1170e1cc99f60eda811dd516bfb5b6d3d7f3a284
[platform/upstream/libSkiaSharp.git] / src / gpu / GrTessellatingPathRenderer.cpp
1 /*
2  * Copyright 2015 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7
8 #include "GrTessellatingPathRenderer.h"
9
10 #include "GrBatch.h"
11 #include "GrBatchTarget.h"
12 #include "GrDefaultGeoProcFactory.h"
13 #include "GrPathUtils.h"
14 #include "SkChunkAlloc.h"
15 #include "SkGeometry.h"
16
17 #include <stdio.h>
18
19 /*
20  * This path renderer tessellates the path into triangles, uploads the triangles to a
21  * vertex buffer, and renders them with a single draw call. It does not currently do
22  * antialiasing, so it must be used in conjunction with multisampling.
23  *
24  * There are six stages to the algorithm:
25  *
26  * 1) Linearize the path contours into piecewise linear segments (path_to_contours()).
27  * 2) Build a mesh of edges connecting the vertices (build_edges()).
28  * 3) Sort the vertices in Y (and secondarily in X) (merge_sort()).
29  * 4) Simplify the mesh by inserting new vertices at intersecting edges (simplify()).
30  * 5) Tessellate the simplified mesh into monotone polygons (tessellate()).
31  * 6) Triangulate the monotone polygons directly into a vertex buffer (polys_to_triangles()).
32  *
33  * The vertex sorting in step (3) is a merge sort, since it plays well with the linked list
34  * of vertices (and the necessity of inserting new vertices on intersection).
35  *
36  * Stages (4) and (5) use an active edge list, which a list of all edges for which the
37  * sweep line has crossed the top vertex, but not the bottom vertex.  It's sorted
38  * left-to-right based on the point where both edges are active (when both top vertices
39  * have been seen, so the "lower" top vertex of the two). If the top vertices are equal
40  * (shared), it's sorted based on the last point where both edges are active, so the
41  * "upper" bottom vertex.
42  *
43  * The most complex step is the simplification (4). It's based on the Bentley-Ottman
44  * line-sweep algorithm, but due to floating point inaccuracy, the intersection points are
45  * not exact and may violate the mesh topology or active edge list ordering. We
46  * accommodate this by adjusting the topology of the mesh and AEL to match the intersection
47  * points. This occurs in three ways:
48  *
49  * A) Intersections may cause a shortened edge to no longer be ordered with respect to its
50  *    neighbouring edges at the top or bottom vertex. This is handled by merging the
51  *    edges (merge_collinear_edges()).
52  * B) Intersections may cause an edge to violate the left-to-right ordering of the
53  *    active edge list. This is handled by splitting the neighbour edge on the
54  *    intersected vertex (cleanup_active_edges()).
55  * C) Shortening an edge may cause an active edge to become inactive or an inactive edge
56  *    to become active. This is handled by removing or inserting the edge in the active
57  *    edge list (fix_active_state()).
58  *
59  * The tessellation steps (5) and (6) are based on "Triangulating Simple Polygons and
60  * Equivalent Problems" (Fournier and Montuno); also a line-sweep algorithm. Note that it
61  * currently uses a linked list for the active edge list, rather than a 2-3 tree as the
62  * paper describes. The 2-3 tree gives O(lg N) lookups, but insertion and removal also
63  * become O(lg N). In all the test cases, it was found that the cost of frequent O(lg N)
64  * insertions and removals was greater than the cost of infrequent O(N) lookups with the
65  * linked list implementation. With the latter, all removals are O(1), and most insertions
66  * are O(1), since we know the adjacent edge in the active edge list based on the topology.
67  * Only type 2 vertices (see paper) require the O(N) lookups, and these are much less
68  * frequent. There may be other data structures worth investigating, however.
69  *
70  * Note that there is a compile-time flag (SWEEP_IN_X) which changes the orientation of the
71  * line sweep algorithms. When SWEEP_IN_X is unset, we sort vertices based on increasing
72  * Y coordinate, and secondarily by increasing X coordinate. When SWEEP_IN_X is set, we sort by
73  * increasing X coordinate, but secondarily by *decreasing* Y coordinate. This is so that the
74  * "left" and "right" orientation in the code remains correct (edges to the left are increasing
75  * in Y; edges to the right are decreasing in Y). That is, the setting rotates 90 degrees
76  * counterclockwise, rather that transposing.
77  *
78  * The choice is arbitrary, but most test cases are wider than they are tall, so the
79  * default is to sweep in X. In the future, we may want to make this a runtime parameter
80  * and base it on the aspect ratio of the clip bounds.
81  */
82 #define LOGGING_ENABLED 0
83 #define WIREFRAME 0
84 #define SWEEP_IN_X 1
85
86 #if LOGGING_ENABLED
87 #define LOG printf
88 #else
89 #define LOG(...)
90 #endif
91
92 #define ALLOC_NEW(Type, args, alloc) \
93     SkNEW_PLACEMENT_ARGS(alloc.allocThrow(sizeof(Type)), Type, args)
94
95 namespace {
96
97 struct Vertex;
98 struct Edge;
99 struct Poly;
100
101 template <class T, T* T::*Prev, T* T::*Next>
102 void insert(T* t, T* prev, T* next, T** head, T** tail) {
103     t->*Prev = prev;
104     t->*Next = next;
105     if (prev) {
106         prev->*Next = t;
107     } else if (head) {
108         *head = t;
109     }
110     if (next) {
111         next->*Prev = t;
112     } else if (tail) {
113         *tail = t;
114     }
115 }
116
117 template <class T, T* T::*Prev, T* T::*Next>
118 void remove(T* t, T** head, T** tail) {
119     if (t->*Prev) {
120         t->*Prev->*Next = t->*Next;
121     } else if (head) {
122         *head = t->*Next;
123     }
124     if (t->*Next) {
125         t->*Next->*Prev = t->*Prev;
126     } else if (tail) {
127         *tail = t->*Prev;
128     }
129     t->*Prev = t->*Next = NULL;
130 }
131
132 /**
133  * Vertices are used in three ways: first, the path contours are converted into a
134  * circularly-linked list of Vertices for each contour. After edge construction, the same Vertices
135  * are re-ordered by the merge sort according to the sweep_lt comparator (usually, increasing
136  * in Y) using the same fPrev/fNext pointers that were used for the contours, to avoid
137  * reallocation. Finally, MonotonePolys are built containing a circularly-linked list of
138  * Vertices. (Currently, those Vertices are newly-allocated for the MonotonePolys, since
139  * an individual Vertex from the path mesh may belong to multiple
140  * MonotonePolys, so the original Vertices cannot be re-used.
141  */
142
143 struct Vertex {
144   Vertex(const SkPoint& point)
145     : fPoint(point), fPrev(NULL), fNext(NULL)
146     , fFirstEdgeAbove(NULL), fLastEdgeAbove(NULL)
147     , fFirstEdgeBelow(NULL), fLastEdgeBelow(NULL)
148     , fProcessed(false)
149 #if LOGGING_ENABLED
150     , fID (-1.0f)
151 #endif
152     {}
153     SkPoint fPoint;           // Vertex position
154     Vertex* fPrev;            // Linked list of contours, then Y-sorted vertices.
155     Vertex* fNext;            // "
156     Edge*   fFirstEdgeAbove;  // Linked list of edges above this vertex.
157     Edge*   fLastEdgeAbove;   // "
158     Edge*   fFirstEdgeBelow;  // Linked list of edges below this vertex.
159     Edge*   fLastEdgeBelow;   // "
160     bool    fProcessed;       // Has this vertex been seen in simplify()?
161 #if LOGGING_ENABLED
162     float   fID;              // Identifier used for logging.
163 #endif
164 };
165
166 /***************************************************************************************/
167
168 bool sweep_lt(const SkPoint& a, const SkPoint& b) {
169 #if SWEEP_IN_X
170     return a.fX == b.fX ? a.fY > b.fY : a.fX < b.fX;
171 #else
172     return a.fY == b.fY ? a.fX < b.fX : a.fY < b.fY;
173 #endif
174 }
175
176 bool sweep_gt(const SkPoint& a, const SkPoint& b) {
177 #if SWEEP_IN_X
178     return a.fX == b.fX ? a.fY < b.fY : a.fX > b.fX;
179 #else
180     return a.fY == b.fY ? a.fX > b.fX : a.fY > b.fY;
181 #endif
182 }
183
184 inline void* emit_vertex(Vertex* v, void* data) {
185     SkPoint* d = static_cast<SkPoint*>(data);
186     *d++ = v->fPoint;
187     return d;
188 }
189
190 void* emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2, void* data) {
191 #if WIREFRAME
192     data = emit_vertex(v0, data);
193     data = emit_vertex(v1, data);
194     data = emit_vertex(v1, data);
195     data = emit_vertex(v2, data);
196     data = emit_vertex(v2, data);
197     data = emit_vertex(v0, data);
198 #else
199     data = emit_vertex(v0, data);
200     data = emit_vertex(v1, data);
201     data = emit_vertex(v2, data);
202 #endif
203     return data;
204 }
205
206 /**
207  * An Edge joins a top Vertex to a bottom Vertex. Edge ordering for the list of "edges above" and
208  * "edge below" a vertex as well as for the active edge list is handled by isLeftOf()/isRightOf().
209  * Note that an Edge will give occasionally dist() != 0 for its own endpoints (because floating
210  * point). For speed, that case is only tested by the callers which require it (e.g.,
211  * cleanup_active_edges()). Edges also handle checking for intersection with other edges.
212  * Currently, this converts the edges to the parametric form, in order to avoid doing a division
213  * until an intersection has been confirmed. This is slightly slower in the "found" case, but
214  * a lot faster in the "not found" case.
215  *
216  * The coefficients of the line equation stored in double precision to avoid catastrphic
217  * cancellation in the isLeftOf() and isRightOf() checks. Using doubles ensures that the result is
218  * correct in float, since it's a polynomial of degree 2. The intersect() function, being
219  * degree 5, is still subject to catastrophic cancellation. We deal with that by assuming its
220  * output may be incorrect, and adjusting the mesh topology to match (see comment at the top of
221  * this file).
222  */
223
224 struct Edge {
225     Edge(Vertex* top, Vertex* bottom, int winding)
226         : fWinding(winding)
227         , fTop(top)
228         , fBottom(bottom)
229         , fLeft(NULL)
230         , fRight(NULL)
231         , fPrevEdgeAbove(NULL)
232         , fNextEdgeAbove(NULL)
233         , fPrevEdgeBelow(NULL)
234         , fNextEdgeBelow(NULL)
235         , fLeftPoly(NULL)
236         , fRightPoly(NULL) {
237             recompute();
238         }
239     int      fWinding;          // 1 == edge goes downward; -1 = edge goes upward.
240     Vertex*  fTop;              // The top vertex in vertex-sort-order (sweep_lt).
241     Vertex*  fBottom;           // The bottom vertex in vertex-sort-order.
242     Edge*    fLeft;             // The linked list of edges in the active edge list.
243     Edge*    fRight;            // "
244     Edge*    fPrevEdgeAbove;    // The linked list of edges in the bottom Vertex's "edges above".
245     Edge*    fNextEdgeAbove;    // "
246     Edge*    fPrevEdgeBelow;    // The linked list of edges in the top Vertex's "edges below".
247     Edge*    fNextEdgeBelow;    // "
248     Poly*    fLeftPoly;         // The Poly to the left of this edge, if any.
249     Poly*    fRightPoly;        // The Poly to the right of this edge, if any.
250     double   fDX;               // The line equation for this edge, in implicit form.
251     double   fDY;               // fDY * x + fDX * y + fC = 0, for point (x, y) on the line.
252     double   fC;
253     double dist(const SkPoint& p) const {
254         return fDY * p.fX - fDX * p.fY + fC;
255     }
256     bool isRightOf(Vertex* v) const {
257         return dist(v->fPoint) < 0.0;
258     }
259     bool isLeftOf(Vertex* v) const {
260         return dist(v->fPoint) > 0.0;
261     }
262     void recompute() {
263         fDX = static_cast<double>(fBottom->fPoint.fX) - fTop->fPoint.fX;
264         fDY = static_cast<double>(fBottom->fPoint.fY) - fTop->fPoint.fY;
265         fC = static_cast<double>(fTop->fPoint.fY) * fBottom->fPoint.fX -
266              static_cast<double>(fTop->fPoint.fX) * fBottom->fPoint.fY;
267     }
268     bool intersect(const Edge& other, SkPoint* p) {
269         LOG("intersecting %g -> %g with %g -> %g\n",
270                fTop->fID, fBottom->fID,
271                other.fTop->fID, other.fBottom->fID);
272         if (fTop == other.fTop || fBottom == other.fBottom) {
273             return false;
274         }
275         double denom = fDX * other.fDY - fDY * other.fDX;
276         if (denom == 0.0) {
277             return false;
278         }
279         double dx = static_cast<double>(fTop->fPoint.fX) - other.fTop->fPoint.fX;
280         double dy = static_cast<double>(fTop->fPoint.fY) - other.fTop->fPoint.fY;
281         double sNumer = dy * other.fDX - dx * other.fDY;
282         double tNumer = dy * fDX - dx * fDY;
283         // If (sNumer / denom) or (tNumer / denom) is not in [0..1], exit early.
284         // This saves us doing the divide below unless absolutely necessary.
285         if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNumer > denom)
286                         : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNumer < denom)) {
287             return false;
288         }
289         double s = sNumer / denom;
290         SkASSERT(s >= 0.0 && s <= 1.0);
291         p->fX = SkDoubleToScalar(fTop->fPoint.fX + s * fDX);
292         p->fY = SkDoubleToScalar(fTop->fPoint.fY + s * fDY);
293         return true;
294     }
295     bool isActive(Edge** activeEdges) const {
296         return activeEdges && (fLeft || fRight || *activeEdges == this);
297     }
298 };
299
300 /***************************************************************************************/
301
302 struct Poly {
303     Poly(int winding)
304         : fWinding(winding)
305         , fHead(NULL)
306         , fTail(NULL)
307         , fActive(NULL)
308         , fNext(NULL)
309         , fPartner(NULL)
310         , fCount(0)
311     {
312 #if LOGGING_ENABLED
313         static int gID = 0;
314         fID = gID++;
315         LOG("*** created Poly %d\n", fID);
316 #endif
317     }
318     typedef enum { kNeither_Side, kLeft_Side, kRight_Side } Side;
319     struct MonotonePoly {
320         MonotonePoly()
321             : fSide(kNeither_Side)
322             , fHead(NULL)
323             , fTail(NULL)
324             , fPrev(NULL)
325             , fNext(NULL) {}
326         Side          fSide;
327         Vertex*       fHead;
328         Vertex*       fTail;
329         MonotonePoly* fPrev;
330         MonotonePoly* fNext;
331         bool addVertex(Vertex* v, Side side, SkChunkAlloc& alloc) {
332             Vertex* newV = ALLOC_NEW(Vertex, (v->fPoint), alloc);
333             bool done = false;
334             if (fSide == kNeither_Side) {
335                 fSide = side;
336             } else {
337                 done = side != fSide;
338             }
339             if (fHead == NULL) {
340                 fHead = fTail = newV;
341             } else if (fSide == kRight_Side) {
342                 newV->fPrev = fTail;
343                 fTail->fNext = newV;
344                 fTail = newV;
345             } else {
346                 newV->fNext = fHead;
347                 fHead->fPrev = newV;
348                 fHead = newV;
349             }
350             return done;
351         }
352
353         void* emit(void* data) {
354             Vertex* first = fHead;
355             Vertex* v = first->fNext;
356             while (v != fTail) {
357                 SkASSERT(v && v->fPrev && v->fNext);
358 #ifdef SK_DEBUG
359                 validate();
360 #endif
361                 Vertex* prev = v->fPrev;
362                 Vertex* curr = v;
363                 Vertex* next = v->fNext;
364                 double ax = static_cast<double>(curr->fPoint.fX) - prev->fPoint.fX;
365                 double ay = static_cast<double>(curr->fPoint.fY) - prev->fPoint.fY;
366                 double bx = static_cast<double>(next->fPoint.fX) - curr->fPoint.fX;
367                 double by = static_cast<double>(next->fPoint.fY) - curr->fPoint.fY;
368                 if (ax * by - ay * bx >= 0.0) {
369                     data = emit_triangle(prev, curr, next, data);
370                     v->fPrev->fNext = v->fNext;
371                     v->fNext->fPrev = v->fPrev;
372                     if (v->fPrev == first) {
373                         v = v->fNext;
374                     } else {
375                         v = v->fPrev;
376                     }
377                 } else {
378                     v = v->fNext;
379                     SkASSERT(v != fTail);
380                 }
381             }
382             return data;
383         }
384
385 #ifdef SK_DEBUG
386         void validate() {
387             int winding = sweep_lt(fHead->fPoint, fTail->fPoint) ? 1 : -1;
388             Vertex* top = winding < 0 ? fTail : fHead;
389             Vertex* bottom = winding < 0 ? fHead : fTail;
390             Edge e(top, bottom, winding);
391             for (Vertex* v = fHead->fNext; v != fTail; v = v->fNext) {
392                 if (fSide == kRight_Side) {
393                     SkASSERT(!e.isRightOf(v));
394                 } else if (fSide == Poly::kLeft_Side) {
395                     SkASSERT(!e.isLeftOf(v));
396                 }
397             }
398         }
399 #endif
400     };
401     Poly* addVertex(Vertex* v, Side side, SkChunkAlloc& alloc) {
402         LOG("addVertex() to %d at %g (%g, %g), %s side\n", fID, v->fID, v->fPoint.fX, v->fPoint.fY,
403                side == kLeft_Side ? "left" : side == kRight_Side ? "right" : "neither");
404         Poly* partner = fPartner;
405         Poly* poly = this;
406         if (partner) {
407             fPartner = partner->fPartner = NULL;
408         }
409         if (!fActive) {
410             fActive = ALLOC_NEW(MonotonePoly, (), alloc);
411         }
412         if (fActive->addVertex(v, side, alloc)) {
413 #ifdef SK_DEBUG
414             fActive->validate();
415 #endif
416             if (fTail) {
417                 fActive->fPrev = fTail;
418                 fTail->fNext = fActive;
419                 fTail = fActive;
420             } else {
421                 fHead = fTail = fActive;
422             }
423             if (partner) {
424                 partner->addVertex(v, side, alloc);
425                 poly = partner;
426             } else {
427                 Vertex* prev = fActive->fSide == Poly::kLeft_Side ?
428                                fActive->fHead->fNext : fActive->fTail->fPrev;
429                 fActive = ALLOC_NEW(MonotonePoly, , alloc);
430                 fActive->addVertex(prev, Poly::kNeither_Side, alloc);
431                 fActive->addVertex(v, side, alloc);
432             }
433         }
434         fCount++;
435         return poly;
436     }
437     void end(Vertex* v, SkChunkAlloc& alloc) {
438         LOG("end() %d at %g, %g\n", fID, v->fPoint.fX, v->fPoint.fY);
439         if (fPartner) {
440             fPartner = fPartner->fPartner = NULL;
441         }
442         addVertex(v, fActive->fSide == kLeft_Side ? kRight_Side : kLeft_Side, alloc);
443     }
444     void* emit(void *data) {
445         if (fCount < 3) {
446             return data;
447         }
448         LOG("emit() %d, size %d\n", fID, fCount);
449         for (MonotonePoly* m = fHead; m != NULL; m = m->fNext) {
450             data = m->emit(data);
451         }
452         return data;
453     }
454     int fWinding;
455     MonotonePoly* fHead;
456     MonotonePoly* fTail;
457     MonotonePoly* fActive;
458     Poly* fNext;
459     Poly* fPartner;
460     int fCount;
461 #if LOGGING_ENABLED
462     int fID;
463 #endif
464 };
465
466 /***************************************************************************************/
467
468 bool coincident(const SkPoint& a, const SkPoint& b) {
469     return a == b;
470 }
471
472 Poly* new_poly(Poly** head, Vertex* v, int winding, SkChunkAlloc& alloc) {
473     Poly* poly = ALLOC_NEW(Poly, (winding), alloc);
474     poly->addVertex(v, Poly::kNeither_Side, alloc);
475     poly->fNext = *head;
476     *head = poly;
477     return poly;
478 }
479
480 #ifdef SK_DEBUG
481 void validate_edges(Edge* head) {
482     for (Edge* e = head; e != NULL; e = e->fRight) {
483         SkASSERT(e->fTop != e->fBottom);
484         if (e->fLeft) {
485             SkASSERT(e->fLeft->fRight == e);
486             if (sweep_gt(e->fTop->fPoint, e->fLeft->fTop->fPoint)) {
487                 SkASSERT(e->fLeft->isLeftOf(e->fTop));
488             }
489             if (sweep_lt(e->fBottom->fPoint, e->fLeft->fBottom->fPoint)) {
490                 SkASSERT(e->fLeft->isLeftOf(e->fBottom));
491             }
492         } else {
493             SkASSERT(e == head);
494         }
495         if (e->fRight) {
496             SkASSERT(e->fRight->fLeft == e);
497             if (sweep_gt(e->fTop->fPoint, e->fRight->fTop->fPoint)) {
498                 SkASSERT(e->fRight->isRightOf(e->fTop));
499             }
500             if (sweep_lt(e->fBottom->fPoint, e->fRight->fBottom->fPoint)) {
501                 SkASSERT(e->fRight->isRightOf(e->fBottom));
502             }
503         }
504     }
505 }
506
507 void validate_connectivity(Vertex* v) {
508     for (Edge* e = v->fFirstEdgeAbove; e != NULL; e = e->fNextEdgeAbove) {
509         SkASSERT(e->fBottom == v);
510         if (e->fPrevEdgeAbove) {
511             SkASSERT(e->fPrevEdgeAbove->fNextEdgeAbove == e);
512             SkASSERT(e->fPrevEdgeAbove->isLeftOf(e->fTop));
513         } else {
514             SkASSERT(e == v->fFirstEdgeAbove);
515         }
516         if (e->fNextEdgeAbove) {
517             SkASSERT(e->fNextEdgeAbove->fPrevEdgeAbove == e);
518             SkASSERT(e->fNextEdgeAbove->isRightOf(e->fTop));
519         } else {
520             SkASSERT(e == v->fLastEdgeAbove);
521         }
522     }
523     for (Edge* e = v->fFirstEdgeBelow; e != NULL; e = e->fNextEdgeBelow) {
524         SkASSERT(e->fTop == v);
525         if (e->fPrevEdgeBelow) {
526             SkASSERT(e->fPrevEdgeBelow->fNextEdgeBelow == e);
527             SkASSERT(e->fPrevEdgeBelow->isLeftOf(e->fBottom));
528         } else {
529             SkASSERT(e == v->fFirstEdgeBelow);
530         }
531         if (e->fNextEdgeBelow) {
532             SkASSERT(e->fNextEdgeBelow->fPrevEdgeBelow == e);
533             SkASSERT(e->fNextEdgeBelow->isRightOf(e->fBottom));
534         } else {
535             SkASSERT(e == v->fLastEdgeBelow);
536         }
537     }
538 }
539 #endif
540
541 Vertex* append_point_to_contour(const SkPoint& p, Vertex* prev, Vertex** head,
542                                 SkChunkAlloc& alloc) {
543     Vertex* v = ALLOC_NEW(Vertex, (p), alloc);
544 #if LOGGING_ENABLED
545     static float gID = 0.0f;
546     v->fID = gID++;
547 #endif
548     if (prev) {
549         prev->fNext = v;
550         v->fPrev = prev;
551     } else {
552         *head = v;
553     }
554     return v;
555 }
556
557 Vertex* generate_quadratic_points(const SkPoint& p0,
558                                   const SkPoint& p1,
559                                   const SkPoint& p2,
560                                   SkScalar tolSqd,
561                                   Vertex* prev,
562                                   Vertex** head,
563                                   int pointsLeft,
564                                   SkChunkAlloc& alloc) {
565     SkScalar d = p1.distanceToLineSegmentBetweenSqd(p0, p2);
566     if (pointsLeft < 2 || d < tolSqd || !SkScalarIsFinite(d)) {
567         return append_point_to_contour(p2, prev, head, alloc);
568     }
569
570     const SkPoint q[] = {
571         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
572         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
573     };
574     const SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
575
576     pointsLeft >>= 1;
577     prev = generate_quadratic_points(p0, q[0], r, tolSqd, prev, head, pointsLeft, alloc);
578     prev = generate_quadratic_points(r, q[1], p2, tolSqd, prev, head, pointsLeft, alloc);
579     return prev;
580 }
581
582 Vertex* generate_cubic_points(const SkPoint& p0,
583                               const SkPoint& p1,
584                               const SkPoint& p2,
585                               const SkPoint& p3,
586                               SkScalar tolSqd,
587                               Vertex* prev,
588                               Vertex** head,
589                               int pointsLeft,
590                               SkChunkAlloc& alloc) {
591     SkScalar d1 = p1.distanceToLineSegmentBetweenSqd(p0, p3);
592     SkScalar d2 = p2.distanceToLineSegmentBetweenSqd(p0, p3);
593     if (pointsLeft < 2 || (d1 < tolSqd && d2 < tolSqd) ||
594         !SkScalarIsFinite(d1) || !SkScalarIsFinite(d2)) {
595         return append_point_to_contour(p3, prev, head, alloc);
596     }
597     const SkPoint q[] = {
598         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
599         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
600         { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
601     };
602     const SkPoint r[] = {
603         { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
604         { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
605     };
606     const SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
607     pointsLeft >>= 1;
608     prev = generate_cubic_points(p0, q[0], r[0], s, tolSqd, prev, head, pointsLeft, alloc);
609     prev = generate_cubic_points(s, r[1], q[2], p3, tolSqd, prev, head, pointsLeft, alloc);
610     return prev;
611 }
612
613 // Stage 1: convert the input path to a set of linear contours (linked list of Vertices).
614
615 void path_to_contours(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
616                       Vertex** contours, SkChunkAlloc& alloc) {
617
618     SkScalar toleranceSqd = tolerance * tolerance;
619
620     SkPoint pts[4];
621     bool done = false;
622     SkPath::Iter iter(path, false);
623     Vertex* prev = NULL;
624     Vertex* head = NULL;
625     if (path.isInverseFillType()) {
626         SkPoint quad[4];
627         clipBounds.toQuad(quad);
628         for (int i = 3; i >= 0; i--) {
629             prev = append_point_to_contour(quad[i], prev, &head, alloc);
630         }
631         head->fPrev = prev;
632         prev->fNext = head;
633         *contours++ = head;
634         head = prev = NULL;
635     }
636     SkAutoConicToQuads converter;
637     while (!done) {
638         SkPath::Verb verb = iter.next(pts);
639         switch (verb) {
640             case SkPath::kConic_Verb: {
641                 SkScalar weight = iter.conicWeight();
642                 const SkPoint* quadPts = converter.computeQuads(pts, weight, toleranceSqd);
643                 for (int i = 0; i < converter.countQuads(); ++i) {
644                     int pointsLeft = GrPathUtils::quadraticPointCount(quadPts, toleranceSqd);
645                     prev = generate_quadratic_points(quadPts[0], quadPts[1], quadPts[2],
646                                                      toleranceSqd, prev, &head, pointsLeft, alloc);
647                     quadPts += 2;
648                 }
649                 break;
650             }
651             case SkPath::kMove_Verb:
652                 if (head) {
653                     head->fPrev = prev;
654                     prev->fNext = head;
655                     *contours++ = head;
656                 }
657                 head = prev = NULL;
658                 prev = append_point_to_contour(pts[0], prev, &head, alloc);
659                 break;
660             case SkPath::kLine_Verb: {
661                 prev = append_point_to_contour(pts[1], prev, &head, alloc);
662                 break;
663             }
664             case SkPath::kQuad_Verb: {
665                 int pointsLeft = GrPathUtils::quadraticPointCount(pts, toleranceSqd);
666                 prev = generate_quadratic_points(pts[0], pts[1], pts[2], toleranceSqd, prev,
667                                                  &head, pointsLeft, alloc);
668                 break;
669             }
670             case SkPath::kCubic_Verb: {
671                 int pointsLeft = GrPathUtils::cubicPointCount(pts, toleranceSqd);
672                 prev = generate_cubic_points(pts[0], pts[1], pts[2], pts[3],
673                                 toleranceSqd, prev, &head, pointsLeft, alloc);
674                 break;
675             }
676             case SkPath::kClose_Verb:
677                 if (head) {
678                     head->fPrev = prev;
679                     prev->fNext = head;
680                     *contours++ = head;
681                 }
682                 head = prev = NULL;
683                 break;
684             case SkPath::kDone_Verb:
685                 if (head) {
686                     head->fPrev = prev;
687                     prev->fNext = head;
688                     *contours++ = head;
689                 }
690                 done = true;
691                 break;
692         }
693     }
694 }
695
696 inline bool apply_fill_type(SkPath::FillType fillType, int winding) {
697     switch (fillType) {
698         case SkPath::kWinding_FillType:
699             return winding != 0;
700         case SkPath::kEvenOdd_FillType:
701             return (winding & 1) != 0;
702         case SkPath::kInverseWinding_FillType:
703             return winding == 1;
704         case SkPath::kInverseEvenOdd_FillType:
705             return (winding & 1) == 1;
706         default:
707             SkASSERT(false);
708             return false;
709     }
710 }
711
712 Edge* new_edge(Vertex* prev, Vertex* next, SkChunkAlloc& alloc) {
713     int winding = sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1;
714     Vertex* top = winding < 0 ? next : prev;
715     Vertex* bottom = winding < 0 ? prev : next;
716     return ALLOC_NEW(Edge, (top, bottom, winding), alloc);
717 }
718
719 void remove_edge(Edge* edge, Edge** head) {
720     LOG("removing edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
721     SkASSERT(edge->isActive(head));
722     remove<Edge, &Edge::fLeft, &Edge::fRight>(edge, head, NULL);
723 }
724
725 void insert_edge(Edge* edge, Edge* prev, Edge** head) {
726     LOG("inserting edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
727     SkASSERT(!edge->isActive(head));
728     Edge* next = prev ? prev->fRight : *head;
729     insert<Edge, &Edge::fLeft, &Edge::fRight>(edge, prev, next, head, NULL);
730 }
731
732 void find_enclosing_edges(Vertex* v, Edge* head, Edge** left, Edge** right) {
733     if (v->fFirstEdgeAbove) {
734         *left = v->fFirstEdgeAbove->fLeft;
735         *right = v->fLastEdgeAbove->fRight;
736         return;
737     }
738     Edge* prev = NULL;
739     Edge* next;
740     for (next = head; next != NULL; next = next->fRight) {
741         if (next->isRightOf(v)) {
742             break;
743         }
744         prev = next;
745     }
746     *left = prev;
747     *right = next;
748     return;
749 }
750
751 void find_enclosing_edges(Edge* edge, Edge* head, Edge** left, Edge** right) {
752     Edge* prev = NULL;
753     Edge* next;
754     for (next = head; next != NULL; next = next->fRight) {
755         if ((sweep_gt(edge->fTop->fPoint, next->fTop->fPoint) && next->isRightOf(edge->fTop)) ||
756             (sweep_gt(next->fTop->fPoint, edge->fTop->fPoint) && edge->isLeftOf(next->fTop)) ||
757             (sweep_lt(edge->fBottom->fPoint, next->fBottom->fPoint) &&
758              next->isRightOf(edge->fBottom)) ||
759             (sweep_lt(next->fBottom->fPoint, edge->fBottom->fPoint) &&
760              edge->isLeftOf(next->fBottom))) {
761             break;
762         }
763         prev = next;
764     }
765     *left = prev;
766     *right = next;
767     return;
768 }
769
770 void fix_active_state(Edge* edge, Edge** activeEdges) {
771     if (edge->isActive(activeEdges)) {
772         if (edge->fBottom->fProcessed || !edge->fTop->fProcessed) {
773             remove_edge(edge, activeEdges);
774         }
775     } else if (edge->fTop->fProcessed && !edge->fBottom->fProcessed) {
776         Edge* left;
777         Edge* right;
778         find_enclosing_edges(edge, *activeEdges, &left, &right);
779         insert_edge(edge, left, activeEdges);
780     }
781 }
782
783 void insert_edge_above(Edge* edge, Vertex* v) {
784     if (edge->fTop->fPoint == edge->fBottom->fPoint ||
785         sweep_gt(edge->fTop->fPoint, edge->fBottom->fPoint)) {
786         SkASSERT(false);
787         return;
788     }
789     LOG("insert edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID);
790     Edge* prev = NULL;
791     Edge* next;
792     for (next = v->fFirstEdgeAbove; next; next = next->fNextEdgeAbove) {
793         if (next->isRightOf(edge->fTop)) {
794             break;
795         }
796         prev = next;
797     }
798     insert<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
799         edge, prev, next, &v->fFirstEdgeAbove, &v->fLastEdgeAbove);
800 }
801
802 void insert_edge_below(Edge* edge, Vertex* v) {
803     if (edge->fTop->fPoint == edge->fBottom->fPoint ||
804         sweep_gt(edge->fTop->fPoint, edge->fBottom->fPoint)) {
805         SkASSERT(false);
806         return;
807     }
808     LOG("insert edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID);
809     Edge* prev = NULL;
810     Edge* next;
811     for (next = v->fFirstEdgeBelow; next; next = next->fNextEdgeBelow) {
812         if (next->isRightOf(edge->fBottom)) {
813             break;
814         }
815         prev = next;
816     }
817     insert<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
818         edge, prev, next, &v->fFirstEdgeBelow, &v->fLastEdgeBelow);
819 }
820
821 void remove_edge_above(Edge* edge) {
822     LOG("removing edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
823         edge->fBottom->fID);
824     remove<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
825         edge, &edge->fBottom->fFirstEdgeAbove, &edge->fBottom->fLastEdgeAbove);
826 }
827
828 void remove_edge_below(Edge* edge) {
829     LOG("removing edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
830         edge->fTop->fID);
831     remove<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
832         edge, &edge->fTop->fFirstEdgeBelow, &edge->fTop->fLastEdgeBelow);
833 }
834
835 void erase_edge_if_zero_winding(Edge* edge, Edge** head) {
836     if (edge->fWinding != 0) {
837         return;
838     }
839     LOG("erasing edge (%g -> %g)\n", edge->fTop->fID, edge->fBottom->fID);
840     remove_edge_above(edge);
841     remove_edge_below(edge);
842     if (edge->isActive(head)) {
843         remove_edge(edge, head);
844     }
845 }
846
847 void merge_collinear_edges(Edge* edge, Edge** activeEdges);
848
849 void set_top(Edge* edge, Vertex* v, Edge** activeEdges) {
850     remove_edge_below(edge);
851     edge->fTop = v;
852     edge->recompute();
853     insert_edge_below(edge, v);
854     fix_active_state(edge, activeEdges);
855     merge_collinear_edges(edge, activeEdges);
856 }
857
858 void set_bottom(Edge* edge, Vertex* v, Edge** activeEdges) {
859     remove_edge_above(edge);
860     edge->fBottom = v;
861     edge->recompute();
862     insert_edge_above(edge, v);
863     fix_active_state(edge, activeEdges);
864     merge_collinear_edges(edge, activeEdges);
865 }
866
867 void merge_edges_above(Edge* edge, Edge* other, Edge** activeEdges) {
868     if (coincident(edge->fTop->fPoint, other->fTop->fPoint)) {
869         LOG("merging coincident above edges (%g, %g) -> (%g, %g)\n",
870             edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
871             edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
872         other->fWinding += edge->fWinding;
873         erase_edge_if_zero_winding(other, activeEdges);
874         edge->fWinding = 0;
875         erase_edge_if_zero_winding(edge, activeEdges);
876     } else if (sweep_lt(edge->fTop->fPoint, other->fTop->fPoint)) {
877         other->fWinding += edge->fWinding;
878         erase_edge_if_zero_winding(other, activeEdges);
879         set_bottom(edge, other->fTop, activeEdges);
880     } else {
881         edge->fWinding += other->fWinding;
882         erase_edge_if_zero_winding(edge, activeEdges);
883         set_bottom(other, edge->fTop, activeEdges);
884     }
885 }
886
887 void merge_edges_below(Edge* edge, Edge* other, Edge** activeEdges) {
888     if (coincident(edge->fBottom->fPoint, other->fBottom->fPoint)) {
889         LOG("merging coincident below edges (%g, %g) -> (%g, %g)\n",
890             edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
891             edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
892         other->fWinding += edge->fWinding;
893         erase_edge_if_zero_winding(other, activeEdges);
894         edge->fWinding = 0;
895         erase_edge_if_zero_winding(edge, activeEdges);
896     } else if (sweep_lt(edge->fBottom->fPoint, other->fBottom->fPoint)) {
897         edge->fWinding += other->fWinding;
898         erase_edge_if_zero_winding(edge, activeEdges);
899         set_top(other, edge->fBottom, activeEdges);
900     } else {
901         other->fWinding += edge->fWinding;
902         erase_edge_if_zero_winding(other, activeEdges);
903         set_top(edge, other->fBottom, activeEdges);
904     }
905 }
906
907 void merge_collinear_edges(Edge* edge, Edge** activeEdges) {
908     if (edge->fPrevEdgeAbove && (edge->fTop == edge->fPrevEdgeAbove->fTop ||
909                                  !edge->fPrevEdgeAbove->isLeftOf(edge->fTop))) {
910         merge_edges_above(edge, edge->fPrevEdgeAbove, activeEdges);
911     } else if (edge->fNextEdgeAbove && (edge->fTop == edge->fNextEdgeAbove->fTop ||
912                                         !edge->isLeftOf(edge->fNextEdgeAbove->fTop))) {
913         merge_edges_above(edge, edge->fNextEdgeAbove, activeEdges);
914     }
915     if (edge->fPrevEdgeBelow && (edge->fBottom == edge->fPrevEdgeBelow->fBottom ||
916                                  !edge->fPrevEdgeBelow->isLeftOf(edge->fBottom))) {
917         merge_edges_below(edge, edge->fPrevEdgeBelow, activeEdges);
918     } else if (edge->fNextEdgeBelow && (edge->fBottom == edge->fNextEdgeBelow->fBottom ||
919                                         !edge->isLeftOf(edge->fNextEdgeBelow->fBottom))) {
920         merge_edges_below(edge, edge->fNextEdgeBelow, activeEdges);
921     }
922 }
923
924 void split_edge(Edge* edge, Vertex* v, Edge** activeEdges, SkChunkAlloc& alloc);
925
926 void cleanup_active_edges(Edge* edge, Edge** activeEdges, SkChunkAlloc& alloc) {
927     Vertex* top = edge->fTop;
928     Vertex* bottom = edge->fBottom;
929     if (edge->fLeft) {
930         Vertex* leftTop = edge->fLeft->fTop;
931         Vertex* leftBottom = edge->fLeft->fBottom;
932         if (sweep_gt(top->fPoint, leftTop->fPoint) && !edge->fLeft->isLeftOf(top)) {
933             split_edge(edge->fLeft, edge->fTop, activeEdges, alloc);
934         } else if (sweep_gt(leftTop->fPoint, top->fPoint) && !edge->isRightOf(leftTop)) {
935             split_edge(edge, leftTop, activeEdges, alloc);
936         } else if (sweep_lt(bottom->fPoint, leftBottom->fPoint) && !edge->fLeft->isLeftOf(bottom)) {
937             split_edge(edge->fLeft, bottom, activeEdges, alloc);
938         } else if (sweep_lt(leftBottom->fPoint, bottom->fPoint) && !edge->isRightOf(leftBottom)) {
939             split_edge(edge, leftBottom, activeEdges, alloc);
940         }
941     }
942     if (edge->fRight) {
943         Vertex* rightTop = edge->fRight->fTop;
944         Vertex* rightBottom = edge->fRight->fBottom;
945         if (sweep_gt(top->fPoint, rightTop->fPoint) && !edge->fRight->isRightOf(top)) {
946             split_edge(edge->fRight, top, activeEdges, alloc);
947         } else if (sweep_gt(rightTop->fPoint, top->fPoint) && !edge->isLeftOf(rightTop)) {
948             split_edge(edge, rightTop, activeEdges, alloc);
949         } else if (sweep_lt(bottom->fPoint, rightBottom->fPoint) &&
950                    !edge->fRight->isRightOf(bottom)) {
951             split_edge(edge->fRight, bottom, activeEdges, alloc);
952         } else if (sweep_lt(rightBottom->fPoint, bottom->fPoint) &&
953                    !edge->isLeftOf(rightBottom)) {
954             split_edge(edge, rightBottom, activeEdges, alloc);
955         }
956     }
957 }
958
959 void split_edge(Edge* edge, Vertex* v, Edge** activeEdges, SkChunkAlloc& alloc) {
960     LOG("splitting edge (%g -> %g) at vertex %g (%g, %g)\n",
961         edge->fTop->fID, edge->fBottom->fID,
962         v->fID, v->fPoint.fX, v->fPoint.fY);
963     if (sweep_lt(v->fPoint, edge->fTop->fPoint)) {
964         set_top(edge, v, activeEdges);
965     } else if (sweep_gt(v->fPoint, edge->fBottom->fPoint)) {
966         set_bottom(edge, v, activeEdges);
967     } else {
968         Edge* newEdge = ALLOC_NEW(Edge, (v, edge->fBottom, edge->fWinding), alloc);
969         insert_edge_below(newEdge, v);
970         insert_edge_above(newEdge, edge->fBottom);
971         set_bottom(edge, v, activeEdges);
972         cleanup_active_edges(edge, activeEdges, alloc);
973         fix_active_state(newEdge, activeEdges);
974         merge_collinear_edges(newEdge, activeEdges);
975     }
976 }
977
978 void merge_vertices(Vertex* src, Vertex* dst, Vertex** head, SkChunkAlloc& alloc) {
979     LOG("found coincident verts at %g, %g; merging %g into %g\n", src->fPoint.fX, src->fPoint.fY,
980         src->fID, dst->fID);
981     for (Edge* edge = src->fFirstEdgeAbove; edge;) {
982         Edge* next = edge->fNextEdgeAbove;
983         set_bottom(edge, dst, NULL);
984         edge = next;
985     }
986     for (Edge* edge = src->fFirstEdgeBelow; edge;) {
987         Edge* next = edge->fNextEdgeBelow;
988         set_top(edge, dst, NULL);
989         edge = next;
990     }
991     remove<Vertex, &Vertex::fPrev, &Vertex::fNext>(src, head, NULL);
992 }
993
994 Vertex* check_for_intersection(Edge* edge, Edge* other, Edge** activeEdges, SkChunkAlloc& alloc) {
995     SkPoint p;
996     if (!edge || !other) {
997         return NULL;
998     }
999     if (edge->intersect(*other, &p)) {
1000         Vertex* v;
1001         LOG("found intersection, pt is %g, %g\n", p.fX, p.fY);
1002         if (p == edge->fTop->fPoint || sweep_lt(p, edge->fTop->fPoint)) {
1003             split_edge(other, edge->fTop, activeEdges, alloc);
1004             v = edge->fTop;
1005         } else if (p == edge->fBottom->fPoint || sweep_gt(p, edge->fBottom->fPoint)) {
1006             split_edge(other, edge->fBottom, activeEdges, alloc);
1007             v = edge->fBottom;
1008         } else if (p == other->fTop->fPoint || sweep_lt(p, other->fTop->fPoint)) {
1009             split_edge(edge, other->fTop, activeEdges, alloc);
1010             v = other->fTop;
1011         } else if (p == other->fBottom->fPoint || sweep_gt(p, other->fBottom->fPoint)) {
1012             split_edge(edge, other->fBottom, activeEdges, alloc);
1013             v = other->fBottom;
1014         } else {
1015             Vertex* nextV = edge->fTop;
1016             while (sweep_lt(p, nextV->fPoint)) {
1017                 nextV = nextV->fPrev;
1018             }
1019             while (sweep_lt(nextV->fPoint, p)) {
1020                 nextV = nextV->fNext;
1021             }
1022             Vertex* prevV = nextV->fPrev;
1023             if (coincident(prevV->fPoint, p)) {
1024                 v = prevV;
1025             } else if (coincident(nextV->fPoint, p)) {
1026                 v = nextV;
1027             } else {
1028                 v = ALLOC_NEW(Vertex, (p), alloc);
1029                 LOG("inserting between %g (%g, %g) and %g (%g, %g)\n",
1030                     prevV->fID, prevV->fPoint.fX, prevV->fPoint.fY,
1031                     nextV->fID, nextV->fPoint.fX, nextV->fPoint.fY);
1032 #if LOGGING_ENABLED
1033                 v->fID = (nextV->fID + prevV->fID) * 0.5f;
1034 #endif
1035                 v->fPrev = prevV;
1036                 v->fNext = nextV;
1037                 prevV->fNext = v;
1038                 nextV->fPrev = v;
1039             }
1040             split_edge(edge, v, activeEdges, alloc);
1041             split_edge(other, v, activeEdges, alloc);
1042         }
1043 #ifdef SK_DEBUG
1044         validate_connectivity(v);
1045 #endif
1046         return v;
1047     }
1048     return NULL;
1049 }
1050
1051 void sanitize_contours(Vertex** contours, int contourCnt) {
1052     for (int i = 0; i < contourCnt; ++i) {
1053         SkASSERT(contours[i]);
1054         for (Vertex* v = contours[i];;) {
1055             if (coincident(v->fPrev->fPoint, v->fPoint)) {
1056                 LOG("vertex %g,%g coincident; removing\n", v->fPoint.fX, v->fPoint.fY);
1057                 if (v->fPrev == v) {
1058                     contours[i] = NULL;
1059                     break;
1060                 }
1061                 v->fPrev->fNext = v->fNext;
1062                 v->fNext->fPrev = v->fPrev;
1063                 if (contours[i] == v) {
1064                     contours[i] = v->fNext;
1065                 }
1066                 v = v->fPrev;
1067             } else {
1068                 v = v->fNext;
1069                 if (v == contours[i]) break;
1070             }
1071         }
1072     }
1073 }
1074
1075 void merge_coincident_vertices(Vertex** vertices, SkChunkAlloc& alloc) {
1076     for (Vertex* v = (*vertices)->fNext; v != NULL; v = v->fNext) {
1077         if (sweep_lt(v->fPoint, v->fPrev->fPoint)) {
1078             v->fPoint = v->fPrev->fPoint;
1079         }
1080         if (coincident(v->fPrev->fPoint, v->fPoint)) {
1081             merge_vertices(v->fPrev, v, vertices, alloc);
1082         }
1083     }
1084 }
1085
1086 // Stage 2: convert the contours to a mesh of edges connecting the vertices.
1087
1088 Vertex* build_edges(Vertex** contours, int contourCnt, SkChunkAlloc& alloc) {
1089     Vertex* vertices = NULL;
1090     Vertex* prev = NULL;
1091     for (int i = 0; i < contourCnt; ++i) {
1092         for (Vertex* v = contours[i]; v != NULL;) {
1093             Vertex* vNext = v->fNext;
1094             Edge* edge = new_edge(v->fPrev, v, alloc);
1095             if (edge->fWinding > 0) {
1096                 insert_edge_below(edge, v->fPrev);
1097                 insert_edge_above(edge, v);
1098             } else {
1099                 insert_edge_below(edge, v);
1100                 insert_edge_above(edge, v->fPrev);
1101             }
1102             merge_collinear_edges(edge, NULL);
1103             if (prev) {
1104                 prev->fNext = v;
1105                 v->fPrev = prev;
1106             } else {
1107                 vertices = v;
1108             }
1109             prev = v;
1110             v = vNext;
1111             if (v == contours[i]) break;
1112         }
1113     }
1114     if (prev) {
1115         prev->fNext = vertices->fPrev = NULL;
1116     }
1117     return vertices;
1118 }
1119
1120 // Stage 3: sort the vertices by increasing Y (or X if SWEEP_IN_X is on).
1121
1122 Vertex* sorted_merge(Vertex* a, Vertex* b);
1123
1124 void front_back_split(Vertex* v, Vertex** pFront, Vertex** pBack) {
1125     Vertex* fast;
1126     Vertex* slow;
1127     if (!v || !v->fNext) {
1128         *pFront = v;
1129         *pBack = NULL;
1130     } else {
1131         slow = v;
1132         fast = v->fNext;
1133
1134         while (fast != NULL) {
1135             fast = fast->fNext;
1136             if (fast != NULL) {
1137                 slow = slow->fNext;
1138                 fast = fast->fNext;
1139             }
1140         }
1141
1142         *pFront = v;
1143         *pBack = slow->fNext;
1144         slow->fNext->fPrev = NULL;
1145         slow->fNext = NULL;
1146     }
1147 }
1148
1149 void merge_sort(Vertex** head) {
1150     if (!*head || !(*head)->fNext) {
1151         return;
1152     }
1153
1154     Vertex* a;
1155     Vertex* b;
1156     front_back_split(*head, &a, &b);
1157
1158     merge_sort(&a);
1159     merge_sort(&b);
1160
1161     *head = sorted_merge(a, b);
1162 }
1163
1164 Vertex* sorted_merge(Vertex* a, Vertex* b) {
1165     if (!a) {
1166         return b;
1167     } else if (!b) {
1168         return a;
1169     }
1170
1171     Vertex* result = NULL;
1172
1173     if (sweep_lt(a->fPoint, b->fPoint)) {
1174         result = a;
1175         result->fNext = sorted_merge(a->fNext, b);
1176     } else {
1177         result = b;
1178         result->fNext = sorted_merge(a, b->fNext);
1179     }
1180     result->fNext->fPrev = result;
1181     return result;
1182 }
1183
1184 // Stage 4: Simplify the mesh by inserting new vertices at intersecting edges.
1185
1186 void simplify(Vertex* vertices, SkChunkAlloc& alloc) {
1187     LOG("simplifying complex polygons\n");
1188     Edge* activeEdges = NULL;
1189     for (Vertex* v = vertices; v != NULL; v = v->fNext) {
1190         if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
1191             continue;
1192         }
1193 #if LOGGING_ENABLED
1194         LOG("\nvertex %g: (%g,%g)\n", v->fID, v->fPoint.fX, v->fPoint.fY);
1195 #endif
1196 #ifdef SK_DEBUG
1197         validate_connectivity(v);
1198 #endif
1199         Edge* leftEnclosingEdge = NULL;
1200         Edge* rightEnclosingEdge = NULL;
1201         bool restartChecks;
1202         do {
1203             restartChecks = false;
1204             find_enclosing_edges(v, activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1205             if (v->fFirstEdgeBelow) {
1206                 for (Edge* edge = v->fFirstEdgeBelow; edge != NULL; edge = edge->fNextEdgeBelow) {
1207                     if (check_for_intersection(edge, leftEnclosingEdge, &activeEdges, alloc)) {
1208                         restartChecks = true;
1209                         break;
1210                     }
1211                     if (check_for_intersection(edge, rightEnclosingEdge, &activeEdges, alloc)) {
1212                         restartChecks = true;
1213                         break;
1214                     }
1215                 }
1216             } else {
1217                 if (Vertex* pv = check_for_intersection(leftEnclosingEdge, rightEnclosingEdge,
1218                                                         &activeEdges, alloc)) {
1219                     if (sweep_lt(pv->fPoint, v->fPoint)) {
1220                         v = pv;
1221                     }
1222                     restartChecks = true;
1223                 }
1224
1225             }
1226         } while (restartChecks);
1227         SkASSERT(!leftEnclosingEdge || leftEnclosingEdge->isLeftOf(v));
1228         SkASSERT(!rightEnclosingEdge || rightEnclosingEdge->isRightOf(v));
1229 #ifdef SK_DEBUG
1230         validate_edges(activeEdges);
1231 #endif
1232         for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1233             remove_edge(e, &activeEdges);
1234         }
1235         Edge* leftEdge = leftEnclosingEdge;
1236         for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1237             insert_edge(e, leftEdge, &activeEdges);
1238             leftEdge = e;
1239         }
1240         v->fProcessed = true;
1241     }
1242 }
1243
1244 // Stage 5: Tessellate the simplified mesh into monotone polygons.
1245
1246 Poly* tessellate(Vertex* vertices, SkChunkAlloc& alloc) {
1247     LOG("tessellating simple polygons\n");
1248     Edge* activeEdges = NULL;
1249     Poly* polys = NULL;
1250     for (Vertex* v = vertices; v != NULL; v = v->fNext) {
1251         if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
1252             continue;
1253         }
1254 #if LOGGING_ENABLED
1255         LOG("\nvertex %g: (%g,%g)\n", v->fID, v->fPoint.fX, v->fPoint.fY);
1256 #endif
1257 #ifdef SK_DEBUG
1258         validate_connectivity(v);
1259 #endif
1260         Edge* leftEnclosingEdge = NULL;
1261         Edge* rightEnclosingEdge = NULL;
1262         find_enclosing_edges(v, activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1263         SkASSERT(!leftEnclosingEdge || leftEnclosingEdge->isLeftOf(v));
1264         SkASSERT(!rightEnclosingEdge || rightEnclosingEdge->isRightOf(v));
1265 #ifdef SK_DEBUG
1266         validate_edges(activeEdges);
1267 #endif
1268         Poly* leftPoly = NULL;
1269         Poly* rightPoly = NULL;
1270         if (v->fFirstEdgeAbove) {
1271             leftPoly = v->fFirstEdgeAbove->fLeftPoly;
1272             rightPoly = v->fLastEdgeAbove->fRightPoly;
1273         } else {
1274             leftPoly = leftEnclosingEdge ? leftEnclosingEdge->fRightPoly : NULL;
1275             rightPoly = rightEnclosingEdge ? rightEnclosingEdge->fLeftPoly : NULL;
1276         }
1277 #if LOGGING_ENABLED
1278         LOG("edges above:\n");
1279         for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1280             LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1281                 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1282         }
1283         LOG("edges below:\n");
1284         for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1285             LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1286                 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1287         }
1288 #endif
1289         if (v->fFirstEdgeAbove) {
1290             if (leftPoly) {
1291                 leftPoly = leftPoly->addVertex(v, Poly::kRight_Side, alloc);
1292             }
1293             if (rightPoly) {
1294                 rightPoly = rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
1295             }
1296             for (Edge* e = v->fFirstEdgeAbove; e != v->fLastEdgeAbove; e = e->fNextEdgeAbove) {
1297                 Edge* leftEdge = e;
1298                 Edge* rightEdge = e->fNextEdgeAbove;
1299                 SkASSERT(rightEdge->isRightOf(leftEdge->fTop));
1300                 remove_edge(leftEdge, &activeEdges);
1301                 if (leftEdge->fRightPoly) {
1302                     leftEdge->fRightPoly->end(v, alloc);
1303                 }
1304                 if (rightEdge->fLeftPoly && rightEdge->fLeftPoly != leftEdge->fRightPoly) {
1305                     rightEdge->fLeftPoly->end(v, alloc);
1306                 }
1307             }
1308             remove_edge(v->fLastEdgeAbove, &activeEdges);
1309             if (!v->fFirstEdgeBelow) {
1310                 if (leftPoly && rightPoly && leftPoly != rightPoly) {
1311                     SkASSERT(leftPoly->fPartner == NULL && rightPoly->fPartner == NULL);
1312                     rightPoly->fPartner = leftPoly;
1313                     leftPoly->fPartner = rightPoly;
1314                 }
1315             }
1316         }
1317         if (v->fFirstEdgeBelow) {
1318             if (!v->fFirstEdgeAbove) {
1319                 if (leftPoly && leftPoly == rightPoly) {
1320                     // Split the poly.
1321                     if (leftPoly->fActive->fSide == Poly::kLeft_Side) {
1322                         leftPoly = new_poly(&polys, leftEnclosingEdge->fTop, leftPoly->fWinding,
1323                                             alloc);
1324                         leftPoly->addVertex(v, Poly::kRight_Side, alloc);
1325                         rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
1326                         leftEnclosingEdge->fRightPoly = leftPoly;
1327                     } else {
1328                         rightPoly = new_poly(&polys, rightEnclosingEdge->fTop, rightPoly->fWinding,
1329                                              alloc);
1330                         rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
1331                         leftPoly->addVertex(v, Poly::kRight_Side, alloc);
1332                         rightEnclosingEdge->fLeftPoly = rightPoly;
1333                     }
1334                 } else {
1335                     if (leftPoly) {
1336                         leftPoly = leftPoly->addVertex(v, Poly::kRight_Side, alloc);
1337                     }
1338                     if (rightPoly) {
1339                         rightPoly = rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
1340                     }
1341                 }
1342             }
1343             Edge* leftEdge = v->fFirstEdgeBelow;
1344             leftEdge->fLeftPoly = leftPoly;
1345             insert_edge(leftEdge, leftEnclosingEdge, &activeEdges);
1346             for (Edge* rightEdge = leftEdge->fNextEdgeBelow; rightEdge;
1347                  rightEdge = rightEdge->fNextEdgeBelow) {
1348                 insert_edge(rightEdge, leftEdge, &activeEdges);
1349                 int winding = leftEdge->fLeftPoly ? leftEdge->fLeftPoly->fWinding : 0;
1350                 winding += leftEdge->fWinding;
1351                 if (winding != 0) {
1352                     Poly* poly = new_poly(&polys, v, winding, alloc);
1353                     leftEdge->fRightPoly = rightEdge->fLeftPoly = poly;
1354                 }
1355                 leftEdge = rightEdge;
1356             }
1357             v->fLastEdgeBelow->fRightPoly = rightPoly;
1358         }
1359 #ifdef SK_DEBUG
1360         validate_edges(activeEdges);
1361 #endif
1362 #if LOGGING_ENABLED
1363         LOG("\nactive edges:\n");
1364         for (Edge* e = activeEdges; e != NULL; e = e->fRight) {
1365             LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1366                 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1367         }
1368 #endif
1369     }
1370     return polys;
1371 }
1372
1373 // This is a driver function which calls stages 2-5 in turn.
1374
1375 Poly* contours_to_polys(Vertex** contours, int contourCnt, SkChunkAlloc& alloc) {
1376 #if LOGGING_ENABLED
1377     for (int i = 0; i < contourCnt; ++i) {
1378         Vertex* v = contours[i];
1379         SkASSERT(v);
1380         LOG("path.moveTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
1381         for (v = v->fNext; v != contours[i]; v = v->fNext) {
1382             LOG("path.lineTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
1383         }
1384     }
1385 #endif
1386     sanitize_contours(contours, contourCnt);
1387     Vertex* vertices = build_edges(contours, contourCnt, alloc);
1388     if (!vertices) {
1389         return NULL;
1390     }
1391
1392     // Sort vertices in Y (secondarily in X).
1393     merge_sort(&vertices);
1394     merge_coincident_vertices(&vertices, alloc);
1395 #if LOGGING_ENABLED
1396     for (Vertex* v = vertices; v != NULL; v = v->fNext) {
1397         static float gID = 0.0f;
1398         v->fID = gID++;
1399     }
1400 #endif
1401     simplify(vertices, alloc);
1402     return tessellate(vertices, alloc);
1403 }
1404
1405 // Stage 6: Triangulate the monotone polygons into a vertex buffer.
1406
1407 void* polys_to_triangles(Poly* polys, SkPath::FillType fillType, void* data) {
1408     void* d = data;
1409     for (Poly* poly = polys; poly; poly = poly->fNext) {
1410         if (apply_fill_type(fillType, poly->fWinding)) {
1411             d = poly->emit(d);
1412         }
1413     }
1414     return d;
1415 }
1416
1417 };
1418
1419 GrTessellatingPathRenderer::GrTessellatingPathRenderer() {
1420 }
1421
1422 GrPathRenderer::StencilSupport GrTessellatingPathRenderer::onGetStencilSupport(
1423                                                             const GrDrawTarget*,
1424                                                             const GrPipelineBuilder*,
1425                                                             const SkPath&,
1426                                                             const SkStrokeRec&) const {
1427     return GrPathRenderer::kNoSupport_StencilSupport;
1428 }
1429
1430 bool GrTessellatingPathRenderer::canDrawPath(const GrDrawTarget* target,
1431                                              const GrPipelineBuilder* pipelineBuilder,
1432                                              const SkMatrix& viewMatrix,
1433                                              const SkPath& path,
1434                                              const SkStrokeRec& stroke,
1435                                              bool antiAlias) const {
1436     // This path renderer can draw all fill styles, but does not do antialiasing. It can do convex
1437     // and concave paths, but we'll leave the convex ones to simpler algorithms.
1438     return stroke.isFillStyle() && !antiAlias && !path.isConvex();
1439 }
1440
1441 class TessellatingPathBatch : public GrBatch {
1442 public:
1443
1444     static GrBatch* Create(const GrColor& color,
1445                            const SkPath& path,
1446                            const SkMatrix& viewMatrix,
1447                            SkRect clipBounds) {
1448         return SkNEW_ARGS(TessellatingPathBatch, (color, path, viewMatrix, clipBounds));
1449     }
1450
1451     const char* name() const SK_OVERRIDE { return "TessellatingPathBatch"; }
1452
1453     void getInvariantOutputColor(GrInitInvariantOutput* out) const SK_OVERRIDE {
1454         out->setKnownFourComponents(fColor);
1455     }
1456
1457     void getInvariantOutputCoverage(GrInitInvariantOutput* out) const SK_OVERRIDE {
1458         out->setUnknownSingleComponent();
1459     }
1460
1461     void initBatchTracker(const GrPipelineInfo& init) SK_OVERRIDE {
1462         // Handle any color overrides
1463         if (init.fColorIgnored) {
1464             fColor = GrColor_ILLEGAL;
1465         } else if (GrColor_ILLEGAL != init.fOverrideColor) {
1466             fColor = init.fOverrideColor;
1467         }
1468         fPipelineInfo = init;
1469     }
1470
1471     void generateGeometry(GrBatchTarget* batchTarget, const GrPipeline* pipeline) SK_OVERRIDE {
1472         SkScalar tol = GrPathUtils::scaleToleranceToSrc(SK_Scalar1, fViewMatrix, fPath.getBounds());
1473         int contourCnt;
1474         int maxPts = GrPathUtils::worstCasePointCount(fPath, &contourCnt, tol);
1475         if (maxPts <= 0) {
1476             return;
1477         }
1478         if (maxPts > ((int)SK_MaxU16 + 1)) {
1479             SkDebugf("Path not rendered, too many verts (%d)\n", maxPts);
1480             return;
1481         }
1482         SkPath::FillType fillType = fPath.getFillType();
1483         if (SkPath::IsInverseFillType(fillType)) {
1484             contourCnt++;
1485         }
1486
1487         LOG("got %d pts, %d contours\n", maxPts, contourCnt);
1488         uint32_t flags = GrDefaultGeoProcFactory::kPosition_GPType;
1489         SkAutoTUnref<const GrGeometryProcessor> gp(
1490             GrDefaultGeoProcFactory::Create(flags, fColor, fViewMatrix, SkMatrix::I()));
1491         batchTarget->initDraw(gp, pipeline);
1492         gp->initBatchTracker(batchTarget->currentBatchTracker(), fPipelineInfo);
1493
1494         SkAutoTDeleteArray<Vertex*> contours(SkNEW_ARRAY(Vertex *, contourCnt));
1495
1496         // For the initial size of the chunk allocator, estimate based on the point count:
1497         // one vertex per point for the initial passes, plus two for the vertices in the
1498         // resulting Polys, since the same point may end up in two Polys.  Assume minimal
1499         // connectivity of one Edge per Vertex (will grow for intersections).
1500         SkChunkAlloc alloc(maxPts * (3 * sizeof(Vertex) + sizeof(Edge)));
1501         path_to_contours(fPath, tol, fClipBounds, contours.get(), alloc);
1502         Poly* polys;
1503         polys = contours_to_polys(contours.get(), contourCnt, alloc);
1504         int count = 0;
1505         for (Poly* poly = polys; poly; poly = poly->fNext) {
1506             if (apply_fill_type(fillType, poly->fWinding) && poly->fCount >= 3) {
1507                 count += (poly->fCount - 2) * (WIREFRAME ? 6 : 3);
1508             }
1509         }
1510
1511         size_t stride = gp->getVertexStride();
1512         const GrVertexBuffer* vertexBuffer;
1513         int firstVertex;
1514         void* vertices = batchTarget->vertexPool()->makeSpace(stride,
1515                                                               count,
1516                                                               &vertexBuffer,
1517                                                               &firstVertex);
1518
1519         if (!vertices) {
1520             SkDebugf("Could not allocate vertices\n");
1521             return;
1522         }
1523
1524         LOG("emitting %d verts\n", count);
1525         void* end = polys_to_triangles(polys, fillType, vertices);
1526         int actualCount = static_cast<int>(
1527             (static_cast<char*>(end) - static_cast<char*>(vertices)) / stride);
1528         LOG("actual count: %d\n", actualCount);
1529         SkASSERT(actualCount <= count);
1530
1531         GrPrimitiveType primitiveType = WIREFRAME ? kLines_GrPrimitiveType
1532                                                   : kTriangles_GrPrimitiveType;
1533         GrDrawTarget::DrawInfo drawInfo;
1534         drawInfo.setPrimitiveType(primitiveType);
1535         drawInfo.setVertexBuffer(vertexBuffer);
1536         drawInfo.setStartVertex(firstVertex);
1537         drawInfo.setVertexCount(actualCount);
1538         drawInfo.setStartIndex(0);
1539         drawInfo.setIndexCount(0);
1540         batchTarget->draw(drawInfo);
1541
1542         batchTarget->putBackVertices((size_t)(count - actualCount), stride);
1543         return;
1544     }
1545
1546     bool onCombineIfPossible(GrBatch*) SK_OVERRIDE {
1547         return false;
1548     }
1549
1550 private:
1551     TessellatingPathBatch(const GrColor& color,
1552                           const SkPath& path,
1553                           const SkMatrix& viewMatrix,
1554                           const SkRect& clipBounds)
1555       : fColor(color)
1556       , fPath(path)
1557       , fViewMatrix(viewMatrix)
1558       , fClipBounds(clipBounds) {
1559         this->initClassID<TessellatingPathBatch>();
1560     }
1561
1562     GrColor        fColor;
1563     SkPath         fPath;
1564     SkMatrix       fViewMatrix;
1565     SkRect         fClipBounds; // in source space
1566     GrPipelineInfo fPipelineInfo;
1567 };
1568
1569 bool GrTessellatingPathRenderer::onDrawPath(GrDrawTarget* target,
1570                                             GrPipelineBuilder* pipelineBuilder,
1571                                             GrColor color,
1572                                             const SkMatrix& viewM,
1573                                             const SkPath& path,
1574                                             const SkStrokeRec& stroke,
1575                                             bool antiAlias) {
1576     SkASSERT(!antiAlias);
1577     const GrRenderTarget* rt = pipelineBuilder->getRenderTarget();
1578     if (NULL == rt) {
1579         return false;
1580     }
1581
1582     SkIRect clipBoundsI;
1583     pipelineBuilder->clip().getConservativeBounds(rt, &clipBoundsI);
1584     SkRect clipBounds = SkRect::Make(clipBoundsI);
1585     SkMatrix vmi;
1586     if (!viewM.invert(&vmi)) {
1587         return false;
1588     }
1589     vmi.mapRect(&clipBounds);
1590     SkAutoTUnref<GrBatch> batch(TessellatingPathBatch::Create(color, path, viewM, clipBounds));
1591     target->drawBatch(pipelineBuilder, batch);
1592
1593     return true;
1594 }