1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #ifndef V8_HEAP_HEAP_H_
6 #define V8_HEAP_HEAP_H_
11 #include "src/allocation.h"
12 #include "src/assert-scope.h"
13 #include "src/counters.h"
14 #include "src/globals.h"
15 #include "src/heap/gc-idle-time-handler.h"
16 #include "src/heap/gc-tracer.h"
17 #include "src/heap/incremental-marking.h"
18 #include "src/heap/mark-compact.h"
19 #include "src/heap/memory-reducer.h"
20 #include "src/heap/objects-visiting.h"
21 #include "src/heap/spaces.h"
22 #include "src/heap/store-buffer.h"
24 #include "src/splay-tree-inl.h"
29 // Defines all the roots in Heap.
30 #define STRONG_ROOT_LIST(V) \
31 V(Map, byte_array_map, ByteArrayMap) \
32 V(Map, free_space_map, FreeSpaceMap) \
33 V(Map, one_pointer_filler_map, OnePointerFillerMap) \
34 V(Map, two_pointer_filler_map, TwoPointerFillerMap) \
35 /* Cluster the most popular ones in a few cache lines here at the top. */ \
36 V(Smi, store_buffer_top, StoreBufferTop) \
37 V(Oddball, undefined_value, UndefinedValue) \
38 V(Oddball, the_hole_value, TheHoleValue) \
39 V(Oddball, null_value, NullValue) \
40 V(Oddball, true_value, TrueValue) \
41 V(Oddball, false_value, FalseValue) \
42 V(String, empty_string, empty_string) \
43 V(Oddball, uninitialized_value, UninitializedValue) \
44 V(Map, cell_map, CellMap) \
45 V(Map, global_property_cell_map, GlobalPropertyCellMap) \
46 V(Map, shared_function_info_map, SharedFunctionInfoMap) \
47 V(Map, meta_map, MetaMap) \
48 V(Map, heap_number_map, HeapNumberMap) \
49 V(Map, mutable_heap_number_map, MutableHeapNumberMap) \
50 V(Map, float32x4_map, Float32x4Map) \
51 V(Map, native_context_map, NativeContextMap) \
52 V(Map, fixed_array_map, FixedArrayMap) \
53 V(Map, code_map, CodeMap) \
54 V(Map, scope_info_map, ScopeInfoMap) \
55 V(Map, fixed_cow_array_map, FixedCOWArrayMap) \
56 V(Map, fixed_double_array_map, FixedDoubleArrayMap) \
57 V(Map, weak_cell_map, WeakCellMap) \
58 V(Map, one_byte_string_map, OneByteStringMap) \
59 V(Map, one_byte_internalized_string_map, OneByteInternalizedStringMap) \
60 V(Map, function_context_map, FunctionContextMap) \
61 V(FixedArray, empty_fixed_array, EmptyFixedArray) \
62 V(ByteArray, empty_byte_array, EmptyByteArray) \
63 V(DescriptorArray, empty_descriptor_array, EmptyDescriptorArray) \
64 /* The roots above this line should be boring from a GC point of view. */ \
65 /* This means they are never in new space and never on a page that is */ \
66 /* being compacted. */ \
67 V(Oddball, no_interceptor_result_sentinel, NoInterceptorResultSentinel) \
68 V(Oddball, arguments_marker, ArgumentsMarker) \
69 V(Oddball, exception, Exception) \
70 V(Oddball, termination_exception, TerminationException) \
71 V(FixedArray, number_string_cache, NumberStringCache) \
72 V(Object, instanceof_cache_function, InstanceofCacheFunction) \
73 V(Object, instanceof_cache_map, InstanceofCacheMap) \
74 V(Object, instanceof_cache_answer, InstanceofCacheAnswer) \
75 V(FixedArray, single_character_string_cache, SingleCharacterStringCache) \
76 V(FixedArray, string_split_cache, StringSplitCache) \
77 V(FixedArray, regexp_multiple_cache, RegExpMultipleCache) \
78 V(Smi, hash_seed, HashSeed) \
79 V(Map, hash_table_map, HashTableMap) \
80 V(Map, ordered_hash_table_map, OrderedHashTableMap) \
81 V(Map, symbol_map, SymbolMap) \
82 V(Map, string_map, StringMap) \
83 V(Map, cons_one_byte_string_map, ConsOneByteStringMap) \
84 V(Map, cons_string_map, ConsStringMap) \
85 V(Map, sliced_string_map, SlicedStringMap) \
86 V(Map, sliced_one_byte_string_map, SlicedOneByteStringMap) \
87 V(Map, external_string_map, ExternalStringMap) \
88 V(Map, external_string_with_one_byte_data_map, \
89 ExternalStringWithOneByteDataMap) \
90 V(Map, external_one_byte_string_map, ExternalOneByteStringMap) \
91 V(Map, native_source_string_map, NativeSourceStringMap) \
92 V(Map, short_external_string_map, ShortExternalStringMap) \
93 V(Map, short_external_string_with_one_byte_data_map, \
94 ShortExternalStringWithOneByteDataMap) \
95 V(Map, internalized_string_map, InternalizedStringMap) \
96 V(Map, external_internalized_string_map, ExternalInternalizedStringMap) \
97 V(Map, external_internalized_string_with_one_byte_data_map, \
98 ExternalInternalizedStringWithOneByteDataMap) \
99 V(Map, external_one_byte_internalized_string_map, \
100 ExternalOneByteInternalizedStringMap) \
101 V(Map, short_external_internalized_string_map, \
102 ShortExternalInternalizedStringMap) \
103 V(Map, short_external_internalized_string_with_one_byte_data_map, \
104 ShortExternalInternalizedStringWithOneByteDataMap) \
105 V(Map, short_external_one_byte_internalized_string_map, \
106 ShortExternalOneByteInternalizedStringMap) \
107 V(Map, short_external_one_byte_string_map, ShortExternalOneByteStringMap) \
108 V(Map, external_int8_array_map, ExternalInt8ArrayMap) \
109 V(Map, external_uint8_array_map, ExternalUint8ArrayMap) \
110 V(Map, external_int16_array_map, ExternalInt16ArrayMap) \
111 V(Map, external_uint16_array_map, ExternalUint16ArrayMap) \
112 V(Map, external_int32_array_map, ExternalInt32ArrayMap) \
113 V(Map, external_uint32_array_map, ExternalUint32ArrayMap) \
114 V(Map, external_float32_array_map, ExternalFloat32ArrayMap) \
115 V(Map, external_float64_array_map, ExternalFloat64ArrayMap) \
116 V(Map, external_uint8_clamped_array_map, ExternalUint8ClampedArrayMap) \
117 V(ExternalArray, empty_external_int8_array, EmptyExternalInt8Array) \
118 V(ExternalArray, empty_external_uint8_array, EmptyExternalUint8Array) \
119 V(ExternalArray, empty_external_int16_array, EmptyExternalInt16Array) \
120 V(ExternalArray, empty_external_uint16_array, EmptyExternalUint16Array) \
121 V(ExternalArray, empty_external_int32_array, EmptyExternalInt32Array) \
122 V(ExternalArray, empty_external_uint32_array, EmptyExternalUint32Array) \
123 V(ExternalArray, empty_external_float32_array, EmptyExternalFloat32Array) \
124 V(ExternalArray, empty_external_float64_array, EmptyExternalFloat64Array) \
125 V(ExternalArray, empty_external_uint8_clamped_array, \
126 EmptyExternalUint8ClampedArray) \
127 V(Map, fixed_uint8_array_map, FixedUint8ArrayMap) \
128 V(Map, fixed_int8_array_map, FixedInt8ArrayMap) \
129 V(Map, fixed_uint16_array_map, FixedUint16ArrayMap) \
130 V(Map, fixed_int16_array_map, FixedInt16ArrayMap) \
131 V(Map, fixed_uint32_array_map, FixedUint32ArrayMap) \
132 V(Map, fixed_int32_array_map, FixedInt32ArrayMap) \
133 V(Map, fixed_float32_array_map, FixedFloat32ArrayMap) \
134 V(Map, fixed_float64_array_map, FixedFloat64ArrayMap) \
135 V(Map, fixed_uint8_clamped_array_map, FixedUint8ClampedArrayMap) \
136 V(FixedTypedArrayBase, empty_fixed_uint8_array, EmptyFixedUint8Array) \
137 V(FixedTypedArrayBase, empty_fixed_int8_array, EmptyFixedInt8Array) \
138 V(FixedTypedArrayBase, empty_fixed_uint16_array, EmptyFixedUint16Array) \
139 V(FixedTypedArrayBase, empty_fixed_int16_array, EmptyFixedInt16Array) \
140 V(FixedTypedArrayBase, empty_fixed_uint32_array, EmptyFixedUint32Array) \
141 V(FixedTypedArrayBase, empty_fixed_int32_array, EmptyFixedInt32Array) \
142 V(FixedTypedArrayBase, empty_fixed_float32_array, EmptyFixedFloat32Array) \
143 V(FixedTypedArrayBase, empty_fixed_float64_array, EmptyFixedFloat64Array) \
144 V(FixedTypedArrayBase, empty_fixed_uint8_clamped_array, \
145 EmptyFixedUint8ClampedArray) \
146 V(Map, sloppy_arguments_elements_map, SloppyArgumentsElementsMap) \
147 V(Map, catch_context_map, CatchContextMap) \
148 V(Map, with_context_map, WithContextMap) \
149 V(Map, block_context_map, BlockContextMap) \
150 V(Map, module_context_map, ModuleContextMap) \
151 V(Map, script_context_map, ScriptContextMap) \
152 V(Map, script_context_table_map, ScriptContextTableMap) \
153 V(Map, undefined_map, UndefinedMap) \
154 V(Map, the_hole_map, TheHoleMap) \
155 V(Map, null_map, NullMap) \
156 V(Map, boolean_map, BooleanMap) \
157 V(Map, uninitialized_map, UninitializedMap) \
158 V(Map, arguments_marker_map, ArgumentsMarkerMap) \
159 V(Map, no_interceptor_result_sentinel_map, NoInterceptorResultSentinelMap) \
160 V(Map, exception_map, ExceptionMap) \
161 V(Map, termination_exception_map, TerminationExceptionMap) \
162 V(Map, message_object_map, JSMessageObjectMap) \
163 V(Map, foreign_map, ForeignMap) \
164 V(Map, neander_map, NeanderMap) \
165 V(Map, external_map, ExternalMap) \
166 V(HeapNumber, nan_value, NanValue) \
167 V(HeapNumber, infinity_value, InfinityValue) \
168 V(HeapNumber, minus_zero_value, MinusZeroValue) \
169 V(HeapNumber, minus_infinity_value, MinusInfinityValue) \
170 V(JSObject, message_listeners, MessageListeners) \
171 V(UnseededNumberDictionary, code_stubs, CodeStubs) \
172 V(UnseededNumberDictionary, non_monomorphic_cache, NonMonomorphicCache) \
173 V(PolymorphicCodeCache, polymorphic_code_cache, PolymorphicCodeCache) \
174 V(Code, js_entry_code, JsEntryCode) \
175 V(Code, js_construct_entry_code, JsConstructEntryCode) \
176 V(FixedArray, natives_source_cache, NativesSourceCache) \
177 V(FixedArray, experimental_natives_source_cache, \
178 ExperimentalNativesSourceCache) \
179 V(FixedArray, extra_natives_source_cache, ExtraNativesSourceCache) \
180 V(FixedArray, code_stub_natives_source_cache, CodeStubNativesSourceCache) \
181 V(Script, empty_script, EmptyScript) \
182 V(NameDictionary, intrinsic_function_names, IntrinsicFunctionNames) \
183 V(Cell, undefined_cell, UndefinedCell) \
184 V(JSObject, observation_state, ObservationState) \
185 V(Object, symbol_registry, SymbolRegistry) \
186 V(SeededNumberDictionary, empty_slow_element_dictionary, \
187 EmptySlowElementDictionary) \
188 V(FixedArray, materialized_objects, MaterializedObjects) \
189 V(FixedArray, allocation_sites_scratchpad, AllocationSitesScratchpad) \
190 V(FixedArray, microtask_queue, MicrotaskQueue) \
191 V(FixedArray, keyed_load_dummy_vector, KeyedLoadDummyVector) \
192 V(FixedArray, keyed_store_dummy_vector, KeyedStoreDummyVector) \
193 V(FixedArray, detached_contexts, DetachedContexts) \
194 V(ArrayList, retained_maps, RetainedMaps) \
195 V(WeakHashTable, weak_object_to_code_table, WeakObjectToCodeTable) \
196 V(PropertyCell, array_protector, ArrayProtector) \
197 V(PropertyCell, empty_property_cell, EmptyPropertyCell) \
198 V(Object, weak_stack_trace_list, WeakStackTraceList) \
199 V(Object, code_stub_context, CodeStubContext) \
200 V(JSObject, code_stub_exports_object, CodeStubExportsObject) \
201 V(FixedArray, interpreter_table, InterpreterTable) \
202 V(Map, bytecode_array_map, BytecodeArrayMap) \
203 V(BytecodeArray, empty_bytecode_array, EmptyBytecodeArray)
206 // Entries in this list are limited to Smis and are not visited during GC.
207 #define SMI_ROOT_LIST(V) \
208 V(Smi, stack_limit, StackLimit) \
209 V(Smi, real_stack_limit, RealStackLimit) \
210 V(Smi, last_script_id, LastScriptId) \
211 V(Smi, arguments_adaptor_deopt_pc_offset, ArgumentsAdaptorDeoptPCOffset) \
212 V(Smi, construct_stub_deopt_pc_offset, ConstructStubDeoptPCOffset) \
213 V(Smi, getter_stub_deopt_pc_offset, GetterStubDeoptPCOffset) \
214 V(Smi, setter_stub_deopt_pc_offset, SetterStubDeoptPCOffset)
217 #define ROOT_LIST(V) \
218 STRONG_ROOT_LIST(V) \
220 V(StringTable, string_table, StringTable)
222 #define INTERNALIZED_STRING_LIST(V) \
223 V(Object_string, "Object") \
224 V(proto_string, "__proto__") \
225 V(arguments_string, "arguments") \
226 V(Arguments_string, "Arguments") \
227 V(caller_string, "caller") \
228 V(boolean_string, "boolean") \
229 V(Boolean_string, "Boolean") \
230 V(callee_string, "callee") \
231 V(constructor_string, "constructor") \
232 V(dot_result_string, ".result") \
233 V(eval_string, "eval") \
234 V(float32x4_string, "float32x4") \
235 V(Float32x4_string, "Float32x4") \
236 V(function_string, "function") \
237 V(Function_string, "Function") \
238 V(length_string, "length") \
239 V(name_string, "name") \
240 V(null_string, "null") \
241 V(number_string, "number") \
242 V(Number_string, "Number") \
243 V(nan_string, "NaN") \
244 V(source_string, "source") \
245 V(source_url_string, "source_url") \
246 V(source_mapping_url_string, "source_mapping_url") \
247 V(this_string, "this") \
248 V(global_string, "global") \
249 V(ignore_case_string, "ignoreCase") \
250 V(multiline_string, "multiline") \
251 V(sticky_string, "sticky") \
252 V(unicode_string, "unicode") \
253 V(harmony_regexps_string, "harmony_regexps") \
254 V(harmony_tostring_string, "harmony_tostring") \
255 V(harmony_unicode_regexps_string, "harmony_unicode_regexps") \
256 V(input_string, "input") \
257 V(index_string, "index") \
258 V(last_index_string, "lastIndex") \
259 V(object_string, "object") \
260 V(prototype_string, "prototype") \
261 V(string_string, "string") \
262 V(String_string, "String") \
263 V(symbol_string, "symbol") \
264 V(Symbol_string, "Symbol") \
265 V(Map_string, "Map") \
266 V(Set_string, "Set") \
267 V(WeakMap_string, "WeakMap") \
268 V(WeakSet_string, "WeakSet") \
269 V(for_string, "for") \
270 V(for_api_string, "for_api") \
271 V(for_intern_string, "for_intern") \
272 V(private_api_string, "private_api") \
273 V(private_intern_string, "private_intern") \
274 V(Date_string, "Date") \
275 V(char_at_string, "CharAt") \
276 V(undefined_string, "undefined") \
277 V(value_of_string, "valueOf") \
278 V(stack_string, "stack") \
279 V(toJSON_string, "toJSON") \
280 V(KeyedLoadMonomorphic_string, "KeyedLoadMonomorphic") \
281 V(KeyedStoreMonomorphic_string, "KeyedStoreMonomorphic") \
282 V(stack_overflow_string, "$stackOverflowBoilerplate") \
283 V(illegal_access_string, "illegal access") \
284 V(cell_value_string, "%cell_value") \
285 V(illegal_argument_string, "illegal argument") \
286 V(closure_string, "(closure)") \
288 V(compare_ic_string, "==") \
289 V(strict_compare_ic_string, "===") \
290 V(infinity_string, "Infinity") \
291 V(minus_infinity_string, "-Infinity") \
292 V(query_colon_string, "(?:)") \
293 V(Generator_string, "Generator") \
294 V(throw_string, "throw") \
295 V(done_string, "done") \
296 V(value_string, "value") \
297 V(next_string, "next") \
298 V(byte_length_string, "byteLength") \
299 V(byte_offset_string, "byteOffset") \
300 V(minus_zero_string, "-0") \
301 V(Array_string, "Array") \
302 V(Error_string, "Error") \
303 V(RegExp_string, "RegExp")
305 #define PRIVATE_SYMBOL_LIST(V) \
306 V(nonextensible_symbol) \
308 V(hash_code_symbol) \
310 V(nonexistent_symbol) \
311 V(elements_transition_symbol) \
313 V(uninitialized_symbol) \
314 V(megamorphic_symbol) \
315 V(premonomorphic_symbol) \
316 V(stack_trace_symbol) \
317 V(detailed_stack_trace_symbol) \
318 V(normal_ic_symbol) \
319 V(home_object_symbol) \
320 V(intl_initialized_marker_symbol) \
321 V(intl_impl_object_symbol) \
322 V(promise_debug_marker_symbol) \
323 V(promise_has_handler_symbol) \
324 V(class_script_symbol) \
325 V(class_start_position_symbol) \
326 V(class_end_position_symbol) \
327 V(error_start_pos_symbol) \
328 V(error_end_pos_symbol) \
329 V(error_script_symbol)
331 #define PUBLIC_SYMBOL_LIST(V) \
332 V(has_instance_symbol, symbolHasInstance, Symbol.hasInstance) \
333 V(is_concat_spreadable_symbol, symbolIsConcatSpreadable, \
334 Symbol.isConcatSpreadable) \
335 V(is_regexp_symbol, symbolIsRegExp, Symbol.isRegExp) \
336 V(iterator_symbol, symbolIterator, Symbol.iterator) \
337 V(to_string_tag_symbol, symbolToStringTag, Symbol.toStringTag) \
338 V(unscopables_symbol, symbolUnscopables, Symbol.unscopables)
340 // Heap roots that are known to be immortal immovable, for which we can safely
341 // skip write barriers. This list is not complete and has omissions.
342 #define IMMORTAL_IMMOVABLE_ROOT_LIST(V) \
344 V(BytecodeArrayMap) \
346 V(OnePointerFillerMap) \
347 V(TwoPointerFillerMap) \
353 V(UninitializedValue) \
355 V(GlobalPropertyCellMap) \
356 V(SharedFunctionInfoMap) \
359 V(MutableHeapNumberMap) \
361 V(NativeContextMap) \
365 V(FixedCOWArrayMap) \
366 V(FixedDoubleArrayMap) \
368 V(NoInterceptorResultSentinel) \
370 V(OrderedHashTableMap) \
373 V(EmptyBytecodeArray) \
374 V(EmptyDescriptorArray) \
377 V(SloppyArgumentsElementsMap) \
378 V(FunctionContextMap) \
382 V(ModuleContextMap) \
383 V(ScriptContextMap) \
388 V(UninitializedMap) \
389 V(ArgumentsMarkerMap) \
390 V(JSMessageObjectMap) \
394 PRIVATE_SYMBOL_LIST(V)
396 // Forward declarations.
399 class WeakObjectRetainer;
402 typedef String* (*ExternalStringTableUpdaterCallback)(Heap* heap,
405 class StoreBufferRebuilder {
407 explicit StoreBufferRebuilder(StoreBuffer* store_buffer)
408 : store_buffer_(store_buffer) {}
410 void Callback(MemoryChunk* page, StoreBufferEvent event);
413 StoreBuffer* store_buffer_;
415 // We record in this variable how full the store buffer was when we started
416 // iterating over the current page, finding pointers to new space. If the
417 // store buffer overflows again we can exempt the page from the store buffer
418 // by rewinding to this point instead of having to search the store buffer.
419 Object*** start_of_current_page_;
420 // The current page we are scanning in the store buffer iterator.
421 MemoryChunk* current_page_;
425 // A queue of objects promoted during scavenge. Each object is accompanied
426 // by it's size to avoid dereferencing a map pointer for scanning.
427 // The last page in to-space is used for the promotion queue. On conflict
428 // during scavenge, the promotion queue is allocated externally and all
429 // entries are copied to the external queue.
430 class PromotionQueue {
432 explicit PromotionQueue(Heap* heap)
443 delete emergency_stack_;
444 emergency_stack_ = NULL;
447 Page* GetHeadPage() {
448 return Page::FromAllocationTop(reinterpret_cast<Address>(rear_));
451 void SetNewLimit(Address limit) {
452 // If we are already using an emergency stack, we can ignore it.
453 if (emergency_stack_) return;
455 // If the limit is not on the same page, we can ignore it.
456 if (Page::FromAllocationTop(limit) != GetHeadPage()) return;
458 limit_ = reinterpret_cast<intptr_t*>(limit);
460 if (limit_ <= rear_) {
467 bool IsBelowPromotionQueue(Address to_space_top) {
468 // If an emergency stack is used, the to-space address cannot interfere
469 // with the promotion queue.
470 if (emergency_stack_) return true;
472 // If the given to-space top pointer and the head of the promotion queue
473 // are not on the same page, then the to-space objects are below the
475 if (GetHeadPage() != Page::FromAddress(to_space_top)) {
478 // If the to space top pointer is smaller or equal than the promotion
479 // queue head, then the to-space objects are below the promotion queue.
480 return reinterpret_cast<intptr_t*>(to_space_top) <= rear_;
484 return (front_ == rear_) &&
485 (emergency_stack_ == NULL || emergency_stack_->length() == 0);
488 inline void insert(HeapObject* target, int size);
490 void remove(HeapObject** target, int* size) {
492 if (front_ == rear_) {
493 Entry e = emergency_stack_->RemoveLast();
499 *target = reinterpret_cast<HeapObject*>(*(--front_));
500 *size = static_cast<int>(*(--front_));
501 // Assert no underflow.
502 SemiSpace::AssertValidRange(reinterpret_cast<Address>(rear_),
503 reinterpret_cast<Address>(front_));
507 // The front of the queue is higher in the memory page chain than the rear.
512 static const int kEntrySizeInWords = 2;
515 Entry(HeapObject* obj, int size) : obj_(obj), size_(size) {}
520 List<Entry>* emergency_stack_;
524 void RelocateQueueHead();
526 DISALLOW_COPY_AND_ASSIGN(PromotionQueue);
530 typedef void (*ScavengingCallback)(Map* map, HeapObject** slot,
534 // External strings table is a place where all external strings are
535 // registered. We need to keep track of such strings to properly
537 class ExternalStringTable {
539 // Registers an external string.
540 inline void AddString(String* string);
542 inline void Iterate(ObjectVisitor* v);
544 // Restores internal invariant and gets rid of collected strings.
545 // Must be called after each Iterate() that modified the strings.
548 // Destroys all allocated memory.
552 explicit ExternalStringTable(Heap* heap) : heap_(heap) {}
556 inline void Verify();
558 inline void AddOldString(String* string);
560 // Notifies the table that only a prefix of the new list is valid.
561 inline void ShrinkNewStrings(int position);
563 // To speed up scavenge collections new space string are kept
564 // separate from old space strings.
565 List<Object*> new_space_strings_;
566 List<Object*> old_space_strings_;
570 DISALLOW_COPY_AND_ASSIGN(ExternalStringTable);
574 enum ArrayStorageAllocationMode {
575 DONT_INITIALIZE_ARRAY_ELEMENTS,
576 INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE
582 // Configure heap size in MB before setup. Return false if the heap has been
584 bool ConfigureHeap(int max_semi_space_size, int max_old_space_size,
585 int max_executable_size, size_t code_range_size);
586 bool ConfigureHeapDefault();
588 // Prepares the heap, setting up memory areas that are needed in the isolate
589 // without actually creating any objects.
592 // Bootstraps the object heap with the core set of objects required to run.
593 // Returns whether it succeeded.
594 bool CreateHeapObjects();
596 // Destroys all memory allocated by the heap.
599 // Set the stack limit in the roots_ array. Some architectures generate
600 // code that looks here, because it is faster than loading from the static
601 // jslimit_/real_jslimit_ variable in the StackGuard.
602 void SetStackLimits();
604 // Notifies the heap that is ok to start marking or other activities that
605 // should not happen during deserialization.
606 void NotifyDeserializationComplete();
608 // Returns whether SetUp has been called.
611 // Returns the maximum amount of memory reserved for the heap. For
612 // the young generation, we reserve 4 times the amount needed for a
613 // semi space. The young generation consists of two semi spaces and
614 // we reserve twice the amount needed for those in order to ensure
615 // that new space can be aligned to its size.
616 intptr_t MaxReserved() {
617 return 4 * reserved_semispace_size_ + max_old_generation_size_;
619 int MaxSemiSpaceSize() { return max_semi_space_size_; }
620 int ReservedSemiSpaceSize() { return reserved_semispace_size_; }
621 int InitialSemiSpaceSize() { return initial_semispace_size_; }
622 int TargetSemiSpaceSize() { return target_semispace_size_; }
623 intptr_t MaxOldGenerationSize() { return max_old_generation_size_; }
624 intptr_t MaxExecutableSize() { return max_executable_size_; }
626 // Returns the capacity of the heap in bytes w/o growing. Heap grows when
627 // more spaces are needed until it reaches the limit.
630 // Returns the amount of memory currently committed for the heap.
631 intptr_t CommittedMemory();
633 // Returns the amount of memory currently committed for the old space.
634 intptr_t CommittedOldGenerationMemory();
636 // Returns the amount of executable memory currently committed for the heap.
637 intptr_t CommittedMemoryExecutable();
639 // Returns the amount of phyical memory currently committed for the heap.
640 size_t CommittedPhysicalMemory();
642 // Returns the maximum amount of memory ever committed for the heap.
643 intptr_t MaximumCommittedMemory() { return maximum_committed_; }
645 // Updates the maximum committed memory for the heap. Should be called
646 // whenever a space grows.
647 void UpdateMaximumCommitted();
649 // Returns the available bytes in space w/o growing.
650 // Heap doesn't guarantee that it can allocate an object that requires
651 // all available bytes. Check MaxHeapObjectSize() instead.
652 intptr_t Available();
654 // Returns of size of all objects residing in the heap.
655 intptr_t SizeOfObjects();
657 intptr_t old_generation_allocation_limit() const {
658 return old_generation_allocation_limit_;
661 // Return the starting address and a mask for the new space. And-masking an
662 // address with the mask will result in the start address of the new space
663 // for all addresses in either semispace.
664 Address NewSpaceStart() { return new_space_.start(); }
665 uintptr_t NewSpaceMask() { return new_space_.mask(); }
666 Address NewSpaceTop() { return new_space_.top(); }
668 NewSpace* new_space() { return &new_space_; }
669 OldSpace* old_space() { return old_space_; }
670 OldSpace* code_space() { return code_space_; }
671 MapSpace* map_space() { return map_space_; }
672 LargeObjectSpace* lo_space() { return lo_space_; }
673 PagedSpace* paged_space(int idx) {
687 Space* space(int idx) {
694 return paged_space(idx);
698 // Returns name of the space.
699 const char* GetSpaceName(int idx);
701 bool always_allocate() { return always_allocate_scope_depth_ != 0; }
702 Address always_allocate_scope_depth_address() {
703 return reinterpret_cast<Address>(&always_allocate_scope_depth_);
706 Address* NewSpaceAllocationTopAddress() {
707 return new_space_.allocation_top_address();
709 Address* NewSpaceAllocationLimitAddress() {
710 return new_space_.allocation_limit_address();
713 Address* OldSpaceAllocationTopAddress() {
714 return old_space_->allocation_top_address();
716 Address* OldSpaceAllocationLimitAddress() {
717 return old_space_->allocation_limit_address();
720 // TODO(hpayer): There is still a missmatch between capacity and actual
721 // committed memory size.
722 bool CanExpandOldGeneration(int size) {
723 return (CommittedOldGenerationMemory() + size) < MaxOldGenerationSize();
726 // Returns a deep copy of the JavaScript object.
727 // Properties and elements are copied too.
728 // Optionally takes an AllocationSite to be appended in an AllocationMemento.
729 MUST_USE_RESULT AllocationResult
730 CopyJSObject(JSObject* source, AllocationSite* site = NULL);
732 // Calculates the maximum amount of filler that could be required by the
734 static int GetMaximumFillToAlign(AllocationAlignment alignment);
735 // Calculates the actual amount of filler required for a given address at the
737 static int GetFillToAlign(Address address, AllocationAlignment alignment);
739 // Creates a filler object and returns a heap object immediately after it.
740 MUST_USE_RESULT HeapObject* PrecedeWithFiller(HeapObject* object,
742 // Creates a filler object if needed for alignment and returns a heap object
743 // immediately after it. If any space is left after the returned object,
744 // another filler object is created so the over allocated memory is iterable.
745 MUST_USE_RESULT HeapObject* AlignWithFiller(HeapObject* object,
748 AllocationAlignment alignment);
750 // Clear the Instanceof cache (used when a prototype changes).
751 inline void ClearInstanceofCache();
753 // Iterates the whole code space to clear all ICs of the given kind.
754 void ClearAllICsByKind(Code::Kind kind);
756 // FreeSpace objects have a null map after deserialization. Update the map.
757 void RepairFreeListsAfterDeserialization();
759 template <typename T>
760 static inline bool IsOneByte(T t, int chars);
762 // Move len elements within a given array from src_index index to dst_index
764 void MoveElements(FixedArray* array, int dst_index, int src_index, int len);
766 // Sloppy mode arguments object size.
767 static const int kSloppyArgumentsObjectSize =
768 JSObject::kHeaderSize + 2 * kPointerSize;
769 // Strict mode arguments has no callee so it is smaller.
770 static const int kStrictArgumentsObjectSize =
771 JSObject::kHeaderSize + 1 * kPointerSize;
772 // Indicies for direct access into argument objects.
773 static const int kArgumentsLengthIndex = 0;
774 // callee is only valid in sloppy mode.
775 static const int kArgumentsCalleeIndex = 1;
777 // Finalizes an external string by deleting the associated external
778 // data and clearing the resource pointer.
779 inline void FinalizeExternalString(String* string);
781 // Initialize a filler object to keep the ability to iterate over the heap
782 // when introducing gaps within pages.
783 void CreateFillerObjectAt(Address addr, int size);
785 bool CanMoveObjectStart(HeapObject* object);
787 // Indicates whether live bytes adjustment is triggered
788 // - from within the GC code before sweeping started (SEQUENTIAL_TO_SWEEPER),
789 // - or from within GC (CONCURRENT_TO_SWEEPER),
790 // - or mutator code (CONCURRENT_TO_SWEEPER).
791 enum InvocationMode { SEQUENTIAL_TO_SWEEPER, CONCURRENT_TO_SWEEPER };
793 // Maintain consistency of live bytes during incremental marking.
794 void AdjustLiveBytes(Address address, int by, InvocationMode mode);
796 // Trim the given array from the left. Note that this relocates the object
797 // start and hence is only valid if there is only a single reference to it.
798 FixedArrayBase* LeftTrimFixedArray(FixedArrayBase* obj, int elements_to_trim);
800 // Trim the given array from the right.
801 template<Heap::InvocationMode mode>
802 void RightTrimFixedArray(FixedArrayBase* obj, int elements_to_trim);
804 // Converts the given boolean condition to JavaScript boolean value.
805 inline Object* ToBoolean(bool condition);
807 // Performs garbage collection operation.
808 // Returns whether there is a chance that another major GC could
809 // collect more garbage.
810 inline bool CollectGarbage(
811 AllocationSpace space, const char* gc_reason = NULL,
812 const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
814 static const int kNoGCFlags = 0;
815 static const int kReduceMemoryFootprintMask = 1;
816 static const int kAbortIncrementalMarkingMask = 2;
817 static const int kFinalizeIncrementalMarkingMask = 4;
819 // Making the heap iterable requires us to abort incremental marking.
820 static const int kMakeHeapIterableMask = kAbortIncrementalMarkingMask;
822 // Invoked when GC was requested via the stack guard.
823 void HandleGCRequest();
825 // Attempt to over-approximate the weak closure by marking object groups and
826 // implicit references from global handles, but don't atomically complete
827 // marking. If we continue to mark incrementally, we might have marked
828 // objects that die later.
829 void OverApproximateWeakClosure(const char* gc_reason);
831 // Performs a full garbage collection. If (flags & kMakeHeapIterableMask) is
832 // non-zero, then the slower precise sweeper is used, which leaves the heap
833 // in a state where we can iterate over the heap visiting all objects.
834 void CollectAllGarbage(
835 int flags = kFinalizeIncrementalMarkingMask, const char* gc_reason = NULL,
836 const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
838 // Last hope GC, should try to squeeze as much as possible.
839 void CollectAllAvailableGarbage(const char* gc_reason = NULL);
841 // Check whether the heap is currently iterable.
842 bool IsHeapIterable();
844 // Notify the heap that a context has been disposed.
845 int NotifyContextDisposed(bool dependant_context);
847 // Start incremental marking and ensure that idle time handler can perform
848 // incremental steps.
849 void StartIdleIncrementalMarking();
851 inline void increment_scan_on_scavenge_pages() {
852 scan_on_scavenge_pages_++;
853 if (FLAG_gc_verbose) {
854 PrintF("Scan-on-scavenge pages: %d\n", scan_on_scavenge_pages_);
858 inline void decrement_scan_on_scavenge_pages() {
859 scan_on_scavenge_pages_--;
860 if (FLAG_gc_verbose) {
861 PrintF("Scan-on-scavenge pages: %d\n", scan_on_scavenge_pages_);
865 PromotionQueue* promotion_queue() { return &promotion_queue_; }
867 void AddGCPrologueCallback(v8::Isolate::GCPrologueCallback callback,
868 GCType gc_type_filter, bool pass_isolate = true);
869 void RemoveGCPrologueCallback(v8::Isolate::GCPrologueCallback callback);
871 void AddGCEpilogueCallback(v8::Isolate::GCEpilogueCallback callback,
872 GCType gc_type_filter, bool pass_isolate = true);
873 void RemoveGCEpilogueCallback(v8::Isolate::GCEpilogueCallback callback);
875 // Heap root getters. We have versions with and without type::cast() here.
876 // You can't use type::cast during GC because the assert fails.
877 // TODO(1490): Try removing the unchecked accessors, now that GC marking does
878 // not corrupt the map.
879 #define ROOT_ACCESSOR(type, name, camel_name) \
880 type* name() { return type::cast(roots_[k##camel_name##RootIndex]); } \
881 type* raw_unchecked_##name() { \
882 return reinterpret_cast<type*>(roots_[k##camel_name##RootIndex]); \
884 ROOT_LIST(ROOT_ACCESSOR)
888 #define STRUCT_MAP_ACCESSOR(NAME, Name, name) \
889 Map* name##_map() { return Map::cast(roots_[k##Name##MapRootIndex]); }
890 STRUCT_LIST(STRUCT_MAP_ACCESSOR)
891 #undef STRUCT_MAP_ACCESSOR
893 #define STRING_ACCESSOR(name, str) \
894 String* name() { return String::cast(roots_[k##name##RootIndex]); }
895 INTERNALIZED_STRING_LIST(STRING_ACCESSOR)
896 #undef STRING_ACCESSOR
898 #define SYMBOL_ACCESSOR(name) \
899 Symbol* name() { return Symbol::cast(roots_[k##name##RootIndex]); }
900 PRIVATE_SYMBOL_LIST(SYMBOL_ACCESSOR)
901 #undef SYMBOL_ACCESSOR
903 #define SYMBOL_ACCESSOR(name, varname, description) \
904 Symbol* name() { return Symbol::cast(roots_[k##name##RootIndex]); }
905 PUBLIC_SYMBOL_LIST(SYMBOL_ACCESSOR)
906 #undef SYMBOL_ACCESSOR
908 // The hidden_string is special because it is the empty string, but does
909 // not match the empty string.
910 String* hidden_string() { return hidden_string_; }
912 void set_native_contexts_list(Object* object) {
913 native_contexts_list_ = object;
915 Object* native_contexts_list() const { return native_contexts_list_; }
917 void set_allocation_sites_list(Object* object) {
918 allocation_sites_list_ = object;
920 Object* allocation_sites_list() { return allocation_sites_list_; }
922 // Used in CreateAllocationSiteStub and the (de)serializer.
923 Object** allocation_sites_list_address() { return &allocation_sites_list_; }
925 void set_encountered_weak_collections(Object* weak_collection) {
926 encountered_weak_collections_ = weak_collection;
928 Object* encountered_weak_collections() const {
929 return encountered_weak_collections_;
932 void set_encountered_weak_cells(Object* weak_cell) {
933 encountered_weak_cells_ = weak_cell;
935 Object* encountered_weak_cells() const { return encountered_weak_cells_; }
937 // Number of mark-sweeps.
938 unsigned int ms_count() { return ms_count_; }
940 // Iterates over all roots in the heap.
941 void IterateRoots(ObjectVisitor* v, VisitMode mode);
942 // Iterates over all strong roots in the heap.
943 void IterateStrongRoots(ObjectVisitor* v, VisitMode mode);
944 // Iterates over entries in the smi roots list. Only interesting to the
945 // serializer/deserializer, since GC does not care about smis.
946 void IterateSmiRoots(ObjectVisitor* v);
947 // Iterates over all the other roots in the heap.
948 void IterateWeakRoots(ObjectVisitor* v, VisitMode mode);
950 // Iterate pointers to from semispace of new space found in memory interval
951 // from start to end.
952 void IterateAndMarkPointersToFromSpace(bool record_slots, Address start,
954 ObjectSlotCallback callback);
956 // Returns whether the object resides in new space.
957 inline bool InNewSpace(Object* object);
958 inline bool InNewSpace(Address address);
959 inline bool InNewSpacePage(Address address);
960 inline bool InFromSpace(Object* object);
961 inline bool InToSpace(Object* object);
963 // Returns whether the object resides in old space.
964 inline bool InOldSpace(Address address);
965 inline bool InOldSpace(Object* object);
967 // Checks whether an address/object in the heap (including auxiliary
968 // area and unused area).
969 bool Contains(Address addr);
970 bool Contains(HeapObject* value);
972 // Checks whether an address/object in a space.
973 // Currently used by tests, serialization and heap verification only.
974 bool InSpace(Address addr, AllocationSpace space);
975 bool InSpace(HeapObject* value, AllocationSpace space);
977 // Checks whether the space is valid.
978 static bool IsValidAllocationSpace(AllocationSpace space);
980 // Checks whether the given object is allowed to be migrated from it's
981 // current space into the given destination space. Used for debugging.
982 inline bool AllowedToBeMigrated(HeapObject* object, AllocationSpace dest);
984 // Sets the stub_cache_ (only used when expanding the dictionary).
985 void public_set_code_stubs(UnseededNumberDictionary* value) {
986 roots_[kCodeStubsRootIndex] = value;
989 // Support for computing object sizes for old objects during GCs. Returns
990 // a function that is guaranteed to be safe for computing object sizes in
991 // the current GC phase.
992 HeapObjectCallback GcSafeSizeOfOldObjectFunction() {
993 return gc_safe_size_of_old_object_;
996 // Sets the non_monomorphic_cache_ (only used when expanding the dictionary).
997 void public_set_non_monomorphic_cache(UnseededNumberDictionary* value) {
998 roots_[kNonMonomorphicCacheRootIndex] = value;
1001 void public_set_empty_script(Script* script) {
1002 roots_[kEmptyScriptRootIndex] = script;
1005 void public_set_store_buffer_top(Address* top) {
1006 roots_[kStoreBufferTopRootIndex] = reinterpret_cast<Smi*>(top);
1009 void public_set_materialized_objects(FixedArray* objects) {
1010 roots_[kMaterializedObjectsRootIndex] = objects;
1013 void public_set_interpreter_table(FixedArray* table) {
1014 roots_[kInterpreterTableRootIndex] = table;
1017 // Generated code can embed this address to get access to the roots.
1018 Object** roots_array_start() { return roots_; }
1020 Address* store_buffer_top_address() {
1021 return reinterpret_cast<Address*>(&roots_[kStoreBufferTopRootIndex]);
1024 static bool RootIsImmortalImmovable(int root_index);
1025 void CheckHandleCount();
1028 // Verify the heap is in its normal state before or after a GC.
1034 void PrintHandles();
1036 // Report heap statistics.
1037 void ReportHeapStatistics(const char* title);
1038 void ReportCodeStatistics(const char* title);
1041 // Zapping is needed for verify heap, and always done in debug builds.
1042 static inline bool ShouldZapGarbage() {
1047 return FLAG_verify_heap;
1054 // Number of "runtime allocations" done so far.
1055 uint32_t allocations_count() { return allocations_count_; }
1057 // Returns deterministic "time" value in ms. Works only with
1058 // FLAG_verify_predictable.
1059 double synthetic_time() { return allocations_count_ / 2.0; }
1061 // Print short heap statistics.
1062 void PrintShortHeapStatistics();
1064 size_t object_count_last_gc(size_t index) {
1065 return index < OBJECT_STATS_COUNT ? object_counts_last_time_[index] : 0;
1067 size_t object_size_last_gc(size_t index) {
1068 return index < OBJECT_STATS_COUNT ? object_sizes_last_time_[index] : 0;
1071 // Write barrier support for address[offset] = o.
1072 INLINE(void RecordWrite(Address address, int offset));
1074 // Write barrier support for address[start : start + len[ = o.
1075 INLINE(void RecordWrites(Address address, int start, int len));
1077 enum HeapState { NOT_IN_GC, SCAVENGE, MARK_COMPACT };
1078 inline HeapState gc_state() { return gc_state_; }
1080 inline bool IsInGCPostProcessing() { return gc_post_processing_depth_ > 0; }
1083 void set_allocation_timeout(int timeout) { allocation_timeout_ = timeout; }
1085 void TracePathToObjectFrom(Object* target, Object* root);
1086 void TracePathToObject(Object* target);
1087 void TracePathToGlobal();
1090 // Callback function passed to Heap::Iterate etc. Copies an object if
1091 // necessary, the object might be promoted to an old space. The caller must
1092 // ensure the precondition that the object is (a) a heap object and (b) in
1093 // the heap's from space.
1094 static inline void ScavengePointer(HeapObject** p);
1095 static inline void ScavengeObject(HeapObject** p, HeapObject* object);
1097 enum ScratchpadSlotMode { IGNORE_SCRATCHPAD_SLOT, RECORD_SCRATCHPAD_SLOT };
1099 // If an object has an AllocationMemento trailing it, return it, otherwise
1101 inline AllocationMemento* FindAllocationMemento(HeapObject* object);
1103 // An object may have an AllocationSite associated with it through a trailing
1104 // AllocationMemento. Its feedback should be updated when objects are found
1106 static inline void UpdateAllocationSiteFeedback(HeapObject* object,
1107 ScratchpadSlotMode mode);
1109 // Support for partial snapshots. After calling this we have a linear
1110 // space to write objects in each space.
1117 typedef List<Chunk> Reservation;
1119 // Returns false if not able to reserve.
1120 bool ReserveSpace(Reservation* reservations);
1123 // Support for the API.
1126 void CreateApiObjects();
1128 inline intptr_t PromotedTotalSize() {
1129 int64_t total = PromotedSpaceSizeOfObjects() + PromotedExternalMemorySize();
1130 if (total > std::numeric_limits<intptr_t>::max()) {
1131 // TODO(erikcorry): Use uintptr_t everywhere we do heap size calculations.
1132 return std::numeric_limits<intptr_t>::max();
1134 if (total < 0) return 0;
1135 return static_cast<intptr_t>(total);
1138 inline intptr_t OldGenerationSpaceAvailable() {
1139 return old_generation_allocation_limit_ - PromotedTotalSize();
1142 inline intptr_t OldGenerationCapacityAvailable() {
1143 return max_old_generation_size_ - PromotedTotalSize();
1146 static const intptr_t kMinimumOldGenerationAllocationLimit =
1147 8 * (Page::kPageSize > MB ? Page::kPageSize : MB);
1149 static const int kInitalOldGenerationLimitFactor = 2;
1152 // Don't apply pointer multiplier on Android since it has no swap space and
1153 // should instead adapt it's heap size based on available physical memory.
1154 static const int kPointerMultiplier = 1;
1156 static const int kPointerMultiplier = i::kPointerSize / 4;
1159 // The new space size has to be a power of 2. Sizes are in MB.
1160 static const int kMaxSemiSpaceSizeLowMemoryDevice = 1 * kPointerMultiplier;
1161 static const int kMaxSemiSpaceSizeMediumMemoryDevice = 4 * kPointerMultiplier;
1162 static const int kMaxSemiSpaceSizeHighMemoryDevice = 8 * kPointerMultiplier;
1163 static const int kMaxSemiSpaceSizeHugeMemoryDevice = 8 * kPointerMultiplier;
1165 // The old space size has to be a multiple of Page::kPageSize.
1167 static const int kMaxOldSpaceSizeLowMemoryDevice = 128 * kPointerMultiplier;
1168 static const int kMaxOldSpaceSizeMediumMemoryDevice =
1169 256 * kPointerMultiplier;
1170 static const int kMaxOldSpaceSizeHighMemoryDevice = 512 * kPointerMultiplier;
1171 static const int kMaxOldSpaceSizeHugeMemoryDevice = 700 * kPointerMultiplier;
1173 // The executable size has to be a multiple of Page::kPageSize.
1175 static const int kMaxExecutableSizeLowMemoryDevice = 96 * kPointerMultiplier;
1176 static const int kMaxExecutableSizeMediumMemoryDevice =
1177 192 * kPointerMultiplier;
1178 static const int kMaxExecutableSizeHighMemoryDevice =
1179 256 * kPointerMultiplier;
1180 static const int kMaxExecutableSizeHugeMemoryDevice =
1181 256 * kPointerMultiplier;
1183 static const int kTraceRingBufferSize = 512;
1184 static const int kStacktraceBufferSize = 512;
1186 static const double kMinHeapGrowingFactor;
1187 static const double kMaxHeapGrowingFactor;
1188 static const double kMaxHeapGrowingFactorMemoryConstrained;
1189 static const double kMaxHeapGrowingFactorIdle;
1190 static const double kTargetMutatorUtilization;
1192 static double HeapGrowingFactor(double gc_speed, double mutator_speed);
1194 // Calculates the allocation limit based on a given growing factor and a
1195 // given old generation size.
1196 intptr_t CalculateOldGenerationAllocationLimit(double factor,
1197 intptr_t old_gen_size);
1199 // Sets the allocation limit to trigger the next full garbage collection.
1200 void SetOldGenerationAllocationLimit(intptr_t old_gen_size, double gc_speed,
1201 double mutator_speed);
1203 // Decrease the allocation limit if the new limit based on the given
1204 // parameters is lower than the current limit.
1205 void DampenOldGenerationAllocationLimit(intptr_t old_gen_size,
1207 double mutator_speed);
1209 // Indicates whether inline bump-pointer allocation has been disabled.
1210 bool inline_allocation_disabled() { return inline_allocation_disabled_; }
1212 // Switch whether inline bump-pointer allocation should be used.
1213 void EnableInlineAllocation();
1214 void DisableInlineAllocation();
1216 // Implements the corresponding V8 API function.
1217 bool IdleNotification(double deadline_in_seconds);
1218 bool IdleNotification(int idle_time_in_ms);
1220 double MonotonicallyIncreasingTimeInMs();
1222 // Declare all the root indices. This defines the root list order.
1223 enum RootListIndex {
1224 #define ROOT_INDEX_DECLARATION(type, name, camel_name) k##camel_name##RootIndex,
1225 STRONG_ROOT_LIST(ROOT_INDEX_DECLARATION)
1226 #undef ROOT_INDEX_DECLARATION
1228 #define STRING_INDEX_DECLARATION(name, str) k##name##RootIndex,
1229 INTERNALIZED_STRING_LIST(STRING_INDEX_DECLARATION)
1230 #undef STRING_DECLARATION
1232 #define SYMBOL_INDEX_DECLARATION(name) k##name##RootIndex,
1233 PRIVATE_SYMBOL_LIST(SYMBOL_INDEX_DECLARATION)
1234 #undef SYMBOL_INDEX_DECLARATION
1236 #define SYMBOL_INDEX_DECLARATION(name, varname, description) k##name##RootIndex,
1237 PUBLIC_SYMBOL_LIST(SYMBOL_INDEX_DECLARATION)
1238 #undef SYMBOL_INDEX_DECLARATION
1240 // Utility type maps
1241 #define DECLARE_STRUCT_MAP(NAME, Name, name) k##Name##MapRootIndex,
1242 STRUCT_LIST(DECLARE_STRUCT_MAP)
1243 #undef DECLARE_STRUCT_MAP
1244 kStringTableRootIndex,
1246 #define ROOT_INDEX_DECLARATION(type, name, camel_name) k##camel_name##RootIndex,
1247 SMI_ROOT_LIST(ROOT_INDEX_DECLARATION)
1248 #undef ROOT_INDEX_DECLARATION
1250 kStrongRootListLength = kStringTableRootIndex,
1251 kSmiRootsStart = kStringTableRootIndex + 1
1254 Object* root(RootListIndex index) { return roots_[index]; }
1256 STATIC_ASSERT(kUndefinedValueRootIndex ==
1257 Internals::kUndefinedValueRootIndex);
1258 STATIC_ASSERT(kNullValueRootIndex == Internals::kNullValueRootIndex);
1259 STATIC_ASSERT(kTrueValueRootIndex == Internals::kTrueValueRootIndex);
1260 STATIC_ASSERT(kFalseValueRootIndex == Internals::kFalseValueRootIndex);
1261 STATIC_ASSERT(kempty_stringRootIndex == Internals::kEmptyStringRootIndex);
1263 // Generated code can embed direct references to non-writable roots if
1264 // they are in new space.
1265 static bool RootCanBeWrittenAfterInitialization(RootListIndex root_index);
1266 // Generated code can treat direct references to this root as constant.
1267 bool RootCanBeTreatedAsConstant(RootListIndex root_index);
1269 Map* MapForFixedTypedArray(ExternalArrayType array_type);
1270 RootListIndex RootIndexForFixedTypedArray(ExternalArrayType array_type);
1272 Map* MapForExternalArrayType(ExternalArrayType array_type);
1273 RootListIndex RootIndexForExternalArrayType(ExternalArrayType array_type);
1275 RootListIndex RootIndexForEmptyExternalArray(ElementsKind kind);
1276 RootListIndex RootIndexForEmptyFixedTypedArray(ElementsKind kind);
1277 ExternalArray* EmptyExternalArrayForMap(Map* map);
1278 FixedTypedArrayBase* EmptyFixedTypedArrayForMap(Map* map);
1280 void RecordStats(HeapStats* stats, bool take_snapshot = false);
1282 // Copy block of memory from src to dst. Size of block should be aligned
1284 static inline void CopyBlock(Address dst, Address src, int byte_size);
1286 // Optimized version of memmove for blocks with pointer size aligned sizes and
1287 // pointer size aligned addresses.
1288 static inline void MoveBlock(Address dst, Address src, int byte_size);
1290 // Check new space expansion criteria and expand semispaces if it was hit.
1291 void CheckNewSpaceExpansionCriteria();
1293 inline void IncrementPromotedObjectsSize(int object_size) {
1294 DCHECK(object_size > 0);
1295 promoted_objects_size_ += object_size;
1298 inline void IncrementSemiSpaceCopiedObjectSize(int object_size) {
1299 DCHECK(object_size > 0);
1300 semi_space_copied_object_size_ += object_size;
1303 inline intptr_t SurvivedNewSpaceObjectSize() {
1304 return promoted_objects_size_ + semi_space_copied_object_size_;
1307 inline void IncrementNodesDiedInNewSpace() { nodes_died_in_new_space_++; }
1309 inline void IncrementNodesCopiedInNewSpace() { nodes_copied_in_new_space_++; }
1311 inline void IncrementNodesPromoted() { nodes_promoted_++; }
1313 inline void IncrementYoungSurvivorsCounter(int survived) {
1314 DCHECK(survived >= 0);
1315 survived_last_scavenge_ = survived;
1316 survived_since_last_expansion_ += survived;
1319 inline bool HeapIsFullEnoughToStartIncrementalMarking(intptr_t limit) {
1320 if (FLAG_stress_compaction && (gc_count_ & 1) != 0) return true;
1322 intptr_t adjusted_allocation_limit = limit - new_space_.Capacity();
1324 if (PromotedTotalSize() >= adjusted_allocation_limit) return true;
1329 void UpdateNewSpaceReferencesInExternalStringTable(
1330 ExternalStringTableUpdaterCallback updater_func);
1332 void UpdateReferencesInExternalStringTable(
1333 ExternalStringTableUpdaterCallback updater_func);
1335 void ProcessAllWeakReferences(WeakObjectRetainer* retainer);
1336 void ProcessYoungWeakReferences(WeakObjectRetainer* retainer);
1338 void VisitExternalResources(v8::ExternalResourceVisitor* visitor);
1340 // An object should be promoted if the object has survived a
1341 // scavenge operation.
1342 inline bool ShouldBePromoted(Address old_address, int object_size);
1344 void ClearJSFunctionResultCaches();
1346 void ClearNormalizedMapCaches();
1348 GCTracer* tracer() { return &tracer_; }
1350 // Returns the size of objects residing in non new spaces.
1351 intptr_t PromotedSpaceSizeOfObjects();
1353 double total_regexp_code_generated() { return total_regexp_code_generated_; }
1354 void IncreaseTotalRegexpCodeGenerated(int size) {
1355 total_regexp_code_generated_ += size;
1358 void IncrementCodeGeneratedBytes(bool is_crankshafted, int size) {
1359 if (is_crankshafted) {
1360 crankshaft_codegen_bytes_generated_ += size;
1362 full_codegen_bytes_generated_ += size;
1366 void UpdateNewSpaceAllocationCounter() {
1367 new_space_allocation_counter_ = NewSpaceAllocationCounter();
1370 size_t NewSpaceAllocationCounter() {
1371 return new_space_allocation_counter_ + new_space()->AllocatedSinceLastGC();
1374 // This should be used only for testing.
1375 void set_new_space_allocation_counter(size_t new_value) {
1376 new_space_allocation_counter_ = new_value;
1379 void UpdateOldGenerationAllocationCounter() {
1380 old_generation_allocation_counter_ = OldGenerationAllocationCounter();
1383 size_t OldGenerationAllocationCounter() {
1384 return old_generation_allocation_counter_ + PromotedSinceLastGC();
1387 // This should be used only for testing.
1388 void set_old_generation_allocation_counter(size_t new_value) {
1389 old_generation_allocation_counter_ = new_value;
1392 size_t PromotedSinceLastGC() {
1393 return PromotedSpaceSizeOfObjects() - old_generation_size_at_last_gc_;
1396 // Record the fact that we generated some optimized code since the last GC
1397 // which will pretenure some previously unpretenured allocation.
1398 void RecordDeoptForPretenuring() { gathering_lifetime_feedback_ = 2; }
1400 // Update GC statistics that are tracked on the Heap.
1401 void UpdateCumulativeGCStatistics(double duration, double spent_in_mutator,
1402 double marking_time);
1404 // Returns maximum GC pause.
1405 double get_max_gc_pause() { return max_gc_pause_; }
1407 // Returns maximum size of objects alive after GC.
1408 intptr_t get_max_alive_after_gc() { return max_alive_after_gc_; }
1410 // Returns minimal interval between two subsequent collections.
1411 double get_min_in_mutator() { return min_in_mutator_; }
1413 void IncrementDeferredCount(v8::Isolate::UseCounterFeature feature);
1415 MarkCompactCollector* mark_compact_collector() {
1416 return &mark_compact_collector_;
1419 StoreBuffer* store_buffer() { return &store_buffer_; }
1421 Marking* marking() { return &marking_; }
1423 IncrementalMarking* incremental_marking() { return &incremental_marking_; }
1425 ExternalStringTable* external_string_table() {
1426 return &external_string_table_;
1429 // Returns the current sweep generation.
1430 int sweep_generation() { return sweep_generation_; }
1432 bool concurrent_sweeping_enabled() { return concurrent_sweeping_enabled_; }
1434 inline Isolate* isolate();
1436 void CallGCPrologueCallbacks(GCType gc_type, GCCallbackFlags flags);
1437 void CallGCEpilogueCallbacks(GCType gc_type, GCCallbackFlags flags);
1439 inline bool OldGenerationAllocationLimitReached();
1441 inline void DoScavengeObject(Map* map, HeapObject** slot, HeapObject* obj) {
1442 scavenging_visitors_table_.GetVisitor(map)(map, slot, obj);
1445 void QueueMemoryChunkForFree(MemoryChunk* chunk);
1446 void FreeQueuedChunks();
1448 int gc_count() const { return gc_count_; }
1450 bool RecentIdleNotificationHappened();
1452 // Completely clear the Instanceof cache (to stop it keeping objects alive
1454 inline void CompletelyClearInstanceofCache();
1456 // The roots that have an index less than this are always in old space.
1457 static const int kOldSpaceRoots = 0x20;
1459 uint32_t HashSeed() {
1460 uint32_t seed = static_cast<uint32_t>(hash_seed()->value());
1461 DCHECK(FLAG_randomize_hashes || seed == 0);
1465 Smi* NextScriptId() {
1466 int next_id = last_script_id()->value() + 1;
1467 if (!Smi::IsValid(next_id) || next_id < 0) next_id = 1;
1468 Smi* next_id_smi = Smi::FromInt(next_id);
1469 set_last_script_id(next_id_smi);
1473 void SetArgumentsAdaptorDeoptPCOffset(int pc_offset) {
1474 DCHECK(arguments_adaptor_deopt_pc_offset() == Smi::FromInt(0));
1475 set_arguments_adaptor_deopt_pc_offset(Smi::FromInt(pc_offset));
1478 void SetConstructStubDeoptPCOffset(int pc_offset) {
1479 DCHECK(construct_stub_deopt_pc_offset() == Smi::FromInt(0));
1480 set_construct_stub_deopt_pc_offset(Smi::FromInt(pc_offset));
1483 void SetGetterStubDeoptPCOffset(int pc_offset) {
1484 DCHECK(getter_stub_deopt_pc_offset() == Smi::FromInt(0));
1485 set_getter_stub_deopt_pc_offset(Smi::FromInt(pc_offset));
1488 void SetSetterStubDeoptPCOffset(int pc_offset) {
1489 DCHECK(setter_stub_deopt_pc_offset() == Smi::FromInt(0));
1490 set_setter_stub_deopt_pc_offset(Smi::FromInt(pc_offset));
1493 // For post mortem debugging.
1494 void RememberUnmappedPage(Address page, bool compacted);
1496 // Global inline caching age: it is incremented on some GCs after context
1497 // disposal. We use it to flush inline caches.
1498 int global_ic_age() { return global_ic_age_; }
1500 void AgeInlineCaches() {
1501 global_ic_age_ = (global_ic_age_ + 1) & SharedFunctionInfo::ICAgeBits::kMax;
1504 int64_t amount_of_external_allocated_memory() {
1505 return amount_of_external_allocated_memory_;
1508 void DeoptMarkedAllocationSites();
1510 bool MaximumSizeScavenge() { return maximum_size_scavenges_ > 0; }
1512 bool DeoptMaybeTenuredAllocationSites() {
1513 return new_space_.IsAtMaximumCapacity() && maximum_size_scavenges_ == 0;
1516 // ObjectStats are kept in two arrays, counts and sizes. Related stats are
1517 // stored in a contiguous linear buffer. Stats groups are stored one after
1520 FIRST_CODE_KIND_SUB_TYPE = LAST_TYPE + 1,
1521 FIRST_FIXED_ARRAY_SUB_TYPE =
1522 FIRST_CODE_KIND_SUB_TYPE + Code::NUMBER_OF_KINDS,
1523 FIRST_CODE_AGE_SUB_TYPE =
1524 FIRST_FIXED_ARRAY_SUB_TYPE + LAST_FIXED_ARRAY_SUB_TYPE + 1,
1525 OBJECT_STATS_COUNT = FIRST_CODE_AGE_SUB_TYPE + Code::kCodeAgeCount + 1
1528 void RecordObjectStats(InstanceType type, size_t size) {
1529 DCHECK(type <= LAST_TYPE);
1530 object_counts_[type]++;
1531 object_sizes_[type] += size;
1534 void RecordCodeSubTypeStats(int code_sub_type, int code_age, size_t size) {
1535 int code_sub_type_index = FIRST_CODE_KIND_SUB_TYPE + code_sub_type;
1536 int code_age_index =
1537 FIRST_CODE_AGE_SUB_TYPE + code_age - Code::kFirstCodeAge;
1538 DCHECK(code_sub_type_index >= FIRST_CODE_KIND_SUB_TYPE &&
1539 code_sub_type_index < FIRST_CODE_AGE_SUB_TYPE);
1540 DCHECK(code_age_index >= FIRST_CODE_AGE_SUB_TYPE &&
1541 code_age_index < OBJECT_STATS_COUNT);
1542 object_counts_[code_sub_type_index]++;
1543 object_sizes_[code_sub_type_index] += size;
1544 object_counts_[code_age_index]++;
1545 object_sizes_[code_age_index] += size;
1548 void RecordFixedArraySubTypeStats(int array_sub_type, size_t size) {
1549 DCHECK(array_sub_type <= LAST_FIXED_ARRAY_SUB_TYPE);
1550 object_counts_[FIRST_FIXED_ARRAY_SUB_TYPE + array_sub_type]++;
1551 object_sizes_[FIRST_FIXED_ARRAY_SUB_TYPE + array_sub_type] += size;
1554 void TraceObjectStats();
1555 void TraceObjectStat(const char* name, int count, int size, double time);
1556 void CheckpointObjectStats();
1557 bool GetObjectTypeName(size_t index, const char** object_type,
1558 const char** object_sub_type);
1560 void RegisterStrongRoots(Object** start, Object** end);
1561 void UnregisterStrongRoots(Object** start);
1563 // Taking this lock prevents the GC from entering a phase that relocates
1564 // object references.
1565 class RelocationLock {
1567 explicit RelocationLock(Heap* heap) : heap_(heap) {
1568 heap_->relocation_mutex_.Lock();
1571 ~RelocationLock() { heap_->relocation_mutex_.Unlock(); }
1577 // An optional version of the above lock that can be used for some critical
1578 // sections on the mutator thread; only safe since the GC currently does not
1579 // do concurrent compaction.
1580 class OptionalRelocationLock {
1582 OptionalRelocationLock(Heap* heap, bool concurrent)
1583 : heap_(heap), concurrent_(concurrent) {
1584 if (concurrent_) heap_->relocation_mutex_.Lock();
1587 ~OptionalRelocationLock() {
1588 if (concurrent_) heap_->relocation_mutex_.Unlock();
1596 void AddWeakObjectToCodeDependency(Handle<HeapObject> obj,
1597 Handle<DependentCode> dep);
1599 DependentCode* LookupWeakObjectToCodeDependency(Handle<HeapObject> obj);
1601 void AddRetainedMap(Handle<Map> map);
1603 static void FatalProcessOutOfMemory(const char* location,
1604 bool take_snapshot = false);
1606 // This event is triggered after successful allocation of a new object made
1607 // by runtime. Allocations of target space for object evacuation do not
1608 // trigger the event. In order to track ALL allocations one must turn off
1609 // FLAG_inline_new and FLAG_use_allocation_folding.
1610 inline void OnAllocationEvent(HeapObject* object, int size_in_bytes);
1612 // This event is triggered after object is moved to a new place.
1613 inline void OnMoveEvent(HeapObject* target, HeapObject* source,
1616 bool deserialization_complete() const { return deserialization_complete_; }
1618 // The following methods are used to track raw C++ pointers to externally
1619 // allocated memory used as backing store in live array buffers.
1621 // A new ArrayBuffer was created with |data| as backing store.
1622 void RegisterNewArrayBuffer(bool in_new_space, void* data, size_t length);
1624 // The backing store |data| is no longer owned by V8.
1625 void UnregisterArrayBuffer(bool in_new_space, void* data);
1627 // A live ArrayBuffer was discovered during marking/scavenge.
1628 void RegisterLiveArrayBuffer(bool from_scavenge, void* data);
1630 // Frees all backing store pointers that weren't discovered in the previous
1631 // marking or scavenge phase.
1632 void FreeDeadArrayBuffers(bool from_scavenge);
1634 // Prepare for a new scavenge phase. A new marking phase is implicitly
1635 // prepared by finishing the previous one.
1636 void PrepareArrayBufferDiscoveryInNewSpace();
1638 // An ArrayBuffer moved from new space to old space.
1639 void PromoteArrayBuffer(Object* buffer);
1641 bool HasLowAllocationRate();
1642 bool HasHighFragmentation();
1643 bool HasHighFragmentation(intptr_t used, intptr_t committed);
1646 // Methods made available to tests.
1648 // Allocates a JS Map in the heap.
1649 MUST_USE_RESULT AllocationResult
1650 AllocateMap(InstanceType instance_type, int instance_size,
1651 ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND);
1653 // Allocates and initializes a new JavaScript object based on a
1655 // If allocation_site is non-null, then a memento is emitted after the object
1656 // that points to the site.
1657 MUST_USE_RESULT AllocationResult
1658 AllocateJSObject(JSFunction* constructor,
1659 PretenureFlag pretenure = NOT_TENURED,
1660 AllocationSite* allocation_site = NULL);
1662 // Allocates and initializes a new JavaScript object based on a map.
1663 // Passing an allocation site means that a memento will be created that
1664 // points to the site.
1665 MUST_USE_RESULT AllocationResult
1666 AllocateJSObjectFromMap(Map* map, PretenureFlag pretenure = NOT_TENURED,
1667 AllocationSite* allocation_site = NULL);
1669 // Allocates a HeapNumber from value.
1670 MUST_USE_RESULT AllocationResult
1671 AllocateHeapNumber(double value, MutableMode mode = IMMUTABLE,
1672 PretenureFlag pretenure = NOT_TENURED);
1674 // Allocates a Float32x4 from the given lane values.
1675 MUST_USE_RESULT AllocationResult
1676 AllocateFloat32x4(float w, float x, float y, float z,
1677 PretenureFlag pretenure = NOT_TENURED);
1679 // Allocates a byte array of the specified length
1680 MUST_USE_RESULT AllocationResult
1681 AllocateByteArray(int length, PretenureFlag pretenure = NOT_TENURED);
1683 // Allocates a bytecode array with given contents.
1684 MUST_USE_RESULT AllocationResult
1685 AllocateBytecodeArray(int length, const byte* raw_bytecodes,
1688 // Copy the code and scope info part of the code object, but insert
1689 // the provided data as the relocation information.
1690 MUST_USE_RESULT AllocationResult
1691 CopyCode(Code* code, Vector<byte> reloc_info);
1693 MUST_USE_RESULT AllocationResult CopyCode(Code* code);
1695 // Allocates a fixed array initialized with undefined values
1696 MUST_USE_RESULT AllocationResult
1697 AllocateFixedArray(int length, PretenureFlag pretenure = NOT_TENURED);
1699 static const int kInitialStringTableSize = 2048;
1700 static const int kInitialEvalCacheSize = 64;
1701 static const int kInitialNumberStringCacheSize = 256;
1706 // The amount of external memory registered through the API kept alive
1707 // by global handles
1708 int64_t amount_of_external_allocated_memory_;
1710 // Caches the amount of external memory registered at the last global gc.
1711 int64_t amount_of_external_allocated_memory_at_last_global_gc_;
1713 // This can be calculated directly from a pointer to the heap; however, it is
1714 // more expedient to get at the isolate directly from within Heap methods.
1717 Object* roots_[kRootListLength];
1719 size_t code_range_size_;
1720 int reserved_semispace_size_;
1721 int max_semi_space_size_;
1722 int initial_semispace_size_;
1723 int target_semispace_size_;
1724 intptr_t max_old_generation_size_;
1725 intptr_t initial_old_generation_size_;
1726 bool old_generation_size_configured_;
1727 intptr_t max_executable_size_;
1728 intptr_t maximum_committed_;
1730 // For keeping track of how much data has survived
1731 // scavenge since last new space expansion.
1732 int survived_since_last_expansion_;
1734 // ... and since the last scavenge.
1735 int survived_last_scavenge_;
1737 // For keeping track on when to flush RegExp code.
1738 int sweep_generation_;
1740 int always_allocate_scope_depth_;
1742 // For keeping track of context disposals.
1743 int contexts_disposed_;
1747 int scan_on_scavenge_pages_;
1749 NewSpace new_space_;
1750 OldSpace* old_space_;
1751 OldSpace* code_space_;
1752 MapSpace* map_space_;
1753 LargeObjectSpace* lo_space_;
1754 HeapState gc_state_;
1755 int gc_post_processing_depth_;
1756 Address new_space_top_after_last_gc_;
1758 // Returns the amount of external memory registered since last global gc.
1759 int64_t PromotedExternalMemorySize();
1761 // How many "runtime allocations" happened.
1762 uint32_t allocations_count_;
1764 // Running hash over allocations performed.
1765 uint32_t raw_allocations_hash_;
1767 // Countdown counter, dumps allocation hash when 0.
1768 uint32_t dump_allocations_hash_countdown_;
1770 // How many mark-sweep collections happened.
1771 unsigned int ms_count_;
1773 // How many gc happened.
1774 unsigned int gc_count_;
1776 // For post mortem debugging.
1777 static const int kRememberedUnmappedPages = 128;
1778 int remembered_unmapped_pages_index_;
1779 Address remembered_unmapped_pages_[kRememberedUnmappedPages];
1781 // Total length of the strings we failed to flatten since the last GC.
1782 int unflattened_strings_length_;
1784 #define ROOT_ACCESSOR(type, name, camel_name) \
1785 inline void set_##name(type* value) { \
1786 /* The deserializer makes use of the fact that these common roots are */ \
1787 /* never in new space and never on a page that is being compacted. */ \
1788 DCHECK(!deserialization_complete() || \
1789 RootCanBeWrittenAfterInitialization(k##camel_name##RootIndex)); \
1790 DCHECK(k##camel_name##RootIndex >= kOldSpaceRoots || !InNewSpace(value)); \
1791 roots_[k##camel_name##RootIndex] = value; \
1793 ROOT_LIST(ROOT_ACCESSOR)
1794 #undef ROOT_ACCESSOR
1797 // If the --gc-interval flag is set to a positive value, this
1798 // variable holds the value indicating the number of allocations
1799 // remain until the next failure and garbage collection.
1800 int allocation_timeout_;
1803 // Limit that triggers a global GC on the next (normally caused) GC. This
1804 // is checked when we have already decided to do a GC to help determine
1805 // which collector to invoke, before expanding a paged space in the old
1806 // generation and on every allocation in large object space.
1807 intptr_t old_generation_allocation_limit_;
1809 // Indicates that an allocation has failed in the old generation since the
1811 bool old_gen_exhausted_;
1813 // Indicates that inline bump-pointer allocation has been globally disabled
1814 // for all spaces. This is used to disable allocations in generated code.
1815 bool inline_allocation_disabled_;
1817 // Weak list heads, threaded through the objects.
1818 // List heads are initialized lazily and contain the undefined_value at start.
1819 Object* native_contexts_list_;
1820 Object* allocation_sites_list_;
1822 // List of encountered weak collections (JSWeakMap and JSWeakSet) during
1823 // marking. It is initialized during marking, destroyed after marking and
1824 // contains Smi(0) while marking is not active.
1825 Object* encountered_weak_collections_;
1827 Object* encountered_weak_cells_;
1829 StoreBufferRebuilder store_buffer_rebuilder_;
1831 struct StringTypeTable {
1834 RootListIndex index;
1837 struct ConstantStringTable {
1838 const char* contents;
1839 RootListIndex index;
1842 struct StructTable {
1845 RootListIndex index;
1848 static const StringTypeTable string_type_table[];
1849 static const ConstantStringTable constant_string_table[];
1850 static const StructTable struct_table[];
1852 // The special hidden string which is an empty string, but does not match
1853 // any string when looked up in properties.
1854 String* hidden_string_;
1856 void AddPrivateGlobalSymbols(Handle<Object> private_intern_table);
1858 // GC callback function, called before and after mark-compact GC.
1859 // Allocations in the callback function are disallowed.
1860 struct GCPrologueCallbackPair {
1861 GCPrologueCallbackPair(v8::Isolate::GCPrologueCallback callback,
1862 GCType gc_type, bool pass_isolate)
1863 : callback(callback), gc_type(gc_type), pass_isolate_(pass_isolate) {}
1864 bool operator==(const GCPrologueCallbackPair& pair) const {
1865 return pair.callback == callback;
1867 v8::Isolate::GCPrologueCallback callback;
1869 // TODO(dcarney): remove variable
1872 List<GCPrologueCallbackPair> gc_prologue_callbacks_;
1874 struct GCEpilogueCallbackPair {
1875 GCEpilogueCallbackPair(v8::Isolate::GCPrologueCallback callback,
1876 GCType gc_type, bool pass_isolate)
1877 : callback(callback), gc_type(gc_type), pass_isolate_(pass_isolate) {}
1878 bool operator==(const GCEpilogueCallbackPair& pair) const {
1879 return pair.callback == callback;
1881 v8::Isolate::GCPrologueCallback callback;
1883 // TODO(dcarney): remove variable
1886 List<GCEpilogueCallbackPair> gc_epilogue_callbacks_;
1888 // Support for computing object sizes during GC.
1889 HeapObjectCallback gc_safe_size_of_old_object_;
1890 static int GcSafeSizeOfOldObject(HeapObject* object);
1892 // Update the GC state. Called from the mark-compact collector.
1893 void MarkMapPointersAsEncoded(bool encoded) {
1895 gc_safe_size_of_old_object_ = &GcSafeSizeOfOldObject;
1898 // Code that should be run before and after each GC. Includes some
1899 // reporting/verification activities when compiled with DEBUG set.
1900 void GarbageCollectionPrologue();
1901 void GarbageCollectionEpilogue();
1903 void PreprocessStackTraces();
1905 // Pretenuring decisions are made based on feedback collected during new
1906 // space evacuation. Note that between feedback collection and calling this
1907 // method object in old space must not move.
1908 // Right now we only process pretenuring feedback in high promotion mode.
1909 bool ProcessPretenuringFeedback();
1911 // Checks whether a global GC is necessary
1912 GarbageCollector SelectGarbageCollector(AllocationSpace space,
1913 const char** reason);
1915 // Make sure there is a filler value behind the top of the new space
1916 // so that the GC does not confuse some unintialized/stale memory
1917 // with the allocation memento of the object at the top
1918 void EnsureFillerObjectAtTop();
1920 // Ensure that we have swept all spaces in such a way that we can iterate
1921 // over all objects. May cause a GC.
1922 void MakeHeapIterable();
1924 // Performs garbage collection operation.
1925 // Returns whether there is a chance that another major GC could
1926 // collect more garbage.
1927 bool CollectGarbage(
1928 GarbageCollector collector, const char* gc_reason,
1929 const char* collector_reason,
1930 const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
1932 // Performs garbage collection
1933 // Returns whether there is a chance another major GC could
1934 // collect more garbage.
1935 bool PerformGarbageCollection(
1936 GarbageCollector collector,
1937 const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
1939 inline void UpdateOldSpaceLimits();
1941 // Selects the proper allocation space depending on the given object
1942 // size and pretenuring decision.
1943 static AllocationSpace SelectSpace(int object_size,
1944 PretenureFlag pretenure) {
1945 if (object_size > Page::kMaxRegularHeapObjectSize) return LO_SPACE;
1946 return (pretenure == TENURED) ? OLD_SPACE : NEW_SPACE;
1949 HeapObject* DoubleAlignForDeserialization(HeapObject* object, int size);
1951 // Allocate an uninitialized object. The memory is non-executable if the
1952 // hardware and OS allow. This is the single choke-point for allocations
1953 // performed by the runtime and should not be bypassed (to extend this to
1954 // inlined allocations, use the Heap::DisableInlineAllocation() support).
1955 MUST_USE_RESULT inline AllocationResult AllocateRaw(
1956 int size_in_bytes, AllocationSpace space, AllocationSpace retry_space,
1957 AllocationAlignment aligment = kWordAligned);
1959 // Allocates a heap object based on the map.
1960 MUST_USE_RESULT AllocationResult
1961 Allocate(Map* map, AllocationSpace space,
1962 AllocationSite* allocation_site = NULL);
1964 // Allocates a partial map for bootstrapping.
1965 MUST_USE_RESULT AllocationResult
1966 AllocatePartialMap(InstanceType instance_type, int instance_size);
1968 // Initializes a JSObject based on its map.
1969 void InitializeJSObjectFromMap(JSObject* obj, FixedArray* properties,
1971 void InitializeAllocationMemento(AllocationMemento* memento,
1972 AllocationSite* allocation_site);
1974 // Allocate a block of memory in the given space (filled with a filler).
1975 // Used as a fall-back for generated code when the space is full.
1976 MUST_USE_RESULT AllocationResult
1977 AllocateFillerObject(int size, bool double_align, AllocationSpace space);
1979 // Allocate an uninitialized fixed array.
1980 MUST_USE_RESULT AllocationResult
1981 AllocateRawFixedArray(int length, PretenureFlag pretenure);
1983 // Allocate an uninitialized fixed double array.
1984 MUST_USE_RESULT AllocationResult
1985 AllocateRawFixedDoubleArray(int length, PretenureFlag pretenure);
1987 // Allocate an initialized fixed array with the given filler value.
1988 MUST_USE_RESULT AllocationResult
1989 AllocateFixedArrayWithFiller(int length, PretenureFlag pretenure,
1992 // Allocate and partially initializes a String. There are two String
1993 // encodings: one-byte and two-byte. These functions allocate a string of
1994 // the given length and set its map and length fields. The characters of
1995 // the string are uninitialized.
1996 MUST_USE_RESULT AllocationResult
1997 AllocateRawOneByteString(int length, PretenureFlag pretenure);
1998 MUST_USE_RESULT AllocationResult
1999 AllocateRawTwoByteString(int length, PretenureFlag pretenure);
2001 bool CreateInitialMaps();
2002 void CreateInitialObjects();
2004 // Allocates an internalized string in old space based on the character
2006 MUST_USE_RESULT inline AllocationResult AllocateInternalizedStringFromUtf8(
2007 Vector<const char> str, int chars, uint32_t hash_field);
2009 MUST_USE_RESULT inline AllocationResult AllocateOneByteInternalizedString(
2010 Vector<const uint8_t> str, uint32_t hash_field);
2012 MUST_USE_RESULT inline AllocationResult AllocateTwoByteInternalizedString(
2013 Vector<const uc16> str, uint32_t hash_field);
2015 template <bool is_one_byte, typename T>
2016 MUST_USE_RESULT AllocationResult
2017 AllocateInternalizedStringImpl(T t, int chars, uint32_t hash_field);
2019 template <typename T>
2020 MUST_USE_RESULT inline AllocationResult AllocateInternalizedStringImpl(
2021 T t, int chars, uint32_t hash_field);
2023 // Allocates an uninitialized fixed array. It must be filled by the caller.
2024 MUST_USE_RESULT AllocationResult AllocateUninitializedFixedArray(int length);
2026 // Make a copy of src and return it. Returns
2027 // Failure::RetryAfterGC(requested_bytes, space) if the allocation failed.
2028 MUST_USE_RESULT inline AllocationResult CopyFixedArray(FixedArray* src);
2030 // Make a copy of src, set the map, and return the copy. Returns
2031 // Failure::RetryAfterGC(requested_bytes, space) if the allocation failed.
2032 MUST_USE_RESULT AllocationResult
2033 CopyFixedArrayWithMap(FixedArray* src, Map* map);
2035 // Make a copy of src and return it. Returns
2036 // Failure::RetryAfterGC(requested_bytes, space) if the allocation failed.
2037 MUST_USE_RESULT inline AllocationResult CopyFixedDoubleArray(
2038 FixedDoubleArray* src);
2040 // Computes a single character string where the character has code.
2041 // A cache is used for one-byte (Latin1) codes.
2042 MUST_USE_RESULT AllocationResult
2043 LookupSingleCharacterStringFromCode(uint16_t code);
2045 // Allocate a symbol in old space.
2046 MUST_USE_RESULT AllocationResult AllocateSymbol();
2048 // Allocates an external array of the specified length and type.
2049 MUST_USE_RESULT AllocationResult
2050 AllocateExternalArray(int length, ExternalArrayType array_type,
2051 void* external_pointer, PretenureFlag pretenure);
2053 // Allocates a fixed typed array of the specified length and type.
2054 MUST_USE_RESULT AllocationResult
2055 AllocateFixedTypedArray(int length, ExternalArrayType array_type,
2056 bool initialize, PretenureFlag pretenure);
2058 // Make a copy of src and return it.
2059 MUST_USE_RESULT AllocationResult CopyAndTenureFixedCOWArray(FixedArray* src);
2061 // Make a copy of src, set the map, and return the copy.
2062 MUST_USE_RESULT AllocationResult
2063 CopyFixedDoubleArrayWithMap(FixedDoubleArray* src, Map* map);
2065 // Allocates a fixed double array with uninitialized values. Returns
2066 MUST_USE_RESULT AllocationResult AllocateUninitializedFixedDoubleArray(
2067 int length, PretenureFlag pretenure = NOT_TENURED);
2069 // These five Create*EntryStub functions are here and forced to not be inlined
2070 // because of a gcc-4.4 bug that assigns wrong vtable entries.
2071 NO_INLINE(void CreateJSEntryStub());
2072 NO_INLINE(void CreateJSConstructEntryStub());
2074 void CreateFixedStubs();
2076 // Allocate empty fixed array.
2077 MUST_USE_RESULT AllocationResult AllocateEmptyFixedArray();
2079 // Allocate empty external array of given type.
2080 MUST_USE_RESULT AllocationResult
2081 AllocateEmptyExternalArray(ExternalArrayType array_type);
2083 // Allocate empty fixed typed array of given type.
2084 MUST_USE_RESULT AllocationResult
2085 AllocateEmptyFixedTypedArray(ExternalArrayType array_type);
2087 // Allocate a tenured simple cell.
2088 MUST_USE_RESULT AllocationResult AllocateCell(Object* value);
2090 // Allocate a tenured JS global property cell initialized with the hole.
2091 MUST_USE_RESULT AllocationResult AllocatePropertyCell();
2093 MUST_USE_RESULT AllocationResult AllocateWeakCell(HeapObject* value);
2095 // Allocates a new utility object in the old generation.
2096 MUST_USE_RESULT AllocationResult AllocateStruct(InstanceType type);
2098 // Allocates a new foreign object.
2099 MUST_USE_RESULT AllocationResult
2100 AllocateForeign(Address address, PretenureFlag pretenure = NOT_TENURED);
2102 MUST_USE_RESULT AllocationResult
2103 AllocateCode(int object_size, bool immovable);
2105 MUST_USE_RESULT AllocationResult InternalizeStringWithKey(HashTableKey* key);
2107 MUST_USE_RESULT AllocationResult InternalizeString(String* str);
2109 // Performs a minor collection in new generation.
2112 // Commits from space if it is uncommitted.
2113 void EnsureFromSpaceIsCommitted();
2115 // Uncommit unused semi space.
2116 bool UncommitFromSpace() { return new_space_.UncommitFromSpace(); }
2118 // Fill in bogus values in from space
2119 void ZapFromSpace();
2121 static String* UpdateNewSpaceReferenceInExternalStringTableEntry(
2122 Heap* heap, Object** pointer);
2124 Address DoScavenge(ObjectVisitor* scavenge_visitor, Address new_space_front);
2125 static void ScavengeStoreBufferCallback(Heap* heap, MemoryChunk* page,
2126 StoreBufferEvent event);
2128 // Performs a major collection in the whole heap.
2131 // Code to be run before and after mark-compact.
2132 void MarkCompactPrologue();
2133 void MarkCompactEpilogue();
2135 void ProcessNativeContexts(WeakObjectRetainer* retainer);
2136 void ProcessAllocationSites(WeakObjectRetainer* retainer);
2138 // Deopts all code that contains allocation instruction which are tenured or
2139 // not tenured. Moreover it clears the pretenuring allocation site statistics.
2140 void ResetAllAllocationSitesDependentCode(PretenureFlag flag);
2142 // Evaluates local pretenuring for the old space and calls
2143 // ResetAllTenuredAllocationSitesDependentCode if too many objects died in
2145 void EvaluateOldSpaceLocalPretenuring(uint64_t size_of_objects_before_gc);
2147 // Called on heap tear-down. Frees all remaining ArrayBuffer backing stores.
2148 void TearDownArrayBuffers();
2150 // These correspond to the non-Helper versions.
2151 void RegisterNewArrayBufferHelper(std::map<void*, size_t>& live_buffers,
2152 void* data, size_t length);
2153 void UnregisterArrayBufferHelper(
2154 std::map<void*, size_t>& live_buffers,
2155 std::map<void*, size_t>& not_yet_discovered_buffers, void* data);
2156 void RegisterLiveArrayBufferHelper(
2157 std::map<void*, size_t>& not_yet_discovered_buffers, void* data);
2158 size_t FreeDeadArrayBuffersHelper(
2159 Isolate* isolate, std::map<void*, size_t>& live_buffers,
2160 std::map<void*, size_t>& not_yet_discovered_buffers);
2161 void TearDownArrayBuffersHelper(
2162 Isolate* isolate, std::map<void*, size_t>& live_buffers,
2163 std::map<void*, size_t>& not_yet_discovered_buffers);
2165 // Record statistics before and after garbage collection.
2166 void ReportStatisticsBeforeGC();
2167 void ReportStatisticsAfterGC();
2169 // Slow part of scavenge object.
2170 static void ScavengeObjectSlow(HeapObject** p, HeapObject* object);
2172 // Total RegExp code ever generated
2173 double total_regexp_code_generated_;
2175 int deferred_counters_[v8::Isolate::kUseCounterFeatureCount];
2179 // Creates and installs the full-sized number string cache.
2180 int FullSizeNumberStringCacheLength();
2181 // Flush the number to string cache.
2182 void FlushNumberStringCache();
2184 // Sets used allocation sites entries to undefined.
2185 void FlushAllocationSitesScratchpad();
2187 // Initializes the allocation sites scratchpad with undefined values.
2188 void InitializeAllocationSitesScratchpad();
2190 // Adds an allocation site to the scratchpad if there is space left.
2191 void AddAllocationSiteToScratchpad(AllocationSite* site,
2192 ScratchpadSlotMode mode);
2194 void UpdateSurvivalStatistics(int start_new_space_size);
2196 enum SurvivalRateTrend { INCREASING, STABLE, DECREASING, FLUCTUATING };
2198 static const int kYoungSurvivalRateHighThreshold = 90;
2199 static const int kYoungSurvivalRateLowThreshold = 10;
2200 static const int kYoungSurvivalRateAllowedDeviation = 15;
2202 static const int kOldSurvivalRateLowThreshold = 10;
2204 bool new_space_high_promotion_mode_active_;
2205 // If this is non-zero, then there is hope yet that the optimized code we
2206 // have generated will solve our high promotion rate problems, so we don't
2207 // need to go into high promotion mode just yet.
2208 int gathering_lifetime_feedback_;
2209 int high_survival_rate_period_length_;
2210 intptr_t promoted_objects_size_;
2211 int low_survival_rate_period_length_;
2212 double survival_rate_;
2213 double promotion_ratio_;
2214 double promotion_rate_;
2215 intptr_t semi_space_copied_object_size_;
2216 intptr_t previous_semi_space_copied_object_size_;
2217 double semi_space_copied_rate_;
2218 int nodes_died_in_new_space_;
2219 int nodes_copied_in_new_space_;
2220 int nodes_promoted_;
2222 // This is the pretenuring trigger for allocation sites that are in maybe
2223 // tenure state. When we switched to the maximum new space size we deoptimize
2224 // the code that belongs to the allocation site and derive the lifetime
2225 // of the allocation site.
2226 unsigned int maximum_size_scavenges_;
2228 SurvivalRateTrend previous_survival_rate_trend_;
2229 SurvivalRateTrend survival_rate_trend_;
2231 void set_survival_rate_trend(SurvivalRateTrend survival_rate_trend) {
2232 DCHECK(survival_rate_trend != FLUCTUATING);
2233 previous_survival_rate_trend_ = survival_rate_trend_;
2234 survival_rate_trend_ = survival_rate_trend;
2237 SurvivalRateTrend survival_rate_trend() {
2238 if (survival_rate_trend_ == STABLE) {
2240 } else if (previous_survival_rate_trend_ == STABLE) {
2241 return survival_rate_trend_;
2242 } else if (survival_rate_trend_ != previous_survival_rate_trend_) {
2245 return survival_rate_trend_;
2249 bool IsStableOrIncreasingSurvivalTrend() {
2250 switch (survival_rate_trend()) {
2259 bool IsStableOrDecreasingSurvivalTrend() {
2260 switch (survival_rate_trend()) {
2269 bool IsIncreasingSurvivalTrend() {
2270 return survival_rate_trend() == INCREASING;
2273 bool IsLowSurvivalRate() { return low_survival_rate_period_length_ > 0; }
2275 bool IsHighSurvivalRate() { return high_survival_rate_period_length_ > 0; }
2277 void ConfigureInitialOldGenerationSize();
2279 void ConfigureNewGenerationSize();
2281 void SelectScavengingVisitorsTable();
2283 bool HasLowYoungGenerationAllocationRate();
2284 bool HasLowOldGenerationAllocationRate();
2285 double YoungGenerationMutatorUtilization();
2286 double OldGenerationMutatorUtilization();
2288 void ReduceNewSpaceSize();
2290 bool TryFinalizeIdleIncrementalMarking(
2291 double idle_time_in_ms, size_t size_of_objects,
2292 size_t mark_compact_speed_in_bytes_per_ms);
2294 GCIdleTimeHandler::HeapState ComputeHeapState();
2296 bool PerformIdleTimeAction(GCIdleTimeAction action,
2297 GCIdleTimeHandler::HeapState heap_state,
2298 double deadline_in_ms);
2300 void IdleNotificationEpilogue(GCIdleTimeAction action,
2301 GCIdleTimeHandler::HeapState heap_state,
2302 double start_ms, double deadline_in_ms);
2303 void CheckAndNotifyBackgroundIdleNotification(double idle_time_in_ms,
2306 void ClearObjectStats(bool clear_last_time_stats = false);
2308 inline void UpdateAllocationsHash(HeapObject* object);
2309 inline void UpdateAllocationsHash(uint32_t value);
2310 inline void PrintAlloctionsHash();
2312 void AddToRingBuffer(const char* string);
2313 void GetFromRingBuffer(char* buffer);
2315 // Object counts and used memory by InstanceType
2316 size_t object_counts_[OBJECT_STATS_COUNT];
2317 size_t object_counts_last_time_[OBJECT_STATS_COUNT];
2318 size_t object_sizes_[OBJECT_STATS_COUNT];
2319 size_t object_sizes_last_time_[OBJECT_STATS_COUNT];
2321 // Maximum GC pause.
2322 double max_gc_pause_;
2324 // Total time spent in GC.
2325 double total_gc_time_ms_;
2327 // Maximum size of objects alive after GC.
2328 intptr_t max_alive_after_gc_;
2330 // Minimal interval between two subsequent collections.
2331 double min_in_mutator_;
2333 // Cumulative GC time spent in marking.
2334 double marking_time_;
2336 // Cumulative GC time spent in sweeping.
2337 double sweeping_time_;
2339 // Last time an idle notification happened.
2340 double last_idle_notification_time_;
2342 // Last time a garbage collection happened.
2343 double last_gc_time_;
2345 MarkCompactCollector mark_compact_collector_;
2347 StoreBuffer store_buffer_;
2351 IncrementalMarking incremental_marking_;
2353 GCIdleTimeHandler gc_idle_time_handler_;
2355 MemoryReducer memory_reducer_;
2357 // These two counters are monotomically increasing and never reset.
2358 size_t full_codegen_bytes_generated_;
2359 size_t crankshaft_codegen_bytes_generated_;
2361 // This counter is increased before each GC and never reset.
2362 // To account for the bytes allocated since the last GC, use the
2363 // NewSpaceAllocationCounter() function.
2364 size_t new_space_allocation_counter_;
2366 // This counter is increased before each GC and never reset. To
2367 // account for the bytes allocated since the last GC, use the
2368 // OldGenerationAllocationCounter() function.
2369 size_t old_generation_allocation_counter_;
2371 // The size of objects in old generation after the last MarkCompact GC.
2372 size_t old_generation_size_at_last_gc_;
2374 // If the --deopt_every_n_garbage_collections flag is set to a positive value,
2375 // this variable holds the number of garbage collections since the last
2376 // deoptimization triggered by garbage collection.
2377 int gcs_since_last_deopt_;
2379 static const int kAllocationSiteScratchpadSize = 256;
2380 int allocation_sites_scratchpad_length_;
2382 char trace_ring_buffer_[kTraceRingBufferSize];
2383 // If it's not full then the data is from 0 to ring_buffer_end_. If it's
2384 // full then the data is from ring_buffer_end_ to the end of the buffer and
2385 // from 0 to ring_buffer_end_.
2386 bool ring_buffer_full_;
2387 size_t ring_buffer_end_;
2389 static const int kMaxMarkCompactsInIdleRound = 7;
2390 static const int kIdleScavengeThreshold = 5;
2392 // Shared state read by the scavenge collector and set by ScavengeObject.
2393 PromotionQueue promotion_queue_;
2395 // Flag is set when the heap has been configured. The heap can be repeatedly
2396 // configured through the API until it is set up.
2399 ExternalStringTable external_string_table_;
2401 VisitorDispatchTable<ScavengingCallback> scavenging_visitors_table_;
2403 MemoryChunk* chunks_queued_for_free_;
2405 base::Mutex relocation_mutex_;
2407 int gc_callbacks_depth_;
2409 bool deserialization_complete_;
2411 bool concurrent_sweeping_enabled_;
2413 // |live_array_buffers_| maps externally allocated memory used as backing
2414 // store for ArrayBuffers to the length of the respective memory blocks.
2416 // At the beginning of mark/compact, |not_yet_discovered_array_buffers_| is
2417 // a copy of |live_array_buffers_| and we remove pointers as we discover live
2418 // ArrayBuffer objects during marking. At the end of mark/compact, the
2419 // remaining memory blocks can be freed.
2420 std::map<void*, size_t> live_array_buffers_;
2421 std::map<void*, size_t> not_yet_discovered_array_buffers_;
2423 // To be able to free memory held by ArrayBuffers during scavenge as well, we
2424 // have a separate list of allocated memory held by ArrayBuffers in new space.
2426 // Since mark/compact also evacuates the new space, all pointers in the
2427 // |live_array_buffers_for_scavenge_| list are also in the
2428 // |live_array_buffers_| list.
2429 std::map<void*, size_t> live_array_buffers_for_scavenge_;
2430 std::map<void*, size_t> not_yet_discovered_array_buffers_for_scavenge_;
2432 struct StrongRootsList;
2433 StrongRootsList* strong_roots_list_;
2435 friend class AlwaysAllocateScope;
2436 friend class Bootstrapper;
2437 friend class Deserializer;
2438 friend class Factory;
2439 friend class GCCallbacksScope;
2440 friend class GCTracer;
2441 friend class HeapIterator;
2442 friend class Isolate;
2443 friend class MarkCompactCollector;
2444 friend class MarkCompactMarkingVisitor;
2445 friend class MapCompact;
2448 DISALLOW_COPY_AND_ASSIGN(Heap);
2454 static const int kStartMarker = 0xDECADE00;
2455 static const int kEndMarker = 0xDECADE01;
2457 int* start_marker; // 0
2458 int* new_space_size; // 1
2459 int* new_space_capacity; // 2
2460 intptr_t* old_space_size; // 3
2461 intptr_t* old_space_capacity; // 4
2462 intptr_t* code_space_size; // 5
2463 intptr_t* code_space_capacity; // 6
2464 intptr_t* map_space_size; // 7
2465 intptr_t* map_space_capacity; // 8
2466 intptr_t* lo_space_size; // 9
2467 int* global_handle_count; // 10
2468 int* weak_global_handle_count; // 11
2469 int* pending_global_handle_count; // 12
2470 int* near_death_global_handle_count; // 13
2471 int* free_global_handle_count; // 14
2472 intptr_t* memory_allocator_size; // 15
2473 intptr_t* memory_allocator_capacity; // 16
2474 int* objects_per_type; // 17
2475 int* size_per_type; // 18
2476 int* os_error; // 19
2477 char* last_few_messages; // 20
2478 char* js_stacktrace; // 21
2479 int* end_marker; // 22
2483 class AlwaysAllocateScope {
2485 explicit inline AlwaysAllocateScope(Isolate* isolate);
2486 inline ~AlwaysAllocateScope();
2489 // Implicitly disable artificial allocation failures.
2491 DisallowAllocationFailure daf_;
2495 class GCCallbacksScope {
2497 explicit inline GCCallbacksScope(Heap* heap);
2498 inline ~GCCallbacksScope();
2500 inline bool CheckReenter();
2507 // Visitor class to verify interior pointers in spaces that do not contain
2508 // or care about intergenerational references. All heap object pointers have to
2509 // point into the heap to a location that has a map pointer at its first word.
2510 // Caveat: Heap::Contains is an approximation because it can return true for
2511 // objects in a heap space but above the allocation pointer.
2512 class VerifyPointersVisitor : public ObjectVisitor {
2514 inline void VisitPointers(Object** start, Object** end);
2518 // Verify that all objects are Smis.
2519 class VerifySmisVisitor : public ObjectVisitor {
2521 inline void VisitPointers(Object** start, Object** end);
2525 // Space iterator for iterating over all spaces of the heap. Returns each space
2526 // in turn, and null when it is done.
2527 class AllSpaces BASE_EMBEDDED {
2529 explicit AllSpaces(Heap* heap) : heap_(heap), counter_(FIRST_SPACE) {}
2538 // Space iterator for iterating over all old spaces of the heap: Old space
2539 // and code space. Returns each space in turn, and null when it is done.
2540 class OldSpaces BASE_EMBEDDED {
2542 explicit OldSpaces(Heap* heap) : heap_(heap), counter_(OLD_SPACE) {}
2551 // Space iterator for iterating over all the paged spaces of the heap: Map
2552 // space, old space, code space and cell space. Returns
2553 // each space in turn, and null when it is done.
2554 class PagedSpaces BASE_EMBEDDED {
2556 explicit PagedSpaces(Heap* heap) : heap_(heap), counter_(OLD_SPACE) {}
2565 // Space iterator for iterating over all spaces of the heap.
2566 // For each space an object iterator is provided. The deallocation of the
2567 // returned object iterators is handled by the space iterator.
2568 class SpaceIterator : public Malloced {
2570 explicit SpaceIterator(Heap* heap);
2571 SpaceIterator(Heap* heap, HeapObjectCallback size_func);
2572 virtual ~SpaceIterator();
2575 ObjectIterator* next();
2578 ObjectIterator* CreateIterator();
2581 int current_space_; // from enum AllocationSpace.
2582 ObjectIterator* iterator_; // object iterator for the current space.
2583 HeapObjectCallback size_func_;
2587 // A HeapIterator provides iteration over the whole heap. It
2588 // aggregates the specific iterators for the different spaces as
2589 // these can only iterate over one space only.
2591 // HeapIterator ensures there is no allocation during its lifetime
2592 // (using an embedded DisallowHeapAllocation instance).
2594 // HeapIterator can skip free list nodes (that is, de-allocated heap
2595 // objects that still remain in the heap). As implementation of free
2596 // nodes filtering uses GC marks, it can't be used during MS/MC GC
2597 // phases. Also, it is forbidden to interrupt iteration in this mode,
2598 // as this will leave heap objects marked (and thus, unusable).
2599 class HeapObjectsFilter;
2601 class HeapIterator BASE_EMBEDDED {
2603 enum HeapObjectsFiltering { kNoFiltering, kFilterUnreachable };
2605 explicit HeapIterator(Heap* heap);
2606 HeapIterator(Heap* heap, HeapObjectsFiltering filtering);
2613 struct MakeHeapIterableHelper {
2614 explicit MakeHeapIterableHelper(Heap* heap) { heap->MakeHeapIterable(); }
2617 // Perform the initialization.
2619 // Perform all necessary shutdown (destruction) work.
2621 HeapObject* NextObject();
2623 MakeHeapIterableHelper make_heap_iterable_helper_;
2624 DisallowHeapAllocation no_heap_allocation_;
2626 HeapObjectsFiltering filtering_;
2627 HeapObjectsFilter* filter_;
2628 // Space iterator for iterating all the spaces.
2629 SpaceIterator* space_iterator_;
2630 // Object iterator for the space currently being iterated.
2631 ObjectIterator* object_iterator_;
2635 // Cache for mapping (map, property name) into field offset.
2636 // Cleared at startup and prior to mark sweep collection.
2637 class KeyedLookupCache {
2639 // Lookup field offset for (map, name). If absent, -1 is returned.
2640 int Lookup(Handle<Map> map, Handle<Name> name);
2642 // Update an element in the cache.
2643 void Update(Handle<Map> map, Handle<Name> name, int field_offset);
2648 static const int kLength = 256;
2649 static const int kCapacityMask = kLength - 1;
2650 static const int kMapHashShift = 5;
2651 static const int kHashMask = -4; // Zero the last two bits.
2652 static const int kEntriesPerBucket = 4;
2653 static const int kEntryLength = 2;
2654 static const int kMapIndex = 0;
2655 static const int kKeyIndex = 1;
2656 static const int kNotFound = -1;
2658 // kEntriesPerBucket should be a power of 2.
2659 STATIC_ASSERT((kEntriesPerBucket & (kEntriesPerBucket - 1)) == 0);
2660 STATIC_ASSERT(kEntriesPerBucket == -kHashMask);
2663 KeyedLookupCache() {
2664 for (int i = 0; i < kLength; ++i) {
2665 keys_[i].map = NULL;
2666 keys_[i].name = NULL;
2667 field_offsets_[i] = kNotFound;
2671 static inline int Hash(Handle<Map> map, Handle<Name> name);
2673 // Get the address of the keys and field_offsets arrays. Used in
2674 // generated code to perform cache lookups.
2675 Address keys_address() { return reinterpret_cast<Address>(&keys_); }
2677 Address field_offsets_address() {
2678 return reinterpret_cast<Address>(&field_offsets_);
2687 int field_offsets_[kLength];
2689 friend class ExternalReference;
2690 friend class Isolate;
2691 DISALLOW_COPY_AND_ASSIGN(KeyedLookupCache);
2695 // Cache for mapping (map, property name) into descriptor index.
2696 // The cache contains both positive and negative results.
2697 // Descriptor index equals kNotFound means the property is absent.
2698 // Cleared at startup and prior to any gc.
2699 class DescriptorLookupCache {
2701 // Lookup descriptor index for (map, name).
2702 // If absent, kAbsent is returned.
2703 int Lookup(Map* source, Name* name) {
2704 if (!name->IsUniqueName()) return kAbsent;
2705 int index = Hash(source, name);
2706 Key& key = keys_[index];
2707 if ((key.source == source) && (key.name == name)) return results_[index];
2711 // Update an element in the cache.
2712 void Update(Map* source, Name* name, int result) {
2713 DCHECK(result != kAbsent);
2714 if (name->IsUniqueName()) {
2715 int index = Hash(source, name);
2716 Key& key = keys_[index];
2717 key.source = source;
2719 results_[index] = result;
2726 static const int kAbsent = -2;
2729 DescriptorLookupCache() {
2730 for (int i = 0; i < kLength; ++i) {
2731 keys_[i].source = NULL;
2732 keys_[i].name = NULL;
2733 results_[i] = kAbsent;
2737 static int Hash(Object* source, Name* name) {
2738 // Uses only lower 32 bits if pointers are larger.
2739 uint32_t source_hash =
2740 static_cast<uint32_t>(reinterpret_cast<uintptr_t>(source)) >>
2742 uint32_t name_hash =
2743 static_cast<uint32_t>(reinterpret_cast<uintptr_t>(name)) >>
2745 return (source_hash ^ name_hash) % kLength;
2748 static const int kLength = 64;
2755 int results_[kLength];
2757 friend class Isolate;
2758 DISALLOW_COPY_AND_ASSIGN(DescriptorLookupCache);
2762 class RegExpResultsCache {
2764 enum ResultsCacheType { REGEXP_MULTIPLE_INDICES, STRING_SPLIT_SUBSTRINGS };
2766 // Attempt to retrieve a cached result. On failure, 0 is returned as a Smi.
2767 // On success, the returned result is guaranteed to be a COW-array.
2768 static Object* Lookup(Heap* heap, String* key_string, Object* key_pattern,
2769 ResultsCacheType type);
2770 // Attempt to add value_array to the cache specified by type. On success,
2771 // value_array is turned into a COW-array.
2772 static void Enter(Isolate* isolate, Handle<String> key_string,
2773 Handle<Object> key_pattern, Handle<FixedArray> value_array,
2774 ResultsCacheType type);
2775 static void Clear(FixedArray* cache);
2776 static const int kRegExpResultsCacheSize = 0x100;
2779 static const int kArrayEntriesPerCacheEntry = 4;
2780 static const int kStringOffset = 0;
2781 static const int kPatternOffset = 1;
2782 static const int kArrayOffset = 2;
2786 // Abstract base class for checking whether a weak object should be retained.
2787 class WeakObjectRetainer {
2789 virtual ~WeakObjectRetainer() {}
2791 // Return whether this object should be retained. If NULL is returned the
2792 // object has no references. Otherwise the address of the retained object
2793 // should be returned as in some GC situations the object has been moved.
2794 virtual Object* RetainAs(Object* object) = 0;
2798 // Intrusive object marking uses least significant bit of
2799 // heap object's map word to mark objects.
2800 // Normally all map words have least significant bit set
2801 // because they contain tagged map pointer.
2802 // If the bit is not set object is marked.
2803 // All objects should be unmarked before resuming
2804 // JavaScript execution.
2805 class IntrusiveMarking {
2807 static bool IsMarked(HeapObject* object) {
2808 return (object->map_word().ToRawValue() & kNotMarkedBit) == 0;
2811 static void ClearMark(HeapObject* object) {
2812 uintptr_t map_word = object->map_word().ToRawValue();
2813 object->set_map_word(MapWord::FromRawValue(map_word | kNotMarkedBit));
2814 DCHECK(!IsMarked(object));
2817 static void SetMark(HeapObject* object) {
2818 uintptr_t map_word = object->map_word().ToRawValue();
2819 object->set_map_word(MapWord::FromRawValue(map_word & ~kNotMarkedBit));
2820 DCHECK(IsMarked(object));
2823 static Map* MapOfMarkedObject(HeapObject* object) {
2824 uintptr_t map_word = object->map_word().ToRawValue();
2825 return MapWord::FromRawValue(map_word | kNotMarkedBit).ToMap();
2828 static int SizeOfMarkedObject(HeapObject* object) {
2829 return object->SizeFromMap(MapOfMarkedObject(object));
2833 static const uintptr_t kNotMarkedBit = 0x1;
2834 STATIC_ASSERT((kHeapObjectTag & kNotMarkedBit) != 0); // NOLINT
2839 // Helper class for tracing paths to a search target Object from all roots.
2840 // The TracePathFrom() method can be used to trace paths from a specific
2841 // object to the search target object.
2842 class PathTracer : public ObjectVisitor {
2845 FIND_ALL, // Will find all matches.
2846 FIND_FIRST // Will stop the search after first match.
2849 // Tags 0, 1, and 3 are used. Use 2 for marking visited HeapObject.
2850 static const int kMarkTag = 2;
2852 // For the WhatToFind arg, if FIND_FIRST is specified, tracing will stop
2853 // after the first match. If FIND_ALL is specified, then tracing will be
2854 // done for all matches.
2855 PathTracer(Object* search_target, WhatToFind what_to_find,
2856 VisitMode visit_mode)
2857 : search_target_(search_target),
2858 found_target_(false),
2859 found_target_in_trace_(false),
2860 what_to_find_(what_to_find),
2861 visit_mode_(visit_mode),
2865 virtual void VisitPointers(Object** start, Object** end);
2868 void TracePathFrom(Object** root);
2870 bool found() const { return found_target_; }
2872 static Object* const kAnyGlobalObject;
2876 class UnmarkVisitor;
2878 void MarkRecursively(Object** p, MarkVisitor* mark_visitor);
2879 void UnmarkRecursively(Object** p, UnmarkVisitor* unmark_visitor);
2880 virtual void ProcessResults();
2882 Object* search_target_;
2884 bool found_target_in_trace_;
2885 WhatToFind what_to_find_;
2886 VisitMode visit_mode_;
2887 List<Object*> object_stack_;
2889 DisallowHeapAllocation no_allocation; // i.e. no gc allowed.
2892 DISALLOW_IMPLICIT_CONSTRUCTORS(PathTracer);
2896 } // namespace v8::internal
2898 #endif // V8_HEAP_HEAP_H_