tizen 2.3.1 release
[external/protobuf.git] / src / google / protobuf / stubs / strutil.cc
1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2008 Google Inc.  All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 //     * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 //     * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 //     * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // from google3/strings/strutil.cc
32
33 #include <google/protobuf/stubs/strutil.h>
34 #include <errno.h>
35 #include <float.h>    // FLT_DIG and DBL_DIG
36 #include <limits>
37 #include <limits.h>
38 #include <stdio.h>
39 #include <iterator>
40
41 #ifdef _WIN32
42 // MSVC has only _snprintf, not snprintf.
43 //
44 // MinGW has both snprintf and _snprintf, but they appear to be different
45 // functions.  The former is buggy.  When invoked like so:
46 //   char buffer[32];
47 //   snprintf(buffer, 32, "%.*g\n", FLT_DIG, 1.23e10f);
48 // it prints "1.23000e+10".  This is plainly wrong:  %g should never print
49 // trailing zeros after the decimal point.  For some reason this bug only
50 // occurs with some input values, not all.  In any case, _snprintf does the
51 // right thing, so we use it.
52 #define snprintf _snprintf
53 #endif
54
55 namespace google {
56 namespace protobuf {
57
58 inline bool IsNaN(double value) {
59   // NaN is never equal to anything, even itself.
60   return value != value;
61 }
62
63 // These are defined as macros on some platforms.  #undef them so that we can
64 // redefine them.
65 #undef isxdigit
66 #undef isprint
67
68 // The definitions of these in ctype.h change based on locale.  Since our
69 // string manipulation is all in relation to the protocol buffer and C++
70 // languages, we always want to use the C locale.  So, we re-define these
71 // exactly as we want them.
72 inline bool isxdigit(char c) {
73   return ('0' <= c && c <= '9') ||
74          ('a' <= c && c <= 'f') ||
75          ('A' <= c && c <= 'F');
76 }
77
78 inline bool isprint(char c) {
79   return c >= 0x20 && c <= 0x7E;
80 }
81
82 // ----------------------------------------------------------------------
83 // StripString
84 //    Replaces any occurrence of the character 'remove' (or the characters
85 //    in 'remove') with the character 'replacewith'.
86 // ----------------------------------------------------------------------
87 void StripString(string* s, const char* remove, char replacewith) {
88   const char * str_start = s->c_str();
89   const char * str = str_start;
90   for (str = strpbrk(str, remove);
91        str != NULL;
92        str = strpbrk(str + 1, remove)) {
93     (*s)[str - str_start] = replacewith;
94   }
95 }
96
97 // ----------------------------------------------------------------------
98 // StringReplace()
99 //    Replace the "old" pattern with the "new" pattern in a string,
100 //    and append the result to "res".  If replace_all is false,
101 //    it only replaces the first instance of "old."
102 // ----------------------------------------------------------------------
103
104 void StringReplace(const string& s, const string& oldsub,
105                    const string& newsub, bool replace_all,
106                    string* res) {
107   if (oldsub.empty()) {
108     res->append(s);  // if empty, append the given string.
109     return;
110   }
111
112   string::size_type start_pos = 0;
113   string::size_type pos;
114   do {
115     pos = s.find(oldsub, start_pos);
116     if (pos == string::npos) {
117       break;
118     }
119     res->append(s, start_pos, pos - start_pos);
120     res->append(newsub);
121     start_pos = pos + oldsub.size();  // start searching again after the "old"
122   } while (replace_all);
123   res->append(s, start_pos, s.length() - start_pos);
124 }
125
126 // ----------------------------------------------------------------------
127 // StringReplace()
128 //    Give me a string and two patterns "old" and "new", and I replace
129 //    the first instance of "old" in the string with "new", if it
130 //    exists.  If "global" is true; call this repeatedly until it
131 //    fails.  RETURN a new string, regardless of whether the replacement
132 //    happened or not.
133 // ----------------------------------------------------------------------
134
135 string StringReplace(const string& s, const string& oldsub,
136                      const string& newsub, bool replace_all) {
137   string ret;
138   StringReplace(s, oldsub, newsub, replace_all, &ret);
139   return ret;
140 }
141
142 // ----------------------------------------------------------------------
143 // SplitStringUsing()
144 //    Split a string using a character delimiter. Append the components
145 //    to 'result'.
146 //
147 // Note: For multi-character delimiters, this routine will split on *ANY* of
148 // the characters in the string, not the entire string as a single delimiter.
149 // ----------------------------------------------------------------------
150 template <typename ITR>
151 static inline
152 void SplitStringToIteratorUsing(const string& full,
153                                 const char* delim,
154                                 ITR& result) {
155   // Optimize the common case where delim is a single character.
156   if (delim[0] != '\0' && delim[1] == '\0') {
157     char c = delim[0];
158     const char* p = full.data();
159     const char* end = p + full.size();
160     while (p != end) {
161       if (*p == c) {
162         ++p;
163       } else {
164         const char* start = p;
165         while (++p != end && *p != c);
166         *result++ = string(start, p - start);
167       }
168     }
169     return;
170   }
171
172   string::size_type begin_index, end_index;
173   begin_index = full.find_first_not_of(delim);
174   while (begin_index != string::npos) {
175     end_index = full.find_first_of(delim, begin_index);
176     if (end_index == string::npos) {
177       *result++ = full.substr(begin_index);
178       return;
179     }
180     *result++ = full.substr(begin_index, (end_index - begin_index));
181     begin_index = full.find_first_not_of(delim, end_index);
182   }
183 }
184
185 void SplitStringUsing(const string& full,
186                       const char* delim,
187                       vector<string>* result) {
188   back_insert_iterator< vector<string> > it(*result);
189   SplitStringToIteratorUsing(full, delim, it);
190 }
191
192 // Split a string using a character delimiter. Append the components
193 // to 'result'.  If there are consecutive delimiters, this function
194 // will return corresponding empty strings. The string is split into
195 // at most the specified number of pieces greedily. This means that the
196 // last piece may possibly be split further. To split into as many pieces
197 // as possible, specify 0 as the number of pieces.
198 //
199 // If "full" is the empty string, yields an empty string as the only value.
200 //
201 // If "pieces" is negative for some reason, it returns the whole string
202 // ----------------------------------------------------------------------
203 template <typename StringType, typename ITR>
204 static inline
205 void SplitStringToIteratorAllowEmpty(const StringType& full,
206                                      const char* delim,
207                                      int pieces,
208                                      ITR& result) {
209   string::size_type begin_index, end_index;
210   begin_index = 0;
211
212   for (int i = 0; (i < pieces-1) || (pieces == 0); i++) {
213     end_index = full.find_first_of(delim, begin_index);
214     if (end_index == string::npos) {
215       *result++ = full.substr(begin_index);
216       return;
217     }
218     *result++ = full.substr(begin_index, (end_index - begin_index));
219     begin_index = end_index + 1;
220   }
221   *result++ = full.substr(begin_index);
222 }
223
224 void SplitStringAllowEmpty(const string& full, const char* delim,
225                            vector<string>* result) {
226   back_insert_iterator<vector<string> > it(*result);
227   SplitStringToIteratorAllowEmpty(full, delim, 0, it);
228 }
229
230 // ----------------------------------------------------------------------
231 // JoinStrings()
232 //    This merges a vector of string components with delim inserted
233 //    as separaters between components.
234 //
235 // ----------------------------------------------------------------------
236 template <class ITERATOR>
237 static void JoinStringsIterator(const ITERATOR& start,
238                                 const ITERATOR& end,
239                                 const char* delim,
240                                 string* result) {
241   GOOGLE_CHECK(result != NULL);
242   result->clear();
243   int delim_length = strlen(delim);
244
245   // Precompute resulting length so we can reserve() memory in one shot.
246   int length = 0;
247   for (ITERATOR iter = start; iter != end; ++iter) {
248     if (iter != start) {
249       length += delim_length;
250     }
251     length += iter->size();
252   }
253   result->reserve(length);
254
255   // Now combine everything.
256   for (ITERATOR iter = start; iter != end; ++iter) {
257     if (iter != start) {
258       result->append(delim, delim_length);
259     }
260     result->append(iter->data(), iter->size());
261   }
262 }
263
264 void JoinStrings(const vector<string>& components,
265                  const char* delim,
266                  string * result) {
267   JoinStringsIterator(components.begin(), components.end(), delim, result);
268 }
269
270 // ----------------------------------------------------------------------
271 // UnescapeCEscapeSequences()
272 //    This does all the unescaping that C does: \ooo, \r, \n, etc
273 //    Returns length of resulting string.
274 //    The implementation of \x parses any positive number of hex digits,
275 //    but it is an error if the value requires more than 8 bits, and the
276 //    result is truncated to 8 bits.
277 //
278 //    The second call stores its errors in a supplied string vector.
279 //    If the string vector pointer is NULL, it reports the errors with LOG().
280 // ----------------------------------------------------------------------
281
282 #define IS_OCTAL_DIGIT(c) (((c) >= '0') && ((c) <= '7'))
283
284 inline int hex_digit_to_int(char c) {
285   /* Assume ASCII. */
286   assert('0' == 0x30 && 'A' == 0x41 && 'a' == 0x61);
287   assert(isxdigit(c));
288   int x = static_cast<unsigned char>(c);
289   if (x > '9') {
290     x += 9;
291   }
292   return x & 0xf;
293 }
294
295 // Protocol buffers doesn't ever care about errors, but I don't want to remove
296 // the code.
297 #define LOG_STRING(LEVEL, VECTOR) GOOGLE_LOG_IF(LEVEL, false)
298
299 int UnescapeCEscapeSequences(const char* source, char* dest) {
300   return UnescapeCEscapeSequences(source, dest, NULL);
301 }
302
303 int UnescapeCEscapeSequences(const char* source, char* dest,
304                              vector<string> *errors) {
305   GOOGLE_DCHECK(errors == NULL) << "Error reporting not implemented.";
306
307   char* d = dest;
308   const char* p = source;
309
310   // Small optimization for case where source = dest and there's no escaping
311   while ( p == d && *p != '\0' && *p != '\\' )
312     p++, d++;
313
314   while (*p != '\0') {
315     if (*p != '\\') {
316       *d++ = *p++;
317     } else {
318       switch ( *++p ) {                    // skip past the '\\'
319         case '\0':
320           LOG_STRING(ERROR, errors) << "String cannot end with \\";
321           *d = '\0';
322           return d - dest;   // we're done with p
323         case 'a':  *d++ = '\a';  break;
324         case 'b':  *d++ = '\b';  break;
325         case 'f':  *d++ = '\f';  break;
326         case 'n':  *d++ = '\n';  break;
327         case 'r':  *d++ = '\r';  break;
328         case 't':  *d++ = '\t';  break;
329         case 'v':  *d++ = '\v';  break;
330         case '\\': *d++ = '\\';  break;
331         case '?':  *d++ = '\?';  break;    // \?  Who knew?
332         case '\'': *d++ = '\'';  break;
333         case '"':  *d++ = '\"';  break;
334         case '0': case '1': case '2': case '3':  // octal digit: 1 to 3 digits
335         case '4': case '5': case '6': case '7': {
336           char ch = *p - '0';
337           if ( IS_OCTAL_DIGIT(p[1]) )
338             ch = ch * 8 + *++p - '0';
339           if ( IS_OCTAL_DIGIT(p[1]) )      // safe (and easy) to do this twice
340             ch = ch * 8 + *++p - '0';      // now points at last digit
341           *d++ = ch;
342           break;
343         }
344         case 'x': case 'X': {
345           if (!isxdigit(p[1])) {
346             if (p[1] == '\0') {
347               LOG_STRING(ERROR, errors) << "String cannot end with \\x";
348             } else {
349               LOG_STRING(ERROR, errors) <<
350                 "\\x cannot be followed by non-hex digit: \\" << *p << p[1];
351             }
352             break;
353           }
354           unsigned int ch = 0;
355           const char *hex_start = p;
356           while (isxdigit(p[1]))  // arbitrarily many hex digits
357             ch = (ch << 4) + hex_digit_to_int(*++p);
358           if (ch > 0xFF)
359             LOG_STRING(ERROR, errors) << "Value of " <<
360               "\\" << string(hex_start, p+1-hex_start) << " exceeds 8 bits";
361           *d++ = ch;
362           break;
363         }
364 #if 0  // TODO(kenton):  Support \u and \U?  Requires runetochar().
365         case 'u': {
366           // \uhhhh => convert 4 hex digits to UTF-8
367           char32 rune = 0;
368           const char *hex_start = p;
369           for (int i = 0; i < 4; ++i) {
370             if (isxdigit(p[1])) {  // Look one char ahead.
371               rune = (rune << 4) + hex_digit_to_int(*++p);  // Advance p.
372             } else {
373               LOG_STRING(ERROR, errors)
374                 << "\\u must be followed by 4 hex digits: \\"
375                 <<  string(hex_start, p+1-hex_start);
376               break;
377             }
378           }
379           d += runetochar(d, &rune);
380           break;
381         }
382         case 'U': {
383           // \Uhhhhhhhh => convert 8 hex digits to UTF-8
384           char32 rune = 0;
385           const char *hex_start = p;
386           for (int i = 0; i < 8; ++i) {
387             if (isxdigit(p[1])) {  // Look one char ahead.
388               // Don't change rune until we're sure this
389               // is within the Unicode limit, but do advance p.
390               char32 newrune = (rune << 4) + hex_digit_to_int(*++p);
391               if (newrune > 0x10FFFF) {
392                 LOG_STRING(ERROR, errors)
393                   << "Value of \\"
394                   << string(hex_start, p + 1 - hex_start)
395                   << " exceeds Unicode limit (0x10FFFF)";
396                 break;
397               } else {
398                 rune = newrune;
399               }
400             } else {
401               LOG_STRING(ERROR, errors)
402                 << "\\U must be followed by 8 hex digits: \\"
403                 <<  string(hex_start, p+1-hex_start);
404               break;
405             }
406           }
407           d += runetochar(d, &rune);
408           break;
409         }
410 #endif
411         default:
412           LOG_STRING(ERROR, errors) << "Unknown escape sequence: \\" << *p;
413       }
414       p++;                                 // read past letter we escaped
415     }
416   }
417   *d = '\0';
418   return d - dest;
419 }
420
421 // ----------------------------------------------------------------------
422 // UnescapeCEscapeString()
423 //    This does the same thing as UnescapeCEscapeSequences, but creates
424 //    a new string. The caller does not need to worry about allocating
425 //    a dest buffer. This should be used for non performance critical
426 //    tasks such as printing debug messages. It is safe for src and dest
427 //    to be the same.
428 //
429 //    The second call stores its errors in a supplied string vector.
430 //    If the string vector pointer is NULL, it reports the errors with LOG().
431 //
432 //    In the first and second calls, the length of dest is returned. In the
433 //    the third call, the new string is returned.
434 // ----------------------------------------------------------------------
435 int UnescapeCEscapeString(const string& src, string* dest) {
436   return UnescapeCEscapeString(src, dest, NULL);
437 }
438
439 int UnescapeCEscapeString(const string& src, string* dest,
440                           vector<string> *errors) {
441   scoped_array<char> unescaped(new char[src.size() + 1]);
442   int len = UnescapeCEscapeSequences(src.c_str(), unescaped.get(), errors);
443   GOOGLE_CHECK(dest);
444   dest->assign(unescaped.get(), len);
445   return len;
446 }
447
448 string UnescapeCEscapeString(const string& src) {
449   scoped_array<char> unescaped(new char[src.size() + 1]);
450   int len = UnescapeCEscapeSequences(src.c_str(), unescaped.get(), NULL);
451   return string(unescaped.get(), len);
452 }
453
454 // ----------------------------------------------------------------------
455 // CEscapeString()
456 // CHexEscapeString()
457 //    Copies 'src' to 'dest', escaping dangerous characters using
458 //    C-style escape sequences. This is very useful for preparing query
459 //    flags. 'src' and 'dest' should not overlap. The 'Hex' version uses
460 //    hexadecimal rather than octal sequences.
461 //    Returns the number of bytes written to 'dest' (not including the \0)
462 //    or -1 if there was insufficient space.
463 //
464 //    Currently only \n, \r, \t, ", ', \ and !isprint() chars are escaped.
465 // ----------------------------------------------------------------------
466 int CEscapeInternal(const char* src, int src_len, char* dest,
467                     int dest_len, bool use_hex, bool utf8_safe) {
468   const char* src_end = src + src_len;
469   int used = 0;
470   bool last_hex_escape = false; // true if last output char was \xNN
471
472   for (; src < src_end; src++) {
473     if (dest_len - used < 2)   // Need space for two letter escape
474       return -1;
475
476     bool is_hex_escape = false;
477     switch (*src) {
478       case '\n': dest[used++] = '\\'; dest[used++] = 'n';  break;
479       case '\r': dest[used++] = '\\'; dest[used++] = 'r';  break;
480       case '\t': dest[used++] = '\\'; dest[used++] = 't';  break;
481       case '\"': dest[used++] = '\\'; dest[used++] = '\"'; break;
482       case '\'': dest[used++] = '\\'; dest[used++] = '\''; break;
483       case '\\': dest[used++] = '\\'; dest[used++] = '\\'; break;
484       default:
485         // Note that if we emit \xNN and the src character after that is a hex
486         // digit then that digit must be escaped too to prevent it being
487         // interpreted as part of the character code by C.
488         if ((!utf8_safe || static_cast<uint8>(*src) < 0x80) &&
489             (!isprint(*src) ||
490              (last_hex_escape && isxdigit(*src)))) {
491           if (dest_len - used < 4) // need space for 4 letter escape
492             return -1;
493           sprintf(dest + used, (use_hex ? "\\x%02x" : "\\%03o"),
494                   static_cast<uint8>(*src));
495           is_hex_escape = use_hex;
496           used += 4;
497         } else {
498           dest[used++] = *src; break;
499         }
500     }
501     last_hex_escape = is_hex_escape;
502   }
503
504   if (dest_len - used < 1)   // make sure that there is room for \0
505     return -1;
506
507   dest[used] = '\0';   // doesn't count towards return value though
508   return used;
509 }
510
511 int CEscapeString(const char* src, int src_len, char* dest, int dest_len) {
512   return CEscapeInternal(src, src_len, dest, dest_len, false, false);
513 }
514
515 // ----------------------------------------------------------------------
516 // CEscape()
517 // CHexEscape()
518 //    Copies 'src' to result, escaping dangerous characters using
519 //    C-style escape sequences. This is very useful for preparing query
520 //    flags. 'src' and 'dest' should not overlap. The 'Hex' version
521 //    hexadecimal rather than octal sequences.
522 //
523 //    Currently only \n, \r, \t, ", ', \ and !isprint() chars are escaped.
524 // ----------------------------------------------------------------------
525 string CEscape(const string& src) {
526   const int dest_length = src.size() * 4 + 1; // Maximum possible expansion
527   scoped_array<char> dest(new char[dest_length]);
528   const int len = CEscapeInternal(src.data(), src.size(),
529                                   dest.get(), dest_length, false, false);
530   GOOGLE_DCHECK_GE(len, 0);
531   return string(dest.get(), len);
532 }
533
534 namespace strings {
535
536 string Utf8SafeCEscape(const string& src) {
537   const int dest_length = src.size() * 4 + 1; // Maximum possible expansion
538   scoped_array<char> dest(new char[dest_length]);
539   const int len = CEscapeInternal(src.data(), src.size(),
540                                   dest.get(), dest_length, false, true);
541   GOOGLE_DCHECK_GE(len, 0);
542   return string(dest.get(), len);
543 }
544
545 string CHexEscape(const string& src) {
546   const int dest_length = src.size() * 4 + 1; // Maximum possible expansion
547   scoped_array<char> dest(new char[dest_length]);
548   const int len = CEscapeInternal(src.data(), src.size(),
549                                   dest.get(), dest_length, true, false);
550   GOOGLE_DCHECK_GE(len, 0);
551   return string(dest.get(), len);
552 }
553
554 }  // namespace strings
555
556 // ----------------------------------------------------------------------
557 // strto32_adaptor()
558 // strtou32_adaptor()
559 //    Implementation of strto[u]l replacements that have identical
560 //    overflow and underflow characteristics for both ILP-32 and LP-64
561 //    platforms, including errno preservation in error-free calls.
562 // ----------------------------------------------------------------------
563
564 int32 strto32_adaptor(const char *nptr, char **endptr, int base) {
565   const int saved_errno = errno;
566   errno = 0;
567   const long result = strtol(nptr, endptr, base);
568   if (errno == ERANGE && result == LONG_MIN) {
569     return kint32min;
570   } else if (errno == ERANGE && result == LONG_MAX) {
571     return kint32max;
572   } else if (errno == 0 && result < kint32min) {
573     errno = ERANGE;
574     return kint32min;
575   } else if (errno == 0 && result > kint32max) {
576     errno = ERANGE;
577     return kint32max;
578   }
579   if (errno == 0)
580     errno = saved_errno;
581   return static_cast<int32>(result);
582 }
583
584 uint32 strtou32_adaptor(const char *nptr, char **endptr, int base) {
585   const int saved_errno = errno;
586   errno = 0;
587   const unsigned long result = strtoul(nptr, endptr, base);
588   if (errno == ERANGE && result == ULONG_MAX) {
589     return kuint32max;
590   } else if (errno == 0 && result > kuint32max) {
591     errno = ERANGE;
592     return kuint32max;
593   }
594   if (errno == 0)
595     errno = saved_errno;
596   return static_cast<uint32>(result);
597 }
598
599 inline bool safe_parse_sign(string* text  /*inout*/,
600                             bool* negative_ptr  /*output*/) {
601   const char* start = text->data();
602   const char* end = start + text->size();
603
604   // Consume whitespace.
605   while (start < end && (start[0] == ' ')) {
606     ++start;
607   }
608   while (start < end && (end[-1] == ' ')) {
609     --end;
610   }
611   if (start >= end) {
612     return false;
613   }
614
615   // Consume sign.
616   *negative_ptr = (start[0] == '-');
617   if (*negative_ptr || start[0] == '+') {
618     ++start;
619     if (start >= end) {
620       return false;
621     }
622   }
623   *text = text->substr(start - text->data(), end - start);
624   return true;
625 }
626
627 inline bool safe_parse_positive_int(
628     string text, int32* value_p) {
629   int base = 10;
630   int32 value = 0;
631   const int32 vmax = std::numeric_limits<int32>::max();
632   assert(vmax > 0);
633   assert(vmax >= base);
634   const int32 vmax_over_base = vmax / base;
635   const char* start = text.data();
636   const char* end = start + text.size();
637   // loop over digits
638   for (; start < end; ++start) {
639     unsigned char c = static_cast<unsigned char>(start[0]);
640     int digit = c - '0';
641     if (digit >= base || digit < 0) {
642       *value_p = value;
643       return false;
644     }
645     if (value > vmax_over_base) {
646       *value_p = vmax;
647       return false;
648     }
649     value *= base;
650     if (value > vmax - digit) {
651       *value_p = vmax;
652       return false;
653     }
654     value += digit;
655   }
656   *value_p = value;
657   return true;
658 }
659
660 inline bool safe_parse_negative_int(
661     string text, int32* value_p) {
662   int base = 10;
663   int32 value = 0;
664   const int32 vmin = std::numeric_limits<int32>::min();
665   assert(vmin < 0);
666   assert(vmin <= 0 - base);
667   int32 vmin_over_base = vmin / base;
668   // 2003 c++ standard [expr.mul]
669   // "... the sign of the remainder is implementation-defined."
670   // Although (vmin/base)*base + vmin%base is always vmin.
671   // 2011 c++ standard tightens the spec but we cannot rely on it.
672   if (vmin % base > 0) {
673     vmin_over_base += 1;
674   }
675   const char* start = text.data();
676   const char* end = start + text.size();
677   // loop over digits
678   for (; start < end; ++start) {
679     unsigned char c = static_cast<unsigned char>(start[0]);
680     int digit = c - '0';
681     if (digit >= base || digit < 0) {
682       *value_p = value;
683       return false;
684     }
685     if (value < vmin_over_base) {
686       *value_p = vmin;
687       return false;
688     }
689     value *= base;
690     if (value < vmin + digit) {
691       *value_p = vmin;
692       return false;
693     }
694     value -= digit;
695   }
696   *value_p = value;
697   return true;
698 }
699
700 bool safe_int(string text, int32* value_p) {
701   *value_p = 0;
702   bool negative;
703   if (!safe_parse_sign(&text, &negative)) {
704     return false;
705   }
706   if (!negative) {
707     return safe_parse_positive_int(text, value_p);
708   } else {
709     return safe_parse_negative_int(text, value_p);
710   }
711 }
712
713 // ----------------------------------------------------------------------
714 // FastIntToBuffer()
715 // FastInt64ToBuffer()
716 // FastHexToBuffer()
717 // FastHex64ToBuffer()
718 // FastHex32ToBuffer()
719 // ----------------------------------------------------------------------
720
721 // Offset into buffer where FastInt64ToBuffer places the end of string
722 // null character.  Also used by FastInt64ToBufferLeft.
723 static const int kFastInt64ToBufferOffset = 21;
724
725 char *FastInt64ToBuffer(int64 i, char* buffer) {
726   // We could collapse the positive and negative sections, but that
727   // would be slightly slower for positive numbers...
728   // 22 bytes is enough to store -2**64, -18446744073709551616.
729   char* p = buffer + kFastInt64ToBufferOffset;
730   *p-- = '\0';
731   if (i >= 0) {
732     do {
733       *p-- = '0' + i % 10;
734       i /= 10;
735     } while (i > 0);
736     return p + 1;
737   } else {
738     // On different platforms, % and / have different behaviors for
739     // negative numbers, so we need to jump through hoops to make sure
740     // we don't divide negative numbers.
741     if (i > -10) {
742       i = -i;
743       *p-- = '0' + i;
744       *p = '-';
745       return p;
746     } else {
747       // Make sure we aren't at MIN_INT, in which case we can't say i = -i
748       i = i + 10;
749       i = -i;
750       *p-- = '0' + i % 10;
751       // Undo what we did a moment ago
752       i = i / 10 + 1;
753       do {
754         *p-- = '0' + i % 10;
755         i /= 10;
756       } while (i > 0);
757       *p = '-';
758       return p;
759     }
760   }
761 }
762
763 // Offset into buffer where FastInt32ToBuffer places the end of string
764 // null character.  Also used by FastInt32ToBufferLeft
765 static const int kFastInt32ToBufferOffset = 11;
766
767 // Yes, this is a duplicate of FastInt64ToBuffer.  But, we need this for the
768 // compiler to generate 32 bit arithmetic instructions.  It's much faster, at
769 // least with 32 bit binaries.
770 char *FastInt32ToBuffer(int32 i, char* buffer) {
771   // We could collapse the positive and negative sections, but that
772   // would be slightly slower for positive numbers...
773   // 12 bytes is enough to store -2**32, -4294967296.
774   char* p = buffer + kFastInt32ToBufferOffset;
775   *p-- = '\0';
776   if (i >= 0) {
777     do {
778       *p-- = '0' + i % 10;
779       i /= 10;
780     } while (i > 0);
781     return p + 1;
782   } else {
783     // On different platforms, % and / have different behaviors for
784     // negative numbers, so we need to jump through hoops to make sure
785     // we don't divide negative numbers.
786     if (i > -10) {
787       i = -i;
788       *p-- = '0' + i;
789       *p = '-';
790       return p;
791     } else {
792       // Make sure we aren't at MIN_INT, in which case we can't say i = -i
793       i = i + 10;
794       i = -i;
795       *p-- = '0' + i % 10;
796       // Undo what we did a moment ago
797       i = i / 10 + 1;
798       do {
799         *p-- = '0' + i % 10;
800         i /= 10;
801       } while (i > 0);
802       *p = '-';
803       return p;
804     }
805   }
806 }
807
808 char *FastHexToBuffer(int i, char* buffer) {
809   GOOGLE_CHECK(i >= 0) << "FastHexToBuffer() wants non-negative integers, not " << i;
810
811   static const char *hexdigits = "0123456789abcdef";
812   char *p = buffer + 21;
813   *p-- = '\0';
814   do {
815     *p-- = hexdigits[i & 15];   // mod by 16
816     i >>= 4;                    // divide by 16
817   } while (i > 0);
818   return p + 1;
819 }
820
821 char *InternalFastHexToBuffer(uint64 value, char* buffer, int num_byte) {
822   static const char *hexdigits = "0123456789abcdef";
823   buffer[num_byte] = '\0';
824   for (int i = num_byte - 1; i >= 0; i--) {
825 #ifdef _M_X64
826     // MSVC x64 platform has a bug optimizing the uint32(value) in the #else
827     // block. Given that the uint32 cast was to improve performance on 32-bit
828     // platforms, we use 64-bit '&' directly.
829     buffer[i] = hexdigits[value & 0xf];
830 #else
831     buffer[i] = hexdigits[uint32(value) & 0xf];
832 #endif
833     value >>= 4;
834   }
835   return buffer;
836 }
837
838 char *FastHex64ToBuffer(uint64 value, char* buffer) {
839   return InternalFastHexToBuffer(value, buffer, 16);
840 }
841
842 char *FastHex32ToBuffer(uint32 value, char* buffer) {
843   return InternalFastHexToBuffer(value, buffer, 8);
844 }
845
846 static inline char* PlaceNum(char* p, int num, char prev_sep) {
847    *p-- = '0' + num % 10;
848    *p-- = '0' + num / 10;
849    *p-- = prev_sep;
850    return p;
851 }
852
853 // ----------------------------------------------------------------------
854 // FastInt32ToBufferLeft()
855 // FastUInt32ToBufferLeft()
856 // FastInt64ToBufferLeft()
857 // FastUInt64ToBufferLeft()
858 //
859 // Like the Fast*ToBuffer() functions above, these are intended for speed.
860 // Unlike the Fast*ToBuffer() functions, however, these functions write
861 // their output to the beginning of the buffer (hence the name, as the
862 // output is left-aligned).  The caller is responsible for ensuring that
863 // the buffer has enough space to hold the output.
864 //
865 // Returns a pointer to the end of the string (i.e. the null character
866 // terminating the string).
867 // ----------------------------------------------------------------------
868
869 static const char two_ASCII_digits[100][2] = {
870   {'0','0'}, {'0','1'}, {'0','2'}, {'0','3'}, {'0','4'},
871   {'0','5'}, {'0','6'}, {'0','7'}, {'0','8'}, {'0','9'},
872   {'1','0'}, {'1','1'}, {'1','2'}, {'1','3'}, {'1','4'},
873   {'1','5'}, {'1','6'}, {'1','7'}, {'1','8'}, {'1','9'},
874   {'2','0'}, {'2','1'}, {'2','2'}, {'2','3'}, {'2','4'},
875   {'2','5'}, {'2','6'}, {'2','7'}, {'2','8'}, {'2','9'},
876   {'3','0'}, {'3','1'}, {'3','2'}, {'3','3'}, {'3','4'},
877   {'3','5'}, {'3','6'}, {'3','7'}, {'3','8'}, {'3','9'},
878   {'4','0'}, {'4','1'}, {'4','2'}, {'4','3'}, {'4','4'},
879   {'4','5'}, {'4','6'}, {'4','7'}, {'4','8'}, {'4','9'},
880   {'5','0'}, {'5','1'}, {'5','2'}, {'5','3'}, {'5','4'},
881   {'5','5'}, {'5','6'}, {'5','7'}, {'5','8'}, {'5','9'},
882   {'6','0'}, {'6','1'}, {'6','2'}, {'6','3'}, {'6','4'},
883   {'6','5'}, {'6','6'}, {'6','7'}, {'6','8'}, {'6','9'},
884   {'7','0'}, {'7','1'}, {'7','2'}, {'7','3'}, {'7','4'},
885   {'7','5'}, {'7','6'}, {'7','7'}, {'7','8'}, {'7','9'},
886   {'8','0'}, {'8','1'}, {'8','2'}, {'8','3'}, {'8','4'},
887   {'8','5'}, {'8','6'}, {'8','7'}, {'8','8'}, {'8','9'},
888   {'9','0'}, {'9','1'}, {'9','2'}, {'9','3'}, {'9','4'},
889   {'9','5'}, {'9','6'}, {'9','7'}, {'9','8'}, {'9','9'}
890 };
891
892 char* FastUInt32ToBufferLeft(uint32 u, char* buffer) {
893   int digits;
894   const char *ASCII_digits = NULL;
895   // The idea of this implementation is to trim the number of divides to as few
896   // as possible by using multiplication and subtraction rather than mod (%),
897   // and by outputting two digits at a time rather than one.
898   // The huge-number case is first, in the hopes that the compiler will output
899   // that case in one branch-free block of code, and only output conditional
900   // branches into it from below.
901   if (u >= 1000000000) {  // >= 1,000,000,000
902     digits = u / 100000000;  // 100,000,000
903     ASCII_digits = two_ASCII_digits[digits];
904     buffer[0] = ASCII_digits[0];
905     buffer[1] = ASCII_digits[1];
906     buffer += 2;
907 sublt100_000_000:
908     u -= digits * 100000000;  // 100,000,000
909 lt100_000_000:
910     digits = u / 1000000;  // 1,000,000
911     ASCII_digits = two_ASCII_digits[digits];
912     buffer[0] = ASCII_digits[0];
913     buffer[1] = ASCII_digits[1];
914     buffer += 2;
915 sublt1_000_000:
916     u -= digits * 1000000;  // 1,000,000
917 lt1_000_000:
918     digits = u / 10000;  // 10,000
919     ASCII_digits = two_ASCII_digits[digits];
920     buffer[0] = ASCII_digits[0];
921     buffer[1] = ASCII_digits[1];
922     buffer += 2;
923 sublt10_000:
924     u -= digits * 10000;  // 10,000
925 lt10_000:
926     digits = u / 100;
927     ASCII_digits = two_ASCII_digits[digits];
928     buffer[0] = ASCII_digits[0];
929     buffer[1] = ASCII_digits[1];
930     buffer += 2;
931 sublt100:
932     u -= digits * 100;
933 lt100:
934     digits = u;
935     ASCII_digits = two_ASCII_digits[digits];
936     buffer[0] = ASCII_digits[0];
937     buffer[1] = ASCII_digits[1];
938     buffer += 2;
939 done:
940     *buffer = 0;
941     return buffer;
942   }
943
944   if (u < 100) {
945     digits = u;
946     if (u >= 10) goto lt100;
947     *buffer++ = '0' + digits;
948     goto done;
949   }
950   if (u  <  10000) {   // 10,000
951     if (u >= 1000) goto lt10_000;
952     digits = u / 100;
953     *buffer++ = '0' + digits;
954     goto sublt100;
955   }
956   if (u  <  1000000) {   // 1,000,000
957     if (u >= 100000) goto lt1_000_000;
958     digits = u / 10000;  //    10,000
959     *buffer++ = '0' + digits;
960     goto sublt10_000;
961   }
962   if (u  <  100000000) {   // 100,000,000
963     if (u >= 10000000) goto lt100_000_000;
964     digits = u / 1000000;  //   1,000,000
965     *buffer++ = '0' + digits;
966     goto sublt1_000_000;
967   }
968   // we already know that u < 1,000,000,000
969   digits = u / 100000000;   // 100,000,000
970   *buffer++ = '0' + digits;
971   goto sublt100_000_000;
972 }
973
974 char* FastInt32ToBufferLeft(int32 i, char* buffer) {
975   uint32 u = i;
976   if (i < 0) {
977     *buffer++ = '-';
978     u = -i;
979   }
980   return FastUInt32ToBufferLeft(u, buffer);
981 }
982
983 char* FastUInt64ToBufferLeft(uint64 u64, char* buffer) {
984   int digits;
985   const char *ASCII_digits = NULL;
986
987   uint32 u = static_cast<uint32>(u64);
988   if (u == u64) return FastUInt32ToBufferLeft(u, buffer);
989
990   uint64 top_11_digits = u64 / 1000000000;
991   buffer = FastUInt64ToBufferLeft(top_11_digits, buffer);
992   u = u64 - (top_11_digits * 1000000000);
993
994   digits = u / 10000000;  // 10,000,000
995   GOOGLE_DCHECK_LT(digits, 100);
996   ASCII_digits = two_ASCII_digits[digits];
997   buffer[0] = ASCII_digits[0];
998   buffer[1] = ASCII_digits[1];
999   buffer += 2;
1000   u -= digits * 10000000;  // 10,000,000
1001   digits = u / 100000;  // 100,000
1002   ASCII_digits = two_ASCII_digits[digits];
1003   buffer[0] = ASCII_digits[0];
1004   buffer[1] = ASCII_digits[1];
1005   buffer += 2;
1006   u -= digits * 100000;  // 100,000
1007   digits = u / 1000;  // 1,000
1008   ASCII_digits = two_ASCII_digits[digits];
1009   buffer[0] = ASCII_digits[0];
1010   buffer[1] = ASCII_digits[1];
1011   buffer += 2;
1012   u -= digits * 1000;  // 1,000
1013   digits = u / 10;
1014   ASCII_digits = two_ASCII_digits[digits];
1015   buffer[0] = ASCII_digits[0];
1016   buffer[1] = ASCII_digits[1];
1017   buffer += 2;
1018   u -= digits * 10;
1019   digits = u;
1020   *buffer++ = '0' + digits;
1021   *buffer = 0;
1022   return buffer;
1023 }
1024
1025 char* FastInt64ToBufferLeft(int64 i, char* buffer) {
1026   uint64 u = i;
1027   if (i < 0) {
1028     *buffer++ = '-';
1029     u = -i;
1030   }
1031   return FastUInt64ToBufferLeft(u, buffer);
1032 }
1033
1034 // ----------------------------------------------------------------------
1035 // SimpleItoa()
1036 //    Description: converts an integer to a string.
1037 //
1038 //    Return value: string
1039 // ----------------------------------------------------------------------
1040
1041 string SimpleItoa(int i) {
1042   char buffer[kFastToBufferSize];
1043   return (sizeof(i) == 4) ?
1044     FastInt32ToBuffer(i, buffer) :
1045     FastInt64ToBuffer(i, buffer);
1046 }
1047
1048 string SimpleItoa(unsigned int i) {
1049   char buffer[kFastToBufferSize];
1050   return string(buffer, (sizeof(i) == 4) ?
1051     FastUInt32ToBufferLeft(i, buffer) :
1052     FastUInt64ToBufferLeft(i, buffer));
1053 }
1054
1055 string SimpleItoa(long i) {
1056   char buffer[kFastToBufferSize];
1057   return (sizeof(i) == 4) ?
1058     FastInt32ToBuffer(i, buffer) :
1059     FastInt64ToBuffer(i, buffer);
1060 }
1061
1062 string SimpleItoa(unsigned long i) {
1063   char buffer[kFastToBufferSize];
1064   return string(buffer, (sizeof(i) == 4) ?
1065     FastUInt32ToBufferLeft(i, buffer) :
1066     FastUInt64ToBufferLeft(i, buffer));
1067 }
1068
1069 string SimpleItoa(long long i) {
1070   char buffer[kFastToBufferSize];
1071   return (sizeof(i) == 4) ?
1072     FastInt32ToBuffer(i, buffer) :
1073     FastInt64ToBuffer(i, buffer);
1074 }
1075
1076 string SimpleItoa(unsigned long long i) {
1077   char buffer[kFastToBufferSize];
1078   return string(buffer, (sizeof(i) == 4) ?
1079     FastUInt32ToBufferLeft(i, buffer) :
1080     FastUInt64ToBufferLeft(i, buffer));
1081 }
1082
1083 // ----------------------------------------------------------------------
1084 // SimpleDtoa()
1085 // SimpleFtoa()
1086 // DoubleToBuffer()
1087 // FloatToBuffer()
1088 //    We want to print the value without losing precision, but we also do
1089 //    not want to print more digits than necessary.  This turns out to be
1090 //    trickier than it sounds.  Numbers like 0.2 cannot be represented
1091 //    exactly in binary.  If we print 0.2 with a very large precision,
1092 //    e.g. "%.50g", we get "0.2000000000000000111022302462515654042363167".
1093 //    On the other hand, if we set the precision too low, we lose
1094 //    significant digits when printing numbers that actually need them.
1095 //    It turns out there is no precision value that does the right thing
1096 //    for all numbers.
1097 //
1098 //    Our strategy is to first try printing with a precision that is never
1099 //    over-precise, then parse the result with strtod() to see if it
1100 //    matches.  If not, we print again with a precision that will always
1101 //    give a precise result, but may use more digits than necessary.
1102 //
1103 //    An arguably better strategy would be to use the algorithm described
1104 //    in "How to Print Floating-Point Numbers Accurately" by Steele &
1105 //    White, e.g. as implemented by David M. Gay's dtoa().  It turns out,
1106 //    however, that the following implementation is about as fast as
1107 //    DMG's code.  Furthermore, DMG's code locks mutexes, which means it
1108 //    will not scale well on multi-core machines.  DMG's code is slightly
1109 //    more accurate (in that it will never use more digits than
1110 //    necessary), but this is probably irrelevant for most users.
1111 //
1112 //    Rob Pike and Ken Thompson also have an implementation of dtoa() in
1113 //    third_party/fmt/fltfmt.cc.  Their implementation is similar to this
1114 //    one in that it makes guesses and then uses strtod() to check them.
1115 //    Their implementation is faster because they use their own code to
1116 //    generate the digits in the first place rather than use snprintf(),
1117 //    thus avoiding format string parsing overhead.  However, this makes
1118 //    it considerably more complicated than the following implementation,
1119 //    and it is embedded in a larger library.  If speed turns out to be
1120 //    an issue, we could re-implement this in terms of their
1121 //    implementation.
1122 // ----------------------------------------------------------------------
1123
1124 string SimpleDtoa(double value) {
1125   char buffer[kDoubleToBufferSize];
1126   return DoubleToBuffer(value, buffer);
1127 }
1128
1129 string SimpleFtoa(float value) {
1130   char buffer[kFloatToBufferSize];
1131   return FloatToBuffer(value, buffer);
1132 }
1133
1134 static inline bool IsValidFloatChar(char c) {
1135   return ('0' <= c && c <= '9') ||
1136          c == 'e' || c == 'E' ||
1137          c == '+' || c == '-';
1138 }
1139
1140 void DelocalizeRadix(char* buffer) {
1141   // Fast check:  if the buffer has a normal decimal point, assume no
1142   // translation is needed.
1143   if (strchr(buffer, '.') != NULL) return;
1144
1145   // Find the first unknown character.
1146   while (IsValidFloatChar(*buffer)) ++buffer;
1147
1148   if (*buffer == '\0') {
1149     // No radix character found.
1150     return;
1151   }
1152
1153   // We are now pointing at the locale-specific radix character.  Replace it
1154   // with '.'.
1155   *buffer = '.';
1156   ++buffer;
1157
1158   if (!IsValidFloatChar(*buffer) && *buffer != '\0') {
1159     // It appears the radix was a multi-byte character.  We need to remove the
1160     // extra bytes.
1161     char* target = buffer;
1162     do { ++buffer; } while (!IsValidFloatChar(*buffer) && *buffer != '\0');
1163     memmove(target, buffer, strlen(buffer) + 1);
1164   }
1165 }
1166
1167 char* DoubleToBuffer(double value, char* buffer) {
1168   // DBL_DIG is 15 for IEEE-754 doubles, which are used on almost all
1169   // platforms these days.  Just in case some system exists where DBL_DIG
1170   // is significantly larger -- and risks overflowing our buffer -- we have
1171   // this assert.
1172   GOOGLE_COMPILE_ASSERT(DBL_DIG < 20, DBL_DIG_is_too_big);
1173
1174   if (value == numeric_limits<double>::infinity()) {
1175     strcpy(buffer, "inf");
1176     return buffer;
1177   } else if (value == -numeric_limits<double>::infinity()) {
1178     strcpy(buffer, "-inf");
1179     return buffer;
1180   } else if (IsNaN(value)) {
1181     strcpy(buffer, "nan");
1182     return buffer;
1183   }
1184
1185   int snprintf_result =
1186     snprintf(buffer, kDoubleToBufferSize, "%.*g", DBL_DIG, value);
1187
1188   // The snprintf should never overflow because the buffer is significantly
1189   // larger than the precision we asked for.
1190   GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kDoubleToBufferSize);
1191
1192   // We need to make parsed_value volatile in order to force the compiler to
1193   // write it out to the stack.  Otherwise, it may keep the value in a
1194   // register, and if it does that, it may keep it as a long double instead
1195   // of a double.  This long double may have extra bits that make it compare
1196   // unequal to "value" even though it would be exactly equal if it were
1197   // truncated to a double.
1198   volatile double parsed_value = strtod(buffer, NULL);
1199   if (parsed_value != value) {
1200     int snprintf_result =
1201       snprintf(buffer, kDoubleToBufferSize, "%.*g", DBL_DIG+2, value);
1202
1203     // Should never overflow; see above.
1204     GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kDoubleToBufferSize);
1205   }
1206
1207   DelocalizeRadix(buffer);
1208   return buffer;
1209 }
1210
1211 bool safe_strtof(const char* str, float* value) {
1212   char* endptr;
1213   errno = 0;  // errno only gets set on errors
1214 #if defined(_WIN32) || defined (__hpux)  // has no strtof()
1215   *value = strtod(str, &endptr);
1216 #else
1217   *value = strtof(str, &endptr);
1218 #endif
1219   return *str != 0 && *endptr == 0 && errno == 0;
1220 }
1221
1222 char* FloatToBuffer(float value, char* buffer) {
1223   // FLT_DIG is 6 for IEEE-754 floats, which are used on almost all
1224   // platforms these days.  Just in case some system exists where FLT_DIG
1225   // is significantly larger -- and risks overflowing our buffer -- we have
1226   // this assert.
1227   GOOGLE_COMPILE_ASSERT(FLT_DIG < 10, FLT_DIG_is_too_big);
1228
1229   if (value == numeric_limits<double>::infinity()) {
1230     strcpy(buffer, "inf");
1231     return buffer;
1232   } else if (value == -numeric_limits<double>::infinity()) {
1233     strcpy(buffer, "-inf");
1234     return buffer;
1235   } else if (IsNaN(value)) {
1236     strcpy(buffer, "nan");
1237     return buffer;
1238   }
1239
1240   int snprintf_result =
1241     snprintf(buffer, kFloatToBufferSize, "%.*g", FLT_DIG, value);
1242
1243   // The snprintf should never overflow because the buffer is significantly
1244   // larger than the precision we asked for.
1245   GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kFloatToBufferSize);
1246
1247   float parsed_value;
1248   if (!safe_strtof(buffer, &parsed_value) || parsed_value != value) {
1249     int snprintf_result =
1250       snprintf(buffer, kFloatToBufferSize, "%.*g", FLT_DIG+2, value);
1251
1252     // Should never overflow; see above.
1253     GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kFloatToBufferSize);
1254   }
1255
1256   DelocalizeRadix(buffer);
1257   return buffer;
1258 }
1259
1260 string ToHex(uint64 num) {
1261   if (num == 0) {
1262     return string("0");
1263   }
1264
1265   // Compute hex bytes in reverse order, writing to the back of the
1266   // buffer.
1267   char buf[16];  // No more than 16 hex digits needed.
1268   char* bufptr = buf + 16;
1269   static const char kHexChars[] = "0123456789abcdef";
1270   while (num != 0) {
1271     *--bufptr = kHexChars[num & 0xf];
1272     num >>= 4;
1273   }
1274
1275   return string(bufptr, buf + 16 - bufptr);
1276 }
1277
1278 }  // namespace protobuf
1279 }  // namespace google