2 * Copyright 2015 Google Inc.
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
8 #include "GrTessellatingPathRenderer.h"
11 #include "GrBatchTarget.h"
12 #include "GrDefaultGeoProcFactory.h"
13 #include "GrPathUtils.h"
14 #include "SkChunkAlloc.h"
15 #include "SkGeometry.h"
20 * This path renderer tessellates the path into triangles, uploads the triangles to a
21 * vertex buffer, and renders them with a single draw call. It does not currently do
22 * antialiasing, so it must be used in conjunction with multisampling.
24 * There are six stages to the algorithm:
26 * 1) Linearize the path contours into piecewise linear segments (path_to_contours()).
27 * 2) Build a mesh of edges connecting the vertices (build_edges()).
28 * 3) Sort the vertices in Y (and secondarily in X) (merge_sort()).
29 * 4) Simplify the mesh by inserting new vertices at intersecting edges (simplify()).
30 * 5) Tessellate the simplified mesh into monotone polygons (tessellate()).
31 * 6) Triangulate the monotone polygons directly into a vertex buffer (polys_to_triangles()).
33 * The vertex sorting in step (3) is a merge sort, since it plays well with the linked list
34 * of vertices (and the necessity of inserting new vertices on intersection).
36 * Stages (4) and (5) use an active edge list, which a list of all edges for which the
37 * sweep line has crossed the top vertex, but not the bottom vertex. It's sorted
38 * left-to-right based on the point where both edges are active (when both top vertices
39 * have been seen, so the "lower" top vertex of the two). If the top vertices are equal
40 * (shared), it's sorted based on the last point where both edges are active, so the
41 * "upper" bottom vertex.
43 * The most complex step is the simplification (4). It's based on the Bentley-Ottman
44 * line-sweep algorithm, but due to floating point inaccuracy, the intersection points are
45 * not exact and may violate the mesh topology or active edge list ordering. We
46 * accommodate this by adjusting the topology of the mesh and AEL to match the intersection
47 * points. This occurs in three ways:
49 * A) Intersections may cause a shortened edge to no longer be ordered with respect to its
50 * neighbouring edges at the top or bottom vertex. This is handled by merging the
51 * edges (merge_collinear_edges()).
52 * B) Intersections may cause an edge to violate the left-to-right ordering of the
53 * active edge list. This is handled by splitting the neighbour edge on the
54 * intersected vertex (cleanup_active_edges()).
55 * C) Shortening an edge may cause an active edge to become inactive or an inactive edge
56 * to become active. This is handled by removing or inserting the edge in the active
57 * edge list (fix_active_state()).
59 * The tessellation steps (5) and (6) are based on "Triangulating Simple Polygons and
60 * Equivalent Problems" (Fournier and Montuno); also a line-sweep algorithm. Note that it
61 * currently uses a linked list for the active edge list, rather than a 2-3 tree as the
62 * paper describes. The 2-3 tree gives O(lg N) lookups, but insertion and removal also
63 * become O(lg N). In all the test cases, it was found that the cost of frequent O(lg N)
64 * insertions and removals was greater than the cost of infrequent O(N) lookups with the
65 * linked list implementation. With the latter, all removals are O(1), and most insertions
66 * are O(1), since we know the adjacent edge in the active edge list based on the topology.
67 * Only type 2 vertices (see paper) require the O(N) lookups, and these are much less
68 * frequent. There may be other data structures worth investigating, however.
70 * Note that there is a compile-time flag (SWEEP_IN_X) which changes the orientation of the
71 * line sweep algorithms. When SWEEP_IN_X is unset, we sort vertices based on increasing
72 * Y coordinate, and secondarily by increasing X coordinate. When SWEEP_IN_X is set, we sort by
73 * increasing X coordinate, but secondarily by *decreasing* Y coordinate. This is so that the
74 * "left" and "right" orientation in the code remains correct (edges to the left are increasing
75 * in Y; edges to the right are decreasing in Y). That is, the setting rotates 90 degrees
76 * counterclockwise, rather that transposing.
78 * The choice is arbitrary, but most test cases are wider than they are tall, so the
79 * default is to sweep in X. In the future, we may want to make this a runtime parameter
80 * and base it on the aspect ratio of the clip bounds.
82 #define LOGGING_ENABLED 0
92 #define ALLOC_NEW(Type, args, alloc) \
93 SkNEW_PLACEMENT_ARGS(alloc.allocThrow(sizeof(Type)), Type, args)
101 template <class T, T* T::*Prev, T* T::*Next>
102 void insert(T* t, T* prev, T* next, T** head, T** tail) {
117 template <class T, T* T::*Prev, T* T::*Next>
118 void remove(T* t, T** head, T** tail) {
120 t->*Prev->*Next = t->*Next;
125 t->*Next->*Prev = t->*Prev;
129 t->*Prev = t->*Next = NULL;
133 * Vertices are used in three ways: first, the path contours are converted into a
134 * circularly-linked list of Vertices for each contour. After edge construction, the same Vertices
135 * are re-ordered by the merge sort according to the sweep_lt comparator (usually, increasing
136 * in Y) using the same fPrev/fNext pointers that were used for the contours, to avoid
137 * reallocation. Finally, MonotonePolys are built containing a circularly-linked list of
138 * Vertices. (Currently, those Vertices are newly-allocated for the MonotonePolys, since
139 * an individual Vertex from the path mesh may belong to multiple
140 * MonotonePolys, so the original Vertices cannot be re-used.
144 Vertex(const SkPoint& point)
145 : fPoint(point), fPrev(NULL), fNext(NULL)
146 , fFirstEdgeAbove(NULL), fLastEdgeAbove(NULL)
147 , fFirstEdgeBelow(NULL), fLastEdgeBelow(NULL)
153 SkPoint fPoint; // Vertex position
154 Vertex* fPrev; // Linked list of contours, then Y-sorted vertices.
156 Edge* fFirstEdgeAbove; // Linked list of edges above this vertex.
157 Edge* fLastEdgeAbove; // "
158 Edge* fFirstEdgeBelow; // Linked list of edges below this vertex.
159 Edge* fLastEdgeBelow; // "
160 bool fProcessed; // Has this vertex been seen in simplify()?
162 float fID; // Identifier used for logging.
166 /***************************************************************************************/
168 bool sweep_lt(const SkPoint& a, const SkPoint& b) {
170 return a.fX == b.fX ? a.fY > b.fY : a.fX < b.fX;
172 return a.fY == b.fY ? a.fX < b.fX : a.fY < b.fY;
176 bool sweep_gt(const SkPoint& a, const SkPoint& b) {
178 return a.fX == b.fX ? a.fY < b.fY : a.fX > b.fX;
180 return a.fY == b.fY ? a.fX > b.fX : a.fY > b.fY;
184 inline void* emit_vertex(Vertex* v, void* data) {
185 SkPoint* d = static_cast<SkPoint*>(data);
190 void* emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2, void* data) {
192 data = emit_vertex(v0, data);
193 data = emit_vertex(v1, data);
194 data = emit_vertex(v1, data);
195 data = emit_vertex(v2, data);
196 data = emit_vertex(v2, data);
197 data = emit_vertex(v0, data);
199 data = emit_vertex(v0, data);
200 data = emit_vertex(v1, data);
201 data = emit_vertex(v2, data);
207 * An Edge joins a top Vertex to a bottom Vertex. Edge ordering for the list of "edges above" and
208 * "edge below" a vertex as well as for the active edge list is handled by isLeftOf()/isRightOf().
209 * Note that an Edge will give occasionally dist() != 0 for its own endpoints (because floating
210 * point). For speed, that case is only tested by the callers which require it (e.g.,
211 * cleanup_active_edges()). Edges also handle checking for intersection with other edges.
212 * Currently, this converts the edges to the parametric form, in order to avoid doing a division
213 * until an intersection has been confirmed. This is slightly slower in the "found" case, but
214 * a lot faster in the "not found" case.
216 * The coefficients of the line equation stored in double precision to avoid catastrphic
217 * cancellation in the isLeftOf() and isRightOf() checks. Using doubles ensures that the result is
218 * correct in float, since it's a polynomial of degree 2. The intersect() function, being
219 * degree 5, is still subject to catastrophic cancellation. We deal with that by assuming its
220 * output may be incorrect, and adjusting the mesh topology to match (see comment at the top of
225 Edge(Vertex* top, Vertex* bottom, int winding)
231 , fPrevEdgeAbove(NULL)
232 , fNextEdgeAbove(NULL)
233 , fPrevEdgeBelow(NULL)
234 , fNextEdgeBelow(NULL)
239 int fWinding; // 1 == edge goes downward; -1 = edge goes upward.
240 Vertex* fTop; // The top vertex in vertex-sort-order (sweep_lt).
241 Vertex* fBottom; // The bottom vertex in vertex-sort-order.
242 Edge* fLeft; // The linked list of edges in the active edge list.
244 Edge* fPrevEdgeAbove; // The linked list of edges in the bottom Vertex's "edges above".
245 Edge* fNextEdgeAbove; // "
246 Edge* fPrevEdgeBelow; // The linked list of edges in the top Vertex's "edges below".
247 Edge* fNextEdgeBelow; // "
248 Poly* fLeftPoly; // The Poly to the left of this edge, if any.
249 Poly* fRightPoly; // The Poly to the right of this edge, if any.
250 double fDX; // The line equation for this edge, in implicit form.
251 double fDY; // fDY * x + fDX * y + fC = 0, for point (x, y) on the line.
253 double dist(const SkPoint& p) const {
254 return fDY * p.fX - fDX * p.fY + fC;
256 bool isRightOf(Vertex* v) const {
257 return dist(v->fPoint) < 0.0;
259 bool isLeftOf(Vertex* v) const {
260 return dist(v->fPoint) > 0.0;
263 fDX = static_cast<double>(fBottom->fPoint.fX) - fTop->fPoint.fX;
264 fDY = static_cast<double>(fBottom->fPoint.fY) - fTop->fPoint.fY;
265 fC = static_cast<double>(fTop->fPoint.fY) * fBottom->fPoint.fX -
266 static_cast<double>(fTop->fPoint.fX) * fBottom->fPoint.fY;
268 bool intersect(const Edge& other, SkPoint* p) {
269 LOG("intersecting %g -> %g with %g -> %g\n",
270 fTop->fID, fBottom->fID,
271 other.fTop->fID, other.fBottom->fID);
272 if (fTop == other.fTop || fBottom == other.fBottom) {
275 double denom = fDX * other.fDY - fDY * other.fDX;
279 double dx = static_cast<double>(fTop->fPoint.fX) - other.fTop->fPoint.fX;
280 double dy = static_cast<double>(fTop->fPoint.fY) - other.fTop->fPoint.fY;
281 double sNumer = dy * other.fDX - dx * other.fDY;
282 double tNumer = dy * fDX - dx * fDY;
283 // If (sNumer / denom) or (tNumer / denom) is not in [0..1], exit early.
284 // This saves us doing the divide below unless absolutely necessary.
285 if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNumer > denom)
286 : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNumer < denom)) {
289 double s = sNumer / denom;
290 SkASSERT(s >= 0.0 && s <= 1.0);
291 p->fX = SkDoubleToScalar(fTop->fPoint.fX + s * fDX);
292 p->fY = SkDoubleToScalar(fTop->fPoint.fY + s * fDY);
295 bool isActive(Edge** activeEdges) const {
296 return activeEdges && (fLeft || fRight || *activeEdges == this);
300 /***************************************************************************************/
315 LOG("*** created Poly %d\n", fID);
318 typedef enum { kNeither_Side, kLeft_Side, kRight_Side } Side;
319 struct MonotonePoly {
321 : fSide(kNeither_Side)
331 bool addVertex(Vertex* v, Side side, SkChunkAlloc& alloc) {
332 Vertex* newV = ALLOC_NEW(Vertex, (v->fPoint), alloc);
334 if (fSide == kNeither_Side) {
337 done = side != fSide;
340 fHead = fTail = newV;
341 } else if (fSide == kRight_Side) {
353 void* emit(void* data) {
354 Vertex* first = fHead;
355 Vertex* v = first->fNext;
357 SkASSERT(v && v->fPrev && v->fNext);
361 Vertex* prev = v->fPrev;
363 Vertex* next = v->fNext;
364 double ax = static_cast<double>(curr->fPoint.fX) - prev->fPoint.fX;
365 double ay = static_cast<double>(curr->fPoint.fY) - prev->fPoint.fY;
366 double bx = static_cast<double>(next->fPoint.fX) - curr->fPoint.fX;
367 double by = static_cast<double>(next->fPoint.fY) - curr->fPoint.fY;
368 if (ax * by - ay * bx >= 0.0) {
369 data = emit_triangle(prev, curr, next, data);
370 v->fPrev->fNext = v->fNext;
371 v->fNext->fPrev = v->fPrev;
372 if (v->fPrev == first) {
379 SkASSERT(v != fTail);
387 int winding = sweep_lt(fHead->fPoint, fTail->fPoint) ? 1 : -1;
388 Vertex* top = winding < 0 ? fTail : fHead;
389 Vertex* bottom = winding < 0 ? fHead : fTail;
390 Edge e(top, bottom, winding);
391 for (Vertex* v = fHead->fNext; v != fTail; v = v->fNext) {
392 if (fSide == kRight_Side) {
393 SkASSERT(!e.isRightOf(v));
394 } else if (fSide == Poly::kLeft_Side) {
395 SkASSERT(!e.isLeftOf(v));
401 Poly* addVertex(Vertex* v, Side side, SkChunkAlloc& alloc) {
402 LOG("addVertex() to %d at %g (%g, %g), %s side\n", fID, v->fID, v->fPoint.fX, v->fPoint.fY,
403 side == kLeft_Side ? "left" : side == kRight_Side ? "right" : "neither");
404 Poly* partner = fPartner;
407 fPartner = partner->fPartner = NULL;
410 fActive = ALLOC_NEW(MonotonePoly, (), alloc);
412 if (fActive->addVertex(v, side, alloc)) {
417 fActive->fPrev = fTail;
418 fTail->fNext = fActive;
421 fHead = fTail = fActive;
424 partner->addVertex(v, side, alloc);
427 Vertex* prev = fActive->fSide == Poly::kLeft_Side ?
428 fActive->fHead->fNext : fActive->fTail->fPrev;
429 fActive = ALLOC_NEW(MonotonePoly, , alloc);
430 fActive->addVertex(prev, Poly::kNeither_Side, alloc);
431 fActive->addVertex(v, side, alloc);
437 void end(Vertex* v, SkChunkAlloc& alloc) {
438 LOG("end() %d at %g, %g\n", fID, v->fPoint.fX, v->fPoint.fY);
440 fPartner = fPartner->fPartner = NULL;
442 addVertex(v, fActive->fSide == kLeft_Side ? kRight_Side : kLeft_Side, alloc);
444 void* emit(void *data) {
448 LOG("emit() %d, size %d\n", fID, fCount);
449 for (MonotonePoly* m = fHead; m != NULL; m = m->fNext) {
450 data = m->emit(data);
457 MonotonePoly* fActive;
466 /***************************************************************************************/
468 bool coincident(const SkPoint& a, const SkPoint& b) {
472 Poly* new_poly(Poly** head, Vertex* v, int winding, SkChunkAlloc& alloc) {
473 Poly* poly = ALLOC_NEW(Poly, (winding), alloc);
474 poly->addVertex(v, Poly::kNeither_Side, alloc);
481 void validate_edges(Edge* head) {
482 for (Edge* e = head; e != NULL; e = e->fRight) {
483 SkASSERT(e->fTop != e->fBottom);
485 SkASSERT(e->fLeft->fRight == e);
486 if (sweep_gt(e->fTop->fPoint, e->fLeft->fTop->fPoint)) {
487 SkASSERT(e->fLeft->isLeftOf(e->fTop));
489 if (sweep_lt(e->fBottom->fPoint, e->fLeft->fBottom->fPoint)) {
490 SkASSERT(e->fLeft->isLeftOf(e->fBottom));
496 SkASSERT(e->fRight->fLeft == e);
497 if (sweep_gt(e->fTop->fPoint, e->fRight->fTop->fPoint)) {
498 SkASSERT(e->fRight->isRightOf(e->fTop));
500 if (sweep_lt(e->fBottom->fPoint, e->fRight->fBottom->fPoint)) {
501 SkASSERT(e->fRight->isRightOf(e->fBottom));
507 void validate_connectivity(Vertex* v) {
508 for (Edge* e = v->fFirstEdgeAbove; e != NULL; e = e->fNextEdgeAbove) {
509 SkASSERT(e->fBottom == v);
510 if (e->fPrevEdgeAbove) {
511 SkASSERT(e->fPrevEdgeAbove->fNextEdgeAbove == e);
512 SkASSERT(e->fPrevEdgeAbove->isLeftOf(e->fTop));
514 SkASSERT(e == v->fFirstEdgeAbove);
516 if (e->fNextEdgeAbove) {
517 SkASSERT(e->fNextEdgeAbove->fPrevEdgeAbove == e);
518 SkASSERT(e->fNextEdgeAbove->isRightOf(e->fTop));
520 SkASSERT(e == v->fLastEdgeAbove);
523 for (Edge* e = v->fFirstEdgeBelow; e != NULL; e = e->fNextEdgeBelow) {
524 SkASSERT(e->fTop == v);
525 if (e->fPrevEdgeBelow) {
526 SkASSERT(e->fPrevEdgeBelow->fNextEdgeBelow == e);
527 SkASSERT(e->fPrevEdgeBelow->isLeftOf(e->fBottom));
529 SkASSERT(e == v->fFirstEdgeBelow);
531 if (e->fNextEdgeBelow) {
532 SkASSERT(e->fNextEdgeBelow->fPrevEdgeBelow == e);
533 SkASSERT(e->fNextEdgeBelow->isRightOf(e->fBottom));
535 SkASSERT(e == v->fLastEdgeBelow);
541 Vertex* append_point_to_contour(const SkPoint& p, Vertex* prev, Vertex** head,
542 SkChunkAlloc& alloc) {
543 Vertex* v = ALLOC_NEW(Vertex, (p), alloc);
545 static float gID = 0.0f;
557 Vertex* generate_quadratic_points(const SkPoint& p0,
564 SkChunkAlloc& alloc) {
565 SkScalar d = p1.distanceToLineSegmentBetweenSqd(p0, p2);
566 if (pointsLeft < 2 || d < tolSqd || !SkScalarIsFinite(d)) {
567 return append_point_to_contour(p2, prev, head, alloc);
570 const SkPoint q[] = {
571 { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
572 { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
574 const SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
577 prev = generate_quadratic_points(p0, q[0], r, tolSqd, prev, head, pointsLeft, alloc);
578 prev = generate_quadratic_points(r, q[1], p2, tolSqd, prev, head, pointsLeft, alloc);
582 Vertex* generate_cubic_points(const SkPoint& p0,
590 SkChunkAlloc& alloc) {
591 SkScalar d1 = p1.distanceToLineSegmentBetweenSqd(p0, p3);
592 SkScalar d2 = p2.distanceToLineSegmentBetweenSqd(p0, p3);
593 if (pointsLeft < 2 || (d1 < tolSqd && d2 < tolSqd) ||
594 !SkScalarIsFinite(d1) || !SkScalarIsFinite(d2)) {
595 return append_point_to_contour(p3, prev, head, alloc);
597 const SkPoint q[] = {
598 { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
599 { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
600 { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
602 const SkPoint r[] = {
603 { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
604 { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
606 const SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
608 prev = generate_cubic_points(p0, q[0], r[0], s, tolSqd, prev, head, pointsLeft, alloc);
609 prev = generate_cubic_points(s, r[1], q[2], p3, tolSqd, prev, head, pointsLeft, alloc);
613 // Stage 1: convert the input path to a set of linear contours (linked list of Vertices).
615 void path_to_contours(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
616 Vertex** contours, SkChunkAlloc& alloc) {
618 SkScalar toleranceSqd = tolerance * tolerance;
622 SkPath::Iter iter(path, false);
625 if (path.isInverseFillType()) {
627 clipBounds.toQuad(quad);
628 for (int i = 3; i >= 0; i--) {
629 prev = append_point_to_contour(quad[i], prev, &head, alloc);
636 SkAutoConicToQuads converter;
638 SkPath::Verb verb = iter.next(pts);
640 case SkPath::kConic_Verb: {
641 SkScalar weight = iter.conicWeight();
642 const SkPoint* quadPts = converter.computeQuads(pts, weight, toleranceSqd);
643 for (int i = 0; i < converter.countQuads(); ++i) {
644 int pointsLeft = GrPathUtils::quadraticPointCount(quadPts, toleranceSqd);
645 prev = generate_quadratic_points(quadPts[0], quadPts[1], quadPts[2],
646 toleranceSqd, prev, &head, pointsLeft, alloc);
651 case SkPath::kMove_Verb:
658 prev = append_point_to_contour(pts[0], prev, &head, alloc);
660 case SkPath::kLine_Verb: {
661 prev = append_point_to_contour(pts[1], prev, &head, alloc);
664 case SkPath::kQuad_Verb: {
665 int pointsLeft = GrPathUtils::quadraticPointCount(pts, toleranceSqd);
666 prev = generate_quadratic_points(pts[0], pts[1], pts[2], toleranceSqd, prev,
667 &head, pointsLeft, alloc);
670 case SkPath::kCubic_Verb: {
671 int pointsLeft = GrPathUtils::cubicPointCount(pts, toleranceSqd);
672 prev = generate_cubic_points(pts[0], pts[1], pts[2], pts[3],
673 toleranceSqd, prev, &head, pointsLeft, alloc);
676 case SkPath::kClose_Verb:
684 case SkPath::kDone_Verb:
696 inline bool apply_fill_type(SkPath::FillType fillType, int winding) {
698 case SkPath::kWinding_FillType:
700 case SkPath::kEvenOdd_FillType:
701 return (winding & 1) != 0;
702 case SkPath::kInverseWinding_FillType:
704 case SkPath::kInverseEvenOdd_FillType:
705 return (winding & 1) == 1;
712 Edge* new_edge(Vertex* prev, Vertex* next, SkChunkAlloc& alloc) {
713 int winding = sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1;
714 Vertex* top = winding < 0 ? next : prev;
715 Vertex* bottom = winding < 0 ? prev : next;
716 return ALLOC_NEW(Edge, (top, bottom, winding), alloc);
719 void remove_edge(Edge* edge, Edge** head) {
720 LOG("removing edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
721 SkASSERT(edge->isActive(head));
722 remove<Edge, &Edge::fLeft, &Edge::fRight>(edge, head, NULL);
725 void insert_edge(Edge* edge, Edge* prev, Edge** head) {
726 LOG("inserting edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
727 SkASSERT(!edge->isActive(head));
728 Edge* next = prev ? prev->fRight : *head;
729 insert<Edge, &Edge::fLeft, &Edge::fRight>(edge, prev, next, head, NULL);
732 void find_enclosing_edges(Vertex* v, Edge* head, Edge** left, Edge** right) {
733 if (v->fFirstEdgeAbove) {
734 *left = v->fFirstEdgeAbove->fLeft;
735 *right = v->fLastEdgeAbove->fRight;
740 for (next = head; next != NULL; next = next->fRight) {
741 if (next->isRightOf(v)) {
751 void find_enclosing_edges(Edge* edge, Edge* head, Edge** left, Edge** right) {
754 for (next = head; next != NULL; next = next->fRight) {
755 if ((sweep_gt(edge->fTop->fPoint, next->fTop->fPoint) && next->isRightOf(edge->fTop)) ||
756 (sweep_gt(next->fTop->fPoint, edge->fTop->fPoint) && edge->isLeftOf(next->fTop)) ||
757 (sweep_lt(edge->fBottom->fPoint, next->fBottom->fPoint) &&
758 next->isRightOf(edge->fBottom)) ||
759 (sweep_lt(next->fBottom->fPoint, edge->fBottom->fPoint) &&
760 edge->isLeftOf(next->fBottom))) {
770 void fix_active_state(Edge* edge, Edge** activeEdges) {
771 if (edge->isActive(activeEdges)) {
772 if (edge->fBottom->fProcessed || !edge->fTop->fProcessed) {
773 remove_edge(edge, activeEdges);
775 } else if (edge->fTop->fProcessed && !edge->fBottom->fProcessed) {
778 find_enclosing_edges(edge, *activeEdges, &left, &right);
779 insert_edge(edge, left, activeEdges);
783 void insert_edge_above(Edge* edge, Vertex* v) {
784 if (edge->fTop->fPoint == edge->fBottom->fPoint ||
785 sweep_gt(edge->fTop->fPoint, edge->fBottom->fPoint)) {
789 LOG("insert edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID);
792 for (next = v->fFirstEdgeAbove; next; next = next->fNextEdgeAbove) {
793 if (next->isRightOf(edge->fTop)) {
798 insert<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
799 edge, prev, next, &v->fFirstEdgeAbove, &v->fLastEdgeAbove);
802 void insert_edge_below(Edge* edge, Vertex* v) {
803 if (edge->fTop->fPoint == edge->fBottom->fPoint ||
804 sweep_gt(edge->fTop->fPoint, edge->fBottom->fPoint)) {
808 LOG("insert edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID);
811 for (next = v->fFirstEdgeBelow; next; next = next->fNextEdgeBelow) {
812 if (next->isRightOf(edge->fBottom)) {
817 insert<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
818 edge, prev, next, &v->fFirstEdgeBelow, &v->fLastEdgeBelow);
821 void remove_edge_above(Edge* edge) {
822 LOG("removing edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
824 remove<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
825 edge, &edge->fBottom->fFirstEdgeAbove, &edge->fBottom->fLastEdgeAbove);
828 void remove_edge_below(Edge* edge) {
829 LOG("removing edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
831 remove<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
832 edge, &edge->fTop->fFirstEdgeBelow, &edge->fTop->fLastEdgeBelow);
835 void erase_edge_if_zero_winding(Edge* edge, Edge** head) {
836 if (edge->fWinding != 0) {
839 LOG("erasing edge (%g -> %g)\n", edge->fTop->fID, edge->fBottom->fID);
840 remove_edge_above(edge);
841 remove_edge_below(edge);
842 if (edge->isActive(head)) {
843 remove_edge(edge, head);
847 void merge_collinear_edges(Edge* edge, Edge** activeEdges);
849 void set_top(Edge* edge, Vertex* v, Edge** activeEdges) {
850 remove_edge_below(edge);
853 insert_edge_below(edge, v);
854 fix_active_state(edge, activeEdges);
855 merge_collinear_edges(edge, activeEdges);
858 void set_bottom(Edge* edge, Vertex* v, Edge** activeEdges) {
859 remove_edge_above(edge);
862 insert_edge_above(edge, v);
863 fix_active_state(edge, activeEdges);
864 merge_collinear_edges(edge, activeEdges);
867 void merge_edges_above(Edge* edge, Edge* other, Edge** activeEdges) {
868 if (coincident(edge->fTop->fPoint, other->fTop->fPoint)) {
869 LOG("merging coincident above edges (%g, %g) -> (%g, %g)\n",
870 edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
871 edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
872 other->fWinding += edge->fWinding;
873 erase_edge_if_zero_winding(other, activeEdges);
875 erase_edge_if_zero_winding(edge, activeEdges);
876 } else if (sweep_lt(edge->fTop->fPoint, other->fTop->fPoint)) {
877 other->fWinding += edge->fWinding;
878 erase_edge_if_zero_winding(other, activeEdges);
879 set_bottom(edge, other->fTop, activeEdges);
881 edge->fWinding += other->fWinding;
882 erase_edge_if_zero_winding(edge, activeEdges);
883 set_bottom(other, edge->fTop, activeEdges);
887 void merge_edges_below(Edge* edge, Edge* other, Edge** activeEdges) {
888 if (coincident(edge->fBottom->fPoint, other->fBottom->fPoint)) {
889 LOG("merging coincident below edges (%g, %g) -> (%g, %g)\n",
890 edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
891 edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
892 other->fWinding += edge->fWinding;
893 erase_edge_if_zero_winding(other, activeEdges);
895 erase_edge_if_zero_winding(edge, activeEdges);
896 } else if (sweep_lt(edge->fBottom->fPoint, other->fBottom->fPoint)) {
897 edge->fWinding += other->fWinding;
898 erase_edge_if_zero_winding(edge, activeEdges);
899 set_top(other, edge->fBottom, activeEdges);
901 other->fWinding += edge->fWinding;
902 erase_edge_if_zero_winding(other, activeEdges);
903 set_top(edge, other->fBottom, activeEdges);
907 void merge_collinear_edges(Edge* edge, Edge** activeEdges) {
908 if (edge->fPrevEdgeAbove && (edge->fTop == edge->fPrevEdgeAbove->fTop ||
909 !edge->fPrevEdgeAbove->isLeftOf(edge->fTop))) {
910 merge_edges_above(edge, edge->fPrevEdgeAbove, activeEdges);
911 } else if (edge->fNextEdgeAbove && (edge->fTop == edge->fNextEdgeAbove->fTop ||
912 !edge->isLeftOf(edge->fNextEdgeAbove->fTop))) {
913 merge_edges_above(edge, edge->fNextEdgeAbove, activeEdges);
915 if (edge->fPrevEdgeBelow && (edge->fBottom == edge->fPrevEdgeBelow->fBottom ||
916 !edge->fPrevEdgeBelow->isLeftOf(edge->fBottom))) {
917 merge_edges_below(edge, edge->fPrevEdgeBelow, activeEdges);
918 } else if (edge->fNextEdgeBelow && (edge->fBottom == edge->fNextEdgeBelow->fBottom ||
919 !edge->isLeftOf(edge->fNextEdgeBelow->fBottom))) {
920 merge_edges_below(edge, edge->fNextEdgeBelow, activeEdges);
924 void split_edge(Edge* edge, Vertex* v, Edge** activeEdges, SkChunkAlloc& alloc);
926 void cleanup_active_edges(Edge* edge, Edge** activeEdges, SkChunkAlloc& alloc) {
927 Vertex* top = edge->fTop;
928 Vertex* bottom = edge->fBottom;
930 Vertex* leftTop = edge->fLeft->fTop;
931 Vertex* leftBottom = edge->fLeft->fBottom;
932 if (sweep_gt(top->fPoint, leftTop->fPoint) && !edge->fLeft->isLeftOf(top)) {
933 split_edge(edge->fLeft, edge->fTop, activeEdges, alloc);
934 } else if (sweep_gt(leftTop->fPoint, top->fPoint) && !edge->isRightOf(leftTop)) {
935 split_edge(edge, leftTop, activeEdges, alloc);
936 } else if (sweep_lt(bottom->fPoint, leftBottom->fPoint) && !edge->fLeft->isLeftOf(bottom)) {
937 split_edge(edge->fLeft, bottom, activeEdges, alloc);
938 } else if (sweep_lt(leftBottom->fPoint, bottom->fPoint) && !edge->isRightOf(leftBottom)) {
939 split_edge(edge, leftBottom, activeEdges, alloc);
943 Vertex* rightTop = edge->fRight->fTop;
944 Vertex* rightBottom = edge->fRight->fBottom;
945 if (sweep_gt(top->fPoint, rightTop->fPoint) && !edge->fRight->isRightOf(top)) {
946 split_edge(edge->fRight, top, activeEdges, alloc);
947 } else if (sweep_gt(rightTop->fPoint, top->fPoint) && !edge->isLeftOf(rightTop)) {
948 split_edge(edge, rightTop, activeEdges, alloc);
949 } else if (sweep_lt(bottom->fPoint, rightBottom->fPoint) &&
950 !edge->fRight->isRightOf(bottom)) {
951 split_edge(edge->fRight, bottom, activeEdges, alloc);
952 } else if (sweep_lt(rightBottom->fPoint, bottom->fPoint) &&
953 !edge->isLeftOf(rightBottom)) {
954 split_edge(edge, rightBottom, activeEdges, alloc);
959 void split_edge(Edge* edge, Vertex* v, Edge** activeEdges, SkChunkAlloc& alloc) {
960 LOG("splitting edge (%g -> %g) at vertex %g (%g, %g)\n",
961 edge->fTop->fID, edge->fBottom->fID,
962 v->fID, v->fPoint.fX, v->fPoint.fY);
963 if (sweep_lt(v->fPoint, edge->fTop->fPoint)) {
964 set_top(edge, v, activeEdges);
965 } else if (sweep_gt(v->fPoint, edge->fBottom->fPoint)) {
966 set_bottom(edge, v, activeEdges);
968 Edge* newEdge = ALLOC_NEW(Edge, (v, edge->fBottom, edge->fWinding), alloc);
969 insert_edge_below(newEdge, v);
970 insert_edge_above(newEdge, edge->fBottom);
971 set_bottom(edge, v, activeEdges);
972 cleanup_active_edges(edge, activeEdges, alloc);
973 fix_active_state(newEdge, activeEdges);
974 merge_collinear_edges(newEdge, activeEdges);
978 void merge_vertices(Vertex* src, Vertex* dst, Vertex** head, SkChunkAlloc& alloc) {
979 LOG("found coincident verts at %g, %g; merging %g into %g\n", src->fPoint.fX, src->fPoint.fY,
981 for (Edge* edge = src->fFirstEdgeAbove; edge;) {
982 Edge* next = edge->fNextEdgeAbove;
983 set_bottom(edge, dst, NULL);
986 for (Edge* edge = src->fFirstEdgeBelow; edge;) {
987 Edge* next = edge->fNextEdgeBelow;
988 set_top(edge, dst, NULL);
991 remove<Vertex, &Vertex::fPrev, &Vertex::fNext>(src, head, NULL);
994 Vertex* check_for_intersection(Edge* edge, Edge* other, Edge** activeEdges, SkChunkAlloc& alloc) {
996 if (!edge || !other) {
999 if (edge->intersect(*other, &p)) {
1001 LOG("found intersection, pt is %g, %g\n", p.fX, p.fY);
1002 if (p == edge->fTop->fPoint || sweep_lt(p, edge->fTop->fPoint)) {
1003 split_edge(other, edge->fTop, activeEdges, alloc);
1005 } else if (p == edge->fBottom->fPoint || sweep_gt(p, edge->fBottom->fPoint)) {
1006 split_edge(other, edge->fBottom, activeEdges, alloc);
1008 } else if (p == other->fTop->fPoint || sweep_lt(p, other->fTop->fPoint)) {
1009 split_edge(edge, other->fTop, activeEdges, alloc);
1011 } else if (p == other->fBottom->fPoint || sweep_gt(p, other->fBottom->fPoint)) {
1012 split_edge(edge, other->fBottom, activeEdges, alloc);
1015 Vertex* nextV = edge->fTop;
1016 while (sweep_lt(p, nextV->fPoint)) {
1017 nextV = nextV->fPrev;
1019 while (sweep_lt(nextV->fPoint, p)) {
1020 nextV = nextV->fNext;
1022 Vertex* prevV = nextV->fPrev;
1023 if (coincident(prevV->fPoint, p)) {
1025 } else if (coincident(nextV->fPoint, p)) {
1028 v = ALLOC_NEW(Vertex, (p), alloc);
1029 LOG("inserting between %g (%g, %g) and %g (%g, %g)\n",
1030 prevV->fID, prevV->fPoint.fX, prevV->fPoint.fY,
1031 nextV->fID, nextV->fPoint.fX, nextV->fPoint.fY);
1033 v->fID = (nextV->fID + prevV->fID) * 0.5f;
1040 split_edge(edge, v, activeEdges, alloc);
1041 split_edge(other, v, activeEdges, alloc);
1044 validate_connectivity(v);
1051 void sanitize_contours(Vertex** contours, int contourCnt) {
1052 for (int i = 0; i < contourCnt; ++i) {
1053 SkASSERT(contours[i]);
1054 for (Vertex* v = contours[i];;) {
1055 if (coincident(v->fPrev->fPoint, v->fPoint)) {
1056 LOG("vertex %g,%g coincident; removing\n", v->fPoint.fX, v->fPoint.fY);
1057 if (v->fPrev == v) {
1061 v->fPrev->fNext = v->fNext;
1062 v->fNext->fPrev = v->fPrev;
1063 if (contours[i] == v) {
1064 contours[i] = v->fNext;
1069 if (v == contours[i]) break;
1075 void merge_coincident_vertices(Vertex** vertices, SkChunkAlloc& alloc) {
1076 for (Vertex* v = (*vertices)->fNext; v != NULL; v = v->fNext) {
1077 if (sweep_lt(v->fPoint, v->fPrev->fPoint)) {
1078 v->fPoint = v->fPrev->fPoint;
1080 if (coincident(v->fPrev->fPoint, v->fPoint)) {
1081 merge_vertices(v->fPrev, v, vertices, alloc);
1086 // Stage 2: convert the contours to a mesh of edges connecting the vertices.
1088 Vertex* build_edges(Vertex** contours, int contourCnt, SkChunkAlloc& alloc) {
1089 Vertex* vertices = NULL;
1090 Vertex* prev = NULL;
1091 for (int i = 0; i < contourCnt; ++i) {
1092 for (Vertex* v = contours[i]; v != NULL;) {
1093 Vertex* vNext = v->fNext;
1094 Edge* edge = new_edge(v->fPrev, v, alloc);
1095 if (edge->fWinding > 0) {
1096 insert_edge_below(edge, v->fPrev);
1097 insert_edge_above(edge, v);
1099 insert_edge_below(edge, v);
1100 insert_edge_above(edge, v->fPrev);
1102 merge_collinear_edges(edge, NULL);
1111 if (v == contours[i]) break;
1115 prev->fNext = vertices->fPrev = NULL;
1120 // Stage 3: sort the vertices by increasing Y (or X if SWEEP_IN_X is on).
1122 Vertex* sorted_merge(Vertex* a, Vertex* b);
1124 void front_back_split(Vertex* v, Vertex** pFront, Vertex** pBack) {
1127 if (!v || !v->fNext) {
1134 while (fast != NULL) {
1143 *pBack = slow->fNext;
1144 slow->fNext->fPrev = NULL;
1149 void merge_sort(Vertex** head) {
1150 if (!*head || !(*head)->fNext) {
1156 front_back_split(*head, &a, &b);
1161 *head = sorted_merge(a, b);
1164 Vertex* sorted_merge(Vertex* a, Vertex* b) {
1171 Vertex* result = NULL;
1173 if (sweep_lt(a->fPoint, b->fPoint)) {
1175 result->fNext = sorted_merge(a->fNext, b);
1178 result->fNext = sorted_merge(a, b->fNext);
1180 result->fNext->fPrev = result;
1184 // Stage 4: Simplify the mesh by inserting new vertices at intersecting edges.
1186 void simplify(Vertex* vertices, SkChunkAlloc& alloc) {
1187 LOG("simplifying complex polygons\n");
1188 Edge* activeEdges = NULL;
1189 for (Vertex* v = vertices; v != NULL; v = v->fNext) {
1190 if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
1194 LOG("\nvertex %g: (%g,%g)\n", v->fID, v->fPoint.fX, v->fPoint.fY);
1197 validate_connectivity(v);
1199 Edge* leftEnclosingEdge = NULL;
1200 Edge* rightEnclosingEdge = NULL;
1203 restartChecks = false;
1204 find_enclosing_edges(v, activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1205 if (v->fFirstEdgeBelow) {
1206 for (Edge* edge = v->fFirstEdgeBelow; edge != NULL; edge = edge->fNextEdgeBelow) {
1207 if (check_for_intersection(edge, leftEnclosingEdge, &activeEdges, alloc)) {
1208 restartChecks = true;
1211 if (check_for_intersection(edge, rightEnclosingEdge, &activeEdges, alloc)) {
1212 restartChecks = true;
1217 if (Vertex* pv = check_for_intersection(leftEnclosingEdge, rightEnclosingEdge,
1218 &activeEdges, alloc)) {
1219 if (sweep_lt(pv->fPoint, v->fPoint)) {
1222 restartChecks = true;
1226 } while (restartChecks);
1227 SkASSERT(!leftEnclosingEdge || leftEnclosingEdge->isLeftOf(v));
1228 SkASSERT(!rightEnclosingEdge || rightEnclosingEdge->isRightOf(v));
1230 validate_edges(activeEdges);
1232 for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1233 remove_edge(e, &activeEdges);
1235 Edge* leftEdge = leftEnclosingEdge;
1236 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1237 insert_edge(e, leftEdge, &activeEdges);
1240 v->fProcessed = true;
1244 // Stage 5: Tessellate the simplified mesh into monotone polygons.
1246 Poly* tessellate(Vertex* vertices, SkChunkAlloc& alloc) {
1247 LOG("tessellating simple polygons\n");
1248 Edge* activeEdges = NULL;
1250 for (Vertex* v = vertices; v != NULL; v = v->fNext) {
1251 if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
1255 LOG("\nvertex %g: (%g,%g)\n", v->fID, v->fPoint.fX, v->fPoint.fY);
1258 validate_connectivity(v);
1260 Edge* leftEnclosingEdge = NULL;
1261 Edge* rightEnclosingEdge = NULL;
1262 find_enclosing_edges(v, activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1263 SkASSERT(!leftEnclosingEdge || leftEnclosingEdge->isLeftOf(v));
1264 SkASSERT(!rightEnclosingEdge || rightEnclosingEdge->isRightOf(v));
1266 validate_edges(activeEdges);
1268 Poly* leftPoly = NULL;
1269 Poly* rightPoly = NULL;
1270 if (v->fFirstEdgeAbove) {
1271 leftPoly = v->fFirstEdgeAbove->fLeftPoly;
1272 rightPoly = v->fLastEdgeAbove->fRightPoly;
1274 leftPoly = leftEnclosingEdge ? leftEnclosingEdge->fRightPoly : NULL;
1275 rightPoly = rightEnclosingEdge ? rightEnclosingEdge->fLeftPoly : NULL;
1278 LOG("edges above:\n");
1279 for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1280 LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1281 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1283 LOG("edges below:\n");
1284 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1285 LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1286 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1289 if (v->fFirstEdgeAbove) {
1291 leftPoly = leftPoly->addVertex(v, Poly::kRight_Side, alloc);
1294 rightPoly = rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
1296 for (Edge* e = v->fFirstEdgeAbove; e != v->fLastEdgeAbove; e = e->fNextEdgeAbove) {
1298 Edge* rightEdge = e->fNextEdgeAbove;
1299 SkASSERT(rightEdge->isRightOf(leftEdge->fTop));
1300 remove_edge(leftEdge, &activeEdges);
1301 if (leftEdge->fRightPoly) {
1302 leftEdge->fRightPoly->end(v, alloc);
1304 if (rightEdge->fLeftPoly && rightEdge->fLeftPoly != leftEdge->fRightPoly) {
1305 rightEdge->fLeftPoly->end(v, alloc);
1308 remove_edge(v->fLastEdgeAbove, &activeEdges);
1309 if (!v->fFirstEdgeBelow) {
1310 if (leftPoly && rightPoly && leftPoly != rightPoly) {
1311 SkASSERT(leftPoly->fPartner == NULL && rightPoly->fPartner == NULL);
1312 rightPoly->fPartner = leftPoly;
1313 leftPoly->fPartner = rightPoly;
1317 if (v->fFirstEdgeBelow) {
1318 if (!v->fFirstEdgeAbove) {
1319 if (leftPoly && leftPoly == rightPoly) {
1321 if (leftPoly->fActive->fSide == Poly::kLeft_Side) {
1322 leftPoly = new_poly(&polys, leftEnclosingEdge->fTop, leftPoly->fWinding,
1324 leftPoly->addVertex(v, Poly::kRight_Side, alloc);
1325 rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
1326 leftEnclosingEdge->fRightPoly = leftPoly;
1328 rightPoly = new_poly(&polys, rightEnclosingEdge->fTop, rightPoly->fWinding,
1330 rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
1331 leftPoly->addVertex(v, Poly::kRight_Side, alloc);
1332 rightEnclosingEdge->fLeftPoly = rightPoly;
1336 leftPoly = leftPoly->addVertex(v, Poly::kRight_Side, alloc);
1339 rightPoly = rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
1343 Edge* leftEdge = v->fFirstEdgeBelow;
1344 leftEdge->fLeftPoly = leftPoly;
1345 insert_edge(leftEdge, leftEnclosingEdge, &activeEdges);
1346 for (Edge* rightEdge = leftEdge->fNextEdgeBelow; rightEdge;
1347 rightEdge = rightEdge->fNextEdgeBelow) {
1348 insert_edge(rightEdge, leftEdge, &activeEdges);
1349 int winding = leftEdge->fLeftPoly ? leftEdge->fLeftPoly->fWinding : 0;
1350 winding += leftEdge->fWinding;
1352 Poly* poly = new_poly(&polys, v, winding, alloc);
1353 leftEdge->fRightPoly = rightEdge->fLeftPoly = poly;
1355 leftEdge = rightEdge;
1357 v->fLastEdgeBelow->fRightPoly = rightPoly;
1360 validate_edges(activeEdges);
1363 LOG("\nactive edges:\n");
1364 for (Edge* e = activeEdges; e != NULL; e = e->fRight) {
1365 LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1366 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1373 // This is a driver function which calls stages 2-5 in turn.
1375 Poly* contours_to_polys(Vertex** contours, int contourCnt, SkChunkAlloc& alloc) {
1377 for (int i = 0; i < contourCnt; ++i) {
1378 Vertex* v = contours[i];
1380 LOG("path.moveTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
1381 for (v = v->fNext; v != contours[i]; v = v->fNext) {
1382 LOG("path.lineTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
1386 sanitize_contours(contours, contourCnt);
1387 Vertex* vertices = build_edges(contours, contourCnt, alloc);
1392 // Sort vertices in Y (secondarily in X).
1393 merge_sort(&vertices);
1394 merge_coincident_vertices(&vertices, alloc);
1396 for (Vertex* v = vertices; v != NULL; v = v->fNext) {
1397 static float gID = 0.0f;
1401 simplify(vertices, alloc);
1402 return tessellate(vertices, alloc);
1405 // Stage 6: Triangulate the monotone polygons into a vertex buffer.
1407 void* polys_to_triangles(Poly* polys, SkPath::FillType fillType, void* data) {
1409 for (Poly* poly = polys; poly; poly = poly->fNext) {
1410 if (apply_fill_type(fillType, poly->fWinding)) {
1419 GrTessellatingPathRenderer::GrTessellatingPathRenderer() {
1422 GrPathRenderer::StencilSupport GrTessellatingPathRenderer::onGetStencilSupport(
1423 const GrDrawTarget*,
1424 const GrPipelineBuilder*,
1426 const SkStrokeRec&) const {
1427 return GrPathRenderer::kNoSupport_StencilSupport;
1430 bool GrTessellatingPathRenderer::canDrawPath(const GrDrawTarget* target,
1431 const GrPipelineBuilder* pipelineBuilder,
1432 const SkMatrix& viewMatrix,
1434 const SkStrokeRec& stroke,
1435 bool antiAlias) const {
1436 // This path renderer can draw all fill styles, but does not do antialiasing. It can do convex
1437 // and concave paths, but we'll leave the convex ones to simpler algorithms.
1438 return stroke.isFillStyle() && !antiAlias && !path.isConvex();
1441 class TessellatingPathBatch : public GrBatch {
1444 static GrBatch* Create(const GrColor& color,
1446 const SkMatrix& viewMatrix,
1447 SkRect clipBounds) {
1448 return SkNEW_ARGS(TessellatingPathBatch, (color, path, viewMatrix, clipBounds));
1451 const char* name() const SK_OVERRIDE { return "TessellatingPathBatch"; }
1453 void getInvariantOutputColor(GrInitInvariantOutput* out) const SK_OVERRIDE {
1454 out->setKnownFourComponents(fColor);
1457 void getInvariantOutputCoverage(GrInitInvariantOutput* out) const SK_OVERRIDE {
1458 out->setUnknownSingleComponent();
1461 void initBatchTracker(const GrPipelineInfo& init) SK_OVERRIDE {
1462 // Handle any color overrides
1463 if (init.fColorIgnored) {
1464 fColor = GrColor_ILLEGAL;
1465 } else if (GrColor_ILLEGAL != init.fOverrideColor) {
1466 fColor = init.fOverrideColor;
1468 fPipelineInfo = init;
1471 void generateGeometry(GrBatchTarget* batchTarget, const GrPipeline* pipeline) SK_OVERRIDE {
1472 SkScalar tol = GrPathUtils::scaleToleranceToSrc(SK_Scalar1, fViewMatrix, fPath.getBounds());
1474 int maxPts = GrPathUtils::worstCasePointCount(fPath, &contourCnt, tol);
1478 if (maxPts > ((int)SK_MaxU16 + 1)) {
1479 SkDebugf("Path not rendered, too many verts (%d)\n", maxPts);
1482 SkPath::FillType fillType = fPath.getFillType();
1483 if (SkPath::IsInverseFillType(fillType)) {
1487 LOG("got %d pts, %d contours\n", maxPts, contourCnt);
1488 uint32_t flags = GrDefaultGeoProcFactory::kPosition_GPType;
1489 SkAutoTUnref<const GrGeometryProcessor> gp(
1490 GrDefaultGeoProcFactory::Create(flags, fColor, fViewMatrix, SkMatrix::I()));
1491 batchTarget->initDraw(gp, pipeline);
1492 gp->initBatchTracker(batchTarget->currentBatchTracker(), fPipelineInfo);
1494 SkAutoTDeleteArray<Vertex*> contours(SkNEW_ARRAY(Vertex *, contourCnt));
1496 // For the initial size of the chunk allocator, estimate based on the point count:
1497 // one vertex per point for the initial passes, plus two for the vertices in the
1498 // resulting Polys, since the same point may end up in two Polys. Assume minimal
1499 // connectivity of one Edge per Vertex (will grow for intersections).
1500 SkChunkAlloc alloc(maxPts * (3 * sizeof(Vertex) + sizeof(Edge)));
1501 path_to_contours(fPath, tol, fClipBounds, contours.get(), alloc);
1503 polys = contours_to_polys(contours.get(), contourCnt, alloc);
1505 for (Poly* poly = polys; poly; poly = poly->fNext) {
1506 if (apply_fill_type(fillType, poly->fWinding) && poly->fCount >= 3) {
1507 count += (poly->fCount - 2) * (WIREFRAME ? 6 : 3);
1511 size_t stride = gp->getVertexStride();
1512 const GrVertexBuffer* vertexBuffer;
1514 void* vertices = batchTarget->vertexPool()->makeSpace(stride,
1520 SkDebugf("Could not allocate vertices\n");
1524 LOG("emitting %d verts\n", count);
1525 void* end = polys_to_triangles(polys, fillType, vertices);
1526 int actualCount = static_cast<int>(
1527 (static_cast<char*>(end) - static_cast<char*>(vertices)) / stride);
1528 LOG("actual count: %d\n", actualCount);
1529 SkASSERT(actualCount <= count);
1531 GrPrimitiveType primitiveType = WIREFRAME ? kLines_GrPrimitiveType
1532 : kTriangles_GrPrimitiveType;
1533 GrDrawTarget::DrawInfo drawInfo;
1534 drawInfo.setPrimitiveType(primitiveType);
1535 drawInfo.setVertexBuffer(vertexBuffer);
1536 drawInfo.setStartVertex(firstVertex);
1537 drawInfo.setVertexCount(actualCount);
1538 drawInfo.setStartIndex(0);
1539 drawInfo.setIndexCount(0);
1540 batchTarget->draw(drawInfo);
1542 batchTarget->putBackVertices((size_t)(count - actualCount), stride);
1546 bool onCombineIfPossible(GrBatch*) SK_OVERRIDE {
1551 TessellatingPathBatch(const GrColor& color,
1553 const SkMatrix& viewMatrix,
1554 const SkRect& clipBounds)
1557 , fViewMatrix(viewMatrix)
1558 , fClipBounds(clipBounds) {
1559 this->initClassID<TessellatingPathBatch>();
1564 SkMatrix fViewMatrix;
1565 SkRect fClipBounds; // in source space
1566 GrPipelineInfo fPipelineInfo;
1569 bool GrTessellatingPathRenderer::onDrawPath(GrDrawTarget* target,
1570 GrPipelineBuilder* pipelineBuilder,
1572 const SkMatrix& viewM,
1574 const SkStrokeRec& stroke,
1576 SkASSERT(!antiAlias);
1577 const GrRenderTarget* rt = pipelineBuilder->getRenderTarget();
1582 SkIRect clipBoundsI;
1583 pipelineBuilder->clip().getConservativeBounds(rt, &clipBoundsI);
1584 SkRect clipBounds = SkRect::Make(clipBoundsI);
1586 if (!viewM.invert(&vmi)) {
1589 vmi.mapRect(&clipBounds);
1590 SkAutoTUnref<GrBatch> batch(TessellatingPathBatch::Create(color, path, viewM, clipBounds));
1591 target->drawBatch(pipelineBuilder, batch);