tizen 2.3.1 release
[external/protobuf.git] / src / google / protobuf / descriptor.cc
1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2008 Google Inc.  All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 //     * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 //     * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 //     * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // Author: kenton@google.com (Kenton Varda)
32 //  Based on original Protocol Buffers design by
33 //  Sanjay Ghemawat, Jeff Dean, and others.
34
35 #include <google/protobuf/stubs/hash.h>
36 #include <map>
37 #include <set>
38 #include <string>
39 #include <vector>
40 #include <algorithm>
41 #include <limits>
42
43 #include <google/protobuf/descriptor.h>
44 #include <google/protobuf/descriptor_database.h>
45 #include <google/protobuf/descriptor.pb.h>
46 #include <google/protobuf/dynamic_message.h>
47 #include <google/protobuf/generated_message_util.h>
48 #include <google/protobuf/text_format.h>
49 #include <google/protobuf/unknown_field_set.h>
50 #include <google/protobuf/wire_format.h>
51 #include <google/protobuf/io/strtod.h>
52 #include <google/protobuf/io/coded_stream.h>
53 #include <google/protobuf/io/tokenizer.h>
54 #include <google/protobuf/io/zero_copy_stream_impl.h>
55 #include <google/protobuf/stubs/common.h>
56 #include <google/protobuf/stubs/once.h>
57 #include <google/protobuf/stubs/strutil.h>
58 #include <google/protobuf/stubs/substitute.h>
59 #include <google/protobuf/stubs/map_util.h>
60 #include <google/protobuf/stubs/stl_util.h>
61
62 #undef PACKAGE  // autoheader #defines this.  :(
63
64 namespace google {
65 namespace protobuf {
66
67 const FieldDescriptor::CppType
68 FieldDescriptor::kTypeToCppTypeMap[MAX_TYPE + 1] = {
69   static_cast<CppType>(0),  // 0 is reserved for errors
70
71   CPPTYPE_DOUBLE,   // TYPE_DOUBLE
72   CPPTYPE_FLOAT,    // TYPE_FLOAT
73   CPPTYPE_INT64,    // TYPE_INT64
74   CPPTYPE_UINT64,   // TYPE_UINT64
75   CPPTYPE_INT32,    // TYPE_INT32
76   CPPTYPE_UINT64,   // TYPE_FIXED64
77   CPPTYPE_UINT32,   // TYPE_FIXED32
78   CPPTYPE_BOOL,     // TYPE_BOOL
79   CPPTYPE_STRING,   // TYPE_STRING
80   CPPTYPE_MESSAGE,  // TYPE_GROUP
81   CPPTYPE_MESSAGE,  // TYPE_MESSAGE
82   CPPTYPE_STRING,   // TYPE_BYTES
83   CPPTYPE_UINT32,   // TYPE_UINT32
84   CPPTYPE_ENUM,     // TYPE_ENUM
85   CPPTYPE_INT32,    // TYPE_SFIXED32
86   CPPTYPE_INT64,    // TYPE_SFIXED64
87   CPPTYPE_INT32,    // TYPE_SINT32
88   CPPTYPE_INT64,    // TYPE_SINT64
89 };
90
91 const char * const FieldDescriptor::kTypeToName[MAX_TYPE + 1] = {
92   "ERROR",     // 0 is reserved for errors
93
94   "double",    // TYPE_DOUBLE
95   "float",     // TYPE_FLOAT
96   "int64",     // TYPE_INT64
97   "uint64",    // TYPE_UINT64
98   "int32",     // TYPE_INT32
99   "fixed64",   // TYPE_FIXED64
100   "fixed32",   // TYPE_FIXED32
101   "bool",      // TYPE_BOOL
102   "string",    // TYPE_STRING
103   "group",     // TYPE_GROUP
104   "message",   // TYPE_MESSAGE
105   "bytes",     // TYPE_BYTES
106   "uint32",    // TYPE_UINT32
107   "enum",      // TYPE_ENUM
108   "sfixed32",  // TYPE_SFIXED32
109   "sfixed64",  // TYPE_SFIXED64
110   "sint32",    // TYPE_SINT32
111   "sint64",    // TYPE_SINT64
112 };
113
114 const char * const FieldDescriptor::kCppTypeToName[MAX_CPPTYPE + 1] = {
115   "ERROR",     // 0 is reserved for errors
116
117   "int32",     // CPPTYPE_INT32
118   "int64",     // CPPTYPE_INT64
119   "uint32",    // CPPTYPE_UINT32
120   "uint64",    // CPPTYPE_UINT64
121   "double",    // CPPTYPE_DOUBLE
122   "float",     // CPPTYPE_FLOAT
123   "bool",      // CPPTYPE_BOOL
124   "enum",      // CPPTYPE_ENUM
125   "string",    // CPPTYPE_STRING
126   "message",   // CPPTYPE_MESSAGE
127 };
128
129 const char * const FieldDescriptor::kLabelToName[MAX_LABEL + 1] = {
130   "ERROR",     // 0 is reserved for errors
131
132   "optional",  // LABEL_OPTIONAL
133   "required",  // LABEL_REQUIRED
134   "repeated",  // LABEL_REPEATED
135 };
136
137 static const char * const kNonLinkedWeakMessageReplacementName = "google.protobuf.Empty";
138
139 #ifndef _MSC_VER  // MSVC doesn't need these and won't even accept them.
140 const int FieldDescriptor::kMaxNumber;
141 const int FieldDescriptor::kFirstReservedNumber;
142 const int FieldDescriptor::kLastReservedNumber;
143 #endif
144
145 namespace {
146
147 string ToCamelCase(const string& input) {
148   bool capitalize_next = false;
149   string result;
150   result.reserve(input.size());
151
152   for (int i = 0; i < input.size(); i++) {
153     if (input[i] == '_') {
154       capitalize_next = true;
155     } else if (capitalize_next) {
156       // Note:  I distrust ctype.h due to locales.
157       if ('a' <= input[i] && input[i] <= 'z') {
158         result.push_back(input[i] - 'a' + 'A');
159       } else {
160         result.push_back(input[i]);
161       }
162       capitalize_next = false;
163     } else {
164       result.push_back(input[i]);
165     }
166   }
167
168   // Lower-case the first letter.
169   if (!result.empty() && 'A' <= result[0] && result[0] <= 'Z') {
170     result[0] = result[0] - 'A' + 'a';
171   }
172
173   return result;
174 }
175
176 // A DescriptorPool contains a bunch of hash_maps to implement the
177 // various Find*By*() methods.  Since hashtable lookups are O(1), it's
178 // most efficient to construct a fixed set of large hash_maps used by
179 // all objects in the pool rather than construct one or more small
180 // hash_maps for each object.
181 //
182 // The keys to these hash_maps are (parent, name) or (parent, number)
183 // pairs.  Unfortunately STL doesn't provide hash functions for pair<>,
184 // so we must invent our own.
185 //
186 // TODO(kenton):  Use StringPiece rather than const char* in keys?  It would
187 //   be a lot cleaner but we'd just have to convert it back to const char*
188 //   for the open source release.
189
190 typedef pair<const void*, const char*> PointerStringPair;
191
192 struct PointerStringPairEqual {
193   inline bool operator()(const PointerStringPair& a,
194                          const PointerStringPair& b) const {
195     return a.first == b.first && strcmp(a.second, b.second) == 0;
196   }
197 };
198
199 template<typename PairType>
200 struct PointerIntegerPairHash {
201   size_t operator()(const PairType& p) const {
202     // FIXME(kenton):  What is the best way to compute this hash?  I have
203     // no idea!  This seems a bit better than an XOR.
204     return reinterpret_cast<intptr_t>(p.first) * ((1 << 16) - 1) + p.second;
205   }
206
207 #ifdef _MSC_VER
208   // Used only by MSVC and platforms where hash_map is not available.
209   static const size_t bucket_size = 4;
210   static const size_t min_buckets = 8;
211 #endif
212   inline bool operator()(const PairType& a, const PairType& b) const {
213     return a.first < b.first ||
214           (a.first == b.first && a.second < b.second);
215   }
216 };
217
218 typedef pair<const Descriptor*, int> DescriptorIntPair;
219 typedef pair<const EnumDescriptor*, int> EnumIntPair;
220
221 struct PointerStringPairHash {
222   size_t operator()(const PointerStringPair& p) const {
223     // FIXME(kenton):  What is the best way to compute this hash?  I have
224     // no idea!  This seems a bit better than an XOR.
225     hash<const char*> cstring_hash;
226     return reinterpret_cast<intptr_t>(p.first) * ((1 << 16) - 1) +
227            cstring_hash(p.second);
228   }
229
230 #ifdef _MSC_VER
231   // Used only by MSVC and platforms where hash_map is not available.
232   static const size_t bucket_size = 4;
233   static const size_t min_buckets = 8;
234 #endif
235   inline bool operator()(const PointerStringPair& a,
236                          const PointerStringPair& b) const {
237     if (a.first < b.first) return true;
238     if (a.first > b.first) return false;
239     return strcmp(a.second, b.second) < 0;
240   }
241 };
242
243
244 struct Symbol {
245   enum Type {
246     NULL_SYMBOL, MESSAGE, FIELD, ONEOF, ENUM, ENUM_VALUE, SERVICE, METHOD,
247     PACKAGE
248   };
249   Type type;
250   union {
251     const Descriptor* descriptor;
252     const FieldDescriptor* field_descriptor;
253     const OneofDescriptor* oneof_descriptor;
254     const EnumDescriptor* enum_descriptor;
255     const EnumValueDescriptor* enum_value_descriptor;
256     const ServiceDescriptor* service_descriptor;
257     const MethodDescriptor* method_descriptor;
258     const FileDescriptor* package_file_descriptor;
259   };
260
261   inline Symbol() : type(NULL_SYMBOL) { descriptor = NULL; }
262   inline bool IsNull() const { return type == NULL_SYMBOL; }
263   inline bool IsType() const {
264     return type == MESSAGE || type == ENUM;
265   }
266   inline bool IsAggregate() const {
267     return type == MESSAGE || type == PACKAGE
268         || type == ENUM || type == SERVICE;
269   }
270
271 #define CONSTRUCTOR(TYPE, TYPE_CONSTANT, FIELD)  \
272   inline explicit Symbol(const TYPE* value) {    \
273     type = TYPE_CONSTANT;                        \
274     this->FIELD = value;                         \
275   }
276
277   CONSTRUCTOR(Descriptor         , MESSAGE   , descriptor             )
278   CONSTRUCTOR(FieldDescriptor    , FIELD     , field_descriptor       )
279   CONSTRUCTOR(OneofDescriptor    , ONEOF     , oneof_descriptor       )
280   CONSTRUCTOR(EnumDescriptor     , ENUM      , enum_descriptor        )
281   CONSTRUCTOR(EnumValueDescriptor, ENUM_VALUE, enum_value_descriptor  )
282   CONSTRUCTOR(ServiceDescriptor  , SERVICE   , service_descriptor     )
283   CONSTRUCTOR(MethodDescriptor   , METHOD    , method_descriptor      )
284   CONSTRUCTOR(FileDescriptor     , PACKAGE   , package_file_descriptor)
285 #undef CONSTRUCTOR
286
287   const FileDescriptor* GetFile() const {
288     switch (type) {
289       case NULL_SYMBOL: return NULL;
290       case MESSAGE    : return descriptor           ->file();
291       case FIELD      : return field_descriptor     ->file();
292       case ONEOF      : return oneof_descriptor     ->containing_type()->file();
293       case ENUM       : return enum_descriptor      ->file();
294       case ENUM_VALUE : return enum_value_descriptor->type()->file();
295       case SERVICE    : return service_descriptor   ->file();
296       case METHOD     : return method_descriptor    ->service()->file();
297       case PACKAGE    : return package_file_descriptor;
298     }
299     return NULL;
300   }
301 };
302
303 const Symbol kNullSymbol;
304
305 typedef hash_map<const char*, Symbol,
306                  hash<const char*>, streq>
307   SymbolsByNameMap;
308 typedef hash_map<PointerStringPair, Symbol,
309                  PointerStringPairHash, PointerStringPairEqual>
310   SymbolsByParentMap;
311 typedef hash_map<const char*, const FileDescriptor*,
312                  hash<const char*>, streq>
313   FilesByNameMap;
314 typedef hash_map<PointerStringPair, const FieldDescriptor*,
315                  PointerStringPairHash, PointerStringPairEqual>
316   FieldsByNameMap;
317 typedef hash_map<DescriptorIntPair, const FieldDescriptor*,
318                  PointerIntegerPairHash<DescriptorIntPair> >
319   FieldsByNumberMap;
320 typedef hash_map<EnumIntPair, const EnumValueDescriptor*,
321                  PointerIntegerPairHash<EnumIntPair> >
322   EnumValuesByNumberMap;
323 // This is a map rather than a hash_map, since we use it to iterate
324 // through all the extensions that extend a given Descriptor, and an
325 // ordered data structure that implements lower_bound is convenient
326 // for that.
327 typedef map<DescriptorIntPair, const FieldDescriptor*>
328   ExtensionsGroupedByDescriptorMap;
329 typedef hash_map<string, const SourceCodeInfo_Location*> LocationsByPathMap;
330 }  // anonymous namespace
331
332 // ===================================================================
333 // DescriptorPool::Tables
334
335 class DescriptorPool::Tables {
336  public:
337   Tables();
338   ~Tables();
339
340   // Record the current state of the tables to the stack of checkpoints.
341   // Each call to AddCheckpoint() must be paired with exactly one call to either
342   // ClearLastCheckpoint() or RollbackToLastCheckpoint().
343   //
344   // This is used when building files, since some kinds of validation errors
345   // cannot be detected until the file's descriptors have already been added to
346   // the tables.
347   //
348   // This supports recursive checkpoints, since building a file may trigger
349   // recursive building of other files. Note that recursive checkpoints are not
350   // normally necessary; explicit dependencies are built prior to checkpointing.
351   // So although we recursively build transitive imports, there is at most one
352   // checkpoint in the stack during dependency building.
353   //
354   // Recursive checkpoints only arise during cross-linking of the descriptors.
355   // Symbol references must be resolved, via DescriptorBuilder::FindSymbol and
356   // friends. If the pending file references an unknown symbol
357   // (e.g., it is not defined in the pending file's explicit dependencies), and
358   // the pool is using a fallback database, and that database contains a file
359   // defining that symbol, and that file has not yet been built by the pool,
360   // the pool builds the file during cross-linking, leading to another
361   // checkpoint.
362   void AddCheckpoint();
363
364   // Mark the last checkpoint as having cleared successfully, removing it from
365   // the stack. If the stack is empty, all pending symbols will be committed.
366   //
367   // Note that this does not guarantee that the symbols added since the last
368   // checkpoint won't be rolled back: if a checkpoint gets rolled back,
369   // everything past that point gets rolled back, including symbols added after
370   // checkpoints that were pushed onto the stack after it and marked as cleared.
371   void ClearLastCheckpoint();
372
373   // Roll back the Tables to the state of the checkpoint at the top of the
374   // stack, removing everything that was added after that point.
375   void RollbackToLastCheckpoint();
376
377   // The stack of files which are currently being built.  Used to detect
378   // cyclic dependencies when loading files from a DescriptorDatabase.  Not
379   // used when fallback_database_ == NULL.
380   vector<string> pending_files_;
381
382   // A set of files which we have tried to load from the fallback database
383   // and encountered errors.  We will not attempt to load them again during
384   // execution of the current public API call, but for compatibility with
385   // legacy clients, this is cleared at the beginning of each public API call.
386   // Not used when fallback_database_ == NULL.
387   hash_set<string> known_bad_files_;
388
389   // A set of symbols which we have tried to load from the fallback database
390   // and encountered errors. We will not attempt to load them again during
391   // execution of the current public API call, but for compatibility with
392   // legacy clients, this is cleared at the beginning of each public API call.
393   hash_set<string> known_bad_symbols_;
394
395   // The set of descriptors for which we've already loaded the full
396   // set of extensions numbers from fallback_database_.
397   hash_set<const Descriptor*> extensions_loaded_from_db_;
398
399   // -----------------------------------------------------------------
400   // Finding items.
401
402   // Find symbols.  This returns a null Symbol (symbol.IsNull() is true)
403   // if not found.
404   inline Symbol FindSymbol(const string& key) const;
405
406   // This implements the body of DescriptorPool::Find*ByName().  It should
407   // really be a private method of DescriptorPool, but that would require
408   // declaring Symbol in descriptor.h, which would drag all kinds of other
409   // stuff into the header.  Yay C++.
410   Symbol FindByNameHelper(
411     const DescriptorPool* pool, const string& name);
412
413   // These return NULL if not found.
414   inline const FileDescriptor* FindFile(const string& key) const;
415   inline const FieldDescriptor* FindExtension(const Descriptor* extendee,
416                                               int number);
417   inline void FindAllExtensions(const Descriptor* extendee,
418                                 vector<const FieldDescriptor*>* out) const;
419
420   // -----------------------------------------------------------------
421   // Adding items.
422
423   // These add items to the corresponding tables.  They return false if
424   // the key already exists in the table.  For AddSymbol(), the string passed
425   // in must be one that was constructed using AllocateString(), as it will
426   // be used as a key in the symbols_by_name_ map without copying.
427   bool AddSymbol(const string& full_name, Symbol symbol);
428   bool AddFile(const FileDescriptor* file);
429   bool AddExtension(const FieldDescriptor* field);
430
431   // -----------------------------------------------------------------
432   // Allocating memory.
433
434   // Allocate an object which will be reclaimed when the pool is
435   // destroyed.  Note that the object's destructor will never be called,
436   // so its fields must be plain old data (primitive data types and
437   // pointers).  All of the descriptor types are such objects.
438   template<typename Type> Type* Allocate();
439
440   // Allocate an array of objects which will be reclaimed when the
441   // pool in destroyed.  Again, destructors are never called.
442   template<typename Type> Type* AllocateArray(int count);
443
444   // Allocate a string which will be destroyed when the pool is destroyed.
445   // The string is initialized to the given value for convenience.
446   string* AllocateString(const string& value);
447
448   // Allocate a protocol message object.  Some older versions of GCC have
449   // trouble understanding explicit template instantiations in some cases, so
450   // in those cases we have to pass a dummy pointer of the right type as the
451   // parameter instead of specifying the type explicitly.
452   template<typename Type> Type* AllocateMessage(Type* dummy = NULL);
453
454   // Allocate a FileDescriptorTables object.
455   FileDescriptorTables* AllocateFileTables();
456
457  private:
458   vector<string*> strings_;    // All strings in the pool.
459   vector<Message*> messages_;  // All messages in the pool.
460   vector<FileDescriptorTables*> file_tables_;  // All file tables in the pool.
461   vector<void*> allocations_;  // All other memory allocated in the pool.
462
463   SymbolsByNameMap      symbols_by_name_;
464   FilesByNameMap        files_by_name_;
465   ExtensionsGroupedByDescriptorMap extensions_;
466
467   struct CheckPoint {
468     explicit CheckPoint(const Tables* tables)
469       : strings_before_checkpoint(tables->strings_.size()),
470         messages_before_checkpoint(tables->messages_.size()),
471         file_tables_before_checkpoint(tables->file_tables_.size()),
472         allocations_before_checkpoint(tables->allocations_.size()),
473         pending_symbols_before_checkpoint(
474             tables->symbols_after_checkpoint_.size()),
475         pending_files_before_checkpoint(
476             tables->files_after_checkpoint_.size()),
477         pending_extensions_before_checkpoint(
478             tables->extensions_after_checkpoint_.size()) {
479     }
480     int strings_before_checkpoint;
481     int messages_before_checkpoint;
482     int file_tables_before_checkpoint;
483     int allocations_before_checkpoint;
484     int pending_symbols_before_checkpoint;
485     int pending_files_before_checkpoint;
486     int pending_extensions_before_checkpoint;
487   };
488   vector<CheckPoint> checkpoints_;
489   vector<const char*      > symbols_after_checkpoint_;
490   vector<const char*      > files_after_checkpoint_;
491   vector<DescriptorIntPair> extensions_after_checkpoint_;
492
493   // Allocate some bytes which will be reclaimed when the pool is
494   // destroyed.
495   void* AllocateBytes(int size);
496 };
497
498 // Contains tables specific to a particular file.  These tables are not
499 // modified once the file has been constructed, so they need not be
500 // protected by a mutex.  This makes operations that depend only on the
501 // contents of a single file -- e.g. Descriptor::FindFieldByName() --
502 // lock-free.
503 //
504 // For historical reasons, the definitions of the methods of
505 // FileDescriptorTables and DescriptorPool::Tables are interleaved below.
506 // These used to be a single class.
507 class FileDescriptorTables {
508  public:
509   FileDescriptorTables();
510   ~FileDescriptorTables();
511
512   // Empty table, used with placeholder files.
513   static const FileDescriptorTables kEmpty;
514
515   // -----------------------------------------------------------------
516   // Finding items.
517
518   // Find symbols.  These return a null Symbol (symbol.IsNull() is true)
519   // if not found.
520   inline Symbol FindNestedSymbol(const void* parent,
521                                  const string& name) const;
522   inline Symbol FindNestedSymbolOfType(const void* parent,
523                                        const string& name,
524                                        const Symbol::Type type) const;
525
526   // These return NULL if not found.
527   inline const FieldDescriptor* FindFieldByNumber(
528     const Descriptor* parent, int number) const;
529   inline const FieldDescriptor* FindFieldByLowercaseName(
530     const void* parent, const string& lowercase_name) const;
531   inline const FieldDescriptor* FindFieldByCamelcaseName(
532     const void* parent, const string& camelcase_name) const;
533   inline const EnumValueDescriptor* FindEnumValueByNumber(
534     const EnumDescriptor* parent, int number) const;
535
536   // -----------------------------------------------------------------
537   // Adding items.
538
539   // These add items to the corresponding tables.  They return false if
540   // the key already exists in the table.  For AddAliasUnderParent(), the
541   // string passed in must be one that was constructed using AllocateString(),
542   // as it will be used as a key in the symbols_by_parent_ map without copying.
543   bool AddAliasUnderParent(const void* parent, const string& name,
544                            Symbol symbol);
545   bool AddFieldByNumber(const FieldDescriptor* field);
546   bool AddEnumValueByNumber(const EnumValueDescriptor* value);
547
548   // Adds the field to the lowercase_name and camelcase_name maps.  Never
549   // fails because we allow duplicates; the first field by the name wins.
550   void AddFieldByStylizedNames(const FieldDescriptor* field);
551
552   // Populates p->first->locations_by_path_ from p->second.
553   // Unusual signature dictated by GoogleOnceDynamic.
554   static void BuildLocationsByPath(
555       pair<const FileDescriptorTables*, const SourceCodeInfo*>* p);
556
557   // Returns the location denoted by the specified path through info,
558   // or NULL if not found.
559   // The value of info must be that of the corresponding FileDescriptor.
560   // (Conceptually a pure function, but stateful as an optimisation.)
561   const SourceCodeInfo_Location* GetSourceLocation(
562       const vector<int>& path, const SourceCodeInfo* info) const;
563
564  private:
565   SymbolsByParentMap    symbols_by_parent_;
566   FieldsByNameMap       fields_by_lowercase_name_;
567   FieldsByNameMap       fields_by_camelcase_name_;
568   FieldsByNumberMap     fields_by_number_;       // Not including extensions.
569   EnumValuesByNumberMap enum_values_by_number_;
570
571   // Populated on first request to save space, hence constness games.
572   mutable GoogleOnceDynamic locations_by_path_once_;
573   mutable LocationsByPathMap locations_by_path_;
574 };
575
576 DescriptorPool::Tables::Tables()
577     // Start some hash_map and hash_set objects with a small # of buckets
578     : known_bad_files_(3),
579       known_bad_symbols_(3),
580       extensions_loaded_from_db_(3),
581       symbols_by_name_(3),
582       files_by_name_(3) {}
583
584
585 DescriptorPool::Tables::~Tables() {
586   GOOGLE_DCHECK(checkpoints_.empty());
587   // Note that the deletion order is important, since the destructors of some
588   // messages may refer to objects in allocations_.
589   STLDeleteElements(&messages_);
590   for (int i = 0; i < allocations_.size(); i++) {
591     operator delete(allocations_[i]);
592   }
593   STLDeleteElements(&strings_);
594   STLDeleteElements(&file_tables_);
595 }
596
597 FileDescriptorTables::FileDescriptorTables()
598     // Initialize all the hash tables to start out with a small # of buckets
599     : symbols_by_parent_(3),
600       fields_by_lowercase_name_(3),
601       fields_by_camelcase_name_(3),
602       fields_by_number_(3),
603       enum_values_by_number_(3) {
604 }
605
606 FileDescriptorTables::~FileDescriptorTables() {}
607
608 const FileDescriptorTables FileDescriptorTables::kEmpty;
609
610 void DescriptorPool::Tables::AddCheckpoint() {
611   checkpoints_.push_back(CheckPoint(this));
612 }
613
614 void DescriptorPool::Tables::ClearLastCheckpoint() {
615   GOOGLE_DCHECK(!checkpoints_.empty());
616   checkpoints_.pop_back();
617   if (checkpoints_.empty()) {
618     // All checkpoints have been cleared: we can now commit all of the pending
619     // data.
620     symbols_after_checkpoint_.clear();
621     files_after_checkpoint_.clear();
622     extensions_after_checkpoint_.clear();
623   }
624 }
625
626 void DescriptorPool::Tables::RollbackToLastCheckpoint() {
627   GOOGLE_DCHECK(!checkpoints_.empty());
628   const CheckPoint& checkpoint = checkpoints_.back();
629
630   for (int i = checkpoint.pending_symbols_before_checkpoint;
631        i < symbols_after_checkpoint_.size();
632        i++) {
633     symbols_by_name_.erase(symbols_after_checkpoint_[i]);
634   }
635   for (int i = checkpoint.pending_files_before_checkpoint;
636        i < files_after_checkpoint_.size();
637        i++) {
638     files_by_name_.erase(files_after_checkpoint_[i]);
639   }
640   for (int i = checkpoint.pending_extensions_before_checkpoint;
641        i < extensions_after_checkpoint_.size();
642        i++) {
643     extensions_.erase(extensions_after_checkpoint_[i]);
644   }
645
646   symbols_after_checkpoint_.resize(
647       checkpoint.pending_symbols_before_checkpoint);
648   files_after_checkpoint_.resize(checkpoint.pending_files_before_checkpoint);
649   extensions_after_checkpoint_.resize(
650       checkpoint.pending_extensions_before_checkpoint);
651
652   STLDeleteContainerPointers(
653       strings_.begin() + checkpoint.strings_before_checkpoint, strings_.end());
654   STLDeleteContainerPointers(
655       messages_.begin() + checkpoint.messages_before_checkpoint,
656       messages_.end());
657   STLDeleteContainerPointers(
658       file_tables_.begin() + checkpoint.file_tables_before_checkpoint,
659       file_tables_.end());
660   for (int i = checkpoint.allocations_before_checkpoint;
661        i < allocations_.size();
662        i++) {
663     operator delete(allocations_[i]);
664   }
665
666   strings_.resize(checkpoint.strings_before_checkpoint);
667   messages_.resize(checkpoint.messages_before_checkpoint);
668   file_tables_.resize(checkpoint.file_tables_before_checkpoint);
669   allocations_.resize(checkpoint.allocations_before_checkpoint);
670   checkpoints_.pop_back();
671 }
672
673 // -------------------------------------------------------------------
674
675 inline Symbol DescriptorPool::Tables::FindSymbol(const string& key) const {
676   const Symbol* result = FindOrNull(symbols_by_name_, key.c_str());
677   if (result == NULL) {
678     return kNullSymbol;
679   } else {
680     return *result;
681   }
682 }
683
684 inline Symbol FileDescriptorTables::FindNestedSymbol(
685     const void* parent, const string& name) const {
686   const Symbol* result =
687     FindOrNull(symbols_by_parent_, PointerStringPair(parent, name.c_str()));
688   if (result == NULL) {
689     return kNullSymbol;
690   } else {
691     return *result;
692   }
693 }
694
695 inline Symbol FileDescriptorTables::FindNestedSymbolOfType(
696     const void* parent, const string& name, const Symbol::Type type) const {
697   Symbol result = FindNestedSymbol(parent, name);
698   if (result.type != type) return kNullSymbol;
699   return result;
700 }
701
702 Symbol DescriptorPool::Tables::FindByNameHelper(
703     const DescriptorPool* pool, const string& name) {
704   MutexLockMaybe lock(pool->mutex_);
705   known_bad_symbols_.clear();
706   known_bad_files_.clear();
707   Symbol result = FindSymbol(name);
708
709   if (result.IsNull() && pool->underlay_ != NULL) {
710     // Symbol not found; check the underlay.
711     result =
712       pool->underlay_->tables_->FindByNameHelper(pool->underlay_, name);
713   }
714
715   if (result.IsNull()) {
716     // Symbol still not found, so check fallback database.
717     if (pool->TryFindSymbolInFallbackDatabase(name)) {
718       result = FindSymbol(name);
719     }
720   }
721
722   return result;
723 }
724
725 inline const FileDescriptor* DescriptorPool::Tables::FindFile(
726     const string& key) const {
727   return FindPtrOrNull(files_by_name_, key.c_str());
728 }
729
730 inline const FieldDescriptor* FileDescriptorTables::FindFieldByNumber(
731     const Descriptor* parent, int number) const {
732   return FindPtrOrNull(fields_by_number_, make_pair(parent, number));
733 }
734
735 inline const FieldDescriptor* FileDescriptorTables::FindFieldByLowercaseName(
736     const void* parent, const string& lowercase_name) const {
737   return FindPtrOrNull(fields_by_lowercase_name_,
738                        PointerStringPair(parent, lowercase_name.c_str()));
739 }
740
741 inline const FieldDescriptor* FileDescriptorTables::FindFieldByCamelcaseName(
742     const void* parent, const string& camelcase_name) const {
743   return FindPtrOrNull(fields_by_camelcase_name_,
744                        PointerStringPair(parent, camelcase_name.c_str()));
745 }
746
747 inline const EnumValueDescriptor* FileDescriptorTables::FindEnumValueByNumber(
748     const EnumDescriptor* parent, int number) const {
749   return FindPtrOrNull(enum_values_by_number_, make_pair(parent, number));
750 }
751
752 inline const FieldDescriptor* DescriptorPool::Tables::FindExtension(
753     const Descriptor* extendee, int number) {
754   return FindPtrOrNull(extensions_, make_pair(extendee, number));
755 }
756
757 inline void DescriptorPool::Tables::FindAllExtensions(
758     const Descriptor* extendee, vector<const FieldDescriptor*>* out) const {
759   ExtensionsGroupedByDescriptorMap::const_iterator it =
760       extensions_.lower_bound(make_pair(extendee, 0));
761   for (; it != extensions_.end() && it->first.first == extendee; ++it) {
762     out->push_back(it->second);
763   }
764 }
765
766 // -------------------------------------------------------------------
767
768 bool DescriptorPool::Tables::AddSymbol(
769     const string& full_name, Symbol symbol) {
770   if (InsertIfNotPresent(&symbols_by_name_, full_name.c_str(), symbol)) {
771     symbols_after_checkpoint_.push_back(full_name.c_str());
772     return true;
773   } else {
774     return false;
775   }
776 }
777
778 bool FileDescriptorTables::AddAliasUnderParent(
779     const void* parent, const string& name, Symbol symbol) {
780   PointerStringPair by_parent_key(parent, name.c_str());
781   return InsertIfNotPresent(&symbols_by_parent_, by_parent_key, symbol);
782 }
783
784 bool DescriptorPool::Tables::AddFile(const FileDescriptor* file) {
785   if (InsertIfNotPresent(&files_by_name_, file->name().c_str(), file)) {
786     files_after_checkpoint_.push_back(file->name().c_str());
787     return true;
788   } else {
789     return false;
790   }
791 }
792
793 void FileDescriptorTables::AddFieldByStylizedNames(
794     const FieldDescriptor* field) {
795   const void* parent;
796   if (field->is_extension()) {
797     if (field->extension_scope() == NULL) {
798       parent = field->file();
799     } else {
800       parent = field->extension_scope();
801     }
802   } else {
803     parent = field->containing_type();
804   }
805
806   PointerStringPair lowercase_key(parent, field->lowercase_name().c_str());
807   InsertIfNotPresent(&fields_by_lowercase_name_, lowercase_key, field);
808
809   PointerStringPair camelcase_key(parent, field->camelcase_name().c_str());
810   InsertIfNotPresent(&fields_by_camelcase_name_, camelcase_key, field);
811 }
812
813 bool FileDescriptorTables::AddFieldByNumber(const FieldDescriptor* field) {
814   DescriptorIntPair key(field->containing_type(), field->number());
815   return InsertIfNotPresent(&fields_by_number_, key, field);
816 }
817
818 bool FileDescriptorTables::AddEnumValueByNumber(
819     const EnumValueDescriptor* value) {
820   EnumIntPair key(value->type(), value->number());
821   return InsertIfNotPresent(&enum_values_by_number_, key, value);
822 }
823
824 bool DescriptorPool::Tables::AddExtension(const FieldDescriptor* field) {
825   DescriptorIntPair key(field->containing_type(), field->number());
826   if (InsertIfNotPresent(&extensions_, key, field)) {
827     extensions_after_checkpoint_.push_back(key);
828     return true;
829   } else {
830     return false;
831   }
832 }
833
834 // -------------------------------------------------------------------
835
836 template<typename Type>
837 Type* DescriptorPool::Tables::Allocate() {
838   return reinterpret_cast<Type*>(AllocateBytes(sizeof(Type)));
839 }
840
841 template<typename Type>
842 Type* DescriptorPool::Tables::AllocateArray(int count) {
843   return reinterpret_cast<Type*>(AllocateBytes(sizeof(Type) * count));
844 }
845
846 string* DescriptorPool::Tables::AllocateString(const string& value) {
847   string* result = new string(value);
848   strings_.push_back(result);
849   return result;
850 }
851
852 template<typename Type>
853 Type* DescriptorPool::Tables::AllocateMessage(Type* /* dummy */) {
854   Type* result = new Type;
855   messages_.push_back(result);
856   return result;
857 }
858
859 FileDescriptorTables* DescriptorPool::Tables::AllocateFileTables() {
860   FileDescriptorTables* result = new FileDescriptorTables;
861   file_tables_.push_back(result);
862   return result;
863 }
864
865 void* DescriptorPool::Tables::AllocateBytes(int size) {
866   // TODO(kenton):  Would it be worthwhile to implement this in some more
867   // sophisticated way?  Probably not for the open source release, but for
868   // internal use we could easily plug in one of our existing memory pool
869   // allocators...
870   if (size == 0) return NULL;
871
872   void* result = operator new(size);
873   allocations_.push_back(result);
874   return result;
875 }
876
877 void FileDescriptorTables::BuildLocationsByPath(
878     pair<const FileDescriptorTables*, const SourceCodeInfo*>* p) {
879   for (int i = 0, len = p->second->location_size(); i < len; ++i) {
880     const SourceCodeInfo_Location* loc = &p->second->location().Get(i);
881     p->first->locations_by_path_[Join(loc->path(), ",")] = loc;
882   }
883 }
884
885 const SourceCodeInfo_Location* FileDescriptorTables::GetSourceLocation(
886     const vector<int>& path, const SourceCodeInfo* info) const {
887   pair<const FileDescriptorTables*, const SourceCodeInfo*> p(
888       make_pair(this, info));
889   locations_by_path_once_.Init(&FileDescriptorTables::BuildLocationsByPath, &p);
890   return FindPtrOrNull(locations_by_path_, Join(path, ","));
891 }
892
893 // ===================================================================
894 // DescriptorPool
895
896 DescriptorPool::ErrorCollector::~ErrorCollector() {}
897
898 DescriptorPool::DescriptorPool()
899   : mutex_(NULL),
900     fallback_database_(NULL),
901     default_error_collector_(NULL),
902     underlay_(NULL),
903     tables_(new Tables),
904     enforce_dependencies_(true),
905     allow_unknown_(false),
906     enforce_weak_(false) {}
907
908 DescriptorPool::DescriptorPool(DescriptorDatabase* fallback_database,
909                                ErrorCollector* error_collector)
910   : mutex_(new Mutex),
911     fallback_database_(fallback_database),
912     default_error_collector_(error_collector),
913     underlay_(NULL),
914     tables_(new Tables),
915     enforce_dependencies_(true),
916     allow_unknown_(false),
917     enforce_weak_(false) {
918 }
919
920 DescriptorPool::DescriptorPool(const DescriptorPool* underlay)
921   : mutex_(NULL),
922     fallback_database_(NULL),
923     default_error_collector_(NULL),
924     underlay_(underlay),
925     tables_(new Tables),
926     enforce_dependencies_(true),
927     allow_unknown_(false),
928     enforce_weak_(false) {}
929
930 DescriptorPool::~DescriptorPool() {
931   if (mutex_ != NULL) delete mutex_;
932 }
933
934 // DescriptorPool::BuildFile() defined later.
935 // DescriptorPool::BuildFileCollectingErrors() defined later.
936
937 void DescriptorPool::InternalDontEnforceDependencies() {
938   enforce_dependencies_ = false;
939 }
940
941 void DescriptorPool::AddUnusedImportTrackFile(const string& file_name) {
942   unused_import_track_files_.insert(file_name);
943 }
944
945 void DescriptorPool::ClearUnusedImportTrackFiles() {
946   unused_import_track_files_.clear();
947 }
948
949 bool DescriptorPool::InternalIsFileLoaded(const string& filename) const {
950   MutexLockMaybe lock(mutex_);
951   return tables_->FindFile(filename) != NULL;
952 }
953
954 // generated_pool ====================================================
955
956 namespace {
957
958
959 EncodedDescriptorDatabase* generated_database_ = NULL;
960 DescriptorPool* generated_pool_ = NULL;
961 GOOGLE_PROTOBUF_DECLARE_ONCE(generated_pool_init_);
962
963 void DeleteGeneratedPool() {
964   delete generated_database_;
965   generated_database_ = NULL;
966   delete generated_pool_;
967   generated_pool_ = NULL;
968 }
969
970 static void InitGeneratedPool() {
971   generated_database_ = new EncodedDescriptorDatabase;
972   generated_pool_ = new DescriptorPool(generated_database_);
973
974   internal::OnShutdown(&DeleteGeneratedPool);
975 }
976
977 inline void InitGeneratedPoolOnce() {
978   ::google::protobuf::GoogleOnceInit(&generated_pool_init_, &InitGeneratedPool);
979 }
980
981 }  // anonymous namespace
982
983 const DescriptorPool* DescriptorPool::generated_pool() {
984   InitGeneratedPoolOnce();
985   return generated_pool_;
986 }
987
988 DescriptorPool* DescriptorPool::internal_generated_pool() {
989   InitGeneratedPoolOnce();
990   return generated_pool_;
991 }
992
993 void DescriptorPool::InternalAddGeneratedFile(
994     const void* encoded_file_descriptor, int size) {
995   // So, this function is called in the process of initializing the
996   // descriptors for generated proto classes.  Each generated .pb.cc file
997   // has an internal procedure called AddDescriptors() which is called at
998   // process startup, and that function calls this one in order to register
999   // the raw bytes of the FileDescriptorProto representing the file.
1000   //
1001   // We do not actually construct the descriptor objects right away.  We just
1002   // hang on to the bytes until they are actually needed.  We actually construct
1003   // the descriptor the first time one of the following things happens:
1004   // * Someone calls a method like descriptor(), GetDescriptor(), or
1005   //   GetReflection() on the generated types, which requires returning the
1006   //   descriptor or an object based on it.
1007   // * Someone looks up the descriptor in DescriptorPool::generated_pool().
1008   //
1009   // Once one of these happens, the DescriptorPool actually parses the
1010   // FileDescriptorProto and generates a FileDescriptor (and all its children)
1011   // based on it.
1012   //
1013   // Note that FileDescriptorProto is itself a generated protocol message.
1014   // Therefore, when we parse one, we have to be very careful to avoid using
1015   // any descriptor-based operations, since this might cause infinite recursion
1016   // or deadlock.
1017   InitGeneratedPoolOnce();
1018   GOOGLE_CHECK(generated_database_->Add(encoded_file_descriptor, size));
1019 }
1020
1021
1022 // Find*By* methods ==================================================
1023
1024 // TODO(kenton):  There's a lot of repeated code here, but I'm not sure if
1025 //   there's any good way to factor it out.  Think about this some time when
1026 //   there's nothing more important to do (read: never).
1027
1028 const FileDescriptor* DescriptorPool::FindFileByName(const string& name) const {
1029   MutexLockMaybe lock(mutex_);
1030   tables_->known_bad_symbols_.clear();
1031   tables_->known_bad_files_.clear();
1032   const FileDescriptor* result = tables_->FindFile(name);
1033   if (result != NULL) return result;
1034   if (underlay_ != NULL) {
1035     result = underlay_->FindFileByName(name);
1036     if (result != NULL) return result;
1037   }
1038   if (TryFindFileInFallbackDatabase(name)) {
1039     result = tables_->FindFile(name);
1040     if (result != NULL) return result;
1041   }
1042   return NULL;
1043 }
1044
1045 const FileDescriptor* DescriptorPool::FindFileContainingSymbol(
1046     const string& symbol_name) const {
1047   MutexLockMaybe lock(mutex_);
1048   tables_->known_bad_symbols_.clear();
1049   tables_->known_bad_files_.clear();
1050   Symbol result = tables_->FindSymbol(symbol_name);
1051   if (!result.IsNull()) return result.GetFile();
1052   if (underlay_ != NULL) {
1053     const FileDescriptor* file_result =
1054       underlay_->FindFileContainingSymbol(symbol_name);
1055     if (file_result != NULL) return file_result;
1056   }
1057   if (TryFindSymbolInFallbackDatabase(symbol_name)) {
1058     result = tables_->FindSymbol(symbol_name);
1059     if (!result.IsNull()) return result.GetFile();
1060   }
1061   return NULL;
1062 }
1063
1064 const Descriptor* DescriptorPool::FindMessageTypeByName(
1065     const string& name) const {
1066   Symbol result = tables_->FindByNameHelper(this, name);
1067   return (result.type == Symbol::MESSAGE) ? result.descriptor : NULL;
1068 }
1069
1070 const FieldDescriptor* DescriptorPool::FindFieldByName(
1071     const string& name) const {
1072   Symbol result = tables_->FindByNameHelper(this, name);
1073   if (result.type == Symbol::FIELD &&
1074       !result.field_descriptor->is_extension()) {
1075     return result.field_descriptor;
1076   } else {
1077     return NULL;
1078   }
1079 }
1080
1081 const FieldDescriptor* DescriptorPool::FindExtensionByName(
1082     const string& name) const {
1083   Symbol result = tables_->FindByNameHelper(this, name);
1084   if (result.type == Symbol::FIELD &&
1085       result.field_descriptor->is_extension()) {
1086     return result.field_descriptor;
1087   } else {
1088     return NULL;
1089   }
1090 }
1091
1092 const OneofDescriptor* DescriptorPool::FindOneofByName(
1093     const string& name) const {
1094   Symbol result = tables_->FindByNameHelper(this, name);
1095   return (result.type == Symbol::ONEOF) ? result.oneof_descriptor : NULL;
1096 }
1097
1098 const EnumDescriptor* DescriptorPool::FindEnumTypeByName(
1099     const string& name) const {
1100   Symbol result = tables_->FindByNameHelper(this, name);
1101   return (result.type == Symbol::ENUM) ? result.enum_descriptor : NULL;
1102 }
1103
1104 const EnumValueDescriptor* DescriptorPool::FindEnumValueByName(
1105     const string& name) const {
1106   Symbol result = tables_->FindByNameHelper(this, name);
1107   return (result.type == Symbol::ENUM_VALUE) ?
1108     result.enum_value_descriptor : NULL;
1109 }
1110
1111 const ServiceDescriptor* DescriptorPool::FindServiceByName(
1112     const string& name) const {
1113   Symbol result = tables_->FindByNameHelper(this, name);
1114   return (result.type == Symbol::SERVICE) ? result.service_descriptor : NULL;
1115 }
1116
1117 const MethodDescriptor* DescriptorPool::FindMethodByName(
1118     const string& name) const {
1119   Symbol result = tables_->FindByNameHelper(this, name);
1120   return (result.type == Symbol::METHOD) ? result.method_descriptor : NULL;
1121 }
1122
1123 const FieldDescriptor* DescriptorPool::FindExtensionByNumber(
1124     const Descriptor* extendee, int number) const {
1125   MutexLockMaybe lock(mutex_);
1126   tables_->known_bad_symbols_.clear();
1127   tables_->known_bad_files_.clear();
1128   const FieldDescriptor* result = tables_->FindExtension(extendee, number);
1129   if (result != NULL) {
1130     return result;
1131   }
1132   if (underlay_ != NULL) {
1133     result = underlay_->FindExtensionByNumber(extendee, number);
1134     if (result != NULL) return result;
1135   }
1136   if (TryFindExtensionInFallbackDatabase(extendee, number)) {
1137     result = tables_->FindExtension(extendee, number);
1138     if (result != NULL) {
1139       return result;
1140     }
1141   }
1142   return NULL;
1143 }
1144
1145 void DescriptorPool::FindAllExtensions(
1146     const Descriptor* extendee, vector<const FieldDescriptor*>* out) const {
1147   MutexLockMaybe lock(mutex_);
1148   tables_->known_bad_symbols_.clear();
1149   tables_->known_bad_files_.clear();
1150
1151   // Initialize tables_->extensions_ from the fallback database first
1152   // (but do this only once per descriptor).
1153   if (fallback_database_ != NULL &&
1154       tables_->extensions_loaded_from_db_.count(extendee) == 0) {
1155     vector<int> numbers;
1156     if (fallback_database_->FindAllExtensionNumbers(extendee->full_name(),
1157                                                     &numbers)) {
1158       for (int i = 0; i < numbers.size(); ++i) {
1159         int number = numbers[i];
1160         if (tables_->FindExtension(extendee, number) == NULL) {
1161           TryFindExtensionInFallbackDatabase(extendee, number);
1162         }
1163       }
1164       tables_->extensions_loaded_from_db_.insert(extendee);
1165     }
1166   }
1167
1168   tables_->FindAllExtensions(extendee, out);
1169   if (underlay_ != NULL) {
1170     underlay_->FindAllExtensions(extendee, out);
1171   }
1172 }
1173
1174
1175 // -------------------------------------------------------------------
1176
1177 const FieldDescriptor*
1178 Descriptor::FindFieldByNumber(int key) const {
1179   const FieldDescriptor* result =
1180     file()->tables_->FindFieldByNumber(this, key);
1181   if (result == NULL || result->is_extension()) {
1182     return NULL;
1183   } else {
1184     return result;
1185   }
1186 }
1187
1188 const FieldDescriptor*
1189 Descriptor::FindFieldByLowercaseName(const string& key) const {
1190   const FieldDescriptor* result =
1191     file()->tables_->FindFieldByLowercaseName(this, key);
1192   if (result == NULL || result->is_extension()) {
1193     return NULL;
1194   } else {
1195     return result;
1196   }
1197 }
1198
1199 const FieldDescriptor*
1200 Descriptor::FindFieldByCamelcaseName(const string& key) const {
1201   const FieldDescriptor* result =
1202     file()->tables_->FindFieldByCamelcaseName(this, key);
1203   if (result == NULL || result->is_extension()) {
1204     return NULL;
1205   } else {
1206     return result;
1207   }
1208 }
1209
1210 const FieldDescriptor*
1211 Descriptor::FindFieldByName(const string& key) const {
1212   Symbol result =
1213     file()->tables_->FindNestedSymbolOfType(this, key, Symbol::FIELD);
1214   if (!result.IsNull() && !result.field_descriptor->is_extension()) {
1215     return result.field_descriptor;
1216   } else {
1217     return NULL;
1218   }
1219 }
1220
1221 const OneofDescriptor*
1222 Descriptor::FindOneofByName(const string& key) const {
1223   Symbol result =
1224     file()->tables_->FindNestedSymbolOfType(this, key, Symbol::ONEOF);
1225   if (!result.IsNull()) {
1226     return result.oneof_descriptor;
1227   } else {
1228     return NULL;
1229   }
1230 }
1231
1232 const FieldDescriptor*
1233 Descriptor::FindExtensionByName(const string& key) const {
1234   Symbol result =
1235     file()->tables_->FindNestedSymbolOfType(this, key, Symbol::FIELD);
1236   if (!result.IsNull() && result.field_descriptor->is_extension()) {
1237     return result.field_descriptor;
1238   } else {
1239     return NULL;
1240   }
1241 }
1242
1243 const FieldDescriptor*
1244 Descriptor::FindExtensionByLowercaseName(const string& key) const {
1245   const FieldDescriptor* result =
1246     file()->tables_->FindFieldByLowercaseName(this, key);
1247   if (result == NULL || !result->is_extension()) {
1248     return NULL;
1249   } else {
1250     return result;
1251   }
1252 }
1253
1254 const FieldDescriptor*
1255 Descriptor::FindExtensionByCamelcaseName(const string& key) const {
1256   const FieldDescriptor* result =
1257     file()->tables_->FindFieldByCamelcaseName(this, key);
1258   if (result == NULL || !result->is_extension()) {
1259     return NULL;
1260   } else {
1261     return result;
1262   }
1263 }
1264
1265 const Descriptor*
1266 Descriptor::FindNestedTypeByName(const string& key) const {
1267   Symbol result =
1268     file()->tables_->FindNestedSymbolOfType(this, key, Symbol::MESSAGE);
1269   if (!result.IsNull()) {
1270     return result.descriptor;
1271   } else {
1272     return NULL;
1273   }
1274 }
1275
1276 const EnumDescriptor*
1277 Descriptor::FindEnumTypeByName(const string& key) const {
1278   Symbol result =
1279     file()->tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM);
1280   if (!result.IsNull()) {
1281     return result.enum_descriptor;
1282   } else {
1283     return NULL;
1284   }
1285 }
1286
1287 const EnumValueDescriptor*
1288 Descriptor::FindEnumValueByName(const string& key) const {
1289   Symbol result =
1290     file()->tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM_VALUE);
1291   if (!result.IsNull()) {
1292     return result.enum_value_descriptor;
1293   } else {
1294     return NULL;
1295   }
1296 }
1297
1298 const EnumValueDescriptor*
1299 EnumDescriptor::FindValueByName(const string& key) const {
1300   Symbol result =
1301     file()->tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM_VALUE);
1302   if (!result.IsNull()) {
1303     return result.enum_value_descriptor;
1304   } else {
1305     return NULL;
1306   }
1307 }
1308
1309 const EnumValueDescriptor*
1310 EnumDescriptor::FindValueByNumber(int key) const {
1311   return file()->tables_->FindEnumValueByNumber(this, key);
1312 }
1313
1314 const MethodDescriptor*
1315 ServiceDescriptor::FindMethodByName(const string& key) const {
1316   Symbol result =
1317     file()->tables_->FindNestedSymbolOfType(this, key, Symbol::METHOD);
1318   if (!result.IsNull()) {
1319     return result.method_descriptor;
1320   } else {
1321     return NULL;
1322   }
1323 }
1324
1325 const Descriptor*
1326 FileDescriptor::FindMessageTypeByName(const string& key) const {
1327   Symbol result = tables_->FindNestedSymbolOfType(this, key, Symbol::MESSAGE);
1328   if (!result.IsNull()) {
1329     return result.descriptor;
1330   } else {
1331     return NULL;
1332   }
1333 }
1334
1335 const EnumDescriptor*
1336 FileDescriptor::FindEnumTypeByName(const string& key) const {
1337   Symbol result = tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM);
1338   if (!result.IsNull()) {
1339     return result.enum_descriptor;
1340   } else {
1341     return NULL;
1342   }
1343 }
1344
1345 const EnumValueDescriptor*
1346 FileDescriptor::FindEnumValueByName(const string& key) const {
1347   Symbol result =
1348     tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM_VALUE);
1349   if (!result.IsNull()) {
1350     return result.enum_value_descriptor;
1351   } else {
1352     return NULL;
1353   }
1354 }
1355
1356 const ServiceDescriptor*
1357 FileDescriptor::FindServiceByName(const string& key) const {
1358   Symbol result = tables_->FindNestedSymbolOfType(this, key, Symbol::SERVICE);
1359   if (!result.IsNull()) {
1360     return result.service_descriptor;
1361   } else {
1362     return NULL;
1363   }
1364 }
1365
1366 const FieldDescriptor*
1367 FileDescriptor::FindExtensionByName(const string& key) const {
1368   Symbol result = tables_->FindNestedSymbolOfType(this, key, Symbol::FIELD);
1369   if (!result.IsNull() && result.field_descriptor->is_extension()) {
1370     return result.field_descriptor;
1371   } else {
1372     return NULL;
1373   }
1374 }
1375
1376 const FieldDescriptor*
1377 FileDescriptor::FindExtensionByLowercaseName(const string& key) const {
1378   const FieldDescriptor* result = tables_->FindFieldByLowercaseName(this, key);
1379   if (result == NULL || !result->is_extension()) {
1380     return NULL;
1381   } else {
1382     return result;
1383   }
1384 }
1385
1386 const FieldDescriptor*
1387 FileDescriptor::FindExtensionByCamelcaseName(const string& key) const {
1388   const FieldDescriptor* result = tables_->FindFieldByCamelcaseName(this, key);
1389   if (result == NULL || !result->is_extension()) {
1390     return NULL;
1391   } else {
1392     return result;
1393   }
1394 }
1395
1396 const Descriptor::ExtensionRange*
1397 Descriptor::FindExtensionRangeContainingNumber(int number) const {
1398   // Linear search should be fine because we don't expect a message to have
1399   // more than a couple extension ranges.
1400   for (int i = 0; i < extension_range_count(); i++) {
1401     if (number >= extension_range(i)->start &&
1402         number <  extension_range(i)->end) {
1403       return extension_range(i);
1404     }
1405   }
1406   return NULL;
1407 }
1408
1409 // -------------------------------------------------------------------
1410
1411 bool DescriptorPool::TryFindFileInFallbackDatabase(const string& name) const {
1412   if (fallback_database_ == NULL) return false;
1413
1414   if (tables_->known_bad_files_.count(name) > 0) return false;
1415
1416   FileDescriptorProto file_proto;
1417   if (!fallback_database_->FindFileByName(name, &file_proto) ||
1418       BuildFileFromDatabase(file_proto) == NULL) {
1419     tables_->known_bad_files_.insert(name);
1420     return false;
1421   }
1422   return true;
1423 }
1424
1425 bool DescriptorPool::IsSubSymbolOfBuiltType(const string& name) const {
1426   string prefix = name;
1427   for (;;) {
1428     string::size_type dot_pos = prefix.find_last_of('.');
1429     if (dot_pos == string::npos) {
1430       break;
1431     }
1432     prefix = prefix.substr(0, dot_pos);
1433     Symbol symbol = tables_->FindSymbol(prefix);
1434     // If the symbol type is anything other than PACKAGE, then its complete
1435     // definition is already known.
1436     if (!symbol.IsNull() && symbol.type != Symbol::PACKAGE) {
1437       return true;
1438     }
1439   }
1440   if (underlay_ != NULL) {
1441     // Check to see if any prefix of this symbol exists in the underlay.
1442     return underlay_->IsSubSymbolOfBuiltType(name);
1443   }
1444   return false;
1445 }
1446
1447 bool DescriptorPool::TryFindSymbolInFallbackDatabase(const string& name) const {
1448   if (fallback_database_ == NULL) return false;
1449
1450   if (tables_->known_bad_symbols_.count(name) > 0) return false;
1451
1452   FileDescriptorProto file_proto;
1453   if (// We skip looking in the fallback database if the name is a sub-symbol
1454       // of any descriptor that already exists in the descriptor pool (except
1455       // for package descriptors).  This is valid because all symbols except
1456       // for packages are defined in a single file, so if the symbol exists
1457       // then we should already have its definition.
1458       //
1459       // The other reason to do this is to support "overriding" type
1460       // definitions by merging two databases that define the same type.  (Yes,
1461       // people do this.)  The main difficulty with making this work is that
1462       // FindFileContainingSymbol() is allowed to return both false positives
1463       // (e.g., SimpleDescriptorDatabase, UpgradedDescriptorDatabase) and false
1464       // negatives (e.g. ProtoFileParser, SourceTreeDescriptorDatabase).
1465       // When two such databases are merged, looking up a non-existent
1466       // sub-symbol of a type that already exists in the descriptor pool can
1467       // result in an attempt to load multiple definitions of the same type.
1468       // The check below avoids this.
1469       IsSubSymbolOfBuiltType(name)
1470
1471       // Look up file containing this symbol in fallback database.
1472       || !fallback_database_->FindFileContainingSymbol(name, &file_proto)
1473
1474       // Check if we've already built this file. If so, it apparently doesn't
1475       // contain the symbol we're looking for.  Some DescriptorDatabases
1476       // return false positives.
1477       || tables_->FindFile(file_proto.name()) != NULL
1478
1479       // Build the file.
1480       || BuildFileFromDatabase(file_proto) == NULL) {
1481     tables_->known_bad_symbols_.insert(name);
1482     return false;
1483   }
1484
1485   return true;
1486 }
1487
1488 bool DescriptorPool::TryFindExtensionInFallbackDatabase(
1489     const Descriptor* containing_type, int field_number) const {
1490   if (fallback_database_ == NULL) return false;
1491
1492   FileDescriptorProto file_proto;
1493   if (!fallback_database_->FindFileContainingExtension(
1494         containing_type->full_name(), field_number, &file_proto)) {
1495     return false;
1496   }
1497
1498   if (tables_->FindFile(file_proto.name()) != NULL) {
1499     // We've already loaded this file, and it apparently doesn't contain the
1500     // extension we're looking for.  Some DescriptorDatabases return false
1501     // positives.
1502     return false;
1503   }
1504
1505   if (BuildFileFromDatabase(file_proto) == NULL) {
1506     return false;
1507   }
1508
1509   return true;
1510 }
1511
1512 // ===================================================================
1513
1514 string FieldDescriptor::DefaultValueAsString(bool quote_string_type) const {
1515   GOOGLE_CHECK(has_default_value()) << "No default value";
1516   switch (cpp_type()) {
1517     case CPPTYPE_INT32:
1518       return SimpleItoa(default_value_int32());
1519       break;
1520     case CPPTYPE_INT64:
1521       return SimpleItoa(default_value_int64());
1522       break;
1523     case CPPTYPE_UINT32:
1524       return SimpleItoa(default_value_uint32());
1525       break;
1526     case CPPTYPE_UINT64:
1527       return SimpleItoa(default_value_uint64());
1528       break;
1529     case CPPTYPE_FLOAT:
1530       return SimpleFtoa(default_value_float());
1531       break;
1532     case CPPTYPE_DOUBLE:
1533       return SimpleDtoa(default_value_double());
1534       break;
1535     case CPPTYPE_BOOL:
1536       return default_value_bool() ? "true" : "false";
1537       break;
1538     case CPPTYPE_STRING:
1539       if (quote_string_type) {
1540         return "\"" + CEscape(default_value_string()) + "\"";
1541       } else {
1542         if (type() == TYPE_BYTES) {
1543           return CEscape(default_value_string());
1544         } else {
1545           return default_value_string();
1546         }
1547       }
1548       break;
1549     case CPPTYPE_ENUM:
1550       return default_value_enum()->name();
1551       break;
1552     case CPPTYPE_MESSAGE:
1553       GOOGLE_LOG(DFATAL) << "Messages can't have default values!";
1554       break;
1555   }
1556   GOOGLE_LOG(FATAL) << "Can't get here: failed to get default value as string";
1557   return "";
1558 }
1559
1560 // CopyTo methods ====================================================
1561
1562 void FileDescriptor::CopyTo(FileDescriptorProto* proto) const {
1563   proto->set_name(name());
1564   if (!package().empty()) proto->set_package(package());
1565
1566   for (int i = 0; i < dependency_count(); i++) {
1567     proto->add_dependency(dependency(i)->name());
1568   }
1569
1570   for (int i = 0; i < public_dependency_count(); i++) {
1571     proto->add_public_dependency(public_dependencies_[i]);
1572   }
1573
1574   for (int i = 0; i < weak_dependency_count(); i++) {
1575     proto->add_weak_dependency(weak_dependencies_[i]);
1576   }
1577
1578   for (int i = 0; i < message_type_count(); i++) {
1579     message_type(i)->CopyTo(proto->add_message_type());
1580   }
1581   for (int i = 0; i < enum_type_count(); i++) {
1582     enum_type(i)->CopyTo(proto->add_enum_type());
1583   }
1584   for (int i = 0; i < service_count(); i++) {
1585     service(i)->CopyTo(proto->add_service());
1586   }
1587   for (int i = 0; i < extension_count(); i++) {
1588     extension(i)->CopyTo(proto->add_extension());
1589   }
1590
1591   if (&options() != &FileOptions::default_instance()) {
1592     proto->mutable_options()->CopyFrom(options());
1593   }
1594 }
1595
1596 void FileDescriptor::CopySourceCodeInfoTo(FileDescriptorProto* proto) const {
1597   if (source_code_info_ != &SourceCodeInfo::default_instance()) {
1598     proto->mutable_source_code_info()->CopyFrom(*source_code_info_);
1599   }
1600 }
1601
1602 void Descriptor::CopyTo(DescriptorProto* proto) const {
1603   proto->set_name(name());
1604
1605   for (int i = 0; i < field_count(); i++) {
1606     field(i)->CopyTo(proto->add_field());
1607   }
1608   for (int i = 0; i < oneof_decl_count(); i++) {
1609     oneof_decl(i)->CopyTo(proto->add_oneof_decl());
1610   }
1611   for (int i = 0; i < nested_type_count(); i++) {
1612     nested_type(i)->CopyTo(proto->add_nested_type());
1613   }
1614   for (int i = 0; i < enum_type_count(); i++) {
1615     enum_type(i)->CopyTo(proto->add_enum_type());
1616   }
1617   for (int i = 0; i < extension_range_count(); i++) {
1618     DescriptorProto::ExtensionRange* range = proto->add_extension_range();
1619     range->set_start(extension_range(i)->start);
1620     range->set_end(extension_range(i)->end);
1621   }
1622   for (int i = 0; i < extension_count(); i++) {
1623     extension(i)->CopyTo(proto->add_extension());
1624   }
1625
1626   if (&options() != &MessageOptions::default_instance()) {
1627     proto->mutable_options()->CopyFrom(options());
1628   }
1629 }
1630
1631 void FieldDescriptor::CopyTo(FieldDescriptorProto* proto) const {
1632   proto->set_name(name());
1633   proto->set_number(number());
1634
1635   // Some compilers do not allow static_cast directly between two enum types,
1636   // so we must cast to int first.
1637   proto->set_label(static_cast<FieldDescriptorProto::Label>(
1638                      implicit_cast<int>(label())));
1639   proto->set_type(static_cast<FieldDescriptorProto::Type>(
1640                     implicit_cast<int>(type())));
1641
1642   if (is_extension()) {
1643     if (!containing_type()->is_unqualified_placeholder_) {
1644       proto->set_extendee(".");
1645     }
1646     proto->mutable_extendee()->append(containing_type()->full_name());
1647   }
1648
1649   if (cpp_type() == CPPTYPE_MESSAGE) {
1650     if (message_type()->is_placeholder_) {
1651       // We don't actually know if the type is a message type.  It could be
1652       // an enum.
1653       proto->clear_type();
1654     }
1655
1656     if (!message_type()->is_unqualified_placeholder_) {
1657       proto->set_type_name(".");
1658     }
1659     proto->mutable_type_name()->append(message_type()->full_name());
1660   } else if (cpp_type() == CPPTYPE_ENUM) {
1661     if (!enum_type()->is_unqualified_placeholder_) {
1662       proto->set_type_name(".");
1663     }
1664     proto->mutable_type_name()->append(enum_type()->full_name());
1665   }
1666
1667   if (has_default_value()) {
1668     proto->set_default_value(DefaultValueAsString(false));
1669   }
1670
1671   if (containing_oneof() != NULL && !is_extension()) {
1672     proto->set_oneof_index(containing_oneof()->index());
1673   }
1674
1675   if (&options() != &FieldOptions::default_instance()) {
1676     proto->mutable_options()->CopyFrom(options());
1677   }
1678 }
1679
1680 void OneofDescriptor::CopyTo(OneofDescriptorProto* proto) const {
1681   proto->set_name(name());
1682 }
1683
1684 void EnumDescriptor::CopyTo(EnumDescriptorProto* proto) const {
1685   proto->set_name(name());
1686
1687   for (int i = 0; i < value_count(); i++) {
1688     value(i)->CopyTo(proto->add_value());
1689   }
1690
1691   if (&options() != &EnumOptions::default_instance()) {
1692     proto->mutable_options()->CopyFrom(options());
1693   }
1694 }
1695
1696 void EnumValueDescriptor::CopyTo(EnumValueDescriptorProto* proto) const {
1697   proto->set_name(name());
1698   proto->set_number(number());
1699
1700   if (&options() != &EnumValueOptions::default_instance()) {
1701     proto->mutable_options()->CopyFrom(options());
1702   }
1703 }
1704
1705 void ServiceDescriptor::CopyTo(ServiceDescriptorProto* proto) const {
1706   proto->set_name(name());
1707
1708   for (int i = 0; i < method_count(); i++) {
1709     method(i)->CopyTo(proto->add_method());
1710   }
1711
1712   if (&options() != &ServiceOptions::default_instance()) {
1713     proto->mutable_options()->CopyFrom(options());
1714   }
1715 }
1716
1717 void MethodDescriptor::CopyTo(MethodDescriptorProto* proto) const {
1718   proto->set_name(name());
1719
1720   if (!input_type()->is_unqualified_placeholder_) {
1721     proto->set_input_type(".");
1722   }
1723   proto->mutable_input_type()->append(input_type()->full_name());
1724
1725   if (!output_type()->is_unqualified_placeholder_) {
1726     proto->set_output_type(".");
1727   }
1728   proto->mutable_output_type()->append(output_type()->full_name());
1729
1730   if (&options() != &MethodOptions::default_instance()) {
1731     proto->mutable_options()->CopyFrom(options());
1732   }
1733 }
1734
1735 // DebugString methods ===============================================
1736
1737 namespace {
1738
1739 // Used by each of the option formatters.
1740 bool RetrieveOptions(int depth,
1741                      const Message &options,
1742                      vector<string> *option_entries) {
1743   option_entries->clear();
1744   const Reflection* reflection = options.GetReflection();
1745   vector<const FieldDescriptor*> fields;
1746   reflection->ListFields(options, &fields);
1747   for (int i = 0; i < fields.size(); i++) {
1748     int count = 1;
1749     bool repeated = false;
1750     if (fields[i]->is_repeated()) {
1751       count = reflection->FieldSize(options, fields[i]);
1752       repeated = true;
1753     }
1754     for (int j = 0; j < count; j++) {
1755       string fieldval;
1756       if (fields[i]->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
1757         string tmp;
1758         TextFormat::Printer printer;
1759         printer.SetInitialIndentLevel(depth + 1);
1760         printer.PrintFieldValueToString(options, fields[i],
1761                                         repeated ? j : -1, &tmp);
1762         fieldval.append("{\n");
1763         fieldval.append(tmp);
1764         fieldval.append(depth * 2, ' ');
1765         fieldval.append("}");
1766       } else {
1767         TextFormat::PrintFieldValueToString(options, fields[i],
1768                                             repeated ? j : -1, &fieldval);
1769       }
1770       string name;
1771       if (fields[i]->is_extension()) {
1772         name = "(." + fields[i]->full_name() + ")";
1773       } else {
1774         name = fields[i]->name();
1775       }
1776       option_entries->push_back(name + " = " + fieldval);
1777     }
1778   }
1779   return !option_entries->empty();
1780 }
1781
1782 // Formats options that all appear together in brackets. Does not include
1783 // brackets.
1784 bool FormatBracketedOptions(int depth, const Message &options, string *output) {
1785   vector<string> all_options;
1786   if (RetrieveOptions(depth, options, &all_options)) {
1787     output->append(Join(all_options, ", "));
1788   }
1789   return !all_options.empty();
1790 }
1791
1792 // Formats options one per line
1793 bool FormatLineOptions(int depth, const Message &options, string *output) {
1794   string prefix(depth * 2, ' ');
1795   vector<string> all_options;
1796   if (RetrieveOptions(depth, options, &all_options)) {
1797     for (int i = 0; i < all_options.size(); i++) {
1798       strings::SubstituteAndAppend(output, "$0option $1;\n",
1799                                    prefix, all_options[i]);
1800     }
1801   }
1802   return !all_options.empty();
1803 }
1804
1805 }  // anonymous namespace
1806
1807 string FileDescriptor::DebugString() const {
1808   string contents = "syntax = \"proto2\";\n\n";
1809
1810   set<int> public_dependencies;
1811   set<int> weak_dependencies;
1812   public_dependencies.insert(public_dependencies_,
1813                              public_dependencies_ + public_dependency_count_);
1814   weak_dependencies.insert(weak_dependencies_,
1815                            weak_dependencies_ + weak_dependency_count_);
1816
1817   for (int i = 0; i < dependency_count(); i++) {
1818     if (public_dependencies.count(i) > 0) {
1819       strings::SubstituteAndAppend(&contents, "import public \"$0\";\n",
1820                                    dependency(i)->name());
1821     } else if (weak_dependencies.count(i) > 0) {
1822       strings::SubstituteAndAppend(&contents, "import weak \"$0\";\n",
1823                                    dependency(i)->name());
1824     } else {
1825       strings::SubstituteAndAppend(&contents, "import \"$0\";\n",
1826                                    dependency(i)->name());
1827     }
1828   }
1829
1830   if (!package().empty()) {
1831     strings::SubstituteAndAppend(&contents, "package $0;\n\n", package());
1832   }
1833
1834   if (FormatLineOptions(0, options(), &contents)) {
1835     contents.append("\n");  // add some space if we had options
1836   }
1837
1838   for (int i = 0; i < enum_type_count(); i++) {
1839     enum_type(i)->DebugString(0, &contents);
1840     contents.append("\n");
1841   }
1842
1843   // Find all the 'group' type extensions; we will not output their nested
1844   // definitions (those will be done with their group field descriptor).
1845   set<const Descriptor*> groups;
1846   for (int i = 0; i < extension_count(); i++) {
1847     if (extension(i)->type() == FieldDescriptor::TYPE_GROUP) {
1848       groups.insert(extension(i)->message_type());
1849     }
1850   }
1851
1852   for (int i = 0; i < message_type_count(); i++) {
1853     if (groups.count(message_type(i)) == 0) {
1854       strings::SubstituteAndAppend(&contents, "message $0",
1855                                    message_type(i)->name());
1856       message_type(i)->DebugString(0, &contents);
1857       contents.append("\n");
1858     }
1859   }
1860
1861   for (int i = 0; i < service_count(); i++) {
1862     service(i)->DebugString(&contents);
1863     contents.append("\n");
1864   }
1865
1866   const Descriptor* containing_type = NULL;
1867   for (int i = 0; i < extension_count(); i++) {
1868     if (extension(i)->containing_type() != containing_type) {
1869       if (i > 0) contents.append("}\n\n");
1870       containing_type = extension(i)->containing_type();
1871       strings::SubstituteAndAppend(&contents, "extend .$0 {\n",
1872                                    containing_type->full_name());
1873     }
1874     extension(i)->DebugString(1, FieldDescriptor::PRINT_LABEL, &contents);
1875   }
1876   if (extension_count() > 0) contents.append("}\n\n");
1877
1878   return contents;
1879 }
1880
1881 string Descriptor::DebugString() const {
1882   string contents;
1883   strings::SubstituteAndAppend(&contents, "message $0", name());
1884   DebugString(0, &contents);
1885   return contents;
1886 }
1887
1888 void Descriptor::DebugString(int depth, string *contents) const {
1889   string prefix(depth * 2, ' ');
1890   ++depth;
1891   contents->append(" {\n");
1892
1893   FormatLineOptions(depth, options(), contents);
1894
1895   // Find all the 'group' types for fields and extensions; we will not output
1896   // their nested definitions (those will be done with their group field
1897   // descriptor).
1898   set<const Descriptor*> groups;
1899   for (int i = 0; i < field_count(); i++) {
1900     if (field(i)->type() == FieldDescriptor::TYPE_GROUP) {
1901       groups.insert(field(i)->message_type());
1902     }
1903   }
1904   for (int i = 0; i < extension_count(); i++) {
1905     if (extension(i)->type() == FieldDescriptor::TYPE_GROUP) {
1906       groups.insert(extension(i)->message_type());
1907     }
1908   }
1909
1910   for (int i = 0; i < nested_type_count(); i++) {
1911     if (groups.count(nested_type(i)) == 0) {
1912       strings::SubstituteAndAppend(contents, "$0  message $1",
1913                                    prefix, nested_type(i)->name());
1914       nested_type(i)->DebugString(depth, contents);
1915     }
1916   }
1917   for (int i = 0; i < enum_type_count(); i++) {
1918     enum_type(i)->DebugString(depth, contents);
1919   }
1920   for (int i = 0; i < field_count(); i++) {
1921     if (field(i)->containing_oneof() == NULL) {
1922       field(i)->DebugString(depth, FieldDescriptor::PRINT_LABEL, contents);
1923     } else if (field(i)->containing_oneof()->field(0) == field(i)) {
1924       // This is the first field in this oneof, so print the whole oneof.
1925       field(i)->containing_oneof()->DebugString(depth, contents);
1926     }
1927   }
1928
1929   for (int i = 0; i < extension_range_count(); i++) {
1930     strings::SubstituteAndAppend(contents, "$0  extensions $1 to $2;\n",
1931                                  prefix,
1932                                  extension_range(i)->start,
1933                                  extension_range(i)->end - 1);
1934   }
1935
1936   // Group extensions by what they extend, so they can be printed out together.
1937   const Descriptor* containing_type = NULL;
1938   for (int i = 0; i < extension_count(); i++) {
1939     if (extension(i)->containing_type() != containing_type) {
1940       if (i > 0) strings::SubstituteAndAppend(contents, "$0  }\n", prefix);
1941       containing_type = extension(i)->containing_type();
1942       strings::SubstituteAndAppend(contents, "$0  extend .$1 {\n",
1943                                    prefix, containing_type->full_name());
1944     }
1945     extension(i)->DebugString(
1946         depth + 1, FieldDescriptor::PRINT_LABEL, contents);
1947   }
1948   if (extension_count() > 0)
1949     strings::SubstituteAndAppend(contents, "$0  }\n", prefix);
1950
1951   strings::SubstituteAndAppend(contents, "$0}\n", prefix);
1952 }
1953
1954 string FieldDescriptor::DebugString() const {
1955   string contents;
1956   int depth = 0;
1957   if (is_extension()) {
1958     strings::SubstituteAndAppend(&contents, "extend .$0 {\n",
1959                                  containing_type()->full_name());
1960     depth = 1;
1961   }
1962   DebugString(depth, PRINT_LABEL, &contents);
1963   if (is_extension()) {
1964     contents.append("}\n");
1965   }
1966   return contents;
1967 }
1968
1969 void FieldDescriptor::DebugString(int depth,
1970                                   PrintLabelFlag print_label_flag,
1971                                   string *contents) const {
1972   string prefix(depth * 2, ' ');
1973   string field_type;
1974   switch (type()) {
1975     case TYPE_MESSAGE:
1976       field_type = "." + message_type()->full_name();
1977       break;
1978     case TYPE_ENUM:
1979       field_type = "." + enum_type()->full_name();
1980       break;
1981     default:
1982       field_type = kTypeToName[type()];
1983   }
1984
1985   string label;
1986   if (print_label_flag == PRINT_LABEL) {
1987     label = kLabelToName[this->label()];
1988     label.push_back(' ');
1989   }
1990
1991   strings::SubstituteAndAppend(contents, "$0$1$2 $3 = $4",
1992                                prefix,
1993                                label,
1994                                field_type,
1995                                type() == TYPE_GROUP ? message_type()->name() :
1996                                                       name(),
1997                                number());
1998
1999   bool bracketed = false;
2000   if (has_default_value()) {
2001     bracketed = true;
2002     strings::SubstituteAndAppend(contents, " [default = $0",
2003                                  DefaultValueAsString(true));
2004   }
2005
2006   string formatted_options;
2007   if (FormatBracketedOptions(depth, options(), &formatted_options)) {
2008     contents->append(bracketed ? ", " : " [");
2009     bracketed = true;
2010     contents->append(formatted_options);
2011   }
2012
2013   if (bracketed) {
2014     contents->append("]");
2015   }
2016
2017   if (type() == TYPE_GROUP) {
2018     message_type()->DebugString(depth, contents);
2019   } else {
2020     contents->append(";\n");
2021   }
2022 }
2023
2024 string OneofDescriptor::DebugString() const {
2025   string contents;
2026   DebugString(0, &contents);
2027   return contents;
2028 }
2029
2030 void OneofDescriptor::DebugString(int depth, string* contents) const {
2031   string prefix(depth * 2, ' ');
2032   ++depth;
2033   strings::SubstituteAndAppend(
2034       contents, "$0 oneof $1 {\n", prefix, name());
2035   for (int i = 0; i < field_count(); i++) {
2036     field(i)->DebugString(depth, FieldDescriptor::OMIT_LABEL, contents);
2037   }
2038   strings::SubstituteAndAppend(contents, "$0}\n", prefix);
2039 }
2040
2041 string EnumDescriptor::DebugString() const {
2042   string contents;
2043   DebugString(0, &contents);
2044   return contents;
2045 }
2046
2047 void EnumDescriptor::DebugString(int depth, string *contents) const {
2048   string prefix(depth * 2, ' ');
2049   ++depth;
2050   strings::SubstituteAndAppend(contents, "$0enum $1 {\n",
2051                                prefix, name());
2052
2053   FormatLineOptions(depth, options(), contents);
2054
2055   for (int i = 0; i < value_count(); i++) {
2056     value(i)->DebugString(depth, contents);
2057   }
2058   strings::SubstituteAndAppend(contents, "$0}\n", prefix);
2059 }
2060
2061 string EnumValueDescriptor::DebugString() const {
2062   string contents;
2063   DebugString(0, &contents);
2064   return contents;
2065 }
2066
2067 void EnumValueDescriptor::DebugString(int depth, string *contents) const {
2068   string prefix(depth * 2, ' ');
2069   strings::SubstituteAndAppend(contents, "$0$1 = $2",
2070                                prefix, name(), number());
2071
2072   string formatted_options;
2073   if (FormatBracketedOptions(depth, options(), &formatted_options)) {
2074     strings::SubstituteAndAppend(contents, " [$0]", formatted_options);
2075   }
2076   contents->append(";\n");
2077 }
2078
2079 string ServiceDescriptor::DebugString() const {
2080   string contents;
2081   DebugString(&contents);
2082   return contents;
2083 }
2084
2085 void ServiceDescriptor::DebugString(string *contents) const {
2086   strings::SubstituteAndAppend(contents, "service $0 {\n", name());
2087
2088   FormatLineOptions(1, options(), contents);
2089
2090   for (int i = 0; i < method_count(); i++) {
2091     method(i)->DebugString(1, contents);
2092   }
2093
2094   contents->append("}\n");
2095 }
2096
2097 string MethodDescriptor::DebugString() const {
2098   string contents;
2099   DebugString(0, &contents);
2100   return contents;
2101 }
2102
2103 void MethodDescriptor::DebugString(int depth, string *contents) const {
2104   string prefix(depth * 2, ' ');
2105   ++depth;
2106   strings::SubstituteAndAppend(contents, "$0rpc $1(.$2) returns (.$3)",
2107                                prefix, name(),
2108                                input_type()->full_name(),
2109                                output_type()->full_name());
2110
2111   string formatted_options;
2112   if (FormatLineOptions(depth, options(), &formatted_options)) {
2113     strings::SubstituteAndAppend(contents, " {\n$0$1}\n",
2114                                  formatted_options, prefix);
2115   } else {
2116     contents->append(";\n");
2117   }
2118 }
2119
2120
2121 // Location methods ===============================================
2122
2123 bool FileDescriptor::GetSourceLocation(const vector<int>& path,
2124                                        SourceLocation* out_location) const {
2125   GOOGLE_CHECK_NOTNULL(out_location);
2126   if (source_code_info_) {
2127     if (const SourceCodeInfo_Location* loc =
2128         tables_->GetSourceLocation(path, source_code_info_)) {
2129       const RepeatedField<int32>& span = loc->span();
2130       if (span.size() == 3 || span.size() == 4) {
2131         out_location->start_line   = span.Get(0);
2132         out_location->start_column = span.Get(1);
2133         out_location->end_line     = span.Get(span.size() == 3 ? 0 : 2);
2134         out_location->end_column   = span.Get(span.size() - 1);
2135
2136         out_location->leading_comments = loc->leading_comments();
2137         out_location->trailing_comments = loc->trailing_comments();
2138         return true;
2139       }
2140     }
2141   }
2142   return false;
2143 }
2144
2145 bool FieldDescriptor::is_packed() const {
2146   return is_packable() && (options_ != NULL) && options_->packed();
2147 }
2148
2149 bool Descriptor::GetSourceLocation(SourceLocation* out_location) const {
2150   vector<int> path;
2151   GetLocationPath(&path);
2152   return file()->GetSourceLocation(path, out_location);
2153 }
2154
2155 bool FieldDescriptor::GetSourceLocation(SourceLocation* out_location) const {
2156   vector<int> path;
2157   GetLocationPath(&path);
2158   return file()->GetSourceLocation(path, out_location);
2159 }
2160
2161 bool OneofDescriptor::GetSourceLocation(SourceLocation* out_location) const {
2162   vector<int> path;
2163   GetLocationPath(&path);
2164   return containing_type()->file()->GetSourceLocation(path, out_location);
2165 }
2166
2167 bool EnumDescriptor::GetSourceLocation(SourceLocation* out_location) const {
2168   vector<int> path;
2169   GetLocationPath(&path);
2170   return file()->GetSourceLocation(path, out_location);
2171 }
2172
2173 bool MethodDescriptor::GetSourceLocation(SourceLocation* out_location) const {
2174   vector<int> path;
2175   GetLocationPath(&path);
2176   return service()->file()->GetSourceLocation(path, out_location);
2177 }
2178
2179 bool ServiceDescriptor::GetSourceLocation(SourceLocation* out_location) const {
2180   vector<int> path;
2181   GetLocationPath(&path);
2182   return file()->GetSourceLocation(path, out_location);
2183 }
2184
2185 bool EnumValueDescriptor::GetSourceLocation(
2186     SourceLocation* out_location) const {
2187   vector<int> path;
2188   GetLocationPath(&path);
2189   return type()->file()->GetSourceLocation(path, out_location);
2190 }
2191
2192 void Descriptor::GetLocationPath(vector<int>* output) const {
2193   if (containing_type()) {
2194     containing_type()->GetLocationPath(output);
2195     output->push_back(DescriptorProto::kNestedTypeFieldNumber);
2196     output->push_back(index());
2197   } else {
2198     output->push_back(FileDescriptorProto::kMessageTypeFieldNumber);
2199     output->push_back(index());
2200   }
2201 }
2202
2203 void FieldDescriptor::GetLocationPath(vector<int>* output) const {
2204   if (is_extension()) {
2205     if (extension_scope() == NULL) {
2206       output->push_back(FileDescriptorProto::kExtensionFieldNumber);
2207       output->push_back(index());
2208     } else {
2209       extension_scope()->GetLocationPath(output);
2210       output->push_back(DescriptorProto::kExtensionFieldNumber);
2211       output->push_back(index());
2212     }
2213   } else {
2214     containing_type()->GetLocationPath(output);
2215     output->push_back(DescriptorProto::kFieldFieldNumber);
2216     output->push_back(index());
2217   }
2218 }
2219
2220 void OneofDescriptor::GetLocationPath(vector<int>* output) const {
2221   containing_type()->GetLocationPath(output);
2222   output->push_back(DescriptorProto::kOneofDeclFieldNumber);
2223   output->push_back(index());
2224 }
2225
2226 void EnumDescriptor::GetLocationPath(vector<int>* output) const {
2227   if (containing_type()) {
2228     containing_type()->GetLocationPath(output);
2229     output->push_back(DescriptorProto::kEnumTypeFieldNumber);
2230     output->push_back(index());
2231   } else {
2232     output->push_back(FileDescriptorProto::kEnumTypeFieldNumber);
2233     output->push_back(index());
2234   }
2235 }
2236
2237 void EnumValueDescriptor::GetLocationPath(vector<int>* output) const {
2238   type()->GetLocationPath(output);
2239   output->push_back(EnumDescriptorProto::kValueFieldNumber);
2240   output->push_back(index());
2241 }
2242
2243 void ServiceDescriptor::GetLocationPath(vector<int>* output) const {
2244   output->push_back(FileDescriptorProto::kServiceFieldNumber);
2245   output->push_back(index());
2246 }
2247
2248 void MethodDescriptor::GetLocationPath(vector<int>* output) const {
2249   service()->GetLocationPath(output);
2250   output->push_back(ServiceDescriptorProto::kMethodFieldNumber);
2251   output->push_back(index());
2252 }
2253
2254 // ===================================================================
2255
2256 namespace {
2257
2258 // Represents an options message to interpret. Extension names in the option
2259 // name are respolved relative to name_scope. element_name and orig_opt are
2260 // used only for error reporting (since the parser records locations against
2261 // pointers in the original options, not the mutable copy). The Message must be
2262 // one of the Options messages in descriptor.proto.
2263 struct OptionsToInterpret {
2264   OptionsToInterpret(const string& ns,
2265                      const string& el,
2266                      const Message* orig_opt,
2267                      Message* opt)
2268       : name_scope(ns),
2269         element_name(el),
2270         original_options(orig_opt),
2271         options(opt) {
2272   }
2273   string name_scope;
2274   string element_name;
2275   const Message* original_options;
2276   Message* options;
2277 };
2278
2279 }  // namespace
2280
2281 class DescriptorBuilder {
2282  public:
2283   DescriptorBuilder(const DescriptorPool* pool,
2284                     DescriptorPool::Tables* tables,
2285                     DescriptorPool::ErrorCollector* error_collector);
2286   ~DescriptorBuilder();
2287
2288   const FileDescriptor* BuildFile(const FileDescriptorProto& proto);
2289
2290  private:
2291   friend class OptionInterpreter;
2292
2293   const DescriptorPool* pool_;
2294   DescriptorPool::Tables* tables_;  // for convenience
2295   DescriptorPool::ErrorCollector* error_collector_;
2296
2297   // As we build descriptors we store copies of the options messages in
2298   // them. We put pointers to those copies in this vector, as we build, so we
2299   // can later (after cross-linking) interpret those options.
2300   vector<OptionsToInterpret> options_to_interpret_;
2301
2302   bool had_errors_;
2303   string filename_;
2304   FileDescriptor* file_;
2305   FileDescriptorTables* file_tables_;
2306   set<const FileDescriptor*> dependencies_;
2307
2308   // unused_dependency_ is used to record the unused imported files.
2309   // Note: public import is not considered.
2310   set<const FileDescriptor*> unused_dependency_;
2311
2312   // If LookupSymbol() finds a symbol that is in a file which is not a declared
2313   // dependency of this file, it will fail, but will set
2314   // possible_undeclared_dependency_ to point at that file.  This is only used
2315   // by AddNotDefinedError() to report a more useful error message.
2316   // possible_undeclared_dependency_name_ is the name of the symbol that was
2317   // actually found in possible_undeclared_dependency_, which may be a parent
2318   // of the symbol actually looked for.
2319   const FileDescriptor* possible_undeclared_dependency_;
2320   string possible_undeclared_dependency_name_;
2321
2322   // If LookupSymbol() could resolve a symbol which is not defined,
2323   // record the resolved name.  This is only used by AddNotDefinedError()
2324   // to report a more useful error message.
2325   string undefine_resolved_name_;
2326
2327   void AddError(const string& element_name,
2328                 const Message& descriptor,
2329                 DescriptorPool::ErrorCollector::ErrorLocation location,
2330                 const string& error);
2331   void AddError(const string& element_name,
2332                 const Message& descriptor,
2333                 DescriptorPool::ErrorCollector::ErrorLocation location,
2334                 const char* error);
2335   void AddRecursiveImportError(const FileDescriptorProto& proto, int from_here);
2336   void AddTwiceListedError(const FileDescriptorProto& proto, int index);
2337   void AddImportError(const FileDescriptorProto& proto, int index);
2338
2339   // Adds an error indicating that undefined_symbol was not defined.  Must
2340   // only be called after LookupSymbol() fails.
2341   void AddNotDefinedError(
2342     const string& element_name,
2343     const Message& descriptor,
2344     DescriptorPool::ErrorCollector::ErrorLocation location,
2345     const string& undefined_symbol);
2346
2347   void AddWarning(const string& element_name, const Message& descriptor,
2348                   DescriptorPool::ErrorCollector::ErrorLocation location,
2349                   const string& error);
2350
2351   // Silly helper which determines if the given file is in the given package.
2352   // I.e., either file->package() == package_name or file->package() is a
2353   // nested package within package_name.
2354   bool IsInPackage(const FileDescriptor* file, const string& package_name);
2355
2356   // Helper function which finds all public dependencies of the given file, and
2357   // stores the them in the dependencies_ set in the builder.
2358   void RecordPublicDependencies(const FileDescriptor* file);
2359
2360   // Like tables_->FindSymbol(), but additionally:
2361   // - Search the pool's underlay if not found in tables_.
2362   // - Insure that the resulting Symbol is from one of the file's declared
2363   //   dependencies.
2364   Symbol FindSymbol(const string& name);
2365
2366   // Like FindSymbol() but does not require that the symbol is in one of the
2367   // file's declared dependencies.
2368   Symbol FindSymbolNotEnforcingDeps(const string& name);
2369
2370   // This implements the body of FindSymbolNotEnforcingDeps().
2371   Symbol FindSymbolNotEnforcingDepsHelper(const DescriptorPool* pool,
2372                                           const string& name);
2373
2374   // Like FindSymbol(), but looks up the name relative to some other symbol
2375   // name.  This first searches siblings of relative_to, then siblings of its
2376   // parents, etc.  For example, LookupSymbol("foo.bar", "baz.qux.corge") makes
2377   // the following calls, returning the first non-null result:
2378   // FindSymbol("baz.qux.foo.bar"), FindSymbol("baz.foo.bar"),
2379   // FindSymbol("foo.bar").  If AllowUnknownDependencies() has been called
2380   // on the DescriptorPool, this will generate a placeholder type if
2381   // the name is not found (unless the name itself is malformed).  The
2382   // placeholder_type parameter indicates what kind of placeholder should be
2383   // constructed in this case.  The resolve_mode parameter determines whether
2384   // any symbol is returned, or only symbols that are types.  Note, however,
2385   // that LookupSymbol may still return a non-type symbol in LOOKUP_TYPES mode,
2386   // if it believes that's all it could refer to.  The caller should always
2387   // check that it receives the type of symbol it was expecting.
2388   enum PlaceholderType {
2389     PLACEHOLDER_MESSAGE,
2390     PLACEHOLDER_ENUM,
2391     PLACEHOLDER_EXTENDABLE_MESSAGE
2392   };
2393   enum ResolveMode {
2394     LOOKUP_ALL, LOOKUP_TYPES
2395   };
2396   Symbol LookupSymbol(const string& name, const string& relative_to,
2397                       PlaceholderType placeholder_type = PLACEHOLDER_MESSAGE,
2398                       ResolveMode resolve_mode = LOOKUP_ALL);
2399
2400   // Like LookupSymbol() but will not return a placeholder even if
2401   // AllowUnknownDependencies() has been used.
2402   Symbol LookupSymbolNoPlaceholder(const string& name,
2403                                    const string& relative_to,
2404                                    ResolveMode resolve_mode = LOOKUP_ALL);
2405
2406   // Creates a placeholder type suitable for return from LookupSymbol().  May
2407   // return kNullSymbol if the name is not a valid type name.
2408   Symbol NewPlaceholder(const string& name, PlaceholderType placeholder_type);
2409
2410   // Creates a placeholder file.  Never returns NULL.  This is used when an
2411   // import is not found and AllowUnknownDependencies() is enabled.
2412   const FileDescriptor* NewPlaceholderFile(const string& name);
2413
2414   // Calls tables_->AddSymbol() and records an error if it fails.  Returns
2415   // true if successful or false if failed, though most callers can ignore
2416   // the return value since an error has already been recorded.
2417   bool AddSymbol(const string& full_name,
2418                  const void* parent, const string& name,
2419                  const Message& proto, Symbol symbol);
2420
2421   // Like AddSymbol(), but succeeds if the symbol is already defined as long
2422   // as the existing definition is also a package (because it's OK to define
2423   // the same package in two different files).  Also adds all parents of the
2424   // packgae to the symbol table (e.g. AddPackage("foo.bar", ...) will add
2425   // "foo.bar" and "foo" to the table).
2426   void AddPackage(const string& name, const Message& proto,
2427                   const FileDescriptor* file);
2428
2429   // Checks that the symbol name contains only alphanumeric characters and
2430   // underscores.  Records an error otherwise.
2431   void ValidateSymbolName(const string& name, const string& full_name,
2432                           const Message& proto);
2433
2434   // Like ValidateSymbolName(), but the name is allowed to contain periods and
2435   // an error is indicated by returning false (not recording the error).
2436   bool ValidateQualifiedName(const string& name);
2437
2438   // Used by BUILD_ARRAY macro (below) to avoid having to have the type
2439   // specified as a macro parameter.
2440   template <typename Type>
2441   inline void AllocateArray(int size, Type** output) {
2442     *output = tables_->AllocateArray<Type>(size);
2443   }
2444
2445   // Allocates a copy of orig_options in tables_ and stores it in the
2446   // descriptor. Remembers its uninterpreted options, to be interpreted
2447   // later. DescriptorT must be one of the Descriptor messages from
2448   // descriptor.proto.
2449   template<class DescriptorT> void AllocateOptions(
2450       const typename DescriptorT::OptionsType& orig_options,
2451       DescriptorT* descriptor);
2452   // Specialization for FileOptions.
2453   void AllocateOptions(const FileOptions& orig_options,
2454                        FileDescriptor* descriptor);
2455
2456   // Implementation for AllocateOptions(). Don't call this directly.
2457   template<class DescriptorT> void AllocateOptionsImpl(
2458       const string& name_scope,
2459       const string& element_name,
2460       const typename DescriptorT::OptionsType& orig_options,
2461       DescriptorT* descriptor);
2462
2463   // These methods all have the same signature for the sake of the BUILD_ARRAY
2464   // macro, below.
2465   void BuildMessage(const DescriptorProto& proto,
2466                     const Descriptor* parent,
2467                     Descriptor* result);
2468   void BuildFieldOrExtension(const FieldDescriptorProto& proto,
2469                              const Descriptor* parent,
2470                              FieldDescriptor* result,
2471                              bool is_extension);
2472   void BuildField(const FieldDescriptorProto& proto,
2473                   const Descriptor* parent,
2474                   FieldDescriptor* result) {
2475     BuildFieldOrExtension(proto, parent, result, false);
2476   }
2477   void BuildExtension(const FieldDescriptorProto& proto,
2478                       const Descriptor* parent,
2479                       FieldDescriptor* result) {
2480     BuildFieldOrExtension(proto, parent, result, true);
2481   }
2482   void BuildExtensionRange(const DescriptorProto::ExtensionRange& proto,
2483                            const Descriptor* parent,
2484                            Descriptor::ExtensionRange* result);
2485   void BuildOneof(const OneofDescriptorProto& proto,
2486                   Descriptor* parent,
2487                   OneofDescriptor* result);
2488   void BuildEnum(const EnumDescriptorProto& proto,
2489                  const Descriptor* parent,
2490                  EnumDescriptor* result);
2491   void BuildEnumValue(const EnumValueDescriptorProto& proto,
2492                       const EnumDescriptor* parent,
2493                       EnumValueDescriptor* result);
2494   void BuildService(const ServiceDescriptorProto& proto,
2495                     const void* dummy,
2496                     ServiceDescriptor* result);
2497   void BuildMethod(const MethodDescriptorProto& proto,
2498                    const ServiceDescriptor* parent,
2499                    MethodDescriptor* result);
2500
2501   void LogUnusedDependency(const FileDescriptor* result);
2502
2503   // Must be run only after building.
2504   //
2505   // NOTE: Options will not be available during cross-linking, as they
2506   // have not yet been interpreted. Defer any handling of options to the
2507   // Validate*Options methods.
2508   void CrossLinkFile(FileDescriptor* file, const FileDescriptorProto& proto);
2509   void CrossLinkMessage(Descriptor* message, const DescriptorProto& proto);
2510   void CrossLinkField(FieldDescriptor* field,
2511                       const FieldDescriptorProto& proto);
2512   void CrossLinkEnum(EnumDescriptor* enum_type,
2513                      const EnumDescriptorProto& proto);
2514   void CrossLinkEnumValue(EnumValueDescriptor* enum_value,
2515                           const EnumValueDescriptorProto& proto);
2516   void CrossLinkService(ServiceDescriptor* service,
2517                         const ServiceDescriptorProto& proto);
2518   void CrossLinkMethod(MethodDescriptor* method,
2519                        const MethodDescriptorProto& proto);
2520
2521   // Must be run only after cross-linking.
2522   void InterpretOptions();
2523
2524   // A helper class for interpreting options.
2525   class OptionInterpreter {
2526    public:
2527     // Creates an interpreter that operates in the context of the pool of the
2528     // specified builder, which must not be NULL. We don't take ownership of the
2529     // builder.
2530     explicit OptionInterpreter(DescriptorBuilder* builder);
2531
2532     ~OptionInterpreter();
2533
2534     // Interprets the uninterpreted options in the specified Options message.
2535     // On error, calls AddError() on the underlying builder and returns false.
2536     // Otherwise returns true.
2537     bool InterpretOptions(OptionsToInterpret* options_to_interpret);
2538
2539     class AggregateOptionFinder;
2540
2541    private:
2542     // Interprets uninterpreted_option_ on the specified message, which
2543     // must be the mutable copy of the original options message to which
2544     // uninterpreted_option_ belongs.
2545     bool InterpretSingleOption(Message* options);
2546
2547     // Adds the uninterpreted_option to the given options message verbatim.
2548     // Used when AllowUnknownDependencies() is in effect and we can't find
2549     // the option's definition.
2550     void AddWithoutInterpreting(const UninterpretedOption& uninterpreted_option,
2551                                 Message* options);
2552
2553     // A recursive helper function that drills into the intermediate fields
2554     // in unknown_fields to check if field innermost_field is set on the
2555     // innermost message. Returns false and sets an error if so.
2556     bool ExamineIfOptionIsSet(
2557         vector<const FieldDescriptor*>::const_iterator intermediate_fields_iter,
2558         vector<const FieldDescriptor*>::const_iterator intermediate_fields_end,
2559         const FieldDescriptor* innermost_field, const string& debug_msg_name,
2560         const UnknownFieldSet& unknown_fields);
2561
2562     // Validates the value for the option field of the currently interpreted
2563     // option and then sets it on the unknown_field.
2564     bool SetOptionValue(const FieldDescriptor* option_field,
2565                         UnknownFieldSet* unknown_fields);
2566
2567     // Parses an aggregate value for a CPPTYPE_MESSAGE option and
2568     // saves it into *unknown_fields.
2569     bool SetAggregateOption(const FieldDescriptor* option_field,
2570                             UnknownFieldSet* unknown_fields);
2571
2572     // Convenience functions to set an int field the right way, depending on
2573     // its wire type (a single int CppType can represent multiple wire types).
2574     void SetInt32(int number, int32 value, FieldDescriptor::Type type,
2575                   UnknownFieldSet* unknown_fields);
2576     void SetInt64(int number, int64 value, FieldDescriptor::Type type,
2577                   UnknownFieldSet* unknown_fields);
2578     void SetUInt32(int number, uint32 value, FieldDescriptor::Type type,
2579                    UnknownFieldSet* unknown_fields);
2580     void SetUInt64(int number, uint64 value, FieldDescriptor::Type type,
2581                    UnknownFieldSet* unknown_fields);
2582
2583     // A helper function that adds an error at the specified location of the
2584     // option we're currently interpreting, and returns false.
2585     bool AddOptionError(DescriptorPool::ErrorCollector::ErrorLocation location,
2586                         const string& msg) {
2587       builder_->AddError(options_to_interpret_->element_name,
2588                          *uninterpreted_option_, location, msg);
2589       return false;
2590     }
2591
2592     // A helper function that adds an error at the location of the option name
2593     // and returns false.
2594     bool AddNameError(const string& msg) {
2595       return AddOptionError(DescriptorPool::ErrorCollector::OPTION_NAME, msg);
2596     }
2597
2598     // A helper function that adds an error at the location of the option name
2599     // and returns false.
2600     bool AddValueError(const string& msg) {
2601       return AddOptionError(DescriptorPool::ErrorCollector::OPTION_VALUE, msg);
2602     }
2603
2604     // We interpret against this builder's pool. Is never NULL. We don't own
2605     // this pointer.
2606     DescriptorBuilder* builder_;
2607
2608     // The options we're currently interpreting, or NULL if we're not in a call
2609     // to InterpretOptions.
2610     const OptionsToInterpret* options_to_interpret_;
2611
2612     // The option we're currently interpreting within options_to_interpret_, or
2613     // NULL if we're not in a call to InterpretOptions(). This points to a
2614     // submessage of the original option, not the mutable copy. Therefore we
2615     // can use it to find locations recorded by the parser.
2616     const UninterpretedOption* uninterpreted_option_;
2617
2618     // Factory used to create the dynamic messages we need to parse
2619     // any aggregate option values we encounter.
2620     DynamicMessageFactory dynamic_factory_;
2621
2622     GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(OptionInterpreter);
2623   };
2624
2625   // Work-around for broken compilers:  According to the C++ standard,
2626   // OptionInterpreter should have access to the private members of any class
2627   // which has declared DescriptorBuilder as a friend.  Unfortunately some old
2628   // versions of GCC and other compilers do not implement this correctly.  So,
2629   // we have to have these intermediate methods to provide access.  We also
2630   // redundantly declare OptionInterpreter a friend just to make things extra
2631   // clear for these bad compilers.
2632   friend class OptionInterpreter;
2633   friend class OptionInterpreter::AggregateOptionFinder;
2634
2635   static inline bool get_allow_unknown(const DescriptorPool* pool) {
2636     return pool->allow_unknown_;
2637   }
2638   static inline bool get_enforce_weak(const DescriptorPool* pool) {
2639     return pool->enforce_weak_;
2640   }
2641   static inline bool get_is_placeholder(const Descriptor* descriptor) {
2642     return descriptor->is_placeholder_;
2643   }
2644   static inline void assert_mutex_held(const DescriptorPool* pool) {
2645     if (pool->mutex_ != NULL) {
2646       pool->mutex_->AssertHeld();
2647     }
2648   }
2649
2650   // Must be run only after options have been interpreted.
2651   //
2652   // NOTE: Validation code must only reference the options in the mutable
2653   // descriptors, which are the ones that have been interpreted. The const
2654   // proto references are passed in only so they can be provided to calls to
2655   // AddError(). Do not look at their options, which have not been interpreted.
2656   void ValidateFileOptions(FileDescriptor* file,
2657                            const FileDescriptorProto& proto);
2658   void ValidateMessageOptions(Descriptor* message,
2659                               const DescriptorProto& proto);
2660   void ValidateFieldOptions(FieldDescriptor* field,
2661                             const FieldDescriptorProto& proto);
2662   void ValidateEnumOptions(EnumDescriptor* enm,
2663                            const EnumDescriptorProto& proto);
2664   void ValidateEnumValueOptions(EnumValueDescriptor* enum_value,
2665                                 const EnumValueDescriptorProto& proto);
2666   void ValidateServiceOptions(ServiceDescriptor* service,
2667                               const ServiceDescriptorProto& proto);
2668   void ValidateMethodOptions(MethodDescriptor* method,
2669                              const MethodDescriptorProto& proto);
2670
2671   void ValidateMapKey(FieldDescriptor* field,
2672                       const FieldDescriptorProto& proto);
2673
2674 };
2675
2676 const FileDescriptor* DescriptorPool::BuildFile(
2677     const FileDescriptorProto& proto) {
2678   GOOGLE_CHECK(fallback_database_ == NULL)
2679     << "Cannot call BuildFile on a DescriptorPool that uses a "
2680        "DescriptorDatabase.  You must instead find a way to get your file "
2681        "into the underlying database.";
2682   GOOGLE_CHECK(mutex_ == NULL);   // Implied by the above GOOGLE_CHECK.
2683   tables_->known_bad_symbols_.clear();
2684   tables_->known_bad_files_.clear();
2685   return DescriptorBuilder(this, tables_.get(), NULL).BuildFile(proto);
2686 }
2687
2688 const FileDescriptor* DescriptorPool::BuildFileCollectingErrors(
2689     const FileDescriptorProto& proto,
2690     ErrorCollector* error_collector) {
2691   GOOGLE_CHECK(fallback_database_ == NULL)
2692     << "Cannot call BuildFile on a DescriptorPool that uses a "
2693        "DescriptorDatabase.  You must instead find a way to get your file "
2694        "into the underlying database.";
2695   GOOGLE_CHECK(mutex_ == NULL);   // Implied by the above GOOGLE_CHECK.
2696   tables_->known_bad_symbols_.clear();
2697   tables_->known_bad_files_.clear();
2698   return DescriptorBuilder(this, tables_.get(),
2699                            error_collector).BuildFile(proto);
2700 }
2701
2702 const FileDescriptor* DescriptorPool::BuildFileFromDatabase(
2703     const FileDescriptorProto& proto) const {
2704   mutex_->AssertHeld();
2705   if (tables_->known_bad_files_.count(proto.name()) > 0) {
2706     return NULL;
2707   }
2708   const FileDescriptor* result =
2709       DescriptorBuilder(this, tables_.get(),
2710                         default_error_collector_).BuildFile(proto);
2711   if (result == NULL) {
2712     tables_->known_bad_files_.insert(proto.name());
2713   }
2714   return result;
2715 }
2716
2717 DescriptorBuilder::DescriptorBuilder(
2718     const DescriptorPool* pool,
2719     DescriptorPool::Tables* tables,
2720     DescriptorPool::ErrorCollector* error_collector)
2721   : pool_(pool),
2722     tables_(tables),
2723     error_collector_(error_collector),
2724     had_errors_(false),
2725     possible_undeclared_dependency_(NULL),
2726     undefine_resolved_name_("") {}
2727
2728 DescriptorBuilder::~DescriptorBuilder() {}
2729
2730 void DescriptorBuilder::AddError(
2731     const string& element_name,
2732     const Message& descriptor,
2733     DescriptorPool::ErrorCollector::ErrorLocation location,
2734     const string& error) {
2735   if (error_collector_ == NULL) {
2736     if (!had_errors_) {
2737       GOOGLE_LOG(ERROR) << "Invalid proto descriptor for file \"" << filename_
2738                  << "\":";
2739     }
2740     GOOGLE_LOG(ERROR) << "  " << element_name << ": " << error;
2741   } else {
2742     error_collector_->AddError(filename_, element_name,
2743                                &descriptor, location, error);
2744   }
2745   had_errors_ = true;
2746 }
2747
2748 void DescriptorBuilder::AddError(
2749     const string& element_name,
2750     const Message& descriptor,
2751     DescriptorPool::ErrorCollector::ErrorLocation location,
2752     const char* error) {
2753   AddError(element_name, descriptor, location, string(error));
2754 }
2755
2756 void DescriptorBuilder::AddNotDefinedError(
2757     const string& element_name,
2758     const Message& descriptor,
2759     DescriptorPool::ErrorCollector::ErrorLocation location,
2760     const string& undefined_symbol) {
2761   if (possible_undeclared_dependency_ == NULL &&
2762       undefine_resolved_name_.empty()) {
2763     AddError(element_name, descriptor, location,
2764              "\"" + undefined_symbol + "\" is not defined.");
2765   } else {
2766     if (possible_undeclared_dependency_ != NULL) {
2767       AddError(element_name, descriptor, location,
2768                "\"" + possible_undeclared_dependency_name_ +
2769                "\" seems to be defined in \"" +
2770                possible_undeclared_dependency_->name() + "\", which is not "
2771                "imported by \"" + filename_ + "\".  To use it here, please "
2772                "add the necessary import.");
2773     }
2774     if (!undefine_resolved_name_.empty()) {
2775       AddError(element_name, descriptor, location,
2776                "\"" + undefined_symbol + "\" is resolved to \"" +
2777                undefine_resolved_name_ + "\", which is not defined. "
2778                "The innermost scope is searched first in name resolution. "
2779                "Consider using a leading '.'(i.e., \"."
2780                + undefined_symbol +
2781                "\") to start from the outermost scope.");
2782     }
2783   }
2784 }
2785
2786 void DescriptorBuilder::AddWarning(
2787     const string& element_name, const Message& descriptor,
2788     DescriptorPool::ErrorCollector::ErrorLocation location,
2789     const string& error) {
2790   if (error_collector_ == NULL) {
2791     GOOGLE_LOG(WARNING) << filename_ << " " << element_name << ": " << error;
2792   } else {
2793     error_collector_->AddWarning(filename_, element_name, &descriptor, location,
2794                                  error);
2795   }
2796 }
2797
2798 bool DescriptorBuilder::IsInPackage(const FileDescriptor* file,
2799                                     const string& package_name) {
2800   return HasPrefixString(file->package(), package_name) &&
2801            (file->package().size() == package_name.size() ||
2802             file->package()[package_name.size()] == '.');
2803 }
2804
2805 void DescriptorBuilder::RecordPublicDependencies(const FileDescriptor* file) {
2806   if (file == NULL || !dependencies_.insert(file).second) return;
2807   for (int i = 0; file != NULL && i < file->public_dependency_count(); i++) {
2808     RecordPublicDependencies(file->public_dependency(i));
2809   }
2810 }
2811
2812 Symbol DescriptorBuilder::FindSymbolNotEnforcingDepsHelper(
2813     const DescriptorPool* pool, const string& name) {
2814   // If we are looking at an underlay, we must lock its mutex_, since we are
2815   // accessing the underlay's tables_ directly.
2816   MutexLockMaybe lock((pool == pool_) ? NULL : pool->mutex_);
2817
2818   Symbol result = pool->tables_->FindSymbol(name);
2819   if (result.IsNull() && pool->underlay_ != NULL) {
2820     // Symbol not found; check the underlay.
2821     result = FindSymbolNotEnforcingDepsHelper(pool->underlay_, name);
2822   }
2823
2824   if (result.IsNull()) {
2825     // In theory, we shouldn't need to check fallback_database_ because the
2826     // symbol should be in one of its file's direct dependencies, and we have
2827     // already loaded those by the time we get here.  But we check anyway so
2828     // that we can generate better error message when dependencies are missing
2829     // (i.e., "missing dependency" rather than "type is not defined").
2830     if (pool->TryFindSymbolInFallbackDatabase(name)) {
2831       result = pool->tables_->FindSymbol(name);
2832     }
2833   }
2834
2835   return result;
2836 }
2837
2838 Symbol DescriptorBuilder::FindSymbolNotEnforcingDeps(const string& name) {
2839   return FindSymbolNotEnforcingDepsHelper(pool_, name);
2840 }
2841
2842 Symbol DescriptorBuilder::FindSymbol(const string& name) {
2843   Symbol result = FindSymbolNotEnforcingDeps(name);
2844
2845   if (result.IsNull()) return result;
2846
2847   if (!pool_->enforce_dependencies_) {
2848     // Hack for CompilerUpgrader.
2849     return result;
2850   }
2851
2852   // Only find symbols which were defined in this file or one of its
2853   // dependencies.
2854   const FileDescriptor* file = result.GetFile();
2855   if (file == file_ || dependencies_.count(file) > 0) {
2856     unused_dependency_.erase(file);
2857     return result;
2858   }
2859
2860   if (result.type == Symbol::PACKAGE) {
2861     // Arg, this is overcomplicated.  The symbol is a package name.  It could
2862     // be that the package was defined in multiple files.  result.GetFile()
2863     // returns the first file we saw that used this package.  We've determined
2864     // that that file is not a direct dependency of the file we are currently
2865     // building, but it could be that some other file which *is* a direct
2866     // dependency also defines the same package.  We can't really rule out this
2867     // symbol unless none of the dependencies define it.
2868     if (IsInPackage(file_, name)) return result;
2869     for (set<const FileDescriptor*>::const_iterator it = dependencies_.begin();
2870          it != dependencies_.end(); ++it) {
2871       // Note:  A dependency may be NULL if it was not found or had errors.
2872       if (*it != NULL && IsInPackage(*it, name)) return result;
2873     }
2874   }
2875
2876   possible_undeclared_dependency_ = file;
2877   possible_undeclared_dependency_name_ = name;
2878   return kNullSymbol;
2879 }
2880
2881 Symbol DescriptorBuilder::LookupSymbolNoPlaceholder(
2882     const string& name, const string& relative_to, ResolveMode resolve_mode) {
2883   possible_undeclared_dependency_ = NULL;
2884   undefine_resolved_name_.clear();
2885
2886   if (name.size() > 0 && name[0] == '.') {
2887     // Fully-qualified name.
2888     return FindSymbol(name.substr(1));
2889   }
2890
2891   // If name is something like "Foo.Bar.baz", and symbols named "Foo" are
2892   // defined in multiple parent scopes, we only want to find "Bar.baz" in the
2893   // innermost one.  E.g., the following should produce an error:
2894   //   message Bar { message Baz {} }
2895   //   message Foo {
2896   //     message Bar {
2897   //     }
2898   //     optional Bar.Baz baz = 1;
2899   //   }
2900   // So, we look for just "Foo" first, then look for "Bar.baz" within it if
2901   // found.
2902   string::size_type name_dot_pos = name.find_first_of('.');
2903   string first_part_of_name;
2904   if (name_dot_pos == string::npos) {
2905     first_part_of_name = name;
2906   } else {
2907     first_part_of_name = name.substr(0, name_dot_pos);
2908   }
2909
2910   string scope_to_try(relative_to);
2911
2912   while (true) {
2913     // Chop off the last component of the scope.
2914     string::size_type dot_pos = scope_to_try.find_last_of('.');
2915     if (dot_pos == string::npos) {
2916       return FindSymbol(name);
2917     } else {
2918       scope_to_try.erase(dot_pos);
2919     }
2920
2921     // Append ".first_part_of_name" and try to find.
2922     string::size_type old_size = scope_to_try.size();
2923     scope_to_try.append(1, '.');
2924     scope_to_try.append(first_part_of_name);
2925     Symbol result = FindSymbol(scope_to_try);
2926     if (!result.IsNull()) {
2927       if (first_part_of_name.size() < name.size()) {
2928         // name is a compound symbol, of which we only found the first part.
2929         // Now try to look up the rest of it.
2930         if (result.IsAggregate()) {
2931           scope_to_try.append(name, first_part_of_name.size(),
2932                               name.size() - first_part_of_name.size());
2933           result = FindSymbol(scope_to_try);
2934           if (result.IsNull()) {
2935             undefine_resolved_name_ = scope_to_try;
2936           }
2937           return result;
2938         } else {
2939           // We found a symbol but it's not an aggregate.  Continue the loop.
2940         }
2941       } else {
2942         if (resolve_mode == LOOKUP_TYPES && !result.IsType()) {
2943           // We found a symbol but it's not a type.  Continue the loop.
2944         } else {
2945           return result;
2946         }
2947       }
2948     }
2949
2950     // Not found.  Remove the name so we can try again.
2951     scope_to_try.erase(old_size);
2952   }
2953 }
2954
2955 Symbol DescriptorBuilder::LookupSymbol(
2956     const string& name, const string& relative_to,
2957     PlaceholderType placeholder_type, ResolveMode resolve_mode) {
2958   Symbol result = LookupSymbolNoPlaceholder(
2959       name, relative_to, resolve_mode);
2960   if (result.IsNull() && pool_->allow_unknown_) {
2961     // Not found, but AllowUnknownDependencies() is enabled.  Return a
2962     // placeholder instead.
2963     result = NewPlaceholder(name, placeholder_type);
2964   }
2965   return result;
2966 }
2967
2968 Symbol DescriptorBuilder::NewPlaceholder(const string& name,
2969                                          PlaceholderType placeholder_type) {
2970   // Compute names.
2971   const string* placeholder_full_name;
2972   const string* placeholder_name;
2973   const string* placeholder_package;
2974
2975   if (!ValidateQualifiedName(name)) return kNullSymbol;
2976   if (name[0] == '.') {
2977     // Fully-qualified.
2978     placeholder_full_name = tables_->AllocateString(name.substr(1));
2979   } else {
2980     placeholder_full_name = tables_->AllocateString(name);
2981   }
2982
2983   string::size_type dotpos = placeholder_full_name->find_last_of('.');
2984   if (dotpos != string::npos) {
2985     placeholder_package = tables_->AllocateString(
2986       placeholder_full_name->substr(0, dotpos));
2987     placeholder_name = tables_->AllocateString(
2988       placeholder_full_name->substr(dotpos + 1));
2989   } else {
2990     placeholder_package = &internal::GetEmptyString();
2991     placeholder_name = placeholder_full_name;
2992   }
2993
2994   // Create the placeholders.
2995   FileDescriptor* placeholder_file = tables_->Allocate<FileDescriptor>();
2996   memset(placeholder_file, 0, sizeof(*placeholder_file));
2997
2998   placeholder_file->source_code_info_ = &SourceCodeInfo::default_instance();
2999
3000   placeholder_file->name_ =
3001     tables_->AllocateString(*placeholder_full_name + ".placeholder.proto");
3002   placeholder_file->package_ = placeholder_package;
3003   placeholder_file->pool_ = pool_;
3004   placeholder_file->options_ = &FileOptions::default_instance();
3005   placeholder_file->tables_ = &FileDescriptorTables::kEmpty;
3006   placeholder_file->is_placeholder_ = true;
3007   // All other fields are zero or NULL.
3008
3009   if (placeholder_type == PLACEHOLDER_ENUM) {
3010     placeholder_file->enum_type_count_ = 1;
3011     placeholder_file->enum_types_ =
3012       tables_->AllocateArray<EnumDescriptor>(1);
3013
3014     EnumDescriptor* placeholder_enum = &placeholder_file->enum_types_[0];
3015     memset(placeholder_enum, 0, sizeof(*placeholder_enum));
3016
3017     placeholder_enum->full_name_ = placeholder_full_name;
3018     placeholder_enum->name_ = placeholder_name;
3019     placeholder_enum->file_ = placeholder_file;
3020     placeholder_enum->options_ = &EnumOptions::default_instance();
3021     placeholder_enum->is_placeholder_ = true;
3022     placeholder_enum->is_unqualified_placeholder_ = (name[0] != '.');
3023
3024     // Enums must have at least one value.
3025     placeholder_enum->value_count_ = 1;
3026     placeholder_enum->values_ = tables_->AllocateArray<EnumValueDescriptor>(1);
3027
3028     EnumValueDescriptor* placeholder_value = &placeholder_enum->values_[0];
3029     memset(placeholder_value, 0, sizeof(*placeholder_value));
3030
3031     placeholder_value->name_ = tables_->AllocateString("PLACEHOLDER_VALUE");
3032     // Note that enum value names are siblings of their type, not children.
3033     placeholder_value->full_name_ =
3034       placeholder_package->empty() ? placeholder_value->name_ :
3035         tables_->AllocateString(*placeholder_package + ".PLACEHOLDER_VALUE");
3036
3037     placeholder_value->number_ = 0;
3038     placeholder_value->type_ = placeholder_enum;
3039     placeholder_value->options_ = &EnumValueOptions::default_instance();
3040
3041     return Symbol(placeholder_enum);
3042   } else {
3043     placeholder_file->message_type_count_ = 1;
3044     placeholder_file->message_types_ =
3045       tables_->AllocateArray<Descriptor>(1);
3046
3047     Descriptor* placeholder_message = &placeholder_file->message_types_[0];
3048     memset(placeholder_message, 0, sizeof(*placeholder_message));
3049
3050     placeholder_message->full_name_ = placeholder_full_name;
3051     placeholder_message->name_ = placeholder_name;
3052     placeholder_message->file_ = placeholder_file;
3053     placeholder_message->options_ = &MessageOptions::default_instance();
3054     placeholder_message->is_placeholder_ = true;
3055     placeholder_message->is_unqualified_placeholder_ = (name[0] != '.');
3056
3057     if (placeholder_type == PLACEHOLDER_EXTENDABLE_MESSAGE) {
3058       placeholder_message->extension_range_count_ = 1;
3059       placeholder_message->extension_ranges_ =
3060         tables_->AllocateArray<Descriptor::ExtensionRange>(1);
3061       placeholder_message->extension_ranges_->start = 1;
3062       // kMaxNumber + 1 because ExtensionRange::end is exclusive.
3063       placeholder_message->extension_ranges_->end =
3064         FieldDescriptor::kMaxNumber + 1;
3065     }
3066
3067     return Symbol(placeholder_message);
3068   }
3069 }
3070
3071 const FileDescriptor* DescriptorBuilder::NewPlaceholderFile(
3072     const string& name) {
3073   FileDescriptor* placeholder = tables_->Allocate<FileDescriptor>();
3074   memset(placeholder, 0, sizeof(*placeholder));
3075
3076   placeholder->name_ = tables_->AllocateString(name);
3077   placeholder->package_ = &internal::GetEmptyString();
3078   placeholder->pool_ = pool_;
3079   placeholder->options_ = &FileOptions::default_instance();
3080   placeholder->tables_ = &FileDescriptorTables::kEmpty;
3081   placeholder->is_placeholder_ = true;
3082   // All other fields are zero or NULL.
3083
3084   return placeholder;
3085 }
3086
3087 bool DescriptorBuilder::AddSymbol(
3088     const string& full_name, const void* parent, const string& name,
3089     const Message& proto, Symbol symbol) {
3090   // If the caller passed NULL for the parent, the symbol is at file scope.
3091   // Use its file as the parent instead.
3092   if (parent == NULL) parent = file_;
3093
3094   if (tables_->AddSymbol(full_name, symbol)) {
3095     if (!file_tables_->AddAliasUnderParent(parent, name, symbol)) {
3096       GOOGLE_LOG(DFATAL) << "\"" << full_name << "\" not previously defined in "
3097                      "symbols_by_name_, but was defined in symbols_by_parent_; "
3098                      "this shouldn't be possible.";
3099       return false;
3100     }
3101     return true;
3102   } else {
3103     const FileDescriptor* other_file = tables_->FindSymbol(full_name).GetFile();
3104     if (other_file == file_) {
3105       string::size_type dot_pos = full_name.find_last_of('.');
3106       if (dot_pos == string::npos) {
3107         AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME,
3108                  "\"" + full_name + "\" is already defined.");
3109       } else {
3110         AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME,
3111                  "\"" + full_name.substr(dot_pos + 1) +
3112                  "\" is already defined in \"" +
3113                  full_name.substr(0, dot_pos) + "\".");
3114       }
3115     } else {
3116       // Symbol seems to have been defined in a different file.
3117       AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME,
3118                "\"" + full_name + "\" is already defined in file \"" +
3119                other_file->name() + "\".");
3120     }
3121     return false;
3122   }
3123 }
3124
3125 void DescriptorBuilder::AddPackage(
3126     const string& name, const Message& proto, const FileDescriptor* file) {
3127   if (tables_->AddSymbol(name, Symbol(file))) {
3128     // Success.  Also add parent package, if any.
3129     string::size_type dot_pos = name.find_last_of('.');
3130     if (dot_pos == string::npos) {
3131       // No parents.
3132       ValidateSymbolName(name, name, proto);
3133     } else {
3134       // Has parent.
3135       string* parent_name = tables_->AllocateString(name.substr(0, dot_pos));
3136       AddPackage(*parent_name, proto, file);
3137       ValidateSymbolName(name.substr(dot_pos + 1), name, proto);
3138     }
3139   } else {
3140     Symbol existing_symbol = tables_->FindSymbol(name);
3141     // It's OK to redefine a package.
3142     if (existing_symbol.type != Symbol::PACKAGE) {
3143       // Symbol seems to have been defined in a different file.
3144       AddError(name, proto, DescriptorPool::ErrorCollector::NAME,
3145                "\"" + name + "\" is already defined (as something other than "
3146                "a package) in file \"" + existing_symbol.GetFile()->name() +
3147                "\".");
3148     }
3149   }
3150 }
3151
3152 void DescriptorBuilder::ValidateSymbolName(
3153     const string& name, const string& full_name, const Message& proto) {
3154   if (name.empty()) {
3155     AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME,
3156              "Missing name.");
3157   } else {
3158     for (int i = 0; i < name.size(); i++) {
3159       // I don't trust isalnum() due to locales.  :(
3160       if ((name[i] < 'a' || 'z' < name[i]) &&
3161           (name[i] < 'A' || 'Z' < name[i]) &&
3162           (name[i] < '0' || '9' < name[i]) &&
3163           (name[i] != '_')) {
3164         AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME,
3165                  "\"" + name + "\" is not a valid identifier.");
3166       }
3167     }
3168   }
3169 }
3170
3171 bool DescriptorBuilder::ValidateQualifiedName(const string& name) {
3172   bool last_was_period = false;
3173
3174   for (int i = 0; i < name.size(); i++) {
3175     // I don't trust isalnum() due to locales.  :(
3176     if (('a' <= name[i] && name[i] <= 'z') ||
3177         ('A' <= name[i] && name[i] <= 'Z') ||
3178         ('0' <= name[i] && name[i] <= '9') ||
3179         (name[i] == '_')) {
3180       last_was_period = false;
3181     } else if (name[i] == '.') {
3182       if (last_was_period) return false;
3183       last_was_period = true;
3184     } else {
3185       return false;
3186     }
3187   }
3188
3189   return !name.empty() && !last_was_period;
3190 }
3191
3192 // -------------------------------------------------------------------
3193
3194 // This generic implementation is good for all descriptors except
3195 // FileDescriptor.
3196 template<class DescriptorT> void DescriptorBuilder::AllocateOptions(
3197     const typename DescriptorT::OptionsType& orig_options,
3198     DescriptorT* descriptor) {
3199   AllocateOptionsImpl(descriptor->full_name(), descriptor->full_name(),
3200                       orig_options, descriptor);
3201 }
3202
3203 // We specialize for FileDescriptor.
3204 void DescriptorBuilder::AllocateOptions(const FileOptions& orig_options,
3205                                         FileDescriptor* descriptor) {
3206   // We add the dummy token so that LookupSymbol does the right thing.
3207   AllocateOptionsImpl(descriptor->package() + ".dummy", descriptor->name(),
3208                       orig_options, descriptor);
3209 }
3210
3211 template<class DescriptorT> void DescriptorBuilder::AllocateOptionsImpl(
3212     const string& name_scope,
3213     const string& element_name,
3214     const typename DescriptorT::OptionsType& orig_options,
3215     DescriptorT* descriptor) {
3216   // We need to use a dummy pointer to work around a bug in older versions of
3217   // GCC.  Otherwise, the following two lines could be replaced with:
3218   //   typename DescriptorT::OptionsType* options =
3219   //       tables_->AllocateMessage<typename DescriptorT::OptionsType>();
3220   typename DescriptorT::OptionsType* const dummy = NULL;
3221   typename DescriptorT::OptionsType* options = tables_->AllocateMessage(dummy);
3222   // Avoid using MergeFrom()/CopyFrom() in this class to make it -fno-rtti
3223   // friendly. Without RTTI, MergeFrom() and CopyFrom() will fallback to the
3224   // reflection based method, which requires the Descriptor. However, we are in
3225   // the middle of building the descriptors, thus the deadlock.
3226   options->ParseFromString(orig_options.SerializeAsString());
3227   descriptor->options_ = options;
3228
3229   // Don't add to options_to_interpret_ unless there were uninterpreted
3230   // options.  This not only avoids unnecessary work, but prevents a
3231   // bootstrapping problem when building descriptors for descriptor.proto.
3232   // descriptor.proto does not contain any uninterpreted options, but
3233   // attempting to interpret options anyway will cause
3234   // OptionsType::GetDescriptor() to be called which may then deadlock since
3235   // we're still trying to build it.
3236   if (options->uninterpreted_option_size() > 0) {
3237     options_to_interpret_.push_back(
3238         OptionsToInterpret(name_scope, element_name, &orig_options, options));
3239   }
3240 }
3241
3242
3243 // A common pattern:  We want to convert a repeated field in the descriptor
3244 // to an array of values, calling some method to build each value.
3245 #define BUILD_ARRAY(INPUT, OUTPUT, NAME, METHOD, PARENT)             \
3246   OUTPUT->NAME##_count_ = INPUT.NAME##_size();                       \
3247   AllocateArray(INPUT.NAME##_size(), &OUTPUT->NAME##s_);             \
3248   for (int i = 0; i < INPUT.NAME##_size(); i++) {                    \
3249     METHOD(INPUT.NAME(i), PARENT, OUTPUT->NAME##s_ + i);             \
3250   }
3251
3252 void DescriptorBuilder::AddRecursiveImportError(
3253     const FileDescriptorProto& proto, int from_here) {
3254   string error_message("File recursively imports itself: ");
3255   for (int i = from_here; i < tables_->pending_files_.size(); i++) {
3256     error_message.append(tables_->pending_files_[i]);
3257     error_message.append(" -> ");
3258   }
3259   error_message.append(proto.name());
3260
3261   AddError(proto.name(), proto, DescriptorPool::ErrorCollector::OTHER,
3262            error_message);
3263 }
3264
3265 void DescriptorBuilder::AddTwiceListedError(const FileDescriptorProto& proto,
3266                                             int index) {
3267   AddError(proto.name(), proto, DescriptorPool::ErrorCollector::OTHER,
3268            "Import \"" + proto.dependency(index) + "\" was listed twice.");
3269 }
3270
3271 void DescriptorBuilder::AddImportError(const FileDescriptorProto& proto,
3272                                        int index) {
3273   string message;
3274   if (pool_->fallback_database_ == NULL) {
3275     message = "Import \"" + proto.dependency(index) +
3276               "\" has not been loaded.";
3277   } else {
3278     message = "Import \"" + proto.dependency(index) +
3279               "\" was not found or had errors.";
3280   }
3281   AddError(proto.name(), proto, DescriptorPool::ErrorCollector::OTHER, message);
3282 }
3283
3284 static bool ExistingFileMatchesProto(const FileDescriptor* existing_file,
3285                                      const FileDescriptorProto& proto) {
3286   FileDescriptorProto existing_proto;
3287   existing_file->CopyTo(&existing_proto);
3288   return existing_proto.SerializeAsString() == proto.SerializeAsString();
3289 }
3290
3291 const FileDescriptor* DescriptorBuilder::BuildFile(
3292     const FileDescriptorProto& proto) {
3293   filename_ = proto.name();
3294
3295   // Check if the file already exists and is identical to the one being built.
3296   // Note:  This only works if the input is canonical -- that is, it
3297   //   fully-qualifies all type names, has no UninterpretedOptions, etc.
3298   //   This is fine, because this idempotency "feature" really only exists to
3299   //   accomodate one hack in the proto1->proto2 migration layer.
3300   const FileDescriptor* existing_file = tables_->FindFile(filename_);
3301   if (existing_file != NULL) {
3302     // File already in pool.  Compare the existing one to the input.
3303     if (ExistingFileMatchesProto(existing_file, proto)) {
3304       // They're identical.  Return the existing descriptor.
3305       return existing_file;
3306     }
3307
3308     // Not a match.  The error will be detected and handled later.
3309   }
3310
3311   // Check to see if this file is already on the pending files list.
3312   // TODO(kenton):  Allow recursive imports?  It may not work with some
3313   //   (most?) programming languages.  E.g., in C++, a forward declaration
3314   //   of a type is not sufficient to allow it to be used even in a
3315   //   generated header file due to inlining.  This could perhaps be
3316   //   worked around using tricks involving inserting #include statements
3317   //   mid-file, but that's pretty ugly, and I'm pretty sure there are
3318   //   some languages out there that do not allow recursive dependencies
3319   //   at all.
3320   for (int i = 0; i < tables_->pending_files_.size(); i++) {
3321     if (tables_->pending_files_[i] == proto.name()) {
3322       AddRecursiveImportError(proto, i);
3323       return NULL;
3324     }
3325   }
3326
3327   // If we have a fallback_database_, attempt to load all dependencies now,
3328   // before checkpointing tables_.  This avoids confusion with recursive
3329   // checkpoints.
3330   if (pool_->fallback_database_ != NULL) {
3331     tables_->pending_files_.push_back(proto.name());
3332     for (int i = 0; i < proto.dependency_size(); i++) {
3333       if (tables_->FindFile(proto.dependency(i)) == NULL &&
3334           (pool_->underlay_ == NULL ||
3335            pool_->underlay_->FindFileByName(proto.dependency(i)) == NULL)) {
3336         // We don't care what this returns since we'll find out below anyway.
3337         pool_->TryFindFileInFallbackDatabase(proto.dependency(i));
3338       }
3339     }
3340     tables_->pending_files_.pop_back();
3341   }
3342
3343   // Checkpoint the tables so that we can roll back if something goes wrong.
3344   tables_->AddCheckpoint();
3345
3346   FileDescriptor* result = tables_->Allocate<FileDescriptor>();
3347   file_ = result;
3348
3349   result->is_placeholder_ = false;
3350   if (proto.has_source_code_info()) {
3351     SourceCodeInfo *info = tables_->AllocateMessage<SourceCodeInfo>();
3352     info->CopyFrom(proto.source_code_info());
3353     result->source_code_info_ = info;
3354   } else {
3355     result->source_code_info_ = &SourceCodeInfo::default_instance();
3356   }
3357
3358   file_tables_ = tables_->AllocateFileTables();
3359   file_->tables_ = file_tables_;
3360
3361   if (!proto.has_name()) {
3362     AddError("", proto, DescriptorPool::ErrorCollector::OTHER,
3363              "Missing field: FileDescriptorProto.name.");
3364   }
3365
3366   result->name_ = tables_->AllocateString(proto.name());
3367   if (proto.has_package()) {
3368     result->package_ = tables_->AllocateString(proto.package());
3369   } else {
3370     // We cannot rely on proto.package() returning a valid string if
3371     // proto.has_package() is false, because we might be running at static
3372     // initialization time, in which case default values have not yet been
3373     // initialized.
3374     result->package_ = tables_->AllocateString("");
3375   }
3376   result->pool_ = pool_;
3377
3378   // Add to tables.
3379   if (!tables_->AddFile(result)) {
3380     AddError(proto.name(), proto, DescriptorPool::ErrorCollector::OTHER,
3381              "A file with this name is already in the pool.");
3382     // Bail out early so that if this is actually the exact same file, we
3383     // don't end up reporting that every single symbol is already defined.
3384     tables_->RollbackToLastCheckpoint();
3385     return NULL;
3386   }
3387   if (!result->package().empty()) {
3388     AddPackage(result->package(), proto, result);
3389   }
3390
3391   // Make sure all dependencies are loaded.
3392   set<string> seen_dependencies;
3393   result->dependency_count_ = proto.dependency_size();
3394   result->dependencies_ =
3395     tables_->AllocateArray<const FileDescriptor*>(proto.dependency_size());
3396   unused_dependency_.clear();
3397   set<int> weak_deps;
3398   for (int i = 0; i < proto.weak_dependency_size(); ++i) {
3399     weak_deps.insert(proto.weak_dependency(i));
3400   }
3401   for (int i = 0; i < proto.dependency_size(); i++) {
3402     if (!seen_dependencies.insert(proto.dependency(i)).second) {
3403       AddTwiceListedError(proto, i);
3404     }
3405
3406     const FileDescriptor* dependency = tables_->FindFile(proto.dependency(i));
3407     if (dependency == NULL && pool_->underlay_ != NULL) {
3408       dependency = pool_->underlay_->FindFileByName(proto.dependency(i));
3409     }
3410
3411     if (dependency == NULL) {
3412       if (pool_->allow_unknown_ ||
3413           (!pool_->enforce_weak_ && weak_deps.find(i) != weak_deps.end())) {
3414         dependency = NewPlaceholderFile(proto.dependency(i));
3415       } else {
3416         AddImportError(proto, i);
3417       }
3418     } else {
3419       // Add to unused_dependency_ to track unused imported files.
3420       // Note: do not track unused imported files for public import.
3421       if (pool_->enforce_dependencies_ &&
3422           (pool_->unused_import_track_files_.find(proto.name()) !=
3423            pool_->unused_import_track_files_.end()) &&
3424           (dependency->public_dependency_count() == 0)) {
3425         unused_dependency_.insert(dependency);
3426       }
3427     }
3428
3429     result->dependencies_[i] = dependency;
3430   }
3431
3432   // Check public dependencies.
3433   int public_dependency_count = 0;
3434   result->public_dependencies_ = tables_->AllocateArray<int>(
3435       proto.public_dependency_size());
3436   for (int i = 0; i < proto.public_dependency_size(); i++) {
3437     // Only put valid public dependency indexes.
3438     int index = proto.public_dependency(i);
3439     if (index >= 0 && index < proto.dependency_size()) {
3440       result->public_dependencies_[public_dependency_count++] = index;
3441       // Do not track unused imported files for public import.
3442       unused_dependency_.erase(result->dependency(index));
3443     } else {
3444       AddError(proto.name(), proto,
3445                DescriptorPool::ErrorCollector::OTHER,
3446                "Invalid public dependency index.");
3447     }
3448   }
3449   result->public_dependency_count_ = public_dependency_count;
3450
3451   // Build dependency set
3452   dependencies_.clear();
3453   for (int i = 0; i < result->dependency_count(); i++) {
3454     RecordPublicDependencies(result->dependency(i));
3455   }
3456
3457   // Check weak dependencies.
3458   int weak_dependency_count = 0;
3459   result->weak_dependencies_ = tables_->AllocateArray<int>(
3460       proto.weak_dependency_size());
3461   for (int i = 0; i < proto.weak_dependency_size(); i++) {
3462     int index = proto.weak_dependency(i);
3463     if (index >= 0 && index < proto.dependency_size()) {
3464       result->weak_dependencies_[weak_dependency_count++] = index;
3465     } else {
3466       AddError(proto.name(), proto,
3467                DescriptorPool::ErrorCollector::OTHER,
3468                "Invalid weak dependency index.");
3469     }
3470   }
3471   result->weak_dependency_count_ = weak_dependency_count;
3472
3473   // Convert children.
3474   BUILD_ARRAY(proto, result, message_type, BuildMessage  , NULL);
3475   BUILD_ARRAY(proto, result, enum_type   , BuildEnum     , NULL);
3476   BUILD_ARRAY(proto, result, service     , BuildService  , NULL);
3477   BUILD_ARRAY(proto, result, extension   , BuildExtension, NULL);
3478
3479   // Copy options.
3480   if (!proto.has_options()) {
3481     result->options_ = NULL;  // Will set to default_instance later.
3482   } else {
3483     AllocateOptions(proto.options(), result);
3484   }
3485
3486   // Note that the following steps must occur in exactly the specified order.
3487
3488   // Cross-link.
3489   CrossLinkFile(result, proto);
3490
3491   // Interpret any remaining uninterpreted options gathered into
3492   // options_to_interpret_ during descriptor building.  Cross-linking has made
3493   // extension options known, so all interpretations should now succeed.
3494   if (!had_errors_) {
3495     OptionInterpreter option_interpreter(this);
3496     for (vector<OptionsToInterpret>::iterator iter =
3497              options_to_interpret_.begin();
3498          iter != options_to_interpret_.end(); ++iter) {
3499       option_interpreter.InterpretOptions(&(*iter));
3500     }
3501     options_to_interpret_.clear();
3502   }
3503
3504   // Validate options.
3505   if (!had_errors_) {
3506     ValidateFileOptions(result, proto);
3507   }
3508
3509
3510   if (!unused_dependency_.empty()) {
3511     LogUnusedDependency(result);
3512   }
3513
3514   if (had_errors_) {
3515     tables_->RollbackToLastCheckpoint();
3516     return NULL;
3517   } else {
3518     tables_->ClearLastCheckpoint();
3519     return result;
3520   }
3521 }
3522
3523 void DescriptorBuilder::BuildMessage(const DescriptorProto& proto,
3524                                      const Descriptor* parent,
3525                                      Descriptor* result) {
3526   const string& scope = (parent == NULL) ?
3527     file_->package() : parent->full_name();
3528   string* full_name = tables_->AllocateString(scope);
3529   if (!full_name->empty()) full_name->append(1, '.');
3530   full_name->append(proto.name());
3531
3532   ValidateSymbolName(proto.name(), *full_name, proto);
3533
3534   result->name_            = tables_->AllocateString(proto.name());
3535   result->full_name_       = full_name;
3536   result->file_            = file_;
3537   result->containing_type_ = parent;
3538   result->is_placeholder_  = false;
3539   result->is_unqualified_placeholder_ = false;
3540
3541   // Build oneofs first so that fields and extension ranges can refer to them.
3542   BUILD_ARRAY(proto, result, oneof_decl     , BuildOneof         , result);
3543   BUILD_ARRAY(proto, result, field          , BuildField         , result);
3544   BUILD_ARRAY(proto, result, nested_type    , BuildMessage       , result);
3545   BUILD_ARRAY(proto, result, enum_type      , BuildEnum          , result);
3546   BUILD_ARRAY(proto, result, extension_range, BuildExtensionRange, result);
3547   BUILD_ARRAY(proto, result, extension      , BuildExtension     , result);
3548
3549   // Copy options.
3550   if (!proto.has_options()) {
3551     result->options_ = NULL;  // Will set to default_instance later.
3552   } else {
3553     AllocateOptions(proto.options(), result);
3554   }
3555
3556   AddSymbol(result->full_name(), parent, result->name(),
3557             proto, Symbol(result));
3558
3559   // Check that no fields have numbers in extension ranges.
3560   for (int i = 0; i < result->field_count(); i++) {
3561     const FieldDescriptor* field = result->field(i);
3562     for (int j = 0; j < result->extension_range_count(); j++) {
3563       const Descriptor::ExtensionRange* range = result->extension_range(j);
3564       if (range->start <= field->number() && field->number() < range->end) {
3565         AddError(field->full_name(), proto.extension_range(j),
3566                  DescriptorPool::ErrorCollector::NUMBER,
3567                  strings::Substitute(
3568                    "Extension range $0 to $1 includes field \"$2\" ($3).",
3569                    range->start, range->end - 1,
3570                    field->name(), field->number()));
3571       }
3572     }
3573   }
3574
3575   // Check that extension ranges don't overlap.
3576   for (int i = 0; i < result->extension_range_count(); i++) {
3577     const Descriptor::ExtensionRange* range1 = result->extension_range(i);
3578     for (int j = i + 1; j < result->extension_range_count(); j++) {
3579       const Descriptor::ExtensionRange* range2 = result->extension_range(j);
3580       if (range1->end > range2->start && range2->end > range1->start) {
3581         AddError(result->full_name(), proto.extension_range(j),
3582                  DescriptorPool::ErrorCollector::NUMBER,
3583                  strings::Substitute("Extension range $0 to $1 overlaps with "
3584                                      "already-defined range $2 to $3.",
3585                                      range2->start, range2->end - 1,
3586                                      range1->start, range1->end - 1));
3587       }
3588     }
3589   }
3590 }
3591
3592 void DescriptorBuilder::BuildFieldOrExtension(const FieldDescriptorProto& proto,
3593                                               const Descriptor* parent,
3594                                               FieldDescriptor* result,
3595                                               bool is_extension) {
3596   const string& scope = (parent == NULL) ?
3597     file_->package() : parent->full_name();
3598   string* full_name = tables_->AllocateString(scope);
3599   if (!full_name->empty()) full_name->append(1, '.');
3600   full_name->append(proto.name());
3601
3602   ValidateSymbolName(proto.name(), *full_name, proto);
3603
3604   result->name_         = tables_->AllocateString(proto.name());
3605   result->full_name_    = full_name;
3606   result->file_         = file_;
3607   result->number_       = proto.number();
3608   result->is_extension_ = is_extension;
3609
3610   // If .proto files follow the style guide then the name should already be
3611   // lower-cased.  If that's the case we can just reuse the string we already
3612   // allocated rather than allocate a new one.
3613   string lowercase_name(proto.name());
3614   LowerString(&lowercase_name);
3615   if (lowercase_name == proto.name()) {
3616     result->lowercase_name_ = result->name_;
3617   } else {
3618     result->lowercase_name_ = tables_->AllocateString(lowercase_name);
3619   }
3620
3621   // Don't bother with the above optimization for camel-case names since
3622   // .proto files that follow the guide shouldn't be using names in this
3623   // format, so the optimization wouldn't help much.
3624   result->camelcase_name_ = tables_->AllocateString(ToCamelCase(proto.name()));
3625
3626   // Some compilers do not allow static_cast directly between two enum types,
3627   // so we must cast to int first.
3628   result->type_  = static_cast<FieldDescriptor::Type>(
3629                      implicit_cast<int>(proto.type()));
3630   result->label_ = static_cast<FieldDescriptor::Label>(
3631                      implicit_cast<int>(proto.label()));
3632
3633   // An extension cannot have a required field (b/13365836).
3634   if (result->is_extension_ &&
3635       result->label_ == FieldDescriptor::LABEL_REQUIRED) {
3636     AddError(result->full_name(), proto,
3637              // Error location `TYPE`: we would really like to indicate
3638              // `LABEL`, but the `ErrorLocation` enum has no entry for this, and
3639              // we don't necessarily know about all implementations of the
3640              // `ErrorCollector` interface to extend them to handle the new
3641              // error location type properly.
3642              DescriptorPool::ErrorCollector::TYPE,
3643              "Message extensions cannot have required fields.");
3644   }
3645
3646   // Some of these may be filled in when cross-linking.
3647   result->containing_type_ = NULL;
3648   result->extension_scope_ = NULL;
3649   result->experimental_map_key_ = NULL;
3650   result->message_type_ = NULL;
3651   result->enum_type_ = NULL;
3652
3653   result->has_default_value_ = proto.has_default_value();
3654   if (proto.has_default_value() && result->is_repeated()) {
3655     AddError(result->full_name(), proto,
3656              DescriptorPool::ErrorCollector::DEFAULT_VALUE,
3657              "Repeated fields can't have default values.");
3658   }
3659
3660   if (proto.has_type()) {
3661     if (proto.has_default_value()) {
3662       char* end_pos = NULL;
3663       switch (result->cpp_type()) {
3664         case FieldDescriptor::CPPTYPE_INT32:
3665           result->default_value_int32_ =
3666             strtol(proto.default_value().c_str(), &end_pos, 0);
3667           break;
3668         case FieldDescriptor::CPPTYPE_INT64:
3669           result->default_value_int64_ =
3670             strto64(proto.default_value().c_str(), &end_pos, 0);
3671           break;
3672         case FieldDescriptor::CPPTYPE_UINT32:
3673           result->default_value_uint32_ =
3674             strtoul(proto.default_value().c_str(), &end_pos, 0);
3675           break;
3676         case FieldDescriptor::CPPTYPE_UINT64:
3677           result->default_value_uint64_ =
3678             strtou64(proto.default_value().c_str(), &end_pos, 0);
3679           break;
3680         case FieldDescriptor::CPPTYPE_FLOAT:
3681           if (proto.default_value() == "inf") {
3682             result->default_value_float_ = numeric_limits<float>::infinity();
3683           } else if (proto.default_value() == "-inf") {
3684             result->default_value_float_ = -numeric_limits<float>::infinity();
3685           } else if (proto.default_value() == "nan") {
3686             result->default_value_float_ = numeric_limits<float>::quiet_NaN();
3687           } else  {
3688             result->default_value_float_ =
3689               io::NoLocaleStrtod(proto.default_value().c_str(), &end_pos);
3690           }
3691           break;
3692         case FieldDescriptor::CPPTYPE_DOUBLE:
3693           if (proto.default_value() == "inf") {
3694             result->default_value_double_ = numeric_limits<double>::infinity();
3695           } else if (proto.default_value() == "-inf") {
3696             result->default_value_double_ = -numeric_limits<double>::infinity();
3697           } else if (proto.default_value() == "nan") {
3698             result->default_value_double_ = numeric_limits<double>::quiet_NaN();
3699           } else  {
3700             result->default_value_double_ =
3701                 io::NoLocaleStrtod(proto.default_value().c_str(), &end_pos);
3702           }
3703           break;
3704         case FieldDescriptor::CPPTYPE_BOOL:
3705           if (proto.default_value() == "true") {
3706             result->default_value_bool_ = true;
3707           } else if (proto.default_value() == "false") {
3708             result->default_value_bool_ = false;
3709           } else {
3710             AddError(result->full_name(), proto,
3711                      DescriptorPool::ErrorCollector::DEFAULT_VALUE,
3712                      "Boolean default must be true or false.");
3713           }
3714           break;
3715         case FieldDescriptor::CPPTYPE_ENUM:
3716           // This will be filled in when cross-linking.
3717           result->default_value_enum_ = NULL;
3718           break;
3719         case FieldDescriptor::CPPTYPE_STRING:
3720           if (result->type() == FieldDescriptor::TYPE_BYTES) {
3721             result->default_value_string_ = tables_->AllocateString(
3722               UnescapeCEscapeString(proto.default_value()));
3723           } else {
3724             result->default_value_string_ =
3725                 tables_->AllocateString(proto.default_value());
3726           }
3727           break;
3728         case FieldDescriptor::CPPTYPE_MESSAGE:
3729           AddError(result->full_name(), proto,
3730                    DescriptorPool::ErrorCollector::DEFAULT_VALUE,
3731                    "Messages can't have default values.");
3732           result->has_default_value_ = false;
3733           break;
3734       }
3735
3736       if (end_pos != NULL) {
3737         // end_pos is only set non-NULL by the parsers for numeric types, above.
3738         // This checks that the default was non-empty and had no extra junk
3739         // after the end of the number.
3740         if (proto.default_value().empty() || *end_pos != '\0') {
3741           AddError(result->full_name(), proto,
3742                    DescriptorPool::ErrorCollector::DEFAULT_VALUE,
3743                    "Couldn't parse default value \"" + proto.default_value() +
3744                    "\".");
3745         }
3746       }
3747     } else {
3748       // No explicit default value
3749       switch (result->cpp_type()) {
3750         case FieldDescriptor::CPPTYPE_INT32:
3751           result->default_value_int32_ = 0;
3752           break;
3753         case FieldDescriptor::CPPTYPE_INT64:
3754           result->default_value_int64_ = 0;
3755           break;
3756         case FieldDescriptor::CPPTYPE_UINT32:
3757           result->default_value_uint32_ = 0;
3758           break;
3759         case FieldDescriptor::CPPTYPE_UINT64:
3760           result->default_value_uint64_ = 0;
3761           break;
3762         case FieldDescriptor::CPPTYPE_FLOAT:
3763           result->default_value_float_ = 0.0f;
3764           break;
3765         case FieldDescriptor::CPPTYPE_DOUBLE:
3766           result->default_value_double_ = 0.0;
3767           break;
3768         case FieldDescriptor::CPPTYPE_BOOL:
3769           result->default_value_bool_ = false;
3770           break;
3771         case FieldDescriptor::CPPTYPE_ENUM:
3772           // This will be filled in when cross-linking.
3773           result->default_value_enum_ = NULL;
3774           break;
3775         case FieldDescriptor::CPPTYPE_STRING:
3776           result->default_value_string_ = &internal::GetEmptyString();
3777           break;
3778         case FieldDescriptor::CPPTYPE_MESSAGE:
3779           break;
3780       }
3781     }
3782   }
3783
3784   if (result->number() <= 0) {
3785     AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER,
3786              "Field numbers must be positive integers.");
3787   } else if (!is_extension && result->number() > FieldDescriptor::kMaxNumber) {
3788     // Only validate that the number is within the valid field range if it is
3789     // not an extension. Since extension numbers are validated with the
3790     // extendee's valid set of extension numbers, and those are in turn
3791     // validated against the max allowed number, the check is unnecessary for
3792     // extension fields.
3793     // This avoids cross-linking issues that arise when attempting to check if
3794     // the extendee is a message_set_wire_format message, which has a higher max
3795     // on extension numbers.
3796     AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER,
3797              strings::Substitute("Field numbers cannot be greater than $0.",
3798                                  FieldDescriptor::kMaxNumber));
3799   } else if (result->number() >= FieldDescriptor::kFirstReservedNumber &&
3800              result->number() <= FieldDescriptor::kLastReservedNumber) {
3801     AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER,
3802              strings::Substitute(
3803                "Field numbers $0 through $1 are reserved for the protocol "
3804                "buffer library implementation.",
3805                FieldDescriptor::kFirstReservedNumber,
3806                FieldDescriptor::kLastReservedNumber));
3807   }
3808
3809   if (is_extension) {
3810     if (!proto.has_extendee()) {
3811       AddError(result->full_name(), proto,
3812                DescriptorPool::ErrorCollector::EXTENDEE,
3813                "FieldDescriptorProto.extendee not set for extension field.");
3814     }
3815
3816     result->extension_scope_ = parent;
3817
3818     if (proto.has_oneof_index()) {
3819       AddError(result->full_name(), proto,
3820                DescriptorPool::ErrorCollector::OTHER,
3821                "FieldDescriptorProto.oneof_index should not be set for "
3822                "extensions.");
3823     }
3824
3825     // Fill in later (maybe).
3826     result->containing_oneof_ = NULL;
3827   } else {
3828     if (proto.has_extendee()) {
3829       AddError(result->full_name(), proto,
3830                DescriptorPool::ErrorCollector::EXTENDEE,
3831                "FieldDescriptorProto.extendee set for non-extension field.");
3832     }
3833
3834     result->containing_type_ = parent;
3835
3836     if (proto.has_oneof_index()) {
3837       if (proto.oneof_index() < 0 ||
3838           proto.oneof_index() >= parent->oneof_decl_count()) {
3839         AddError(result->full_name(), proto,
3840                  DescriptorPool::ErrorCollector::OTHER,
3841                  strings::Substitute("FieldDescriptorProto.oneof_index $0 is "
3842                                      "out of range for type \"$1\".",
3843                                      proto.oneof_index(),
3844                                      parent->name()));
3845         result->containing_oneof_ = NULL;
3846       } else {
3847         result->containing_oneof_ = parent->oneof_decl(proto.oneof_index());
3848       }
3849     } else {
3850       result->containing_oneof_ = NULL;
3851     }
3852   }
3853
3854   // Copy options.
3855   if (!proto.has_options()) {
3856     result->options_ = NULL;  // Will set to default_instance later.
3857   } else {
3858     AllocateOptions(proto.options(), result);
3859   }
3860
3861   AddSymbol(result->full_name(), parent, result->name(),
3862             proto, Symbol(result));
3863 }
3864
3865 void DescriptorBuilder::BuildExtensionRange(
3866     const DescriptorProto::ExtensionRange& proto,
3867     const Descriptor* parent,
3868     Descriptor::ExtensionRange* result) {
3869   result->start = proto.start();
3870   result->end = proto.end();
3871   if (result->start <= 0) {
3872     AddError(parent->full_name(), proto,
3873              DescriptorPool::ErrorCollector::NUMBER,
3874              "Extension numbers must be positive integers.");
3875   }
3876
3877   // Checking of the upper bound of the extension range is deferred until after
3878   // options interpreting. This allows messages with message_set_wire_format to
3879   // have extensions beyond FieldDescriptor::kMaxNumber, since the extension
3880   // numbers are actually used as int32s in the message_set_wire_format.
3881
3882   if (result->start >= result->end) {
3883     AddError(parent->full_name(), proto,
3884              DescriptorPool::ErrorCollector::NUMBER,
3885              "Extension range end number must be greater than start number.");
3886   }
3887 }
3888
3889 void DescriptorBuilder::BuildOneof(const OneofDescriptorProto& proto,
3890                                    Descriptor* parent,
3891                                    OneofDescriptor* result) {
3892   string* full_name = tables_->AllocateString(parent->full_name());
3893   full_name->append(1, '.');
3894   full_name->append(proto.name());
3895
3896   ValidateSymbolName(proto.name(), *full_name, proto);
3897
3898   result->name_ = tables_->AllocateString(proto.name());
3899   result->full_name_ = full_name;
3900
3901   result->containing_type_ = parent;
3902
3903   // We need to fill these in later.
3904   result->field_count_ = 0;
3905   result->fields_ = NULL;
3906
3907   AddSymbol(result->full_name(), parent, result->name(),
3908             proto, Symbol(result));
3909 }
3910
3911 void DescriptorBuilder::BuildEnum(const EnumDescriptorProto& proto,
3912                                   const Descriptor* parent,
3913                                   EnumDescriptor* result) {
3914   const string& scope = (parent == NULL) ?
3915     file_->package() : parent->full_name();
3916   string* full_name = tables_->AllocateString(scope);
3917   if (!full_name->empty()) full_name->append(1, '.');
3918   full_name->append(proto.name());
3919
3920   ValidateSymbolName(proto.name(), *full_name, proto);
3921
3922   result->name_            = tables_->AllocateString(proto.name());
3923   result->full_name_       = full_name;
3924   result->file_            = file_;
3925   result->containing_type_ = parent;
3926   result->is_placeholder_  = false;
3927   result->is_unqualified_placeholder_ = false;
3928
3929   if (proto.value_size() == 0) {
3930     // We cannot allow enums with no values because this would mean there
3931     // would be no valid default value for fields of this type.
3932     AddError(result->full_name(), proto,
3933              DescriptorPool::ErrorCollector::NAME,
3934              "Enums must contain at least one value.");
3935   }
3936
3937   BUILD_ARRAY(proto, result, value, BuildEnumValue, result);
3938
3939   // Copy options.
3940   if (!proto.has_options()) {
3941     result->options_ = NULL;  // Will set to default_instance later.
3942   } else {
3943     AllocateOptions(proto.options(), result);
3944   }
3945
3946   AddSymbol(result->full_name(), parent, result->name(),
3947             proto, Symbol(result));
3948 }
3949
3950 void DescriptorBuilder::BuildEnumValue(const EnumValueDescriptorProto& proto,
3951                                        const EnumDescriptor* parent,
3952                                        EnumValueDescriptor* result) {
3953   result->name_   = tables_->AllocateString(proto.name());
3954   result->number_ = proto.number();
3955   result->type_   = parent;
3956
3957   // Note:  full_name for enum values is a sibling to the parent's name, not a
3958   //   child of it.
3959   string* full_name = tables_->AllocateString(*parent->full_name_);
3960   full_name->resize(full_name->size() - parent->name_->size());
3961   full_name->append(*result->name_);
3962   result->full_name_ = full_name;
3963
3964   ValidateSymbolName(proto.name(), *full_name, proto);
3965
3966   // Copy options.
3967   if (!proto.has_options()) {
3968     result->options_ = NULL;  // Will set to default_instance later.
3969   } else {
3970     AllocateOptions(proto.options(), result);
3971   }
3972
3973   // Again, enum values are weird because we makes them appear as siblings
3974   // of the enum type instead of children of it.  So, we use
3975   // parent->containing_type() as the value's parent.
3976   bool added_to_outer_scope =
3977     AddSymbol(result->full_name(), parent->containing_type(), result->name(),
3978               proto, Symbol(result));
3979
3980   // However, we also want to be able to search for values within a single
3981   // enum type, so we add it as a child of the enum type itself, too.
3982   // Note:  This could fail, but if it does, the error has already been
3983   //   reported by the above AddSymbol() call, so we ignore the return code.
3984   bool added_to_inner_scope =
3985     file_tables_->AddAliasUnderParent(parent, result->name(), Symbol(result));
3986
3987   if (added_to_inner_scope && !added_to_outer_scope) {
3988     // This value did not conflict with any values defined in the same enum,
3989     // but it did conflict with some other symbol defined in the enum type's
3990     // scope.  Let's print an additional error to explain this.
3991     string outer_scope;
3992     if (parent->containing_type() == NULL) {
3993       outer_scope = file_->package();
3994     } else {
3995       outer_scope = parent->containing_type()->full_name();
3996     }
3997
3998     if (outer_scope.empty()) {
3999       outer_scope = "the global scope";
4000     } else {
4001       outer_scope = "\"" + outer_scope + "\"";
4002     }
4003
4004     AddError(result->full_name(), proto,
4005              DescriptorPool::ErrorCollector::NAME,
4006              "Note that enum values use C++ scoping rules, meaning that "
4007              "enum values are siblings of their type, not children of it.  "
4008              "Therefore, \"" + result->name() + "\" must be unique within "
4009              + outer_scope + ", not just within \"" + parent->name() + "\".");
4010   }
4011
4012   // An enum is allowed to define two numbers that refer to the same value.
4013   // FindValueByNumber() should return the first such value, so we simply
4014   // ignore AddEnumValueByNumber()'s return code.
4015   file_tables_->AddEnumValueByNumber(result);
4016 }
4017
4018 void DescriptorBuilder::BuildService(const ServiceDescriptorProto& proto,
4019                                      const void* /* dummy */,
4020                                      ServiceDescriptor* result) {
4021   string* full_name = tables_->AllocateString(file_->package());
4022   if (!full_name->empty()) full_name->append(1, '.');
4023   full_name->append(proto.name());
4024
4025   ValidateSymbolName(proto.name(), *full_name, proto);
4026
4027   result->name_      = tables_->AllocateString(proto.name());
4028   result->full_name_ = full_name;
4029   result->file_      = file_;
4030
4031   BUILD_ARRAY(proto, result, method, BuildMethod, result);
4032
4033   // Copy options.
4034   if (!proto.has_options()) {
4035     result->options_ = NULL;  // Will set to default_instance later.
4036   } else {
4037     AllocateOptions(proto.options(), result);
4038   }
4039
4040   AddSymbol(result->full_name(), NULL, result->name(),
4041             proto, Symbol(result));
4042 }
4043
4044 void DescriptorBuilder::BuildMethod(const MethodDescriptorProto& proto,
4045                                     const ServiceDescriptor* parent,
4046                                     MethodDescriptor* result) {
4047   result->name_    = tables_->AllocateString(proto.name());
4048   result->service_ = parent;
4049
4050   string* full_name = tables_->AllocateString(parent->full_name());
4051   full_name->append(1, '.');
4052   full_name->append(*result->name_);
4053   result->full_name_ = full_name;
4054
4055   ValidateSymbolName(proto.name(), *full_name, proto);
4056
4057   // These will be filled in when cross-linking.
4058   result->input_type_ = NULL;
4059   result->output_type_ = NULL;
4060
4061   // Copy options.
4062   if (!proto.has_options()) {
4063     result->options_ = NULL;  // Will set to default_instance later.
4064   } else {
4065     AllocateOptions(proto.options(), result);
4066   }
4067
4068   AddSymbol(result->full_name(), parent, result->name(),
4069             proto, Symbol(result));
4070 }
4071
4072 #undef BUILD_ARRAY
4073
4074 // -------------------------------------------------------------------
4075
4076 void DescriptorBuilder::CrossLinkFile(
4077     FileDescriptor* file, const FileDescriptorProto& proto) {
4078   if (file->options_ == NULL) {
4079     file->options_ = &FileOptions::default_instance();
4080   }
4081
4082   for (int i = 0; i < file->message_type_count(); i++) {
4083     CrossLinkMessage(&file->message_types_[i], proto.message_type(i));
4084   }
4085
4086   for (int i = 0; i < file->extension_count(); i++) {
4087     CrossLinkField(&file->extensions_[i], proto.extension(i));
4088   }
4089
4090   for (int i = 0; i < file->enum_type_count(); i++) {
4091     CrossLinkEnum(&file->enum_types_[i], proto.enum_type(i));
4092   }
4093
4094   for (int i = 0; i < file->service_count(); i++) {
4095     CrossLinkService(&file->services_[i], proto.service(i));
4096   }
4097 }
4098
4099 void DescriptorBuilder::CrossLinkMessage(
4100     Descriptor* message, const DescriptorProto& proto) {
4101   if (message->options_ == NULL) {
4102     message->options_ = &MessageOptions::default_instance();
4103   }
4104
4105   for (int i = 0; i < message->nested_type_count(); i++) {
4106     CrossLinkMessage(&message->nested_types_[i], proto.nested_type(i));
4107   }
4108
4109   for (int i = 0; i < message->enum_type_count(); i++) {
4110     CrossLinkEnum(&message->enum_types_[i], proto.enum_type(i));
4111   }
4112
4113   for (int i = 0; i < message->field_count(); i++) {
4114     CrossLinkField(&message->fields_[i], proto.field(i));
4115   }
4116
4117   for (int i = 0; i < message->extension_count(); i++) {
4118     CrossLinkField(&message->extensions_[i], proto.extension(i));
4119   }
4120
4121   // Set up field array for each oneof.
4122
4123   // First count the number of fields per oneof.
4124   for (int i = 0; i < message->field_count(); i++) {
4125     const OneofDescriptor* oneof_decl = message->field(i)->containing_oneof();
4126     if (oneof_decl != NULL) {
4127       // Must go through oneof_decls_ array to get a non-const version of the
4128       // OneofDescriptor.
4129       ++message->oneof_decls_[oneof_decl->index()].field_count_;
4130     }
4131   }
4132
4133   // Then allocate the arrays.
4134   for (int i = 0; i < message->oneof_decl_count(); i++) {
4135     OneofDescriptor* oneof_decl = &message->oneof_decls_[i];
4136
4137     if (oneof_decl->field_count() == 0) {
4138       AddError(message->full_name() + "." + oneof_decl->name(),
4139                proto.oneof_decl(i),
4140                DescriptorPool::ErrorCollector::NAME,
4141                "Oneof must have at least one field.");
4142     }
4143
4144     oneof_decl->fields_ =
4145       tables_->AllocateArray<const FieldDescriptor*>(oneof_decl->field_count_);
4146     oneof_decl->field_count_ = 0;
4147   }
4148
4149   // Then fill them in.
4150   for (int i = 0; i < message->field_count(); i++) {
4151     const OneofDescriptor* oneof_decl = message->field(i)->containing_oneof();
4152     if (oneof_decl != NULL) {
4153       OneofDescriptor* mutable_oneof_decl =
4154           &message->oneof_decls_[oneof_decl->index()];
4155       message->fields_[i].index_in_oneof_ = mutable_oneof_decl->field_count_;
4156       mutable_oneof_decl->fields_[mutable_oneof_decl->field_count_++] =
4157           message->field(i);
4158     }
4159   }
4160 }
4161
4162 void DescriptorBuilder::CrossLinkField(
4163     FieldDescriptor* field, const FieldDescriptorProto& proto) {
4164   if (field->options_ == NULL) {
4165     field->options_ = &FieldOptions::default_instance();
4166   }
4167
4168   if (proto.has_extendee()) {
4169     Symbol extendee = LookupSymbol(proto.extendee(), field->full_name(),
4170                                    PLACEHOLDER_EXTENDABLE_MESSAGE);
4171     if (extendee.IsNull()) {
4172       AddNotDefinedError(field->full_name(), proto,
4173                          DescriptorPool::ErrorCollector::EXTENDEE,
4174                          proto.extendee());
4175       return;
4176     } else if (extendee.type != Symbol::MESSAGE) {
4177       AddError(field->full_name(), proto,
4178                DescriptorPool::ErrorCollector::EXTENDEE,
4179                "\"" + proto.extendee() + "\" is not a message type.");
4180       return;
4181     }
4182     field->containing_type_ = extendee.descriptor;
4183
4184     const Descriptor::ExtensionRange* extension_range = field->containing_type()
4185         ->FindExtensionRangeContainingNumber(field->number());
4186
4187     if (extension_range == NULL) {
4188       AddError(field->full_name(), proto,
4189                DescriptorPool::ErrorCollector::NUMBER,
4190                strings::Substitute("\"$0\" does not declare $1 as an "
4191                                    "extension number.",
4192                                    field->containing_type()->full_name(),
4193                                    field->number()));
4194     }
4195   }
4196
4197   if (field->containing_oneof() != NULL) {
4198     if (field->label() != FieldDescriptor::LABEL_OPTIONAL) {
4199       // Note that this error will never happen when parsing .proto files.
4200       // It can only happen if you manually construct a FileDescriptorProto
4201       // that is incorrect.
4202       AddError(field->full_name(), proto,
4203                DescriptorPool::ErrorCollector::NAME,
4204                "Fields of oneofs must themselves have label LABEL_OPTIONAL.");
4205     }
4206   }
4207
4208   if (proto.has_type_name()) {
4209     // Assume we are expecting a message type unless the proto contains some
4210     // evidence that it expects an enum type.  This only makes a difference if
4211     // we end up creating a placeholder.
4212     bool expecting_enum = (proto.type() == FieldDescriptorProto::TYPE_ENUM) ||
4213                           proto.has_default_value();
4214
4215     Symbol type =
4216       LookupSymbol(proto.type_name(), field->full_name(),
4217                    expecting_enum ? PLACEHOLDER_ENUM : PLACEHOLDER_MESSAGE,
4218                    LOOKUP_TYPES);
4219
4220     // If the type is a weak type, we change the type to a google.protobuf.Empty field.
4221     if (type.IsNull() && !pool_->enforce_weak_ && proto.options().weak()) {
4222       type = FindSymbol(kNonLinkedWeakMessageReplacementName);
4223     }
4224
4225     if (type.IsNull()) {
4226       AddNotDefinedError(field->full_name(), proto,
4227                          DescriptorPool::ErrorCollector::TYPE,
4228                          proto.type_name());
4229       return;
4230     }
4231
4232     if (!proto.has_type()) {
4233       // Choose field type based on symbol.
4234       if (type.type == Symbol::MESSAGE) {
4235         field->type_ = FieldDescriptor::TYPE_MESSAGE;
4236       } else if (type.type == Symbol::ENUM) {
4237         field->type_ = FieldDescriptor::TYPE_ENUM;
4238       } else {
4239         AddError(field->full_name(), proto,
4240                  DescriptorPool::ErrorCollector::TYPE,
4241                  "\"" + proto.type_name() + "\" is not a type.");
4242         return;
4243       }
4244     }
4245
4246     if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
4247       if (type.type != Symbol::MESSAGE) {
4248         AddError(field->full_name(), proto,
4249                  DescriptorPool::ErrorCollector::TYPE,
4250                  "\"" + proto.type_name() + "\" is not a message type.");
4251         return;
4252       }
4253       field->message_type_ = type.descriptor;
4254
4255       if (field->has_default_value()) {
4256         AddError(field->full_name(), proto,
4257                  DescriptorPool::ErrorCollector::DEFAULT_VALUE,
4258                  "Messages can't have default values.");
4259       }
4260     } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_ENUM) {
4261       if (type.type != Symbol::ENUM) {
4262         AddError(field->full_name(), proto,
4263                  DescriptorPool::ErrorCollector::TYPE,
4264                  "\"" + proto.type_name() + "\" is not an enum type.");
4265         return;
4266       }
4267       field->enum_type_ = type.enum_descriptor;
4268
4269       if (field->enum_type()->is_placeholder_) {
4270         // We can't look up default values for placeholder types.  We'll have
4271         // to just drop them.
4272         field->has_default_value_ = false;
4273       }
4274
4275       if (field->has_default_value()) {
4276         // Ensure that the default value is an identifier. Parser cannot always
4277         // verify this because it does not have complete type information.
4278         // N.B. that this check yields better error messages but is not
4279         // necessary for correctness (an enum symbol must be a valid identifier
4280         // anyway), only for better errors.
4281         if (!io::Tokenizer::IsIdentifier(proto.default_value())) {
4282           AddError(field->full_name(), proto,
4283                    DescriptorPool::ErrorCollector::DEFAULT_VALUE,
4284                    "Default value for an enum field must be an identifier.");
4285         } else {
4286           // We can't just use field->enum_type()->FindValueByName() here
4287           // because that locks the pool's mutex, which we have already locked
4288           // at this point.
4289           Symbol default_value =
4290             LookupSymbolNoPlaceholder(proto.default_value(),
4291                                       field->enum_type()->full_name());
4292
4293           if (default_value.type == Symbol::ENUM_VALUE &&
4294               default_value.enum_value_descriptor->type() ==
4295               field->enum_type()) {
4296             field->default_value_enum_ = default_value.enum_value_descriptor;
4297           } else {
4298             AddError(field->full_name(), proto,
4299                      DescriptorPool::ErrorCollector::DEFAULT_VALUE,
4300                      "Enum type \"" + field->enum_type()->full_name() +
4301                      "\" has no value named \"" + proto.default_value() +
4302                      "\".");
4303           }
4304         }
4305       } else if (field->enum_type()->value_count() > 0) {
4306         // All enums must have at least one value, or we would have reported
4307         // an error elsewhere.  We use the first defined value as the default
4308         // if a default is not explicitly defined.
4309         field->default_value_enum_ = field->enum_type()->value(0);
4310       }
4311     } else {
4312       AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
4313                "Field with primitive type has type_name.");
4314     }
4315   } else {
4316     if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE ||
4317         field->cpp_type() == FieldDescriptor::CPPTYPE_ENUM) {
4318       AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
4319                "Field with message or enum type missing type_name.");
4320     }
4321   }
4322
4323   // Add the field to the fields-by-number table.
4324   // Note:  We have to do this *after* cross-linking because extensions do not
4325   //   know their containing type until now.
4326   if (!file_tables_->AddFieldByNumber(field)) {
4327     const FieldDescriptor* conflicting_field =
4328       file_tables_->FindFieldByNumber(field->containing_type(),
4329                                       field->number());
4330     if (field->is_extension()) {
4331       AddError(field->full_name(), proto,
4332                DescriptorPool::ErrorCollector::NUMBER,
4333                strings::Substitute("Extension number $0 has already been used "
4334                                    "in \"$1\" by extension \"$2\".",
4335                                    field->number(),
4336                                    field->containing_type()->full_name(),
4337                                    conflicting_field->full_name()));
4338     } else {
4339       AddError(field->full_name(), proto,
4340                DescriptorPool::ErrorCollector::NUMBER,
4341                strings::Substitute("Field number $0 has already been used in "
4342                                    "\"$1\" by field \"$2\".",
4343                                    field->number(),
4344                                    field->containing_type()->full_name(),
4345                                    conflicting_field->name()));
4346     }
4347   } else {
4348     if (field->is_extension()) {
4349       if (!tables_->AddExtension(field)) {
4350         const FieldDescriptor* conflicting_field =
4351             tables_->FindExtension(field->containing_type(), field->number());
4352         string error_msg = strings::Substitute(
4353             "Extension number $0 has already been used in \"$1\" by extension "
4354             "\"$2\" defined in $3.",
4355             field->number(),
4356             field->containing_type()->full_name(),
4357             conflicting_field->full_name(),
4358             conflicting_field->file()->name());
4359         // Conflicting extension numbers should be an error. However, before
4360         // turning this into an error we need to fix all existing broken
4361         // protos first.
4362         // TODO(xiaofeng): Change this to an error.
4363         AddWarning(field->full_name(), proto,
4364                    DescriptorPool::ErrorCollector::NUMBER, error_msg);
4365       }
4366     }
4367   }
4368
4369   // Add the field to the lowercase-name and camelcase-name tables.
4370   file_tables_->AddFieldByStylizedNames(field);
4371 }
4372
4373 void DescriptorBuilder::CrossLinkEnum(
4374     EnumDescriptor* enum_type, const EnumDescriptorProto& proto) {
4375   if (enum_type->options_ == NULL) {
4376     enum_type->options_ = &EnumOptions::default_instance();
4377   }
4378
4379   for (int i = 0; i < enum_type->value_count(); i++) {
4380     CrossLinkEnumValue(&enum_type->values_[i], proto.value(i));
4381   }
4382 }
4383
4384 void DescriptorBuilder::CrossLinkEnumValue(
4385     EnumValueDescriptor* enum_value,
4386     const EnumValueDescriptorProto& /* proto */) {
4387   if (enum_value->options_ == NULL) {
4388     enum_value->options_ = &EnumValueOptions::default_instance();
4389   }
4390 }
4391
4392 void DescriptorBuilder::CrossLinkService(
4393     ServiceDescriptor* service, const ServiceDescriptorProto& proto) {
4394   if (service->options_ == NULL) {
4395     service->options_ = &ServiceOptions::default_instance();
4396   }
4397
4398   for (int i = 0; i < service->method_count(); i++) {
4399     CrossLinkMethod(&service->methods_[i], proto.method(i));
4400   }
4401 }
4402
4403 void DescriptorBuilder::CrossLinkMethod(
4404     MethodDescriptor* method, const MethodDescriptorProto& proto) {
4405   if (method->options_ == NULL) {
4406     method->options_ = &MethodOptions::default_instance();
4407   }
4408
4409   Symbol input_type = LookupSymbol(proto.input_type(), method->full_name());
4410   if (input_type.IsNull()) {
4411     AddNotDefinedError(method->full_name(), proto,
4412                        DescriptorPool::ErrorCollector::INPUT_TYPE,
4413                        proto.input_type());
4414   } else if (input_type.type != Symbol::MESSAGE) {
4415     AddError(method->full_name(), proto,
4416              DescriptorPool::ErrorCollector::INPUT_TYPE,
4417              "\"" + proto.input_type() + "\" is not a message type.");
4418   } else {
4419     method->input_type_ = input_type.descriptor;
4420   }
4421
4422   Symbol output_type = LookupSymbol(proto.output_type(), method->full_name());
4423   if (output_type.IsNull()) {
4424     AddNotDefinedError(method->full_name(), proto,
4425                        DescriptorPool::ErrorCollector::OUTPUT_TYPE,
4426                        proto.output_type());
4427   } else if (output_type.type != Symbol::MESSAGE) {
4428     AddError(method->full_name(), proto,
4429              DescriptorPool::ErrorCollector::OUTPUT_TYPE,
4430              "\"" + proto.output_type() + "\" is not a message type.");
4431   } else {
4432     method->output_type_ = output_type.descriptor;
4433   }
4434 }
4435
4436 // -------------------------------------------------------------------
4437
4438 #define VALIDATE_OPTIONS_FROM_ARRAY(descriptor, array_name, type)  \
4439   for (int i = 0; i < descriptor->array_name##_count(); ++i) {     \
4440     Validate##type##Options(descriptor->array_name##s_ + i,        \
4441                             proto.array_name(i));                  \
4442   }
4443
4444 // Determine if the file uses optimize_for = LITE_RUNTIME, being careful to
4445 // avoid problems that exist at init time.
4446 static bool IsLite(const FileDescriptor* file) {
4447   // TODO(kenton):  I don't even remember how many of these conditions are
4448   //   actually possible.  I'm just being super-safe.
4449   return file != NULL &&
4450          &file->options() != &FileOptions::default_instance() &&
4451          file->options().optimize_for() == FileOptions::LITE_RUNTIME;
4452 }
4453
4454 void DescriptorBuilder::ValidateFileOptions(FileDescriptor* file,
4455                                             const FileDescriptorProto& proto) {
4456   VALIDATE_OPTIONS_FROM_ARRAY(file, message_type, Message);
4457   VALIDATE_OPTIONS_FROM_ARRAY(file, enum_type, Enum);
4458   VALIDATE_OPTIONS_FROM_ARRAY(file, service, Service);
4459   VALIDATE_OPTIONS_FROM_ARRAY(file, extension, Field);
4460
4461   // Lite files can only be imported by other Lite files.
4462   if (!IsLite(file)) {
4463     for (int i = 0; i < file->dependency_count(); i++) {
4464       if (IsLite(file->dependency(i))) {
4465         AddError(
4466           file->name(), proto,
4467           DescriptorPool::ErrorCollector::OTHER,
4468           "Files that do not use optimize_for = LITE_RUNTIME cannot import "
4469           "files which do use this option.  This file is not lite, but it "
4470           "imports \"" + file->dependency(i)->name() + "\" which is.");
4471         break;
4472       }
4473     }
4474   }
4475 }
4476
4477
4478 void DescriptorBuilder::ValidateMessageOptions(Descriptor* message,
4479                                                const DescriptorProto& proto) {
4480   VALIDATE_OPTIONS_FROM_ARRAY(message, field, Field);
4481   VALIDATE_OPTIONS_FROM_ARRAY(message, nested_type, Message);
4482   VALIDATE_OPTIONS_FROM_ARRAY(message, enum_type, Enum);
4483   VALIDATE_OPTIONS_FROM_ARRAY(message, extension, Field);
4484
4485   const int64 max_extension_range =
4486       static_cast<int64>(message->options().message_set_wire_format() ?
4487                          kint32max :
4488                          FieldDescriptor::kMaxNumber);
4489   for (int i = 0; i < message->extension_range_count(); ++i) {
4490     if (message->extension_range(i)->end > max_extension_range + 1) {
4491       AddError(
4492           message->full_name(), proto.extension_range(i),
4493           DescriptorPool::ErrorCollector::NUMBER,
4494           strings::Substitute("Extension numbers cannot be greater than $0.",
4495                               max_extension_range));
4496     }
4497   }
4498 }
4499
4500 void DescriptorBuilder::ValidateFieldOptions(FieldDescriptor* field,
4501     const FieldDescriptorProto& proto) {
4502   if (field->options().has_experimental_map_key()) {
4503     ValidateMapKey(field, proto);
4504   }
4505
4506   // Only message type fields may be lazy.
4507   if (field->options().lazy()) {
4508     if (field->type() != FieldDescriptor::TYPE_MESSAGE) {
4509       AddError(field->full_name(), proto,
4510                DescriptorPool::ErrorCollector::TYPE,
4511                "[lazy = true] can only be specified for submessage fields.");
4512     }
4513   }
4514
4515   // Only repeated primitive fields may be packed.
4516   if (field->options().packed() && !field->is_packable()) {
4517     AddError(
4518       field->full_name(), proto,
4519       DescriptorPool::ErrorCollector::TYPE,
4520       "[packed = true] can only be specified for repeated primitive fields.");
4521   }
4522
4523   // Note:  Default instance may not yet be initialized here, so we have to
4524   //   avoid reading from it.
4525   if (field->containing_type_ != NULL &&
4526       &field->containing_type()->options() !=
4527       &MessageOptions::default_instance() &&
4528       field->containing_type()->options().message_set_wire_format()) {
4529     if (field->is_extension()) {
4530       if (!field->is_optional() ||
4531           field->type() != FieldDescriptor::TYPE_MESSAGE) {
4532         AddError(field->full_name(), proto,
4533                  DescriptorPool::ErrorCollector::TYPE,
4534                  "Extensions of MessageSets must be optional messages.");
4535       }
4536     } else {
4537       AddError(field->full_name(), proto,
4538                DescriptorPool::ErrorCollector::NAME,
4539                "MessageSets cannot have fields, only extensions.");
4540     }
4541   }
4542
4543   // Lite extensions can only be of Lite types.
4544   if (IsLite(field->file()) &&
4545       field->containing_type_ != NULL &&
4546       !IsLite(field->containing_type()->file())) {
4547     AddError(field->full_name(), proto,
4548              DescriptorPool::ErrorCollector::EXTENDEE,
4549              "Extensions to non-lite types can only be declared in non-lite "
4550              "files.  Note that you cannot extend a non-lite type to contain "
4551              "a lite type, but the reverse is allowed.");
4552   }
4553
4554 }
4555
4556 void DescriptorBuilder::ValidateEnumOptions(EnumDescriptor* enm,
4557                                             const EnumDescriptorProto& proto) {
4558   VALIDATE_OPTIONS_FROM_ARRAY(enm, value, EnumValue);
4559   if (!enm->options().has_allow_alias() || !enm->options().allow_alias()) {
4560     map<int, string> used_values;
4561     for (int i = 0; i < enm->value_count(); ++i) {
4562       const EnumValueDescriptor* enum_value = enm->value(i);
4563       if (used_values.find(enum_value->number()) != used_values.end()) {
4564         string error =
4565             "\"" + enum_value->full_name() +
4566             "\" uses the same enum value as \"" +
4567             used_values[enum_value->number()] + "\". If this is intended, set "
4568             "'option allow_alias = true;' to the enum definition.";
4569         if (!enm->options().allow_alias()) {
4570           // Generate error if duplicated enum values are explicitly disallowed.
4571           AddError(enm->full_name(), proto,
4572                    DescriptorPool::ErrorCollector::NUMBER,
4573                    error);
4574         } else {
4575           // Generate warning if duplicated values are found but the option
4576           // isn't set.
4577           GOOGLE_LOG(ERROR) << error;
4578         }
4579       } else {
4580         used_values[enum_value->number()] = enum_value->full_name();
4581       }
4582     }
4583   }
4584 }
4585
4586 void DescriptorBuilder::ValidateEnumValueOptions(
4587     EnumValueDescriptor* /* enum_value */,
4588     const EnumValueDescriptorProto& /* proto */) {
4589   // Nothing to do so far.
4590 }
4591 void DescriptorBuilder::ValidateServiceOptions(ServiceDescriptor* service,
4592     const ServiceDescriptorProto& proto) {
4593   if (IsLite(service->file()) &&
4594       (service->file()->options().cc_generic_services() ||
4595        service->file()->options().java_generic_services())) {
4596     AddError(service->full_name(), proto,
4597              DescriptorPool::ErrorCollector::NAME,
4598              "Files with optimize_for = LITE_RUNTIME cannot define services "
4599              "unless you set both options cc_generic_services and "
4600              "java_generic_sevices to false.");
4601   }
4602
4603   VALIDATE_OPTIONS_FROM_ARRAY(service, method, Method);
4604 }
4605
4606 void DescriptorBuilder::ValidateMethodOptions(MethodDescriptor* /* method */,
4607     const MethodDescriptorProto& /* proto */) {
4608   // Nothing to do so far.
4609 }
4610
4611 void DescriptorBuilder::ValidateMapKey(FieldDescriptor* field,
4612                                        const FieldDescriptorProto& proto) {
4613   if (!field->is_repeated()) {
4614     AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
4615              "map type is only allowed for repeated fields.");
4616     return;
4617   }
4618
4619   if (field->cpp_type() != FieldDescriptor::CPPTYPE_MESSAGE) {
4620     AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
4621              "map type is only allowed for fields with a message type.");
4622     return;
4623   }
4624
4625   const Descriptor* item_type = field->message_type();
4626   if (item_type == NULL) {
4627     AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
4628              "Could not find field type.");
4629     return;
4630   }
4631
4632   // Find the field in item_type named by "experimental_map_key"
4633   const string& key_name = field->options().experimental_map_key();
4634   const Symbol key_symbol = LookupSymbol(
4635       key_name,
4636       // We append ".key_name" to the containing type's name since
4637       // LookupSymbol() searches for peers of the supplied name, not
4638       // children of the supplied name.
4639       item_type->full_name() + "." + key_name);
4640
4641   if (key_symbol.IsNull() || key_symbol.field_descriptor->is_extension()) {
4642     AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
4643              "Could not find field named \"" + key_name + "\" in type \"" +
4644              item_type->full_name() + "\".");
4645     return;
4646   }
4647   const FieldDescriptor* key_field = key_symbol.field_descriptor;
4648
4649   if (key_field->is_repeated()) {
4650     AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
4651              "map_key must not name a repeated field.");
4652     return;
4653   }
4654
4655   if (key_field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
4656     AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
4657              "map key must name a scalar or string field.");
4658     return;
4659   }
4660
4661   field->experimental_map_key_ = key_field;
4662 }
4663
4664
4665 #undef VALIDATE_OPTIONS_FROM_ARRAY
4666
4667 // -------------------------------------------------------------------
4668
4669 DescriptorBuilder::OptionInterpreter::OptionInterpreter(
4670     DescriptorBuilder* builder) : builder_(builder) {
4671   GOOGLE_CHECK(builder_);
4672 }
4673
4674 DescriptorBuilder::OptionInterpreter::~OptionInterpreter() {
4675 }
4676
4677 bool DescriptorBuilder::OptionInterpreter::InterpretOptions(
4678     OptionsToInterpret* options_to_interpret) {
4679   // Note that these may be in different pools, so we can't use the same
4680   // descriptor and reflection objects on both.
4681   Message* options = options_to_interpret->options;
4682   const Message* original_options = options_to_interpret->original_options;
4683
4684   bool failed = false;
4685   options_to_interpret_ = options_to_interpret;
4686
4687   // Find the uninterpreted_option field in the mutable copy of the options
4688   // and clear them, since we're about to interpret them.
4689   const FieldDescriptor* uninterpreted_options_field =
4690       options->GetDescriptor()->FindFieldByName("uninterpreted_option");
4691   GOOGLE_CHECK(uninterpreted_options_field != NULL)
4692       << "No field named \"uninterpreted_option\" in the Options proto.";
4693   options->GetReflection()->ClearField(options, uninterpreted_options_field);
4694
4695   // Find the uninterpreted_option field in the original options.
4696   const FieldDescriptor* original_uninterpreted_options_field =
4697       original_options->GetDescriptor()->
4698           FindFieldByName("uninterpreted_option");
4699   GOOGLE_CHECK(original_uninterpreted_options_field != NULL)
4700       << "No field named \"uninterpreted_option\" in the Options proto.";
4701
4702   const int num_uninterpreted_options = original_options->GetReflection()->
4703       FieldSize(*original_options, original_uninterpreted_options_field);
4704   for (int i = 0; i < num_uninterpreted_options; ++i) {
4705     uninterpreted_option_ = down_cast<const UninterpretedOption*>(
4706         &original_options->GetReflection()->GetRepeatedMessage(
4707             *original_options, original_uninterpreted_options_field, i));
4708     if (!InterpretSingleOption(options)) {
4709       // Error already added by InterpretSingleOption().
4710       failed = true;
4711       break;
4712     }
4713   }
4714   // Reset these, so we don't have any dangling pointers.
4715   uninterpreted_option_ = NULL;
4716   options_to_interpret_ = NULL;
4717
4718   if (!failed) {
4719     // InterpretSingleOption() added the interpreted options in the
4720     // UnknownFieldSet, in case the option isn't yet known to us.  Now we
4721     // serialize the options message and deserialize it back.  That way, any
4722     // option fields that we do happen to know about will get moved from the
4723     // UnknownFieldSet into the real fields, and thus be available right away.
4724     // If they are not known, that's OK too. They will get reparsed into the
4725     // UnknownFieldSet and wait there until the message is parsed by something
4726     // that does know about the options.
4727     string buf;
4728     options->AppendToString(&buf);
4729     GOOGLE_CHECK(options->ParseFromString(buf))
4730         << "Protocol message serialized itself in invalid fashion.";
4731   }
4732
4733   return !failed;
4734 }
4735
4736 bool DescriptorBuilder::OptionInterpreter::InterpretSingleOption(
4737     Message* options) {
4738   // First do some basic validation.
4739   if (uninterpreted_option_->name_size() == 0) {
4740     // This should never happen unless the parser has gone seriously awry or
4741     // someone has manually created the uninterpreted option badly.
4742     return AddNameError("Option must have a name.");
4743   }
4744   if (uninterpreted_option_->name(0).name_part() == "uninterpreted_option") {
4745     return AddNameError("Option must not use reserved name "
4746                         "\"uninterpreted_option\".");
4747   }
4748
4749   const Descriptor* options_descriptor = NULL;
4750   // Get the options message's descriptor from the builder's pool, so that we
4751   // get the version that knows about any extension options declared in the
4752   // file we're currently building. The descriptor should be there as long as
4753   // the file we're building imported "google/protobuf/descriptors.proto".
4754
4755   // Note that we use DescriptorBuilder::FindSymbolNotEnforcingDeps(), not
4756   // DescriptorPool::FindMessageTypeByName() because we're already holding the
4757   // pool's mutex, and the latter method locks it again.  We don't use
4758   // FindSymbol() because files that use custom options only need to depend on
4759   // the file that defines the option, not descriptor.proto itself.
4760   Symbol symbol = builder_->FindSymbolNotEnforcingDeps(
4761     options->GetDescriptor()->full_name());
4762   if (!symbol.IsNull() && symbol.type == Symbol::MESSAGE) {
4763     options_descriptor = symbol.descriptor;
4764   } else {
4765     // The options message's descriptor was not in the builder's pool, so use
4766     // the standard version from the generated pool. We're not holding the
4767     // generated pool's mutex, so we can search it the straightforward way.
4768     options_descriptor = options->GetDescriptor();
4769   }
4770   GOOGLE_CHECK(options_descriptor);
4771
4772   // We iterate over the name parts to drill into the submessages until we find
4773   // the leaf field for the option. As we drill down we remember the current
4774   // submessage's descriptor in |descriptor| and the next field in that
4775   // submessage in |field|. We also track the fields we're drilling down
4776   // through in |intermediate_fields|. As we go, we reconstruct the full option
4777   // name in |debug_msg_name|, for use in error messages.
4778   const Descriptor* descriptor = options_descriptor;
4779   const FieldDescriptor* field = NULL;
4780   vector<const FieldDescriptor*> intermediate_fields;
4781   string debug_msg_name = "";
4782
4783   for (int i = 0; i < uninterpreted_option_->name_size(); ++i) {
4784     const string& name_part = uninterpreted_option_->name(i).name_part();
4785     if (debug_msg_name.size() > 0) {
4786       debug_msg_name += ".";
4787     }
4788     if (uninterpreted_option_->name(i).is_extension()) {
4789       debug_msg_name += "(" + name_part + ")";
4790       // Search for the extension's descriptor as an extension in the builder's
4791       // pool. Note that we use DescriptorBuilder::LookupSymbol(), not
4792       // DescriptorPool::FindExtensionByName(), for two reasons: 1) It allows
4793       // relative lookups, and 2) because we're already holding the pool's
4794       // mutex, and the latter method locks it again.
4795       symbol = builder_->LookupSymbol(name_part,
4796                                       options_to_interpret_->name_scope);
4797       if (!symbol.IsNull() && symbol.type == Symbol::FIELD) {
4798         field = symbol.field_descriptor;
4799       }
4800       // If we don't find the field then the field's descriptor was not in the
4801       // builder's pool, but there's no point in looking in the generated
4802       // pool. We require that you import the file that defines any extensions
4803       // you use, so they must be present in the builder's pool.
4804     } else {
4805       debug_msg_name += name_part;
4806       // Search for the field's descriptor as a regular field.
4807       field = descriptor->FindFieldByName(name_part);
4808     }
4809
4810     if (field == NULL) {
4811       if (get_allow_unknown(builder_->pool_)) {
4812         // We can't find the option, but AllowUnknownDependencies() is enabled,
4813         // so we will just leave it as uninterpreted.
4814         AddWithoutInterpreting(*uninterpreted_option_, options);
4815         return true;
4816       } else if (!(builder_->undefine_resolved_name_).empty()) {
4817         // Option is resolved to a name which is not defined.
4818         return AddNameError(
4819             "Option \"" + debug_msg_name + "\" is resolved to \"(" +
4820             builder_->undefine_resolved_name_ +
4821             ")\", which is not defined. The innermost scope is searched first "
4822             "in name resolution. Consider using a leading '.'(i.e., \"(." +
4823             debug_msg_name.substr(1) +
4824             "\") to start from the outermost scope.");
4825       } else {
4826         return AddNameError("Option \"" + debug_msg_name + "\" unknown.");
4827       }
4828     } else if (field->containing_type() != descriptor) {
4829       if (get_is_placeholder(field->containing_type())) {
4830         // The field is an extension of a placeholder type, so we can't
4831         // reliably verify whether it is a valid extension to use here (e.g.
4832         // we don't know if it is an extension of the correct *Options message,
4833         // or if it has a valid field number, etc.).  Just leave it as
4834         // uninterpreted instead.
4835         AddWithoutInterpreting(*uninterpreted_option_, options);
4836         return true;
4837       } else {
4838         // This can only happen if, due to some insane misconfiguration of the
4839         // pools, we find the options message in one pool but the field in
4840         // another. This would probably imply a hefty bug somewhere.
4841         return AddNameError("Option field \"" + debug_msg_name +
4842                             "\" is not a field or extension of message \"" +
4843                             descriptor->name() + "\".");
4844       }
4845     } else if (i < uninterpreted_option_->name_size() - 1) {
4846       if (field->cpp_type() != FieldDescriptor::CPPTYPE_MESSAGE) {
4847         return AddNameError("Option \"" +  debug_msg_name +
4848                             "\" is an atomic type, not a message.");
4849       } else if (field->is_repeated()) {
4850         return AddNameError("Option field \"" + debug_msg_name +
4851                             "\" is a repeated message. Repeated message "
4852                             "options must be initialized using an "
4853                             "aggregate value.");
4854       } else {
4855         // Drill down into the submessage.
4856         intermediate_fields.push_back(field);
4857         descriptor = field->message_type();
4858       }
4859     }
4860   }
4861
4862   // We've found the leaf field. Now we use UnknownFieldSets to set its value
4863   // on the options message. We do so because the message may not yet know
4864   // about its extension fields, so we may not be able to set the fields
4865   // directly. But the UnknownFieldSets will serialize to the same wire-format
4866   // message, so reading that message back in once the extension fields are
4867   // known will populate them correctly.
4868
4869   // First see if the option is already set.
4870   if (!field->is_repeated() && !ExamineIfOptionIsSet(
4871           intermediate_fields.begin(),
4872           intermediate_fields.end(),
4873           field, debug_msg_name,
4874           options->GetReflection()->GetUnknownFields(*options))) {
4875     return false;  // ExamineIfOptionIsSet() already added the error.
4876   }
4877
4878
4879   // First set the value on the UnknownFieldSet corresponding to the
4880   // innermost message.
4881   scoped_ptr<UnknownFieldSet> unknown_fields(new UnknownFieldSet());
4882   if (!SetOptionValue(field, unknown_fields.get())) {
4883     return false;  // SetOptionValue() already added the error.
4884   }
4885
4886   // Now wrap the UnknownFieldSet with UnknownFieldSets corresponding to all
4887   // the intermediate messages.
4888   for (vector<const FieldDescriptor*>::reverse_iterator iter =
4889            intermediate_fields.rbegin();
4890        iter != intermediate_fields.rend(); ++iter) {
4891     scoped_ptr<UnknownFieldSet> parent_unknown_fields(new UnknownFieldSet());
4892     switch ((*iter)->type()) {
4893       case FieldDescriptor::TYPE_MESSAGE: {
4894         io::StringOutputStream outstr(
4895             parent_unknown_fields->AddLengthDelimited((*iter)->number()));
4896         io::CodedOutputStream out(&outstr);
4897         internal::WireFormat::SerializeUnknownFields(*unknown_fields, &out);
4898         GOOGLE_CHECK(!out.HadError())
4899             << "Unexpected failure while serializing option submessage "
4900             << debug_msg_name << "\".";
4901         break;
4902       }
4903
4904       case FieldDescriptor::TYPE_GROUP: {
4905          parent_unknown_fields->AddGroup((*iter)->number())
4906                               ->MergeFrom(*unknown_fields);
4907         break;
4908       }
4909
4910       default:
4911         GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_MESSAGE: "
4912                    << (*iter)->type();
4913         return false;
4914     }
4915     unknown_fields.reset(parent_unknown_fields.release());
4916   }
4917
4918   // Now merge the UnknownFieldSet corresponding to the top-level message into
4919   // the options message.
4920   options->GetReflection()->MutableUnknownFields(options)->MergeFrom(
4921       *unknown_fields);
4922
4923   return true;
4924 }
4925
4926 void DescriptorBuilder::OptionInterpreter::AddWithoutInterpreting(
4927     const UninterpretedOption& uninterpreted_option, Message* options) {
4928   const FieldDescriptor* field =
4929     options->GetDescriptor()->FindFieldByName("uninterpreted_option");
4930   GOOGLE_CHECK(field != NULL);
4931
4932   options->GetReflection()->AddMessage(options, field)
4933     ->CopyFrom(uninterpreted_option);
4934 }
4935
4936 bool DescriptorBuilder::OptionInterpreter::ExamineIfOptionIsSet(
4937     vector<const FieldDescriptor*>::const_iterator intermediate_fields_iter,
4938     vector<const FieldDescriptor*>::const_iterator intermediate_fields_end,
4939     const FieldDescriptor* innermost_field, const string& debug_msg_name,
4940     const UnknownFieldSet& unknown_fields) {
4941   // We do linear searches of the UnknownFieldSet and its sub-groups.  This
4942   // should be fine since it's unlikely that any one options structure will
4943   // contain more than a handful of options.
4944
4945   if (intermediate_fields_iter == intermediate_fields_end) {
4946     // We're at the innermost submessage.
4947     for (int i = 0; i < unknown_fields.field_count(); i++) {
4948       if (unknown_fields.field(i).number() == innermost_field->number()) {
4949         return AddNameError("Option \"" + debug_msg_name +
4950                             "\" was already set.");
4951       }
4952     }
4953     return true;
4954   }
4955
4956   for (int i = 0; i < unknown_fields.field_count(); i++) {
4957     if (unknown_fields.field(i).number() ==
4958         (*intermediate_fields_iter)->number()) {
4959       const UnknownField* unknown_field = &unknown_fields.field(i);
4960       FieldDescriptor::Type type = (*intermediate_fields_iter)->type();
4961       // Recurse into the next submessage.
4962       switch (type) {
4963         case FieldDescriptor::TYPE_MESSAGE:
4964           if (unknown_field->type() == UnknownField::TYPE_LENGTH_DELIMITED) {
4965             UnknownFieldSet intermediate_unknown_fields;
4966             if (intermediate_unknown_fields.ParseFromString(
4967                     unknown_field->length_delimited()) &&
4968                 !ExamineIfOptionIsSet(intermediate_fields_iter + 1,
4969                                       intermediate_fields_end,
4970                                       innermost_field, debug_msg_name,
4971                                       intermediate_unknown_fields)) {
4972               return false;  // Error already added.
4973             }
4974           }
4975           break;
4976
4977         case FieldDescriptor::TYPE_GROUP:
4978           if (unknown_field->type() == UnknownField::TYPE_GROUP) {
4979             if (!ExamineIfOptionIsSet(intermediate_fields_iter + 1,
4980                                       intermediate_fields_end,
4981                                       innermost_field, debug_msg_name,
4982                                       unknown_field->group())) {
4983               return false;  // Error already added.
4984             }
4985           }
4986           break;
4987
4988         default:
4989           GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_MESSAGE: " << type;
4990           return false;
4991       }
4992     }
4993   }
4994   return true;
4995 }
4996
4997 bool DescriptorBuilder::OptionInterpreter::SetOptionValue(
4998     const FieldDescriptor* option_field,
4999     UnknownFieldSet* unknown_fields) {
5000   // We switch on the CppType to validate.
5001   switch (option_field->cpp_type()) {
5002
5003     case FieldDescriptor::CPPTYPE_INT32:
5004       if (uninterpreted_option_->has_positive_int_value()) {
5005         if (uninterpreted_option_->positive_int_value() >
5006             static_cast<uint64>(kint32max)) {
5007           return AddValueError("Value out of range for int32 option \"" +
5008                                option_field->full_name() + "\".");
5009         } else {
5010           SetInt32(option_field->number(),
5011                    uninterpreted_option_->positive_int_value(),
5012                    option_field->type(), unknown_fields);
5013         }
5014       } else if (uninterpreted_option_->has_negative_int_value()) {
5015         if (uninterpreted_option_->negative_int_value() <
5016             static_cast<int64>(kint32min)) {
5017           return AddValueError("Value out of range for int32 option \"" +
5018                                option_field->full_name() + "\".");
5019         } else {
5020           SetInt32(option_field->number(),
5021                    uninterpreted_option_->negative_int_value(),
5022                    option_field->type(), unknown_fields);
5023         }
5024       } else {
5025         return AddValueError("Value must be integer for int32 option \"" +
5026                              option_field->full_name() + "\".");
5027       }
5028       break;
5029
5030     case FieldDescriptor::CPPTYPE_INT64:
5031       if (uninterpreted_option_->has_positive_int_value()) {
5032         if (uninterpreted_option_->positive_int_value() >
5033             static_cast<uint64>(kint64max)) {
5034           return AddValueError("Value out of range for int64 option \"" +
5035                                option_field->full_name() + "\".");
5036         } else {
5037           SetInt64(option_field->number(),
5038                    uninterpreted_option_->positive_int_value(),
5039                    option_field->type(), unknown_fields);
5040         }
5041       } else if (uninterpreted_option_->has_negative_int_value()) {
5042         SetInt64(option_field->number(),
5043                  uninterpreted_option_->negative_int_value(),
5044                  option_field->type(), unknown_fields);
5045       } else {
5046         return AddValueError("Value must be integer for int64 option \"" +
5047                              option_field->full_name() + "\".");
5048       }
5049       break;
5050
5051     case FieldDescriptor::CPPTYPE_UINT32:
5052       if (uninterpreted_option_->has_positive_int_value()) {
5053         if (uninterpreted_option_->positive_int_value() > kuint32max) {
5054           return AddValueError("Value out of range for uint32 option \"" +
5055                                option_field->name() + "\".");
5056         } else {
5057           SetUInt32(option_field->number(),
5058                     uninterpreted_option_->positive_int_value(),
5059                     option_field->type(), unknown_fields);
5060         }
5061       } else {
5062         return AddValueError("Value must be non-negative integer for uint32 "
5063                              "option \"" + option_field->full_name() + "\".");
5064       }
5065       break;
5066
5067     case FieldDescriptor::CPPTYPE_UINT64:
5068       if (uninterpreted_option_->has_positive_int_value()) {
5069         SetUInt64(option_field->number(),
5070                   uninterpreted_option_->positive_int_value(),
5071                   option_field->type(), unknown_fields);
5072       } else {
5073         return AddValueError("Value must be non-negative integer for uint64 "
5074                              "option \"" + option_field->full_name() + "\".");
5075       }
5076       break;
5077
5078     case FieldDescriptor::CPPTYPE_FLOAT: {
5079       float value;
5080       if (uninterpreted_option_->has_double_value()) {
5081         value = uninterpreted_option_->double_value();
5082       } else if (uninterpreted_option_->has_positive_int_value()) {
5083         value = uninterpreted_option_->positive_int_value();
5084       } else if (uninterpreted_option_->has_negative_int_value()) {
5085         value = uninterpreted_option_->negative_int_value();
5086       } else {
5087         return AddValueError("Value must be number for float option \"" +
5088                              option_field->full_name() + "\".");
5089       }
5090       unknown_fields->AddFixed32(option_field->number(),
5091           google::protobuf::internal::WireFormatLite::EncodeFloat(value));
5092       break;
5093     }
5094
5095     case FieldDescriptor::CPPTYPE_DOUBLE: {
5096       double value;
5097       if (uninterpreted_option_->has_double_value()) {
5098         value = uninterpreted_option_->double_value();
5099       } else if (uninterpreted_option_->has_positive_int_value()) {
5100         value = uninterpreted_option_->positive_int_value();
5101       } else if (uninterpreted_option_->has_negative_int_value()) {
5102         value = uninterpreted_option_->negative_int_value();
5103       } else {
5104         return AddValueError("Value must be number for double option \"" +
5105                              option_field->full_name() + "\".");
5106       }
5107       unknown_fields->AddFixed64(option_field->number(),
5108           google::protobuf::internal::WireFormatLite::EncodeDouble(value));
5109       break;
5110     }
5111
5112     case FieldDescriptor::CPPTYPE_BOOL:
5113       uint64 value;
5114       if (!uninterpreted_option_->has_identifier_value()) {
5115         return AddValueError("Value must be identifier for boolean option "
5116                              "\"" + option_field->full_name() + "\".");
5117       }
5118       if (uninterpreted_option_->identifier_value() == "true") {
5119         value = 1;
5120       } else if (uninterpreted_option_->identifier_value() == "false") {
5121         value = 0;
5122       } else {
5123         return AddValueError("Value must be \"true\" or \"false\" for boolean "
5124                              "option \"" + option_field->full_name() + "\".");
5125       }
5126       unknown_fields->AddVarint(option_field->number(), value);
5127       break;
5128
5129     case FieldDescriptor::CPPTYPE_ENUM: {
5130       if (!uninterpreted_option_->has_identifier_value()) {
5131         return AddValueError("Value must be identifier for enum-valued option "
5132                              "\"" + option_field->full_name() + "\".");
5133       }
5134       const EnumDescriptor* enum_type = option_field->enum_type();
5135       const string& value_name = uninterpreted_option_->identifier_value();
5136       const EnumValueDescriptor* enum_value = NULL;
5137
5138       if (enum_type->file()->pool() != DescriptorPool::generated_pool()) {
5139         // Note that the enum value's fully-qualified name is a sibling of the
5140         // enum's name, not a child of it.
5141         string fully_qualified_name = enum_type->full_name();
5142         fully_qualified_name.resize(fully_qualified_name.size() -
5143                                     enum_type->name().size());
5144         fully_qualified_name += value_name;
5145
5146         // Search for the enum value's descriptor in the builder's pool. Note
5147         // that we use DescriptorBuilder::FindSymbolNotEnforcingDeps(), not
5148         // DescriptorPool::FindEnumValueByName() because we're already holding
5149         // the pool's mutex, and the latter method locks it again.
5150         Symbol symbol =
5151           builder_->FindSymbolNotEnforcingDeps(fully_qualified_name);
5152         if (!symbol.IsNull() && symbol.type == Symbol::ENUM_VALUE) {
5153           if (symbol.enum_value_descriptor->type() != enum_type) {
5154             return AddValueError("Enum type \"" + enum_type->full_name() +
5155                 "\" has no value named \"" + value_name + "\" for option \"" +
5156                 option_field->full_name() +
5157                 "\". This appears to be a value from a sibling type.");
5158           } else {
5159             enum_value = symbol.enum_value_descriptor;
5160           }
5161         }
5162       } else {
5163         // The enum type is in the generated pool, so we can search for the
5164         // value there.
5165         enum_value = enum_type->FindValueByName(value_name);
5166       }
5167
5168       if (enum_value == NULL) {
5169         return AddValueError("Enum type \"" +
5170                              option_field->enum_type()->full_name() +
5171                              "\" has no value named \"" + value_name + "\" for "
5172                              "option \"" + option_field->full_name() + "\".");
5173       } else {
5174         // Sign-extension is not a problem, since we cast directly from int32 to
5175         // uint64, without first going through uint32.
5176         unknown_fields->AddVarint(option_field->number(),
5177           static_cast<uint64>(static_cast<int64>(enum_value->number())));
5178       }
5179       break;
5180     }
5181
5182     case FieldDescriptor::CPPTYPE_STRING:
5183       if (!uninterpreted_option_->has_string_value()) {
5184         return AddValueError("Value must be quoted string for string option "
5185                              "\"" + option_field->full_name() + "\".");
5186       }
5187       // The string has already been unquoted and unescaped by the parser.
5188       unknown_fields->AddLengthDelimited(option_field->number(),
5189           uninterpreted_option_->string_value());
5190       break;
5191
5192     case FieldDescriptor::CPPTYPE_MESSAGE:
5193       if (!SetAggregateOption(option_field, unknown_fields)) {
5194         return false;
5195       }
5196       break;
5197   }
5198
5199   return true;
5200 }
5201
5202 class DescriptorBuilder::OptionInterpreter::AggregateOptionFinder
5203     : public TextFormat::Finder {
5204  public:
5205   DescriptorBuilder* builder_;
5206
5207   virtual const FieldDescriptor* FindExtension(
5208       Message* message, const string& name) const {
5209     assert_mutex_held(builder_->pool_);
5210     const Descriptor* descriptor = message->GetDescriptor();
5211     Symbol result = builder_->LookupSymbolNoPlaceholder(
5212         name, descriptor->full_name());
5213     if (result.type == Symbol::FIELD &&
5214         result.field_descriptor->is_extension()) {
5215       return result.field_descriptor;
5216     } else if (result.type == Symbol::MESSAGE &&
5217                descriptor->options().message_set_wire_format()) {
5218       const Descriptor* foreign_type = result.descriptor;
5219       // The text format allows MessageSet items to be specified using
5220       // the type name, rather than the extension identifier. If the symbol
5221       // lookup returned a Message, and the enclosing Message has
5222       // message_set_wire_format = true, then return the message set
5223       // extension, if one exists.
5224       for (int i = 0; i < foreign_type->extension_count(); i++) {
5225         const FieldDescriptor* extension = foreign_type->extension(i);
5226         if (extension->containing_type() == descriptor &&
5227             extension->type() == FieldDescriptor::TYPE_MESSAGE &&
5228             extension->is_optional() &&
5229             extension->message_type() == foreign_type) {
5230           // Found it.
5231           return extension;
5232         }
5233       }
5234     }
5235     return NULL;
5236   }
5237 };
5238
5239 // A custom error collector to record any text-format parsing errors
5240 namespace {
5241 class AggregateErrorCollector : public io::ErrorCollector {
5242  public:
5243   string error_;
5244
5245   virtual void AddError(int /* line */, int /* column */,
5246                         const string& message) {
5247     if (!error_.empty()) {
5248       error_ += "; ";
5249     }
5250     error_ += message;
5251   }
5252
5253   virtual void AddWarning(int /* line */, int /* column */,
5254                           const string& /* message */) {
5255     // Ignore warnings
5256   }
5257 };
5258 }
5259
5260 // We construct a dynamic message of the type corresponding to
5261 // option_field, parse the supplied text-format string into this
5262 // message, and serialize the resulting message to produce the value.
5263 bool DescriptorBuilder::OptionInterpreter::SetAggregateOption(
5264     const FieldDescriptor* option_field,
5265     UnknownFieldSet* unknown_fields) {
5266   if (!uninterpreted_option_->has_aggregate_value()) {
5267     return AddValueError("Option \"" + option_field->full_name() +
5268                          "\" is a message. To set the entire message, use "
5269                          "syntax like \"" + option_field->name() +
5270                          " = { <proto text format> }\". "
5271                          "To set fields within it, use "
5272                          "syntax like \"" + option_field->name() +
5273                          ".foo = value\".");
5274   }
5275
5276   const Descriptor* type = option_field->message_type();
5277   scoped_ptr<Message> dynamic(dynamic_factory_.GetPrototype(type)->New());
5278   GOOGLE_CHECK(dynamic.get() != NULL)
5279       << "Could not create an instance of " << option_field->DebugString();
5280
5281   AggregateErrorCollector collector;
5282   AggregateOptionFinder finder;
5283   finder.builder_ = builder_;
5284   TextFormat::Parser parser;
5285   parser.RecordErrorsTo(&collector);
5286   parser.SetFinder(&finder);
5287   if (!parser.ParseFromString(uninterpreted_option_->aggregate_value(),
5288                               dynamic.get())) {
5289     AddValueError("Error while parsing option value for \"" +
5290                   option_field->name() + "\": " + collector.error_);
5291     return false;
5292   } else {
5293     string serial;
5294     dynamic->SerializeToString(&serial);  // Never fails
5295     if (option_field->type() == FieldDescriptor::TYPE_MESSAGE) {
5296       unknown_fields->AddLengthDelimited(option_field->number(), serial);
5297     } else {
5298       GOOGLE_CHECK_EQ(option_field->type(),  FieldDescriptor::TYPE_GROUP);
5299       UnknownFieldSet* group = unknown_fields->AddGroup(option_field->number());
5300       group->ParseFromString(serial);
5301     }
5302     return true;
5303   }
5304 }
5305
5306 void DescriptorBuilder::OptionInterpreter::SetInt32(int number, int32 value,
5307     FieldDescriptor::Type type, UnknownFieldSet* unknown_fields) {
5308   switch (type) {
5309     case FieldDescriptor::TYPE_INT32:
5310       unknown_fields->AddVarint(number,
5311         static_cast<uint64>(static_cast<int64>(value)));
5312       break;
5313
5314     case FieldDescriptor::TYPE_SFIXED32:
5315       unknown_fields->AddFixed32(number, static_cast<uint32>(value));
5316       break;
5317
5318     case FieldDescriptor::TYPE_SINT32:
5319       unknown_fields->AddVarint(number,
5320           google::protobuf::internal::WireFormatLite::ZigZagEncode32(value));
5321       break;
5322
5323     default:
5324       GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_INT32: " << type;
5325       break;
5326   }
5327 }
5328
5329 void DescriptorBuilder::OptionInterpreter::SetInt64(int number, int64 value,
5330     FieldDescriptor::Type type, UnknownFieldSet* unknown_fields) {
5331   switch (type) {
5332     case FieldDescriptor::TYPE_INT64:
5333       unknown_fields->AddVarint(number, static_cast<uint64>(value));
5334       break;
5335
5336     case FieldDescriptor::TYPE_SFIXED64:
5337       unknown_fields->AddFixed64(number, static_cast<uint64>(value));
5338       break;
5339
5340     case FieldDescriptor::TYPE_SINT64:
5341       unknown_fields->AddVarint(number,
5342           google::protobuf::internal::WireFormatLite::ZigZagEncode64(value));
5343       break;
5344
5345     default:
5346       GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_INT64: " << type;
5347       break;
5348   }
5349 }
5350
5351 void DescriptorBuilder::OptionInterpreter::SetUInt32(int number, uint32 value,
5352     FieldDescriptor::Type type, UnknownFieldSet* unknown_fields) {
5353   switch (type) {
5354     case FieldDescriptor::TYPE_UINT32:
5355       unknown_fields->AddVarint(number, static_cast<uint64>(value));
5356       break;
5357
5358     case FieldDescriptor::TYPE_FIXED32:
5359       unknown_fields->AddFixed32(number, static_cast<uint32>(value));
5360       break;
5361
5362     default:
5363       GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_UINT32: " << type;
5364       break;
5365   }
5366 }
5367
5368 void DescriptorBuilder::OptionInterpreter::SetUInt64(int number, uint64 value,
5369     FieldDescriptor::Type type, UnknownFieldSet* unknown_fields) {
5370   switch (type) {
5371     case FieldDescriptor::TYPE_UINT64:
5372       unknown_fields->AddVarint(number, value);
5373       break;
5374
5375     case FieldDescriptor::TYPE_FIXED64:
5376       unknown_fields->AddFixed64(number, value);
5377       break;
5378
5379     default:
5380       GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_UINT64: " << type;
5381       break;
5382   }
5383 }
5384
5385 void DescriptorBuilder::LogUnusedDependency(const FileDescriptor* result) {
5386
5387   if (!unused_dependency_.empty()) {
5388     std::set<string> annotation_extensions;
5389     annotation_extensions.insert("google.protobuf.MessageOptions");
5390     annotation_extensions.insert("google.protobuf.FileOptions");
5391     annotation_extensions.insert("google.protobuf.FieldOptions");
5392     annotation_extensions.insert("google.protobuf.EnumOptions");
5393     annotation_extensions.insert("google.protobuf.EnumValueOptions");
5394     annotation_extensions.insert("google.protobuf.ServiceOptions");
5395     annotation_extensions.insert("google.protobuf.MethodOptions");
5396     annotation_extensions.insert("google.protobuf.StreamOptions");
5397     for (set<const FileDescriptor*>::const_iterator
5398              it = unused_dependency_.begin();
5399          it != unused_dependency_.end(); ++it) {
5400       // Do not log warnings for proto files which extend annotations.
5401       int i;
5402       for (i = 0 ; i < (*it)->extension_count(); ++i) {
5403         if (annotation_extensions.find(
5404                 (*it)->extension(i)->containing_type()->full_name())
5405             != annotation_extensions.end()) {
5406           break;
5407         }
5408       }
5409       // Log warnings for unused imported files.
5410       if (i == (*it)->extension_count()) {
5411         GOOGLE_LOG(WARNING) << "Warning: Unused import: \"" << result->name()
5412                      << "\" imports \"" << (*it)->name()
5413                      << "\" which is not used.";
5414       }
5415     }
5416   }
5417 }
5418
5419 }  // namespace protobuf
5420 }  // namespace google