glsl: Assign locations for uniforms in UBOs using the std140 rules.
[profile/ivi/mesa.git] / src / glsl / opt_algebraic.cpp
1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23
24 /**
25  * \file opt_algebraic.cpp
26  *
27  * Takes advantage of association, commutivity, and other algebraic
28  * properties to simplify expressions.
29  */
30
31 #include "ir.h"
32 #include "ir_visitor.h"
33 #include "ir_rvalue_visitor.h"
34 #include "ir_optimization.h"
35 #include "glsl_types.h"
36
37 namespace {
38
39 /**
40  * Visitor class for replacing expressions with ir_constant values.
41  */
42
43 class ir_algebraic_visitor : public ir_rvalue_visitor {
44 public:
45    ir_algebraic_visitor()
46    {
47       this->progress = false;
48       this->mem_ctx = NULL;
49    }
50
51    virtual ~ir_algebraic_visitor()
52    {
53    }
54
55    ir_rvalue *handle_expression(ir_expression *ir);
56    void handle_rvalue(ir_rvalue **rvalue);
57    bool reassociate_constant(ir_expression *ir1,
58                              int const_index,
59                              ir_constant *constant,
60                              ir_expression *ir2);
61    void reassociate_operands(ir_expression *ir1,
62                              int op1,
63                              ir_expression *ir2,
64                              int op2);
65    ir_rvalue *swizzle_if_required(ir_expression *expr,
66                                   ir_rvalue *operand);
67
68    void *mem_ctx;
69
70    bool progress;
71 };
72
73 } /* unnamed namespace */
74
75 static inline bool
76 is_vec_zero(ir_constant *ir)
77 {
78    return (ir == NULL) ? false : ir->is_zero();
79 }
80
81 static inline bool
82 is_vec_one(ir_constant *ir)
83 {
84    return (ir == NULL) ? false : ir->is_one();
85 }
86
87 static inline bool
88 is_vec_basis(ir_constant *ir)
89 {
90    return (ir == NULL) ? false : ir->is_basis();
91 }
92
93 static void
94 update_type(ir_expression *ir)
95 {
96    if (ir->operands[0]->type->is_vector())
97       ir->type = ir->operands[0]->type;
98    else
99       ir->type = ir->operands[1]->type;
100 }
101
102 void
103 ir_algebraic_visitor::reassociate_operands(ir_expression *ir1,
104                                            int op1,
105                                            ir_expression *ir2,
106                                            int op2)
107 {
108    ir_rvalue *temp = ir2->operands[op2];
109    ir2->operands[op2] = ir1->operands[op1];
110    ir1->operands[op1] = temp;
111
112    /* Update the type of ir2.  The type of ir1 won't have changed --
113     * base types matched, and at least one of the operands of the 2
114     * binops is still a vector if any of them were.
115     */
116    update_type(ir2);
117
118    this->progress = true;
119 }
120
121 /**
122  * Reassociates a constant down a tree of adds or multiplies.
123  *
124  * Consider (2 * (a * (b * 0.5))).  We want to send up with a * b.
125  */
126 bool
127 ir_algebraic_visitor::reassociate_constant(ir_expression *ir1, int const_index,
128                                            ir_constant *constant,
129                                            ir_expression *ir2)
130 {
131    if (!ir2 || ir1->operation != ir2->operation)
132       return false;
133
134    /* Don't want to even think about matrices. */
135    if (ir1->operands[0]->type->is_matrix() ||
136        ir1->operands[1]->type->is_matrix() ||
137        ir2->operands[0]->type->is_matrix() ||
138        ir2->operands[1]->type->is_matrix())
139       return false;
140
141    ir_constant *ir2_const[2];
142    ir2_const[0] = ir2->operands[0]->constant_expression_value();
143    ir2_const[1] = ir2->operands[1]->constant_expression_value();
144
145    if (ir2_const[0] && ir2_const[1])
146       return false;
147
148    if (ir2_const[0]) {
149       reassociate_operands(ir1, const_index, ir2, 1);
150       return true;
151    } else if (ir2_const[1]) {
152       reassociate_operands(ir1, const_index, ir2, 0);
153       return true;
154    }
155
156    if (reassociate_constant(ir1, const_index, constant,
157                             ir2->operands[0]->as_expression())) {
158       update_type(ir2);
159       return true;
160    }
161
162    if (reassociate_constant(ir1, const_index, constant,
163                             ir2->operands[1]->as_expression())) {
164       update_type(ir2);
165       return true;
166    }
167
168    return false;
169 }
170
171 /* When eliminating an expression and just returning one of its operands,
172  * we may need to swizzle that operand out to a vector if the expression was
173  * vector type.
174  */
175 ir_rvalue *
176 ir_algebraic_visitor::swizzle_if_required(ir_expression *expr,
177                                           ir_rvalue *operand)
178 {
179    if (expr->type->is_vector() && operand->type->is_scalar()) {
180       return new(mem_ctx) ir_swizzle(operand, 0, 0, 0, 0,
181                                      expr->type->vector_elements);
182    } else
183       return operand;
184 }
185
186 ir_rvalue *
187 ir_algebraic_visitor::handle_expression(ir_expression *ir)
188 {
189    ir_constant *op_const[2] = {NULL, NULL};
190    ir_expression *op_expr[2] = {NULL, NULL};
191    ir_expression *temp;
192    unsigned int i;
193
194    assert(ir->get_num_operands() <= 2);
195    for (i = 0; i < ir->get_num_operands(); i++) {
196       if (ir->operands[i]->type->is_matrix())
197          return ir;
198
199       op_const[i] = ir->operands[i]->constant_expression_value();
200       op_expr[i] = ir->operands[i]->as_expression();
201    }
202
203    if (this->mem_ctx == NULL)
204       this->mem_ctx = ralloc_parent(ir);
205
206    switch (ir->operation) {
207    case ir_unop_logic_not: {
208       enum ir_expression_operation new_op = ir_unop_logic_not;
209
210       if (op_expr[0] == NULL)
211          break;
212
213       switch (op_expr[0]->operation) {
214       case ir_binop_less:    new_op = ir_binop_gequal;  break;
215       case ir_binop_greater: new_op = ir_binop_lequal;  break;
216       case ir_binop_lequal:  new_op = ir_binop_greater; break;
217       case ir_binop_gequal:  new_op = ir_binop_less;    break;
218       case ir_binop_equal:   new_op = ir_binop_nequal;  break;
219       case ir_binop_nequal:  new_op = ir_binop_equal;   break;
220       case ir_binop_all_equal:   new_op = ir_binop_any_nequal;  break;
221       case ir_binop_any_nequal:  new_op = ir_binop_all_equal;   break;
222
223       default:
224          /* The default case handler is here to silence a warning from GCC.
225           */
226          break;
227       }
228
229       if (new_op != ir_unop_logic_not) {
230          this->progress = true;
231          return new(mem_ctx) ir_expression(new_op,
232                                            ir->type,
233                                            op_expr[0]->operands[0],
234                                            op_expr[0]->operands[1]);
235       }
236
237       break;
238    }
239
240    case ir_binop_add:
241       if (is_vec_zero(op_const[0])) {
242          this->progress = true;
243          return swizzle_if_required(ir, ir->operands[1]);
244       }
245       if (is_vec_zero(op_const[1])) {
246          this->progress = true;
247          return swizzle_if_required(ir, ir->operands[0]);
248       }
249
250       /* Reassociate addition of constants so that we can do constant
251        * folding.
252        */
253       if (op_const[0] && !op_const[1])
254          reassociate_constant(ir, 0, op_const[0],
255                               ir->operands[1]->as_expression());
256       if (op_const[1] && !op_const[0])
257          reassociate_constant(ir, 1, op_const[1],
258                               ir->operands[0]->as_expression());
259       break;
260
261    case ir_binop_sub:
262       if (is_vec_zero(op_const[0])) {
263          this->progress = true;
264          temp = new(mem_ctx) ir_expression(ir_unop_neg,
265                                            ir->operands[1]->type,
266                                            ir->operands[1],
267                                            NULL);
268          return swizzle_if_required(ir, temp);
269       }
270       if (is_vec_zero(op_const[1])) {
271          this->progress = true;
272          return swizzle_if_required(ir, ir->operands[0]);
273       }
274       break;
275
276    case ir_binop_mul:
277       if (is_vec_one(op_const[0])) {
278          this->progress = true;
279          return swizzle_if_required(ir, ir->operands[1]);
280       }
281       if (is_vec_one(op_const[1])) {
282          this->progress = true;
283          return swizzle_if_required(ir, ir->operands[0]);
284       }
285
286       if (is_vec_zero(op_const[0]) || is_vec_zero(op_const[1])) {
287          this->progress = true;
288          return ir_constant::zero(ir, ir->type);
289       }
290
291       /* Reassociate multiplication of constants so that we can do
292        * constant folding.
293        */
294       if (op_const[0] && !op_const[1])
295          reassociate_constant(ir, 0, op_const[0],
296                               ir->operands[1]->as_expression());
297       if (op_const[1] && !op_const[0])
298          reassociate_constant(ir, 1, op_const[1],
299                               ir->operands[0]->as_expression());
300
301       break;
302
303    case ir_binop_div:
304       if (is_vec_one(op_const[0]) && ir->type->base_type == GLSL_TYPE_FLOAT) {
305          this->progress = true;
306          temp = new(mem_ctx) ir_expression(ir_unop_rcp,
307                                            ir->operands[1]->type,
308                                            ir->operands[1],
309                                            NULL);
310          return swizzle_if_required(ir, temp);
311       }
312       if (is_vec_one(op_const[1])) {
313          this->progress = true;
314          return swizzle_if_required(ir, ir->operands[0]);
315       }
316       break;
317
318    case ir_binop_dot:
319       if (is_vec_zero(op_const[0]) || is_vec_zero(op_const[1])) {
320          this->progress = true;
321          return ir_constant::zero(mem_ctx, ir->type);
322       }
323       if (is_vec_basis(op_const[0])) {
324          this->progress = true;
325          unsigned component = 0;
326          for (unsigned c = 0; c < op_const[0]->type->vector_elements; c++) {
327             if (op_const[0]->value.f[c] == 1.0)
328                component = c;
329          }
330          return new(mem_ctx) ir_swizzle(ir->operands[1], component, 0, 0, 0, 1);
331       }
332       if (is_vec_basis(op_const[1])) {
333          this->progress = true;
334          unsigned component = 0;
335          for (unsigned c = 0; c < op_const[1]->type->vector_elements; c++) {
336             if (op_const[1]->value.f[c] == 1.0)
337                component = c;
338          }
339          return new(mem_ctx) ir_swizzle(ir->operands[0], component, 0, 0, 0, 1);
340       }
341       break;
342
343    case ir_binop_logic_and:
344       /* FINISHME: Also simplify (a && a) to (a). */
345       if (is_vec_one(op_const[0])) {
346          this->progress = true;
347          return ir->operands[1];
348       } else if (is_vec_one(op_const[1])) {
349          this->progress = true;
350          return ir->operands[0];
351       } else if (is_vec_zero(op_const[0]) || is_vec_zero(op_const[1])) {
352          this->progress = true;
353          return ir_constant::zero(mem_ctx, ir->type);
354       }
355       break;
356
357    case ir_binop_logic_xor:
358       /* FINISHME: Also simplify (a ^^ a) to (false). */
359       if (is_vec_zero(op_const[0])) {
360          this->progress = true;
361          return ir->operands[1];
362       } else if (is_vec_zero(op_const[1])) {
363          this->progress = true;
364          return ir->operands[0];
365       } else if (is_vec_one(op_const[0])) {
366          this->progress = true;
367          return new(mem_ctx) ir_expression(ir_unop_logic_not, ir->type,
368                                            ir->operands[1], NULL);
369       } else if (is_vec_one(op_const[1])) {
370          this->progress = true;
371          return new(mem_ctx) ir_expression(ir_unop_logic_not, ir->type,
372                                            ir->operands[0], NULL);
373       }
374       break;
375
376    case ir_binop_logic_or:
377       /* FINISHME: Also simplify (a || a) to (a). */
378       if (is_vec_zero(op_const[0])) {
379          this->progress = true;
380          return ir->operands[1];
381       } else if (is_vec_zero(op_const[1])) {
382          this->progress = true;
383          return ir->operands[0];
384       } else if (is_vec_one(op_const[0]) || is_vec_one(op_const[1])) {
385          ir_constant_data data;
386
387          for (unsigned i = 0; i < 16; i++)
388             data.b[i] = true;
389
390          this->progress = true;
391          return new(mem_ctx) ir_constant(ir->type, &data);
392       }
393       break;
394
395    case ir_unop_rcp:
396       if (op_expr[0] && op_expr[0]->operation == ir_unop_rcp) {
397          this->progress = true;
398          return op_expr[0]->operands[0];
399       }
400
401       /* FINISHME: We should do rcp(rsq(x)) -> sqrt(x) for some
402        * backends, except that some backends will have done sqrt ->
403        * rcp(rsq(x)) and we don't want to undo it for them.
404        */
405
406       /* As far as we know, all backends are OK with rsq. */
407       if (op_expr[0] && op_expr[0]->operation == ir_unop_sqrt) {
408          this->progress = true;
409          temp = new(mem_ctx) ir_expression(ir_unop_rsq,
410                                            op_expr[0]->operands[0]->type,
411                                            op_expr[0]->operands[0],
412                                            NULL);
413          return swizzle_if_required(ir, temp);
414       }
415
416       break;
417
418    default:
419       break;
420    }
421
422    return ir;
423 }
424
425 void
426 ir_algebraic_visitor::handle_rvalue(ir_rvalue **rvalue)
427 {
428    if (!*rvalue)
429       return;
430
431    ir_expression *expr = (*rvalue)->as_expression();
432    if (!expr || expr->operation == ir_quadop_vector)
433       return;
434
435    *rvalue = handle_expression(expr);
436 }
437
438 bool
439 do_algebraic(exec_list *instructions)
440 {
441    ir_algebraic_visitor v;
442
443    visit_list_elements(&v, instructions);
444
445    return v.progress;
446 }