddRT), 2));
2351 if_sameencodingandsequential.End();
2353 if_createcons.End();
2359 HValue* HGraphBuilder::BuildStringAdd(
2362 HAllocationMode allocation_mode) {
2363 NoObservableSideEffectsScope no_effects(this);
2365 // Determine string lengths.
2366 HValue* left_length = AddLoadStringLength(left);
2367 HValue* right_length = AddLoadStringLength(right);
2369 // Check if left string is empty.
2370 IfBuilder if_leftempty(this);
2371 if_leftempty.If<HCompareNumericAndBranch>(
2372 left_length, graph()->GetConstant0(), Token::EQ);
2373 if_leftempty.Then();
2375 // Count the native string addition.
2376 AddIncrementCounter(isolate()->counters()->string_add_native());
2378 // Just return the right string.
2381 if_leftempty.Else();
2383 // Check if right string is empty.
2384 IfBuilder if_rightempty(this);
2385 if_rightempty.If<HCompareNumericAndBranch>(
2386 right_length, graph()->GetConstant0(), Token::EQ);
2387 if_rightempty.Then();
2389 // Count the native string addition.
2390 AddIncrementCounter(isolate()->counters()->string_add_native());
2392 // Just return the left string.
2395 if_rightempty.Else();
2397 // Add the two non-empty strings.
2398 Push(BuildUncheckedStringAdd(left, right, allocation_mode));
2400 if_rightempty.End();
2408 HInstruction* HGraphBuilder::BuildUncheckedMonomorphicElementAccess(
2409 HValue* checked_object,
2413 ElementsKind elements_kind,
2414 PropertyAccessType access_type,
2415 LoadKeyedHoleMode load_mode,
2416 KeyedAccessStoreMode store_mode) {
2417 DCHECK(top_info()->IsStub() || checked_object->IsCompareMap() ||
2418 checked_object->IsCheckMaps());
2419 DCHECK(!IsFixedTypedArrayElementsKind(elements_kind) || !is_js_array);
2420 // No GVNFlag is necessary for ElementsKind if there is an explicit dependency
2421 // on a HElementsTransition instruction. The flag can also be removed if the
2422 // map to check has FAST_HOLEY_ELEMENTS, since there can be no further
2423 // ElementsKind transitions. Finally, the dependency can be removed for stores
2424 // for FAST_ELEMENTS, since a transition to HOLEY elements won't change the
2425 // generated store code.
2426 if ((elements_kind == FAST_HOLEY_ELEMENTS) ||
2427 (elements_kind == FAST_ELEMENTS && access_type == STORE)) {
2428 checked_object->ClearDependsOnFlag(kElementsKind);
2431 bool fast_smi_only_elements = IsFastSmiElementsKind(elements_kind);
2432 bool fast_elements = IsFastObjectElementsKind(elements_kind);
2433 HValue* elements = AddLoadElements(checked_object);
2434 if (access_type == STORE && (fast_elements || fast_smi_only_elements) &&
2435 store_mode != STORE_NO_TRANSITION_HANDLE_COW) {
2436 HCheckMaps* check_cow_map = Add<HCheckMaps>(
2437 elements, isolate()->factory()->fixed_array_map());
2438 check_cow_map->ClearDependsOnFlag(kElementsKind);
2440 HInstruction* length = NULL;
2442 length = Add<HLoadNamedField>(
2443 checked_object->ActualValue(), checked_object,
2444 HObjectAccess::ForArrayLength(elements_kind));
2446 length = AddLoadFixedArrayLength(elements);
2448 length->set_type(HType::Smi());
2449 HValue* checked_key = NULL;
2450 if (IsFixedTypedArrayElementsKind(elements_kind)) {
2451 checked_object = Add<HCheckArrayBufferNotNeutered>(checked_object);
2453 HValue* external_pointer = Add<HLoadNamedField>(
2455 HObjectAccess::ForFixedTypedArrayBaseExternalPointer());
2456 HValue* base_pointer = Add<HLoadNamedField>(
2457 elements, nullptr, HObjectAccess::ForFixedTypedArrayBaseBasePointer());
2458 HValue* backing_store = AddUncasted<HAdd>(
2459 external_pointer, base_pointer, Strength::WEAK, AddOfExternalAndTagged);
2461 if (store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) {
2462 NoObservableSideEffectsScope no_effects(this);
2463 IfBuilder length_checker(this);
2464 length_checker.If<HCompareNumericAndBranch>(key, length, Token::LT);
2465 length_checker.Then();
2466 IfBuilder negative_checker(this);
2467 HValue* bounds_check = negative_checker.If<HCompareNumericAndBranch>(
2468 key, graph()->GetConstant0(), Token::GTE);
2469 negative_checker.Then();
2470 HInstruction* result = AddElementAccess(
2471 backing_store, key, val, bounds_check, elements_kind, access_type);
2472 negative_checker.ElseDeopt(Deoptimizer::kNegativeKeyEncountered);
2473 negative_checker.End();
2474 length_checker.End();
2477 DCHECK(store_mode == STANDARD_STORE);
2478 checked_key = Add<HBoundsCheck>(key, length);
2479 return AddElementAccess(
2480 backing_store, checked_key, val,
2481 checked_object, elements_kind, access_type);
2484 DCHECK(fast_smi_only_elements ||
2486 IsFastDoubleElementsKind(elements_kind));
2488 // In case val is stored into a fast smi array, assure that the value is a smi
2489 // before manipulating the backing store. Otherwise the actual store may
2490 // deopt, leaving the backing store in an invalid state.
2491 if (access_type == STORE && IsFastSmiElementsKind(elements_kind) &&
2492 !val->type().IsSmi()) {
2493 val = AddUncasted<HForceRepresentation>(val, Representation::Smi());
2496 if (IsGrowStoreMode(store_mode)) {
2497 NoObservableSideEffectsScope no_effects(this);
2498 Representation representation = HStoreKeyed::RequiredValueRepresentation(
2499 elements_kind, STORE_TO_INITIALIZED_ENTRY);
2500 val = AddUncasted<HForceRepresentation>(val, representation);
2501 elements = BuildCheckForCapacityGrow(checked_object, elements,
2502 elements_kind, length, key,
2503 is_js_array, access_type);
2506 checked_key = Add<HBoundsCheck>(key, length);
2508 if (access_type == STORE && (fast_elements || fast_smi_only_elements)) {
2509 if (store_mode == STORE_NO_TRANSITION_HANDLE_COW) {
2510 NoObservableSideEffectsScope no_effects(this);
2511 elements = BuildCopyElementsOnWrite(checked_object, elements,
2512 elements_kind, length);
2514 HCheckMaps* check_cow_map = Add<HCheckMaps>(
2515 elements, isolate()->factory()->fixed_array_map());
2516 check_cow_map->ClearDependsOnFlag(kElementsKind);
2520 return AddElementAccess(elements, checked_key, val, checked_object,
2521 elements_kind, access_type, load_mode);
2525 HValue* HGraphBuilder::BuildAllocateArrayFromLength(
2526 JSArrayBuilder* array_builder,
2527 HValue* length_argument) {
2528 if (length_argument->IsConstant() &&
2529 HConstant::cast(length_argument)->HasSmiValue()) {
2530 int array_length = HConstant::cast(length_argument)->Integer32Value();
2531 if (array_length == 0) {
2532 return array_builder->AllocateEmptyArray();
2534 return array_builder->AllocateArray(length_argument,
2540 HValue* constant_zero = graph()->GetConstant0();
2541 HConstant* max_alloc_length =
2542 Add<HConstant>(JSObject::kInitialMaxFastElementArray);
2543 HInstruction* checked_length = Add<HBoundsCheck>(length_argument,
2545 IfBuilder if_builder(this);
2546 if_builder.If<HCompareNumericAndBranch>(checked_length, constant_zero,
2549 const int initial_capacity = JSArray::kPreallocatedArrayElements;
2550 HConstant* initial_capacity_node = Add<HConstant>(initial_capacity);
2551 Push(initial_capacity_node); // capacity
2552 Push(constant_zero); // length
2554 if (!(top_info()->IsStub()) &&
2555 IsFastPackedElementsKind(array_builder->kind())) {
2556 // We'll come back later with better (holey) feedback.
2558 Deoptimizer::kHoleyArrayDespitePackedElements_kindFeedback);
2560 Push(checked_length); // capacity
2561 Push(checked_length); // length
2565 // Figure out total size
2566 HValue* length = Pop();
2567 HValue* capacity = Pop();
2568 return array_builder->AllocateArray(capacity, max_alloc_length, length);
2572 HValue* HGraphBuilder::BuildCalculateElementsSize(ElementsKind kind,
2574 int elements_size = IsFastDoubleElementsKind(kind)
2578 HConstant* elements_size_value = Add<HConstant>(elements_size);
2580 HMul::NewImul(isolate(), zone(), context(), capacity->ActualValue(),
2581 elements_size_value);
2582 AddInstruction(mul);
2583 mul->ClearFlag(HValue::kCanOverflow);
2585 STATIC_ASSERT(FixedDoubleArray::kHeaderSize == FixedArray::kHeaderSize);
2587 HConstant* header_size = Add<HConstant>(FixedArray::kHeaderSize);
2588 HValue* total_size = AddUncasted<HAdd>(mul, header_size);
2589 total_size->ClearFlag(HValue::kCanOverflow);
2594 HAllocate* HGraphBuilder::AllocateJSArrayObject(AllocationSiteMode mode) {
2595 int base_size = JSArray::kSize;
2596 if (mode == TRACK_ALLOCATION_SITE) {
2597 base_size += AllocationMemento::kSize;
2599 HConstant* size_in_bytes = Add<HConstant>(base_size);
2600 return Add<HAllocate>(
2601 size_in_bytes, HType::JSArray(), NOT_TENURED, JS_OBJECT_TYPE);
2605 HConstant* HGraphBuilder::EstablishElementsAllocationSize(
2608 int base_size = IsFastDoubleElementsKind(kind)
2609 ? FixedDoubleArray::SizeFor(capacity)
2610 : FixedArray::SizeFor(capacity);
2612 return Add<HConstant>(base_size);
2616 HAllocate* HGraphBuilder::BuildAllocateElements(ElementsKind kind,
2617 HValue* size_in_bytes) {
2618 InstanceType instance_type = IsFastDoubleElementsKind(kind)
2619 ? FIXED_DOUBLE_ARRAY_TYPE
2622 return Add<HAllocate>(size_in_bytes, HType::HeapObject(), NOT_TENURED,
2627 void HGraphBuilder::BuildInitializeElementsHeader(HValue* elements,
2630 Factory* factory = isolate()->factory();
2631 Handle<Map> map = IsFastDoubleElementsKind(kind)
2632 ? factory->fixed_double_array_map()
2633 : factory->fixed_array_map();
2635 Add<HStoreNamedField>(elements, HObjectAccess::ForMap(), Add<HConstant>(map));
2636 Add<HStoreNamedField>(elements, HObjectAccess::ForFixedArrayLength(),
2641 HValue* HGraphBuilder::BuildAllocateAndInitializeArray(ElementsKind kind,
2643 // The HForceRepresentation is to prevent possible deopt on int-smi
2644 // conversion after allocation but before the new object fields are set.
2645 capacity = AddUncasted<HForceRepresentation>(capacity, Representation::Smi());
2646 HValue* size_in_bytes = BuildCalculateElementsSize(kind, capacity);
2647 HValue* new_array = BuildAllocateElements(kind, size_in_bytes);
2648 BuildInitializeElementsHeader(new_array, kind, capacity);
2653 void HGraphBuilder::BuildJSArrayHeader(HValue* array,
2656 AllocationSiteMode mode,
2657 ElementsKind elements_kind,
2658 HValue* allocation_site_payload,
2659 HValue* length_field) {
2660 Add<HStoreNamedField>(array, HObjectAccess::ForMap(), array_map);
2662 HConstant* empty_fixed_array =
2663 Add<HConstant>(isolate()->factory()->empty_fixed_array());
2665 Add<HStoreNamedField>(
2666 array, HObjectAccess::ForPropertiesPointer(), empty_fixed_array);
2668 Add<HStoreNamedField>(
2669 array, HObjectAccess::ForElementsPointer(),
2670 elements != NULL ? elements : empty_fixed_array);
2672 Add<HStoreNamedField>(
2673 array, HObjectAccess::ForArrayLength(elements_kind), length_field);
2675 if (mode == TRACK_ALLOCATION_SITE) {
2676 BuildCreateAllocationMemento(
2677 array, Add<HConstant>(JSArray::kSize), allocation_site_payload);
2682 HInstruction* HGraphBuilder::AddElementAccess(
2684 HValue* checked_key,
2687 ElementsKind elements_kind,
2688 PropertyAccessType access_type,
2689 LoadKeyedHoleMode load_mode) {
2690 if (access_type == STORE) {
2691 DCHECK(val != NULL);
2692 if (elements_kind == UINT8_CLAMPED_ELEMENTS) {
2693 val = Add<HClampToUint8>(val);
2695 return Add<HStoreKeyed>(elements, checked_key, val, elements_kind,
2696 STORE_TO_INITIALIZED_ENTRY);
2699 DCHECK(access_type == LOAD);
2700 DCHECK(val == NULL);
2701 HLoadKeyed* load = Add<HLoadKeyed>(
2702 elements, checked_key, dependency, elements_kind, load_mode);
2703 if (elements_kind == UINT32_ELEMENTS) {
2704 graph()->RecordUint32Instruction(load);
2710 HLoadNamedField* HGraphBuilder::AddLoadMap(HValue* object,
2711 HValue* dependency) {
2712 return Add<HLoadNamedField>(object, dependency, HObjectAccess::ForMap());
2716 HLoadNamedField* HGraphBuilder::AddLoadElements(HValue* object,
2717 HValue* dependency) {
2718 return Add<HLoadNamedField>(
2719 object, dependency, HObjectAccess::ForElementsPointer());
2723 HLoadNamedField* HGraphBuilder::AddLoadFixedArrayLength(
2725 HValue* dependency) {
2726 return Add<HLoadNamedField>(
2727 array, dependency, HObjectAccess::ForFixedArrayLength());
2731 HLoadNamedField* HGraphBuilder::AddLoadArrayLength(HValue* array,
2733 HValue* dependency) {
2734 return Add<HLoadNamedField>(
2735 array, dependency, HObjectAccess::ForArrayLength(kind));
2739 HValue* HGraphBuilder::BuildNewElementsCapacity(HValue* old_capacity) {
2740 HValue* half_old_capacity = AddUncasted<HShr>(old_capacity,
2741 graph_->GetConstant1());
2743 HValue* new_capacity = AddUncasted<HAdd>(half_old_capacity, old_capacity);
2744 new_capacity->ClearFlag(HValue::kCanOverflow);
2746 HValue* min_growth = Add<HConstant>(16);
2748 new_capacity = AddUncasted<HAdd>(new_capacity, min_growth);
2749 new_capacity->ClearFlag(HValue::kCanOverflow);
2751 return new_capacity;
2755 HValue* HGraphBuilder::BuildGrowElementsCapacity(HValue* object,
2758 ElementsKind new_kind,
2760 HValue* new_capacity) {
2761 Add<HBoundsCheck>(new_capacity, Add<HConstant>(
2762 (Page::kMaxRegularHeapObjectSize - FixedArray::kHeaderSize) >>
2763 ElementsKindToShiftSize(new_kind)));
2765 HValue* new_elements =
2766 BuildAllocateAndInitializeArray(new_kind, new_capacity);
2768 BuildCopyElements(elements, kind, new_elements,
2769 new_kind, length, new_capacity);
2771 Add<HStoreNamedField>(object, HObjectAccess::ForElementsPointer(),
2774 return new_elements;
2778 void HGraphBuilder::BuildFillElementsWithValue(HValue* elements,
2779 ElementsKind elements_kind,
2784 to = AddLoadFixedArrayLength(elements);
2787 // Special loop unfolding case
2788 STATIC_ASSERT(JSArray::kPreallocatedArrayElements <=
2789 kElementLoopUnrollThreshold);
2790 int initial_capacity = -1;
2791 if (from->IsInteger32Constant() && to->IsInteger32Constant()) {
2792 int constant_from = from->GetInteger32Constant();
2793 int constant_to = to->GetInteger32Constant();
2795 if (constant_from == 0 && constant_to <= kElementLoopUnrollThreshold) {
2796 initial_capacity = constant_to;
2800 if (initial_capacity >= 0) {
2801 for (int i = 0; i < initial_capacity; i++) {
2802 HInstruction* key = Add<HConstant>(i);
2803 Add<HStoreKeyed>(elements, key, value, elements_kind);
2806 // Carefully loop backwards so that the "from" remains live through the loop
2807 // rather than the to. This often corresponds to keeping length live rather
2808 // then capacity, which helps register allocation, since length is used more
2809 // other than capacity after filling with holes.
2810 LoopBuilder builder(this, context(), LoopBuilder::kPostDecrement);
2812 HValue* key = builder.BeginBody(to, from, Token::GT);
2814 HValue* adjusted_key = AddUncasted<HSub>(key, graph()->GetConstant1());
2815 adjusted_key->ClearFlag(HValue::kCanOverflow);
2817 Add<HStoreKeyed>(elements, adjusted_key, value, elements_kind);
2824 void HGraphBuilder::BuildFillElementsWithHole(HValue* elements,
2825 ElementsKind elements_kind,
2828 // Fast elements kinds need to be initialized in case statements below cause a
2829 // garbage collection.
2831 HValue* hole = IsFastSmiOrObjectElementsKind(elements_kind)
2832 ? graph()->GetConstantHole()
2833 : Add<HConstant>(HConstant::kHoleNaN);
2835 // Since we're about to store a hole value, the store instruction below must
2836 // assume an elements kind that supports heap object values.
2837 if (IsFastSmiOrObjectElementsKind(elements_kind)) {
2838 elements_kind = FAST_HOLEY_ELEMENTS;
2841 BuildFillElementsWithValue(elements, elements_kind, from, to, hole);
2845 void HGraphBuilder::BuildCopyProperties(HValue* from_properties,
2846 HValue* to_properties, HValue* length,
2848 ElementsKind kind = FAST_ELEMENTS;
2850 BuildFillElementsWithValue(to_properties, kind, length, capacity,
2851 graph()->GetConstantUndefined());
2853 LoopBuilder builder(this, context(), LoopBuilder::kPostDecrement);
2855 HValue* key = builder.BeginBody(length, graph()->GetConstant0(), Token::GT);
2857 key = AddUncasted<HSub>(key, graph()->GetConstant1());
2858 key->ClearFlag(HValue::kCanOverflow);
2860 HValue* element = Add<HLoadKeyed>(from_properties, key, nullptr, kind);
2862 Add<HStoreKeyed>(to_properties, key, element, kind);
2868 void HGraphBuilder::BuildCopyElements(HValue* from_elements,
2869 ElementsKind from_elements_kind,
2870 HValue* to_elements,
2871 ElementsKind to_elements_kind,
2874 int constant_capacity = -1;
2875 if (capacity != NULL &&
2876 capacity->IsConstant() &&
2877 HConstant::cast(capacity)->HasInteger32Value()) {
2878 int constant_candidate = HConstant::cast(capacity)->Integer32Value();
2879 if (constant_candidate <= kElementLoopUnrollThreshold) {
2880 constant_capacity = constant_candidate;
2884 bool pre_fill_with_holes =
2885 IsFastDoubleElementsKind(from_elements_kind) &&
2886 IsFastObjectElementsKind(to_elements_kind);
2887 if (pre_fill_with_holes) {
2888 // If the copy might trigger a GC, make sure that the FixedArray is
2889 // pre-initialized with holes to make sure that it's always in a
2890 // consistent state.
2891 BuildFillElementsWithHole(to_elements, to_elements_kind,
2892 graph()->GetConstant0(), NULL);
2895 if (constant_capacity != -1) {
2896 // Unroll the loop for small elements kinds.
2897 for (int i = 0; i < constant_capacity; i++) {
2898 HValue* key_constant = Add<HConstant>(i);
2899 HInstruction* value = Add<HLoadKeyed>(from_elements, key_constant,
2900 nullptr, from_elements_kind);
2901 Add<HStoreKeyed>(to_elements, key_constant, value, to_elements_kind);
2904 if (!pre_fill_with_holes &&
2905 (capacity == NULL || !length->Equals(capacity))) {
2906 BuildFillElementsWithHole(to_elements, to_elements_kind,
2910 LoopBuilder builder(this, context(), LoopBuilder::kPostDecrement);
2912 HValue* key = builder.BeginBody(length, graph()->GetConstant0(),
2915 key = AddUncasted<HSub>(key, graph()->GetConstant1());
2916 key->ClearFlag(HValue::kCanOverflow);
2918 HValue* element = Add<HLoadKeyed>(from_elements, key, nullptr,
2919 from_elements_kind, ALLOW_RETURN_HOLE);
2921 ElementsKind kind = (IsHoleyElementsKind(from_elements_kind) &&
2922 IsFastSmiElementsKind(to_elements_kind))
2923 ? FAST_HOLEY_ELEMENTS : to_elements_kind;
2925 if (IsHoleyElementsKind(from_elements_kind) &&
2926 from_elements_kind != to_elements_kind) {
2927 IfBuilder if_hole(this);
2928 if_hole.If<HCompareHoleAndBranch>(element);
2930 HConstant* hole_constant = IsFastDoubleElementsKind(to_elements_kind)
2931 ? Add<HConstant>(HConstant::kHoleNaN)
2932 : graph()->GetConstantHole();
2933 Add<HStoreKeyed>(to_elements, key, hole_constant, kind);
2935 HStoreKeyed* store = Add<HStoreKeyed>(to_elements, key, element, kind);
2936 store->SetFlag(HValue::kAllowUndefinedAsNaN);
2939 HStoreKeyed* store = Add<HStoreKeyed>(to_elements, key, element, kind);
2940 store->SetFlag(HValue::kAllowUndefinedAsNaN);
2946 Counters* counters = isolate()->counters();
2947 AddIncrementCounter(counters->inlined_copied_elements());
2951 HValue* HGraphBuilder::BuildCloneShallowArrayCow(HValue* boilerplate,
2952 HValue* allocation_site,
2953 AllocationSiteMode mode,
2954 ElementsKind kind) {
2955 HAllocate* array = AllocateJSArrayObject(mode);
2957 HValue* map = AddLoadMap(boilerplate);
2958 HValue* elements = AddLoadElements(boilerplate);
2959 HValue* length = AddLoadArrayLength(boilerplate, kind);
2961 BuildJSArrayHeader(array,
2972 HValue* HGraphBuilder::BuildCloneShallowArrayEmpty(HValue* boilerplate,
2973 HValue* allocation_site,
2974 AllocationSiteMode mode) {
2975 HAllocate* array = AllocateJSArrayObject(mode);
2977 HValue* map = AddLoadMap(boilerplate);
2979 BuildJSArrayHeader(array,
2981 NULL, // set elements to empty fixed array
2985 graph()->GetConstant0());
2990 HValue* HGraphBuilder::BuildCloneShallowArrayNonEmpty(HValue* boilerplate,
2991 HValue* allocation_site,
2992 AllocationSiteMode mode,
2993 ElementsKind kind) {
2994 HValue* boilerplate_elements = AddLoadElements(boilerplate);
2995 HValue* capacity = AddLoadFixedArrayLength(boilerplate_elements);
2997 // Generate size calculation code here in order to make it dominate
2998 // the JSArray allocation.
2999 HValue* elements_size = BuildCalculateElementsSize(kind, capacity);
3001 // Create empty JSArray object for now, store elimination should remove
3002 // redundant initialization of elements and length fields and at the same
3003 // time the object will be fully prepared for GC if it happens during
3004 // elements allocation.
3005 HValue* result = BuildCloneShallowArrayEmpty(
3006 boilerplate, allocation_site, mode);
3008 HAllocate* elements = BuildAllocateElements(kind, elements_size);
3010 // This function implicitly relies on the fact that the
3011 // FastCloneShallowArrayStub is called only for literals shorter than
3012 // JSObject::kInitialMaxFastElementArray.
3013 // Can't add HBoundsCheck here because otherwise the stub will eager a frame.
3014 HConstant* size_upper_bound = EstablishElementsAllocationSize(
3015 kind, JSObject::kInitialMaxFastElementArray);
3016 elements->set_size_upper_bound(size_upper_bound);
3018 Add<HStoreNamedField>(result, HObjectAccess::ForElementsPointer(), elements);
3020 // The allocation for the cloned array above causes register pressure on
3021 // machines with low register counts. Force a reload of the boilerplate
3022 // elements here to free up a register for the allocation to avoid unnecessary
3024 boilerplate_elements = AddLoadElements(boilerplate);
3025 boilerplate_elements->SetFlag(HValue::kCantBeReplaced);
3027 // Copy the elements array header.
3028 for (int i = 0; i < FixedArrayBase::kHeaderSize; i += kPointerSize) {
3029 HObjectAccess access = HObjectAccess::ForFixedArrayHeader(i);
3030 Add<HStoreNamedField>(
3032 Add<HLoadNamedField>(boilerplate_elements, nullptr, access));
3035 // And the result of the length
3036 HValue* length = AddLoadArrayLength(boilerplate, kind);
3037 Add<HStoreNamedField>(result, HObjectAccess::ForArrayLength(kind), length);
3039 BuildCopyElements(boilerplate_elements, kind, elements,
3040 kind, length, NULL);
3045 void HGraphBuilder::BuildCompareNil(HValue* value, Type* type,
3046 HIfContinuation* continuation,
3047 MapEmbedding map_embedding) {
3048 IfBuilder if_nil(this);
3049 bool some_case_handled = false;
3050 bool some_case_missing = false;
3052 if (type->Maybe(Type::Null())) {
3053 if (some_case_handled) if_nil.Or();
3054 if_nil.If<HCompareObjectEqAndBranch>(value, graph()->GetConstantNull());
3055 some_case_handled = true;
3057 some_case_missing = true;
3060 if (type->Maybe(Type::Undefined())) {
3061 if (some_case_handled) if_nil.Or();
3062 if_nil.If<HCompareObjectEqAndBranch>(value,
3063 graph()->GetConstantUndefined());
3064 some_case_handled = true;
3066 some_case_missing = true;
3069 if (type->Maybe(Type::Undetectable())) {
3070 if (some_case_handled) if_nil.Or();
3071 if_nil.If<HIsUndetectableAndBranch>(value);
3072 some_case_handled = true;
3074 some_case_missing = true;
3077 if (some_case_missing) {
3080 if (type->NumClasses() == 1) {
3081 BuildCheckHeapObject(value);
3082 // For ICs, the map checked below is a sentinel map that gets replaced by
3083 // the monomorphic map when the code is used as a template to generate a
3084 // new IC. For optimized functions, there is no sentinel map, the map
3085 // emitted below is the actual monomorphic map.
3086 if (map_embedding == kEmbedMapsViaWeakCells) {
3088 Add<HConstant>(Map::WeakCellForMap(type->Classes().Current()));
3089 HValue* expected_map = Add<HLoadNamedField>(
3090 cell, nullptr, HObjectAccess::ForWeakCellValue());
3092 Add<HLoadNamedField>(value, nullptr, HObjectAccess::ForMap());
3093 IfBuilder map_check(this);
3094 map_check.IfNot<HCompareObjectEqAndBranch>(expected_map, map);
3095 map_check.ThenDeopt(Deoptimizer::kUnknownMap);
3098 DCHECK(map_embedding == kEmbedMapsDirectly);
3099 Add<HCheckMaps>(value, type->Classes().Current());
3102 if_nil.Deopt(Deoptimizer::kTooManyUndetectableTypes);
3106 if_nil.CaptureContinuation(continuation);
3110 void HGraphBuilder::BuildCreateAllocationMemento(
3111 HValue* previous_object,
3112 HValue* previous_object_size,
3113 HValue* allocation_site) {
3114 DCHECK(allocation_site != NULL);
3115 HInnerAllocatedObject* allocation_memento = Add<HInnerAllocatedObject>(
3116 previous_object, previous_object_size, HType::HeapObject());
3117 AddStoreMapConstant(
3118 allocation_memento, isolate()->factory()->allocation_memento_map());
3119 Add<HStoreNamedField>(
3121 HObjectAccess::ForAllocationMementoSite(),
3123 if (FLAG_allocation_site_pretenuring) {
3124 HValue* memento_create_count =
3125 Add<HLoadNamedField>(allocation_site, nullptr,
3126 HObjectAccess::ForAllocationSiteOffset(
3127 AllocationSite::kPretenureCreateCountOffset));
3128 memento_create_count = AddUncasted<HAdd>(
3129 memento_create_count, graph()->GetConstant1());
3130 // This smi value is reset to zero after every gc, overflow isn't a problem
3131 // since the counter is bounded by the new space size.
3132 memento_create_count->ClearFlag(HValue::kCanOverflow);
3133 Add<HStoreNamedField>(
3134 allocation_site, HObjectAccess::ForAllocationSiteOffset(
3135 AllocationSite::kPretenureCreateCountOffset), memento_create_count);
3140 HInstruction* HGraphBuilder::BuildGetNativeContext() {
3141 // Get the global object, then the native context
3142 HValue* global_object = Add<HLoadNamedField>(
3144 HObjectAccess::ForContextSlot(Context::GLOBAL_OBJECT_INDEX));
3145 return Add<HLoadNamedField>(global_object, nullptr,
3146 HObjectAccess::ForObservableJSObjectOffset(
3147 GlobalObject::kNativeContextOffset));
3151 HInstruction* HGraphBuilder::BuildGetNativeContext(HValue* closure) {
3152 // Get the global object, then the native context
3153 HInstruction* context = Add<HLoadNamedField>(
3154 closure, nullptr, HObjectAccess::ForFunctionContextPointer());
3155 HInstruction* global_object = Add<HLoadNamedField>(
3157 HObjectAccess::ForContextSlot(Context::GLOBAL_OBJECT_INDEX));
3158 HObjectAccess access = HObjectAccess::ForObservableJSObjectOffset(
3159 GlobalObject::kNativeContextOffset);
3160 return Add<HLoadNamedField>(global_object, nullptr, access);
3164 HInstruction* HGraphBuilder::BuildGetScriptContext(int context_index) {
3165 HValue* native_context = BuildGetNativeContext();
3166 HValue* script_context_table = Add<HLoadNamedField>(
3167 native_context, nullptr,
3168 HObjectAccess::ForContextSlot(Context::SCRIPT_CONTEXT_TABLE_INDEX));
3169 return Add<HLoadNamedField>(script_context_table, nullptr,
3170 HObjectAccess::ForScriptContext(context_index));
3174 HValue* HGraphBuilder::BuildGetParentContext(HValue* depth, int depth_value) {
3175 HValue* script_context = context();
3176 if (depth != NULL) {
3177 HValue* zero = graph()->GetConstant0();
3179 Push(script_context);
3182 LoopBuilder loop(this);
3183 loop.BeginBody(2); // Drop script_context and depth from last environment
3184 // to appease live range building without simulates.
3186 script_context = Pop();
3188 script_context = Add<HLoadNamedField>(
3189 script_context, nullptr,
3190 HObjectAccess::ForContextSlot(Context::PREVIOUS_INDEX));
3191 depth = AddUncasted<HSub>(depth, graph()->GetConstant1());
3192 depth->ClearFlag(HValue::kCanOverflow);
3194 IfBuilder if_break(this);
3195 if_break.If<HCompareNumericAndBranch, HValue*>(depth, zero, Token::EQ);
3198 Push(script_context); // The result.
3203 Push(script_context);
3209 script_context = Pop();
3210 } else if (depth_value > 0) {
3211 // Unroll the above loop.
3212 for (int i = 0; i < depth_value; i++) {
3213 script_context = Add<HLoadNamedField>(
3214 script_context, nullptr,
3215 HObjectAccess::ForContextSlot(Context::PREVIOUS_INDEX));
3218 return script_context;
3222 HInstruction* HGraphBuilder::BuildGetArrayFunction() {
3223 HInstruction* native_context = BuildGetNativeContext();
3224 HInstruction* index =
3225 Add<HConstant>(static_cast<int32_t>(Context::ARRAY_FUNCTION_INDEX));
3226 return Add<HLoadKeyed>(native_context, index, nullptr, FAST_ELEMENTS);
3230 HValue* HGraphBuilder::BuildArrayBufferViewFieldAccessor(HValue* object,
3231 HValue* checked_object,
3233 NoObservableSideEffectsScope scope(this);
3234 HObjectAccess access = HObjectAccess::ForObservableJSObjectOffset(
3235 index.offset(), Representation::Tagged());
3236 HInstruction* buffer = Add<HLoadNamedField>(
3237 object, checked_object, HObjectAccess::ForJSArrayBufferViewBuffer());
3238 HInstruction* field = Add<HLoadNamedField>(object, checked_object, access);
3240 HInstruction* flags = Add<HLoadNamedField>(
3241 buffer, nullptr, HObjectAccess::ForJSArrayBufferBitField());
3242 HValue* was_neutered_mask =
3243 Add<HConstant>(1 << JSArrayBuffer::WasNeutered::kShift);
3244 HValue* was_neutered_test =
3245 AddUncasted<HBitwise>(Token::BIT_AND, flags, was_neutered_mask);
3247 IfBuilder if_was_neutered(this);
3248 if_was_neutered.If<HCompareNumericAndBranch>(
3249 was_neutered_test, graph()->GetConstant0(), Token::NE);
3250 if_was_neutered.Then();
3251 Push(graph()->GetConstant0());
3252 if_was_neutered.Else();
3254 if_was_neutered.End();
3260 HGraphBuilder::JSArrayBuilder::JSArrayBuilder(HGraphBuilder* builder,
3262 HValue* allocation_site_payload,
3263 HValue* constructor_function,
3264 AllocationSiteOverrideMode override_mode) :
3267 allocation_site_payload_(allocation_site_payload),
3268 constructor_function_(constructor_function) {
3269 DCHECK(!allocation_site_payload->IsConstant() ||
3270 HConstant::cast(allocation_site_payload)->handle(
3271 builder_->isolate())->IsAllocationSite());
3272 mode_ = override_mode == DISABLE_ALLOCATION_SITES
3273 ? DONT_TRACK_ALLOCATION_SITE
3274 : AllocationSite::GetMode(kind);
3278 HGraphBuilder::JSArrayBuilder::JSArrayBuilder(HGraphBuilder* builder,
3280 HValue* constructor_function) :
3283 mode_(DONT_TRACK_ALLOCATION_SITE),
3284 allocation_site_payload_(NULL),
3285 constructor_function_(constructor_function) {
3289 HValue* HGraphBuilder::JSArrayBuilder::EmitMapCode() {
3290 if (!builder()->top_info()->IsStub()) {
3291 // A constant map is fine.
3292 Handle<Map> map(builder()->isolate()->get_initial_js_array_map(kind_),
3293 builder()->isolate());
3294 return builder()->Add<HConstant>(map);
3297 if (constructor_function_ != NULL && kind_ == GetInitialFastElementsKind()) {
3298 // No need for a context lookup if the kind_ matches the initial
3299 // map, because we can just load the map in that case.
3300 HObjectAccess access = HObjectAccess::ForPrototypeOrInitialMap();
3301 return builder()->Add<HLoadNamedField>(constructor_function_, nullptr,
3305 // TODO(mvstanton): we should always have a constructor function if we
3306 // are creating a stub.
3307 HInstruction* native_context = constructor_function_ != NULL
3308 ? builder()->BuildGetNativeContext(constructor_function_)
3309 : builder()->BuildGetNativeContext();
3311 HInstruction* index = builder()->Add<HConstant>(
3312 static_cast<int32_t>(Context::JS_ARRAY_MAPS_INDEX));
3314 HInstruction* map_array =
3315 builder()->Add<HLoadKeyed>(native_context, index, nullptr, FAST_ELEMENTS);
3317 HInstruction* kind_index = builder()->Add<HConstant>(kind_);
3319 return builder()->Add<HLoadKeyed>(map_array, kind_index, nullptr,
3324 HValue* HGraphBuilder::JSArrayBuilder::EmitInternalMapCode() {
3325 // Find the map near the constructor function
3326 HObjectAccess access = HObjectAccess::ForPrototypeOrInitialMap();
3327 return builder()->Add<HLoadNamedField>(constructor_function_, nullptr,
3332 HAllocate* HGraphBuilder::JSArrayBuilder::AllocateEmptyArray() {
3333 HConstant* capacity = builder()->Add<HConstant>(initial_capacity());
3334 return AllocateArray(capacity,
3336 builder()->graph()->GetConstant0());
3340 HAllocate* HGraphBuilder::JSArrayBuilder::AllocateArray(
3342 HConstant* capacity_upper_bound,
3343 HValue* length_field,
3344 FillMode fill_mode) {
3345 return AllocateArray(capacity,
3346 capacity_upper_bound->GetInteger32Constant(),
3352 HAllocate* HGraphBuilder::JSArrayBuilder::AllocateArray(
3354 int capacity_upper_bound,
3355 HValue* length_field,
3356 FillMode fill_mode) {
3357 HConstant* elememts_size_upper_bound = capacity->IsInteger32Constant()
3358 ? HConstant::cast(capacity)
3359 : builder()->EstablishElementsAllocationSize(kind_, capacity_upper_bound);
3361 HAllocate* array = AllocateArray(capacity, length_field, fill_mode);
3362 if (!elements_location_->has_size_upper_bound()) {
3363 elements_location_->set_size_upper_bound(elememts_size_upper_bound);
3369 HAllocate* HGraphBuilder::JSArrayBuilder::AllocateArray(
3371 HValue* length_field,
3372 FillMode fill_mode) {
3373 // These HForceRepresentations are because we store these as fields in the
3374 // objects we construct, and an int32-to-smi HChange could deopt. Accept
3375 // the deopt possibility now, before allocation occurs.
3377 builder()->AddUncasted<HForceRepresentation>(capacity,
3378 Representation::Smi());
3380 builder()->AddUncasted<HForceRepresentation>(length_field,
3381 Representation::Smi());
3383 // Generate size calculation code here in order to make it dominate
3384 // the JSArray allocation.
3385 HValue* elements_size =
3386 builder()->BuildCalculateElementsSize(kind_, capacity);
3388 // Allocate (dealing with failure appropriately)
3389 HAllocate* array_object = builder()->AllocateJSArrayObject(mode_);
3391 // Fill in the fields: map, properties, length
3393 if (allocation_site_payload_ == NULL) {
3394 map = EmitInternalMapCode();
3396 map = EmitMapCode();
3399 builder()->BuildJSArrayHeader(array_object,
3401 NULL, // set elements to empty fixed array
3404 allocation_site_payload_,
3407 // Allocate and initialize the elements
3408 elements_location_ = builder()->BuildAllocateElements(kind_, elements_size);
3410 builder()->BuildInitializeElementsHeader(elements_location_, kind_, capacity);
3413 builder()->Add<HStoreNamedField>(
3414 array_object, HObjectAccess::ForElementsPointer(), elements_location_);
3416 if (fill_mode == FILL_WITH_HOLE) {
3417 builder()->BuildFillElementsWithHole(elements_location_, kind_,
3418 graph()->GetConstant0(), capacity);
3421 return array_object;
3425 HValue* HGraphBuilder::AddLoadJSBuiltin(Builtins::JavaScript builtin) {
3426 HValue* global_object = Add<HLoadNamedField>(
3428 HObjectAccess::ForContextSlot(Context::GLOBAL_OBJECT_INDEX));
3429 HObjectAccess access = HObjectAccess::ForObservableJSObjectOffset(
3430 GlobalObject::kBuiltinsOffset);
3431 HValue* builtins = Add<HLoadNamedField>(global_object, nullptr, access);
3432 HObjectAccess function_access = HObjectAccess::ForObservableJSObjectOffset(
3433 JSBuiltinsObject::OffsetOfFunctionWithId(builtin));
3434 return Add<HLoadNamedField>(builtins, nullptr, function_access);
3438 HOptimizedGraphBuilder::HOptimizedGraphBuilder(CompilationInfo* info)
3439 : HGraphBuilder(info),
3440 function_state_(NULL),
3441 initial_function_state_(this, info, NORMAL_RETURN, 0),
3445 globals_(10, info->zone()),
3446 osr_(new(info->zone()) HOsrBuilder(this)) {
3447 // This is not initialized in the initializer list because the
3448 // constructor for the initial state relies on function_state_ == NULL
3449 // to know it's the initial state.
3450 function_state_ = &initial_function_state_;
3451 InitializeAstVisitor(info->isolate(), info->zone());
3452 if (top_info()->is_tracking_positions()) {
3453 SetSourcePosition(info->shared_info()->start_position());
3458 HBasicBlock* HOptimizedGraphBuilder::CreateJoin(HBasicBlock* first,
3459 HBasicBlock* second,
3460 BailoutId join_id) {
3461 if (first == NULL) {
3463 } else if (second == NULL) {
3466 HBasicBlock* join_block = graph()->CreateBasicBlock();
3467 Goto(first, join_block);
3468 Goto(second, join_block);
3469 join_block->SetJoinId(join_id);
3475 HBasicBlock* HOptimizedGraphBuilder::JoinContinue(IterationStatement* statement,
3476 HBasicBlock* exit_block,
3477 HBasicBlock* continue_block) {
3478 if (continue_block != NULL) {
3479 if (exit_block != NULL) Goto(exit_block, continue_block);
3480 continue_block->SetJoinId(statement->ContinueId());
3481 return continue_block;
3487 HBasicBlock* HOptimizedGraphBuilder::CreateLoop(IterationStatement* statement,
3488 HBasicBlock* loop_entry,
3489 HBasicBlock* body_exit,
3490 HBasicBlock* loop_successor,
3491 HBasicBlock* break_block) {
3492 if (body_exit != NULL) Goto(body_exit, loop_entry);
3493 loop_entry->PostProcessLoopHeader(statement);
3494 if (break_block != NULL) {
3495 if (loop_successor != NULL) Goto(loop_successor, break_block);
3496 break_block->SetJoinId(statement->ExitId());
3499 return loop_successor;
3503 // Build a new loop header block and set it as the current block.
3504 HBasicBlock* HOptimizedGraphBuilder::BuildLoopEntry() {
3505 HBasicBlock* loop_entry = CreateLoopHeaderBlock();
3507 set_current_block(loop_entry);
3512 HBasicBlock* HOptimizedGraphBuilder::BuildLoopEntry(
3513 IterationStatement* statement) {
3514 HBasicBlock* loop_entry = osr()->HasOsrEntryAt(statement)
3515 ? osr()->BuildOsrLoopEntry(statement)
3521 void HBasicBlock::FinishExit(HControlInstruction* instruction,
3522 SourcePosition position) {
3523 Finish(instruction, position);
3528 std::ostream& operator<<(std::ostream& os, const HBasicBlock& b) {
3529 return os << "B" << b.block_id();
3533 HGraph::HGraph(CompilationInfo* info)
3534 : isolate_(info->isolate()),
3537 blocks_(8, info->zone()),
3538 values_(16, info->zone()),
3540 uint32_instructions_(NULL),
3543 zone_(info->zone()),
3544 is_recursive_(false),
3545 use_optimistic_licm_(false),
3546 depends_on_empty_array_proto_elements_(false),
3547 type_change_checksum_(0),
3548 maximum_environment_size_(0),
3549 no_side_effects_scope_count_(0),
3550 disallow_adding_new_values_(false) {
3551 if (info->IsStub()) {
3552 CallInterfaceDescriptor descriptor =
3553 info->code_stub()->GetCallInterfaceDescriptor();
3554 start_environment_ =
3555 new (zone_) HEnvironment(zone_, descriptor.GetRegisterParameterCount());
3557 if (info->is_tracking_positions()) {
3558 info->TraceInlinedFunction(info->shared_info(), SourcePosition::Unknown(),
3559 InlinedFunctionInfo::kNoParentId);
3561 start_environment_ =
3562 new(zone_) HEnvironment(NULL, info->scope(), info->closure(), zone_);
3564 start_environment_->set_ast_id(BailoutId::FunctionEntry());
3565 entry_block_ = CreateBasicBlock();
3566 entry_block_->SetInitialEnvironment(start_environment_);
3570 HBasicBlock* HGraph::CreateBasicBlock() {
3571 HBasicBlock* result = new(zone()) HBasicBlock(this);
3572 blocks_.Add(result, zone());
3577 void HGraph::FinalizeUniqueness() {
3578 DisallowHeapAllocation no_gc;
3579 for (int i = 0; i < blocks()->length(); ++i) {
3580 for (HInstructionIterator it(blocks()->at(i)); !it.Done(); it.Advance()) {
3581 it.Current()->FinalizeUniqueness();
3587 int HGraph::SourcePositionToScriptPosition(SourcePosition pos) {
3588 return (FLAG_hydrogen_track_positions && !pos.IsUnknown())
3589 ? info()->start_position_for(pos.inlining_id()) + pos.position()
3594 // Block ordering was implemented with two mutually recursive methods,
3595 // HGraph::Postorder and HGraph::PostorderLoopBlocks.
3596 // The recursion could lead to stack overflow so the algorithm has been
3597 // implemented iteratively.
3598 // At a high level the algorithm looks like this:
3600 // Postorder(block, loop_header) : {
3601 // if (block has already been visited or is of another loop) return;
3602 // mark block as visited;
3603 // if (block is a loop header) {
3604 // VisitLoopMembers(block, loop_header);
3605 // VisitSuccessorsOfLoopHeader(block);
3607 // VisitSuccessors(block)
3609 // put block in result list;
3612 // VisitLoopMembers(block, outer_loop_header) {
3613 // foreach (block b in block loop members) {
3614 // VisitSuccessorsOfLoopMember(b, outer_loop_header);
3615 // if (b is loop header) VisitLoopMembers(b);
3619 // VisitSuccessorsOfLoopMember(block, outer_loop_header) {
3620 // foreach (block b in block successors) Postorder(b, outer_loop_header)
3623 // VisitSuccessorsOfLoopHeader(block) {
3624 // foreach (block b in block successors) Postorder(b, block)
3627 // VisitSuccessors(block, loop_header) {
3628 // foreach (block b in block successors) Postorder(b, loop_header)
3631 // The ordering is started calling Postorder(entry, NULL).
3633 // Each instance of PostorderProcessor represents the "stack frame" of the
3634 // recursion, and particularly keeps the state of the loop (iteration) of the
3635 // "Visit..." function it represents.
3636 // To recycle memory we keep all the frames in a double linked list but
3637 // this means that we cannot use constructors to initialize the frames.
3639 class PostorderProcessor : public ZoneObject {
3641 // Back link (towards the stack bottom).
3642 PostorderProcessor* parent() {return father_; }
3643 // Forward link (towards the stack top).
3644 PostorderProcessor* child() {return child_; }
3645 HBasicBlock* block() { return block_; }
3646 HLoopInformation* loop() { return loop_; }
3647 HBasicBlock* loop_header() { return loop_header_; }
3649 static PostorderProcessor* CreateEntryProcessor(Zone* zone,
3650 HBasicBlock* block) {
3651 PostorderProcessor* result = new(zone) PostorderProcessor(NULL);
3652 return result->SetupSuccessors(zone, block, NULL);
3655 PostorderProcessor* PerformStep(Zone* zone,
3656 ZoneList<HBasicBlock*>* order) {
3657 PostorderProcessor* next =
3658 PerformNonBacktrackingStep(zone, order);
3662 return Backtrack(zone, order);
3667 explicit PostorderProcessor(PostorderProcessor* father)
3668 : father_(father), child_(NULL), successor_iterator(NULL) { }
3670 // Each enum value states the cycle whose state is kept by this instance.
3674 SUCCESSORS_OF_LOOP_HEADER,
3676 SUCCESSORS_OF_LOOP_MEMBER
3679 // Each "Setup..." method is like a constructor for a cycle state.
3680 PostorderProcessor* SetupSuccessors(Zone* zone,
3682 HBasicBlock* loop_header) {
3683 if (block == NULL || block->IsOrdered() ||
3684 block->parent_loop_header() != loop_header) {
3688 loop_header_ = NULL;
3693 block->MarkAsOrdered();
3695 if (block->IsLoopHeader()) {
3696 kind_ = SUCCESSORS_OF_LOOP_HEADER;
3697 loop_header_ = block;
3698 InitializeSuccessors();
3699 PostorderProcessor* result = Push(zone);
3700 return result->SetupLoopMembers(zone, block, block->loop_information(),
3703 DCHECK(block->IsFinished());
3705 loop_header_ = loop_header;
3706 InitializeSuccessors();
3712 PostorderProcessor* SetupLoopMembers(Zone* zone,
3714 HLoopInformation* loop,
3715 HBasicBlock* loop_header) {
3716 kind_ = LOOP_MEMBERS;
3719 loop_header_ = loop_header;
3720 InitializeLoopMembers();
3724 PostorderProcessor* SetupSuccessorsOfLoopMember(
3726 HLoopInformation* loop,
3727 HBasicBlock* loop_header) {
3728 kind_ = SUCCESSORS_OF_LOOP_MEMBER;
3731 loop_header_ = loop_header;
3732 InitializeSuccessors();
3736 // This method "allocates" a new stack frame.
3737 PostorderProcessor* Push(Zone* zone) {
3738 if (child_ == NULL) {
3739 child_ = new(zone) PostorderProcessor(this);
3744 void ClosePostorder(ZoneList<HBasicBlock*>* order, Zone* zone) {
3745 DCHECK(block_->end()->FirstSuccessor() == NULL ||
3746 order->Contains(block_->end()->FirstSuccessor()) ||
3747 block_->end()->FirstSuccessor()->IsLoopHeader());
3748 DCHECK(block_->end()->SecondSuccessor() == NULL ||
3749 order->Contains(block_->end()->SecondSuccessor()) ||
3750 block_->end()->SecondSuccessor()->IsLoopHeader());
3751 order->Add(block_, zone);
3754 // This method is the basic block to walk up the stack.
3755 PostorderProcessor* Pop(Zone* zone,
3756 ZoneList<HBasicBlock*>* order) {
3759 case SUCCESSORS_OF_LOOP_HEADER:
3760 ClosePostorder(order, zone);
3764 case SUCCESSORS_OF_LOOP_MEMBER:
3765 if (block()->IsLoopHeader() && block() != loop_->loop_header()) {
3766 // In this case we need to perform a LOOP_MEMBERS cycle so we
3767 // initialize it and return this instead of father.
3768 return SetupLoopMembers(zone, block(),
3769 block()->loop_information(), loop_header_);
3780 // Walks up the stack.
3781 PostorderProcessor* Backtrack(Zone* zone,
3782 ZoneList<HBasicBlock*>* order) {
3783 PostorderProcessor* parent = Pop(zone, order);
3784 while (parent != NULL) {
3785 PostorderProcessor* next =
3786 parent->PerformNonBacktrackingStep(zone, order);
3790 parent = parent->Pop(zone, order);
3796 PostorderProcessor* PerformNonBacktrackingStep(
3798 ZoneList<HBasicBlock*>* order) {
3799 HBasicBlock* next_block;
3802 next_block = AdvanceSuccessors();
3803 if (next_block != NULL) {
3804 PostorderProcessor* result = Push(zone);
3805 return result->SetupSuccessors(zone, next_block, loop_header_);
3808 case SUCCESSORS_OF_LOOP_HEADER:
3809 next_block = AdvanceSuccessors();
3810 if (next_block != NULL) {
3811 PostorderProcessor* result = Push(zone);
3812 return result->SetupSuccessors(zone, next_block, block());
3816 next_block = AdvanceLoopMembers();
3817 if (next_block != NULL) {
3818 PostorderProcessor* result = Push(zone);
3819 return result->SetupSuccessorsOfLoopMember(next_block,
3820 loop_, loop_header_);
3823 case SUCCESSORS_OF_LOOP_MEMBER:
3824 next_block = AdvanceSuccessors();
3825 if (next_block != NULL) {
3826 PostorderProcessor* result = Push(zone);
3827 return result->SetupSuccessors(zone, next_block, loop_header_);
3836 // The following two methods implement a "foreach b in successors" cycle.
3837 void InitializeSuccessors() {
3840 successor_iterator = HSuccessorIterator(block_->end());
3843 HBasicBlock* AdvanceSuccessors() {
3844 if (!successor_iterator.Done()) {
3845 HBasicBlock* result = successor_iterator.Current();
3846 successor_iterator.Advance();
3852 // The following two methods implement a "foreach b in loop members" cycle.
3853 void InitializeLoopMembers() {
3855 loop_length = loop_->blocks()->length();
3858 HBasicBlock* AdvanceLoopMembers() {
3859 if (loop_index < loop_length) {
3860 HBasicBlock* result = loop_->blocks()->at(loop_index);
3869 PostorderProcessor* father_;
3870 PostorderProcessor* child_;
3871 HLoopInformation* loop_;
3872 HBasicBlock* block_;
3873 HBasicBlock* loop_header_;
3876 HSuccessorIterator successor_iterator;
3880 void HGraph::OrderBlocks() {
3881 CompilationPhase phase("H_Block ordering", info());
3884 // Initially the blocks must not be ordered.
3885 for (int i = 0; i < blocks_.length(); ++i) {
3886 DCHECK(!blocks_[i]->IsOrdered());
3890 PostorderProcessor* postorder =
3891 PostorderProcessor::CreateEntryProcessor(zone(), blocks_[0]);
3894 postorder = postorder->PerformStep(zone(), &blocks_);
3898 // Now all blocks must be marked as ordered.
3899 for (int i = 0; i < blocks_.length(); ++i) {
3900 DCHECK(blocks_[i]->IsOrdered());
3904 // Reverse block list and assign block IDs.
3905 for (int i = 0, j = blocks_.length(); --j >= i; ++i) {
3906 HBasicBlock* bi = blocks_[i];
3907 HBasicBlock* bj = blocks_[j];
3908 bi->set_block_id(j);
3909 bj->set_block_id(i);
3916 void HGraph::AssignDominators() {
3917 HPhase phase("H_Assign dominators", this);
3918 for (int i = 0; i < blocks_.length(); ++i) {
3919 HBasicBlock* block = blocks_[i];
3920 if (block->IsLoopHeader()) {
3921 // Only the first predecessor of a loop header is from outside the loop.
3922 // All others are back edges, and thus cannot dominate the loop header.
3923 block->AssignCommonDominator(block->predecessors()->first());
3924 block->AssignLoopSuccessorDominators();
3926 for (int j = blocks_[i]->predecessors()->length() - 1; j >= 0; --j) {
3927 blocks_[i]->AssignCommonDominator(blocks_[i]->predecessors()->at(j));
3934 bool HGraph::CheckArgumentsPhiUses() {
3935 int block_count = blocks_.length();
3936 for (int i = 0; i < block_count; ++i) {
3937 for (int j = 0; j < blocks_[i]->phis()->length(); ++j) {
3938 HPhi* phi = blocks_[i]->phis()->at(j);
3939 // We don't support phi uses of arguments for now.
3940 if (phi->CheckFlag(HValue::kIsArguments)) return false;
3947 bool HGraph::CheckConstPhiUses() {
3948 int block_count = blocks_.length();
3949 for (int i = 0; i < block_count; ++i) {
3950 for (int j = 0; j < blocks_[i]->phis()->length(); ++j) {
3951 HPhi* phi = blocks_[i]->phis()->at(j);
3952 // Check for the hole value (from an uninitialized const).
3953 for (int k = 0; k < phi->OperandCount(); k++) {
3954 if (phi->OperandAt(k) == GetConstantHole()) return false;
3962 void HGraph::CollectPhis() {
3963 int block_count = blocks_.length();
3964 phi_list_ = new(zone()) ZoneList<HPhi*>(block_count, zone());
3965 for (int i = 0; i < block_count; ++i) {
3966 for (int j = 0; j < blocks_[i]->phis()->length(); ++j) {
3967 HPhi* phi = blocks_[i]->phis()->at(j);
3968 phi_list_->Add(phi, zone());
3974 // Implementation of utility class to encapsulate the translation state for
3975 // a (possibly inlined) function.
3976 FunctionState::FunctionState(HOptimizedGraphBuilder* owner,
3977 CompilationInfo* info, InliningKind inlining_kind,
3980 compilation_info_(info),
3981 call_context_(NULL),
3982 inlining_kind_(inlining_kind),
3983 function_return_(NULL),
3984 test_context_(NULL),
3986 arguments_object_(NULL),
3987 arguments_elements_(NULL),
3988 inlining_id_(inlining_id),
3989 outer_source_position_(SourcePosition::Unknown()),
3990 outer_(owner->function_state()) {
3991 if (outer_ != NULL) {
3992 // State for an inline function.
3993 if (owner->ast_context()->IsTest()) {
3994 HBasicBlock* if_true = owner->graph()->CreateBasicBlock();
3995 HBasicBlock* if_false = owner->graph()->CreateBasicBlock();
3996 if_true->MarkAsInlineReturnTarget(owner->current_block());
3997 if_false->MarkAsInlineReturnTarget(owner->current_block());
3998 TestContext* outer_test_context = TestContext::cast(owner->ast_context());
3999 Expression* cond = outer_test_context->condition();
4000 // The AstContext constructor pushed on the context stack. This newed
4001 // instance is the reason that AstContext can't be BASE_EMBEDDED.
4002 test_context_ = new TestContext(owner, cond, if_true, if_false);
4004 function_return_ = owner->graph()->CreateBasicBlock();
4005 function_return()->MarkAsInlineReturnTarget(owner->current_block());
4007 // Set this after possibly allocating a new TestContext above.
4008 call_context_ = owner->ast_context();
4011 // Push on the state stack.
4012 owner->set_function_state(this);
4014 if (compilation_info_->is_tracking_positions()) {
4015 outer_source_position_ = owner->source_position();
4016 owner->EnterInlinedSource(
4017 info->shared_info()->start_position(),
4019 owner->SetSourcePosition(info->shared_info()->start_position());
4024 FunctionState::~FunctionState() {
4025 delete test_context_;
4026 owner_->set_function_state(outer_);
4028 if (compilation_info_->is_tracking_positions()) {
4029 owner_->set_source_position(outer_source_position_);
4030 owner_->EnterInlinedSource(
4031 outer_->compilation_info()->shared_info()->start_position(),
4032 outer_->inlining_id());
4037 // Implementation of utility classes to represent an expression's context in
4039 AstContext::AstContext(HOptimizedGraphBuilder* owner, Expression::Context kind)
4042 outer_(owner->ast_context()),
4043 typeof_mode_(NOT_INSIDE_TYPEOF) {
4044 owner->set_ast_context(this); // Push.
4046 DCHECK(owner->environment()->frame_type() == JS_FUNCTION);
4047 original_length_ = owner->environment()->length();
4052 AstContext::~AstContext() {
4053 owner_->set_ast_context(outer_); // Pop.
4057 EffectContext::~EffectContext() {
4058 DCHECK(owner()->HasStackOverflow() ||
4059 owner()->current_block() == NULL ||
4060 (owner()->environment()->length() == original_length_ &&
4061 owner()->environment()->frame_type() == JS_FUNCTION));
4065 ValueContext::~ValueContext() {
4066 DCHECK(owner()->HasStackOverflow() ||
4067 owner()->current_block() == NULL ||
4068 (owner()->environment()->length() == original_length_ + 1 &&
4069 owner()->environment()->frame_type() == JS_FUNCTION));
4073 void EffectContext::ReturnValue(HValue* value) {
4074 // The value is simply ignored.
4078 void ValueContext::ReturnValue(HValue* value) {
4079 // The value is tracked in the bailout environment, and communicated
4080 // through the environment as the result of the expression.
4081 if (value->CheckFlag(HValue::kIsArguments)) {
4082 if (flag_ == ARGUMENTS_FAKED) {
4083 value = owner()->graph()->GetConstantUndefined();
4084 } else if (!arguments_allowed()) {
4085 owner()->Bailout(kBadValueContextForArgumentsValue);
4088 owner()->Push(value);
4092 void TestContext::ReturnValue(HValue* value) {
4097 void EffectContext::ReturnInstruction(HInstruction* instr, BailoutId ast_id) {
4098 DCHECK(!instr->IsControlInstruction());
4099 owner()->AddInstruction(instr);
4100 if (instr->HasObservableSideEffects()) {
4101 owner()->Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
4106 void EffectContext::ReturnControl(HControlInstruction* instr,
4108 DCHECK(!instr->HasObservableSideEffects());
4109 HBasicBlock* empty_true = owner()->graph()->CreateBasicBlock();
4110 HBasicBlock* empty_false = owner()->graph()->CreateBasicBlock();
4111 instr->SetSuccessorAt(0, empty_true);
4112 instr->SetSuccessorAt(1, empty_false);
4113 owner()->FinishCurrentBlock(instr);
4114 HBasicBlock* join = owner()->CreateJoin(empty_true, empty_false, ast_id);
4115 owner()->set_current_block(join);
4119 void EffectContext::ReturnContinuation(HIfContinuation* continuation,
4121 HBasicBlock* true_branch = NULL;
4122 HBasicBlock* false_branch = NULL;
4123 continuation->Continue(&true_branch, &false_branch);
4124 if (!continuation->IsTrueReachable()) {
4125 owner()->set_current_block(false_branch);
4126 } else if (!continuation->IsFalseReachable()) {
4127 owner()->set_current_block(true_branch);
4129 HBasicBlock* join = owner()->CreateJoin(true_branch, false_branch, ast_id);
4130 owner()->set_current_block(join);
4135 void ValueContext::ReturnInstruction(HInstruction* instr, BailoutId ast_id) {
4136 DCHECK(!instr->IsControlInstruction());
4137 if (!arguments_allowed() && instr->CheckFlag(HValue::kIsArguments)) {
4138 return owner()->Bailout(kBadValueContextForArgumentsObjectValue);
4140 owner()->AddInstruction(instr);
4141 owner()->Push(instr);
4142 if (instr->HasObservableSideEffects()) {
4143 owner()->Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
4148 void ValueContext::ReturnControl(HControlInstruction* instr, BailoutId ast_id) {
4149 DCHECK(!instr->HasObservableSideEffects());
4150 if (!arguments_allowed() && instr->CheckFlag(HValue::kIsArguments)) {
4151 return owner()->Bailout(kBadValueContextForArgumentsObjectValue);
4153 HBasicBlock* materialize_false = owner()->graph()->CreateBasicBlock();
4154 HBasicBlock* materialize_true = owner()->graph()->CreateBasicBlock();
4155 instr->SetSuccessorAt(0, materialize_true);
4156 instr->SetSuccessorAt(1, materialize_false);
4157 owner()->FinishCurrentBlock(instr);
4158 owner()->set_current_block(materialize_true);
4159 owner()->Push(owner()->graph()->GetConstantTrue());
4160 owner()->set_current_block(materialize_false);
4161 owner()->Push(owner()->graph()->GetConstantFalse());
4163 owner()->CreateJoin(materialize_true, materialize_false, ast_id);
4164 owner()->set_current_block(join);
4168 void ValueContext::ReturnContinuation(HIfContinuation* continuation,
4170 HBasicBlock* materialize_true = NULL;
4171 HBasicBlock* materialize_false = NULL;
4172 continuation->Continue(&materialize_true, &materialize_false);
4173 if (continuation->IsTrueReachable()) {
4174 owner()->set_current_block(materialize_true);
4175 owner()->Push(owner()->graph()->GetConstantTrue());
4176 owner()->set_current_block(materialize_true);
4178 if (continuation->IsFalseReachable()) {
4179 owner()->set_current_block(materialize_false);
4180 owner()->Push(owner()->graph()->GetConstantFalse());
4181 owner()->set_current_block(materialize_false);
4183 if (continuation->TrueAndFalseReachable()) {
4185 owner()->CreateJoin(materialize_true, materialize_false, ast_id);
4186 owner()->set_current_block(join);
4191 void TestContext::ReturnInstruction(HInstruction* instr, BailoutId ast_id) {
4192 DCHECK(!instr->IsControlInstruction());
4193 HOptimizedGraphBuilder* builder = owner();
4194 builder->AddInstruction(instr);
4195 // We expect a simulate after every expression with side effects, though
4196 // this one isn't actually needed (and wouldn't work if it were targeted).
4197 if (instr->HasObservableSideEffects()) {
4198 builder->Push(instr);
4199 builder->Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
4206 void TestContext::ReturnControl(HControlInstruction* instr, BailoutId ast_id) {
4207 DCHECK(!instr->HasObservableSideEffects());
4208 HBasicBlock* empty_true = owner()->graph()->CreateBasicBlock();
4209 HBasicBlock* empty_false = owner()->graph()->CreateBasicBlock();
4210 instr->SetSuccessorAt(0, empty_true);
4211 instr->SetSuccessorAt(1, empty_false);
4212 owner()->FinishCurrentBlock(instr);
4213 owner()->Goto(empty_true, if_true(), owner()->function_state());
4214 owner()->Goto(empty_false, if_false(), owner()->function_state());
4215 owner()->set_current_block(NULL);
4219 void TestContext::ReturnContinuation(HIfContinuation* continuation,
4221 HBasicBlock* true_branch = NULL;
4222 HBasicBlock* false_branch = NULL;
4223 continuation->Continue(&true_branch, &false_branch);
4224 if (continuation->IsTrueReachable()) {
4225 owner()->Goto(true_branch, if_true(), owner()->function_state());
4227 if (continuation->IsFalseReachable()) {
4228 owner()->Goto(false_branch, if_false(), owner()->function_state());
4230 owner()->set_current_block(NULL);
4234 void TestContext::BuildBranch(HValue* value) {
4235 // We expect the graph to be in edge-split form: there is no edge that
4236 // connects a branch node to a join node. We conservatively ensure that
4237 // property by always adding an empty block on the outgoing edges of this
4239 HOptimizedGraphBuilder* builder = owner();
4240 if (value != NULL && value->CheckFlag(HValue::kIsArguments)) {
4241 builder->Bailout(kArgumentsObjectValueInATestContext);
4243 ToBooleanStub::Types expected(condition()->to_boolean_types());
4244 ReturnControl(owner()->New<HBranch>(value, expected), BailoutId::None());
4248 // HOptimizedGraphBuilder infrastructure for bailing out and checking bailouts.
4249 #define CHECK_BAILOUT(call) \
4252 if (HasStackOverflow()) return; \
4256 #define CHECK_ALIVE(call) \
4259 if (HasStackOverflow() || current_block() == NULL) return; \
4263 #define CHECK_ALIVE_OR_RETURN(call, value) \
4266 if (HasStackOverflow() || current_block() == NULL) return value; \
4270 void HOptimizedGraphBuilder::Bailout(BailoutReason reason) {
4271 current_info()->AbortOptimization(reason);
4276 void HOptimizedGraphBuilder::VisitForEffect(Expression* expr) {
4277 EffectContext for_effect(this);
4282 void HOptimizedGraphBuilder::VisitForValue(Expression* expr,
4283 ArgumentsAllowedFlag flag) {
4284 ValueContext for_value(this, flag);
4289 void HOptimizedGraphBuilder::VisitForTypeOf(Expression* expr) {
4290 ValueContext for_value(this, ARGUMENTS_NOT_ALLOWED);
4291 for_value.set_typeof_mode(INSIDE_TYPEOF);
4296 void HOptimizedGraphBuilder::VisitForControl(Expression* expr,
4297 HBasicBlock* true_block,
4298 HBasicBlock* false_block) {
4299 TestContext for_test(this, expr, true_block, false_block);
4304 void HOptimizedGraphBuilder::VisitExpressions(
4305 ZoneList<Expression*>* exprs) {
4306 for (int i = 0; i < exprs->length(); ++i) {
4307 CHECK_ALIVE(VisitForValue(exprs->at(i)));
4312 void HOptimizedGraphBuilder::VisitExpressions(ZoneList<Expression*>* exprs,
4313 ArgumentsAllowedFlag flag) {
4314 for (int i = 0; i < exprs->length(); ++i) {
4315 CHECK_ALIVE(VisitForValue(exprs->at(i), flag));
4320 bool HOptimizedGraphBuilder::BuildGraph() {
4321 if (IsSubclassConstructor(current_info()->function()->kind())) {
4322 Bailout(kSuperReference);
4326 int slots = current_info()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
4327 if (current_info()->scope()->is_script_scope() && slots > 0) {
4328 Bailout(kScriptContext);
4332 Scope* scope = current_info()->scope();
4335 // Add an edge to the body entry. This is warty: the graph's start
4336 // environment will be used by the Lithium translation as the initial
4337 // environment on graph entry, but it has now been mutated by the
4338 // Hydrogen translation of the instructions in the start block. This
4339 // environment uses values which have not been defined yet. These
4340 // Hydrogen instructions will then be replayed by the Lithium
4341 // translation, so they cannot have an environment effect. The edge to
4342 // the body's entry block (along with some special logic for the start
4343 // block in HInstruction::InsertAfter) seals the start block from
4344 // getting unwanted instructions inserted.
4346 // TODO(kmillikin): Fix this. Stop mutating the initial environment.
4347 // Make the Hydrogen instructions in the initial block into Hydrogen
4348 // values (but not instructions), present in the initial environment and
4349 // not replayed by the Lithium translation.
4350 HEnvironment* initial_env = environment()->CopyWithoutHistory();
4351 HBasicBlock* body_entry = CreateBasicBlock(initial_env);
4353 body_entry->SetJoinId(BailoutId::FunctionEntry());
4354 set_current_block(body_entry);
4356 VisitDeclarations(scope->declarations());
4357 Add<HSimulate>(BailoutId::Declarations());
4359 Add<HStackCheck>(HStackCheck::kFunctionEntry);
4361 VisitStatements(current_info()->function()->body());
4362 if (HasStackOverflow()) return false;
4364 if (current_block() != NULL) {
4365 Add<HReturn>(graph()->GetConstantUndefined());
4366 set_current_block(NULL);
4369 // If the checksum of the number of type info changes is the same as the
4370 // last time this function was compiled, then this recompile is likely not
4371 // due to missing/inadequate type feedback, but rather too aggressive
4372 // optimization. Disable optimistic LICM in that case.
4373 Handle<Code> unoptimized_code(current_info()->shared_info()->code());
4374 DCHECK(unoptimized_code->kind() == Code::FUNCTION);
4375 Handle<TypeFeedbackInfo> type_info(
4376 TypeFeedbackInfo::cast(unoptimized_code->type_feedback_info()));
4377 int checksum = type_info->own_type_change_checksum();
4378 int composite_checksum = graph()->update_type_change_checksum(checksum);
4379 graph()->set_use_optimistic_licm(
4380 !type_info->matches_inlined_type_change_checksum(composite_checksum));
4381 type_info->set_inlined_type_change_checksum(composite_checksum);
4383 // Perform any necessary OSR-specific cleanups or changes to the graph.
4384 osr()->FinishGraph();
4390 bool HGraph::Optimize(BailoutReason* bailout_reason) {
4394 // We need to create a HConstant "zero" now so that GVN will fold every
4395 // zero-valued constant in the graph together.
4396 // The constant is needed to make idef-based bounds check work: the pass
4397 // evaluates relations with "zero" and that zero cannot be created after GVN.
4401 // Do a full verify after building the graph and computing dominators.
4405 if (FLAG_analyze_environment_liveness && maximum_environment_size() != 0) {
4406 Run<HEnvironmentLivenessAnalysisPhase>();
4409 if (!CheckConstPhiUses()) {
4410 *bailout_reason = kUnsupportedPhiUseOfConstVariable;
4413 Run<HRedundantPhiEliminationPhase>();
4414 if (!CheckArgumentsPhiUses()) {
4415 *bailout_reason = kUnsupportedPhiUseOfArguments;
4419 // Find and mark unreachable code to simplify optimizations, especially gvn,
4420 // where unreachable code could unnecessarily defeat LICM.
4421 Run<HMarkUnreachableBlocksPhase>();
4423 if (FLAG_dead_code_elimination) Run<HDeadCodeEliminationPhase>();
4424 if (FLAG_use_escape_analysis) Run<HEscapeAnalysisPhase>();
4426 if (FLAG_load_elimination) Run<HLoadEliminationPhase>();
4430 if (has_osr()) osr()->FinishOsrValues();
4432 Run<HInferRepresentationPhase>();
4434 // Remove HSimulate instructions that have turned out not to be needed
4435 // after all by folding them into the following HSimulate.
4436 // This must happen after inferring representations.
4437 Run<HMergeRemovableSimulatesPhase>();
4439 Run<HMarkDeoptimizeOnUndefinedPhase>();
4440 Run<HRepresentationChangesPhase>();
4442 Run<HInferTypesPhase>();
4444 // Must be performed before canonicalization to ensure that Canonicalize
4445 // will not remove semantically meaningful ToInt32 operations e.g. BIT_OR with
4447 Run<HUint32AnalysisPhase>();
4449 if (FLAG_use_canonicalizing) Run<HCanonicalizePhase>();
4451 if (FLAG_use_gvn) Run<HGlobalValueNumberingPhase>();
4453 if (FLAG_check_elimination) Run<HCheckEliminationPhase>();
4455 if (FLAG_store_elimination) Run<HStoreEliminationPhase>();
4457 Run<HRangeAnalysisPhase>();
4459 Run<HComputeChangeUndefinedToNaN>();
4461 // Eliminate redundant stack checks on backwards branches.
4462 Run<HStackCheckEliminationPhase>();
4464 if (FLAG_array_bounds_checks_elimination) Run<HBoundsCheckEliminationPhase>();
4465 if (FLAG_array_bounds_checks_hoisting) Run<HBoundsCheckHoistingPhase>();
4466 if (FLAG_array_index_dehoisting) Run<HDehoistIndexComputationsPhase>();
4467 if (FLAG_dead_code_elimination) Run<HDeadCodeEliminationPhase>();
4469 RestoreActualValues();
4471 // Find unreachable code a second time, GVN and other optimizations may have
4472 // made blocks unreachable that were previously reachable.
4473 Run<HMarkUnreachableBlocksPhase>();
4479 void HGraph::RestoreActualValues() {
4480 HPhase phase("H_Restore actual values", this);
4482 for (int block_index = 0; block_index < blocks()->length(); block_index++) {
4483 HBasicBlock* block = blocks()->at(block_index);
4486 for (int i = 0; i < block->phis()->length(); i++) {
4487 HPhi* phi = block->phis()->at(i);
4488 DCHECK(phi->ActualValue() == phi);
4492 for (HInstructionIterator it(block); !it.Done(); it.Advance()) {
4493 HInstruction* instruction = it.Current();
4494 if (instruction->ActualValue() == instruction) continue;
4495 if (instruction->CheckFlag(HValue::kIsDead)) {
4496 // The instruction was marked as deleted but left in the graph
4497 // as a control flow dependency point for subsequent
4499 instruction->DeleteAndReplaceWith(instruction->ActualValue());
4501 DCHECK(instruction->IsInformativeDefinition());
4502 if (instruction->IsPurelyInformativeDefinition()) {
4503 instruction->DeleteAndReplaceWith(instruction->RedefinedOperand());
4505 instruction->ReplaceAllUsesWith(instruction->ActualValue());
4513 void HOptimizedGraphBuilder::PushArgumentsFromEnvironment(int count) {
4514 ZoneList<HValue*> arguments(count, zone());
4515 for (int i = 0; i < count; ++i) {
4516 arguments.Add(Pop(), zone());
4519 HPushArguments* push_args = New<HPushArguments>();
4520 while (!arguments.is_empty()) {
4521 push_args->AddInput(arguments.RemoveLast());
4523 AddInstruction(push_args);
4527 template <class Instruction>
4528 HInstruction* HOptimizedGraphBuilder::PreProcessCall(Instruction* call) {
4529 PushArgumentsFromEnvironment(call->argument_count());
4534 void HOptimizedGraphBuilder::SetUpScope(Scope* scope) {
4535 // First special is HContext.
4536 HInstruction* context = Add<HContext>();
4537 environment()->BindContext(context);
4539 // Create an arguments object containing the initial parameters. Set the
4540 // initial values of parameters including "this" having parameter index 0.
4541 DCHECK_EQ(scope->num_parameters() + 1, environment()->parameter_count());
4542 HArgumentsObject* arguments_object =
4543 New<HArgumentsObject>(environment()->parameter_count());
4544 for (int i = 0; i < environment()->parameter_count(); ++i) {
4545 HInstruction* parameter = Add<HParameter>(i);
4546 arguments_object->AddArgument(parameter, zone());
4547 environment()->Bind(i, parameter);
4549 AddInstruction(arguments_object);
4550 graph()->SetArgumentsObject(arguments_object);
4552 HConstant* undefined_constant = graph()->GetConstantUndefined();
4553 // Initialize specials and locals to undefined.
4554 for (int i = environment()->parameter_count() + 1;
4555 i < environment()->length();
4557 environment()->Bind(i, undefined_constant);
4560 // Handle the arguments and arguments shadow variables specially (they do
4561 // not have declarations).
4562 if (scope->arguments() != NULL) {
4563 environment()->Bind(scope->arguments(),
4564 graph()->GetArgumentsObject());
4568 Variable* rest = scope->rest_parameter(&rest_index);
4570 return Bailout(kRestParameter);
4573 if (scope->this_function_var() != nullptr ||
4574 scope->new_target_var() != nullptr) {
4575 return Bailout(kSuperReference);
4580 void HOptimizedGraphBuilder::VisitStatements(ZoneList<Statement*>* statements) {
4581 for (int i = 0; i < statements->length(); i++) {
4582 Statement* stmt = statements->at(i);
4583 CHECK_ALIVE(Visit(stmt));
4584 if (stmt->IsJump()) break;
4589 void HOptimizedGraphBuilder::VisitBlock(Block* stmt) {
4590 DCHECK(!HasStackOverflow());
4591 DCHECK(current_block() != NULL);
4592 DCHECK(current_block()->HasPredecessor());
4594 Scope* outer_scope = scope();
4595 Scope* scope = stmt->scope();
4596 BreakAndContinueInfo break_info(stmt, outer_scope);
4598 { BreakAndContinueScope push(&break_info, this);
4599 if (scope != NULL) {
4600 if (scope->ContextLocalCount() > 0) {
4601 // Load the function object.
4602 Scope* declaration_scope = scope->DeclarationScope();
4603 HInstruction* function;
4604 HValue* outer_context = environment()->context();
4605 if (declaration_scope->is_script_scope() ||
4606 declaration_scope->is_eval_scope()) {
4607 function = new (zone())
4608 HLoadContextSlot(outer_context, Context::CLOSURE_INDEX,
4609 HLoadContextSlot::kNoCheck);
4611 function = New<HThisFunction>();
4613 AddInstruction(function);
4614 // Allocate a block context and store it to the stack frame.
4615 HInstruction* inner_context = Add<HAllocateBlockContext>(
4616 outer_context, function, scope->GetScopeInfo(isolate()));
4617 HInstruction* instr = Add<HStoreFrameContext>(inner_context);
4619 environment()->BindContext(inner_context);
4620 if (instr->HasObservableSideEffects()) {
4621 AddSimulate(stmt->EntryId(), REMOVABLE_SIMULATE);
4624 VisitDeclarations(scope->declarations());
4625 AddSimulate(stmt->DeclsId(), REMOVABLE_SIMULATE);
4627 CHECK_BAILOUT(VisitStatements(stmt->statements()));
4629 set_scope(outer_scope);
4630 if (scope != NULL && current_block() != NULL &&
4631 scope->ContextLocalCount() > 0) {
4632 HValue* inner_context = environment()->context();
4633 HValue* outer_context = Add<HLoadNamedField>(
4634 inner_context, nullptr,
4635 HObjectAccess::ForContextSlot(Context::PREVIOUS_INDEX));
4637 HInstruction* instr = Add<HStoreFrameContext>(outer_context);
4638 environment()->BindContext(outer_context);
4639 if (instr->HasObservableSideEffects()) {
4640 AddSimulate(stmt->ExitId(), REMOVABLE_SIMULATE);
4643 HBasicBlock* break_block = break_info.break_block();
4644 if (break_block != NULL) {
4645 if (current_block() != NULL) Goto(break_block);
4646 break_block->SetJoinId(stmt->ExitId());
4647 set_current_block(break_block);
4652 void HOptimizedGraphBuilder::VisitExpressionStatement(
4653 ExpressionStatement* stmt) {
4654 DCHECK(!HasStackOverflow());
4655 DCHECK(current_block() != NULL);
4656 DCHECK(current_block()->HasPredecessor());
4657 VisitForEffect(stmt->expression());
4661 void HOptimizedGraphBuilder::VisitEmptyStatement(EmptyStatement* stmt) {
4662 DCHECK(!HasStackOverflow());
4663 DCHECK(current_block() != NULL);
4664 DCHECK(current_block()->HasPredecessor());
4668 void HOptimizedGraphBuilder::VisitIfStatement(IfStatement* stmt) {
4669 DCHECK(!HasStackOverflow());
4670 DCHECK(current_block() != NULL);
4671 DCHECK(current_block()->HasPredecessor());
4672 if (stmt->condition()->ToBooleanIsTrue()) {
4673 Add<HSimulate>(stmt->ThenId());
4674 Visit(stmt->then_statement());
4675 } else if (stmt->condition()->ToBooleanIsFalse()) {
4676 Add<HSimulate>(stmt->ElseId());
4677 Visit(stmt->else_statement());
4679 HBasicBlock* cond_true = graph()->CreateBasicBlock();
4680 HBasicBlock* cond_false = graph()->CreateBasicBlock();
4681 CHECK_BAILOUT(VisitForControl(stmt->condition(), cond_true, cond_false));
4683 if (cond_true->HasPredecessor()) {
4684 cond_true->SetJoinId(stmt->ThenId());
4685 set_current_block(cond_true);
4686 CHECK_BAILOUT(Visit(stmt->then_statement()));
4687 cond_true = current_block();
4692 if (cond_false->HasPredecessor()) {
4693 cond_false->SetJoinId(stmt->ElseId());
4694 set_current_block(cond_false);
4695 CHECK_BAILOUT(Visit(stmt->else_statement()));
4696 cond_false = current_block();
4701 HBasicBlock* join = CreateJoin(cond_true, cond_false, stmt->IfId());
4702 set_current_block(join);
4707 HBasicBlock* HOptimizedGraphBuilder::BreakAndContinueScope::Get(
4708 BreakableStatement* stmt,
4713 BreakAndContinueScope* current = this;
4714 while (current != NULL && current->info()->target() != stmt) {
4715 *drop_extra += current->info()->drop_extra();
4716 current = current->next();
4718 DCHECK(current != NULL); // Always found (unless stack is malformed).
4719 *scope = current->info()->scope();
4721 if (type == BREAK) {
4722 *drop_extra += current->info()->drop_extra();
4725 HBasicBlock* block = NULL;
4728 block = current->info()->break_block();
4729 if (block == NULL) {
4730 block = current->owner()->graph()->CreateBasicBlock();
4731 current->info()->set_break_block(block);
4736 block = current->info()->continue_block();
4737 if (block == NULL) {
4738 block = current->owner()->graph()->CreateBasicBlock();
4739 current->info()->set_continue_block(block);
4748 void HOptimizedGraphBuilder::VisitContinueStatement(
4749 ContinueStatement* stmt) {
4750 DCHECK(!HasStackOverflow());
4751 DCHECK(current_block() != NULL);
4752 DCHECK(current_block()->HasPredecessor());
4753 Scope* outer_scope = NULL;
4754 Scope* inner_scope = scope();
4756 HBasicBlock* continue_block = break_scope()->Get(
4757 stmt->target(), BreakAndContinueScope::CONTINUE,
4758 &outer_scope, &drop_extra);
4759 HValue* context = environment()->context();
4761 int context_pop_count = inner_scope->ContextChainLength(outer_scope);
4762 if (context_pop_count > 0) {
4763 while (context_pop_count-- > 0) {
4764 HInstruction* context_instruction = Add<HLoadNamedField>(
4766 HObjectAccess::ForContextSlot(Context::PREVIOUS_INDEX));
4767 context = context_instruction;
4769 HInstruction* instr = Add<HStoreFrameContext>(context);
4770 if (instr->HasObservableSideEffects()) {
4771 AddSimulate(stmt->target()->EntryId(), REMOVABLE_SIMULATE);
4773 environment()->BindContext(context);
4776 Goto(continue_block);
4777 set_current_block(NULL);
4781 void HOptimizedGraphBuilder::VisitBreakStatement(BreakStatement* stmt) {
4782 DCHECK(!HasStackOverflow());
4783 DCHECK(current_block() != NULL);
4784 DCHECK(current_block()->HasPredecessor());
4785 Scope* outer_scope = NULL;
4786 Scope* inner_scope = scope();
4788 HBasicBlock* break_block = break_scope()->Get(
4789 stmt->target(), BreakAndContinueScope::BREAK,
4790 &outer_scope, &drop_extra);
4791 HValue* context = environment()->context();
4793 int context_pop_count = inner_scope->ContextChainLength(outer_scope);
4794 if (context_pop_count > 0) {
4795 while (context_pop_count-- > 0) {
4796 HInstruction* context_instruction = Add<HLoadNamedField>(
4798 HObjectAccess::ForContextSlot(Context::PREVIOUS_INDEX));
4799 context = context_instruction;
4801 HInstruction* instr = Add<HStoreFrameContext>(context);
4802 if (instr->HasObservableSideEffects()) {
4803 AddSimulate(stmt->target()->ExitId(), REMOVABLE_SIMULATE);
4805 environment()->BindContext(context);
4808 set_current_block(NULL);
4812 void HOptimizedGraphBuilder::VisitReturnStatement(ReturnStatement* stmt) {
4813 DCHECK(!HasStackOverflow());
4814 DCHECK(current_block() != NULL);
4815 DCHECK(current_block()->HasPredecessor());
4816 FunctionState* state = function_state();
4817 AstContext* context = call_context();
4818 if (context == NULL) {
4819 // Not an inlined return, so an actual one.
4820 CHECK_ALIVE(VisitForValue(stmt->expression()));
4821 HValue* result = environment()->Pop();
4822 Add<HReturn>(result);
4823 } else if (state->inlining_kind() == CONSTRUCT_CALL_RETURN) {
4824 // Return from an inlined construct call. In a test context the return value
4825 // will always evaluate to true, in a value context the return value needs
4826 // to be a JSObject.
4827 if (context->IsTest()) {
4828 TestContext* test = TestContext::cast(context);
4829 CHECK_ALIVE(VisitForEffect(stmt->expression()));
4830 Goto(test->if_true(), state);
4831 } else if (context->IsEffect()) {
4832 CHECK_ALIVE(VisitForEffect(stmt->expression()));
4833 Goto(function_return(), state);
4835 DCHECK(context->IsValue());
4836 CHECK_ALIVE(VisitForValue(stmt->expression()));
4837 HValue* return_value = Pop();
4838 HValue* receiver = environment()->arguments_environment()->Lookup(0);
4839 HHasInstanceTypeAndBranch* typecheck =
4840 New<HHasInstanceTypeAndBranch>(return_value,
4841 FIRST_SPEC_OBJECT_TYPE,
4842 LAST_SPEC_OBJECT_TYPE);
4843 HBasicBlock* if_spec_object = graph()->CreateBasicBlock();
4844 HBasicBlock* not_spec_object = graph()->CreateBasicBlock();
4845 typecheck->SetSuccessorAt(0, if_spec_object);
4846 typecheck->SetSuccessorAt(1, not_spec_object);
4847 FinishCurrentBlock(typecheck);
4848 AddLeaveInlined(if_spec_object, return_value, state);
4849 AddLeaveInlined(not_spec_object, receiver, state);
4851 } else if (state->inlining_kind() == SETTER_CALL_RETURN) {
4852 // Return from an inlined setter call. The returned value is never used, the
4853 // value of an assignment is always the value of the RHS of the assignment.
4854 CHECK_ALIVE(VisitForEffect(stmt->expression()));
4855 if (context->IsTest()) {
4856 HValue* rhs = environment()->arguments_environment()->Lookup(1);
4857 context->ReturnValue(rhs);
4858 } else if (context->IsEffect()) {
4859 Goto(function_return(), state);
4861 DCHECK(context->IsValue());
4862 HValue* rhs = environment()->arguments_environment()->Lookup(1);
4863 AddLeaveInlined(rhs, state);
4866 // Return from a normal inlined function. Visit the subexpression in the
4867 // expression context of the call.
4868 if (context->IsTest()) {
4869 TestContext* test = TestContext::cast(context);
4870 VisitForControl(stmt->expression(), test->if_true(), test->if_false());
4871 } else if (context->IsEffect()) {
4872 // Visit in value context and ignore the result. This is needed to keep
4873 // environment in sync with full-codegen since some visitors (e.g.
4874 // VisitCountOperation) use the operand stack differently depending on
4876 CHECK_ALIVE(VisitForValue(stmt->expression()));
4878 Goto(function_return(), state);
4880 DCHECK(context->IsValue());
4881 CHECK_ALIVE(VisitForValue(stmt->expression()));
4882 AddLeaveInlined(Pop(), state);
4885 set_current_block(NULL);
4889 void HOptimizedGraphBuilder::VisitWithStatement(WithStatement* stmt) {
4890 DCHECK(!HasStackOverflow());
4891 DCHECK(current_block() != NULL);
4892 DCHECK(current_block()->HasPredecessor());
4893 return Bailout(kWithStatement);
4897 void HOptimizedGraphBuilder::VisitSwitchStatement(SwitchStatement* stmt) {
4898 DCHECK(!HasStackOverflow());
4899 DCHECK(current_block() != NULL);
4900 DCHECK(current_block()->HasPredecessor());
4902 ZoneList<CaseClause*>* clauses = stmt->cases();
4903 int clause_count = clauses->length();
4904 ZoneList<HBasicBlock*> body_blocks(clause_count, zone());
4906 CHECK_ALIVE(VisitForValue(stmt->tag()));
4907 Add<HSimulate>(stmt->EntryId());
4908 HValue* tag_value = Top();
4909 Type* tag_type = stmt->tag()->bounds().lower;
4911 // 1. Build all the tests, with dangling true branches
4912 BailoutId default_id = BailoutId::None();
4913 for (int i = 0; i < clause_count; ++i) {
4914 CaseClause* clause = clauses->at(i);
4915 if (clause->is_default()) {
4916 body_blocks.Add(NULL, zone());
4917 if (default_id.IsNone()) default_id = clause->EntryId();
4921 // Generate a compare and branch.
4922 CHECK_ALIVE(VisitForValue(clause->label()));
4923 HValue* label_value = Pop();
4925 Type* label_type = clause->label()->bounds().lower;
4926 Type* combined_type = clause->compare_type();
4927 HControlInstruction* compare = BuildCompareInstruction(
4928 Token::EQ_STRICT, tag_value, label_value, tag_type, label_type,
4930 ScriptPositionToSourcePosition(stmt->tag()->position()),
4931 ScriptPositionToSourcePosition(clause->label()->position()),
4932 PUSH_BEFORE_SIMULATE, clause->id());
4934 HBasicBlock* next_test_block = graph()->CreateBasicBlock();
4935 HBasicBlock* body_block = graph()->CreateBasicBlock();
4936 body_blocks.Add(body_block, zone());
4937 compare->SetSuccessorAt(0, body_block);
4938 compare->SetSuccessorAt(1, next_test_block);
4939 FinishCurrentBlock(compare);
4941 set_current_block(body_block);
4942 Drop(1); // tag_value
4944 set_current_block(next_test_block);
4947 // Save the current block to use for the default or to join with the
4949 HBasicBlock* last_block = current_block();
4950 Drop(1); // tag_value
4952 // 2. Loop over the clauses and the linked list of tests in lockstep,
4953 // translating the clause bodies.
4954 HBasicBlock* fall_through_block = NULL;
4956 BreakAndContinueInfo break_info(stmt, scope());
4957 { BreakAndContinueScope push(&break_info, this);
4958 for (int i = 0; i < clause_count; ++i) {
4959 CaseClause* clause = clauses->at(i);
4961 // Identify the block where normal (non-fall-through) control flow
4963 HBasicBlock* normal_block = NULL;
4964 if (clause->is_default()) {
4965 if (last_block == NULL) continue;
4966 normal_block = last_block;
4967 last_block = NULL; // Cleared to indicate we've handled it.
4969 normal_block = body_blocks[i];
4972 if (fall_through_block == NULL) {
4973 set_current_block(normal_block);
4975 HBasicBlock* join = CreateJoin(fall_through_block,
4978 set_current_block(join);
4981 CHECK_BAILOUT(VisitStatements(clause->statements()));
4982 fall_through_block = current_block();
4986 // Create an up-to-3-way join. Use the break block if it exists since
4987 // it's already a join block.
4988 HBasicBlock* break_block = break_info.break_block();
4989 if (break_block == NULL) {
4990 set_current_block(CreateJoin(fall_through_block,
4994 if (fall_through_block != NULL) Goto(fall_through_block, break_block);
4995 if (last_block != NULL) Goto(last_block, break_block);
4996 break_block->SetJoinId(stmt->ExitId());
4997 set_current_block(break_block);
5002 void HOptimizedGraphBuilder::VisitLoopBody(IterationStatement* stmt,
5003 HBasicBlock* loop_entry) {
5004 Add<HSimulate>(stmt->StackCheckId());
5005 HStackCheck* stack_check =
5006 HStackCheck::cast(Add<HStackCheck>(HStackCheck::kBackwardsBranch));
5007 DCHECK(loop_entry->IsLoopHeader());
5008 loop_entry->loop_information()->set_stack_check(stack_check);
5009 CHECK_BAILOUT(Visit(stmt->body()));
5013 void HOptimizedGraphBuilder::VisitDoWhileStatement(DoWhileStatement* stmt) {
5014 DCHECK(!HasStackOverflow());
5015 DCHECK(current_block() != NULL);
5016 DCHECK(current_block()->HasPredecessor());
5017 DCHECK(current_block() != NULL);
5018 HBasicBlock* loop_entry = BuildLoopEntry(stmt);
5020 BreakAndContinueInfo break_info(stmt, scope());
5022 BreakAndContinueScope push(&break_info, this);
5023 CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry));
5025 HBasicBlock* body_exit =
5026 JoinContinue(stmt, current_block(), break_info.continue_block());
5027 HBasicBlock* loop_successor = NULL;
5028 if (body_exit != NULL && !stmt->cond()->ToBooleanIsTrue()) {
5029 set_current_block(body_exit);
5030 loop_successor = graph()->CreateBasicBlock();
5031 if (stmt->cond()->ToBooleanIsFalse()) {
5032 loop_entry->loop_information()->stack_check()->Eliminate();
5033 Goto(loop_successor);
5036 // The block for a true condition, the actual predecessor block of the
5038 body_exit = graph()->CreateBasicBlock();
5039 CHECK_BAILOUT(VisitForControl(stmt->cond(), body_exit, loop_successor));
5041 if (body_exit != NULL && body_exit->HasPredecessor()) {
5042 body_exit->SetJoinId(stmt->BackEdgeId());
5046 if (loop_successor->HasPredecessor()) {
5047 loop_successor->SetJoinId(stmt->ExitId());
5049 loop_successor = NULL;
5052 HBasicBlock* loop_exit = CreateLoop(stmt,
5056 break_info.break_block());
5057 set_current_block(loop_exit);
5061 void HOptimizedGraphBuilder::VisitWhileStatement(WhileStatement* stmt) {
5062 DCHECK(!HasStackOverflow());
5063 DCHECK(current_block() != NULL);
5064 DCHECK(current_block()->HasPredecessor());
5065 DCHECK(current_block() != NULL);
5066 HBasicBlock* loop_entry = BuildLoopEntry(stmt);
5068 // If the condition is constant true, do not generate a branch.
5069 HBasicBlock* loop_successor = NULL;
5070 if (!stmt->cond()->ToBooleanIsTrue()) {
5071 HBasicBlock* body_entry = graph()->CreateBasicBlock();
5072 loop_successor = graph()->CreateBasicBlock();
5073 CHECK_BAILOUT(VisitForControl(stmt->cond(), body_entry, loop_successor));
5074 if (body_entry->HasPredecessor()) {
5075 body_entry->SetJoinId(stmt->BodyId());
5076 set_current_block(body_entry);
5078 if (loop_successor->HasPredecessor()) {
5079 loop_successor->SetJoinId(stmt->ExitId());
5081 loop_successor = NULL;
5085 BreakAndContinueInfo break_info(stmt, scope());
5086 if (current_block() != NULL) {
5087 BreakAndContinueScope push(&break_info, this);
5088 CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry));
5090 HBasicBlock* body_exit =
5091 JoinContinue(stmt, current_block(), break_info.continue_block());
5092 HBasicBlock* loop_exit = CreateLoop(stmt,
5096 break_info.break_block());
5097 set_current_block(loop_exit);
5101 void HOptimizedGraphBuilder::VisitForStatement(ForStatement* stmt) {
5102 DCHECK(!HasStackOverflow());
5103 DCHECK(current_block() != NULL);
5104 DCHECK(current_block()->HasPredecessor());
5105 if (stmt->init() != NULL) {
5106 CHECK_ALIVE(Visit(stmt->init()));
5108 DCHECK(current_block() != NULL);
5109 HBasicBlock* loop_entry = BuildLoopEntry(stmt);
5111 HBasicBlock* loop_successor = NULL;
5112 if (stmt->cond() != NULL) {
5113 HBasicBlock* body_entry = graph()->CreateBasicBlock();
5114 loop_successor = graph()->CreateBasicBlock();
5115 CHECK_BAILOUT(VisitForControl(stmt->cond(), body_entry, loop_successor));
5116 if (body_entry->HasPredecessor()) {
5117 body_entry->SetJoinId(stmt->BodyId());
5118 set_current_block(body_entry);
5120 if (loop_successor->HasPredecessor()) {
5121 loop_successor->SetJoinId(stmt->ExitId());
5123 loop_successor = NULL;
5127 BreakAndContinueInfo break_info(stmt, scope());
5128 if (current_block() != NULL) {
5129 BreakAndContinueScope push(&break_info, this);
5130 CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry));
5132 HBasicBlock* body_exit =
5133 JoinContinue(stmt, current_block(), break_info.continue_block());
5135 if (stmt->next() != NULL && body_exit != NULL) {
5136 set_current_block(body_exit);
5137 CHECK_BAILOUT(Visit(stmt->next()));
5138 body_exit = current_block();
5141 HBasicBlock* loop_exit = CreateLoop(stmt,
5145 break_info.break_block());
5146 set_current_block(loop_exit);
5150 void HOptimizedGraphBuilder::VisitForInStatement(ForInStatement* stmt) {
5151 DCHECK(!HasStackOverflow());
5152 DCHECK(current_block() != NULL);
5153 DCHECK(current_block()->HasPredecessor());
5155 if (!FLAG_optimize_for_in) {
5156 return Bailout(kForInStatementOptimizationIsDisabled);
5159 if (!stmt->each()->IsVariableProxy() ||
5160 !stmt->each()->AsVariableProxy()->var()->IsStackLocal()) {
5161 return Bailout(kForInStatementWithNonLocalEachVariable);
5164 Variable* each_var = stmt->each()->AsVariableProxy()->var();
5166 CHECK_ALIVE(VisitForValue(stmt->enumerable()));
5167 HValue* enumerable = Top(); // Leave enumerable at the top.
5169 IfBuilder if_undefined_or_null(this);
5170 if_undefined_or_null.If<HCompareObjectEqAndBranch>(
5171 enumerable, graph()->GetConstantUndefined());
5172 if_undefined_or_null.Or();
5173 if_undefined_or_null.If<HCompareObjectEqAndBranch>(
5174 enumerable, graph()->GetConstantNull());
5175 if_undefined_or_null.ThenDeopt(Deoptimizer::kUndefinedOrNullInForIn);
5176 if_undefined_or_null.End();
5177 BuildForInBody(stmt, each_var, enumerable);
5181 void HOptimizedGraphBuilder::BuildForInBody(ForInStatement* stmt,
5183 HValue* enumerable) {
5185 HInstruction* array;
5186 HInstruction* enum_length;
5187 bool fast = stmt->for_in_type() == ForInStatement::FAST_FOR_IN;
5189 map = Add<HForInPrepareMap>(enumerable);
5190 Add<HSimulate>(stmt->PrepareId());
5192 array = Add<HForInCacheArray>(enumerable, map,
5193 DescriptorArray::kEnumCacheBridgeCacheIndex);
5194 enum_length = Add<HMapEnumLength>(map);
5196 HInstruction* index_cache = Add<HForInCacheArray>(
5197 enumerable, map, DescriptorArray::kEnumCacheBridgeIndicesCacheIndex);
5198 HForInCacheArray::cast(array)
5199 ->set_index_cache(HForInCacheArray::cast(index_cache));
5201 Add<HSimulate>(stmt->PrepareId());
5203 NoObservableSideEffectsScope no_effects(this);
5204 BuildJSObjectCheck(enumerable, 0);
5206 Add<HSimulate>(stmt->ToObjectId());
5208 map = graph()->GetConstant1();
5209 Runtime::FunctionId function_id = Runtime::kGetPropertyNamesFast;
5210 Add<HPushArguments>(enumerable);
5211 array = Add<HCallRuntime>(isolate()->factory()->empty_string(),
5212 Runtime::FunctionForId(function_id), 1);
5214 Add<HSimulate>(stmt->EnumId());
5216 Handle<Map> array_map = isolate()->factory()->fixed_array_map();
5217 HValue* check = Add<HCheckMaps>(array, array_map);
5218 enum_length = AddLoadFixedArrayLength(array, check);
5221 HInstruction* start_index = Add<HConstant>(0);
5228 HBasicBlock* loop_entry = BuildLoopEntry(stmt);
5230 // Reload the values to ensure we have up-to-date values inside of the loop.
5231 // This is relevant especially for OSR where the values don't come from the
5232 // computation above, but from the OSR entry block.
5233 enumerable = environment()->ExpressionStackAt(4);
5234 HValue* index = environment()->ExpressionStackAt(0);
5235 HValue* limit = environment()->ExpressionStackAt(1);
5237 // Check that we still have more keys.
5238 HCompareNumericAndBranch* compare_index =
5239 New<HCompareNumericAndBranch>(index, limit, Token::LT);
5240 compare_index->set_observed_input_representation(
5241 Representation::Smi(), Representation::Smi());
5243 HBasicBlock* loop_body = graph()->CreateBasicBlock();
5244 HBasicBlock* loop_successor = graph()->CreateBasicBlock();
5246 compare_index->SetSuccessorAt(0, loop_body);
5247 compare_index->SetSuccessorAt(1, loop_successor);
5248 FinishCurrentBlock(compare_index);
5250 set_current_block(loop_successor);
5253 set_current_block(loop_body);
5256 Add<HLoadKeyed>(environment()->ExpressionStackAt(2), // Enum cache.
5257 index, index, FAST_ELEMENTS);
5260 // Check if the expected map still matches that of the enumerable.
5261 // If not just deoptimize.
5262 Add<HCheckMapValue>(enumerable, environment()->ExpressionStackAt(3));
5263 Bind(each_var, key);
5265 Add<HPushArguments>(enumerable, key);
5266 Runtime::FunctionId function_id = Runtime::kForInFilter;
5267 key = Add<HCallRuntime>(isolate()->factory()->empty_string(),
5268 Runtime::FunctionForId(function_id), 2);
5270 Add<HSimulate>(stmt->FilterId());
5272 Bind(each_var, key);
5273 IfBuilder if_undefined(this);
5274 if_undefined.If<HCompareObjectEqAndBranch>(key,
5275 graph()->GetConstantUndefined());
5276 if_undefined.ThenDeopt(Deoptimizer::kUndefined);
5278 Add<HSimulate>(stmt->AssignmentId());
5281 BreakAndContinueInfo break_info(stmt, scope(), 5);
5283 BreakAndContinueScope push(&break_info, this);
5284 CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry));
5287 HBasicBlock* body_exit =
5288 JoinContinue(stmt, current_block(), break_info.continue_block());
5290 if (body_exit != NULL) {
5291 set_current_block(body_exit);
5293 HValue* current_index = Pop();
5294 Push(AddUncasted<HAdd>(current_index, graph()->GetConstant1()));
5295 body_exit = current_block();
5298 HBasicBlock* loop_exit = CreateLoop(stmt,
5302 break_info.break_block());
5304 set_current_block(loop_exit);
5308 void HOptimizedGraphBuilder::VisitForOfStatement(ForOfStatement* stmt) {
5309 DCHECK(!HasStackOverflow());
5310 DCHECK(current_block() != NULL);
5311 DCHECK(current_block()->HasPredecessor());
5312 return Bailout(kForOfStatement);
5316 void HOptimizedGraphBuilder::VisitTryCatchStatement(TryCatchStatement* stmt) {
5317 DCHECK(!HasStackOverflow());
5318 DCHECK(current_block() != NULL);
5319 DCHECK(current_block()->HasPredecessor());
5320 return Bailout(kTryCatchStatement);
5324 void HOptimizedGraphBuilder::VisitTryFinallyStatement(
5325 TryFinallyStatement* stmt) {
5326 DCHECK(!HasStackOverflow());
5327 DCHECK(current_block() != NULL);
5328 DCHECK(current_block()->HasPredecessor());
5329 return Bailout(kTryFinallyStatement);
5333 void HOptimizedGraphBuilder::VisitDebuggerStatement(DebuggerStatement* stmt) {
5334 DCHECK(!HasStackOverflow());
5335 DCHECK(current_block() != NULL);
5336 DCHECK(current_block()->HasPredecessor());
5337 return Bailout(kDebuggerStatement);
5341 void HOptimizedGraphBuilder::VisitCaseClause(CaseClause* clause) {
5346 void HOptimizedGraphBuilder::VisitFunctionLiteral(FunctionLiteral* expr) {
5347 DCHECK(!HasStackOverflow());
5348 DCHECK(current_block() != NULL);
5349 DCHECK(current_block()->HasPredecessor());
5350 Handle<SharedFunctionInfo> shared_info = Compiler::GetSharedFunctionInfo(
5351 expr, current_info()->script(), top_info());
5352 // We also have a stack overflow if the recursive compilation did.
5353 if (HasStackOverflow()) return;
5354 HFunctionLiteral* instr =
5355 New<HFunctionLiteral>(shared_info, expr->pretenure());
5356 return ast_context()->ReturnInstruction(instr, expr->id());
5360 void HOptimizedGraphBuilder::VisitClassLiteral(ClassLiteral* lit) {
5361 DCHECK(!HasStackOverflow());
5362 DCHECK(current_block() != NULL);
5363 DCHECK(current_block()->HasPredecessor());
5364 return Bailout(kClassLiteral);
5368 void HOptimizedGraphBuilder::VisitNativeFunctionLiteral(
5369 NativeFunctionLiteral* expr) {
5370 DCHECK(!HasStackOverflow());
5371 DCHECK(current_block() != NULL);
5372 DCHECK(current_block()->HasPredecessor());
5373 return Bailout(kNativeFunctionLiteral);
5377 void HOptimizedGraphBuilder::VisitConditional(Conditional* expr) {
5378 DCHECK(!HasStackOverflow());
5379 DCHECK(current_block() != NULL);
5380 DCHECK(current_block()->HasPredecessor());
5381 HBasicBlock* cond_true = graph()->CreateBasicBlock();
5382 HBasicBlock* cond_false = graph()->CreateBasicBlock();
5383 CHECK_BAILOUT(VisitForControl(expr->condition(), cond_true, cond_false));
5385 // Visit the true and false subexpressions in the same AST context as the
5386 // whole expression.
5387 if (cond_true->HasPredecessor()) {
5388 cond_true->SetJoinId(expr->ThenId());
5389 set_current_block(cond_true);
5390 CHECK_BAILOUT(Visit(expr->then_expression()));
5391 cond_true = current_block();
5396 if (cond_false->HasPredecessor()) {
5397 cond_false->SetJoinId(expr->ElseId());
5398 set_current_block(cond_false);
5399 CHECK_BAILOUT(Visit(expr->else_expression()));
5400 cond_false = current_block();
5405 if (!ast_context()->IsTest()) {
5406 HBasicBlock* join = CreateJoin(cond_true, cond_false, expr->id());
5407 set_current_block(join);
5408 if (join != NULL && !ast_context()->IsEffect()) {
5409 return ast_context()->ReturnValue(Pop());
5415 HOptimizedGraphBuilder::GlobalPropertyAccess
5416 HOptimizedGraphBuilder::LookupGlobalProperty(Variable* var, LookupIterator* it,
5417 PropertyAccessType access_type) {
5418 if (var->is_this() || !current_info()->has_global_object()) {
5422 switch (it->state()) {
5423 case LookupIterator::ACCESSOR:
5424 case LookupIterator::ACCESS_CHECK:
5425 case LookupIterator::INTERCEPTOR:
5426 case LookupIterator::INTEGER_INDEXED_EXOTIC:
5427 case LookupIterator::NOT_FOUND:
5429 case LookupIterator::DATA:
5430 if (access_type == STORE && it->IsReadOnly()) return kUseGeneric;
5432 case LookupIterator::JSPROXY:
5433 case LookupIterator::TRANSITION:
5441 HValue* HOptimizedGraphBuilder::BuildContextChainWalk(Variable* var) {
5442 DCHECK(var->IsContextSlot());
5443 HValue* context = environment()->context();
5444 int length = scope()->ContextChainLength(var->scope());
5445 while (length-- > 0) {
5446 context = Add<HLoadNamedField>(
5448 HObjectAccess::ForContextSlot(Context::PREVIOUS_INDEX));
5454 void HOptimizedGraphBuilder::VisitVariableProxy(VariableProxy* expr) {
5455 DCHECK(!HasStackOverflow());
5456 DCHECK(current_block() != NULL);
5457 DCHECK(current_block()->HasPredecessor());
5458 Variable* variable = expr->var();
5459 switch (variable->location()) {
5460 case VariableLocation::GLOBAL:
5461 case VariableLocation::UNALLOCATED: {
5462 if (IsLexicalVariableMode(variable->mode())) {
5463 // TODO(rossberg): should this be an DCHECK?
5464 return Bailout(kReferenceToGlobalLexicalVariable);
5466 // Handle known global constants like 'undefined' specially to avoid a
5467 // load from a global cell for them.
5468 Handle<Object> constant_value =
5469 isolate()->factory()->GlobalConstantFor(variable->name());
5470 if (!constant_value.is_null()) {
5471 HConstant* instr = New<HConstant>(constant_value);
5472 return ast_context()->ReturnInstruction(instr, expr->id());
5475 Handle<GlobalObject> global(current_info()->global_object());
5477 // Lookup in script contexts.
5479 Handle<ScriptContextTable> script_contexts(
5480 global->native_context()->script_context_table());
5481 ScriptContextTable::LookupResult lookup;
5482 if (ScriptContextTable::Lookup(script_contexts, variable->name(),
5484 Handle<Context> script_context = ScriptContextTable::GetContext(
5485 script_contexts, lookup.context_index);
5486 Handle<Object> current_value =
5487 FixedArray::get(script_context, lookup.slot_index);
5489 // If the values is not the hole, it will stay initialized,
5490 // so no need to generate a check.
5491 if (*current_value == *isolate()->factory()->the_hole_value()) {
5492 return Bailout(kReferenceToUninitializedVariable);
5494 HInstruction* result = New<HLoadNamedField>(
5495 Add<HConstant>(script_context), nullptr,
5496 HObjectAccess::ForContextSlot(lookup.slot_index));
5497 return ast_context()->ReturnInstruction(result, expr->id());
5501 LookupIterator it(global, variable->name(), LookupIterator::OWN);
5502 GlobalPropertyAccess type = LookupGlobalProperty(variable, &it, LOAD);
5504 if (type == kUseCell) {
5505 Handle<PropertyCell> cell = it.GetPropertyCell();
5506 top_info()->dependencies()->AssumePropertyCell(cell);
5507 auto cell_type = it.property_details().cell_type();
5508 if (cell_type == PropertyCellType::kConstant ||
5509 cell_type == PropertyCellType::kUndefined) {
5510 Handle<Object> constant_object(cell->value(), isolate());
5511 if (constant_object->IsConsString()) {
5513 String::Flatten(Handle<String>::cast(constant_object));
5515 HConstant* constant = New<HConstant>(constant_object);
5516 return ast_context()->ReturnInstruction(constant, expr->id());
5518 auto access = HObjectAccess::ForPropertyCellValue();
5519 UniqueSet<Map>* field_maps = nullptr;
5520 if (cell_type == PropertyCellType::kConstantType) {
5521 switch (cell->GetConstantType()) {
5522 case PropertyCellConstantType::kSmi:
5523 access = access.WithRepresentation(Representation::Smi());
5525 case PropertyCellConstantType::kStableMap: {
5526 // Check that the map really is stable. The heap object could
5527 // have mutated without the cell updating state. In that case,
5528 // make no promises about the loaded value except that it's a
5531 access.WithRepresentation(Representation::HeapObject());
5532 Handle<Map> map(HeapObject::cast(cell->value())->map());
5533 if (map->is_stable()) {
5534 field_maps = new (zone())
5535 UniqueSet<Map>(Unique<Map>::CreateImmovable(map), zone());
5541 HConstant* cell_constant = Add<HConstant>(cell);
5542 HLoadNamedField* instr;
5543 if (field_maps == nullptr) {
5544 instr = New<HLoadNamedField>(cell_constant, nullptr, access);
5546 instr = New<HLoadNamedField>(cell_constant, nullptr, access,
5547 field_maps, HType::HeapObject());
5549 instr->ClearDependsOnFlag(kInobjectFields);
5550 instr->SetDependsOnFlag(kGlobalVars);
5551 return ast_context()->ReturnInstruction(instr, expr->id());
5553 } else if (variable->IsGlobalSlot()) {
5554 DCHECK(variable->index() > 0);
5555 DCHECK(variable->IsStaticGlobalObjectProperty());
5556 int slot_index = variable->index();
5557 int depth = scope()->ContextChainLength(variable->scope());
5559 HLoadGlobalViaContext* instr =
5560 New<HLoadGlobalViaContext>(depth, slot_index);
5561 return ast_context()->ReturnInstruction(instr, expr->id());
5564 HValue* global_object = Add<HLoadNamedField>(
5566 HObjectAccess::ForContextSlot(Context::GLOBAL_OBJECT_INDEX));
5567 HLoadGlobalGeneric* instr = New<HLoadGlobalGeneric>(
5568 global_object, variable->name(), ast_context()->typeof_mode());
5569 instr->SetVectorAndSlot(handle(current_feedback_vector(), isolate()),
5570 expr->VariableFeedbackSlot());
5571 return ast_context()->ReturnInstruction(instr, expr->id());
5575 case VariableLocation::PARAMETER:
5576 case VariableLocation::LOCAL: {
5577 HValue* value = LookupAndMakeLive(variable);
5578 if (value == graph()->GetConstantHole()) {
5579 DCHECK(IsDeclaredVariableMode(variable->mode()) &&
5580 variable->mode() != VAR);
5581 return Bailout(kReferenceToUninitializedVariable);
5583 return ast_context()->ReturnValue(value);
5586 case VariableLocation::CONTEXT: {
5587 HValue* context = BuildContextChainWalk(variable);
5588 HLoadContextSlot::Mode mode;
5589 switch (variable->mode()) {
5592 mode = HLoadContextSlot::kCheckDeoptimize;
5595 mode = HLoadContextSlot::kCheckReturnUndefined;
5598 mode = HLoadContextSlot::kNoCheck;
5601 HLoadContextSlot* instr =
5602 new(zone()) HLoadContextSlot(context, variable->index(), mode);
5603 return ast_context()->ReturnInstruction(instr, expr->id());
5606 case VariableLocation::LOOKUP:
5607 return Bailout(kReferenceToAVariableWhichRequiresDynamicLookup);
5612 void HOptimizedGraphBuilder::VisitLiteral(Literal* expr) {
5613 DCHECK(!HasStackOverflow());
5614 DCHECK(current_block() != NULL);
5615 DCHECK(current_block()->HasPredecessor());
5616 HConstant* instr = New<HConstant>(expr->value());
5617 return ast_context()->ReturnInstruction(instr, expr->id());
5621 void HOptimizedGraphBuilder::VisitRegExpLiteral(RegExpLiteral* expr) {
5622 DCHECK(!HasStackOverflow());
5623 DCHECK(current_block() != NULL);
5624 DCHECK(current_block()->HasPredecessor());
5625 Handle<JSFunction> closure = function_state()->compilation_info()->closure();
5626 Handle<FixedArray> literals(closure->literals());
5627 HRegExpLiteral* instr = New<HRegExpLiteral>(literals,
5630 expr->literal_index());
5631 return ast_context()->ReturnInstruction(instr, expr->id());
5635 static bool CanInlinePropertyAccess(Handle<Map> map) {
5636 if (map->instance_type() == HEAP_NUMBER_TYPE) return true;
5637 if (map->instance_type() < FIRST_NONSTRING_TYPE) return true;
5638 return map->IsJSObjectMap() && !map->is_dictionary_map() &&
5639 !map->has_named_interceptor() &&
5640 // TODO(verwaest): Whitelist contexts to which we have access.
5641 !map->is_access_check_needed();
5645 // Determines whether the given array or object literal boilerplate satisfies
5646 // all limits to be considered for fast deep-copying and computes the total
5647 // size of all objects that are part of the graph.
5648 static bool IsFastLiteral(Handle<JSObject> boilerplate,
5650 int* max_properties) {
5651 if (boilerplate->map()->is_deprecated() &&
5652 !JSObject::TryMigrateInstance(boilerplate)) {
5656 DCHECK(max_depth >= 0 && *max_properties >= 0);
5657 if (max_depth == 0) return false;
5659 Isolate* isolate = boilerplate->GetIsolate();
5660 Handle<FixedArrayBase> elements(boilerplate->elements());
5661 if (elements->length() > 0 &&
5662 elements->map() != isolate->heap()->fixed_cow_array_map()) {
5663 if (boilerplate->HasFastSmiOrObjectElements()) {
5664 Handle<FixedArray> fast_elements = Handle<FixedArray>::cast(elements);
5665 int length = elements->length();
5666 for (int i = 0; i < length; i++) {
5667 if ((*max_properties)-- == 0) return false;
5668 Handle<Object> value(fast_elements->get(i), isolate);
5669 if (value->IsJSObject()) {
5670 Handle<JSObject> value_object = Handle<JSObject>::cast(value);
5671 if (!IsFastLiteral(value_object,
5678 } else if (!boilerplate->HasFastDoubleElements()) {
5683 Handle<FixedArray> properties(boilerplate->properties());
5684 if (properties->length() > 0) {
5687 Handle<DescriptorArray> descriptors(
5688 boilerplate->map()->instance_descriptors());
5689 int limit = boilerplate->map()->NumberOfOwnDescriptors();
5690 for (int i = 0; i < limit; i++) {
5691 PropertyDetails details = descriptors->GetDetails(i);
5692 if (details.type() != DATA) continue;
5693 if ((*max_properties)-- == 0) return false;
5694 FieldIndex field_index = FieldIndex::ForDescriptor(boilerplate->map(), i);
5695 if (boilerplate->IsUnboxedDoubleField(field_index)) continue;
5696 Handle<Object> value(boilerplate->RawFastPropertyAt(field_index),
5698 if (value->IsJSObject()) {
5699 Handle<JSObject> value_object = Handle<JSObject>::cast(value);
5700 if (!IsFastLiteral(value_object,
5712 void HOptimizedGraphBuilder::VisitObjectLiteral(ObjectLiteral* expr) {
5713 DCHECK(!HasStackOverflow());
5714 DCHECK(current_block() != NULL);
5715 DCHECK(current_block()->HasPredecessor());
5717 Handle<JSFunction> closure = function_state()->compilation_info()->closure();
5718 HInstruction* literal;
5720 // Check whether to use fast or slow deep-copying for boilerplate.
5721 int max_properties = kMaxFastLiteralProperties;
5722 Handle<Object> literals_cell(closure->literals()->get(expr->literal_index()),
5724 Handle<AllocationSite> site;
5725 Handle<JSObject> boilerplate;
5726 if (!literals_cell->IsUndefined()) {
5727 // Retrieve the boilerplate
5728 site = Handle<AllocationSite>::cast(literals_cell);
5729 boilerplate = Handle<JSObject>(JSObject::cast(site->transition_info()),
5733 if (!boilerplate.is_null() &&
5734 IsFastLiteral(boilerplate, kMaxFastLiteralDepth, &max_properties)) {
5735 AllocationSiteUsageContext site_context(isolate(), site, false);
5736 site_context.EnterNewScope();
5737 literal = BuildFastLiteral(boilerplate, &site_context);
5738 site_context.ExitScope(site, boilerplate);
5740 NoObservableSideEffectsScope no_effects(this);
5741 Handle<FixedArray> closure_literals(closure->literals(), isolate());
5742 Handle<FixedArray> constant_properties = expr->constant_properties();
5743 int literal_index = expr->literal_index();
5744 int flags = expr->ComputeFlags(true);
5746 Add<HPushArguments>(Add<HConstant>(closure_literals),
5747 Add<HConstant>(literal_index),
5748 Add<HConstant>(constant_properties),
5749 Add<HConstant>(flags));
5751 Runtime::FunctionId function_id = Runtime::kCreateObjectLiteral;
5752 literal = Add<HCallRuntime>(isolate()->factory()->empty_string(),
5753 Runtime::FunctionForId(function_id),
5757 // The object is expected in the bailout environment during computation
5758 // of the property values and is the value of the entire expression.
5761 for (int i = 0; i < expr->properties()->length(); i++) {
5762 ObjectLiteral::Property* property = expr->properties()->at(i);
5763 if (property->is_computed_name()) return Bailout(kComputedPropertyName);
5764 if (property->IsCompileTimeValue()) continue;
5766 Literal* key = property->key()->AsLiteral();
5767 Expression* value = property->value();
5769 switch (property->kind()) {
5770 case ObjectLiteral::Property::MATERIALIZED_LITERAL:
5771 DCHECK(!CompileTimeValue::IsCompileTimeValue(value));
5773 case ObjectLiteral::Property::COMPUTED:
5774 // It is safe to use [[Put]] here because the boilerplate already
5775 // contains computed properties with an uninitialized value.
5776 if (key->value()->IsInternalizedString()) {
5777 if (property->emit_store()) {
5778 CHECK_ALIVE(VisitForValue(value));
5779 HValue* value = Pop();
5781 // Add [[HomeObject]] to function literals.
5782 if (FunctionLiteral::NeedsHomeObject(property->value())) {
5783 Handle<Symbol> sym = isolate()->factory()->home_object_symbol();
5784 HInstruction* store_home = BuildKeyedGeneric(
5785 STORE, NULL, value, Add<HConstant>(sym), literal);
5786 AddInstruction(store_home);
5787 DCHECK(store_home->HasObservableSideEffects());
5788 Add<HSimulate>(property->value()->id(), REMOVABLE_SIMULATE);
5791 Handle<Map> map = property->GetReceiverType();
5792 Handle<String> name = key->AsPropertyName();
5794 if (map.is_null()) {
5795 // If we don't know the monomorphic type, do a generic store.
5796 CHECK_ALIVE(store = BuildNamedGeneric(
5797 STORE, NULL, literal, name, value));
5799 PropertyAccessInfo info(this, STORE, map, name);
5800 if (info.CanAccessMonomorphic()) {
5801 HValue* checked_literal = Add<HCheckMaps>(literal, map);
5802 DCHECK(!info.IsAccessorConstant());
5803 store = BuildMonomorphicAccess(
5804 &info, literal, checked_literal, value,
5805 BailoutId::None(), BailoutId::None());
5807 CHECK_ALIVE(store = BuildNamedGeneric(
5808 STORE, NULL, literal, name, value));
5811 if (store->IsInstruction()) {
5812 AddInstruction(HInstruction::cast(store));
5814 DCHECK(store->HasObservableSideEffects());
5815 Add<HSimulate>(key->id(), REMOVABLE_SIMULATE);
5817 CHECK_ALIVE(VisitForEffect(value));
5822 case ObjectLiteral::Property::PROTOTYPE:
5823 case ObjectLiteral::Property::SETTER:
5824 case ObjectLiteral::Property::GETTER:
5825 return Bailout(kObjectLiteralWithComplexProperty);
5826 default: UNREACHABLE();
5830 if (expr->has_function()) {
5831 // Return the result of the transformation to fast properties
5832 // instead of the original since this operation changes the map
5833 // of the object. This makes sure that the original object won't
5834 // be used by other optimized code before it is transformed
5835 // (e.g. because of code motion).
5836 HToFastProperties* result = Add<HToFastProperties>(Pop());
5837 return ast_context()->ReturnValue(result);
5839 return ast_context()->ReturnValue(Pop());
5844 void HOptimizedGraphBuilder::VisitArrayLiteral(ArrayLiteral* expr) {
5845 DCHECK(!HasStackOverflow());
5846 DCHECK(current_block() != NULL);
5847 DCHECK(current_block()->HasPredecessor());
5848 expr->BuildConstantElements(isolate());
5849 ZoneList<Expression*>* subexprs = expr->values();
5850 int length = subexprs->length();
5851 HInstruction* literal;
5853 Handle<AllocationSite> site;
5854 Handle<FixedArray> literals(environment()->closure()->literals(), isolate());
5855 bool uninitialized = false;
5856 Handle<Object> literals_cell(literals->get(expr->literal_index()),
5858 Handle<JSObject> boilerplate_object;
5859 if (literals_cell->IsUndefined()) {
5860 uninitialized = true;
5861 Handle<Object> raw_boilerplate;
5862 ASSIGN_RETURN_ON_EXCEPTION_VALUE(
5863 isolate(), raw_boilerplate,
5864 Runtime::CreateArrayLiteralBoilerplate(
5865 isolate(), literals, expr->constant_elements(),
5866 is_strong(function_language_mode())),
5867 Bailout(kArrayBoilerplateCreationFailed));
5869 boilerplate_object = Handle<JSObject>::cast(raw_boilerplate);
5870 AllocationSiteCreationContext creation_context(isolate());
5871 site = creation_context.EnterNewScope();
5872 if (JSObject::DeepWalk(boilerplate_object, &creation_context).is_null()) {
5873 return Bailout(kArrayBoilerplateCreationFailed);
5875 creation_context.ExitScope(site, boilerplate_object);
5876 literals->set(expr->literal_index(), *site);
5878 if (boilerplate_object->elements()->map() ==
5879 isolate()->heap()->fixed_cow_array_map()) {
5880 isolate()->counters()->cow_arrays_created_runtime()->Increment();
5883 DCHECK(literals_cell->IsAllocationSite());
5884 site = Handle<AllocationSite>::cast(literals_cell);
5885 boilerplate_object = Handle<JSObject>(
5886 JSObject::cast(site->transition_info()), isolate());
5889 DCHECK(!boilerplate_object.is_null());
5890 DCHECK(site->SitePointsToLiteral());
5892 ElementsKind boilerplate_elements_kind =
5893 boilerplate_object->GetElementsKind();
5895 // Check whether to use fast or slow deep-copying for boilerplate.
5896 int max_properties = kMaxFastLiteralProperties;
5897 if (IsFastLiteral(boilerplate_object,
5898 kMaxFastLiteralDepth,
5900 AllocationSiteUsageContext site_context(isolate(), site, false);
5901 site_context.EnterNewScope();
5902 literal = BuildFastLiteral(boilerplate_object, &site_context);
5903 site_context.ExitScope(site, boilerplate_object);
5905 NoObservableSideEffectsScope no_effects(this);
5906 // Boilerplate already exists and constant elements are never accessed,
5907 // pass an empty fixed array to the runtime function instead.
5908 Handle<FixedArray> constants = isolate()->factory()->empty_fixed_array();
5909 int literal_index = expr->literal_index();
5910 int flags = expr->ComputeFlags(true);
5912 Add<HPushArguments>(Add<HConstant>(literals),
5913 Add<HConstant>(literal_index),
5914 Add<HConstant>(constants),
5915 Add<HConstant>(flags));
5917 Runtime::FunctionId function_id = Runtime::kCreateArrayLiteral;
5918 literal = Add<HCallRuntime>(isolate()->factory()->empty_string(),
5919 Runtime::FunctionForId(function_id),
5922 // Register to deopt if the boilerplate ElementsKind changes.
5923 top_info()->dependencies()->AssumeTransitionStable(site);
5926 // The array is expected in the bailout environment during computation
5927 // of the property values and is the value of the entire expression.
5929 // The literal index is on the stack, too.
5930 Push(Add<HConstant>(expr->literal_index()));
5932 HInstruction* elements = NULL;
5934 for (int i = 0; i < length; i++) {
5935 Expression* subexpr = subexprs->at(i);
5936 if (subexpr->IsSpread()) {
5937 return Bailout(kSpread);
5940 // If the subexpression is a literal or a simple materialized literal it
5941 // is already set in the cloned array.
5942 if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
5944 CHECK_ALIVE(VisitForValue(subexpr));
5945 HValue* value = Pop();
5946 if (!Smi::IsValid(i)) return Bailout(kNonSmiKeyInArrayLiteral);
5948 elements = AddLoadElements(literal);
5950 HValue* key = Add<HConstant>(i);
5952 switch (boilerplate_elements_kind) {
5953 case FAST_SMI_ELEMENTS:
5954 case FAST_HOLEY_SMI_ELEMENTS:
5956 case FAST_HOLEY_ELEMENTS:
5957 case FAST_DOUBLE_ELEMENTS:
5958 case FAST_HOLEY_DOUBLE_ELEMENTS: {
5959 HStoreKeyed* instr = Add<HStoreKeyed>(elements, key, value,
5960 boilerplate_elements_kind);
5961 instr->SetUninitialized(uninitialized);
5969 Add<HSimulate>(expr->GetIdForElement(i));
5972 Drop(1); // array literal index
5973 return ast_context()->ReturnValue(Pop());
5977 HCheckMaps* HOptimizedGraphBuilder::AddCheckMap(HValue* object,
5979 BuildCheckHeapObject(object);
5980 return Add<HCheckMaps>(object, map);
5984 HInstruction* HOptimizedGraphBuilder::BuildLoadNamedField(
5985 PropertyAccessInfo* info,
5986 HValue* checked_object) {
5987 // See if this is a load for an immutable property
5988 if (checked_object->ActualValue()->IsConstant()) {
5989 Handle<Object> object(
5990 HConstant::cast(checked_object->ActualValue())->handle(isolate()));
5992 if (object->IsJSObject()) {
5993 LookupIterator it(object, info->name(),
5994 LookupIterator::OWN_SKIP_INTERCEPTOR);
5995 Handle<Object> value = JSReceiver::GetDataProperty(&it);
5996 if (it.IsFound() && it.IsReadOnly() && !it.IsConfigurable()) {
5997 return New<HConstant>(value);
6002 HObjectAccess access = info->access();
6003 if (access.representation().IsDouble() &&
6004 (!FLAG_unbox_double_fields || !access.IsInobject())) {
6005 // Load the heap number.
6006 checked_object = Add<HLoadNamedField>(
6007 checked_object, nullptr,
6008 access.WithRepresentation(Representation::Tagged()));
6009 // Load the double value from it.
6010 access = HObjectAccess::ForHeapNumberValue();
6013 SmallMapList* map_list = info->field_maps();
6014 if (map_list->length() == 0) {
6015 return New<HLoadNamedField>(checked_object, checked_object, access);
6018 UniqueSet<Map>* maps = new(zone()) UniqueSet<Map>(map_list->length(), zone());
6019 for (int i = 0; i < map_list->length(); ++i) {
6020 maps->Add(Unique<Map>::CreateImmovable(map_list->at(i)), zone());
6022 return New<HLoadNamedField>(
6023 checked_object, checked_object, access, maps, info->field_type());
6027 HInstruction* HOptimizedGraphBuilder::BuildStoreNamedField(
6028 PropertyAccessInfo* info,
6029 HValue* checked_object,
6031 bool transition_to_field = info->IsTransition();
6032 // TODO(verwaest): Move this logic into PropertyAccessInfo.
6033 HObjectAccess field_access = info->access();
6035 HStoreNamedField *instr;
6036 if (field_access.representation().IsDouble() &&
6037 (!FLAG_unbox_double_fields || !field_access.IsInobject())) {
6038 HObjectAccess heap_number_access =
6039 field_access.WithRepresentation(Representation::Tagged());
6040 if (transition_to_field) {
6041 // The store requires a mutable HeapNumber to be allocated.
6042 NoObservableSideEffectsScope no_side_effects(this);
6043 HInstruction* heap_number_size = Add<HConstant>(HeapNumber::kSize);
6045 // TODO(hpayer): Allocation site pretenuring support.
6046 HInstruction* heap_number = Add<HAllocate>(heap_number_size,
6047 HType::HeapObject(),
6049 MUTABLE_HEAP_NUMBER_TYPE);
6050 AddStoreMapConstant(
6051 heap_number, isolate()->factory()->mutable_heap_number_map());
6052 Add<HStoreNamedField>(heap_number, HObjectAccess::ForHeapNumberValue(),
6054 instr = New<HStoreNamedField>(checked_object->ActualValue(),
6058 // Already holds a HeapNumber; load the box and write its value field.
6059 HInstruction* heap_number =
6060 Add<HLoadNamedField>(checked_object, nullptr, heap_number_access);
6061 instr = New<HStoreNamedField>(heap_number,
6062 HObjectAccess::ForHeapNumberValue(),
6063 value, STORE_TO_INITIALIZED_ENTRY);
6066 if (field_access.representation().IsHeapObject()) {
6067 BuildCheckHeapObject(value);
6070 if (!info->field_maps()->is_empty()) {
6071 DCHECK(field_access.representation().IsHeapObject());
6072 value = Add<HCheckMaps>(value, info->field_maps());
6075 // This is a normal store.
6076 instr = New<HStoreNamedField>(
6077 checked_object->ActualValue(), field_access, value,
6078 transition_to_field ? INITIALIZING_STORE : STORE_TO_INITIALIZED_ENTRY);
6081 if (transition_to_field) {
6082 Handle<Map> transition(info->transition());
6083 DCHECK(!transition->is_deprecated());
6084 instr->SetTransition(Add<HConstant>(transition));
6090 bool HOptimizedGraphBuilder::PropertyAccessInfo::IsCompatible(
6091 PropertyAccessInfo* info) {
6092 if (!CanInlinePropertyAccess(map_)) return false;
6094 // Currently only handle Type::Number as a polymorphic case.
6095 // TODO(verwaest): Support monomorphic handling of numbers with a HCheckNumber
6097 if (IsNumberType()) return false;
6099 // Values are only compatible for monomorphic load if they all behave the same
6100 // regarding value wrappers.
6101 if (IsValueWrapped() != info->IsValueWrapped()) return false;
6103 if (!LookupDescriptor()) return false;
6106 return (!info->IsFound() || info->has_holder()) &&
6107 map()->prototype() == info->map()->prototype();
6110 // Mismatch if the other access info found the property in the prototype
6112 if (info->has_holder()) return false;
6114 if (IsAccessorConstant()) {
6115 return accessor_.is_identical_to(info->accessor_) &&
6116 api_holder_.is_identical_to(info->api_holder_);
6119 if (IsDataConstant()) {
6120 return constant_.is_identical_to(info->constant_);
6124 if (!info->IsData()) return false;
6126 Representation r = access_.representation();
6128 if (!info->access_.representation().IsCompatibleForLoad(r)) return false;
6130 if (!info->access_.representation().IsCompatibleForStore(r)) return false;
6132 if (info->access_.offset() != access_.offset()) return false;
6133 if (info->access_.IsInobject() != access_.IsInobject()) return false;
6135 if (field_maps_.is_empty()) {
6136 info->field_maps_.Clear();
6137 } else if (!info->field_maps_.is_empty()) {
6138 for (int i = 0; i < field_maps_.length(); ++i) {
6139 info->field_maps_.AddMapIfMissing(field_maps_.at(i), info->zone());
6141 info->field_maps_.Sort();
6144 // We can only merge stores that agree on their field maps. The comparison
6145 // below is safe, since we keep the field maps sorted.
6146 if (field_maps_.length() != info->field_maps_.length()) return false;
6147 for (int i = 0; i < field_maps_.length(); ++i) {
6148 if (!field_maps_.at(i).is_identical_to(info->field_maps_.at(i))) {
6153 info->GeneralizeRepresentation(r);
6154 info->field_type_ = info->field_type_.Combine(field_type_);
6159 bool HOptimizedGraphBuilder::PropertyAccessInfo::LookupDescriptor() {
6160 if (!map_->IsJSObjectMap()) return true;
6161 LookupDescriptor(*map_, *name_);
6162 return LoadResult(map_);
6166 bool HOptimizedGraphBuilder::PropertyAccessInfo::LoadResult(Handle<Map> map) {
6167 if (!IsLoad() && IsProperty() && IsReadOnly()) {
6172 // Construct the object field access.
6173 int index = GetLocalFieldIndexFromMap(map);
6174 access_ = HObjectAccess::ForField(map, index, representation(), name_);
6176 // Load field map for heap objects.
6177 return LoadFieldMaps(map);
6178 } else if (IsAccessorConstant()) {
6179 Handle<Object> accessors = GetAccessorsFromMap(map);
6180 if (!accessors->IsAccessorPair()) return false;
6181 Object* raw_accessor =
6182 IsLoad() ? Handle<AccessorPair>::cast(accessors)->getter()
6183 : Handle<AccessorPair>::cast(accessors)->setter();
6184 if (!raw_accessor->IsJSFunction()) return false;
6185 Handle<JSFunction> accessor = handle(JSFunction::cast(raw_accessor));
6186 if (accessor->shared()->IsApiFunction()) {
6187 CallOptimization call_optimization(accessor);
6188 if (call_optimization.is_simple_api_call()) {
6189 CallOptimization::HolderLookup holder_lookup;
6191 call_optimization.LookupHolderOfExpectedType(map_, &holder_lookup);
6194 accessor_ = accessor;
6195 } else if (IsDataConstant()) {
6196 constant_ = GetConstantFromMap(map);
6203 bool HOptimizedGraphBuilder::PropertyAccessInfo::LoadFieldMaps(
6205 // Clear any previously collected field maps/type.
6206 field_maps_.Clear();
6207 field_type_ = HType::Tagged();
6209 // Figure out the field type from the accessor map.
6210 Handle<HeapType> field_type = GetFieldTypeFromMap(map);
6212 // Collect the (stable) maps from the field type.
6213 int num_field_maps = field_type->NumClasses();
6214 if (num_field_maps > 0) {
6215 DCHECK(access_.representation().IsHeapObject());
6216 field_maps_.Reserve(num_field_maps, zone());
6217 HeapType::Iterator<Map> it = field_type->Classes();
6218 while (!it.Done()) {
6219 Handle<Map> field_map = it.Current();
6220 if (!field_map->is_stable()) {
6221 field_maps_.Clear();
6224 field_maps_.Add(field_map, zone());
6229 if (field_maps_.is_empty()) {
6230 // Store is not safe if the field map was cleared.
6231 return IsLoad() || !field_type->Is(HeapType::None());
6235 DCHECK_EQ(num_field_maps, field_maps_.length());
6237 // Determine field HType from field HeapType.
6238 field_type_ = HType::FromType<HeapType>(field_type);
6239 DCHECK(field_type_.IsHeapObject());
6241 // Add dependency on the map that introduced the field.
6242 top_info()->dependencies()->AssumeFieldType(GetFieldOwnerFromMap(map));
6247 bool HOptimizedGraphBuilder::PropertyAccessInfo::LookupInPrototypes() {
6248 Handle<Map> map = this->map();
6250 while (map->prototype()->IsJSObject()) {
6251 holder_ = handle(JSObject::cast(map->prototype()));
6252 if (holder_->map()->is_deprecated()) {
6253 JSObject::TryMigrateInstance(holder_);
6255 map = Handle<Map>(holder_->map());
6256 if (!CanInlinePropertyAccess(map)) {
6260 LookupDescriptor(*map, *name_);
6261 if (IsFound()) return LoadResult(map);
6265 return !map->prototype()->IsJSReceiver();
6269 bool HOptimizedGraphBuilder::PropertyAccessInfo::IsIntegerIndexedExotic() {
6270 InstanceType instance_type = map_->instance_type();
6271 return instance_type == JS_TYPED_ARRAY_TYPE &&
6272 IsSpecialIndex(isolate()->unicode_cache(), *name_);
6276 bool HOptimizedGraphBuilder::PropertyAccessInfo::CanAccessMonomorphic() {
6277 if (!CanInlinePropertyAccess(map_)) return false;
6278 if (IsJSObjectFieldAccessor()) return IsLoad();
6279 if (IsJSArrayBufferViewFieldAccessor()) return IsLoad();
6280 if (map_->function_with_prototype() && !map_->has_non_instance_prototype() &&
6281 name_.is_identical_to(isolate()->factory()->prototype_string())) {
6284 if (!LookupDescriptor()) return false;
6285 if (IsFound()) return IsLoad() || !IsReadOnly();
6286 if (IsIntegerIndexedExotic()) return false;
6287 if (!LookupInPrototypes()) return false;
6288 if (IsLoad()) return true;
6290 if (IsAccessorConstant()) return true;
6291 LookupTransition(*map_, *name_, NONE);
6292 if (IsTransitionToData() && map_->unused_property_fields() > 0) {
6293 // Construct the object field access.
6294 int descriptor = transition()->LastAdded();
6296 transition()->instance_descriptors()->GetFieldIndex(descriptor) -
6297 map_->inobject_properties();
6298 PropertyDetails details =
6299 transition()->instance_descriptors()->GetDetails(descriptor);
6300 Representation representation = details.representation();
6301 access_ = HObjectAccess::ForField(map_, index, representation, name_);
6303 // Load field map for heap objects.
6304 return LoadFieldMaps(transition());
6310 bool HOptimizedGraphBuilder::PropertyAccessInfo::CanAccessAsMonomorphic(
6311 SmallMapList* maps) {
6312 DCHECK(map_.is_identical_to(maps->first()));
6313 if (!CanAccessMonomorphic()) return false;
6314 STATIC_ASSERT(kMaxLoadPolymorphism == kMaxStorePolymorphism);
6315 if (maps->length() > kMaxLoadPolymorphism) return false;
6316 HObjectAccess access = HObjectAccess::ForMap(); // bogus default
6317 if (GetJSObjectFieldAccess(&access)) {
6318 for (int i = 1; i < maps->length(); ++i) {
6319 PropertyAccessInfo test_info(builder_, access_type_, maps->at(i), name_);
6320 HObjectAccess test_access = HObjectAccess::ForMap(); // bogus default
6321 if (!test_info.GetJSObjectFieldAccess(&test_access)) return false;
6322 if (!access.Equals(test_access)) return false;
6326 if (GetJSArrayBufferViewFieldAccess(&access)) {
6327 for (int i = 1; i < maps->length(); ++i) {
6328 PropertyAccessInfo test_info(builder_, access_type_, maps->at(i), name_);
6329 HObjectAccess test_access = HObjectAccess::ForMap(); // bogus default
6330 if (!test_info.GetJSArrayBufferViewFieldAccess(&test_access)) {
6333 if (!access.Equals(test_access)) return false;
6338 // Currently only handle numbers as a polymorphic case.
6339 // TODO(verwaest): Support monomorphic handling of numbers with a HCheckNumber
6341 if (IsNumberType()) return false;
6343 // Multiple maps cannot transition to the same target map.
6344 DCHECK(!IsLoad() || !IsTransition());
6345 if (IsTransition() && maps->length() > 1) return false;
6347 for (int i = 1; i < maps->length(); ++i) {
6348 PropertyAccessInfo test_info(builder_, access_type_, maps->at(i), name_);
6349 if (!test_info.IsCompatible(this)) return false;
6356 Handle<Map> HOptimizedGraphBuilder::PropertyAccessInfo::map() {
6357 JSFunction* ctor = IC::GetRootConstructor(
6358 *map_, current_info()->closure()->context()->native_context());
6359 if (ctor != NULL) return handle(ctor->initial_map());
6364 static bool NeedsWrapping(Handle<Map> map, Handle<JSFunction> target) {
6365 return !map->IsJSObjectMap() &&
6366 is_sloppy(target->shared()->language_mode()) &&
6367 !target->shared()->native();
6371 bool HOptimizedGraphBuilder::PropertyAccessInfo::NeedsWrappingFor(
6372 Handle<JSFunction> target) const {
6373 return NeedsWrapping(map_, target);
6377 HValue* HOptimizedGraphBuilder::BuildMonomorphicAccess(
6378 PropertyAccessInfo* info, HValue* object, HValue* checked_object,
6379 HValue* value, BailoutId ast_id, BailoutId return_id,
6380 bool can_inline_accessor) {
6381 HObjectAccess access = HObjectAccess::ForMap(); // bogus default
6382 if (info->GetJSObjectFieldAccess(&access)) {
6383 DCHECK(info->IsLoad());
6384 return New<HLoadNamedField>(object, checked_object, access);
6387 if (info->GetJSArrayBufferViewFieldAccess(&access)) {
6388 DCHECK(info->IsLoad());
6389 checked_object = Add<HCheckArrayBufferNotNeutered>(checked_object);
6390 return New<HLoadNamedField>(object, checked_object, access);
6393 if (info->name().is_identical_to(isolate()->factory()->prototype_string()) &&
6394 info->map()->function_with_prototype()) {
6395 DCHECK(!info->map()->has_non_instance_prototype());
6396 return New<HLoadFunctionPrototype>(checked_object);
6399 HValue* checked_holder = checked_object;
6400 if (info->has_holder()) {
6401 Handle<JSObject> prototype(JSObject::cast(info->map()->prototype()));
6402 checked_holder = BuildCheckPrototypeMaps(prototype, info->holder());
6405 if (!info->IsFound()) {
6406 DCHECK(info->IsLoad());
6407 if (is_strong(function_language_mode())) {
6408 return New<HCallRuntime>(
6409 isolate()->factory()->empty_string(),
6410 Runtime::FunctionForId(Runtime::kThrowStrongModeImplicitConversion),
6413 return graph()->GetConstantUndefined();
6417 if (info->IsData()) {
6418 if (info->IsLoad()) {
6419 return BuildLoadNamedField(info, checked_holder);
6421 return BuildStoreNamedField(info, checked_object, value);
6425 if (info->IsTransition()) {
6426 DCHECK(!info->IsLoad());
6427 return BuildStoreNamedField(info, checked_object, value);
6430 if (info->IsAccessorConstant()) {
6431 Push(checked_object);
6432 int argument_count = 1;
6433 if (!info->IsLoad()) {
6438 if (info->NeedsWrappingFor(info->accessor())) {
6439 HValue* function = Add<HConstant>(info->accessor());
6440 PushArgumentsFromEnvironment(argument_count);
6441 return New<HCallFunction>(function, argument_count, WRAP_AND_CALL);
6442 } else if (FLAG_inline_accessors && can_inline_accessor) {
6443 bool success = info->IsLoad()
6444 ? TryInlineGetter(info->accessor(), info->map(), ast_id, return_id)
6446 info->accessor(), info->map(), ast_id, return_id, value);
6447 if (success || HasStackOverflow()) return NULL;
6450 PushArgumentsFromEnvironment(argument_count);
6451 return BuildCallConstantFunction(info->accessor(), argument_count);
6454 DCHECK(info->IsDataConstant());
6455 if (info->IsLoad()) {
6456 return New<HConstant>(info->constant());
6458 return New<HCheckValue>(value, Handle<JSFunction>::cast(info->constant()));
6463 void HOptimizedGraphBuilder::HandlePolymorphicNamedFieldAccess(
6464 PropertyAccessType access_type, Expression* expr, BailoutId ast_id,
6465 BailoutId return_id, HValue* object, HValue* value, SmallMapList* maps,
6466 Handle<String> name) {
6467 // Something did not match; must use a polymorphic load.
6469 HBasicBlock* join = NULL;
6470 HBasicBlock* number_block = NULL;
6471 bool handled_string = false;
6473 bool handle_smi = false;
6474 STATIC_ASSERT(kMaxLoadPolymorphism == kMaxStorePolymorphism);
6476 for (i = 0; i < maps->length() && count < kMaxLoadPolymorphism; ++i) {
6477 PropertyAccessInfo info(this, access_type, maps->at(i), name);
6478 if (info.IsStringType()) {
6479 if (handled_string) continue;
6480 handled_string = true;
6482 if (info.CanAccessMonomorphic()) {
6484 if (info.IsNumberType()) {
6491 if (i < maps->length()) {
6497 HControlInstruction* smi_check = NULL;
6498 handled_string = false;
6500 for (i = 0; i < maps->length() && count < kMaxLoadPolymorphism; ++i) {
6501 PropertyAccessInfo info(this, access_type, maps->at(i), name);
6502 if (info.IsStringType()) {
6503 if (handled_string) continue;
6504 handled_string = true;
6506 if (!info.CanAccessMonomorphic()) continue;
6509 join = graph()->CreateBasicBlock();
6511 HBasicBlock* empty_smi_block = graph()->CreateBasicBlock();
6512 HBasicBlock* not_smi_block = graph()->CreateBasicBlock();
6513 number_block = graph()->CreateBasicBlock();
6514 smi_check = New<HIsSmiAndBranch>(
6515 object, empty_smi_block, not_smi_block);
6516 FinishCurrentBlock(smi_check);
6517 GotoNoSimulate(empty_smi_block, number_block);
6518 set_current_block(not_smi_block);
6520 BuildCheckHeapObject(object);
6524 HBasicBlock* if_true = graph()->CreateBasicBlock();
6525 HBasicBlock* if_false = graph()->CreateBasicBlock();
6526 HUnaryControlInstruction* compare;
6529 if (info.IsNumberType()) {
6530 Handle<Map> heap_number_map = isolate()->factory()->heap_number_map();
6531 compare = New<HCompareMap>(object, heap_number_map, if_true, if_false);
6532 dependency = smi_check;
6533 } else if (info.IsStringType()) {
6534 compare = New<HIsStringAndBranch>(object, if_true, if_false);
6535 dependency = compare;
6537 compare = New<HCompareMap>(object, info.map(), if_true, if_false);
6538 dependency = compare;
6540 FinishCurrentBlock(compare);
6542 if (info.IsNumberType()) {
6543 GotoNoSimulate(if_true, number_block);
6544 if_true = number_block;
6547 set_current_block(if_true);
6550 BuildMonomorphicAccess(&info, object, dependency, value, ast_id,
6551 return_id, FLAG_polymorphic_inlining);
6553 HValue* result = NULL;
6554 switch (access_type) {
6563 if (access == NULL) {
6564 if (HasStackOverflow()) return;
6566 if (access->IsInstruction()) {
6567 HInstruction* instr = HInstruction::cast(access);
6568 if (!instr->IsLinked()) AddInstruction(instr);
6570 if (!ast_context()->IsEffect()) Push(result);
6573 if (current_block() != NULL) Goto(join);
6574 set_current_block(if_false);
6577 // Finish up. Unconditionally deoptimize if we've handled all the maps we
6578 // know about and do not want to handle ones we've never seen. Otherwise
6579 // use a generic IC.
6580 if (count == maps->length() && FLAG_deoptimize_uncommon_cases) {
6581 FinishExitWithHardDeoptimization(
6582 Deoptimizer::kUnknownMapInPolymorphicAccess);
6584 HInstruction* instr = BuildNamedGeneric(access_type, expr, object, name,
6586 AddInstruction(instr);
6587 if (!ast_context()->IsEffect()) Push(access_type == LOAD ? instr : value);
6592 Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
6593 if (!ast_context()->IsEffect()) ast_context()->ReturnValue(Pop());
6598 DCHECK(join != NULL);
6599 if (join->HasPredecessor()) {
6600 join->SetJoinId(ast_id);
6601 set_current_block(join);
6602 if (!ast_context()->IsEffect()) ast_context()->ReturnValue(Pop());
6604 set_current_block(NULL);
6609 static bool ComputeReceiverTypes(Expression* expr,
6613 SmallMapList* maps = expr->GetReceiverTypes();
6615 bool monomorphic = expr->IsMonomorphic();
6616 if (maps != NULL && receiver->HasMonomorphicJSObjectType()) {
6617 Map* root_map = receiver->GetMonomorphicJSObjectMap()->FindRootMap();
6618 maps->FilterForPossibleTransitions(root_map);
6619 monomorphic = maps->length() == 1;
6621 return monomorphic && CanInlinePropertyAccess(maps->first());
6625 static bool AreStringTypes(SmallMapList* maps) {
6626 for (int i = 0; i < maps->length(); i++) {
6627 if (maps->at(i)->instance_type() >= FIRST_NONSTRING_TYPE) return false;
6633 void HOptimizedGraphBuilder::BuildStore(Expression* expr,
6636 BailoutId return_id,
6637 bool is_uninitialized) {
6638 if (!prop->key()->IsPropertyName()) {
6640 HValue* value = Pop();
6641 HValue* key = Pop();
6642 HValue* object = Pop();
6643 bool has_side_effects = false;
6644 HValue* result = HandleKeyedElementAccess(
6645 object, key, value, expr, ast_id, return_id, STORE, &has_side_effects);
6646 if (has_side_effects) {
6647 if (!ast_context()->IsEffect()) Push(value);
6648 Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
6649 if (!ast_context()->IsEffect()) Drop(1);
6651 if (result == NULL) return;
6652 return ast_context()->ReturnValue(value);
6656 HValue* value = Pop();
6657 HValue* object = Pop();
6659 Literal* key = prop->key()->AsLiteral();
6660 Handle<String> name = Handle<String>::cast(key->value());
6661 DCHECK(!name.is_null());
6663 HValue* access = BuildNamedAccess(STORE, ast_id, return_id, expr, object,
6664 name, value, is_uninitialized);
6665 if (access == NULL) return;
6667 if (!ast_context()->IsEffect()) Push(value);
6668 if (access->IsInstruction()) AddInstruction(HInstruction::cast(access));
6669 if (access->HasObservableSideEffects()) {
6670 Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
6672 if (!ast_context()->IsEffect()) Drop(1);
6673 return ast_context()->ReturnValue(value);
6677 void HOptimizedGraphBuilder::HandlePropertyAssignment(Assignment* expr) {
6678 Property* prop = expr->target()->AsProperty();
6679 DCHECK(prop != NULL);
6680 CHECK_ALIVE(VisitForValue(prop->obj()));
6681 if (!prop->key()->IsPropertyName()) {
6682 CHECK_ALIVE(VisitForValue(prop->key()));
6684 CHECK_ALIVE(VisitForValue(expr->value()));
6685 BuildStore(expr, prop, expr->id(),
6686 expr->AssignmentId(), expr->IsUninitialized());
6690 // Because not every expression has a position and there is not common
6691 // superclass of Assignment and CountOperation, we cannot just pass the
6692 // owning expression instead of position and ast_id separately.
6693 void HOptimizedGraphBuilder::HandleGlobalVariableAssignment(
6697 Handle<GlobalObject> global(current_info()->global_object());
6699 // Lookup in script contexts.
6701 Handle<ScriptContextTable> script_contexts(
6702 global->native_context()->script_context_table());
6703 ScriptContextTable::LookupResult lookup;
6704 if (ScriptContextTable::Lookup(script_contexts, var->name(), &lookup)) {
6705 if (lookup.mode == CONST) {
6706 return Bailout(kNonInitializerAssignmentToConst);
6708 Handle<Context> script_context =
6709 ScriptContextTable::GetContext(script_contexts, lookup.context_index);
6711 Handle<Object> current_value =
6712 FixedArray::get(script_context, lookup.slot_index);
6714 // If the values is not the hole, it will stay initialized,
6715 // so no need to generate a check.
6716 if (*current_value == *isolate()->factory()->the_hole_value()) {
6717 return Bailout(kReferenceToUninitializedVariable);
6720 HStoreNamedField* instr = Add<HStoreNamedField>(
6721 Add<HConstant>(script_context),
6722 HObjectAccess::ForContextSlot(lookup.slot_index), value);
6724 DCHECK(instr->HasObservableSideEffects());
6725 Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
6730 LookupIterator it(global, var->name(), LookupIterator::OWN);
6731 GlobalPropertyAccess type = LookupGlobalProperty(var, &it, STORE);
6732 if (type == kUseCell) {
6733 Handle<PropertyCell> cell = it.GetPropertyCell();
6734 top_info()->dependencies()->AssumePropertyCell(cell);
6735 auto cell_type = it.property_details().cell_type();
6736 if (cell_type == PropertyCellType::kConstant ||
6737 cell_type == PropertyCellType::kUndefined) {
6738 Handle<Object> constant(cell->value(), isolate());
6739 if (value->IsConstant()) {
6740 HConstant* c_value = HConstant::cast(value);
6741 if (!constant.is_identical_to(c_value->handle(isolate()))) {
6742 Add<HDeoptimize>(Deoptimizer::kConstantGlobalVariableAssignment,
6743 Deoptimizer::EAGER);
6746 HValue* c_constant = Add<HConstant>(constant);
6747 IfBuilder builder(this);
6748 if (constant->IsNumber()) {
6749 builder.If<HCompareNumericAndBranch>(value, c_constant, Token::EQ);
6751 builder.If<HCompareObjectEqAndBranch>(value, c_constant);
6755 Add<HDeoptimize>(Deoptimizer::kConstantGlobalVariableAssignment,
6756 Deoptimizer::EAGER);
6760 HConstant* cell_constant = Add<HConstant>(cell);
6761 auto access = HObjectAccess::ForPropertyCellValue();
6762 if (cell_type == PropertyCellType::kConstantType) {
6763 switch (cell->GetConstantType()) {
6764 case PropertyCellConstantType::kSmi:
6765 access = access.WithRepresentation(Representation::Smi());
6767 case PropertyCellConstantType::kStableMap: {
6768 // The map may no longer be stable, deopt if it's ever different from
6769 // what is currently there, which will allow for restablization.
6770 Handle<Map> map(HeapObject::cast(cell->value())->map());
6771 Add<HCheckHeapObject>(value);
6772 value = Add<HCheckMaps>(value, map);
6773 access = access.WithRepresentation(Representation::HeapObject());
6778 HInstruction* instr = Add<HStoreNamedField>(cell_constant, access, value);
6779 instr->ClearChangesFlag(kInobjectFields);
6780 instr->SetChangesFlag(kGlobalVars);
6781 if (instr->HasObservableSideEffects()) {
6782 Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
6784 } else if (var->IsGlobalSlot()) {
6785 DCHECK(var->index() > 0);
6786 DCHECK(var->IsStaticGlobalObjectProperty());
6787 int slot_index = var->index();
6788 int depth = scope()->ContextChainLength(var->scope());
6790 HStoreGlobalViaContext* instr = Add<HStoreGlobalViaContext>(
6791 value, depth, slot_index, function_language_mode());
6793 DCHECK(instr->HasObservableSideEffects());
6794 Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
6797 HValue* global_object = Add<HLoadNamedField>(
6799 HObjectAccess::ForContextSlot(Context::GLOBAL_OBJECT_INDEX));
6800 HStoreNamedGeneric* instr =
6801 Add<HStoreNamedGeneric>(global_object, var->name(), value,
6802 function_language_mode(), PREMONOMORPHIC);
6804 DCHECK(instr->HasObservableSideEffects());
6805 Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
6810 void HOptimizedGraphBuilder::HandleCompoundAssignment(Assignment* expr) {
6811 Expression* target = expr->target();
6812 VariableProxy* proxy = target->AsVariableProxy();
6813 Property* prop = target->AsProperty();
6814 DCHECK(proxy == NULL || prop == NULL);
6816 // We have a second position recorded in the FullCodeGenerator to have
6817 // type feedback for the binary operation.
6818 BinaryOperation* operation = expr->binary_operation();
6820 if (proxy != NULL) {
6821 Variable* var = proxy->var();
6822 if (var->mode() == LET) {
6823 return Bailout(kUnsupportedLetCompoundAssignment);
6826 CHECK_ALIVE(VisitForValue(operation));
6828 switch (var->location()) {
6829 case VariableLocation::GLOBAL:
6830 case VariableLocation::UNALLOCATED:
6831 HandleGlobalVariableAssignment(var,
6833 expr->AssignmentId());
6836 case VariableLocation::PARAMETER:
6837 case VariableLocation::LOCAL:
6838 if (var->mode() == CONST_LEGACY) {
6839 return Bailout(kUnsupportedConstCompoundAssignment);
6841 if (var->mode() == CONST) {
6842 return Bailout(kNonInitializerAssignmentToConst);
6844 BindIfLive(var, Top());
6847 case VariableLocation::CONTEXT: {
6848 // Bail out if we try to mutate a parameter value in a function
6849 // using the arguments object. We do not (yet) correctly handle the
6850 // arguments property of the function.
6851 if (current_info()->scope()->arguments() != NULL) {
6852 // Parameters will be allocated to context slots. We have no
6853 // direct way to detect that the variable is a parameter so we do
6854 // a linear search of the parameter variables.
6855 int count = current_info()->scope()->num_parameters();
6856 for (int i = 0; i < count; ++i) {
6857 if (var == current_info()->scope()->parameter(i)) {
6858 Bailout(kAssignmentToParameterFunctionUsesArgumentsObject);
6863 HStoreContextSlot::Mode mode;
6865 switch (var->mode()) {
6867 mode = HStoreContextSlot::kCheckDeoptimize;
6870 return Bailout(kNonInitializerAssignmentToConst);
6872 return ast_context()->ReturnValue(Pop());
6874 mode = HStoreContextSlot::kNoCheck;
6877 HValue* context = BuildContextChainWalk(var);
6878 HStoreContextSlot* instr = Add<HStoreContextSlot>(
6879 context, var->index(), mode, Top());
6880 if (instr->HasObservableSideEffects()) {
6881 Add<HSimulate>(expr->AssignmentId(), REMOVABLE_SIMULATE);
6886 case VariableLocation::LOOKUP:
6887 return Bailout(kCompoundAssignmentToLookupSlot);
6889 return ast_context()->ReturnValue(Pop());
6891 } else if (prop != NULL) {
6892 CHECK_ALIVE(VisitForValue(prop->obj()));
6893 HValue* object = Top();
6895 if (!prop->key()->IsPropertyName() || prop->IsStringAccess()) {
6896 CHECK_ALIVE(VisitForValue(prop->key()));
6900 CHECK_ALIVE(PushLoad(prop, object, key));
6902 CHECK_ALIVE(VisitForValue(expr->value()));
6903 HValue* right = Pop();
6904 HValue* left = Pop();
6906 Push(BuildBinaryOperation(operation, left, right, PUSH_BEFORE_SIMULATE));
6908 BuildStore(expr, prop, expr->id(),
6909 expr->AssignmentId(), expr->IsUninitialized());
6911 return Bailout(kInvalidLhsInCompoundAssignment);
6916 void HOptimizedGraphBuilder::VisitAssignment(Assignment* expr) {
6917 DCHECK(!HasStackOverflow());
6918 DCHECK(current_block() != NULL);
6919 DCHECK(current_block()->HasPredecessor());
6920 VariableProxy* proxy = expr->target()->AsVariableProxy();
6921 Property* prop = expr->target()->AsProperty();
6922 DCHECK(proxy == NULL || prop == NULL);
6924 if (expr->is_compound()) {
6925 HandleCompoundAssignment(expr);
6930 HandlePropertyAssignment(expr);
6931 } else if (proxy != NULL) {
6932 Variable* var = proxy->var();
6934 if (var->mode() == CONST) {
6935 if (expr->op() != Token::INIT_CONST) {
6936 return Bailout(kNonInitializerAssignmentToConst);
6938 } else if (var->mode() == CONST_LEGACY) {
6939 if (expr->op() != Token::INIT_CONST_LEGACY) {
6940 CHECK_ALIVE(VisitForValue(expr->value()));
6941 return ast_context()->ReturnValue(Pop());
6944 if (var->IsStackAllocated()) {
6945 // We insert a use of the old value to detect unsupported uses of const
6946 // variables (e.g. initialization inside a loop).
6947 HValue* old_value = environment()->Lookup(var);
6948 Add<HUseConst>(old_value);
6952 if (proxy->IsArguments()) return Bailout(kAssignmentToArguments);
6954 // Handle the assignment.
6955 switch (var->location()) {
6956 case VariableLocation::GLOBAL:
6957 case VariableLocation::UNALLOCATED:
6958 CHECK_ALIVE(VisitForValue(expr->value()));
6959 HandleGlobalVariableAssignment(var,
6961 expr->AssignmentId());
6962 return ast_context()->ReturnValue(Pop());
6964 case VariableLocation::PARAMETER:
6965 case VariableLocation::LOCAL: {
6966 // Perform an initialization check for let declared variables
6968 if (var->mode() == LET && expr->op() == Token::ASSIGN) {
6969 HValue* env_value = environment()->Lookup(var);
6970 if (env_value == graph()->GetConstantHole()) {
6971 return Bailout(kAssignmentToLetVariableBeforeInitialization);
6974 // We do not allow the arguments object to occur in a context where it
6975 // may escape, but assignments to stack-allocated locals are
6977 CHECK_ALIVE(VisitForValue(expr->value(), ARGUMENTS_ALLOWED));
6978 HValue* value = Pop();
6979 BindIfLive(var, value);
6980 return ast_context()->ReturnValue(value);
6983 case VariableLocation::CONTEXT: {
6984 // Bail out if we try to mutate a parameter value in a function using
6985 // the arguments object. We do not (yet) correctly handle the
6986 // arguments property of the function.
6987 if (current_info()->scope()->arguments() != NULL) {
6988 // Parameters will rewrite to context slots. We have no direct way
6989 // to detect that the variable is a parameter.
6990 int count = current_info()->scope()->num_parameters();
6991 for (int i = 0; i < count; ++i) {
6992 if (var == current_info()->scope()->parameter(i)) {
6993 return Bailout(kAssignmentToParameterInArgumentsObject);
6998 CHECK_ALIVE(VisitForValue(expr->value()));
6999 HStoreContextSlot::Mode mode;
7000 if (expr->op() == Token::ASSIGN) {
7001 switch (var->mode()) {
7003 mode = HStoreContextSlot::kCheckDeoptimize;
7006 // This case is checked statically so no need to
7007 // perform checks here
7010 return ast_context()->ReturnValue(Pop());
7012 mode = HStoreContextSlot::kNoCheck;
7014 } else if (expr->op() == Token::INIT_VAR ||
7015 expr->op() == Token::INIT_LET ||
7016 expr->op() == Token::INIT_CONST) {
7017 mode = HStoreContextSlot::kNoCheck;
7019 DCHECK(expr->op() == Token::INIT_CONST_LEGACY);
7021 mode = HStoreContextSlot::kCheckIgnoreAssignment;
7024 HValue* context = BuildContextChainWalk(var);
7025 HStoreContextSlot* instr = Add<HStoreContextSlot>(
7026 context, var->index(), mode, Top());
7027 if (instr->HasObservableSideEffects()) {
7028 Add<HSimulate>(expr->AssignmentId(), REMOVABLE_SIMULATE);
7030 return ast_context()->ReturnValue(Pop());
7033 case VariableLocation::LOOKUP:
7034 return Bailout(kAssignmentToLOOKUPVariable);
7037 return Bailout(kInvalidLeftHandSideInAssignment);
7042 void HOptimizedGraphBuilder::VisitYield(Yield* expr) {
7043 // Generators are not optimized, so we should never get here.
7048 void HOptimizedGraphBuilder::VisitThrow(Throw* expr) {
7049 DCHECK(!HasStackOverflow());
7050 DCHECK(current_block() != NULL);
7051 DCHECK(current_block()->HasPredecessor());
7052 if (!ast_context()->IsEffect()) {
7053 // The parser turns invalid left-hand sides in assignments into throw
7054 // statements, which may not be in effect contexts. We might still try
7055 // to optimize such functions; bail out now if we do.
7056 return Bailout(kInvalidLeftHandSideInAssignment);
7058 CHECK_ALIVE(VisitForValue(expr->exception()));
7060 HValue* value = environment()->Pop();
7061 if (!top_info()->is_tracking_positions()) SetSourcePosition(expr->position());
7062 Add<HPushArguments>(value);
7063 Add<HCallRuntime>(isolate()->factory()->empty_string(),
7064 Runtime::FunctionForId(Runtime::kThrow), 1);
7065 Add<HSimulate>(expr->id());
7067 // If the throw definitely exits the function, we can finish with a dummy
7068 // control flow at this point. This is not the case if the throw is inside
7069 // an inlined function which may be replaced.
7070 if (call_context() == NULL) {
7071 FinishExitCurrentBlock(New<HAbnormalExit>());
7076 HInstruction* HGraphBuilder::AddLoadStringInstanceType(HValue* string) {
7077 if (string->IsConstant()) {
7078 HConstant* c_string = HConstant::cast(string);
7079 if (c_string->HasStringValue()) {
7080 return Add<HConstant>(c_string->StringValue()->map()->instance_type());
7083 return Add<HLoadNamedField>(
7084 Add<HLoadNamedField>(string, nullptr, HObjectAccess::ForMap()), nullptr,
7085 HObjectAccess::ForMapInstanceType());
7089 HInstruction* HGraphBuilder::AddLoadStringLength(HValue* string) {
7090 return AddInstruction(BuildLoadStringLength(string));
7094 HInstruction* HGraphBuilder::BuildLoadStringLength(HValue* string) {
7095 if (string->IsConstant()) {
7096 HConstant* c_string = HConstant::cast(string);
7097 if (c_string->HasStringValue()) {
7098 return New<HConstant>(c_string->StringValue()->length());
7101 return New<HLoadNamedField>(string, nullptr,
7102 HObjectAccess::ForStringLength());
7106 HInstruction* HOptimizedGraphBuilder::BuildNamedGeneric(
7107 PropertyAccessType access_type, Expression* expr, HValue* object,
7108 Handle<String> name, HValue* value, bool is_uninitialized) {
7109 if (is_uninitialized) {
7111 Deoptimizer::kInsufficientTypeFeedbackForGenericNamedAccess,
7114 if (access_type == LOAD) {
7115 Handle<TypeFeedbackVector> vector =
7116 handle(current_feedback_vector(), isolate());
7117 FeedbackVectorICSlot slot = expr->AsProperty()->PropertyFeedbackSlot();
7119 if (!expr->AsProperty()->key()->IsPropertyName()) {
7120 // It's possible that a keyed load of a constant string was converted
7121 // to a named load. Here, at the last minute, we need to make sure to
7122 // use a generic Keyed Load if we are using the type vector, because
7123 // it has to share information with full code.
7124 HConstant* key = Add<HConstant>(name);
7125 HLoadKeyedGeneric* result = New<HLoadKeyedGeneric>(
7126 object, key, function_language_mode(), PREMONOMORPHIC);
7127 result->SetVectorAndSlot(vector, slot);
7131 HLoadNamedGeneric* result = New<HLoadNamedGeneric>(
7132 object, name, function_language_mode(), PREMONOMORPHIC);
7133 result->SetVectorAndSlot(vector, slot);
7136 return New<HStoreNamedGeneric>(object, name, value,
7137 function_language_mode(), PREMONOMORPHIC);
7143 HInstruction* HOptimizedGraphBuilder::BuildKeyedGeneric(
7144 PropertyAccessType access_type,
7149 if (access_type == LOAD) {
7150 InlineCacheState initial_state = expr->AsProperty()->GetInlineCacheState();
7151 HLoadKeyedGeneric* result = New<HLoadKeyedGeneric>(
7152 object, key, function_language_mode(), initial_state);
7153 // HLoadKeyedGeneric with vector ics benefits from being encoded as
7154 // MEGAMORPHIC because the vector/slot combo becomes unnecessary.
7155 if (initial_state != MEGAMORPHIC) {
7156 // We need to pass vector information.
7157 Handle<TypeFeedbackVector> vector =
7158 handle(current_feedback_vector(), isolate());
7159 FeedbackVectorICSlot slot = expr->AsProperty()->PropertyFeedbackSlot();
7160 result->SetVectorAndSlot(vector, slot);
7164 return New<HStoreKeyedGeneric>(object, key, value, function_language_mode(),
7170 LoadKeyedHoleMode HOptimizedGraphBuilder::BuildKeyedHoleMode(Handle<Map> map) {
7171 // Loads from a "stock" fast holey double arrays can elide the hole check.
7172 // Loads from a "stock" fast holey array can convert the hole to undefined
7174 LoadKeyedHoleMode load_mode = NEVER_RETURN_HOLE;
7175 bool holey_double_elements =
7176 *map == isolate()->get_initial_js_array_map(FAST_HOLEY_DOUBLE_ELEMENTS);
7177 bool holey_elements =
7178 *map == isolate()->get_initial_js_array_map(FAST_HOLEY_ELEMENTS);
7179 if ((holey_double_elements || holey_elements) &&
7180 isolate()->IsFastArrayConstructorPrototypeChainIntact()) {
7182 holey_double_elements ? ALLOW_RETURN_HOLE : CONVERT_HOLE_TO_UNDEFINED;
7184 Handle<JSObject> prototype(JSObject::cast(map->prototype()), isolate());
7185 Handle<JSObject> object_prototype = isolate()->initial_object_prototype();
7186 BuildCheckPrototypeMaps(prototype, object_prototype);
7187 graph()->MarkDependsOnEmptyArrayProtoElements();
7193 HInstruction* HOptimizedGraphBuilder::BuildMonomorphicElementAccess(
7199 PropertyAccessType access_type,
7200 KeyedAccessStoreMode store_mode) {
7201 HCheckMaps* checked_object = Add<HCheckMaps>(object, map, dependency);
7203 if (access_type == STORE && map->prototype()->IsJSObject()) {
7204 // monomorphic stores need a prototype chain check because shape
7205 // changes could allow callbacks on elements in the chain that
7206 // aren't compatible with monomorphic keyed stores.
7207 PrototypeIterator iter(map);
7208 JSObject* holder = NULL;
7209 while (!iter.IsAtEnd()) {
7210 holder = JSObject::cast(*PrototypeIterator::GetCurrent(iter));
7213 DCHECK(holder && holder->IsJSObject());
7215 BuildCheckPrototypeMaps(handle(JSObject::cast(map->prototype())),
7216 Handle<JSObject>(holder));
7219 LoadKeyedHoleMode load_mode = BuildKeyedHoleMode(map);
7220 return BuildUncheckedMonomorphicElementAccess(
7221 checked_object, key, val,
7222 map->instance_type() == JS_ARRAY_TYPE,
7223 map->elements_kind(), access_type,
7224 load_mode, store_mode);
7228 static bool CanInlineElementAccess(Handle<Map> map) {
7229 return map->IsJSObjectMap() && !map->has_dictionary_elements() &&
7230 !map->has_sloppy_arguments_elements() &&
7231 !map->has_indexed_interceptor() && !map->is_access_check_needed();
7235 HInstruction* HOptimizedGraphBuilder::TryBuildConsolidatedElementLoad(
7239 SmallMapList* maps) {
7240 // For polymorphic loads of similar elements kinds (i.e. all tagged or all
7241 // double), always use the "worst case" code without a transition. This is
7242 // much faster than transitioning the elements to the worst case, trading a
7243 // HTransitionElements for a HCheckMaps, and avoiding mutation of the array.
7244 bool has_double_maps = false;
7245 bool has_smi_or_object_maps = false;
7246 bool has_js_array_access = false;
7247 bool has_non_js_array_access = false;
7248 bool has_seen_holey_elements = false;
7249 Handle<Map> most_general_consolidated_map;
7250 for (int i = 0; i < maps->length(); ++i) {
7251 Handle<Map> map = maps->at(i);
7252 if (!CanInlineElementAccess(map)) return NULL;
7253 // Don't allow mixing of JSArrays with JSObjects.
7254 if (map->instance_type() == JS_ARRAY_TYPE) {
7255 if (has_non_js_array_access) return NULL;
7256 has_js_array_access = true;
7257 } else if (has_js_array_access) {
7260 has_non_js_array_access = true;
7262 // Don't allow mixed, incompatible elements kinds.
7263 if (map->has_fast_double_elements()) {
7264 if (has_smi_or_object_maps) return NULL;
7265 has_double_maps = true;
7266 } else if (map->has_fast_smi_or_object_elements()) {
7267 if (has_double_maps) return NULL;
7268 has_smi_or_object_maps = true;
7272 // Remember if we've ever seen holey elements.
7273 if (IsHoleyElementsKind(map->elements_kind())) {
7274 has_seen_holey_elements = true;
7276 // Remember the most general elements kind, the code for its load will
7277 // properly handle all of the more specific cases.
7278 if ((i == 0) || IsMoreGeneralElementsKindTransition(
7279 most_general_consolidated_map->elements_kind(),
7280 map->elements_kind())) {
7281 most_general_consolidated_map = map;
7284 if (!has_double_maps && !has_smi_or_object_maps) return NULL;
7286 HCheckMaps* checked_object = Add<HCheckMaps>(object, maps);
7287 // FAST_ELEMENTS is considered more general than FAST_HOLEY_SMI_ELEMENTS.
7288 // If we've seen both, the consolidated load must use FAST_HOLEY_ELEMENTS.
7289 ElementsKind consolidated_elements_kind = has_seen_holey_elements
7290 ? GetHoleyElementsKind(most_general_consolidated_map->elements_kind())
7291 : most_general_consolidated_map->elements_kind();
7292 HInstruction* instr = BuildUncheckedMonomorphicElementAccess(
7293 checked_object, key, val,
7294 most_general_consolidated_map->instance_type() == JS_ARRAY_TYPE,
7295 consolidated_elements_kind,
7296 LOAD, NEVER_RETURN_HOLE, STANDARD_STORE);
7301 HValue* HOptimizedGraphBuilder::HandlePolymorphicElementAccess(
7307 PropertyAccessType access_type,
7308 KeyedAccessStoreMode store_mode,
7309 bool* has_side_effects) {
7310 *has_side_effects = false;
7311 BuildCheckHeapObject(object);
7313 if (access_type == LOAD) {
7314 HInstruction* consolidated_load =
7315 TryBuildConsolidatedElementLoad(object, key, val, maps);
7316 if (consolidated_load != NULL) {
7317 *has_side_effects |= consolidated_load->HasObservableSideEffects();
7318 return consolidated_load;
7322 // Elements_kind transition support.
7323 MapHandleList transition_target(maps->length());
7324 // Collect possible transition targets.
7325 MapHandleList possible_transitioned_maps(maps->length());
7326 for (int i = 0; i < maps->length(); ++i) {
7327 Handle<Map> map = maps->at(i);
7328 // Loads from strings or loads with a mix of string and non-string maps
7329 // shouldn't be handled polymorphically.
7330 DCHECK(access_type != LOAD || !map->IsStringMap());
7331 ElementsKind elements_kind = map->elements_kind();
7332 if (CanInlineElementAccess(map) && IsFastElementsKind(elements_kind) &&
7333 elements_kind != GetInitialFastElementsKind()) {
7334 possible_transitioned_maps.Add(map);
7336 if (IsSloppyArgumentsElements(elements_kind)) {
7337 HInstruction* result = BuildKeyedGeneric(access_type, expr, object, key,
7339 *has_side_effects = result->HasObservableSideEffects();
7340 return AddInstruction(result);
7343 // Get transition target for each map (NULL == no transition).
7344 for (int i = 0; i < maps->length(); ++i) {
7345 Handle<Map> map = maps->at(i);
7346 Handle<Map> transitioned_map =
7347 Map::FindTransitionedMap(map, &possible_transitioned_maps);
7348 transition_target.Add(transitioned_map);
7351 MapHandleList untransitionable_maps(maps->length());
7352 HTransitionElementsKind* transition = NULL;
7353 for (int i = 0; i < maps->length(); ++i) {
7354 Handle<Map> map = maps->at(i);
7355 DCHECK(map->IsMap());
7356 if (!transition_target.at(i).is_null()) {
7357 DCHECK(Map::IsValidElementsTransition(
7358 map->elements_kind(),
7359 transition_target.at(i)->elements_kind()));
7360 transition = Add<HTransitionElementsKind>(object, map,
7361 transition_target.at(i));
7363 untransitionable_maps.Add(map);
7367 // If only one map is left after transitioning, handle this case
7369 DCHECK(untransitionable_maps.length() >= 1);
7370 if (untransitionable_maps.length() == 1) {
7371 Handle<Map> untransitionable_map = untransitionable_maps[0];
7372 HInstruction* instr = NULL;
7373 if (!CanInlineElementAccess(untransitionable_map)) {
7374 instr = AddInstruction(BuildKeyedGeneric(access_type, expr, object, key,
7377 instr = BuildMonomorphicElementAccess(
7378 object, key, val, transition, untransitionable_map, access_type,
7381 *has_side_effects |= instr->HasObservableSideEffects();
7382 return access_type == STORE ? val : instr;
7385 HBasicBlock* join = graph()->CreateBasicBlock();
7387 for (int i = 0; i < untransitionable_maps.length(); ++i) {
7388 Handle<Map> map = untransitionable_maps[i];
7389 ElementsKind elements_kind = map->elements_kind();
7390 HBasicBlock* this_map = graph()->CreateBasicBlock();
7391 HBasicBlock* other_map = graph()->CreateBasicBlock();
7392 HCompareMap* mapcompare =
7393 New<HCompareMap>(object, map, this_map, other_map);
7394 FinishCurrentBlock(mapcompare);
7396 set_current_block(this_map);
7397 HInstruction* access = NULL;
7398 if (!CanInlineElementAccess(map)) {
7399 access = AddInstruction(BuildKeyedGeneric(access_type, expr, object, key,
7402 DCHECK(IsFastElementsKind(elements_kind) ||
7403 IsFixedTypedArrayElementsKind(elements_kind));
7404 LoadKeyedHoleMode load_mode = BuildKeyedHoleMode(map);
7405 // Happily, mapcompare is a checked object.
7406 access = BuildUncheckedMonomorphicElementAccess(
7407 mapcompare, key, val,
7408 map->instance_type() == JS_ARRAY_TYPE,
7409 elements_kind, access_type,
7413 *has_side_effects |= access->HasObservableSideEffects();
7414 // The caller will use has_side_effects and add a correct Simulate.
7415 access->SetFlag(HValue::kHasNoObservableSideEffects);
7416 if (access_type == LOAD) {
7419 NoObservableSideEffectsScope scope(this);
7420 GotoNoSimulate(join);
7421 set_current_block(other_map);
7424 // Ensure that we visited at least one map above that goes to join. This is
7425 // necessary because FinishExitWithHardDeoptimization does an AbnormalExit
7426 // rather than joining the join block. If this becomes an issue, insert a
7427 // generic access in the case length() == 0.
7428 DCHECK(join->predecessors()->length() > 0);
7429 // Deopt if none of the cases matched.
7430 NoObservableSideEffectsScope scope(this);
7431 FinishExitWithHardDeoptimization(
7432 Deoptimizer::kUnknownMapInPolymorphicElementAccess);
7433 set_current_block(join);
7434 return access_type == STORE ? val : Pop();
7438 HValue* HOptimizedGraphBuilder::HandleKeyedElementAccess(
7439 HValue* obj, HValue* key, HValue* val, Expression* expr, BailoutId ast_id,
7440 BailoutId return_id, PropertyAccessType access_type,
7441 bool* has_side_effects) {
7442 if (key->ActualValue()->IsConstant()) {
7443 Handle<Object> constant =
7444 HConstant::cast(key->ActualValue())->handle(isolate());
7445 uint32_t array_index;
7446 if (constant->IsString() &&
7447 !Handle<String>::cast(constant)->AsArrayIndex(&array_index)) {
7448 if (!constant->IsUniqueName()) {
7449 constant = isolate()->factory()->InternalizeString(
7450 Handle<String>::cast(constant));
7453 BuildNamedAccess(access_type, ast_id, return_id, expr, obj,
7454 Handle<String>::cast(constant), val, false);
7455 if (access == NULL || access->IsPhi() ||
7456 HInstruction::cast(access)->IsLinked()) {
7457 *has_side_effects = false;
7459 HInstruction* instr = HInstruction::cast(access);
7460 AddInstruction(instr);
7461 *has_side_effects = instr->HasObservableSideEffects();
7467 DCHECK(!expr->IsPropertyName());
7468 HInstruction* instr = NULL;
7471 bool monomorphic = ComputeReceiverTypes(expr, obj, &maps, zone());
7473 bool force_generic = false;
7474 if (expr->GetKeyType() == PROPERTY) {
7475 // Non-Generic accesses assume that elements are being accessed, and will
7476 // deopt for non-index keys, which the IC knows will occur.
7477 // TODO(jkummerow): Consider adding proper support for property accesses.
7478 force_generic = true;
7479 monomorphic = false;
7480 } else if (access_type == STORE &&
7481 (monomorphic || (maps != NULL && !maps->is_empty()))) {
7482 // Stores can't be mono/polymorphic if their prototype chain has dictionary
7483 // elements. However a receiver map that has dictionary elements itself
7484 // should be left to normal mono/poly behavior (the other maps may benefit
7485 // from highly optimized stores).
7486 for (int i = 0; i < maps->length(); i++) {
7487 Handle<Map> current_map = maps->at(i);
7488 if (current_map->DictionaryElementsInPrototypeChainOnly()) {
7489 force_generic = true;
7490 monomorphic = false;
7494 } else if (access_type == LOAD && !monomorphic &&
7495 (maps != NULL && !maps->is_empty())) {
7496 // Polymorphic loads have to go generic if any of the maps are strings.
7497 // If some, but not all of the maps are strings, we should go generic
7498 // because polymorphic access wants to key on ElementsKind and isn't
7499 // compatible with strings.
7500 for (int i = 0; i < maps->length(); i++) {
7501 Handle<Map> current_map = maps->at(i);
7502 if (current_map->IsStringMap()) {
7503 force_generic = true;
7510 Handle<Map> map = maps->first();
7511 if (!CanInlineElementAccess(map)) {
7512 instr = AddInstruction(BuildKeyedGeneric(access_type, expr, obj, key,
7515 BuildCheckHeapObject(obj);
7516 instr = BuildMonomorphicElementAccess(
7517 obj, key, val, NULL, map, access_type, expr->GetStoreMode());
7519 } else if (!force_generic && (maps != NULL && !maps->is_empty())) {
7520 return HandlePolymorphicElementAccess(expr, obj, key, val, maps,
7521 access_type, expr->GetStoreMode(),
7524 if (access_type == STORE) {
7525 if (expr->IsAssignment() &&
7526 expr->AsAssignment()->HasNoTypeInformation()) {
7527 Add<HDeoptimize>(Deoptimizer::kInsufficientTypeFeedbackForKeyedStore,
7531 if (expr->AsProperty()->HasNoTypeInformation()) {
7532 Add<HDeoptimize>(Deoptimizer::kInsufficientTypeFeedbackForKeyedLoad,
7536 instr = AddInstruction(BuildKeyedGeneric(access_type, expr, obj, key, val));
7538 *has_side_effects = instr->HasObservableSideEffects();
7543 void HOptimizedGraphBuilder::EnsureArgumentsArePushedForAccess() {
7544 // Outermost function already has arguments on the stack.
7545 if (function_state()->outer() == NULL) return;
7547 if (function_state()->arguments_pushed()) return;
7549 // Push arguments when entering inlined function.
7550 HEnterInlined* entry = function_state()->entry();
7551 entry->set_arguments_pushed();
7553 HArgumentsObject* arguments = entry->arguments_object();
7554 const ZoneList<HValue*>* arguments_values = arguments->arguments_values();
7556 HInstruction* insert_after = entry;
7557 for (int i = 0; i < arguments_values->length(); i++) {
7558 HValue* argument = arguments_values->at(i);
7559 HInstruction* push_argument = New<HPushArguments>(argument);
7560 push_argument->InsertAfter(insert_after);
7561 insert_after = push_argument;
7564 HArgumentsElements* arguments_elements = New<HArgumentsElements>(true);
7565 arguments_elements->ClearFlag(HValue::kUseGVN);
7566 arguments_elements->InsertAfter(insert_after);
7567 function_state()->set_arguments_elements(arguments_elements);
7571 bool HOptimizedGraphBuilder::TryArgumentsAccess(Property* expr) {
7572 VariableProxy* proxy = expr->obj()->AsVariableProxy();
7573 if (proxy == NULL) return false;
7574 if (!proxy->var()->IsStackAllocated()) return false;
7575 if (!environment()->Lookup(proxy->var())->CheckFlag(HValue::kIsArguments)) {
7579 HInstruction* result = NULL;
7580 if (expr->key()->IsPropertyName()) {
7581 Handle<String> name = expr->key()->AsLiteral()->AsPropertyName();
7582 if (!String::Equals(name, isolate()->factory()->length_string())) {
7586 if (function_state()->outer() == NULL) {
7587 HInstruction* elements = Add<HArgumentsElements>(false);
7588 result = New<HArgumentsLength>(elements);
7590 // Number of arguments without receiver.
7591 int argument_count = environment()->
7592 arguments_environment()->parameter_count() - 1;
7593 result = New<HConstant>(argument_count);
7596 Push(graph()->GetArgumentsObject());
7597 CHECK_ALIVE_OR_RETURN(VisitForValue(expr->key()), true);
7598 HValue* key = Pop();
7599 Drop(1); // Arguments object.
7600 if (function_state()->outer() == NULL) {
7601 HInstruction* elements = Add<HArgumentsElements>(false);
7602 HInstruction* length = Add<HArgumentsLength>(elements);
7603 HInstruction* checked_key = Add<HBoundsCheck>(key, length);
7604 result = New<HAccessArgumentsAt>(elements, length, checked_key);
7606 EnsureArgumentsArePushedForAccess();
7608 // Number of arguments without receiver.
7609 HInstruction* elements = function_state()->arguments_elements();
7610 int argument_count = environment()->
7611 arguments_environment()->parameter_count() - 1;
7612 HInstruction* length = Add<HConstant>(argument_count);
7613 HInstruction* checked_key = Add<HBoundsCheck>(key, length);
7614 result = New<HAccessArgumentsAt>(elements, length, checked_key);
7617 ast_context()->ReturnInstruction(result, expr->id());
7622 HValue* HOptimizedGraphBuilder::BuildNamedAccess(
7623 PropertyAccessType access, BailoutId ast_id, BailoutId return_id,
7624 Expression* expr, HValue* object, Handle<String> name, HValue* value,
7625 bool is_uninitialized) {
7627 ComputeReceiverTypes(expr, object, &maps, zone());
7628 DCHECK(maps != NULL);
7630 if (maps->length() > 0) {
7631 PropertyAccessInfo info(this, access, maps->first(), name);
7632 if (!info.CanAccessAsMonomorphic(maps)) {
7633 HandlePolymorphicNamedFieldAccess(access, expr, ast_id, return_id, object,
7638 HValue* checked_object;
7639 // Type::Number() is only supported by polymorphic load/call handling.
7640 DCHECK(!info.IsNumberType());
7641 BuildCheckHeapObject(object);
7642 if (AreStringTypes(maps)) {
7644 Add<HCheckInstanceType>(object, HCheckInstanceType::IS_STRING);
7646 checked_object = Add<HCheckMaps>(object, maps);
7648 return BuildMonomorphicAccess(
7649 &info, object, checked_object, value, ast_id, return_id);
7652 return BuildNamedGeneric(access, expr, object, name, value, is_uninitialized);
7656 void HOptimizedGraphBuilder::PushLoad(Property* expr,
7659 ValueContext for_value(this, ARGUMENTS_NOT_ALLOWED);
7661 if (key != NULL) Push(key);
7662 BuildLoad(expr, expr->LoadId());
7666 void HOptimizedGraphBuilder::BuildLoad(Property* expr,
7668 HInstruction* instr = NULL;
7669 if (expr->IsStringAccess()) {
7670 HValue* index = Pop();
7671 HValue* string = Pop();
7672 HInstruction* char_code = BuildStringCharCodeAt(string, index);
7673 AddInstruction(char_code);
7674 instr = NewUncasted<HStringCharFromCode>(char_code);
7676 } else if (expr->key()->IsPropertyName()) {
7677 Handle<String> name = expr->key()->AsLiteral()->AsPropertyName();
7678 HValue* object = Pop();
7680 HValue* value = BuildNamedAccess(LOAD, ast_id, expr->LoadId(), expr, object,
7681 name, NULL, expr->IsUninitialized());
7682 if (value == NULL) return;
7683 if (value->IsPhi()) return ast_context()->ReturnValue(value);
7684 instr = HInstruction::cast(value);
7685 if (instr->IsLinked()) return ast_context()->ReturnValue(instr);
7688 HValue* key = Pop();
7689 HValue* obj = Pop();
7691 bool has_side_effects = false;
7692 HValue* load = HandleKeyedElementAccess(
7693 obj, key, NULL, expr, ast_id, expr->LoadId(), LOAD, &has_side_effects);
7694 if (has_side_effects) {
7695 if (ast_context()->IsEffect()) {
7696 Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
7699 Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
7703 if (load == NULL) return;
7704 return ast_context()->ReturnValue(load);
7706 return ast_context()->ReturnInstruction(instr, ast_id);
7710 void HOptimizedGraphBuilder::VisitProperty(Property* expr) {
7711 DCHECK(!HasStackOverflow());
7712 DCHECK(current_block() != NULL);
7713 DCHECK(current_block()->HasPredecessor());
7715 if (TryArgumentsAccess(expr)) return;
7717 CHECK_ALIVE(VisitForValue(expr->obj()));
7718 if (!expr->key()->IsPropertyName() || expr->IsStringAccess()) {
7719 CHECK_ALIVE(VisitForValue(expr->key()));
7722 BuildLoad(expr, expr->id());
7726 HInstruction* HGraphBuilder::BuildConstantMapCheck(Handle<JSObject> constant) {
7727 HCheckMaps* check = Add<HCheckMaps>(
7728 Add<HConstant>(constant), handle(constant->map()));
7729 check->ClearDependsOnFlag(kElementsKind);
7734 HInstruction* HGraphBuilder::BuildCheckPrototypeMaps(Handle<JSObject> prototype,
7735 Handle<JSObject> holder) {
7736 PrototypeIterator iter(isolate(), prototype,
7737 PrototypeIterator::START_AT_RECEIVER);
7738 while (holder.is_null() ||
7739 !PrototypeIterator::GetCurrent(iter).is_identical_to(holder)) {
7740 BuildConstantMapCheck(
7741 Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)));
7743 if (iter.IsAtEnd()) {
7747 return BuildConstantMapCheck(
7748 Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)));
7752 void HOptimizedGraphBuilder::AddCheckPrototypeMaps(Handle<JSObject> holder,
7753 Handle<Map> receiver_map) {
7754 if (!holder.is_null()) {
7755 Handle<JSObject> prototype(JSObject::cast(receiver_map->prototype()));
7756 BuildCheckPrototypeMaps(prototype, holder);
7761 HInstruction* HOptimizedGraphBuilder::NewPlainFunctionCall(
7762 HValue* fun, int argument_count, bool pass_argument_count) {
7763 return New<HCallJSFunction>(fun, argument_count, pass_argument_count);
7767 HInstruction* HOptimizedGraphBuilder::NewArgumentAdaptorCall(
7768 HValue* fun, HValue* context,
7769 int argument_count, HValue* expected_param_count) {
7770 ArgumentAdaptorDescriptor descriptor(isolate());
7771 HValue* arity = Add<HConstant>(argument_count - 1);
7773 HValue* op_vals[] = { context, fun, arity, expected_param_count };
7775 Handle<Code> adaptor =
7776 isolate()->builtins()->ArgumentsAdaptorTrampoline();
7777 HConstant* adaptor_value = Add<HConstant>(adaptor);
7779 return New<HCallWithDescriptor>(adaptor_value, argument_count, descriptor,
7780 Vector<HValue*>(op_vals, arraysize(op_vals)));
7784 HInstruction* HOptimizedGraphBuilder::BuildCallConstantFunction(
7785 Handle<JSFunction> jsfun, int argument_count) {
7786 HValue* target = Add<HConstant>(jsfun);
7787 // For constant functions, we try to avoid calling the
7788 // argument adaptor and instead call the function directly
7789 int formal_parameter_count =
7790 jsfun->shared()->internal_formal_parameter_count();
7791 bool dont_adapt_arguments =
7792 (formal_parameter_count ==
7793 SharedFunctionInfo::kDontAdaptArgumentsSentinel);
7794 int arity = argument_count - 1;
7795 bool can_invoke_directly =
7796 dont_adapt_arguments || formal_parameter_count == arity;
7797 if (can_invoke_directly) {
7798 if (jsfun.is_identical_to(current_info()->closure())) {
7799 graph()->MarkRecursive();
7801 return NewPlainFunctionCall(target, argument_count, dont_adapt_arguments);
7803 HValue* param_count_value = Add<HConstant>(formal_parameter_count);
7804 HValue* context = Add<HLoadNamedField>(
7805 target, nullptr, HObjectAccess::ForFunctionContextPointer());
7806 return NewArgumentAdaptorCall(target, context,
7807 argument_count, param_count_value);
7814 class FunctionSorter {
7816 explicit FunctionSorter(int index = 0, int ticks = 0, int size = 0)
7817 : index_(index), ticks_(ticks), size_(size) {}
7819 int index() const { return index_; }
7820 int ticks() const { return ticks_; }
7821 int size() const { return size_; }
7830 inline bool operator<(const FunctionSorter& lhs, const FunctionSorter& rhs) {
7831 int diff = lhs.ticks() - rhs.ticks();
7832 if (diff != 0) return diff > 0;
7833 return lhs.size() < rhs.size();
7837 void HOptimizedGraphBuilder::HandlePolymorphicCallNamed(Call* expr,
7840 Handle<String> name) {
7841 int argument_count = expr->arguments()->length() + 1; // Includes receiver.
7842 FunctionSorter order[kMaxCallPolymorphism];
7844 bool handle_smi = false;
7845 bool handled_string = false;
7846 int ordered_functions = 0;
7849 for (i = 0; i < maps->length() && ordered_functions < kMaxCallPolymorphism;
7851 PropertyAccessInfo info(this, LOAD, maps->at(i), name);
7852 if (info.CanAccessMonomorphic() && info.IsDataConstant() &&
7853 info.constant()->IsJSFunction()) {
7854 if (info.IsStringType()) {
7855 if (handled_string) continue;
7856 handled_string = true;
7858 Handle<JSFunction> target = Handle<JSFunction>::cast(info.constant());
7859 if (info.IsNumberType()) {
7862 expr->set_target(target);
7863 order[ordered_functions++] = FunctionSorter(
7864 i, target->shared()->profiler_ticks(), InliningAstSize(target));
7868 std::sort(order, order + ordered_functions);
7870 if (i < maps->length()) {
7872 ordered_functions = -1;
7875 HBasicBlock* number_block = NULL;
7876 HBasicBlock* join = NULL;
7877 handled_string = false;
7880 for (int fn = 0; fn < ordered_functions; ++fn) {
7881 int i = order[fn].index();
7882 PropertyAccessInfo info(this, LOAD, maps->at(i), name);
7883 if (info.IsStringType()) {
7884 if (handled_string) continue;
7885 handled_string = true;
7887 // Reloads the target.
7888 info.CanAccessMonomorphic();
7889 Handle<JSFunction> target = Handle<JSFunction>::cast(info.constant());
7891 expr->set_target(target);
7893 // Only needed once.
7894 join = graph()->CreateBasicBlock();
7896 HBasicBlock* empty_smi_block = graph()->CreateBasicBlock();
7897 HBasicBlock* not_smi_block = graph()->CreateBasicBlock();
7898 number_block = graph()->CreateBasicBlock();
7899 FinishCurrentBlock(New<HIsSmiAndBranch>(
7900 receiver, empty_smi_block, not_smi_block));
7901 GotoNoSimulate(empty_smi_block, number_block);
7902 set_current_block(not_smi_block);
7904 BuildCheckHeapObject(receiver);
7908 HBasicBlock* if_true = graph()->CreateBasicBlock();
7909 HBasicBlock* if_false = graph()->CreateBasicBlock();
7910 HUnaryControlInstruction* compare;
7912 Handle<Map> map = info.map();
7913 if (info.IsNumberType()) {
7914 Handle<Map> heap_number_map = isolate()->factory()->heap_number_map();
7915 compare = New<HCompareMap>(receiver, heap_number_map, if_true, if_false);
7916 } else if (info.IsStringType()) {
7917 compare = New<HIsStringAndBranch>(receiver, if_true, if_false);
7919 compare = New<HCompareMap>(receiver, map, if_true, if_false);
7921 FinishCurrentBlock(compare);
7923 if (info.IsNumberType()) {
7924 GotoNoSimulate(if_true, number_block);
7925 if_true = number_block;
7928 set_current_block(if_true);
7930 AddCheckPrototypeMaps(info.holder(), map);
7932 HValue* function = Add<HConstant>(expr->target());
7933 environment()->SetExpressionStackAt(0, function);
7935 CHECK_ALIVE(VisitExpressions(expr->arguments()));
7936 bool needs_wrapping = info.NeedsWrappingFor(target);
7937 bool try_inline = FLAG_polymorphic_inlining && !needs_wrapping;
7938 if (FLAG_trace_inlining && try_inline) {
7939 Handle<JSFunction> caller = current_info()->closure();
7940 base::SmartArrayPointer<char> caller_name =
7941 caller->shared()->DebugName()->ToCString();
7942 PrintF("Trying to inline the polymorphic call to %s from %s\n",
7943 name->ToCString().get(),
7946 if (try_inline && TryInlineCall(expr)) {
7947 // Trying to inline will signal that we should bailout from the
7948 // entire compilation by setting stack overflow on the visitor.
7949 if (HasStackOverflow()) return;
7951 // Since HWrapReceiver currently cannot actually wrap numbers and strings,
7952 // use the regular CallFunctionStub for method calls to wrap the receiver.
7953 // TODO(verwaest): Support creation of value wrappers directly in
7955 HInstruction* call = needs_wrapping
7956 ? NewUncasted<HCallFunction>(
7957 function, argument_count, WRAP_AND_CALL)
7958 : BuildCallConstantFunction(target, argument_count);
7959 PushArgumentsFromEnvironment(argument_count);
7960 AddInstruction(call);
7961 Drop(1); // Drop the function.
7962 if (!ast_context()->IsEffect()) Push(call);
7965 if (current_block() != NULL) Goto(join);
7966 set_current_block(if_false);
7969 // Finish up. Unconditionally deoptimize if we've handled all the maps we
7970 // know about and do not want to handle ones we've never seen. Otherwise
7971 // use a generic IC.
7972 if (ordered_functions == maps->length() && FLAG_deoptimize_uncommon_cases) {
7973 FinishExitWithHardDeoptimization(Deoptimizer::kUnknownMapInPolymorphicCall);
7975 Property* prop = expr->expression()->AsProperty();
7976 HInstruction* function = BuildNamedGeneric(
7977 LOAD, prop, receiver, name, NULL, prop->IsUninitialized());
7978 AddInstruction(function);
7980 AddSimulate(prop->LoadId(), REMOVABLE_SIMULATE);
7982 environment()->SetExpressionStackAt(1, function);
7983 environment()->SetExpressionStackAt(0, receiver);
7984 CHECK_ALIVE(VisitExpressions(expr->arguments()));
7986 CallFunctionFlags flags = receiver->type().IsJSObject()
7987 ? NO_CALL_FUNCTION_FLAGS : CALL_AS_METHOD;
7988 HInstruction* call = New<HCallFunction>(
7989 function, argument_count, flags);
7991 PushArgumentsFromEnvironment(argument_count);
7993 Drop(1); // Function.
7996 AddInstruction(call);
7997 if (!ast_context()->IsEffect()) Push(call);
8000 return ast_context()->ReturnInstruction(call, expr->id());
8004 // We assume that control flow is always live after an expression. So
8005 // even without predecessors to the join block, we set it as the exit
8006 // block and continue by adding instructions there.
8007 DCHECK(join != NULL);
8008 if (join->HasPredecessor()) {
8009 set_current_block(join);
8010 join->SetJoinId(expr->id());
8011 if (!ast_context()->IsEffect()) return ast_context()->ReturnValue(Pop());
8013 set_current_block(NULL);
8018 void HOptimizedGraphBuilder::TraceInline(Handle<JSFunction> target,
8019 Handle<JSFunction> caller,
8020 const char* reason) {
8021 if (FLAG_trace_inlining) {
8022 base::SmartArrayPointer<char> target_name =
8023 target->shared()->DebugName()->ToCString();
8024 base::SmartArrayPointer<char> caller_name =
8025 caller->shared()->DebugName()->ToCString();
8026 if (reason == NULL) {
8027 PrintF("Inlined %s called from %s.\n", target_name.get(),
8030 PrintF("Did not inline %s called from %s (%s).\n",
8031 target_name.get(), caller_name.get(), reason);
8037 static const int kNotInlinable = 1000000000;
8040 int HOptimizedGraphBuilder::InliningAstSize(Handle<JSFunction> target) {
8041 if (!FLAG_use_inlining) return kNotInlinable;
8043 // Precondition: call is monomorphic and we have found a target with the
8044 // appropriate arity.
8045 Handle<JSFunction> caller = current_info()->closure();
8046 Handle<SharedFunctionInfo> target_shared(target->shared());
8048 // Always inline functions that force inlining.
8049 if (target_shared->force_inline()) {
8052 if (target->IsBuiltin()) {
8053 return kNotInlinable;
8056 if (target_shared->IsApiFunction()) {
8057 TraceInline(target, caller, "target is api function");
8058 return kNotInlinable;
8061 // Do a quick check on source code length to avoid parsing large
8062 // inlining candidates.
8063 if (target_shared->SourceSize() >
8064 Min(FLAG_max_inlined_source_size, kUnlimitedMaxInlinedSourceSize)) {
8065 TraceInline(target, caller, "target text too big");
8066 return kNotInlinable;
8069 // Target must be inlineable.
8070 if (!target_shared->IsInlineable()) {
8071 TraceInline(target, caller, "target not inlineable");
8072 return kNotInlinable;
8074 if (target_shared->disable_optimization_reason() != kNoReason) {
8075 TraceInline(target, caller, "target contains unsupported syntax [early]");
8076 return kNotInlinable;
8079 int nodes_added = target_shared->ast_node_count();
8084 bool HOptimizedGraphBuilder::TryInline(Handle<JSFunction> target,
8085 int arguments_count,
8086 HValue* implicit_return_value,
8087 BailoutId ast_id, BailoutId return_id,
8088 InliningKind inlining_kind) {
8089 if (target->context()->native_context() !=
8090 top_info()->closure()->context()->native_context()) {
8093 int nodes_added = InliningAstSize(target);
8094 if (nodes_added == kNotInlinable) return false;
8096 Handle<JSFunction> caller = current_info()->closure();
8098 if (nodes_added > Min(FLAG_max_inlined_nodes, kUnlimitedMaxInlinedNodes)) {
8099 TraceInline(target, caller, "target AST is too large [early]");
8103 // Don't inline deeper than the maximum number of inlining levels.
8104 HEnvironment* env = environment();
8105 int current_level = 1;
8106 while (env->outer() != NULL) {
8107 if (current_level == FLAG_max_inlining_levels) {
8108 TraceInline(target, caller, "inline depth limit reached");
8111 if (env->outer()->frame_type() == JS_FUNCTION) {
8117 // Don't inline recursive functions.
8118 for (FunctionState* state = function_state();
8120 state = state->outer()) {
8121 if (*state->compilation_info()->closure() == *target) {
8122 TraceInline(target, caller, "target is recursive");
8127 // We don't want to add more than a certain number of nodes from inlining.
8128 // Always inline small methods (<= 10 nodes).
8129 if (inlined_count_ > Min(FLAG_max_inlined_nodes_cumulative,
8130 kUnlimitedMaxInlinedNodesCumulative)) {
8131 TraceInline(target, caller, "cumulative AST node limit reached");
8135 // Parse and allocate variables.
8136 // Use the same AstValueFactory for creating strings in the sub-compilation
8137 // step, but don't transfer ownership to target_info.
8138 ParseInfo parse_info(zone(), target);
8139 parse_info.set_ast_value_factory(
8140 top_info()->parse_info()->ast_value_factory());
8141 parse_info.set_ast_value_factory_owned(false);
8143 CompilationInfo target_info(&parse_info);
8144 Handle<SharedFunctionInfo> target_shared(target->shared());
8145 if (target_shared->HasDebugInfo()) {
8146 TraceInline(target, caller, "target is being debugged");
8149 if (!Compiler::ParseAndAnalyze(target_info.parse_info())) {
8150 if (target_info.isolate()->has_pending_exception()) {
8151 // Parse or scope error, never optimize this function.
8153 target_shared->DisableOptimization(kParseScopeError);
8155 TraceInline(target, caller, "parse failure");
8159 if (target_info.scope()->num_heap_slots() > 0) {
8160 TraceInline(target, caller, "target has context-allocated variables");
8163 FunctionLiteral* function = target_info.function();
8165 // The following conditions must be checked again after re-parsing, because
8166 // earlier the information might not have been complete due to lazy parsing.
8167 nodes_added = function->ast_node_count();
8168 if (nodes_added > Min(FLAG_max_inlined_nodes, kUnlimitedMaxInlinedNodes)) {
8169 TraceInline(target, caller, "target AST is too large [late]");
8172 if (function->dont_optimize()) {
8173 TraceInline(target, caller, "target contains unsupported syntax [late]");
8177 // If the function uses the arguments object check that inlining of functions
8178 // with arguments object is enabled and the arguments-variable is
8180 if (function->scope()->arguments() != NULL) {
8181 if (!FLAG_inline_arguments) {
8182 TraceInline(target, caller, "target uses arguments object");
8187 // All declarations must be inlineable.
8188 ZoneList<Declaration*>* decls = target_info.scope()->declarations();
8189 int decl_count = decls->length();
8190 for (int i = 0; i < decl_count; ++i) {
8191 if (!decls->at(i)->IsInlineable()) {
8192 TraceInline(target, caller, "target has non-trivial declaration");
8197 // Generate the deoptimization data for the unoptimized version of
8198 // the target function if we don't already have it.
8199 if (!Compiler::EnsureDeoptimizationSupport(&target_info)) {
8200 TraceInline(target, caller, "could not generate deoptimization info");
8204 // In strong mode it is an error to call a function with too few arguments.
8205 // In that case do not inline because then the arity check would be skipped.
8206 if (is_strong(function->language_mode()) &&
8207 arguments_count < function->parameter_count()) {
8208 TraceInline(target, caller,
8209 "too few arguments passed to a strong function");
8213 // ----------------------------------------------------------------
8214 // After this point, we've made a decision to inline this function (so
8215 // TryInline should always return true).
8217 // Type-check the inlined function.
8218 DCHECK(target_shared->has_deoptimization_support());
8219 AstTyper::Run(&target_info);
8221 int inlining_id = 0;
8222 if (top_info()->is_tracking_positions()) {
8223 inlining_id = top_info()->TraceInlinedFunction(
8224 target_shared, source_position(), function_state()->inlining_id());
8227 // Save the pending call context. Set up new one for the inlined function.
8228 // The function state is new-allocated because we need to delete it
8229 // in two different places.
8230 FunctionState* target_state =
8231 new FunctionState(this, &target_info, inlining_kind, inlining_id);
8233 HConstant* undefined = graph()->GetConstantUndefined();
8235 HEnvironment* inner_env =
8236 environment()->CopyForInlining(target,
8240 function_state()->inlining_kind());
8242 HConstant* context = Add<HConstant>(Handle<Context>(target->context()));
8243 inner_env->BindContext(context);
8245 // Create a dematerialized arguments object for the function, also copy the
8246 // current arguments values to use them for materialization.
8247 HEnvironment* arguments_env = inner_env->arguments_environment();
8248 int parameter_count = arguments_env->parameter_count();
8249 HArgumentsObject* arguments_object = Add<HArgumentsObject>(parameter_count);
8250 for (int i = 0; i < parameter_count; i++) {
8251 arguments_object->AddArgument(arguments_env->Lookup(i), zone());
8254 // If the function uses arguments object then bind bind one.
8255 if (function->scope()->arguments() != NULL) {
8256 DCHECK(function->scope()->arguments()->IsStackAllocated());
8257 inner_env->Bind(function->scope()->arguments(), arguments_object);
8260 // Capture the state before invoking the inlined function for deopt in the
8261 // inlined function. This simulate has no bailout-id since it's not directly
8262 // reachable for deopt, and is only used to capture the state. If the simulate
8263 // becomes reachable by merging, the ast id of the simulate merged into it is
8265 Add<HSimulate>(BailoutId::None());
8267 current_block()->UpdateEnvironment(inner_env);
8268 Scope* saved_scope = scope();
8269 set_scope(target_info.scope());
8270 HEnterInlined* enter_inlined =
8271 Add<HEnterInlined>(return_id, target, context, arguments_count, function,
8272 function_state()->inlining_kind(),
8273 function->scope()->arguments(), arguments_object);
8274 if (top_info()->is_tracking_positions()) {
8275 enter_inlined->set_inlining_id(inlining_id);
8277 function_state()->set_entry(enter_inlined);
8279 VisitDeclarations(target_info.scope()->declarations());
8280 VisitStatements(function->body());
8281 set_scope(saved_scope);
8282 if (HasStackOverflow()) {
8283 // Bail out if the inline function did, as we cannot residualize a call
8284 // instead, but do not disable optimization for the outer function.
8285 TraceInline(target, caller, "inline graph construction failed");
8286 target_shared->DisableOptimization(kInliningBailedOut);
8287 current_info()->RetryOptimization(kInliningBailedOut);
8288 delete target_state;
8292 // Update inlined nodes count.
8293 inlined_count_ += nodes_added;
8295 Handle<Code> unoptimized_code(target_shared->code());
8296 DCHECK(unoptimized_code->kind() == Code::FUNCTION);
8297 Handle<TypeFeedbackInfo> type_info(
8298 TypeFeedbackInfo::cast(unoptimized_code->type_feedback_info()));
8299 graph()->update_type_change_checksum(type_info->own_type_change_checksum());
8301 TraceInline(target, caller, NULL);
8303 if (current_block() != NULL) {
8304 FunctionState* state = function_state();
8305 if (state->inlining_kind() == CONSTRUCT_CALL_RETURN) {
8306 // Falling off the end of an inlined construct call. In a test context the
8307 // return value will always evaluate to true, in a value context the
8308 // return value is the newly allocated receiver.
8309 if (call_context()->IsTest()) {
8310 Goto(inlined_test_context()->if_true(), state);
8311 } else if (call_context()->IsEffect()) {
8312 Goto(function_return(), state);
8314 DCHECK(call_context()->IsValue());
8315 AddLeaveInlined(implicit_return_value, state);
8317 } else if (state->inlining_kind() == SETTER_CALL_RETURN) {
8318 // Falling off the end of an inlined setter call. The returned value is
8319 // never used, the value of an assignment is always the value of the RHS
8320 // of the assignment.
8321 if (call_context()->IsTest()) {
8322 inlined_test_context()->ReturnValue(implicit_return_value);
8323 } else if (call_context()->IsEffect()) {
8324 Goto(function_return(), state);
8326 DCHECK(call_context()->IsValue());
8327 AddLeaveInlined(implicit_return_value, state);
8330 // Falling off the end of a normal inlined function. This basically means
8331 // returning undefined.
8332 if (call_context()->IsTest()) {
8333 Goto(inlined_test_context()->if_false(), state);
8334 } else if (call_context()->IsEffect()) {
8335 Goto(function_return(), state);
8337 DCHECK(call_context()->IsValue());
8338 AddLeaveInlined(undefined, state);
8343 // Fix up the function exits.
8344 if (inlined_test_context() != NULL) {
8345 HBasicBlock* if_true = inlined_test_context()->if_true();
8346 HBasicBlock* if_false = inlined_test_context()->if_false();
8348 HEnterInlined* entry = function_state()->entry();
8350 // Pop the return test context from the expression context stack.
8351 DCHECK(ast_context() == inlined_test_context());
8352 ClearInlinedTestContext();
8353 delete target_state;
8355 // Forward to the real test context.
8356 if (if_true->HasPredecessor()) {
8357 entry->RegisterReturnTarget(if_true, zone());
8358 if_true->SetJoinId(ast_id);
8359 HBasicBlock* true_target = TestContext::cast(ast_context())->if_true();
8360 Goto(if_true, true_target, function_state());
8362 if (if_false->HasPredecessor()) {
8363 entry->RegisterReturnTarget(if_false, zone());
8364 if_false->SetJoinId(ast_id);
8365 HBasicBlock* false_target = TestContext::cast(ast_context())->if_false();
8366 Goto(if_false, false_target, function_state());
8368 set_current_block(NULL);
8371 } else if (function_return()->HasPredecessor()) {
8372 function_state()->entry()->RegisterReturnTarget(function_return(), zone());
8373 function_return()->SetJoinId(ast_id);
8374 set_current_block(function_return());
8376 set_current_block(NULL);
8378 delete target_state;
8383 bool HOptimizedGraphBuilder::TryInlineCall(Call* expr) {
8384 return TryInline(expr->target(), expr->arguments()->length(), NULL,
8385 expr->id(), expr->ReturnId(), NORMAL_RETURN);
8389 bool HOptimizedGraphBuilder::TryInlineConstruct(CallNew* expr,
8390 HValue* implicit_return_value) {
8391 return TryInline(expr->target(), expr->arguments()->length(),
8392 implicit_return_value, expr->id(), expr->ReturnId(),
8393 CONSTRUCT_CALL_RETURN);
8397 bool HOptimizedGraphBuilder::TryInlineGetter(Handle<JSFunction> getter,
8398 Handle<Map> receiver_map,
8400 BailoutId return_id) {
8401 if (TryInlineApiGetter(getter, receiver_map, ast_id)) return true;
8402 return TryInline(getter, 0, NULL, ast_id, return_id, GETTER_CALL_RETURN);
8406 bool HOptimizedGraphBuilder::TryInlineSetter(Handle<JSFunction> setter,
8407 Handle<Map> receiver_map,
8409 BailoutId assignment_id,
8410 HValue* implicit_return_value) {
8411 if (TryInlineApiSetter(setter, receiver_map, id)) return true;
8412 return TryInline(setter, 1, implicit_return_value, id, assignment_id,
8413 SETTER_CALL_RETURN);
8417 bool HOptimizedGraphBuilder::TryInlineIndirectCall(Handle<JSFunction> function,
8419 int arguments_count) {
8420 return TryInline(function, arguments_count, NULL, expr->id(),
8421 expr->ReturnId(), NORMAL_RETURN);
8425 bool HOptimizedGraphBuilder::TryInlineBuiltinFunctionCall(Call* expr) {
8426 if (!expr->target()->shared()->HasBuiltinFunctionId()) return false;
8427 BuiltinFunctionId id = expr->target()->shared()->builtin_function_id();
8430 if (!FLAG_fast_math) break;
8431 // Fall through if FLAG_fast_math.
8439 if (expr->arguments()->length() == 1) {
8440 HValue* argument = Pop();
8441 Drop(2); // Receiver and function.
8442 HInstruction* op = NewUncasted<HUnaryMathOperation>(argument, id);
8443 ast_context()->ReturnInstruction(op, expr->id());
8448 if (expr->arguments()->length() == 2) {
8449 HValue* right = Pop();
8450 HValue* left = Pop();
8451 Drop(2); // Receiver and function.
8453 HMul::NewImul(isolate(), zone(), context(), left, right);
8454 ast_context()->ReturnInstruction(op, expr->id());
8459 // Not supported for inlining yet.
8467 bool HOptimizedGraphBuilder::IsReadOnlyLengthDescriptor(
8468 Handle<Map> jsarray_map) {
8469 DCHECK(!jsarray_map->is_dictionary_map());
8470 Isolate* isolate = jsarray_map->GetIsolate();
8471 Handle<Name> length_string = isolate->factory()->length_string();
8472 DescriptorArray* descriptors = jsarray_map->instance_descriptors();
8473 int number = descriptors->SearchWithCache(*length_string, *jsarray_map);
8474 DCHECK_NE(DescriptorArray::kNotFound, number);
8475 return descriptors->GetDetails(number).IsReadOnly();
8480 bool HOptimizedGraphBuilder::CanInlineArrayResizeOperation(
8481 Handle<Map> receiver_map) {
8482 return !receiver_map.is_null() &&
8483 receiver_map->instance_type() == JS_ARRAY_TYPE &&
8484 IsFastElementsKind(receiver_map->elements_kind()) &&
8485 !receiver_map->is_dictionary_map() &&
8486 !IsReadOnlyLengthDescriptor(receiver_map) &&
8487 !receiver_map->is_observed() && receiver_map->is_extensible();
8491 bool HOptimizedGraphBuilder::TryInlineBuiltinMethodCall(
8492 Call* expr, Handle<JSFunction> function, Handle<Map> receiver_map,
8493 int args_count_no_receiver) {
8494 if (!function->shared()->HasBuiltinFunctionId()) return false;
8495 BuiltinFunctionId id = function->shared()->builtin_function_id();
8496 int argument_count = args_count_no_receiver + 1; // Plus receiver.
8498 if (receiver_map.is_null()) {
8499 HValue* receiver = environment()->ExpressionStackAt(args_count_no_receiver);
8500 if (receiver->IsConstant() &&
8501 HConstant::cast(receiver)->handle(isolate())->IsHeapObject()) {
8503 handle(Handle<HeapObject>::cast(
8504 HConstant::cast(receiver)->handle(isolate()))->map());
8507 // Try to inline calls like Math.* as operations in the calling function.
8509 case kStringCharCodeAt:
8511 if (argument_count == 2) {
8512 HValue* index = Pop();
8513 HValue* string = Pop();
8514 Drop(1); // Function.
8515 HInstruction* char_code =
8516 BuildStringCharCodeAt(string, index);
8517 if (id == kStringCharCodeAt) {
8518 ast_context()->ReturnInstruction(char_code, expr->id());
8521 AddInstruction(char_code);
8522 HInstruction* result = NewUncasted<HStringCharFromCode>(char_code);
8523 ast_context()->ReturnInstruction(result, expr->id());
8527 case kStringFromCharCode:
8528 if (argument_count == 2) {
8529 HValue* argument = Pop();
8530 Drop(2); // Receiver and function.
8531 HInstruction* result = NewUncasted<HStringCharFromCode>(argument);
8532 ast_context()->ReturnInstruction(result, expr->id());
8537 if (!FLAG_fast_math) break;
8538 // Fall through if FLAG_fast_math.
8546 if (argument_count == 2) {
8547 HValue* argument = Pop();
8548 Drop(2); // Receiver and function.
8549 HInstruction* op = NewUncasted<HUnaryMathOperation>(argument, id);
8550 ast_context()->ReturnInstruction(op, expr->id());
8555 if (argument_count == 3) {
8556 HValue* right = Pop();
8557 HValue* left = Pop();
8558 Drop(2); // Receiver and function.
8559 HInstruction* result = NULL;
8560 // Use sqrt() if exponent is 0.5 or -0.5.
8561 if (right->IsConstant() && HConstant::cast(right)->HasDoubleValue()) {
8562 double exponent = HConstant::cast(right)->DoubleValue();
8563 if (exponent == 0.5) {
8564 result = NewUncasted<HUnaryMathOperation>(left, kMathPowHalf);
8565 } else if (exponent == -0.5) {
8566 HValue* one = graph()->GetConstant1();
8567 HInstruction* sqrt = AddUncasted<HUnaryMathOperation>(
8568 left, kMathPowHalf);
8569 // MathPowHalf doesn't have side effects so there's no need for
8570 // an environment simulation here.
8571 DCHECK(!sqrt->HasObservableSideEffects());
8572 result = NewUncasted<HDiv>(one, sqrt);
8573 } else if (exponent == 2.0) {
8574 result = NewUncasted<HMul>(left, left);
8578 if (result == NULL) {
8579 result = NewUncasted<HPower>(left, right);
8581 ast_context()->ReturnInstruction(result, expr->id());
8587 if (argument_count == 3) {
8588 HValue* right = Pop();
8589 HValue* left = Pop();
8590 Drop(2); // Receiver and function.
8591 HMathMinMax::Operation op = (id == kMathMin) ? HMathMinMax::kMathMin
8592 : HMathMinMax::kMathMax;
8593 HInstruction* result = NewUncasted<HMathMinMax>(left, right, op);
8594 ast_context()->ReturnInstruction(result, expr->id());
8599 if (argument_count == 3) {
8600 HValue* right = Pop();
8601 HValue* left = Pop();
8602 Drop(2); // Receiver and function.
8603 HInstruction* result =
8604 HMul::NewImul(isolate(), zone(), context(), left, right);
8605 ast_context()->ReturnInstruction(result, expr->id());
8610 if (!CanInlineArrayResizeOperation(receiver_map)) return false;
8611 ElementsKind elements_kind = receiver_map->elements_kind();
8613 Drop(args_count_no_receiver);
8615 HValue* reduced_length;
8616 HValue* receiver = Pop();
8618 HValue* checked_object = AddCheckMap(receiver, receiver_map);
8620 Add<HLoadNamedField>(checked_object, nullptr,
8621 HObjectAccess::ForArrayLength(elements_kind));
8623 Drop(1); // Function.
8625 { NoObservableSideEffectsScope scope(this);
8626 IfBuilder length_checker(this);
8628 HValue* bounds_check = length_checker.If<HCompareNumericAndBranch>(
8629 length, graph()->GetConstant0(), Token::EQ);
8630 length_checker.Then();
8632 if (!ast_context()->IsEffect()) Push(graph()->GetConstantUndefined());
8634 length_checker.Else();
8635 HValue* elements = AddLoadElements(checked_object);
8636 // Ensure that we aren't popping from a copy-on-write array.
8637 if (IsFastSmiOrObjectElementsKind(elements_kind)) {
8638 elements = BuildCopyElementsOnWrite(checked_object, elements,
8639 elements_kind, length);
8641 reduced_length = AddUncasted<HSub>(length, graph()->GetConstant1());
8642 result = AddElementAccess(elements, reduced_length, NULL,
8643 bounds_check, elements_kind, LOAD);
8644 HValue* hole = IsFastSmiOrObjectElementsKind(elements_kind)
8645 ? graph()->GetConstantHole()
8646 : Add<HConstant>(HConstant::kHoleNaN);
8647 if (IsFastSmiOrObjectElementsKind(elements_kind)) {
8648 elements_kind = FAST_HOLEY_ELEMENTS;
8651 elements, reduced_length, hole, bounds_check, elements_kind, STORE);
8652 Add<HStoreNamedField>(
8653 checked_object, HObjectAccess::ForArrayLength(elements_kind),
8654 reduced_length, STORE_TO_INITIALIZED_ENTRY);
8656 if (!ast_context()->IsEffect()) Push(result);
8658 length_checker.End();
8660 result = ast_context()->IsEffect() ? graph()->GetConstant0() : Top();
8661 Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
8662 if (!ast_context()->IsEffect()) Drop(1);
8664 ast_context()->ReturnValue(result);
8668 if (!CanInlineArrayResizeOperation(receiver_map)) return false;
8669 ElementsKind elements_kind = receiver_map->elements_kind();
8671 // If there may be elements accessors in the prototype chain, the fast
8672 // inlined version can't be used.
8673 if (receiver_map->DictionaryElementsInPrototypeChainOnly()) return false;
8674 // If there currently can be no elements accessors on the prototype chain,
8675 // it doesn't mean that there won't be any later. Install a full prototype
8676 // chain check to trap element accessors being installed on the prototype
8677 // chain, which would cause elements to go to dictionary mode and result
8679 Handle<JSObject> prototype(JSObject::cast(receiver_map->prototype()));
8680 BuildCheckPrototypeMaps(prototype, Handle<JSObject>());
8682 // Protect against adding elements to the Array prototype, which needs to
8683 // route through appropriate bottlenecks.
8684 if (isolate()->IsFastArrayConstructorPrototypeChainIntact() &&
8685 !prototype->IsJSArray()) {
8689 const int argc = args_count_no_receiver;
8690 if (argc != 1) return false;
8692 HValue* value_to_push = Pop();
8693 HValue* array = Pop();
8694 Drop(1); // Drop function.
8696 HInstruction* new_size = NULL;
8697 HValue* length = NULL;
8700 NoObservableSideEffectsScope scope(this);
8702 length = Add<HLoadNamedField>(
8703 array, nullptr, HObjectAccess::ForArrayLength(elements_kind));
8705 new_size = AddUncasted<HAdd>(length, graph()->GetConstant1());
8707 bool is_array = receiver_map->instance_type() == JS_ARRAY_TYPE;
8708 HValue* checked_array = Add<HCheckMaps>(array, receiver_map);
8709 BuildUncheckedMonomorphicElementAccess(
8710 checked_array, length, value_to_push, is_array, elements_kind,
8711 STORE, NEVER_RETURN_HOLE, STORE_AND_GROW_NO_TRANSITION);
8713 if (!ast_context()->IsEffect()) Push(new_size);
8714 Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
8715 if (!ast_context()->IsEffect()) Drop(1);
8718 ast_context()->ReturnValue(new_size);
8722 if (!CanInlineArrayResizeOperation(receiver_map)) return false;
8723 ElementsKind kind = receiver_map->elements_kind();
8725 // If there may be elements accessors in the prototype chain, the fast
8726 // inlined version can't be used.
8727 if (receiver_map->DictionaryElementsInPrototypeChainOnly()) return false;
8729 // If there currently can be no elements accessors on the prototype chain,
8730 // it doesn't mean that there won't be any later. Install a full prototype
8731 // chain check to trap element accessors being installed on the prototype
8732 // chain, which would cause elements to go to dictionary mode and result
8734 BuildCheckPrototypeMaps(
8735 handle(JSObject::cast(receiver_map->prototype()), isolate()),
8736 Handle<JSObject>::null());
8738 // Threshold for fast inlined Array.shift().
8739 HConstant* inline_threshold = Add<HConstant>(static_cast<int32_t>(16));
8741 Drop(args_count_no_receiver);
8742 HValue* receiver = Pop();
8743 HValue* function = Pop();
8747 NoObservableSideEffectsScope scope(this);
8749 HValue* length = Add<HLoadNamedField>(
8750 receiver, nullptr, HObjectAccess::ForArrayLength(kind));
8752 IfBuilder if_lengthiszero(this);
8753 HValue* lengthiszero = if_lengthiszero.If<HCompareNumericAndBranch>(
8754 length, graph()->GetConstant0(), Token::EQ);
8755 if_lengthiszero.Then();
8757 if (!ast_context()->IsEffect()) Push(graph()->GetConstantUndefined());
8759 if_lengthiszero.Else();
8761 HValue* elements = AddLoadElements(receiver);
8763 // Check if we can use the fast inlined Array.shift().
8764 IfBuilder if_inline(this);
8765 if_inline.If<HCompareNumericAndBranch>(
8766 length, inline_threshold, Token::LTE);
8767 if (IsFastSmiOrObjectElementsKind(kind)) {
8768 // We cannot handle copy-on-write backing stores here.
8769 if_inline.AndIf<HCompareMap>(
8770 elements, isolate()->factory()->fixed_array_map());
8774 // Remember the result.
8775 if (!ast_context()->IsEffect()) {
8776 Push(AddElementAccess(elements, graph()->GetConstant0(), NULL,
8777 lengthiszero, kind, LOAD));
8780 // Compute the new length.
8781 HValue* new_length = AddUncasted<HSub>(
8782 length, graph()->GetConstant1());
8783 new_length->ClearFlag(HValue::kCanOverflow);
8785 // Copy the remaining elements.
8786 LoopBuilder loop(this, context(), LoopBuilder::kPostIncrement);
8788 HValue* new_key = loop.BeginBody(
8789 graph()->GetConstant0(), new_length, Token::LT);
8790 HValue* key = AddUncasted<HAdd>(new_key, graph()->GetConstant1());
8791 key->ClearFlag(HValue::kCanOverflow);
8792 ElementsKind copy_kind =
8793 kind == FAST_HOLEY_SMI_ELEMENTS ? FAST_HOLEY_ELEMENTS : kind;
8794 HValue* element = AddUncasted<HLoadKeyed>(
8795 elements, key, lengthiszero, copy_kind, ALLOW_RETURN_HOLE);
8796 HStoreKeyed* store =
8797 Add<HStoreKeyed>(elements, new_key, element, copy_kind);
8798 store->SetFlag(HValue::kAllowUndefinedAsNaN);
8802 // Put a hole at the end.
8803 HValue* hole = IsFastSmiOrObjectElementsKind(kind)
8804 ? graph()->GetConstantHole()
8805 : Add<HConstant>(HConstant::kHoleNaN);
8806 if (IsFastSmiOrObjectElementsKind(kind)) kind = FAST_HOLEY_ELEMENTS;
8808 elements, new_length, hole, kind, INITIALIZING_STORE);
8810 // Remember new length.
8811 Add<HStoreNamedField>(
8812 receiver, HObjectAccess::ForArrayLength(kind),
8813 new_length, STORE_TO_INITIALIZED_ENTRY);
8817 Add<HPushArguments>(receiver);
8818 result = Add<HCallJSFunction>(function, 1, true);
8819 if (!ast_context()->IsEffect()) Push(result);
8823 if_lengthiszero.End();
8825 result = ast_context()->IsEffect() ? graph()->GetConstant0() : Top();
8826 Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
8827 if (!ast_context()->IsEffect()) Drop(1);
8828 ast_context()->ReturnValue(result);
8832 case kArrayLastIndexOf: {
8833 if (receiver_map.is_null()) return false;
8834 if (receiver_map->instance_type() != JS_ARRAY_TYPE) return false;
8835 ElementsKind kind = receiver_map->elements_kind();
8836 if (!IsFastElementsKind(kind)) return false;
8837 if (receiver_map->is_observed()) return false;
8838 if (argument_count != 2) return false;
8839 if (!receiver_map->is_extensible()) return false;
8841 // If there may be elements accessors in the prototype chain, the fast
8842 // inlined version can't be used.
8843 if (receiver_map->DictionaryElementsInPrototypeChainOnly()) return false;
8845 // If there currently can be no elements accessors on the prototype chain,
8846 // it doesn't mean that there won't be any later. Install a full prototype
8847 // chain check to trap element accessors being installed on the prototype
8848 // chain, which would cause elements to go to dictionary mode and result
8850 BuildCheckPrototypeMaps(
8851 handle(JSObject::cast(receiver_map->prototype()), isolate()),
8852 Handle<JSObject>::null());
8854 HValue* search_element = Pop();
8855 HValue* receiver = Pop();
8856 Drop(1); // Drop function.
8858 ArrayIndexOfMode mode = (id == kArrayIndexOf)
8859 ? kFirstIndexOf : kLastIndexOf;
8860 HValue* index = BuildArrayIndexOf(receiver, search_element, kind, mode);
8862 if (!ast_context()->IsEffect()) Push(index);
8863 Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
8864 if (!ast_context()->IsEffect()) Drop(1);
8865 ast_context()->ReturnValue(index);
8869 // Not yet supported for inlining.
8876 bool HOptimizedGraphBuilder::TryInlineApiFunctionCall(Call* expr,
8878 Handle<JSFunction> function = expr->target();
8879 int argc = expr->arguments()->length();
8880 SmallMapList receiver_maps;
8881 return TryInlineApiCall(function,
8890 bool HOptimizedGraphBuilder::TryInlineApiMethodCall(
8893 SmallMapList* receiver_maps) {
8894 Handle<JSFunction> function = expr->target();
8895 int argc = expr->arguments()->length();
8896 return TryInlineApiCall(function,
8905 bool HOptimizedGraphBuilder::TryInlineApiGetter(Handle<JSFunction> function,
8906 Handle<Map> receiver_map,
8908 SmallMapList receiver_maps(1, zone());
8909 receiver_maps.Add(receiver_map, zone());
8910 return TryInlineApiCall(function,
8911 NULL, // Receiver is on expression stack.
8919 bool HOptimizedGraphBuilder::TryInlineApiSetter(Handle<JSFunction> function,
8920 Handle<Map> receiver_map,
8922 SmallMapList receiver_maps(1, zone());
8923 receiver_maps.Add(receiver_map, zone());
8924 return TryInlineApiCall(function,
8925 NULL, // Receiver is on expression stack.
8933 bool HOptimizedGraphBuilder::TryInlineApiCall(Handle<JSFunction> function,
8935 SmallMapList* receiver_maps,
8938 ApiCallType call_type) {
8939 if (function->context()->native_context() !=
8940 top_info()->closure()->context()->native_context()) {
8943 CallOptimization optimization(function);
8944 if (!optimization.is_simple_api_call()) return false;
8945 Handle<Map> holder_map;
8946 for (int i = 0; i < receiver_maps->length(); ++i) {
8947 auto map = receiver_maps->at(i);
8948 // Don't inline calls to receivers requiring accesschecks.
8949 if (map->is_access_check_needed()) return false;
8951 if (call_type == kCallApiFunction) {
8952 // Cannot embed a direct reference to the global proxy map
8953 // as it maybe dropped on deserialization.
8954 CHECK(!isolate()->serializer_enabled());
8955 DCHECK_EQ(0, receiver_maps->length());
8956 receiver_maps->Add(handle(function->global_proxy()->map()), zone());
8958 CallOptimization::HolderLookup holder_lookup =
8959 CallOptimization::kHolderNotFound;
8960 Handle<JSObject> api_holder = optimization.LookupHolderOfExpectedType(
8961 receiver_maps->first(), &holder_lookup);
8962 if (holder_lookup == CallOptimization::kHolderNotFound) return false;
8964 if (FLAG_trace_inlining) {
8965 PrintF("Inlining api function ");
8966 function->ShortPrint();
8970 bool is_function = false;
8971 bool is_store = false;
8972 switch (call_type) {
8973 case kCallApiFunction:
8974 case kCallApiMethod:
8975 // Need to check that none of the receiver maps could have changed.
8976 Add<HCheckMaps>(receiver, receiver_maps);
8977 // Need to ensure the chain between receiver and api_holder is intact.
8978 if (holder_lookup == CallOptimization::kHolderFound) {
8979 AddCheckPrototypeMaps(api_holder, receiver_maps->first());
8981 DCHECK_EQ(holder_lookup, CallOptimization::kHolderIsReceiver);
8983 // Includes receiver.
8984 PushArgumentsFromEnvironment(argc + 1);
8987 case kCallApiGetter:
8988 // Receiver and prototype chain cannot have changed.
8990 DCHECK_NULL(receiver);
8991 // Receiver is on expression stack.
8993 Add<HPushArguments>(receiver);
8995 case kCallApiSetter:
8998 // Receiver and prototype chain cannot have changed.
9000 DCHECK_NULL(receiver);
9001 // Receiver and value are on expression stack.
9002 HValue* value = Pop();
9004 Add<HPushArguments>(receiver, value);
9009 HValue* holder = NULL;
9010 switch (holder_lookup) {
9011 case CallOptimization::kHolderFound:
9012 holder = Add<HConstant>(api_holder);
9014 case CallOptimization::kHolderIsReceiver:
9017 case CallOptimization::kHolderNotFound:
9021 Handle<CallHandlerInfo> api_call_info = optimization.api_call_info();
9022 Handle<Object> call_data_obj(api_call_info->data(), isolate());
9023 bool call_data_undefined = call_data_obj->IsUndefined();
9024 HValue* call_data = Add<HConstant>(call_data_obj);
9025 ApiFunction fun(v8::ToCData<Address>(api_call_info->callback()));
9026 ExternalReference ref = ExternalReference(&fun,
9027 ExternalReference::DIRECT_API_CALL,
9029 HValue* api_function_address = Add<HConstant>(ExternalReference(ref));
9031 HValue* op_vals[] = {context(), Add<HConstant>(function), call_data, holder,
9032 api_function_address, nullptr};
9034 HInstruction* call = nullptr;
9036 CallApiAccessorStub stub(isolate(), is_store, call_data_undefined);
9037 Handle<Code> code = stub.GetCode();
9038 HConstant* code_value = Add<HConstant>(code);
9039 ApiAccessorDescriptor descriptor(isolate());
9040 call = New<HCallWithDescriptor>(
9041 code_value, argc + 1, descriptor,
9042 Vector<HValue*>(op_vals, arraysize(op_vals) - 1));
9043 } else if (argc <= CallApiFunctionWithFixedArgsStub::kMaxFixedArgs) {
9044 CallApiFunctionWithFixedArgsStub stub(isolate(), argc, call_data_undefined);
9045 Handle<Code> code = stub.GetCode();
9046 HConstant* code_value = Add<HConstant>(code);
9047 ApiFunctionWithFixedArgsDescriptor descriptor(isolate());
9048 call = New<HCallWithDescriptor>(
9049 code_value, argc + 1, descriptor,
9050 Vector<HValue*>(op_vals, arraysize(op_vals) - 1));
9051 Drop(1); // Drop function.
9053 op_vals[arraysize(op_vals) - 1] = Add<HConstant>(argc);
9054 CallApiFunctionStub stub(isolate(), call_data_undefined);
9055 Handle<Code> code = stub.GetCode();
9056 HConstant* code_value = Add<HConstant>(code);
9057 ApiFunctionDescriptor descriptor(isolate());
9059 New<HCallWithDescriptor>(code_value, argc + 1, descriptor,
9060 Vector<HValue*>(op_vals, arraysize(op_vals)));
9061 Drop(1); // Drop function.
9064 ast_context()->ReturnInstruction(call, ast_id);
9069 void HOptimizedGraphBuilder::HandleIndirectCall(Call* expr, HValue* function,
9070 int arguments_count) {
9071 Handle<JSFunction> known_function;
9072 int args_count_no_receiver = arguments_count - 1;
9073 if (function->IsConstant() &&
9074 HConstant::cast(function)->handle(isolate())->IsJSFunction()) {
9076 Handle<JSFunction>::cast(HConstant::cast(function)->handle(isolate()));
9077 if (TryInlineBuiltinMethodCall(expr, known_function, Handle<Map>(),
9078 args_count_no_receiver)) {
9079 if (FLAG_trace_inlining) {
9080 PrintF("Inlining builtin ");
9081 known_function->ShortPrint();
9087 if (TryInlineIndirectCall(known_function, expr, args_count_no_receiver)) {
9092 PushArgumentsFromEnvironment(arguments_count);
9093 HInvokeFunction* call =
9094 New<HInvokeFunction>(function, known_function, arguments_count);
9095 Drop(1); // Function
9096 ast_context()->ReturnInstruction(call, expr->id());
9100 bool HOptimizedGraphBuilder::TryIndirectCall(Call* expr) {
9101 DCHECK(expr->expression()->IsProperty());
9103 if (!expr->IsMonomorphic()) {
9106 Handle<Map> function_map = expr->GetReceiverTypes()->first();
9107 if (function_map->instance_type() != JS_FUNCTION_TYPE ||
9108 !expr->target()->shared()->HasBuiltinFunctionId()) {
9112 switch (expr->target()->shared()->builtin_function_id()) {
9113 case kFunctionCall: {
9114 if (expr->arguments()->length() == 0) return false;
9115 BuildFunctionCall(expr);
9118 case kFunctionApply: {
9119 // For .apply, only the pattern f.apply(receiver, arguments)
9121 if (current_info()->scope()->arguments() == NULL) return false;
9123 if (!CanBeFunctionApplyArguments(expr)) return false;
9125 BuildFunctionApply(expr);
9128 default: { return false; }
9134 void HOptimizedGraphBuilder::BuildFunctionApply(Call* expr) {
9135 ZoneList<Expression*>* args = expr->arguments();
9136 CHECK_ALIVE(VisitForValue(args->at(0)));
9137 HValue* receiver = Pop(); // receiver
9138 HValue* function = Pop(); // f
9141 Handle<Map> function_map = expr->GetReceiverTypes()->first();
9142 HValue* checked_function = AddCheckMap(function, function_map);
9144 if (function_state()->outer() == NULL) {
9145 HInstruction* elements = Add<HArgumentsElements>(false);
9146 HInstruction* length = Add<HArgumentsLength>(elements);
9147 HValue* wrapped_receiver = BuildWrapReceiver(receiver, checked_function);
9148 HInstruction* result = New<HApplyArguments>(function,
9152 ast_context()->ReturnInstruction(result, expr->id());
9154 // We are inside inlined function and we know exactly what is inside
9155 // arguments object. But we need to be able to materialize at deopt.
9156 DCHECK_EQ(environment()->arguments_environment()->parameter_count(),
9157 function_state()->entry()->arguments_object()->arguments_count());
9158 HArgumentsObject* args = function_state()->entry()->arguments_object();
9159 const ZoneList<HValue*>* arguments_values = args->arguments_values();
9160 int arguments_count = arguments_values->length();
9162 Push(BuildWrapReceiver(receiver, checked_function));
9163 for (int i = 1; i < arguments_count; i++) {
9164 Push(arguments_values->at(i));
9166 HandleIndirectCall(expr, function, arguments_count);
9172 void HOptimizedGraphBuilder::BuildFunctionCall(Call* expr) {
9173 HValue* function = Top(); // f
9174 Handle<Map> function_map = expr->GetReceiverTypes()->first();
9175 HValue* checked_function = AddCheckMap(function, function_map);
9177 // f and call are on the stack in the unoptimized code
9178 // during evaluation of the arguments.
9179 CHECK_ALIVE(VisitExpressions(expr->arguments()));
9181 int args_length = expr->arguments()->length();
9182 int receiver_index = args_length - 1;
9183 // Patch the receiver.
9184 HValue* receiver = BuildWrapReceiver(
9185 environment()->ExpressionStackAt(receiver_index), checked_function);
9186 environment()->SetExpressionStackAt(receiver_index, receiver);
9188 // Call must not be on the stack from now on.
9189 int call_index = args_length + 1;
9190 environment()->RemoveExpressionStackAt(call_index);
9192 HandleIndirectCall(expr, function, args_length);
9196 HValue* HOptimizedGraphBuilder::ImplicitReceiverFor(HValue* function,
9197 Handle<JSFunction> target) {
9198 SharedFunctionInfo* shared = target->shared();
9199 if (is_sloppy(shared->language_mode()) && !shared->native()) {
9200 // Cannot embed a direct reference to the global proxy
9201 // as is it dropped on deserialization.
9202 CHECK(!isolate()->serializer_enabled());
9203 Handle<JSObject> global_proxy(target->context()->global_proxy());
9204 return Add<HConstant>(global_proxy);
9206 return graph()->GetConstantUndefined();
9210 void HOptimizedGraphBuilder::BuildArrayCall(Expression* expression,
9211 int arguments_count,
9213 Handle<AllocationSite> site) {
9214 Add<HCheckValue>(function, array_function());
9216 if (IsCallArrayInlineable(arguments_count, site)) {
9217 BuildInlinedCallArray(expression, arguments_count, site);
9221 HInstruction* call = PreProcessCall(New<HCallNewArray>(
9222 function, arguments_count + 1, site->GetElementsKind(), site));
9223 if (expression->IsCall()) {
9226 ast_context()->ReturnInstruction(call, expression->id());
9230 HValue* HOptimizedGraphBuilder::BuildArrayIndexOf(HValue* receiver,
9231 HValue* search_element,
9233 ArrayIndexOfMode mode) {
9234 DCHECK(IsFastElementsKind(kind));
9236 NoObservableSideEffectsScope no_effects(this);
9238 HValue* elements = AddLoadElements(receiver);
9239 HValue* length = AddLoadArrayLength(receiver, kind);
9242 HValue* terminating;
9244 LoopBuilder::Direction direction;
9245 if (mode == kFirstIndexOf) {
9246 initial = graph()->GetConstant0();
9247 terminating = length;
9249 direction = LoopBuilder::kPostIncrement;
9251 DCHECK_EQ(kLastIndexOf, mode);
9253 terminating = graph()->GetConstant0();
9255 direction = LoopBuilder::kPreDecrement;
9258 Push(graph()->GetConstantMinus1());
9259 if (IsFastDoubleElementsKind(kind) || IsFastSmiElementsKind(kind)) {
9260 // Make sure that we can actually compare numbers correctly below, see
9261 // https://code.google.com/p/chromium/issues/detail?id=407946 for details.
9262 search_element = AddUncasted<HForceRepresentation>(
9263 search_element, IsFastSmiElementsKind(kind) ? Representation::Smi()
9264 : Representation::Double());
9266 LoopBuilder loop(this, context(), direction);
9268 HValue* index = loop.BeginBody(initial, terminating, token);
9269 HValue* element = AddUncasted<HLoadKeyed>(elements, index, nullptr, kind,
9271 IfBuilder if_issame(this);
9272 if_issame.If<HCompareNumericAndBranch>(element, search_element,
9284 IfBuilder if_isstring(this);
9285 if_isstring.If<HIsStringAndBranch>(search_element);
9288 LoopBuilder loop(this, context(), direction);
9290 HValue* index = loop.BeginBody(initial, terminating, token);
9291 HValue* element = AddUncasted<HLoadKeyed>(elements, index, nullptr,
9292 kind, ALLOW_RETURN_HOLE);
9293 IfBuilder if_issame(this);
9294 if_issame.If<HIsStringAndBranch>(element);
9295 if_issame.AndIf<HStringCompareAndBranch>(
9296 element, search_element, Token::EQ_STRICT);
9309 IfBuilder if_isnumber(this);
9310 if_isnumber.If<HIsSmiAndBranch>(search_element);
9311 if_isnumber.OrIf<HCompareMap>(
9312 search_element, isolate()->factory()->heap_number_map());
9315 HValue* search_number =
9316 AddUncasted<HForceRepresentation>(search_element,
9317 Representation::Double());
9318 LoopBuilder loop(this, context(), direction);
9320 HValue* index = loop.BeginBody(initial, terminating, token);
9321 HValue* element = AddUncasted<HLoadKeyed>(elements, index, nullptr,
9322 kind, ALLOW_RETURN_HOLE);
9324 IfBuilder if_element_isnumber(this);
9325 if_element_isnumber.If<HIsSmiAndBranch>(element);
9326 if_element_isnumber.OrIf<HCompareMap>(
9327 element, isolate()->factory()->heap_number_map());
9328 if_element_isnumber.Then();
9331 AddUncasted<HForceRepresentation>(element,
9332 Representation::Double());
9333 IfBuilder if_issame(this);
9334 if_issame.If<HCompareNumericAndBranch>(
9335 number, search_number, Token::EQ_STRICT);
9344 if_element_isnumber.End();
9350 LoopBuilder loop(this, context(), direction);
9352 HValue* index = loop.BeginBody(initial, terminating, token);
9353 HValue* element = AddUncasted<HLoadKeyed>(elements, index, nullptr,
9354 kind, ALLOW_RETURN_HOLE);
9355 IfBuilder if_issame(this);
9356 if_issame.If<HCompareObjectEqAndBranch>(
9357 element, search_element);
9377 bool HOptimizedGraphBuilder::TryHandleArrayCall(Call* expr, HValue* function) {
9378 if (!array_function().is_identical_to(expr->target())) {
9382 Handle<AllocationSite> site = expr->allocation_site();
9383 if (site.is_null()) return false;
9385 BuildArrayCall(expr,
9386 expr->arguments()->length(),
9393 bool HOptimizedGraphBuilder::TryHandleArrayCallNew(CallNew* expr,
9395 if (!array_function().is_identical_to(expr->target())) {
9399 Handle<AllocationSite> site = expr->allocation_site();
9400 if (site.is_null()) return false;
9402 BuildArrayCall(expr, expr->arguments()->length(), function, site);
9407 bool HOptimizedGraphBuilder::CanBeFunctionApplyArguments(Call* expr) {
9408 ZoneList<Expression*>* args = expr->arguments();
9409 if (args->length() != 2) return false;
9410 VariableProxy* arg_two = args->at(1)->AsVariableProxy();
9411 if (arg_two == NULL || !arg_two->var()->IsStackAllocated()) return false;
9412 HValue* arg_two_value = LookupAndMakeLive(arg_two->var());
9413 if (!arg_two_value->CheckFlag(HValue::kIsArguments)) return false;
9418 void HOptimizedGraphBuilder::VisitCall(Call* expr) {
9419 DCHECK(!HasStackOverflow());
9420 DCHECK(current_block() != NULL);
9421 DCHECK(current_block()->HasPredecessor());
9422 if (!top_info()->is_tracking_positions()) SetSourcePosition(expr->position());
9423 Expression* callee = expr->expression();
9424 int argument_count = expr->arguments()->length() + 1; // Plus receiver.
9425 HInstruction* call = NULL;
9427 Property* prop = callee->AsProperty();
9429 CHECK_ALIVE(VisitForValue(prop->obj()));
9430 HValue* receiver = Top();
9433 ComputeReceiverTypes(expr, receiver, &maps, zone());
9435 if (prop->key()->IsPropertyName() && maps->length() > 0) {
9436 Handle<String> name = prop->key()->AsLiteral()->AsPropertyName();
9437 PropertyAccessInfo info(this, LOAD, maps->first(), name);
9438 if (!info.CanAccessAsMonomorphic(maps)) {
9439 HandlePolymorphicCallNamed(expr, receiver, maps, name);
9444 if (!prop->key()->IsPropertyName()) {
9445 CHECK_ALIVE(VisitForValue(prop->key()));
9449 CHECK_ALIVE(PushLoad(prop, receiver, key));
9450 HValue* function = Pop();
9452 if (function->IsConstant() &&
9453 HConstant::cast(function)->handle(isolate())->IsJSFunction()) {
9454 // Push the function under the receiver.
9455 environment()->SetExpressionStackAt(0, function);
9458 Handle<JSFunction> known_function = Handle<JSFunction>::cast(
9459 HConstant::cast(function)->handle(isolate()));
9460 expr->set_target(known_function);
9462 if (TryIndirectCall(expr)) return;
9463 CHECK_ALIVE(VisitExpressions(expr->arguments()));
9465 Handle<Map> map = maps->length() == 1 ? maps->first() : Handle<Map>();
9466 if (TryInlineBuiltinMethodCall(expr, known_function, map,
9467 expr->arguments()->length())) {
9468 if (FLAG_trace_inlining) {
9469 PrintF("Inlining builtin ");
9470 known_function->ShortPrint();
9475 if (TryInlineApiMethodCall(expr, receiver, maps)) return;
9477 // Wrap the receiver if necessary.
9478 if (NeedsWrapping(maps->first(), known_function)) {
9479 // Since HWrapReceiver currently cannot actually wrap numbers and
9480 // strings, use the regular CallFunctionStub for method calls to wrap
9482 // TODO(verwaest): Support creation of value wrappers directly in
9484 call = New<HCallFunction>(
9485 function, argument_count, WRAP_AND_CALL);
9486 } else if (TryInlineCall(expr)) {
9489 call = BuildCallConstantFunction(known_function, argument_count);
9493 ArgumentsAllowedFlag arguments_flag = ARGUMENTS_NOT_ALLOWED;
9494 if (CanBeFunctionApplyArguments(expr) && expr->is_uninitialized()) {
9495 // We have to use EAGER deoptimization here because Deoptimizer::SOFT
9496 // gets ignored by the always-opt flag, which leads to incorrect code.
9498 Deoptimizer::kInsufficientTypeFeedbackForCallWithArguments,
9499 Deoptimizer::EAGER);
9500 arguments_flag = ARGUMENTS_FAKED;
9503 // Push the function under the receiver.
9504 environment()->SetExpressionStackAt(0, function);
9507 CHECK_ALIVE(VisitExpressions(expr->arguments(), arguments_flag));
9508 CallFunctionFlags flags = receiver->type().IsJSObject()
9509 ? NO_CALL_FUNCTION_FLAGS : CALL_AS_METHOD;
9510 call = New<HCallFunction>(function, argument_count, flags);
9512 PushArgumentsFromEnvironment(argument_count);
9515 VariableProxy* proxy = expr->expression()->AsVariableProxy();
9516 if (proxy != NULL && proxy->var()->is_possibly_eval(isolate())) {
9517 return Bailout(kPossibleDirectCallToEval);
9520 // The function is on the stack in the unoptimized code during
9521 // evaluation of the arguments.
9522 CHECK_ALIVE(VisitForValue(expr->expression()));
9523 HValue* function = Top();
9524 if (function->IsConstant() &&
9525 HConstant::cast(function)->handle(isolate())->IsJSFunction()) {
9526 Handle<Object> constant = HConstant::cast(function)->handle(isolate());
9527 Handle<JSFunction> target = Handle<JSFunction>::cast(constant);
9528 expr->SetKnownGlobalTarget(target);
9531 // Placeholder for the receiver.
9532 Push(graph()->GetConstantUndefined());
9533 CHECK_ALIVE(VisitExpressions(expr->arguments()));
9535 if (expr->IsMonomorphic()) {
9536 Add<HCheckValue>(function, expr->target());
9538 // Patch the global object on the stack by the expected receiver.
9539 HValue* receiver = ImplicitReceiverFor(function, expr->target());
9540 const int receiver_index = argument_count - 1;
9541 environment()->SetExpressionStackAt(receiver_index, receiver);
9543 if (TryInlineBuiltinFunctionCall(expr)) {
9544 if (FLAG_trace_inlining) {
9545 PrintF("Inlining builtin ");
9546 expr->target()->ShortPrint();
9551 if (TryInlineApiFunctionCall(expr, receiver)) return;
9552 if (TryHandleArrayCall(expr, function)) return;
9553 if (TryInlineCall(expr)) return;
9555 PushArgumentsFromEnvironment(argument_count);
9556 call = BuildCallConstantFunction(expr->target(), argument_count);
9558 PushArgumentsFromEnvironment(argument_count);
9559 HCallFunction* call_function =
9560 New<HCallFunction>(function, argument_count);
9561 call = call_function;
9562 if (expr->is_uninitialized() &&
9563 expr->IsUsingCallFeedbackICSlot(isolate())) {
9564 // We've never seen this call before, so let's have Crankshaft learn
9565 // through the type vector.
9566 Handle<TypeFeedbackVector> vector =
9567 handle(current_feedback_vector(), isolate());
9568 FeedbackVectorICSlot slot = expr->CallFeedbackICSlot();
9569 call_function->SetVectorAndSlot(vector, slot);
9574 Drop(1); // Drop the function.
9575 return ast_context()->ReturnInstruction(call, expr->id());
9579 void HOptimizedGraphBuilder::BuildInlinedCallArray(
9580 Expression* expression,
9582 Handle<AllocationSite> site) {
9583 DCHECK(!site.is_null());
9584 DCHECK(argument_count >= 0 && argument_count <= 1);
9585 NoObservableSideEffectsScope no_effects(this);
9587 // We should at least have the constructor on the expression stack.
9588 HValue* constructor = environment()->ExpressionStackAt(argument_count);
9590 // Register on the site for deoptimization if the transition feedback changes.
9591 top_info()->dependencies()->AssumeTransitionStable(site);
9592 ElementsKind kind = site->GetElementsKind();
9593 HInstruction* site_instruction = Add<HConstant>(site);
9595 // In the single constant argument case, we may have to adjust elements kind
9596 // to avoid creating a packed non-empty array.
9597 if (argument_count == 1 && !IsHoleyElementsKind(kind)) {
9598 HValue* argument = environment()->Top();
9599 if (argument->IsConstant()) {
9600 HConstant* constant_argument = HConstant::cast(argument);
9601 DCHECK(constant_argument->HasSmiValue());
9602 int constant_array_size = constant_argument->Integer32Value();
9603 if (constant_array_size != 0) {
9604 kind = GetHoleyElementsKind(kind);
9610 JSArrayBuilder array_builder(this,
9614 DISABLE_ALLOCATION_SITES);
9615 HValue* new_object = argument_count == 0
9616 ? array_builder.AllocateEmptyArray()
9617 : BuildAllocateArrayFromLength(&array_builder, Top());
9619 int args_to_drop = argument_count + (expression->IsCall() ? 2 : 1);
9621 ast_context()->ReturnValue(new_object);
9625 // Checks whether allocation using the given constructor can be inlined.
9626 static bool IsAllocationInlineable(Handle<JSFunction> constructor) {
9627 return constructor->has_initial_map() &&
9628 constructor->initial_map()->instance_type() == JS_OBJECT_TYPE &&
9629 constructor->initial_map()->instance_size() <
9630 HAllocate::kMaxInlineSize;
9634 bool HOptimizedGraphBuilder::IsCallArrayInlineable(
9636 Handle<AllocationSite> site) {
9637 Handle<JSFunction> caller = current_info()->closure();
9638 Handle<JSFunction> target = array_function();
9639 // We should have the function plus array arguments on the environment stack.
9640 DCHECK(environment()->length() >= (argument_count + 1));
9641 DCHECK(!site.is_null());
9643 bool inline_ok = false;
9644 if (site->CanInlineCall()) {
9645 // We also want to avoid inlining in certain 1 argument scenarios.
9646 if (argument_count == 1) {
9647 HValue* argument = Top();
9648 if (argument->IsConstant()) {
9649 // Do not inline if the constant length argument is not a smi or
9650 // outside the valid range for unrolled loop initialization.
9651 HConstant* constant_argument = HConstant::cast(argument);
9652 if (constant_argument->HasSmiValue()) {
9653 int value = constant_argument->Integer32Value();
9654 inline_ok = value >= 0 && value <= kElementLoopUnrollThreshold;
9656 TraceInline(target, caller,
9657 "Constant length outside of valid inlining range.");
9661 TraceInline(target, caller,
9662 "Dont inline [new] Array(n) where n isn't constant.");
9664 } else if (argument_count == 0) {
9667 TraceInline(target, caller, "Too many arguments to inline.");
9670 TraceInline(target, caller, "AllocationSite requested no inlining.");
9674 TraceInline(target, caller, NULL);
9680 void HOptimizedGraphBuilder::VisitCallNew(CallNew* expr) {
9681 DCHECK(!HasStackOverflow());
9682 DCHECK(current_block() != NULL);
9683 DCHECK(current_block()->HasPredecessor());
9684 if (!top_info()->is_tracking_positions()) SetSourcePosition(expr->position());
9685 int argument_count = expr->arguments()->length() + 1; // Plus constructor.
9686 Factory* factory = isolate()->factory();
9688 // The constructor function is on the stack in the unoptimized code
9689 // during evaluation of the arguments.
9690 CHECK_ALIVE(VisitForValue(expr->expression()));
9691 HValue* function = Top();
9692 CHECK_ALIVE(VisitExpressions(expr->arguments()));
9694 if (function->IsConstant() &&
9695 HConstant::cast(function)->handle(isolate())->IsJSFunction()) {
9696 Handle<Object> constant = HConstant::cast(function)->handle(isolate());
9697 expr->SetKnownGlobalTarget(Handle<JSFunction>::cast(constant));
9700 if (FLAG_inline_construct &&
9701 expr->IsMonomorphic() &&
9702 IsAllocationInlineable(expr->target())) {
9703 Handle<JSFunction> constructor = expr->target();
9704 HValue* check = Add<HCheckValue>(function, constructor);
9706 // Force completion of inobject slack tracking before generating
9707 // allocation code to finalize instance size.
9708 if (constructor->IsInobjectSlackTrackingInProgress()) {
9709 constructor->CompleteInobjectSlackTracking();
9712 // Calculate instance size from initial map of constructor.
9713 DCHECK(constructor->has_initial_map());
9714 Handle<Map> initial_map(constructor->initial_map());
9715 int instance_size = initial_map->instance_size();
9717 // Allocate an instance of the implicit receiver object.
9718 HValue* size_in_bytes = Add<HConstant>(instance_size);
9719 HAllocationMode allocation_mode;
9720 if (FLAG_pretenuring_call_new) {
9721 if (FLAG_allocation_site_pretenuring) {
9722 // Try to use pretenuring feedback.
9723 Handle<AllocationSite> allocation_site = expr->allocation_site();
9724 allocation_mode = HAllocationMode(allocation_site);
9725 // Take a dependency on allocation site.
9726 top_info()->dependencies()->AssumeTenuringDecision(allocation_site);
9730 HAllocate* receiver = BuildAllocate(
9731 size_in_bytes, HType::JSObject(), JS_OBJECT_TYPE, allocation_mode);
9732 receiver->set_known_initial_map(initial_map);
9734 // Initialize map and fields of the newly allocated object.
9735 { NoObservableSideEffectsScope no_effects(this);
9736 DCHECK(initial_map->instance_type() == JS_OBJECT_TYPE);
9737 Add<HStoreNamedField>(receiver,
9738 HObjectAccess::ForMapAndOffset(initial_map, JSObject::kMapOffset),
9739 Add<HConstant>(initial_map));
9740 HValue* empty_fixed_array = Add<HConstant>(factory->empty_fixed_array());
9741 Add<HStoreNamedField>(receiver,
9742 HObjectAccess::ForMapAndOffset(initial_map,
9743 JSObject::kPropertiesOffset),
9745 Add<HStoreNamedField>(receiver,
9746 HObjectAccess::ForMapAndOffset(initial_map,
9747 JSObject::kElementsOffset),
9749 BuildInitializeInobjectProperties(receiver, initial_map);
9752 // Replace the constructor function with a newly allocated receiver using
9753 // the index of the receiver from the top of the expression stack.
9754 const int receiver_index = argument_count - 1;
9755 DCHECK(environment()->ExpressionStackAt(receiver_index) == function);
9756 environment()->SetExpressionStackAt(receiver_index, receiver);
9758 if (TryInlineConstruct(expr, receiver)) {
9759 // Inlining worked, add a dependency on the initial map to make sure that
9760 // this code is deoptimized whenever the initial map of the constructor
9762 top_info()->dependencies()->AssumeInitialMapCantChange(initial_map);
9766 // TODO(mstarzinger): For now we remove the previous HAllocate and all
9767 // corresponding instructions and instead add HPushArguments for the
9768 // arguments in case inlining failed. What we actually should do is for
9769 // inlining to try to build a subgraph without mutating the parent graph.
9770 HInstruction* instr = current_block()->last();
9772 HInstruction* prev_instr = instr->previous();
9773 instr->DeleteAndReplaceWith(NULL);
9775 } while (instr != check);
9776 environment()->SetExpressionStackAt(receiver_index, function);
9777 HInstruction* call =
9778 PreProcessCall(New<HCallNew>(function, argument_count));
9779 return ast_context()->ReturnInstruction(call, expr->id());
9781 // The constructor function is both an operand to the instruction and an
9782 // argument to the construct call.
9783 if (TryHandleArrayCallNew(expr, function)) return;
9785 HInstruction* call =
9786 PreProcessCall(New<HCallNew>(function, argument_count));
9787 return ast_context()->ReturnInstruction(call, expr->id());
9792 void HOptimizedGraphBuilder::BuildInitializeInobjectProperties(
9793 HValue* receiver, Handle<Map> initial_map) {
9794 if (initial_map->inobject_properties() != 0) {
9795 HConstant* undefined = graph()->GetConstantUndefined();
9796 for (int i = 0; i < initial_map->inobject_properties(); i++) {
9797 int property_offset = initial_map->GetInObjectPropertyOffset(i);
9798 Add<HStoreNamedField>(receiver, HObjectAccess::ForMapAndOffset(
9799 initial_map, property_offset),
9806 HValue* HGraphBuilder::BuildAllocateEmptyArrayBuffer(HValue* byte_length) {
9807 // We HForceRepresentation here to avoid allocations during an *-to-tagged
9808 // HChange that could cause GC while the array buffer object is not fully
9810 HObjectAccess byte_length_access(HObjectAccess::ForJSArrayBufferByteLength());
9811 byte_length = AddUncasted<HForceRepresentation>(
9812 byte_length, byte_length_access.representation());
9814 BuildAllocate(Add<HConstant>(JSArrayBuffer::kSizeWithInternalFields),
9815 HType::JSObject(), JS_ARRAY_BUFFER_TYPE, HAllocationMode());
9817 HValue* global_object = Add<HLoadNamedField>(
9819 HObjectAccess::ForContextSlot(Context::GLOBAL_OBJECT_INDEX));
9820 HValue* native_context = Add<HLoadNamedField>(
9821 global_object, nullptr, HObjectAccess::ForGlobalObjectNativeContext());
9822 Add<HStoreNamedField>(
9823 result, HObjectAccess::ForMap(),
9824 Add<HLoadNamedField>(
9825 native_context, nullptr,
9826 HObjectAccess::ForContextSlot(Context::ARRAY_BUFFER_MAP_INDEX)));
9828 HConstant* empty_fixed_array =
9829 Add<HConstant>(isolate()->factory()->empty_fixed_array());
9830 Add<HStoreNamedField>(
9831 result, HObjectAccess::ForJSArrayOffset(JSArray::kPropertiesOffset),
9833 Add<HStoreNamedField>(
9834 result, HObjectAccess::ForJSArrayOffset(JSArray::kElementsOffset),
9836 Add<HStoreNamedField>(
9837 result, HObjectAccess::ForJSArrayBufferBackingStore().WithRepresentation(
9838 Representation::Smi()),
9839 graph()->GetConstant0());
9840 Add<HStoreNamedField>(result, byte_length_access, byte_length);
9841 Add<HStoreNamedField>(result, HObjectAccess::ForJSArrayBufferBitFieldSlot(),
9842 graph()->GetConstant0());
9843 Add<HStoreNamedField>(
9844 result, HObjectAccess::ForJSArrayBufferBitField(),
9845 Add<HConstant>((1 << JSArrayBuffer::IsExternal::kShift) |
9846 (1 << JSArrayBuffer::IsNeuterable::kShift)));
9848 for (int field = 0; field < v8::ArrayBuffer::kInternalFieldCount; ++field) {
9849 Add<HStoreNamedField>(
9851 HObjectAccess::ForObservableJSObjectOffset(
9852 JSArrayBuffer::kSize + field * kPointerSize, Representation::Smi()),
9853 graph()->GetConstant0());
9860 template <class ViewClass>
9861 void HGraphBuilder::BuildArrayBufferViewInitialization(
9864 HValue* byte_offset,
9865 HValue* byte_length) {
9867 for (int offset = ViewClass::kSize;
9868 offset < ViewClass::kSizeWithInternalFields;
9869 offset += kPointerSize) {
9870 Add<HStoreNamedField>(obj,
9871 HObjectAccess::ForObservableJSObjectOffset(offset),
9872 graph()->GetConstant0());
9875 Add<HStoreNamedField>(
9877 HObjectAccess::ForJSArrayBufferViewByteOffset(),
9879 Add<HStoreNamedField>(
9881 HObjectAccess::ForJSArrayBufferViewByteLength(),
9883 Add<HStoreNamedField>(obj, HObjectAccess::ForJSArrayBufferViewBuffer(),
9888 void HOptimizedGraphBuilder::GenerateDataViewInitialize(
9889 CallRuntime* expr) {
9890 ZoneList<Expression*>* arguments = expr->arguments();
9892 DCHECK(arguments->length()== 4);
9893 CHECK_ALIVE(VisitForValue(arguments->at(0)));
9894 HValue* obj = Pop();
9896 CHECK_ALIVE(VisitForValue(arguments->at(1)));
9897 HValue* buffer = Pop();
9899 CHECK_ALIVE(VisitForValue(arguments->at(2)));
9900 HValue* byte_offset = Pop();
9902 CHECK_ALIVE(VisitForValue(arguments->at(3)));
9903 HValue* byte_length = Pop();
9906 NoObservableSideEffectsScope scope(this);
9907 BuildArrayBufferViewInitialization<JSDataView>(
9908 obj, buffer, byte_offset, byte_length);
9913 static Handle<Map> TypedArrayMap(Isolate* isolate,
9914 ExternalArrayType array_type,
9915 ElementsKind target_kind) {
9916 Handle<Context> native_context = isolate->native_context();
9917 Handle<JSFunction> fun;
9918 switch (array_type) {
9919 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
9920 case kExternal##Type##Array: \
9921 fun = Handle<JSFunction>(native_context->type##_array_fun()); \
9924 TYPED_ARRAYS(TYPED_ARRAY_CASE)
9925 #undef TYPED_ARRAY_CASE
9927 Handle<Map> map(fun->initial_map());
9928 return Map::AsElementsKind(map, target_kind);
9932 HValue* HOptimizedGraphBuilder::BuildAllocateExternalElements(
9933 ExternalArrayType array_type,
9934 bool is_zero_byte_offset,
9935 HValue* buffer, HValue* byte_offset, HValue* length) {
9936 Handle<Map> external_array_map(
9937 isolate()->heap()->MapForFixedTypedArray(array_type));
9939 // The HForceRepresentation is to prevent possible deopt on int-smi
9940 // conversion after allocation but before the new object fields are set.
9941 length = AddUncasted<HForceRepresentation>(length, Representation::Smi());
9942 HValue* elements = Add<HAllocate>(
9943 Add<HConstant>(FixedTypedArrayBase::kHeaderSize), HType::HeapObject(),
9944 NOT_TENURED, external_array_map->instance_type());
9946 AddStoreMapConstant(elements, external_array_map);
9947 Add<HStoreNamedField>(elements,
9948 HObjectAccess::ForFixedArrayLength(), length);
9950 HValue* backing_store = Add<HLoadNamedField>(
9951 buffer, nullptr, HObjectAccess::ForJSArrayBufferBackingStore());
9953 HValue* typed_array_start;
9954 if (is_zero_byte_offset) {
9955 typed_array_start = backing_store;
9957 HInstruction* external_pointer =
9958 AddUncasted<HAdd>(backing_store, byte_offset);
9959 // Arguments are checked prior to call to TypedArrayInitialize,
9960 // including byte_offset.
9961 external_pointer->ClearFlag(HValue::kCanOverflow);
9962 typed_array_start = external_pointer;
9965 Add<HStoreNamedField>(elements,
9966 HObjectAccess::ForFixedTypedArrayBaseBasePointer(),
9967 graph()->GetConstant0());
9968 Add<HStoreNamedField>(elements,
9969 HObjectAccess::ForFixedTypedArrayBaseExternalPointer(),
9976 HValue* HOptimizedGraphBuilder::BuildAllocateFixedTypedArray(
9977 ExternalArrayType array_type, size_t element_size,
9978 ElementsKind fixed_elements_kind, HValue* byte_length, HValue* length,
9981 (FixedTypedArrayBase::kHeaderSize & kObjectAlignmentMask) == 0);
9984 // if fixed array's elements are not aligned to object's alignment,
9985 // we need to align the whole array to object alignment.
9986 if (element_size % kObjectAlignment != 0) {
9987 total_size = BuildObjectSizeAlignment(
9988 byte_length, FixedTypedArrayBase::kHeaderSize);
9990 total_size = AddUncasted<HAdd>(byte_length,
9991 Add<HConstant>(FixedTypedArrayBase::kHeaderSize));
9992 total_size->ClearFlag(HValue::kCanOverflow);
9995 // The HForceRepresentation is to prevent possible deopt on int-smi
9996 // conversion after allocation but before the new object fields are set.
9997 length = AddUncasted<HForceRepresentation>(length, Representation::Smi());
9998 Handle<Map> fixed_typed_array_map(
9999 isolate()->heap()->MapForFixedTypedArray(array_type));
10000 HAllocate* elements =
10001 Add<HAllocate>(total_size, HType::HeapObject(), NOT_TENURED,
10002 fixed_typed_array_map->instance_type());
10004 #ifndef V8_HOST_ARCH_64_BIT
10005 if (array_type == kExternalFloat64Array) {
10006 elements->MakeDoubleAligned();
10010 AddStoreMapConstant(elements, fixed_typed_array_map);
10012 Add<HStoreNamedField>(elements,
10013 HObjectAccess::ForFixedArrayLength(),
10015 Add<HStoreNamedField>(
10016 elements, HObjectAccess::ForFixedTypedArrayBaseBasePointer(), elements);
10018 Add<HStoreNamedField>(
10019 elements, HObjectAccess::ForFixedTypedArrayBaseExternalPointer(),
10020 Add<HConstant>(ExternalReference::fixed_typed_array_base_data_offset()));
10022 HValue* filler = Add<HConstant>(static_cast<int32_t>(0));
10025 LoopBuilder builder(this, context(), LoopBuilder::kPostIncrement);
10027 HValue* backing_store = AddUncasted<HAdd>(
10028 Add<HConstant>(ExternalReference::fixed_typed_array_base_data_offset()),
10029 elements, Strength::WEAK, AddOfExternalAndTagged);
10031 HValue* key = builder.BeginBody(
10032 Add<HConstant>(static_cast<int32_t>(0)),
10033 length, Token::LT);
10034 Add<HStoreKeyed>(backing_store, key, filler, fixed_elements_kind);
10042 void HOptimizedGraphBuilder::GenerateTypedArrayInitialize(
10043 CallRuntime* expr) {
10044 ZoneList<Expression*>* arguments = expr->arguments();
10046 static const int kObjectArg = 0;
10047 static const int kArrayIdArg = 1;
10048 static const int kBufferArg = 2;
10049 static const int kByteOffsetArg = 3;
10050 static const int kByteLengthArg = 4;
10051 static const int kInitializeArg = 5;
10052 static const int kArgsLength = 6;
10053 DCHECK(arguments->length() == kArgsLength);
10056 CHECK_ALIVE(VisitForValue(arguments->at(kObjectArg)));
10057 HValue* obj = Pop();
10059 if (!arguments->at(kArrayIdArg)->IsLiteral()) {
10060 // This should never happen in real use, but can happen when fuzzing.
10062 Bailout(kNeedSmiLiteral);
10065 Handle<Object> value =
10066 static_cast<Literal*>(arguments->at(kArrayIdArg))->value();
10067 if (!value->IsSmi()) {
10068 // This should never happen in real use, but can happen when fuzzing.
10070 Bailout(kNeedSmiLiteral);
10073 int array_id = Smi::cast(*value)->value();
10076 if (!arguments->at(kBufferArg)->IsNullLiteral()) {
10077 CHECK_ALIVE(VisitForValue(arguments->at(kBufferArg)));
10083 HValue* byte_offset;
10084 bool is_zero_byte_offset;
10086 if (arguments->at(kByteOffsetArg)->IsLiteral()
10087 && Smi::FromInt(0) ==
10088 *static_cast<Literal*>(arguments->at(kByteOffsetArg))->value()) {
10089 byte_offset = Add<HConstant>(static_cast<int32_t>(0));
10090 is_zero_byte_offset = true;
10092 CHECK_ALIVE(VisitForValue(arguments->at(kByteOffsetArg)));
10093 byte_offset = Pop();
10094 is_zero_byte_offset = false;
10095 DCHECK(buffer != NULL);
10098 CHECK_ALIVE(VisitForValue(arguments->at(kByteLengthArg)));
10099 HValue* byte_length = Pop();
10101 CHECK(arguments->at(kInitializeArg)->IsLiteral());
10102 bool initialize = static_cast<Literal*>(arguments->at(kInitializeArg))
10106 NoObservableSideEffectsScope scope(this);
10107 IfBuilder byte_offset_smi(this);
10109 if (!is_zero_byte_offset) {
10110 byte_offset_smi.If<HIsSmiAndBranch>(byte_offset);
10111 byte_offset_smi.Then();
10114 ExternalArrayType array_type =
10115 kExternalInt8Array; // Bogus initialization.
10116 size_t element_size = 1; // Bogus initialization.
10117 ElementsKind fixed_elements_kind = // Bogus initialization.
10119 Runtime::ArrayIdToTypeAndSize(array_id,
10121 &fixed_elements_kind,
10125 { // byte_offset is Smi.
10126 HValue* allocated_buffer = buffer;
10127 if (buffer == NULL) {
10128 allocated_buffer = BuildAllocateEmptyArrayBuffer(byte_length);
10130 BuildArrayBufferViewInitialization<JSTypedArray>(obj, allocated_buffer,
10131 byte_offset, byte_length);
10134 HInstruction* length = AddUncasted<HDiv>(byte_length,
10135 Add<HConstant>(static_cast<int32_t>(element_size)));
10137 Add<HStoreNamedField>(obj,
10138 HObjectAccess::ForJSTypedArrayLength(),
10142 if (buffer != NULL) {
10143 elements = BuildAllocateExternalElements(
10144 array_type, is_zero_byte_offset, buffer, byte_offset, length);
10145 Handle<Map> obj_map =
10146 TypedArrayMap(isolate(), array_type, fixed_elements_kind);
10147 AddStoreMapConstant(obj, obj_map);
10149 DCHECK(is_zero_byte_offset);
10150 elements = BuildAllocateFixedTypedArray(array_type, element_size,
10151 fixed_elements_kind, byte_length,
10152 length, initialize);
10154 Add<HStoreNamedField>(
10155 obj, HObjectAccess::ForElementsPointer(), elements);
10158 if (!is_zero_byte_offset) {
10159 byte_offset_smi.Else();
10160 { // byte_offset is not Smi.
10162 CHECK_ALIVE(VisitForValue(arguments->at(kArrayIdArg)));
10166 CHECK_ALIVE(VisitForValue(arguments->at(kInitializeArg)));
10167 PushArgumentsFromEnvironment(kArgsLength);
10168 Add<HCallRuntime>(expr->name(), expr->function(), kArgsLength);
10171 byte_offset_smi.End();
10175 void HOptimizedGraphBuilder::GenerateMaxSmi(CallRuntime* expr) {
10176 DCHECK(expr->arguments()->length() == 0);
10177 HConstant* max_smi = New<HConstant>(static_cast<int32_t>(Smi::kMaxValue));
10178 return ast_context()->ReturnInstruction(max_smi, expr->id());
10182 void HOptimizedGraphBuilder::GenerateTypedArrayMaxSizeInHeap(
10183 CallRuntime* expr) {
10184 DCHECK(expr->arguments()->length() == 0);
10185 HConstant* result = New<HConstant>(static_cast<int32_t>(
10186 FLAG_typed_array_max_size_in_heap));
10187 return ast_context()->ReturnInstruction(result, expr->id());
10191 void HOptimizedGraphBuilder::GenerateArrayBufferGetByteLength(
10192 CallRuntime* expr) {
10193 DCHECK(expr->arguments()->length() == 1);
10194 CHECK_ALIVE(VisitForValue(expr->arguments()->at(0)));
10195 HValue* buffer = Pop();
10196 HInstruction* result = New<HLoadNamedField>(
10197 buffer, nullptr, HObjectAccess::ForJSArrayBufferByteLength());
10198 return ast_context()->ReturnInstruction(result, expr->id());
10202 void HOptimizedGraphBuilder::GenerateArrayBufferViewGetByteLength(
10203 CallRuntime* expr) {
10204 NoObservableSideEffectsScope scope(this);
10205 DCHECK(expr->arguments()->length() == 1);
10206 CHECK_ALIVE(VisitForValue(expr->arguments()->at(0)));
10207 HValue* view = Pop();
10209 return ast_context()->ReturnValue(BuildArrayBufferViewFieldAccessor(
10211 FieldIndex::ForInObjectOffset(JSArrayBufferView::kByteLengthOffset)));
10215 void HOptimizedGraphBuilder::GenerateArrayBufferViewGetByteOffset(
10216 CallRuntime* expr) {
10217 NoObservableSideEffectsScope scope(this);
10218 DCHECK(expr->arguments()->length() == 1);
10219 CHECK_ALIVE(VisitForValue(expr->arguments()->at(0)));
10220 HValue* view = Pop();
10222 return ast_context()->ReturnValue(BuildArrayBufferViewFieldAccessor(
10224 FieldIndex::ForInObjectOffset(JSArrayBufferView::kByteOffsetOffset)));
10228 void HOptimizedGraphBuilder::GenerateTypedArrayGetLength(
10229 CallRuntime* expr) {
10230 NoObservableSideEffectsScope scope(this);
10231 DCHECK(expr->arguments()->length() == 1);
10232 CHECK_ALIVE(VisitForValue(expr->arguments()->at(0)));
10233 HValue* view = Pop();
10235 return ast_context()->ReturnValue(BuildArrayBufferViewFieldAccessor(
10237 FieldIndex::ForInObjectOffset(JSTypedArray::kLengthOffset)));
10241 void HOptimizedGraphBuilder::VisitCallRuntime(CallRuntime* expr) {
10242 DCHECK(!HasStackOverflow());
10243 DCHECK(current_block() != NULL);
10244 DCHECK(current_block()->HasPredecessor());
10245 if (expr->is_jsruntime()) {
10246 return Bailout(kCallToAJavaScriptRuntimeFunction);
10249 const Runtime::Function* function = expr->function();
10250 DCHECK(function != NULL);
10251 switch (function->function_id) {
10252 #define CALL_INTRINSIC_GENERATOR(Name) \
10253 case Runtime::kInline##Name: \
10254 return Generate##Name(expr);
10256 FOR_EACH_HYDROGEN_INTRINSIC(CALL_INTRINSIC_GENERATOR)
10257 #undef CALL_INTRINSIC_GENERATOR
10259 Handle<String> name = expr->name();
10260 int argument_count = expr->arguments()->length();
10261 CHECK_ALIVE(VisitExpressions(expr->arguments()));
10262 PushArgumentsFromEnvironment(argument_count);
10263 HCallRuntime* call = New<HCallRuntime>(name, function, argument_count);
10264 return ast_context()->ReturnInstruction(call, expr->id());
10270 void HOptimizedGraphBuilder::VisitUnaryOperation(UnaryOperation* expr) {
10271 DCHECK(!HasStackOverflow());
10272 DCHECK(current_block() != NULL);
10273 DCHECK(current_block()->HasPredecessor());
10274 switch (expr->op()) {
10275 case Token::DELETE: return VisitDelete(expr);
10276 case Token::VOID: return VisitVoid(expr);
10277 case Token::TYPEOF: return VisitTypeof(expr);
10278 case Token::NOT: return VisitNot(expr);
10279 default: UNREACHABLE();
10284 void HOptimizedGraphBuilder::VisitDelete(UnaryOperation* expr) {
10285 Property* prop = expr->expression()->AsProperty();
10286 VariableProxy* proxy = expr->expression()->AsVariableProxy();
10287 if (prop != NULL) {
10288 CHECK_ALIVE(VisitForValue(prop->obj()));
10289 CHECK_ALIVE(VisitForValue(prop->key()));
10290 HValue* key = Pop();
10291 HValue* obj = Pop();
10292 HValue* function = AddLoadJSBuiltin(Builtins::DELETE);
10293 Add<HPushArguments>(obj, key, Add<HConstant>(function_language_mode()));
10294 // TODO(olivf) InvokeFunction produces a check for the parameter count,
10295 // even though we are certain to pass the correct number of arguments here.
10296 HInstruction* instr = New<HInvokeFunction>(function, 3);
10297 return ast_context()->ReturnInstruction(instr, expr->id());
10298 } else if (proxy != NULL) {
10299 Variable* var = proxy->var();
10300 if (var->IsUnallocatedOrGlobalSlot()) {
10301 Bailout(kDeleteWithGlobalVariable);
10302 } else if (var->IsStackAllocated() || var->IsContextSlot()) {
10303 // Result of deleting non-global variables is false. 'this' is not really
10304 // a variable, though we implement it as one. The subexpression does not
10305 // have side effects.
10306 HValue* value = var->HasThisName(isolate()) ? graph()->GetConstantTrue()
10307 : graph()->GetConstantFalse();
10308 return ast_context()->ReturnValue(value);
10310 Bailout(kDeleteWithNonGlobalVariable);
10313 // Result of deleting non-property, non-variable reference is true.
10314 // Evaluate the subexpression for side effects.
10315 CHECK_ALIVE(VisitForEffect(expr->expression()));
10316 return ast_context()->ReturnValue(graph()->GetConstantTrue());
10321 void HOptimizedGraphBuilder::VisitVoid(UnaryOperation* expr) {
10322 CHECK_ALIVE(VisitForEffect(expr->expression()));
10323 return ast_context()->ReturnValue(graph()->GetConstantUndefined());
10327 void HOptimizedGraphBuilder::VisitTypeof(UnaryOperation* expr) {
10328 CHECK_ALIVE(VisitForTypeOf(expr->expression()));
10329 HValue* value = Pop();
10330 HInstruction* instr = New<HTypeof>(value);
10331 return ast_context()->ReturnInstruction(instr, expr->id());
10335 void HOptimizedGraphBuilder::VisitNot(UnaryOperation* expr) {
10336 if (ast_context()->IsTest()) {
10337 TestContext* context = TestContext::cast(ast_context());
10338 VisitForControl(expr->expression(),
10339 context->if_false(),
10340 context->if_true());
10344 if (ast_context()->IsEffect()) {
10345 VisitForEffect(expr->expression());
10349 DCHECK(ast_context()->IsValue());
10350 HBasicBlock* materialize_false = graph()->CreateBasicBlock();
10351 HBasicBlock* materialize_true = graph()->CreateBasicBlock();
10352 CHECK_BAILOUT(VisitForControl(expr->expression(),
10354 materialize_true));
10356 if (materialize_false->HasPredecessor()) {
10357 materialize_false->SetJoinId(expr->MaterializeFalseId());
10358 set_current_block(materialize_false);
10359 Push(graph()->GetConstantFalse());
10361 materialize_false = NULL;
10364 if (materialize_true->HasPredecessor()) {
10365 materialize_true->SetJoinId(expr->MaterializeTrueId());
10366 set_current_block(materialize_true);
10367 Push(graph()->GetConstantTrue());
10369 materialize_true = NULL;
10372 HBasicBlock* join =
10373 CreateJoin(materialize_false, materialize_true, expr->id());
10374 set_current_block(join);
10375 if (join != NULL) return ast_context()->ReturnValue(Pop());
10379 static Representation RepresentationFor(Type* type) {
10380 DisallowHeapAllocation no_allocation;
10381 if (type->Is(Type::None())) return Representation::None();
10382 if (type->Is(Type::SignedSmall())) return Representation::Smi();
10383 if (type->Is(Type::Signed32())) return Representation::Integer32();
10384 if (type->Is(Type::Number())) return Representation::Double();
10385 return Representation::Tagged();
10389 HInstruction* HOptimizedGraphBuilder::BuildIncrement(
10390 bool returns_original_input,
10391 CountOperation* expr) {
10392 // The input to the count operation is on top of the expression stack.
10393 Representation rep = RepresentationFor(expr->type());
10394 if (rep.IsNone() || rep.IsTagged()) {
10395 rep = Representation::Smi();
10398 if (returns_original_input && !is_strong(function_language_mode())) {
10399 // We need an explicit HValue representing ToNumber(input). The
10400 // actual HChange instruction we need is (sometimes) added in a later
10401 // phase, so it is not available now to be used as an input to HAdd and
10402 // as the return value.
10403 HInstruction* number_input = AddUncasted<HForceRepresentation>(Pop(), rep);
10404 if (!rep.IsDouble()) {
10405 number_input->SetFlag(HInstruction::kFlexibleRepresentation);
10406 number_input->SetFlag(HInstruction::kCannotBeTagged);
10408 Push(number_input);
10411 // The addition has no side effects, so we do not need
10412 // to simulate the expression stack after this instruction.
10413 // Any later failures deopt to the load of the input or earlier.
10414 HConstant* delta = (expr->op() == Token::INC)
10415 ? graph()->GetConstant1()
10416 : graph()->GetConstantMinus1();
10417 HInstruction* instr =
10418 AddUncasted<HAdd>(Top(), delta, strength(function_language_mode()));
10419 if (instr->IsAdd()) {
10420 HAdd* add = HAdd::cast(instr);
10421 add->set_observed_input_representation(1, rep);
10422 add->set_observed_input_representation(2, Representation::Smi());
10424 if (!is_strong(function_language_mode())) {
10425 instr->ClearAllSideEffects();
10427 Add<HSimulate>(expr->ToNumberId(), REMOVABLE_SIMULATE);
10429 instr->SetFlag(HInstruction::kCannotBeTagged);
10434 void HOptimizedGraphBuilder::BuildStoreForEffect(Expression* expr,
10437 BailoutId return_id,
10441 EffectContext for_effect(this);
10443 if (key != NULL) Push(key);
10445 BuildStore(expr, prop, ast_id, return_id);
10449 void HOptimizedGraphBuilder::VisitCountOperation(CountOperation* expr) {
10450 DCHECK(!HasStackOverflow());
10451 DCHECK(current_block() != NULL);
10452 DCHECK(current_block()->HasPredecessor());
10453 if (!top_info()->is_tracking_positions()) SetSourcePosition(expr->position());
10454 Expression* target = expr->expression();
10455 VariableProxy* proxy = target->AsVariableProxy();
10456 Property* prop = target->AsProperty();
10457 if (proxy == NULL && prop == NULL) {
10458 return Bailout(kInvalidLhsInCountOperation);
10461 // Match the full code generator stack by simulating an extra stack
10462 // element for postfix operations in a non-effect context. The return
10463 // value is ToNumber(input).
10464 bool returns_original_input =
10465 expr->is_postfix() && !ast_context()->IsEffect();
10466 HValue* input = NULL; // ToNumber(original_input).
10467 HValue* after = NULL; // The result after incrementing or decrementing.
10469 if (proxy != NULL) {
10470 Variable* var = proxy->var();
10471 if (var->mode() == CONST_LEGACY) {
10472 return Bailout(kUnsupportedCountOperationWithConst);
10474 if (var->mode() == CONST) {
10475 return Bailout(kNonInitializerAssignmentToConst);
10477 // Argument of the count operation is a variable, not a property.
10478 DCHECK(prop == NULL);
10479 CHECK_ALIVE(VisitForValue(target));
10481 after = BuildIncrement(returns_original_input, expr);
10482 input = returns_original_input ? Top() : Pop();
10485 switch (var->location()) {
10486 case VariableLocation::GLOBAL:
10487 case VariableLocation::UNALLOCATED:
10488 HandleGlobalVariableAssignment(var,
10490 expr->AssignmentId());
10493 case VariableLocation::PARAMETER:
10494 case VariableLocation::LOCAL:
10495 BindIfLive(var, after);
10498 case VariableLocation::CONTEXT: {
10499 // Bail out if we try to mutate a parameter value in a function
10500 // using the arguments object. We do not (yet) correctly handle the
10501 // arguments property of the function.
10502 if (current_info()->scope()->arguments() != NULL) {
10503 // Parameters will rewrite to context slots. We have no direct
10504 // way to detect that the variable is a parameter so we use a
10505 // linear search of the parameter list.
10506 int count = current_info()->scope()->num_parameters();
10507 for (int i = 0; i < count; ++i) {
10508 if (var == current_info()->scope()->parameter(i)) {
10509 return Bailout(kAssignmentToParameterInArgumentsObject);
10514 HValue* context = BuildContextChainWalk(var);
10515 HStoreContextSlot::Mode mode = IsLexicalVariableMode(var->mode())
10516 ? HStoreContextSlot::kCheckDeoptimize : HStoreContextSlot::kNoCheck;
10517 HStoreContextSlot* instr = Add<HStoreContextSlot>(context, var->index(),
10519 if (instr->HasObservableSideEffects()) {
10520 Add<HSimulate>(expr->AssignmentId(), REMOVABLE_SIMULATE);
10525 case VariableLocation::LOOKUP:
10526 return Bailout(kLookupVariableInCountOperation);
10529 Drop(returns_original_input ? 2 : 1);
10530 return ast_context()->ReturnValue(expr->is_postfix() ? input : after);
10533 // Argument of the count operation is a property.
10534 DCHECK(prop != NULL);
10535 if (returns_original_input) Push(graph()->GetConstantUndefined());
10537 CHECK_ALIVE(VisitForValue(prop->obj()));
10538 HValue* object = Top();
10540 HValue* key = NULL;
10541 if (!prop->key()->IsPropertyName() || prop->IsStringAccess()) {
10542 CHECK_ALIVE(VisitForValue(prop->key()));
10546 CHECK_ALIVE(PushLoad(prop, object, key));
10548 after = BuildIncrement(returns_original_input, expr);
10550 if (returns_original_input) {
10552 // Drop object and key to push it again in the effect context below.
10553 Drop(key == NULL ? 1 : 2);
10554 environment()->SetExpressionStackAt(0, input);
10555 CHECK_ALIVE(BuildStoreForEffect(
10556 expr, prop, expr->id(), expr->AssignmentId(), object, key, after));
10557 return ast_context()->ReturnValue(Pop());
10560 environment()->SetExpressionStackAt(0, after);
10561 return BuildStore(expr, prop, expr->id(), expr->AssignmentId());
10565 HInstruction* HOptimizedGraphBuilder::BuildStringCharCodeAt(
10568 if (string->IsConstant() && index->IsConstant()) {
10569 HConstant* c_string = HConstant::cast(string);
10570 HConstant* c_index = HConstant::cast(index);
10571 if (c_string->HasStringValue() && c_index->HasNumberValue()) {
10572 int32_t i = c_index->NumberValueAsInteger32();
10573 Handle<String> s = c_string->StringValue();
10574 if (i < 0 || i >= s->length()) {
10575 return New<HConstant>(std::numeric_limits<double>::quiet_NaN());
10577 return New<HConstant>(s->Get(i));
10580 string = BuildCheckString(string);
10581 index = Add<HBoundsCheck>(index, AddLoadStringLength(string));
10582 return New<HStringCharCodeAt>(string, index);
10586 // Checks if the given shift amounts have following forms:
10587 // (N1) and (N2) with N1 + N2 = 32; (sa) and (32 - sa).
10588 static bool ShiftAmountsAllowReplaceByRotate(HValue* sa,
10589 HValue* const32_minus_sa) {
10590 if (sa->IsConstant() && const32_minus_sa->IsConstant()) {
10591 const HConstant* c1 = HConstant::cast(sa);
10592 const HConstant* c2 = HConstant::cast(const32_minus_sa);
10593 return c1->HasInteger32Value() && c2->HasInteger32Value() &&
10594 (c1->Integer32Value() + c2->Integer32Value() == 32);
10596 if (!const32_minus_sa->IsSub()) return false;
10597 HSub* sub = HSub::cast(const32_minus_sa);
10598 return sub->left()->EqualsInteger32Constant(32) && sub->right() == sa;
10602 // Checks if the left and the right are shift instructions with the oposite
10603 // directions that can be replaced by one rotate right instruction or not.
10604 // Returns the operand and the shift amount for the rotate instruction in the
10606 bool HGraphBuilder::MatchRotateRight(HValue* left,
10609 HValue** shift_amount) {
10612 if (left->IsShl() && right->IsShr()) {
10613 shl = HShl::cast(left);
10614 shr = HShr::cast(right);
10615 } else if (left->IsShr() && right->IsShl()) {
10616 shl = HShl::cast(right);
10617 shr = HShr::cast(left);
10621 if (shl->left() != shr->left()) return false;
10623 if (!ShiftAmountsAllowReplaceByRotate(shl->right(), shr->right()) &&
10624 !ShiftAmountsAllowReplaceByRotate(shr->right(), shl->right())) {
10627 *operand = shr->left();
10628 *shift_amount = shr->right();
10633 bool CanBeZero(HValue* right) {
10634 if (right->IsConstant()) {
10635 HConstant* right_const = HConstant::cast(right);
10636 if (right_const->HasInteger32Value() &&
10637 (right_const->Integer32Value() & 0x1f) != 0) {
10645 HValue* HGraphBuilder::EnforceNumberType(HValue* number,
10647 if (expected->Is(Type::SignedSmall())) {
10648 return AddUncasted<HForceRepresentation>(number, Representation::Smi());
10650 if (expected->Is(Type::Signed32())) {
10651 return AddUncasted<HForceRepresentation>(number,
10652 Representation::Integer32());
10658 HValue* HGraphBuilder::TruncateToNumber(HValue* value, Type** expected) {
10659 if (value->IsConstant()) {
10660 HConstant* constant = HConstant::cast(value);
10661 Maybe<HConstant*> number =
10662 constant->CopyToTruncatedNumber(isolate(), zone());
10663 if (number.IsJust()) {
10664 *expected = Type::Number(zone());
10665 return AddInstruction(number.FromJust());
10669 // We put temporary values on the stack, which don't correspond to anything
10670 // in baseline code. Since nothing is observable we avoid recording those
10671 // pushes with a NoObservableSideEffectsScope.
10672 NoObservableSideEffectsScope no_effects(this);
10674 Type* expected_type = *expected;
10676 // Separate the number type from the rest.
10677 Type* expected_obj =
10678 Type::Intersect(expected_type, Type::NonNumber(zone()), zone());
10679 Type* expected_number =
10680 Type::Intersect(expected_type, Type::Number(zone()), zone());
10682 // We expect to get a number.
10683 // (We need to check first, since Type::None->Is(Type::Any()) == true.
10684 if (expected_obj->Is(Type::None())) {
10685 DCHECK(!expected_number->Is(Type::None(zone())));
10689 if (expected_obj->Is(Type::Undefined(zone()))) {
10690 // This is already done by HChange.
10691 *expected = Type::Union(expected_number, Type::Number(zone()), zone());
10699 HValue* HOptimizedGraphBuilder::BuildBinaryOperation(
10700 BinaryOperation* expr,
10703 PushBeforeSimulateBehavior push_sim_result) {
10704 Type* left_type = expr->left()->bounds().lower;
10705 Type* right_type = expr->right()->bounds().lower;
10706 Type* result_type = expr->bounds().lower;
10707 Maybe<int> fixed_right_arg = expr->fixed_right_arg();
10708 Handle<AllocationSite> allocation_site = expr->allocation_site();
10710 HAllocationMode allocation_mode;
10711 if (FLAG_allocation_site_pretenuring && !allocation_site.is_null()) {
10712 allocation_mode = HAllocationMode(allocation_site);
10714 HValue* result = HGraphBuilder::BuildBinaryOperation(
10715 expr->op(), left, right, left_type, right_type, result_type,
10716 fixed_right_arg, allocation_mode, strength(function_language_mode()),
10718 // Add a simulate after instructions with observable side effects, and
10719 // after phis, which are the result of BuildBinaryOperation when we
10720 // inlined some complex subgraph.
10721 if (result->HasObservableSideEffects() || result->IsPhi()) {
10722 if (push_sim_result == PUSH_BEFORE_SIMULATE) {
10724 Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
10727 Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
10734 HValue* HGraphBuilder::BuildBinaryOperation(
10735 Token::Value op, HValue* left, HValue* right, Type* left_type,
10736 Type* right_type, Type* result_type, Maybe<int> fixed_right_arg,
10737 HAllocationMode allocation_mode, Strength strength, BailoutId opt_id) {
10738 bool maybe_string_add = false;
10739 if (op == Token::ADD) {
10740 // If we are adding constant string with something for which we don't have
10741 // a feedback yet, assume that it's also going to be a string and don't
10742 // generate deopt instructions.
10743 if (!left_type->IsInhabited() && right->IsConstant() &&
10744 HConstant::cast(right)->HasStringValue()) {
10745 left_type = Type::String();
10748 if (!right_type->IsInhabited() && left->IsConstant() &&
10749 HConstant::cast(left)->HasStringValue()) {
10750 right_type = Type::String();
10753 maybe_string_add = (left_type->Maybe(Type::String()) ||
10754 left_type->Maybe(Type::Receiver()) ||
10755 right_type->Maybe(Type::String()) ||
10756 right_type->Maybe(Type::Receiver()));
10759 Representation left_rep = RepresentationFor(left_type);
10760 Representation right_rep = RepresentationFor(right_type);
10762 if (!left_type->IsInhabited()) {
10764 Deoptimizer::kInsufficientTypeFeedbackForLHSOfBinaryOperation,
10765 Deoptimizer::SOFT);
10766 left_type = Type::Any(zone());
10767 left_rep = RepresentationFor(left_type);
10768 maybe_string_add = op == Token::ADD;
10771 if (!right_type->IsInhabited()) {
10773 Deoptimizer::kInsufficientTypeFeedbackForRHSOfBinaryOperation,
10774 Deoptimizer::SOFT);
10775 right_type = Type::Any(zone());
10776 right_rep = RepresentationFor(right_type);
10777 maybe_string_add = op == Token::ADD;
10780 if (!maybe_string_add && !is_strong(strength)) {
10781 left = TruncateToNumber(left, &left_type);
10782 right = TruncateToNumber(right, &right_type);
10785 // Special case for string addition here.
10786 if (op == Token::ADD &&
10787 (left_type->Is(Type::String()) || right_type->Is(Type::String()))) {
10788 // Validate type feedback for left argument.
10789 if (left_type->Is(Type::String())) {
10790 left = BuildCheckString(left);
10793 // Validate type feedback for right argument.
10794 if (right_type->Is(Type::String())) {
10795 right = BuildCheckString(right);
10798 // Convert left argument as necessary.
10799 if (left_type->Is(Type::Number()) && !is_strong(strength)) {
10800 DCHECK(right_type->Is(Type::String()));
10801 left = BuildNumberToString(left, left_type);
10802 } else if (!left_type->Is(Type::String())) {
10803 DCHECK(right_type->Is(Type::String()));
10804 HValue* function = AddLoadJSBuiltin(
10805 is_strong(strength) ? Builtins::STRING_ADD_RIGHT_STRONG
10806 : Builtins::STRING_ADD_RIGHT);
10807 Add<HPushArguments>(left, right);
10808 return AddUncasted<HInvokeFunction>(function, 2);
10811 // Convert right argument as necessary.
10812 if (right_type->Is(Type::Number()) && !is_strong(strength)) {
10813 DCHECK(left_type->Is(Type::String()));
10814 right = BuildNumberToString(right, right_type);
10815 } else if (!right_type->Is(Type::String())) {
10816 DCHECK(left_type->Is(Type::String()));
10817 HValue* function = AddLoadJSBuiltin(is_strong(strength)
10818 ? Builtins::STRING_ADD_LEFT_STRONG
10819 : Builtins::STRING_ADD_LEFT);
10820 Add<HPushArguments>(left, right);
10821 return AddUncasted<HInvokeFunction>(function, 2);
10824 // Fast paths for empty constant strings.
10825 Handle<String> left_string =
10826 left->IsConstant() && HConstant::cast(left)->HasStringValue()
10827 ? HConstant::cast(left)->StringValue()
10828 : Handle<String>();
10829 Handle<String> right_string =
10830 right->IsConstant() && HConstant::cast(right)->HasStringValue()
10831 ? HConstant::cast(right)->StringValue()
10832 : Handle<String>();
10833 if (!left_string.is_null() && left_string->length() == 0) return right;
10834 if (!right_string.is_null() && right_string->length() == 0) return left;
10835 if (!left_string.is_null() && !right_string.is_null()) {
10836 return AddUncasted<HStringAdd>(
10837 left, right, strength, allocation_mode.GetPretenureMode(),
10838 STRING_ADD_CHECK_NONE, allocation_mode.feedback_site());
10841 // Register the dependent code with the allocation site.
10842 if (!allocation_mode.feedback_site().is_null()) {
10843 DCHECK(!graph()->info()->IsStub());
10844 Handle<AllocationSite> site(allocation_mode.feedback_site());
10845 top_info()->dependencies()->AssumeTenuringDecision(site);
10848 // Inline the string addition into the stub when creating allocation
10849 // mementos to gather allocation site feedback, or if we can statically
10850 // infer that we're going to create a cons string.
10851 if ((graph()->info()->IsStub() &&
10852 allocation_mode.CreateAllocationMementos()) ||
10853 (left->IsConstant() &&
10854 HConstant::cast(left)->HasStringValue() &&
10855 HConstant::cast(left)->StringValue()->length() + 1 >=
10856 ConsString::kMinLength) ||
10857 (right->IsConstant() &&
10858 HConstant::cast(right)->HasStringValue() &&
10859 HConstant::cast(right)->StringValue()->length() + 1 >=
10860 ConsString::kMinLength)) {
10861 return BuildStringAdd(left, right, allocation_mode);
10864 // Fallback to using the string add stub.
10865 return AddUncasted<HStringAdd>(
10866 left, right, strength, allocation_mode.GetPretenureMode(),
10867 STRING_ADD_CHECK_NONE, allocation_mode.feedback_site());
10870 if (graph()->info()->IsStub()) {
10871 left = EnforceNumberType(left, left_type);
10872 right = EnforceNumberType(right, right_type);
10875 Representation result_rep = RepresentationFor(result_type);
10877 bool is_non_primitive = (left_rep.IsTagged() && !left_rep.IsSmi()) ||
10878 (right_rep.IsTagged() && !right_rep.IsSmi());
10880 HInstruction* instr = NULL;
10881 // Only the stub is allowed to call into the runtime, since otherwise we would
10882 // inline several instructions (including the two pushes) for every tagged
10883 // operation in optimized code, which is more expensive, than a stub call.
10884 if (graph()->info()->IsStub() && is_non_primitive) {
10886 AddLoadJSBuiltin(BinaryOpIC::TokenToJSBuiltin(op, strength));
10887 Add<HPushArguments>(left, right);
10888 instr = AddUncasted<HInvokeFunction>(function, 2);
10890 if (is_strong(strength) && Token::IsBitOp(op)) {
10891 // TODO(conradw): This is not efficient, but is necessary to prevent
10892 // conversion of oddball values to numbers in strong mode. It would be
10893 // better to prevent the conversion rather than adding a runtime check.
10894 IfBuilder if_builder(this);
10895 if_builder.If<HHasInstanceTypeAndBranch>(left, ODDBALL_TYPE);
10896 if_builder.OrIf<HHasInstanceTypeAndBranch>(right, ODDBALL_TYPE);
10899 isolate()->factory()->empty_string(),
10900 Runtime::FunctionForId(Runtime::kThrowStrongModeImplicitConversion),
10902 if (!graph()->info()->IsStub()) {
10903 Add<HSimulate>(opt_id, REMOVABLE_SIMULATE);
10909 instr = AddUncasted<HAdd>(left, right, strength);
10912 instr = AddUncasted<HSub>(left, right, strength);
10915 instr = AddUncasted<HMul>(left, right, strength);
10918 if (fixed_right_arg.IsJust() &&
10919 !right->EqualsInteger32Constant(fixed_right_arg.FromJust())) {
10920 HConstant* fixed_right =
10921 Add<HConstant>(static_cast<int>(fixed_right_arg.FromJust()));
10922 IfBuilder if_same(this);
10923 if_same.If<HCompareNumericAndBranch>(right, fixed_right, Token::EQ);
10925 if_same.ElseDeopt(Deoptimizer::kUnexpectedRHSOfBinaryOperation);
10926 right = fixed_right;
10928 instr = AddUncasted<HMod>(left, right, strength);
10932 instr = AddUncasted<HDiv>(left, right, strength);
10934 case Token::BIT_XOR:
10935 case Token::BIT_AND:
10936 instr = AddUncasted<HBitwise>(op, left, right, strength);
10938 case Token::BIT_OR: {
10939 HValue* operand, *shift_amount;
10940 if (left_type->Is(Type::Signed32()) &&
10941 right_type->Is(Type::Signed32()) &&
10942 MatchRotateRight(left, right, &operand, &shift_amount)) {
10943 instr = AddUncasted<HRor>(operand, shift_amount, strength);
10945 instr = AddUncasted<HBitwise>(op, left, right, strength);
10950 instr = AddUncasted<HSar>(left, right, strength);
10953 instr = AddUncasted<HShr>(left, right, strength);
10954 if (instr->IsShr() && CanBeZero(right)) {
10955 graph()->RecordUint32Instruction(instr);
10959 instr = AddUncasted<HShl>(left, right, strength);
10966 if (instr->IsBinaryOperation()) {
10967 HBinaryOperation* binop = HBinaryOperation::cast(instr);
10968 binop->set_observed_input_representation(1, left_rep);
10969 binop->set_observed_input_representation(2, right_rep);
10970 binop->initialize_output_representation(result_rep);
10971 if (graph()->info()->IsStub()) {
10972 // Stub should not call into stub.
10973 instr->SetFlag(HValue::kCannotBeTagged);
10974 // And should truncate on HForceRepresentation already.
10975 if (left->IsForceRepresentation()) {
10976 left->CopyFlag(HValue::kTruncatingToSmi, instr);
10977 left->CopyFlag(HValue::kTruncatingToInt32, instr);
10979 if (right->IsForceRepresentation()) {
10980 right->CopyFlag(HValue::kTruncatingToSmi, instr);
10981 right->CopyFlag(HValue::kTruncatingToInt32, instr);
10989 // Check for the form (%_ClassOf(foo) === 'BarClass').
10990 static bool IsClassOfTest(CompareOperation* expr) {
10991 if (expr->op() != Token::EQ_STRICT) return false;
10992 CallRuntime* call = expr->left()->AsCallRuntime();
10993 if (call == NULL) return false;
10994 Literal* literal = expr->right()->AsLiteral();
10995 if (literal == NULL) return false;
10996 if (!literal->value()->IsString()) return false;
10997 if (!call->name()->IsOneByteEqualTo(STATIC_CHAR_VECTOR("_ClassOf"))) {
11000 DCHECK(call->arguments()->length() == 1);
11005 void HOptimizedGraphBuilder::VisitBinaryOperation(BinaryOperation* expr) {
11006 DCHECK(!HasStackOverflow());
11007 DCHECK(current_block() != NULL);
11008 DCHECK(current_block()->HasPredecessor());
11009 switch (expr->op()) {
11011 return VisitComma(expr);
11014 return VisitLogicalExpression(expr);
11016 return VisitArithmeticExpression(expr);
11021 void HOptimizedGraphBuilder::VisitComma(BinaryOperation* expr) {
11022 CHECK_ALIVE(VisitForEffect(expr->left()));
11023 // Visit the right subexpression in the same AST context as the entire
11025 Visit(expr->right());
11029 void HOptimizedGraphBuilder::VisitLogicalExpression(BinaryOperation* expr) {
11030 bool is_logical_and = expr->op() == Token::AND;
11031 if (ast_context()->IsTest()) {
11032 TestContext* context = TestContext::cast(ast_context());
11033 // Translate left subexpression.
11034 HBasicBlock* eval_right = graph()->CreateBasicBlock();
11035 if (is_logical_and) {
11036 CHECK_BAILOUT(VisitForControl(expr->left(),
11038 context->if_false()));
11040 CHECK_BAILOUT(VisitForControl(expr->left(),
11041 context->if_true(),
11045 // Translate right subexpression by visiting it in the same AST
11046 // context as the entire expression.
11047 if (eval_right->HasPredecessor()) {
11048 eval_right->SetJoinId(expr->RightId());
11049 set_current_block(eval_right);
11050 Visit(expr->right());
11053 } else if (ast_context()->IsValue()) {
11054 CHECK_ALIVE(VisitForValue(expr->left()));
11055 DCHECK(current_block() != NULL);
11056 HValue* left_value = Top();
11058 // Short-circuit left values that always evaluate to the same boolean value.
11059 if (expr->left()->ToBooleanIsTrue() || expr->left()->ToBooleanIsFalse()) {
11060 // l (evals true) && r -> r
11061 // l (evals true) || r -> l
11062 // l (evals false) && r -> l
11063 // l (evals false) || r -> r
11064 if (is_logical_and == expr->left()->ToBooleanIsTrue()) {
11066 CHECK_ALIVE(VisitForValue(expr->right()));
11068 return ast_context()->ReturnValue(Pop());
11071 // We need an extra block to maintain edge-split form.
11072 HBasicBlock* empty_block = graph()->CreateBasicBlock();
11073 HBasicBlock* eval_right = graph()->CreateBasicBlock();
11074 ToBooleanStub::Types expected(expr->left()->to_boolean_types());
11075 HBranch* test = is_logical_and
11076 ? New<HBranch>(left_value, expected, eval_right, empty_block)
11077 : New<HBranch>(left_value, expected, empty_block, eval_right);
11078 FinishCurrentBlock(test);
11080 set_current_block(eval_right);
11081 Drop(1); // Value of the left subexpression.
11082 CHECK_BAILOUT(VisitForValue(expr->right()));
11084 HBasicBlock* join_block =
11085 CreateJoin(empty_block, current_block(), expr->id());
11086 set_current_block(join_block);
11087 return ast_context()->ReturnValue(Pop());
11090 DCHECK(ast_context()->IsEffect());
11091 // In an effect context, we don't need the value of the left subexpression,
11092 // only its control flow and side effects. We need an extra block to
11093 // maintain edge-split form.
11094 HBasicBlock* empty_block = graph()->CreateBasicBlock();
11095 HBasicBlock* right_block = graph()->CreateBasicBlock();
11096 if (is_logical_and) {
11097 CHECK_BAILOUT(VisitForControl(expr->left(), right_block, empty_block));
11099 CHECK_BAILOUT(VisitForControl(expr->left(), empty_block, right_block));
11102 // TODO(kmillikin): Find a way to fix this. It's ugly that there are
11103 // actually two empty blocks (one here and one inserted by
11104 // TestContext::BuildBranch, and that they both have an HSimulate though the
11105 // second one is not a merge node, and that we really have no good AST ID to
11106 // put on that first HSimulate.
11108 if (empty_block->HasPredecessor()) {
11109 empty_block->SetJoinId(expr->id());
11111 empty_block = NULL;
11114 if (right_block->HasPredecessor()) {
11115 right_block->SetJoinId(expr->RightId());
11116 set_current_block(right_block);
11117 CHECK_BAILOUT(VisitForEffect(expr->right()));
11118 right_block = current_block();
11120 right_block = NULL;
11123 HBasicBlock* join_block =
11124 CreateJoin(empty_block, right_block, expr->id());
11125 set_current_block(join_block);
11126 // We did not materialize any value in the predecessor environments,
11127 // so there is no need to handle it here.
11132 void HOptimizedGraphBuilder::VisitArithmeticExpression(BinaryOperation* expr) {
11133 CHECK_ALIVE(VisitForValue(expr->left()));
11134 CHECK_ALIVE(VisitForValue(expr->right()));
11135 SetSourcePosition(expr->position());
11136 HValue* right = Pop();
11137 HValue* left = Pop();
11139 BuildBinaryOperation(expr, left, right,
11140 ast_context()->IsEffect() ? NO_PUSH_BEFORE_SIMULATE
11141 : PUSH_BEFORE_SIMULATE);
11142 if (top_info()->is_tracking_positions() && result->IsBinaryOperation()) {
11143 HBinaryOperation::cast(result)->SetOperandPositions(
11145 ScriptPositionToSourcePosition(expr->left()->position()),
11146 ScriptPositionToSourcePosition(expr->right()->position()));
11148 return ast_context()->ReturnValue(result);
11152 void HOptimizedGraphBuilder::HandleLiteralCompareTypeof(CompareOperation* expr,
11153 Expression* sub_expr,
11154 Handle<String> check) {
11155 CHECK_ALIVE(VisitForTypeOf(sub_expr));
11156 SetSourcePosition(expr->position());
11157 HValue* value = Pop();
11158 HTypeofIsAndBranch* instr = New<HTypeofIsAndBranch>(value, check);
11159 return ast_context()->ReturnControl(instr, expr->id());
11163 static bool IsLiteralCompareBool(Isolate* isolate,
11167 return op == Token::EQ_STRICT &&
11168 ((left->IsConstant() &&
11169 HConstant::cast(left)->handle(isolate)->IsBoolean()) ||
11170 (right->IsConstant() &&
11171 HConstant::cast(right)->handle(isolate)->IsBoolean()));
11175 void HOptimizedGraphBuilder::VisitCompareOperation(CompareOperation* expr) {
11176 DCHECK(!HasStackOverflow());
11177 DCHECK(current_block() != NULL);
11178 DCHECK(current_block()->HasPredecessor());
11180 if (!top_info()->is_tracking_positions()) SetSourcePosition(expr->position());
11182 // Check for a few fast cases. The AST visiting behavior must be in sync
11183 // with the full codegen: We don't push both left and right values onto
11184 // the expression stack when one side is a special-case literal.
11185 Expression* sub_expr = NULL;
11186 Handle<String> check;
11187 if (expr->IsLiteralCompareTypeof(&sub_expr, &check)) {
11188 return HandleLiteralCompareTypeof(expr, sub_expr, check);
11190 if (expr->IsLiteralCompareUndefined(&sub_expr, isolate())) {
11191 return HandleLiteralCompareNil(expr, sub_expr, kUndefinedValue);
11193 if (expr->IsLiteralCompareNull(&sub_expr)) {
11194 return HandleLiteralCompareNil(expr, sub_expr, kNullValue);
11197 if (IsClassOfTest(expr)) {
11198 CallRuntime* call = expr->left()->AsCallRuntime();
11199 DCHECK(call->arguments()->length() == 1);
11200 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11201 HValue* value = Pop();
11202 Literal* literal = expr->right()->AsLiteral();
11203 Handle<String> rhs = Handle<String>::cast(literal->value());
11204 HClassOfTestAndBranch* instr = New<HClassOfTestAndBranch>(value, rhs);
11205 return ast_context()->ReturnControl(instr, expr->id());
11208 Type* left_type = expr->left()->bounds().lower;
11209 Type* right_type = expr->right()->bounds().lower;
11210 Type* combined_type = expr->combined_type();
11212 CHECK_ALIVE(VisitForValue(expr->left()));
11213 CHECK_ALIVE(VisitForValue(expr->right()));
11215 HValue* right = Pop();
11216 HValue* left = Pop();
11217 Token::Value op = expr->op();
11219 if (IsLiteralCompareBool(isolate(), left, op, right)) {
11220 HCompareObjectEqAndBranch* result =
11221 New<HCompareObjectEqAndBranch>(left, right);
11222 return ast_context()->ReturnControl(result, expr->id());
11225 if (op == Token::INSTANCEOF) {
11226 // Check to see if the rhs of the instanceof is a known function.
11227 if (right->IsConstant() &&
11228 HConstant::cast(right)->handle(isolate())->IsJSFunction()) {
11229 Handle<Object> function = HConstant::cast(right)->handle(isolate());
11230 Handle<JSFunction> target = Handle<JSFunction>::cast(function);
11231 HInstanceOfKnownGlobal* result =
11232 New<HInstanceOfKnownGlobal>(left, target);
11233 return ast_context()->ReturnInstruction(result, expr->id());
11236 HInstanceOf* result = New<HInstanceOf>(left, right);
11237 return ast_context()->ReturnInstruction(result, expr->id());
11239 } else if (op == Token::IN) {
11240 HValue* function = AddLoadJSBuiltin(Builtins::IN);
11241 Add<HPushArguments>(left, right);
11242 // TODO(olivf) InvokeFunction produces a check for the parameter count,
11243 // even though we are certain to pass the correct number of arguments here.
11244 HInstruction* result = New<HInvokeFunction>(function, 2);
11245 return ast_context()->ReturnInstruction(result, expr->id());
11248 PushBeforeSimulateBehavior push_behavior =
11249 ast_context()->IsEffect() ? NO_PUSH_BEFORE_SIMULATE
11250 : PUSH_BEFORE_SIMULATE;
11251 HControlInstruction* compare = BuildCompareInstruction(
11252 op, left, right, left_type, right_type, combined_type,
11253 ScriptPositionToSourcePosition(expr->left()->position()),
11254 ScriptPositionToSourcePosition(expr->right()->position()),
11255 push_behavior, expr->id());
11256 if (compare == NULL) return; // Bailed out.
11257 return ast_context()->ReturnControl(compare, expr->id());
11261 HControlInstruction* HOptimizedGraphBuilder::BuildCompareInstruction(
11262 Token::Value op, HValue* left, HValue* right, Type* left_type,
11263 Type* right_type, Type* combined_type, SourcePosition left_position,
11264 SourcePosition right_position, PushBeforeSimulateBehavior push_sim_result,
11265 BailoutId bailout_id) {
11266 // Cases handled below depend on collected type feedback. They should
11267 // soft deoptimize when there is no type feedback.
11268 if (!combined_type->IsInhabited()) {
11270 Deoptimizer::kInsufficientTypeFeedbackForCombinedTypeOfBinaryOperation,
11271 Deoptimizer::SOFT);
11272 combined_type = left_type = right_type = Type::Any(zone());
11275 Representation left_rep = RepresentationFor(left_type);
11276 Representation right_rep = RepresentationFor(right_type);
11277 Representation combined_rep = RepresentationFor(combined_type);
11279 if (combined_type->Is(Type::Receiver())) {
11280 if (Token::IsEqualityOp(op)) {
11281 // HCompareObjectEqAndBranch can only deal with object, so
11282 // exclude numbers.
11283 if ((left->IsConstant() &&
11284 HConstant::cast(left)->HasNumberValue()) ||
11285 (right->IsConstant() &&
11286 HConstant::cast(right)->HasNumberValue())) {
11287 Add<HDeoptimize>(Deoptimizer::kTypeMismatchBetweenFeedbackAndConstant,
11288 Deoptimizer::SOFT);
11289 // The caller expects a branch instruction, so make it happy.
11290 return New<HBranch>(graph()->GetConstantTrue());
11292 // Can we get away with map check and not instance type check?
11293 HValue* operand_to_check =
11294 left->block()->block_id() < right->block()->block_id() ? left : right;
11295 if (combined_type->IsClass()) {
11296 Handle<Map> map = combined_type->AsClass()->Map();
11297 AddCheckMap(operand_to_check, map);
11298 HCompareObjectEqAndBranch* result =
11299 New<HCompareObjectEqAndBranch>(left, right);
11300 if (top_info()->is_tracking_positions()) {
11301 result->set_operand_position(zone(), 0, left_position);
11302 result->set_operand_position(zone(), 1, right_position);
11306 BuildCheckHeapObject(operand_to_check);
11307 Add<HCheckInstanceType>(operand_to_check,
11308 HCheckInstanceType::IS_SPEC_OBJECT);
11309 HCompareObjectEqAndBranch* result =
11310 New<HCompareObjectEqAndBranch>(left, right);
11314 Bailout(kUnsupportedNonPrimitiveCompare);
11317 } else if (combined_type->Is(Type::InternalizedString()) &&
11318 Token::IsEqualityOp(op)) {
11319 // If we have a constant argument, it should be consistent with the type
11320 // feedback (otherwise we fail assertions in HCompareObjectEqAndBranch).
11321 if ((left->IsConstant() &&
11322 !HConstant::cast(left)->HasInternalizedStringValue()) ||
11323 (right->IsConstant() &&
11324 !HConstant::cast(right)->HasInternalizedStringValue())) {
11325 Add<HDeoptimize>(Deoptimizer::kTypeMismatchBetweenFeedbackAndConstant,
11326 Deoptimizer::SOFT);
11327 // The caller expects a branch instruction, so make it happy.
11328 return New<HBranch>(graph()->GetConstantTrue());
11330 BuildCheckHeapObject(left);
11331 Add<HCheckInstanceType>(left, HCheckInstanceType::IS_INTERNALIZED_STRING);
11332 BuildCheckHeapObject(right);
11333 Add<HCheckInstanceType>(right, HCheckInstanceType::IS_INTERNALIZED_STRING);
11334 HCompareObjectEqAndBranch* result =
11335 New<HCompareObjectEqAndBranch>(left, right);
11337 } else if (combined_type->Is(Type::String())) {
11338 BuildCheckHeapObject(left);
11339 Add<HCheckInstanceType>(left, HCheckInstanceType::IS_STRING);
11340 BuildCheckHeapObject(right);
11341 Add<HCheckInstanceType>(right, HCheckInstanceType::IS_STRING);
11342 HStringCompareAndBranch* result =
11343 New<HStringCompareAndBranch>(left, right, op);
11346 if (combined_rep.IsTagged() || combined_rep.IsNone()) {
11347 HCompareGeneric* result = Add<HCompareGeneric>(
11348 left, right, op, strength(function_language_mode()));
11349 result->set_observed_input_representation(1, left_rep);
11350 result->set_observed_input_representation(2, right_rep);
11351 if (result->HasObservableSideEffects()) {
11352 if (push_sim_result == PUSH_BEFORE_SIMULATE) {
11354 AddSimulate(bailout_id, REMOVABLE_SIMULATE);
11357 AddSimulate(bailout_id, REMOVABLE_SIMULATE);
11360 // TODO(jkummerow): Can we make this more efficient?
11361 HBranch* branch = New<HBranch>(result);
11364 HCompareNumericAndBranch* result = New<HCompareNumericAndBranch>(
11365 left, right, op, strength(function_language_mode()));
11366 result->set_observed_input_representation(left_rep, right_rep);
11367 if (top_info()->is_tracking_positions()) {
11368 result->SetOperandPositions(zone(), left_position, right_position);
11376 void HOptimizedGraphBuilder::HandleLiteralCompareNil(CompareOperation* expr,
11377 Expression* sub_expr,
11379 DCHECK(!HasStackOverflow());
11380 DCHECK(current_block() != NULL);
11381 DCHECK(current_block()->HasPredecessor());
11382 DCHECK(expr->op() == Token::EQ || expr->op() == Token::EQ_STRICT);
11383 if (!top_info()->is_tracking_positions()) SetSourcePosition(expr->position());
11384 CHECK_ALIVE(VisitForValue(sub_expr));
11385 HValue* value = Pop();
11386 if (expr->op() == Token::EQ_STRICT) {
11387 HConstant* nil_constant = nil == kNullValue
11388 ? graph()->GetConstantNull()
11389 : graph()->GetConstantUndefined();
11390 HCompareObjectEqAndBranch* instr =
11391 New<HCompareObjectEqAndBranch>(value, nil_constant);
11392 return ast_context()->ReturnControl(instr, expr->id());
11394 DCHECK_EQ(Token::EQ, expr->op());
11395 Type* type = expr->combined_type()->Is(Type::None())
11396 ? Type::Any(zone()) : expr->combined_type();
11397 HIfContinuation continuation;
11398 BuildCompareNil(value, type, &continuation);
11399 return ast_context()->ReturnContinuation(&continuation, expr->id());
11404 void HOptimizedGraphBuilder::VisitSpread(Spread* expr) { UNREACHABLE(); }
11407 HInstruction* HOptimizedGraphBuilder::BuildThisFunction() {
11408 // If we share optimized code between different closures, the
11409 // this-function is not a constant, except inside an inlined body.
11410 if (function_state()->outer() != NULL) {
11411 return New<HConstant>(
11412 function_state()->compilation_info()->closure());
11414 return New<HThisFunction>();
11419 HInstruction* HOptimizedGraphBuilder::BuildFastLiteral(
11420 Handle<JSObject> boilerplate_object,
11421 AllocationSiteUsageContext* site_context) {
11422 NoObservableSideEffectsScope no_effects(this);
11423 Handle<Map> initial_map(boilerplate_object->map());
11424 InstanceType instance_type = initial_map->instance_type();
11425 DCHECK(instance_type == JS_ARRAY_TYPE || instance_type == JS_OBJECT_TYPE);
11427 HType type = instance_type == JS_ARRAY_TYPE
11428 ? HType::JSArray() : HType::JSObject();
11429 HValue* object_size_constant = Add<HConstant>(initial_map->instance_size());
11431 PretenureFlag pretenure_flag = NOT_TENURED;
11432 Handle<AllocationSite> current_site(*site_context->current(), isolate());
11433 if (FLAG_allocation_site_pretenuring) {
11434 pretenure_flag = current_site->GetPretenureMode();
11435 top_info()->dependencies()->AssumeTenuringDecision(current_site);
11438 top_info()->dependencies()->AssumeTransitionStable(current_site);
11440 HInstruction* object = Add<HAllocate>(
11441 object_size_constant, type, pretenure_flag, instance_type, current_site);
11443 // If allocation folding reaches Page::kMaxRegularHeapObjectSize the
11444 // elements array may not get folded into the object. Hence, we set the
11445 // elements pointer to empty fixed array and let store elimination remove
11446 // this store in the folding case.
11447 HConstant* empty_fixed_array = Add<HConstant>(
11448 isolate()->factory()->empty_fixed_array());
11449 Add<HStoreNamedField>(object, HObjectAccess::ForElementsPointer(),
11450 empty_fixed_array);
11452 BuildEmitObjectHeader(boilerplate_object, object);
11454 // Similarly to the elements pointer, there is no guarantee that all
11455 // property allocations can get folded, so pre-initialize all in-object
11456 // properties to a safe value.
11457 BuildInitializeInobjectProperties(object, initial_map);
11459 Handle<FixedArrayBase> elements(boilerplate_object->elements());
11460 int elements_size = (elements->length() > 0 &&
11461 elements->map() != isolate()->heap()->fixed_cow_array_map()) ?
11462 elements->Size() : 0;
11464 if (pretenure_flag == TENURED &&
11465 elements->map() == isolate()->heap()->fixed_cow_array_map() &&
11466 isolate()->heap()->InNewSpace(*elements)) {
11467 // If we would like to pretenure a fixed cow array, we must ensure that the
11468 // array is already in old space, otherwise we'll create too many old-to-
11469 // new-space pointers (overflowing the store buffer).
11470 elements = Handle<FixedArrayBase>(
11471 isolate()->factory()->CopyAndTenureFixedCOWArray(
11472 Handle<FixedArray>::cast(elements)));
11473 boilerplate_object->set_elements(*elements);
11476 HInstruction* object_elements = NULL;
11477 if (elements_size > 0) {
11478 HValue* object_elements_size = Add<HConstant>(elements_size);
11479 InstanceType instance_type = boilerplate_object->HasFastDoubleElements()
11480 ? FIXED_DOUBLE_ARRAY_TYPE : FIXED_ARRAY_TYPE;
11482 Add<HAllocate>(object_elements_size, HType::HeapObject(),
11483 pretenure_flag, instance_type, current_site);
11484 BuildEmitElements(boilerplate_object, elements, object_elements,
11486 Add<HStoreNamedField>(object, HObjectAccess::ForElementsPointer(),
11489 Handle<Object> elements_field =
11490 Handle<Object>(boilerplate_object->elements(), isolate());
11491 HInstruction* object_elements_cow = Add<HConstant>(elements_field);
11492 Add<HStoreNamedField>(object, HObjectAccess::ForElementsPointer(),
11493 object_elements_cow);
11496 // Copy in-object properties.
11497 if (initial_map->NumberOfFields() != 0 ||
11498 initial_map->unused_property_fields() > 0) {
11499 BuildEmitInObjectProperties(boilerplate_object, object, site_context,
11506 void HOptimizedGraphBuilder::BuildEmitObjectHeader(
11507 Handle<JSObject> boilerplate_object,
11508 HInstruction* object) {
11509 DCHECK(boilerplate_object->properties()->length() == 0);
11511 Handle<Map> boilerplate_object_map(boilerplate_object->map());
11512 AddStoreMapConstant(object, boilerplate_object_map);
11514 Handle<Object> properties_field =
11515 Handle<Object>(boilerplate_object->properties(), isolate());
11516 DCHECK(*properties_field == isolate()->heap()->empty_fixed_array());
11517 HInstruction* properties = Add<HConstant>(properties_field);
11518 HObjectAccess access = HObjectAccess::ForPropertiesPointer();
11519 Add<HStoreNamedField>(object, access, properties);
11521 if (boilerplate_object->IsJSArray()) {
11522 Handle<JSArray> boilerplate_array =
11523 Handle<JSArray>::cast(boilerplate_object);
11524 Handle<Object> length_field =
11525 Handle<Object>(boilerplate_array->length(), isolate());
11526 HInstruction* length = Add<HConstant>(length_field);
11528 DCHECK(boilerplate_array->length()->IsSmi());
11529 Add<HStoreNamedField>(object, HObjectAccess::ForArrayLength(
11530 boilerplate_array->GetElementsKind()), length);
11535 void HOptimizedGraphBuilder::BuildEmitInObjectProperties(
11536 Handle<JSObject> boilerplate_object,
11537 HInstruction* object,
11538 AllocationSiteUsageContext* site_context,
11539 PretenureFlag pretenure_flag) {
11540 Handle<Map> boilerplate_map(boilerplate_object->map());
11541 Handle<DescriptorArray> descriptors(boilerplate_map->instance_descriptors());
11542 int limit = boilerplate_map->NumberOfOwnDescriptors();
11544 int copied_fields = 0;
11545 for (int i = 0; i < limit; i++) {
11546 PropertyDetails details = descriptors->GetDetails(i);
11547 if (details.type() != DATA) continue;
11549 FieldIndex field_index = FieldIndex::ForDescriptor(*boilerplate_map, i);
11552 int property_offset = field_index.offset();
11553 Handle<Name> name(descriptors->GetKey(i));
11555 // The access for the store depends on the type of the boilerplate.
11556 HObjectAccess access = boilerplate_object->IsJSArray() ?
11557 HObjectAccess::ForJSArrayOffset(property_offset) :
11558 HObjectAccess::ForMapAndOffset(boilerplate_map, property_offset);
11560 if (boilerplate_object->IsUnboxedDoubleField(field_index)) {
11561 CHECK(!boilerplate_object->IsJSArray());
11562 double value = boilerplate_object->RawFastDoublePropertyAt(field_index);
11563 access = access.WithRepresentation(Representation::Double());
11564 Add<HStoreNamedField>(object, access, Add<HConstant>(value));
11567 Handle<Object> value(boilerplate_object->RawFastPropertyAt(field_index),
11570 if (value->IsJSObject()) {
11571 Handle<JSObject> value_object = Handle<JSObject>::cast(value);
11572 Handle<AllocationSite> current_site = site_context->EnterNewScope();
11573 HInstruction* result =
11574 BuildFastLiteral(value_object, site_context);
11575 site_context->ExitScope(current_site, value_object);
11576 Add<HStoreNamedField>(object, access, result);
11578 Representation representation = details.representation();
11579 HInstruction* value_instruction;
11581 if (representation.IsDouble()) {
11582 // Allocate a HeapNumber box and store the value into it.
11583 HValue* heap_number_constant = Add<HConstant>(HeapNumber::kSize);
11584 // This heap number alloc does not have a corresponding
11585 // AllocationSite. That is okay because
11586 // 1) it's a child object of another object with a valid allocation site
11587 // 2) we can just use the mode of the parent object for pretenuring
11588 HInstruction* double_box =
11589 Add<HAllocate>(heap_number_constant, HType::HeapObject(),
11590 pretenure_flag, MUTABLE_HEAP_NUMBER_TYPE);
11591 AddStoreMapConstant(double_box,
11592 isolate()->factory()->mutable_heap_number_map());
11593 // Unwrap the mutable heap number from the boilerplate.
11594 HValue* double_value =
11595 Add<HConstant>(Handle<HeapNumber>::cast(value)->value());
11596 Add<HStoreNamedField>(
11597 double_box, HObjectAccess::ForHeapNumberValue(), double_value);
11598 value_instruction = double_box;
11599 } else if (representation.IsSmi()) {
11600 value_instruction = value->IsUninitialized()
11601 ? graph()->GetConstant0()
11602 : Add<HConstant>(value);
11603 // Ensure that value is stored as smi.
11604 access = access.WithRepresentation(representation);
11606 value_instruction = Add<HConstant>(value);
11609 Add<HStoreNamedField>(object, access, value_instruction);
11613 int inobject_properties = boilerplate_object->map()->inobject_properties();
11614 HInstruction* value_instruction =
11615 Add<HConstant>(isolate()->factory()->one_pointer_filler_map());
11616 for (int i = copied_fields; i < inobject_properties; i++) {
11617 DCHECK(boilerplate_object->IsJSObject());
11618 int property_offset = boilerplate_object->GetInObjectPropertyOffset(i);
11619 HObjectAccess access =
11620 HObjectAccess::ForMapAndOffset(boilerplate_map, property_offset);
11621 Add<HStoreNamedField>(object, access, value_instruction);
11626 void HOptimizedGraphBuilder::BuildEmitElements(
11627 Handle<JSObject> boilerplate_object,
11628 Handle<FixedArrayBase> elements,
11629 HValue* object_elements,
11630 AllocationSiteUsageContext* site_context) {
11631 ElementsKind kind = boilerplate_object->map()->elements_kind();
11632 int elements_length = elements->length();
11633 HValue* object_elements_length = Add<HConstant>(elements_length);
11634 BuildInitializeElementsHeader(object_elements, kind, object_elements_length);
11636 // Copy elements backing store content.
11637 if (elements->IsFixedDoubleArray()) {
11638 BuildEmitFixedDoubleArray(elements, kind, object_elements);
11639 } else if (elements->IsFixedArray()) {
11640 BuildEmitFixedArray(elements, kind, object_elements,
11648 void HOptimizedGraphBuilder::BuildEmitFixedDoubleArray(
11649 Handle<FixedArrayBase> elements,
11651 HValue* object_elements) {
11652 HInstruction* boilerplate_elements = Add<HConstant>(elements);
11653 int elements_length = elements->length();
11654 for (int i = 0; i < elements_length; i++) {
11655 HValue* key_constant = Add<HConstant>(i);
11656 HInstruction* value_instruction = Add<HLoadKeyed>(
11657 boilerplate_elements, key_constant, nullptr, kind, ALLOW_RETURN_HOLE);
11658 HInstruction* store = Add<HStoreKeyed>(object_elements, key_constant,
11659 value_instruction, kind);
11660 store->SetFlag(HValue::kAllowUndefinedAsNaN);
11665 void HOptimizedGraphBuilder::BuildEmitFixedArray(
11666 Handle<FixedArrayBase> elements,
11668 HValue* object_elements,
11669 AllocationSiteUsageContext* site_context) {
11670 HInstruction* boilerplate_elements = Add<HConstant>(elements);
11671 int elements_length = elements->length();
11672 Handle<FixedArray> fast_elements = Handle<FixedArray>::cast(elements);
11673 for (int i = 0; i < elements_length; i++) {
11674 Handle<Object> value(fast_elements->get(i), isolate());
11675 HValue* key_constant = Add<HConstant>(i);
11676 if (value->IsJSObject()) {
11677 Handle<JSObject> value_object = Handle<JSObject>::cast(value);
11678 Handle<AllocationSite> current_site = site_context->EnterNewScope();
11679 HInstruction* result =
11680 BuildFastLiteral(value_object, site_context);
11681 site_context->ExitScope(current_site, value_object);
11682 Add<HStoreKeyed>(object_elements, key_constant, result, kind);
11684 ElementsKind copy_kind =
11685 kind == FAST_HOLEY_SMI_ELEMENTS ? FAST_HOLEY_ELEMENTS : kind;
11686 HInstruction* value_instruction =
11687 Add<HLoadKeyed>(boilerplate_elements, key_constant, nullptr,
11688 copy_kind, ALLOW_RETURN_HOLE);
11689 Add<HStoreKeyed>(object_elements, key_constant, value_instruction,
11696 void HOptimizedGraphBuilder::VisitThisFunction(ThisFunction* expr) {
11697 DCHECK(!HasStackOverflow());
11698 DCHECK(current_block() != NULL);
11699 DCHECK(current_block()->HasPredecessor());
11700 HInstruction* instr = BuildThisFunction();
11701 return ast_context()->ReturnInstruction(instr, expr->id());
11705 void HOptimizedGraphBuilder::VisitSuperPropertyReference(
11706 SuperPropertyReference* expr) {
11707 DCHECK(!HasStackOverflow());
11708 DCHECK(current_block() != NULL);
11709 DCHECK(current_block()->HasPredecessor());
11710 return Bailout(kSuperReference);
11714 void HOptimizedGraphBuilder::VisitSuperCallReference(SuperCallReference* expr) {
11715 DCHECK(!HasStackOverflow());
11716 DCHECK(current_block() != NULL);
11717 DCHECK(current_block()->HasPredecessor());
11718 return Bailout(kSuperReference);
11722 void HOptimizedGraphBuilder::VisitDeclarations(
11723 ZoneList<Declaration*>* declarations) {
11724 DCHECK(globals_.is_empty());
11725 AstVisitor::VisitDeclarations(declarations);
11726 if (!globals_.is_empty()) {
11727 Handle<FixedArray> array =
11728 isolate()->factory()->NewFixedArray(globals_.length(), TENURED);
11729 for (int i = 0; i < globals_.length(); ++i) array->set(i, *globals_.at(i));
11731 DeclareGlobalsEvalFlag::encode(current_info()->is_eval()) |
11732 DeclareGlobalsNativeFlag::encode(current_info()->is_native()) |
11733 DeclareGlobalsLanguageMode::encode(current_info()->language_mode());
11734 Add<HDeclareGlobals>(array, flags);
11735 globals_.Rewind(0);
11740 void HOptimizedGraphBuilder::VisitVariableDeclaration(
11741 VariableDeclaration* declaration) {
11742 VariableProxy* proxy = declaration->proxy();
11743 VariableMode mode = declaration->mode();
11744 Variable* variable = proxy->var();
11745 bool hole_init = mode == LET || mode == CONST || mode == CONST_LEGACY;
11746 switch (variable->location()) {
11747 case VariableLocation::GLOBAL:
11748 case VariableLocation::UNALLOCATED:
11749 globals_.Add(variable->name(), zone());
11750 globals_.Add(variable->binding_needs_init()
11751 ? isolate()->factory()->the_hole_value()
11752 : isolate()->factory()->undefined_value(), zone());
11754 case VariableLocation::PARAMETER:
11755 case VariableLocation::LOCAL:
11757 HValue* value = graph()->GetConstantHole();
11758 environment()->Bind(variable, value);
11761 case VariableLocation::CONTEXT:
11763 HValue* value = graph()->GetConstantHole();
11764 HValue* context = environment()->context();
11765 HStoreContextSlot* store = Add<HStoreContextSlot>(
11766 context, variable->index(), HStoreContextSlot::kNoCheck, value);
11767 if (store->HasObservableSideEffects()) {
11768 Add<HSimulate>(proxy->id(), REMOVABLE_SIMULATE);
11772 case VariableLocation::LOOKUP:
11773 return Bailout(kUnsupportedLookupSlotInDeclaration);
11778 void HOptimizedGraphBuilder::VisitFunctionDeclaration(
11779 FunctionDeclaration* declaration) {
11780 VariableProxy* proxy = declaration->proxy();
11781 Variable* variable = proxy->var();
11782 switch (variable->location()) {
11783 case VariableLocation::GLOBAL:
11784 case VariableLocation::UNALLOCATED: {
11785 globals_.Add(variable->name(), zone());
11786 Handle<SharedFunctionInfo> function = Compiler::GetSharedFunctionInfo(
11787 declaration->fun(), current_info()->script(), top_info());
11788 // Check for stack-overflow exception.
11789 if (function.is_null()) return SetStackOverflow();
11790 globals_.Add(function, zone());
11793 case VariableLocation::PARAMETER:
11794 case VariableLocation::LOCAL: {
11795 CHECK_ALIVE(VisitForValue(declaration->fun()));
11796 HValue* value = Pop();
11797 BindIfLive(variable, value);
11800 case VariableLocation::CONTEXT: {
11801 CHECK_ALIVE(VisitForValue(declaration->fun()));
11802 HValue* value = Pop();
11803 HValue* context = environment()->context();
11804 HStoreContextSlot* store = Add<HStoreContextSlot>(
11805 context, variable->index(), HStoreContextSlot::kNoCheck, value);
11806 if (store->HasObservableSideEffects()) {
11807 Add<HSimulate>(proxy->id(), REMOVABLE_SIMULATE);
11811 case VariableLocation::LOOKUP:
11812 return Bailout(kUnsupportedLookupSlotInDeclaration);
11817 void HOptimizedGraphBuilder::VisitImportDeclaration(
11818 ImportDeclaration* declaration) {
11823 void HOptimizedGraphBuilder::VisitExportDeclaration(
11824 ExportDeclaration* declaration) {
11829 // Generators for inline runtime functions.
11830 // Support for types.
11831 void HOptimizedGraphBuilder::GenerateIsSmi(CallRuntime* call) {
11832 DCHECK(call->arguments()->length() == 1);
11833 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11834 HValue* value = Pop();
11835 HIsSmiAndBranch* result = New<HIsSmiAndBranch>(value);
11836 return ast_context()->ReturnControl(result, call->id());
11840 void HOptimizedGraphBuilder::GenerateIsSpecObject(CallRuntime* call) {
11841 DCHECK(call->arguments()->length() == 1);
11842 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11843 HValue* value = Pop();
11844 HHasInstanceTypeAndBranch* result =
11845 New<HHasInstanceTypeAndBranch>(value,
11846 FIRST_SPEC_OBJECT_TYPE,
11847 LAST_SPEC_OBJECT_TYPE);
11848 return ast_context()->ReturnControl(result, call->id());
11852 void HOptimizedGraphBuilder::GenerateIsFunction(CallRuntime* call) {
11853 DCHECK(call->arguments()->length() == 1);
11854 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11855 HValue* value = Pop();
11856 HHasInstanceTypeAndBranch* result =
11857 New<HHasInstanceTypeAndBranch>(value, JS_FUNCTION_TYPE);
11858 return ast_context()->ReturnControl(result, call->id());
11862 void HOptimizedGraphBuilder::GenerateIsMinusZero(CallRuntime* call) {
11863 DCHECK(call->arguments()->length() == 1);
11864 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11865 HValue* value = Pop();
11866 HCompareMinusZeroAndBranch* result = New<HCompareMinusZeroAndBranch>(value);
11867 return ast_context()->ReturnControl(result, call->id());
11871 void HOptimizedGraphBuilder::GenerateHasCachedArrayIndex(CallRuntime* call) {
11872 DCHECK(call->arguments()->length() == 1);
11873 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11874 HValue* value = Pop();
11875 HHasCachedArrayIndexAndBranch* result =
11876 New<HHasCachedArrayIndexAndBranch>(value);
11877 return ast_context()->ReturnControl(result, call->id());
11881 void HOptimizedGraphBuilder::GenerateIsArray(CallRuntime* call) {
11882 DCHECK(call->arguments()->length() == 1);
11883 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11884 HValue* value = Pop();
11885 HHasInstanceTypeAndBranch* result =
11886 New<HHasInstanceTypeAndBranch>(value, JS_ARRAY_TYPE);
11887 return ast_context()->ReturnControl(result, call->id());
11891 void HOptimizedGraphBuilder::GenerateIsTypedArray(CallRuntime* call) {
11892 DCHECK(call->arguments()->length() == 1);
11893 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11894 HValue* value = Pop();
11895 HHasInstanceTypeAndBranch* result =
11896 New<HHasInstanceTypeAndBranch>(value, JS_TYPED_ARRAY_TYPE);
11897 return ast_context()->ReturnControl(result, call->id());
11901 void HOptimizedGraphBuilder::GenerateIsRegExp(CallRuntime* call) {
11902 DCHECK(call->arguments()->length() == 1);
11903 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11904 HValue* value = Pop();
11905 HHasInstanceTypeAndBranch* result =
11906 New<HHasInstanceTypeAndBranch>(value, JS_REGEXP_TYPE);
11907 return ast_context()->ReturnControl(result, call->id());
11911 void HOptimizedGraphBuilder::GenerateIsObject(CallRuntime* call) {
11912 DCHECK(call->arguments()->length() == 1);
11913 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11914 HValue* value = Pop();
11915 HIsObjectAndBranch* result = New<HIsObjectAndBranch>(value);
11916 return ast_context()->ReturnControl(result, call->id());
11920 void HOptimizedGraphBuilder::GenerateIsJSProxy(CallRuntime* call) {
11921 DCHECK(call->arguments()->length() == 1);
11922 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11923 HValue* value = Pop();
11924 HIfContinuation continuation;
11925 IfBuilder if_proxy(this);
11927 HValue* smicheck = if_proxy.IfNot<HIsSmiAndBranch>(value);
11929 HValue* map = Add<HLoadNamedField>(value, smicheck, HObjectAccess::ForMap());
11930 HValue* instance_type =
11931 Add<HLoadNamedField>(map, nullptr, HObjectAccess::ForMapInstanceType());
11932 if_proxy.If<HCompareNumericAndBranch>(
11933 instance_type, Add<HConstant>(FIRST_JS_PROXY_TYPE), Token::GTE);
11935 if_proxy.If<HCompareNumericAndBranch>(
11936 instance_type, Add<HConstant>(LAST_JS_PROXY_TYPE), Token::LTE);
11938 if_proxy.CaptureContinuation(&continuation);
11939 return ast_context()->ReturnContinuation(&continuation, call->id());
11943 void HOptimizedGraphBuilder::GenerateHasFastPackedElements(CallRuntime* call) {
11944 DCHECK(call->arguments()->length() == 1);
11945 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11946 HValue* object = Pop();
11947 HIfContinuation continuation(graph()->CreateBasicBlock(),
11948 graph()->CreateBasicBlock());
11949 IfBuilder if_not_smi(this);
11950 if_not_smi.IfNot<HIsSmiAndBranch>(object);
11953 NoObservableSideEffectsScope no_effects(this);
11955 IfBuilder if_fast_packed(this);
11956 HValue* elements_kind = BuildGetElementsKind(object);
11957 if_fast_packed.If<HCompareNumericAndBranch>(
11958 elements_kind, Add<HConstant>(FAST_SMI_ELEMENTS), Token::EQ);
11959 if_fast_packed.Or();
11960 if_fast_packed.If<HCompareNumericAndBranch>(
11961 elements_kind, Add<HConstant>(FAST_ELEMENTS), Token::EQ);
11962 if_fast_packed.Or();
11963 if_fast_packed.If<HCompareNumericAndBranch>(
11964 elements_kind, Add<HConstant>(FAST_DOUBLE_ELEMENTS), Token::EQ);
11965 if_fast_packed.JoinContinuation(&continuation);
11967 if_not_smi.JoinContinuation(&continuation);
11968 return ast_context()->ReturnContinuation(&continuation, call->id());
11972 void HOptimizedGraphBuilder::GenerateIsUndetectableObject(CallRuntime* call) {
11973 DCHECK(call->arguments()->length() == 1);
11974 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11975 HValue* value = Pop();
11976 HIsUndetectableAndBranch* result = New<HIsUndetectableAndBranch>(value);
11977 return ast_context()->ReturnControl(result, call->id());
11981 // Support for construct call checks.
11982 void HOptimizedGraphBuilder::GenerateIsConstructCall(CallRuntime* call) {
11983 DCHECK(call->arguments()->length() == 0);
11984 if (function_state()->outer() != NULL) {
11985 // We are generating graph for inlined function.
11986 HValue* value = function_state()->inlining_kind() == CONSTRUCT_CALL_RETURN
11987 ? graph()->GetConstantTrue()
11988 : graph()->GetConstantFalse();
11989 return ast_context()->ReturnValue(value);
11991 return ast_context()->ReturnControl(New<HIsConstructCallAndBranch>(),
11997 // Support for arguments.length and arguments[?].
11998 void HOptimizedGraphBuilder::GenerateArgumentsLength(CallRuntime* call) {
11999 DCHECK(call->arguments()->length() == 0);
12000 HInstruction* result = NULL;
12001 if (function_state()->outer() == NULL) {
12002 HInstruction* elements = Add<HArgumentsElements>(false);
12003 result = New<HArgumentsLength>(elements);
12005 // Number of arguments without receiver.
12006 int argument_count = environment()->
12007 arguments_environment()->parameter_count() - 1;
12008 result = New<HConstant>(argument_count);
12010 return ast_context()->ReturnInstruction(result, call->id());
12014 void HOptimizedGraphBuilder::GenerateArguments(CallRuntime* call) {
12015 DCHECK(call->arguments()->length() == 1);
12016 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12017 HValue* index = Pop();
12018 HInstruction* result = NULL;
12019 if (function_state()->outer() == NULL) {
12020 HInstruction* elements = Add<HArgumentsElements>(false);
12021 HInstruction* length = Add<HArgumentsLength>(elements);
12022 HInstruction* checked_index = Add<HBoundsCheck>(index, length);
12023 result = New<HAccessArgumentsAt>(elements, length, checked_index);
12025 EnsureArgumentsArePushedForAccess();
12027 // Number of arguments without receiver.
12028 HInstruction* elements = function_state()->arguments_elements();
12029 int argument_count = environment()->
12030 arguments_environment()->parameter_count() - 1;
12031 HInstruction* length = Add<HConstant>(argument_count);
12032 HInstruction* checked_key = Add<HBoundsCheck>(index, length);
12033 result = New<HAccessArgumentsAt>(elements, length, checked_key);
12035 return ast_context()->ReturnInstruction(result, call->id());
12039 void HOptimizedGraphBuilder::GenerateValueOf(CallRuntime* call) {
12040 DCHECK(call->arguments()->length() == 1);
12041 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12042 HValue* object = Pop();
12044 IfBuilder if_objectisvalue(this);
12045 HValue* objectisvalue = if_objectisvalue.If<HHasInstanceTypeAndBranch>(
12046 object, JS_VALUE_TYPE);
12047 if_objectisvalue.Then();
12049 // Return the actual value.
12050 Push(Add<HLoadNamedField>(
12051 object, objectisvalue,
12052 HObjectAccess::ForObservableJSObjectOffset(
12053 JSValue::kValueOffset)));
12054 Add<HSimulate>(call->id(), FIXED_SIMULATE);
12056 if_objectisvalue.Else();
12058 // If the object is not a value return the object.
12060 Add<HSimulate>(call->id(), FIXED_SIMULATE);
12062 if_objectisvalue.End();
12063 return ast_context()->ReturnValue(Pop());
12067 void HOptimizedGraphBuilder::GenerateJSValueGetValue(CallRuntime* call) {
12068 DCHECK(call->arguments()->length() == 1);
12069 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12070 HValue* value = Pop();
12071 HInstruction* result = Add<HLoadNamedField>(
12073 HObjectAccess::ForObservableJSObjectOffset(JSValue::kValueOffset));
12074 return ast_context()->ReturnInstruction(result, call->id());
12078 void HOptimizedGraphBuilder::GenerateIsDate(CallRuntime* call) {
12079 DCHECK_EQ(1, call->arguments()->length());
12080 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12081 HValue* value = Pop();
12082 HHasInstanceTypeAndBranch* result =
12083 New<HHasInstanceTypeAndBranch>(value, JS_DATE_TYPE);
12084 return ast_context()->ReturnControl(result, call->id());
12088 void HOptimizedGraphBuilder::GenerateThrowNotDateError(CallRuntime* call) {
12089 DCHECK_EQ(0, call->arguments()->length());
12090 Add<HDeoptimize>(Deoptimizer::kNotADateObject, Deoptimizer::EAGER);
12091 Add<HSimulate>(call->id(), FIXED_SIMULATE);
12092 return ast_context()->ReturnValue(graph()->GetConstantUndefined());
12096 void HOptimizedGraphBuilder::GenerateDateField(CallRuntime* call) {
12097 DCHECK(call->arguments()->length() == 2);
12098 DCHECK_NOT_NULL(call->arguments()->at(1)->AsLiteral());
12099 Smi* index = Smi::cast(*(call->arguments()->at(1)->AsLiteral()->value()));
12100 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12101 HValue* date = Pop();
12102 HDateField* result = New<HDateField>(date, index);
12103 return ast_context()->ReturnInstruction(result, call->id());
12107 void HOptimizedGraphBuilder::GenerateOneByteSeqStringSetChar(
12108 CallRuntime* call) {
12109 DCHECK(call->arguments()->length() == 3);
12110 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12111 CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12112 CHECK_ALIVE(VisitForValue(call->arguments()->at(2)));
12113 HValue* string = Pop();
12114 HValue* value = Pop();
12115 HValue* index = Pop();
12116 Add<HSeqStringSetChar>(String::ONE_BYTE_ENCODING, string,
12118 Add<HSimulate>(call->id(), FIXED_SIMULATE);
12119 return ast_context()->ReturnValue(graph()->GetConstantUndefined());
12123 void HOptimizedGraphBuilder::GenerateTwoByteSeqStringSetChar(
12124 CallRuntime* call) {
12125 DCHECK(call->arguments()->length() == 3);
12126 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12127 CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12128 CHECK_ALIVE(VisitForValue(call->arguments()->at(2)));
12129 HValue* string = Pop();
12130 HValue* value = Pop();
12131 HValue* index = Pop();
12132 Add<HSeqStringSetChar>(String::TWO_BYTE_ENCODING, string,
12134 Add<HSimulate>(call->id(), FIXED_SIMULATE);
12135 return ast_context()->ReturnValue(graph()->GetConstantUndefined());
12139 void HOptimizedGraphBuilder::GenerateSetValueOf(CallRuntime* call) {
12140 DCHECK(call->arguments()->length() == 2);
12141 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12142 CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12143 HValue* value = Pop();
12144 HValue* object = Pop();
12146 // Check if object is a JSValue.
12147 IfBuilder if_objectisvalue(this);
12148 if_objectisvalue.If<HHasInstanceTypeAndBranch>(object, JS_VALUE_TYPE);
12149 if_objectisvalue.Then();
12151 // Create in-object property store to kValueOffset.
12152 Add<HStoreNamedField>(object,
12153 HObjectAccess::ForObservableJSObjectOffset(JSValue::kValueOffset),
12155 if (!ast_context()->IsEffect()) {
12158 Add<HSimulate>(call->id(), FIXED_SIMULATE);
12160 if_objectisvalue.Else();
12162 // Nothing to do in this case.
12163 if (!ast_context()->IsEffect()) {
12166 Add<HSimulate>(call->id(), FIXED_SIMULATE);
12168 if_objectisvalue.End();
12169 if (!ast_context()->IsEffect()) {
12172 return ast_context()->ReturnValue(value);
12176 // Fast support for charCodeAt(n).
12177 void HOptimizedGraphBuilder::GenerateStringCharCodeAt(CallRuntime* call) {
12178 DCHECK(call->arguments()->length() == 2);
12179 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12180 CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12181 HValue* index = Pop();
12182 HValue* string = Pop();
12183 HInstruction* result = BuildStringCharCodeAt(string, index);
12184 return ast_context()->ReturnInstruction(result, call->id());
12188 // Fast support for string.charAt(n) and string[n].
12189 void HOptimizedGraphBuilder::GenerateStringCharFromCode(CallRuntime* call) {
12190 DCHECK(call->arguments()->length() == 1);
12191 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12192 HValue* char_code = Pop();
12193 HInstruction* result = NewUncasted<HStringCharFromCode>(char_code);
12194 return ast_context()->ReturnInstruction(result, call->id());
12198 // Fast support for string.charAt(n) and string[n].
12199 void HOptimizedGraphBuilder::GenerateStringCharAt(CallRuntime* call) {
12200 DCHECK(call->arguments()->length() == 2);
12201 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12202 CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12203 HValue* index = Pop();
12204 HValue* string = Pop();
12205 HInstruction* char_code = BuildStringCharCodeAt(string, index);
12206 AddInstruction(char_code);
12207 HInstruction* result = NewUncasted<HStringCharFromCode>(char_code);
12208 return ast_context()->ReturnInstruction(result, call->id());
12212 // Fast support for object equality testing.
12213 void HOptimizedGraphBuilder::GenerateObjectEquals(CallRuntime* call) {
12214 DCHECK(call->arguments()->length() == 2);
12215 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12216 CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12217 HValue* right = Pop();
12218 HValue* left = Pop();
12219 HCompareObjectEqAndBranch* result =
12220 New<HCompareObjectEqAndBranch>(left, right);
12221 return ast_context()->ReturnControl(result, call->id());
12225 // Fast support for StringAdd.
12226 void HOptimizedGraphBuilder::GenerateStringAdd(CallRuntime* call) {
12227 DCHECK_EQ(2, call->arguments()->length());
12228 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12229 CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12230 HValue* right = Pop();
12231 HValue* left = Pop();
12232 HInstruction* result =
12233 NewUncasted<HStringAdd>(left, right, strength(function_language_mode()));
12234 return ast_context()->ReturnInstruction(result, call->id());
12238 // Fast support for SubString.
12239 void HOptimizedGraphBuilder::GenerateSubString(CallRuntime* call) {
12240 DCHECK_EQ(3, call->arguments()->length());
12241 CHECK_ALIVE(VisitExpressions(call->arguments()));
12242 PushArgumentsFromEnvironment(call->arguments()->length());
12243 HCallStub* result = New<HCallStub>(CodeStub::SubString, 3);
12244 return ast_context()->ReturnInstruction(result, call->id());
12248 // Fast support for StringCompare.
12249 void HOptimizedGraphBuilder::GenerateStringCompare(CallRuntime* call) {
12250 DCHECK_EQ(2, call->arguments()->length());
12251 CHECK_ALIVE(VisitExpressions(call->arguments()));
12252 PushArgumentsFromEnvironment(call->arguments()->length());
12253 HCallStub* result = New<HCallStub>(CodeStub::StringCompare, 2);
12254 return ast_context()->ReturnInstruction(result, call->id());
12258 void HOptimizedGraphBuilder::GenerateStringGetLength(CallRuntime* call) {
12259 DCHECK(call->arguments()->length() == 1);
12260 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12261 HValue* string = Pop();
12262 HInstruction* result = BuildLoadStringLength(string);
12263 return ast_context()->ReturnInstruction(result, call->id());
12267 // Support for direct calls from JavaScript to native RegExp code.
12268 void HOptimizedGraphBuilder::GenerateRegExpExec(CallRuntime* call) {
12269 DCHECK_EQ(4, call->arguments()->length());
12270 CHECK_ALIVE(VisitExpressions(call->arguments()));
12271 PushArgumentsFromEnvironment(call->arguments()->length());
12272 HCallStub* result = New<HCallStub>(CodeStub::RegExpExec, 4);
12273 return ast_context()->ReturnInstruction(result, call->id());
12277 void HOptimizedGraphBuilder::GenerateDoubleLo(CallRuntime* call) {
12278 DCHECK_EQ(1, call->arguments()->length());
12279 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12280 HValue* value = Pop();
12281 HInstruction* result = NewUncasted<HDoubleBits>(value, HDoubleBits::LOW);
12282 return ast_context()->ReturnInstruction(result, call->id());
12286 void HOptimizedGraphBuilder::GenerateDoubleHi(CallRuntime* call) {
12287 DCHECK_EQ(1, call->arguments()->length());
12288 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12289 HValue* value = Pop();
12290 HInstruction* result = NewUncasted<HDoubleBits>(value, HDoubleBits::HIGH);
12291 return ast_context()->ReturnInstruction(result, call->id());
12295 void HOptimizedGraphBuilder::GenerateConstructDouble(CallRuntime* call) {
12296 DCHECK_EQ(2, call->arguments()->length());
12297 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12298 CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12299 HValue* lo = Pop();
12300 HValue* hi = Pop();
12301 HInstruction* result = NewUncasted<HConstructDouble>(hi, lo);
12302 return ast_context()->ReturnInstruction(result, call->id());
12306 // Construct a RegExp exec result with two in-object properties.
12307 void HOptimizedGraphBuilder::GenerateRegExpConstructResult(CallRuntime* call) {
12308 DCHECK_EQ(3, call->arguments()->length());
12309 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12310 CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12311 CHECK_ALIVE(VisitForValue(call->arguments()->at(2)));
12312 HValue* input = Pop();
12313 HValue* index = Pop();
12314 HValue* length = Pop();
12315 HValue* result = BuildRegExpConstructResult(length, index, input);
12316 return ast_context()->ReturnValue(result);
12320 // Support for fast native caches.
12321 void HOptimizedGraphBuilder::GenerateGetFromCache(CallRuntime* call) {
12322 return Bailout(kInlinedRuntimeFunctionGetFromCache);
12326 // Fast support for number to string.
12327 void HOptimizedGraphBuilder::GenerateNumberToString(CallRuntime* call) {
12328 DCHECK_EQ(1, call->arguments()->length());
12329 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12330 HValue* number = Pop();
12331 HValue* result = BuildNumberToString(number, Type::Any(zone()));
12332 return ast_context()->ReturnValue(result);
12336 // Fast call for custom callbacks.
12337 void HOptimizedGraphBuilder::GenerateCallFunction(CallRuntime* call) {
12338 // 1 ~ The function to call is not itself an argument to the call.
12339 int arg_count = call->arguments()->length() - 1;
12340 DCHECK(arg_count >= 1); // There's always at least a receiver.
12342 CHECK_ALIVE(VisitExpressions(call->arguments()));
12343 // The function is the last argument
12344 HValue* function = Pop();
12345 // Push the arguments to the stack
12346 PushArgumentsFromEnvironment(arg_count);
12348 IfBuilder if_is_jsfunction(this);
12349 if_is_jsfunction.If<HHasInstanceTypeAndBranch>(function, JS_FUNCTION_TYPE);
12351 if_is_jsfunction.Then();
12353 HInstruction* invoke_result =
12354 Add<HInvokeFunction>(function, arg_count);
12355 if (!ast_context()->IsEffect()) {
12356 Push(invoke_result);
12358 Add<HSimulate>(call->id(), FIXED_SIMULATE);
12361 if_is_jsfunction.Else();
12363 HInstruction* call_result =
12364 Add<HCallFunction>(function, arg_count);
12365 if (!ast_context()->IsEffect()) {
12368 Add<HSimulate>(call->id(), FIXED_SIMULATE);
12370 if_is_jsfunction.End();
12372 if (ast_context()->IsEffect()) {
12373 // EffectContext::ReturnValue ignores the value, so we can just pass
12374 // 'undefined' (as we do not have the call result anymore).
12375 return ast_context()->ReturnValue(graph()->GetConstantUndefined());
12377 return ast_context()->ReturnValue(Pop());
12382 // Fast call to math functions.
12383 void HOptimizedGraphBuilder::GenerateMathPow(CallRuntime* call) {
12384 DCHECK_EQ(2, call->arguments()->length());
12385 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12386 CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12387 HValue* right = Pop();
12388 HValue* left = Pop();
12389 HInstruction* result = NewUncasted<HPower>(left, right);
12390 return ast_context()->ReturnInstruction(result, call->id());
12394 void HOptimizedGraphBuilder::GenerateMathClz32(CallRuntime* call) {
12395 DCHECK(call->arguments()->length() == 1);
12396 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12397 HValue* value = Pop();
12398 HInstruction* result = NewUncasted<HUnaryMathOperation>(value, kMathClz32);
12399 return ast_context()->ReturnInstruction(result, call->id());
12403 void HOptimizedGraphBuilder::GenerateMathFloor(CallRuntime* call) {
12404 DCHECK(call->arguments()->length() == 1);
12405 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12406 HValue* value = Pop();
12407 HInstruction* result = NewUncasted<HUnaryMathOperation>(value, kMathFloor);
12408 return ast_context()->ReturnInstruction(result, call->id());
12412 void HOptimizedGraphBuilder::GenerateMathLogRT(CallRuntime* call) {
12413 DCHECK(call->arguments()->length() == 1);
12414 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12415 HValue* value = Pop();
12416 HInstruction* result = NewUncasted<HUnaryMathOperation>(value, kMathLog);
12417 return ast_context()->ReturnInstruction(result, call->id());
12421 void HOptimizedGraphBuilder::GenerateMathSqrt(CallRuntime* call) {
12422 DCHECK(call->arguments()->length() == 1);
12423 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12424 HValue* value = Pop();
12425 HInstruction* result = NewUncasted<HUnaryMathOperation>(value, kMathSqrt);
12426 return ast_context()->ReturnInstruction(result, call->id());
12430 void HOptimizedGraphBuilder::GenerateLikely(CallRuntime* call) {
12431 DCHECK(call->arguments()->length() == 1);
12432 Visit(call->arguments()->at(0));
12436 void HOptimizedGraphBuilder::GenerateUnlikely(CallRuntime* call) {
12437 return GenerateLikely(call);
12441 void HOptimizedGraphBuilder::GenerateFixedArrayGet(CallRuntime* call) {
12442 DCHECK(call->arguments()->length() == 2);
12443 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12444 CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12445 HValue* index = Pop();
12446 HValue* object = Pop();
12447 HInstruction* result = New<HLoadKeyed>(
12448 object, index, nullptr, FAST_HOLEY_ELEMENTS, ALLOW_RETURN_HOLE);
12449 return ast_context()->ReturnInstruction(result, call->id());
12453 void HOptimizedGraphBuilder::GenerateFixedArraySet(CallRuntime* call) {
12454 DCHECK(call->arguments()->length() == 3);
12455 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12456 CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12457 CHECK_ALIVE(VisitForValue(call->arguments()->at(2)));
12458 HValue* value = Pop();
12459 HValue* index = Pop();
12460 HValue* object = Pop();
12461 NoObservableSideEffectsScope no_effects(this);
12462 Add<HStoreKeyed>(object, index, value, FAST_HOLEY_ELEMENTS);
12463 return ast_context()->ReturnValue(graph()->GetConstantUndefined());
12467 void HOptimizedGraphBuilder::GenerateTheHole(CallRuntime* call) {
12468 DCHECK(call->arguments()->length() == 0);
12469 return ast_context()->ReturnValue(graph()->GetConstantHole());
12473 void HOptimizedGraphBuilder::GenerateJSCollectionGetTable(CallRuntime* call) {
12474 DCHECK(call->arguments()->length() == 1);
12475 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12476 HValue* receiver = Pop();
12477 HInstruction* result = New<HLoadNamedField>(
12478 receiver, nullptr, HObjectAccess::ForJSCollectionTable());
12479 return ast_context()->ReturnInstruction(result, call->id());
12483 void HOptimizedGraphBuilder::GenerateStringGetRawHashField(CallRuntime* call) {
12484 DCHECK(call->arguments()->length() == 1);
12485 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12486 HValue* object = Pop();
12487 HInstruction* result = New<HLoadNamedField>(
12488 object, nullptr, HObjectAccess::ForStringHashField());
12489 return ast_context()->ReturnInstruction(result, call->id());
12493 template <typename CollectionType>
12494 HValue* HOptimizedGraphBuilder::BuildAllocateOrderedHashTable() {
12495 static const int kCapacity = CollectionType::kMinCapacity;
12496 static const int kBucketCount = kCapacity / CollectionType::kLoadFactor;
12497 static const int kFixedArrayLength = CollectionType::kHashTableStartIndex +
12499 (kCapacity * CollectionType::kEntrySize);
12500 static const int kSizeInBytes =
12501 FixedArray::kHeaderSize + (kFixedArrayLength * kPointerSize);
12503 // Allocate the table and add the proper map.
12505 Add<HAllocate>(Add<HConstant>(kSizeInBytes), HType::HeapObject(),
12506 NOT_TENURED, FIXED_ARRAY_TYPE);
12507 AddStoreMapConstant(table, isolate()->factory()->ordered_hash_table_map());
12509 // Initialize the FixedArray...
12510 HValue* length = Add<HConstant>(kFixedArrayLength);
12511 Add<HStoreNamedField>(table, HObjectAccess::ForFixedArrayLength(), length);
12513 // ...and the OrderedHashTable fields.
12514 Add<HStoreNamedField>(
12516 HObjectAccess::ForOrderedHashTableNumberOfBuckets<CollectionType>(),
12517 Add<HConstant>(kBucketCount));
12518 Add<HStoreNamedField>(
12520 HObjectAccess::ForOrderedHashTableNumberOfElements<CollectionType>(),
12521 graph()->GetConstant0());
12522 Add<HStoreNamedField>(
12523 table, HObjectAccess::ForOrderedHashTableNumberOfDeletedElements<
12525 graph()->GetConstant0());
12527 // Fill the buckets with kNotFound.
12528 HValue* not_found = Add<HConstant>(CollectionType::kNotFound);
12529 for (int i = 0; i < kBucketCount; ++i) {
12530 Add<HStoreNamedField>(
12531 table, HObjectAccess::ForOrderedHashTableBucket<CollectionType>(i),
12535 // Fill the data table with undefined.
12536 HValue* undefined = graph()->GetConstantUndefined();
12537 for (int i = 0; i < (kCapacity * CollectionType::kEntrySize); ++i) {
12538 Add<HStoreNamedField>(table,
12539 HObjectAccess::ForOrderedHashTableDataTableIndex<
12540 CollectionType, kBucketCount>(i),
12548 void HOptimizedGraphBuilder::GenerateSetInitialize(CallRuntime* call) {
12549 DCHECK(call->arguments()->length() == 1);
12550 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12551 HValue* receiver = Pop();
12553 NoObservableSideEffectsScope no_effects(this);
12554 HValue* table = BuildAllocateOrderedHashTable<OrderedHashSet>();
12555 Add<HStoreNamedField>(receiver, HObjectAccess::ForJSCollectionTable(), table);
12556 return ast_context()->ReturnValue(receiver);
12560 void HOptimizedGraphBuilder::GenerateMapInitialize(CallRuntime* call) {
12561 DCHECK(call->arguments()->length() == 1);
12562 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12563 HValue* receiver = Pop();
12565 NoObservableSideEffectsScope no_effects(this);
12566 HValue* table = BuildAllocateOrderedHashTable<OrderedHashMap>();
12567 Add<HStoreNamedField>(receiver, HObjectAccess::ForJSCollectionTable(), table);
12568 return ast_context()->ReturnValue(receiver);
12572 template <typename CollectionType>
12573 void HOptimizedGraphBuilder::BuildOrderedHashTableClear(HValue* receiver) {
12574 HValue* old_table = Add<HLoadNamedField>(
12575 receiver, nullptr, HObjectAccess::ForJSCollectionTable());
12576 HValue* new_table = BuildAllocateOrderedHashTable<CollectionType>();
12577 Add<HStoreNamedField>(
12578 old_table, HObjectAccess::ForOrderedHashTableNextTable<CollectionType>(),
12580 Add<HStoreNamedField>(
12581 old_table, HObjectAccess::ForOrderedHashTableNumberOfDeletedElements<
12583 Add<HConstant>(CollectionType::kClearedTableSentinel));
12584 Add<HStoreNamedField>(receiver, HObjectAccess::ForJSCollectionTable(),
12589 void HOptimizedGraphBuilder::GenerateSetClear(CallRuntime* call) {
12590 DCHECK(call->arguments()->length() == 1);
12591 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12592 HValue* receiver = Pop();
12594 NoObservableSideEffectsScope no_effects(this);
12595 BuildOrderedHashTableClear<OrderedHashSet>(receiver);
12596 return ast_context()->ReturnValue(graph()->GetConstantUndefined());
12600 void HOptimizedGraphBuilder::GenerateMapClear(CallRuntime* call) {
12601 DCHECK(call->arguments()->length() == 1);
12602 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12603 HValue* receiver = Pop();
12605 NoObservableSideEffectsScope no_effects(this);
12606 BuildOrderedHashTableClear<OrderedHashMap>(receiver);
12607 return ast_context()->ReturnValue(graph()->GetConstantUndefined());
12611 void HOptimizedGraphBuilder::GenerateGetCachedArrayIndex(CallRuntime* call) {
12612 DCHECK(call->arguments()->length() == 1);
12613 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12614 HValue* value = Pop();
12615 HGetCachedArrayIndex* result = New<HGetCachedArrayIndex>(value);
12616 return ast_context()->ReturnInstruction(result, call->id());
12620 void HOptimizedGraphBuilder::GenerateFastOneByteArrayJoin(CallRuntime* call) {
12621 // Simply returning undefined here would be semantically correct and even
12622 // avoid the bailout. Nevertheless, some ancient benchmarks like SunSpider's
12623 // string-fasta would tank, because fullcode contains an optimized version.
12624 // Obviously the fullcode => Crankshaft => bailout => fullcode dance is
12625 // faster... *sigh*
12626 return Bailout(kInlinedRuntimeFunctionFastOneByteArrayJoin);
12630 void HOptimizedGraphBuilder::GenerateDebugBreakInOptimizedCode(
12631 CallRuntime* call) {
12632 Add<HDebugBreak>();
12633 return ast_context()->ReturnValue(graph()->GetConstant0());
12637 void HOptimizedGraphBuilder::GenerateDebugIsActive(CallRuntime* call) {
12638 DCHECK(call->arguments()->length() == 0);
12640 Add<HConstant>(ExternalReference::debug_is_active_address(isolate()));
12642 Add<HLoadNamedField>(ref, nullptr, HObjectAccess::ForExternalUInteger8());
12643 return ast_context()->ReturnValue(value);
12647 void HOptimizedGraphBuilder::GenerateGetPrototype(CallRuntime* call) {
12648 DCHECK(call->arguments()->length() == 1);
12649 CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12650 HValue* object = Pop();
12652 NoObservableSideEffectsScope no_effects(this);
12654 HValue* map = Add<HLoadNamedField>(object, nullptr, HObjectAccess::ForMap());
12655 HValue* bit_field =
12656 Add<HLoadNamedField>(map, nullptr, HObjectAccess::ForMapBitField());
12657 HValue* is_access_check_needed_mask =
12658 Add<HConstant>(1 << Map::kIsAccessCheckNeeded);
12659 HValue* is_access_check_needed_test = AddUncasted<HBitwise>(
12660 Token::BIT_AND, bit_field, is_access_check_needed_mask);
12663 Add<HLoadNamedField>(map, nullptr, HObjectAccess::ForPrototype());
12664 HValue* proto_map =
12665 Add<HLoadNamedField>(proto, nullptr, HObjectAccess::ForMap());
12666 HValue* proto_bit_field =
12667 Add<HLoadNamedField>(proto_map, nullptr, HObjectAccess::ForMapBitField());
12668 HValue* is_hidden_prototype_mask =
12669 Add<HConstant>(1 << Map::kIsHiddenPrototype);
12670 HValue* is_hidden_prototype_test = AddUncasted<HBitwise>(
12671 Token::BIT_AND, proto_bit_field, is_hidden_prototype_mask);
12674 IfBuilder needs_runtime(this);
12675 needs_runtime.If<HCompareNumericAndBranch>(
12676 is_access_check_needed_test, graph()->GetConstant0(), Token::NE);
12677 needs_runtime.OrIf<HCompareNumericAndBranch>(
12678 is_hidden_prototype_test, graph()->GetConstant0(), Token::NE);
12680 needs_runtime.Then();
12682 Add<HPushArguments>(object);
12683 Push(Add<HCallRuntime>(
12684 call->name(), Runtime::FunctionForId(Runtime::kGetPrototype), 1));
12687 needs_runtime.Else();
12690 return ast_context()->ReturnValue(Pop());
12694 #undef CHECK_BAILOUT
12698 HEnvironment::HEnvironment(HEnvironment* outer,
12700 Handle<JSFunction> closure,
12702 : closure_(closure),
12704 frame_type_(JS_FUNCTION),
12705 parameter_count_(0),
12706 specials_count_(1),
12712 ast_id_(BailoutId::None()),
12714 Scope* declaration_scope = scope->DeclarationScope();
12715 Initialize(declaration_scope->num_parameters() + 1,
12716 declaration_scope->num_stack_slots(), 0);
12720 HEnvironment::HEnvironment(Zone* zone, int parameter_count)
12721 : values_(0, zone),
12723 parameter_count_(parameter_count),
12724 specials_count_(1),
12730 ast_id_(BailoutId::None()),
12732 Initialize(parameter_count, 0, 0);
12736 HEnvironment::HEnvironment(const HEnvironment* other, Zone* zone)
12737 : values_(0, zone),
12738 frame_type_(JS_FUNCTION),
12739 parameter_count_(0),
12740 specials_count_(0),
12746 ast_id_(other->ast_id()),
12752 HEnvironment::HEnvironment(HEnvironment* outer,
12753 Handle<JSFunction> closure,
12754 FrameType frame_type,
12757 : closure_(closure),
12758 values_(arguments, zone),
12759 frame_type_(frame_type),
12760 parameter_count_(arguments),
12761 specials_count_(0),
12767 ast_id_(BailoutId::None()),
12772 void HEnvironment::Initialize(int parameter_count,
12774 int stack_height) {
12775 parameter_count_ = parameter_count;
12776 local_count_ = local_count;
12778 // Avoid reallocating the temporaries' backing store on the first Push.
12779 int total = parameter_count + specials_count_ + local_count + stack_height;
12780 values_.Initialize(total + 4, zone());
12781 for (int i = 0; i < total; ++i) values_.Add(NULL, zone());
12785 void HEnvironment::Initialize(const HEnvironment* other) {
12786 closure_ = other->closure();
12787 values_.AddAll(other->values_, zone());
12788 assigned_variables_.Union(other->assigned_variables_, zone());
12789 frame_type_ = other->frame_type_;
12790 parameter_count_ = other->parameter_count_;
12791 local_count_ = other->local_count_;
12792 if (other->outer_ != NULL) outer_ = other->outer_->Copy(); // Deep copy.
12793 entry_ = other->entry_;
12794 pop_count_ = other->pop_count_;
12795 push_count_ = other->push_count_;
12796 specials_count_ = other->specials_count_;
12797 ast_id_ = other->ast_id_;
12801 void HEnvironment::AddIncomingEdge(HBasicBlock* block, HEnvironment* other) {
12802 DCHECK(!block->IsLoopHeader());
12803 DCHECK(values_.length() == other->values_.length());
12805 int length = values_.length();
12806 for (int i = 0; i < length; ++i) {
12807 HValue* value = values_[i];
12808 if (value != NULL && value->IsPhi() && value->block() == block) {
12809 // There is already a phi for the i'th value.
12810 HPhi* phi = HPhi::cast(value);
12811 // Assert index is correct and that we haven't missed an incoming edge.
12812 DCHECK(phi->merged_index() == i || !phi->HasMergedIndex());
12813 DCHECK(phi->OperandCount() == block->predecessors()->length());
12814 phi->AddInput(other->values_[i]);
12815 } else if (values_[i] != other->values_[i]) {
12816 // There is a fresh value on the incoming edge, a phi is needed.
12817 DCHECK(values_[i] != NULL && other->values_[i] != NULL);
12818 HPhi* phi = block->AddNewPhi(i);
12819 HValue* old_value = values_[i];
12820 for (int j = 0; j < block->predecessors()->length(); j++) {
12821 phi->AddInput(old_value);
12823 phi->AddInput(other->values_[i]);
12824 this->values_[i] = phi;
12830 void HEnvironment::Bind(int index, HValue* value) {
12831 DCHECK(value != NULL);
12832 assigned_variables_.Add(index, zone());
12833 values_[index] = value;
12837 bool HEnvironment::HasExpressionAt(int index) const {
12838 return index >= parameter_count_ + specials_count_ + local_count_;
12842 bool HEnvironment::ExpressionStackIsEmpty() const {
12843 DCHECK(length() >= first_expression_index());
12844 return length() == first_expression_index();
12848 void HEnvironment::SetExpressionStackAt(int index_from_top, HValue* value) {
12849 int count = index_from_top + 1;
12850 int index = values_.length() - count;
12851 DCHECK(HasExpressionAt(index));
12852 // The push count must include at least the element in question or else
12853 // the new value will not be included in this environment's history.
12854 if (push_count_ < count) {
12855 // This is the same effect as popping then re-pushing 'count' elements.
12856 pop_count_ += (count - push_count_);
12857 push_count_ = count;
12859 values_[index] = value;
12863 HValue* HEnvironment::RemoveExpressionStackAt(int index_from_top) {
12864 int count = index_from_top + 1;
12865 int index = values_.length() - count;
12866 DCHECK(HasExpressionAt(index));
12867 // Simulate popping 'count' elements and then
12868 // pushing 'count - 1' elements back.
12869 pop_count_ += Max(count - push_count_, 0);
12870 push_count_ = Max(push_count_ - count, 0) + (count - 1);
12871 return values_.Remove(index);
12875 void HEnvironment::Drop(int count) {
12876 for (int i = 0; i < count; ++i) {
12882 HEnvironment* HEnvironment::Copy() const {
12883 return new(zone()) HEnvironment(this, zone());
12887 HEnvironment* HEnvironment::CopyWithoutHistory() const {
12888 HEnvironment* result = Copy();
12889 result->ClearHistory();
12894 HEnvironment* HEnvironment::CopyAsLoopHeader(HBasicBlock* loop_header) const {
12895 HEnvironment* new_env = Copy();
12896 for (int i = 0; i < values_.length(); ++i) {
12897 HPhi* phi = loop_header->AddNewPhi(i);
12898 phi->AddInput(values_[i]);
12899 new_env->values_[i] = phi;
12901 new_env->ClearHistory();
12906 HEnvironment* HEnvironment::CreateStubEnvironment(HEnvironment* outer,
12907 Handle<JSFunction> target,
12908 FrameType frame_type,
12909 int arguments) const {
12910 HEnvironment* new_env =
12911 new(zone()) HEnvironment(outer, target, frame_type,
12912 arguments + 1, zone());
12913 for (int i = 0; i <= arguments; ++i) { // Include receiver.
12914 new_env->Push(ExpressionStackAt(arguments - i));
12916 new_env->ClearHistory();
12921 HEnvironment* HEnvironment::CopyForInlining(
12922 Handle<JSFunction> target,
12924 FunctionLiteral* function,
12925 HConstant* undefined,
12926 InliningKind inlining_kind) const {
12927 DCHECK(frame_type() == JS_FUNCTION);
12929 // Outer environment is a copy of this one without the arguments.
12930 int arity = function->scope()->num_parameters();
12932 HEnvironment* outer = Copy();
12933 outer->Drop(arguments + 1); // Including receiver.
12934 outer->ClearHistory();
12936 if (inlining_kind == CONSTRUCT_CALL_RETURN) {
12937 // Create artificial constructor stub environment. The receiver should
12938 // actually be the constructor function, but we pass the newly allocated
12939 // object instead, DoComputeConstructStubFrame() relies on that.
12940 outer = CreateStubEnvironment(outer, target, JS_CONSTRUCT, arguments);
12941 } else if (inlining_kind == GETTER_CALL_RETURN) {
12942 // We need an additional StackFrame::INTERNAL frame for restoring the
12943 // correct context.
12944 outer = CreateStubEnvironment(outer, target, JS_GETTER, arguments);
12945 } else if (inlining_kind == SETTER_CALL_RETURN) {
12946 // We need an additional StackFrame::INTERNAL frame for temporarily saving
12947 // the argument of the setter, see StoreStubCompiler::CompileStoreViaSetter.
12948 outer = CreateStubEnvironment(outer, target, JS_SETTER, arguments);
12951 if (arity != arguments) {
12952 // Create artificial arguments adaptation environment.
12953 outer = CreateStubEnvironment(outer, target, ARGUMENTS_ADAPTOR, arguments);
12956 HEnvironment* inner =
12957 new(zone()) HEnvironment(outer, function->scope(), target, zone());
12958 // Get the argument values from the original environment.
12959 for (int i = 0; i <= arity; ++i) { // Include receiver.
12960 HValue* push = (i <= arguments) ?
12961 ExpressionStackAt(arguments - i) : undefined;
12962 inner->SetValueAt(i, push);
12964 inner->SetValueAt(arity + 1, context());
12965 for (int i = arity + 2; i < inner->length(); ++i) {
12966 inner->SetValueAt(i, undefined);
12969 inner->set_ast_id(BailoutId::FunctionEntry());
12974 std::ostream& operator<<(std::ostream& os, const HEnvironment& env) {
12975 for (int i = 0; i < env.length(); i++) {
12976 if (i == 0) os << "parameters\n";
12977 if (i == env.parameter_count()) os << "specials\n";
12978 if (i == env.parameter_count() + env.specials_count()) os << "locals\n";
12979 if (i == env.parameter_count() + env.specials_count() + env.local_count()) {
12980 os << "expressions\n";
12982 HValue* val = env.values()->at(i);
12995 void HTracer::TraceCompilation(CompilationInfo* info) {
12996 Tag tag(this, "compilation");
12997 if (info->IsOptimizing()) {
12998 Handle<String> name = info->function()->debug_name();
12999 PrintStringProperty("name", name->ToCString().get());
13001 trace_.Add("method \"%s:%d\"\n",
13002 name->ToCString().get(),
13003 info->optimization_id());
13005 CodeStub::Major major_key = info->code_stub()->MajorKey();
13006 PrintStringProperty("name", CodeStub::MajorName(major_key, false));
13007 PrintStringProperty("method", "stub");
13009 PrintLongProperty("date",
13010 static_cast<int64_t>(base::OS::TimeCurrentMillis()));
13014 void HTracer::TraceLithium(const char* name, LChunk* chunk) {
13015 DCHECK(!chunk->isolate()->concurrent_recompilation_enabled());
13016 AllowHandleDereference allow_deref;
13017 AllowDeferredHandleDereference allow_deferred_deref;
13018 Trace(name, chunk->graph(), chunk);
13022 void HTracer::TraceHydrogen(const char* name, HGraph* graph) {
13023 DCHECK(!graph->isolate()->concurrent_recompilation_enabled());
13024 AllowHandleDereference allow_deref;
13025 AllowDeferredHandleDereference allow_deferred_deref;
13026 Trace(name, graph, NULL);
13030 void HTracer::Trace(const char* name, HGraph* graph, LChunk* chunk) {
13031 Tag tag(this, "cfg");
13032 PrintStringProperty("name", name);
13033 const ZoneList<HBasicBlock*>* blocks = graph->blocks();
13034 for (int i = 0; i < blocks->length(); i++) {
13035 HBasicBlock* current = blocks->at(i);
13036 Tag block_tag(this, "block");
13037 PrintBlockProperty("name", current->block_id());
13038 PrintIntProperty("from_bci", -1);
13039 PrintIntProperty("to_bci", -1);
13041 if (!current->predecessors()->is_empty()) {
13043 trace_.Add("predecessors");
13044 for (int j = 0; j < current->predecessors()->length(); ++j) {
13045 trace_.Add(" \"B%d\"", current->predecessors()->at(j)->block_id());
13049 PrintEmptyProperty("predecessors");
13052 if (current->end()->SuccessorCount() == 0) {
13053 PrintEmptyProperty("successors");
13056 trace_.Add("successors");
13057 for (HSuccessorIterator it(current->end()); !it.Done(); it.Advance()) {
13058 trace_.Add(" \"B%d\"", it.Current()->block_id());
13063 PrintEmptyProperty("xhandlers");
13067 trace_.Add("flags");
13068 if (current->IsLoopSuccessorDominator()) {
13069 trace_.Add(" \"dom-loop-succ\"");
13071 if (current->IsUnreachable()) {
13072 trace_.Add(" \"dead\"");
13074 if (current->is_osr_entry()) {
13075 trace_.Add(" \"osr\"");
13080 if (current->dominator() != NULL) {
13081 PrintBlockProperty("dominator", current->dominator()->block_id());
13084 PrintIntProperty("loop_depth", current->LoopNestingDepth());
13086 if (chunk != NULL) {
13087 int first_index = current->first_instruction_index();
13088 int last_index = current->last_instruction_index();
13091 LifetimePosition::FromInstructionIndex(first_index).Value());
13094 LifetimePosition::FromInstructionIndex(last_index).Value());
13098 Tag states_tag(this, "states");
13099 Tag locals_tag(this, "locals");
13100 int total = current->phis()->length();
13101 PrintIntProperty("size", current->phis()->length());
13102 PrintStringProperty("method", "None");
13103 for (int j = 0; j < total; ++j) {
13104 HPhi* phi = current->phis()->at(j);
13106 std::ostringstream os;
13107 os << phi->merged_index() << " " << NameOf(phi) << " " << *phi << "\n";
13108 trace_.Add(os.str().c_str());
13113 Tag HIR_tag(this, "HIR");
13114 for (HInstructionIterator it(current); !it.Done(); it.Advance()) {
13115 HInstruction* instruction = it.Current();
13116 int uses = instruction->UseCount();
13118 std::ostringstream os;
13119 os << "0 " << uses << " " << NameOf(instruction) << " " << *instruction;
13120 if (graph->info()->is_tracking_positions() &&
13121 instruction->has_position() && instruction->position().raw() != 0) {
13122 const SourcePosition pos = instruction->position();
13124 if (pos.inlining_id() != 0) os << pos.inlining_id() << "_";
13125 os << pos.position();
13128 trace_.Add(os.str().c_str());
13133 if (chunk != NULL) {
13134 Tag LIR_tag(this, "LIR");
13135 int first_index = current->first_instruction_index();
13136 int last_index = current->last_instruction_index();
13137 if (first_index != -1 && last_index != -1) {
13138 const ZoneList<LInstruction*>* instructions = chunk->instructions();
13139 for (int i = first_index; i <= last_index; ++i) {
13140 LInstruction* linstr = instructions->at(i);
13141 if (linstr != NULL) {
13144 LifetimePosition::FromInstructionIndex(i).Value());
13145 linstr->PrintTo(&trace_);
13146 std::ostringstream os;
13147 os << " [hir:" << NameOf(linstr->hydrogen_value()) << "] <|@\n";
13148 trace_.Add(os.str().c_str());
13157 void HTracer::TraceLiveRanges(const char* name, LAllocator* allocator) {
13158 Tag tag(this, "intervals");
13159 PrintStringProperty("name", name);
13161 const Vector<LiveRange*>* fixed_d = allocator->fixed_double_live_ranges();
13162 for (int i = 0; i < fixed_d->length(); ++i) {
13163 TraceLiveRange(fixed_d->at(i), "fixed", allocator->zone());
13166 const Vector<LiveRange*>* fixed = allocator->fixed_live_ranges();
13167 for (int i = 0; i < fixed->length(); ++i) {
13168 TraceLiveRange(fixed->at(i), "fixed", allocator->zone());
13171 const ZoneList<LiveRange*>* live_ranges = allocator->live_ranges();
13172 for (int i = 0; i < live_ranges->length(); ++i) {
13173 TraceLiveRange(live_ranges->at(i), "object", allocator->zone());
13178 void HTracer::TraceLiveRange(LiveRange* range, const char* type,
13180 if (range != NULL && !range->IsEmpty()) {
13182 trace_.Add("%d %s", range->id(), type);
13183 if (range->HasRegisterAssigned()) {
13184 LOperand* op = range->CreateAssignedOperand(zone);
13185 int assigned_reg = op->index();
13186 if (op->IsDoubleRegister()) {
13187 trace_.Add(" \"%s\"",
13188 DoubleRegister::AllocationIndexToString(assigned_reg));
13190 DCHECK(op->IsRegister());
13191 trace_.Add(" \"%s\"", Register::AllocationIndexToString(assigned_reg));
13193 } else if (range->IsSpilled()) {
13194 LOperand* op = range->TopLevel()->GetSpillOperand();
13195 if (op->IsDoubleStackSlot()) {
13196 trace_.Add(" \"double_stack:%d\"", op->index());
13198 DCHECK(op->IsStackSlot());
13199 trace_.Add(" \"stack:%d\"", op->index());
13202 int parent_index = -1;
13203 if (range->IsChild()) {
13204 parent_index = range->parent()->id();
13206 parent_index = range->id();
13208 LOperand* op = range->FirstHint();
13209 int hint_index = -1;
13210 if (op != NULL && op->IsUnallocated()) {
13211 hint_index = LUnallocated::cast(op)->virtual_register();
13213 trace_.Add(" %d %d", parent_index, hint_index);
13214 UseInterval* cur_interval = range->first_interval();
13215 while (cur_interval != NULL && range->Covers(cur_interval->start())) {
13216 trace_.Add(" [%d, %d[",
13217 cur_interval->start().Value(),
13218 cur_interval->end().Value());
13219 cur_interval = cur_interval->next();
13222 UsePosition* current_pos = range->first_pos();
13223 while (current_pos != NULL) {
13224 if (current_pos->RegisterIsBeneficial() || FLAG_trace_all_uses) {
13225 trace_.Add(" %d M", current_pos->pos().Value());
13227 current_pos = current_pos->next();
13230 trace_.Add(" \"\"\n");
13235 void HTracer::FlushToFile() {
13236 AppendChars(filename_.start(), trace_.ToCString().get(), trace_.length(),
13242 void HStatistics::Initialize(CompilationInfo* info) {
13243 if (info->shared_info().is_null()) return;
13244 source_size_ += info->shared_info()->SourceSize();
13248 void HStatistics::Print() {
13251 "----------------------------------------"
13252 "----------------------------------------\n"
13253 "--- Hydrogen timing results:\n"
13254 "----------------------------------------"
13255 "----------------------------------------\n");
13256 base::TimeDelta sum;
13257 for (int i = 0; i < times_.length(); ++i) {
13261 for (int i = 0; i < names_.length(); ++i) {
13262 PrintF("%33s", names_[i]);
13263 double ms = times_[i].InMillisecondsF();
13264 double percent = times_[i].PercentOf(sum);
13265 PrintF(" %8.3f ms / %4.1f %% ", ms, percent);
13267 size_t size = sizes_[i];
13268 double size_percent = static_cast<double>(size) * 100 / total_size_;
13269 PrintF(" %9zu bytes / %4.1f %%\n", size, size_percent);
13273 "----------------------------------------"
13274 "----------------------------------------\n");
13275 base::TimeDelta total = create_graph_ + optimize_graph_ + generate_code_;
13276 PrintF("%33s %8.3f ms / %4.1f %% \n", "Create graph",
13277 create_graph_.InMillisecondsF(), create_graph_.PercentOf(total));
13278 PrintF("%33s %8.3f ms / %4.1f %% \n", "Optimize graph",
13279 optimize_graph_.InMillisecondsF(), optimize_graph_.PercentOf(total));
13280 PrintF("%33s %8.3f ms / %4.1f %% \n", "Generate and install code",
13281 generate_code_.InMillisecondsF(), generate_code_.PercentOf(total));
13283 "----------------------------------------"
13284 "----------------------------------------\n");
13285 PrintF("%33s %8.3f ms %9zu bytes\n", "Total",
13286 total.InMillisecondsF(), total_size_);
13287 PrintF("%33s (%.1f times slower than full code gen)\n", "",
13288 total.TimesOf(full_code_gen_));
13290 double source_size_in_kb = static_cast<double>(source_size_) / 1024;
13291 double normalized_time = source_size_in_kb > 0
13292 ? total.InMillisecondsF() / source_size_in_kb
13294 double normalized_size_in_kb =
13295 source_size_in_kb > 0
13296 ? static_cast<double>(total_size_) / 1024 / source_size_in_kb
13298 PrintF("%33s %8.3f ms %7.3f kB allocated\n",
13299 "Average per kB source", normalized_time, normalized_size_in_kb);
13303 void HStatistics::SaveTiming(const char* name, base::TimeDelta time,
13305 total_size_ += size;
13306 for (int i = 0; i < names_.length(); ++i) {
13307 if (strcmp(names_[i], name) == 0) {
13319 HPhase::~HPhase() {
13320 if (ShouldProduceTraceOutput()) {
13321 isolate()->GetHTracer()->TraceHydrogen(name(), graph_);
13325 graph_->Verify(false); // No full verify.
13329 } // namespace internal