glsl: Assign locations for uniforms in UBOs using the std140 rules.
[profile/ivi/mesa.git] / src / glsl / list.h
1 /*
2  * Copyright © 2008, 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23
24 /**
25  * \file list.h
26  * \brief Doubly-linked list abstract container type.
27  *
28  * Each doubly-linked list has a sentinel head and tail node.  These nodes
29  * contain no data.  The head sentinel can be identified by its \c prev
30  * pointer being \c NULL.  The tail sentinel can be identified by its
31  * \c next pointer being \c NULL.
32  *
33  * A list is empty if either the head sentinel's \c next pointer points to the
34  * tail sentinel or the tail sentinel's \c prev poiner points to the head
35  * sentinel.
36  *
37  * Instead of tracking two separate \c node structures and a \c list structure
38  * that points to them, the sentinel nodes are in a single structure.  Noting
39  * that each sentinel node always has one \c NULL pointer, the \c NULL
40  * pointers occupy the same memory location.  In the \c list structure
41  * contains a the following:
42  *
43  *   - A \c head pointer that represents the \c next pointer of the
44  *     head sentinel node.
45  *   - A \c tail pointer that represents the \c prev pointer of the head
46  *     sentinel node and the \c next pointer of the tail sentinel node.  This
47  *     pointer is \b always \c NULL.
48  *   - A \c tail_prev pointer that represents the \c prev pointer of the
49  *     tail sentinel node.
50  *
51  * Therefore, if \c head->next is \c NULL or \c tail_prev->prev is \c NULL,
52  * the list is empty.
53  *
54  * To anyone familiar with "exec lists" on the Amiga, this structure should
55  * be immediately recognizable.  See the following link for the original Amiga
56  * operating system documentation on the subject.
57  *
58  * http://www.natami.net/dev/Libraries_Manual_guide/node02D7.html
59  *
60  * \author Ian Romanick <ian.d.romanick@intel.com>
61  */
62
63 #pragma once
64 #ifndef LIST_CONTAINER_H
65 #define LIST_CONTAINER_H
66
67 #ifndef __cplusplus
68 #include <stddef.h>
69 #endif
70 #include <assert.h>
71
72 #include "ralloc.h"
73
74 struct exec_node {
75    struct exec_node *next;
76    struct exec_node *prev;
77
78 #ifdef __cplusplus
79    /* Callers of this ralloc-based new need not call delete. It's
80     * easier to just ralloc_free 'ctx' (or any of its ancestors). */
81    static void* operator new(size_t size, void *ctx)
82    {
83       void *node;
84
85       node = ralloc_size(ctx, size);
86       assert(node != NULL);
87
88       return node;
89    }
90
91    /* If the user *does* call delete, that's OK, we will just
92     * ralloc_free in that case. */
93    static void operator delete(void *node)
94    {
95       ralloc_free(node);
96    }
97
98    exec_node() : next(NULL), prev(NULL)
99    {
100       /* empty */
101    }
102
103    const exec_node *get_next() const
104    {
105       return next;
106    }
107
108    exec_node *get_next()
109    {
110       return next;
111    }
112
113    const exec_node *get_prev() const
114    {
115       return prev;
116    }
117
118    exec_node *get_prev()
119    {
120       return prev;
121    }
122
123    void remove()
124    {
125       next->prev = prev;
126       prev->next = next;
127       next = NULL;
128       prev = NULL;
129    }
130
131    /**
132     * Link a node with itself
133     *
134     * This creates a sort of degenerate list that is occasionally useful.
135     */
136    void self_link()
137    {
138       next = this;
139       prev = this;
140    }
141
142    /**
143     * Insert a node in the list after the current node
144     */
145    void insert_after(exec_node *after)
146    {
147       after->next = this->next;
148       after->prev = this;
149
150       this->next->prev = after;
151       this->next = after;
152    }
153    /**
154     * Insert a node in the list before the current node
155     */
156    void insert_before(exec_node *before)
157    {
158       before->next = this;
159       before->prev = this->prev;
160
161       this->prev->next = before;
162       this->prev = before;
163    }
164
165    /**
166     * Insert another list in the list before the current node
167     */
168    void insert_before(struct exec_list *before);
169
170    /**
171     * Replace the current node with the given node.
172     */
173    void replace_with(exec_node *replacement)
174    {
175       replacement->prev = this->prev;
176       replacement->next = this->next;
177
178       this->prev->next = replacement;
179       this->next->prev = replacement;
180    }
181
182    /**
183     * Is this the sentinel at the tail of the list?
184     */
185    bool is_tail_sentinel() const
186    {
187       return this->next == NULL;
188    }
189
190    /**
191     * Is this the sentinel at the head of the list?
192     */
193    bool is_head_sentinel() const
194    {
195       return this->prev == NULL;
196    }
197 #endif
198 };
199
200
201 #ifdef __cplusplus
202 /* This macro will not work correctly if `t' uses virtual inheritance.  If you
203  * are using virtual inheritance, you deserve a slow and painful death.  Enjoy!
204  */
205 #define exec_list_offsetof(t, f, p) \
206    (((char *) &((t *) p)->f) - ((char *) p))
207 #else
208 #define exec_list_offsetof(t, f, p) offsetof(t, f)
209 #endif
210
211 /**
212  * Get a pointer to the structure containing an exec_node
213  *
214  * Given a pointer to an \c exec_node embedded in a structure, get a pointer to
215  * the containing structure.
216  *
217  * \param type  Base type of the structure containing the node
218  * \param node  Pointer to the \c exec_node
219  * \param field Name of the field in \c type that is the embedded \c exec_node
220  */
221 #define exec_node_data(type, node, field) \
222    ((type *) (((char *) node) - exec_list_offsetof(type, field, node)))
223
224 #ifdef __cplusplus
225 struct exec_node;
226
227 class iterator {
228 public:
229    void next()
230    {
231    }
232
233    void *get()
234    {
235       return NULL;
236    }
237
238    bool has_next() const
239    {
240       return false;
241    }
242 };
243
244 class exec_list_iterator : public iterator {
245 public:
246    exec_list_iterator(exec_node *n) : node(n), _next(n->next)
247    {
248       /* empty */
249    }
250
251    void next()
252    {
253       node = _next;
254       _next = node->next;
255    }
256
257    void remove()
258    {
259       node->remove();
260    }
261
262    exec_node *get()
263    {
264       return node;
265    }
266
267    bool has_next() const
268    {
269       return _next != NULL;
270    }
271
272 private:
273    exec_node *node;
274    exec_node *_next;
275 };
276
277 #define foreach_iter(iter_type, iter, container) \
278    for (iter_type iter = (container) . iterator(); iter.has_next(); iter.next())
279 #endif
280
281
282 struct exec_list {
283    struct exec_node *head;
284    struct exec_node *tail;
285    struct exec_node *tail_pred;
286
287 #ifdef __cplusplus
288    /* Callers of this ralloc-based new need not call delete. It's
289     * easier to just ralloc_free 'ctx' (or any of its ancestors). */
290    static void* operator new(size_t size, void *ctx)
291    {
292       void *node;
293
294       node = ralloc_size(ctx, size);
295       assert(node != NULL);
296
297       return node;
298    }
299
300    /* If the user *does* call delete, that's OK, we will just
301     * ralloc_free in that case. */
302    static void operator delete(void *node)
303    {
304       ralloc_free(node);
305    }
306
307    exec_list()
308    {
309       make_empty();
310    }
311
312    void make_empty()
313    {
314       head = (exec_node *) & tail;
315       tail = NULL;
316       tail_pred = (exec_node *) & head;
317    }
318
319    bool is_empty() const
320    {
321       /* There are three ways to test whether a list is empty or not.
322        *
323        * - Check to see if the \c head points to the \c tail.
324        * - Check to see if the \c tail_pred points to the \c head.
325        * - Check to see if the \c head is the sentinel node by test whether its
326        *   \c next pointer is \c NULL.
327        *
328        * The first two methods tend to generate better code on modern systems
329        * because they save a pointer dereference.
330        */
331       return head == (exec_node *) &tail;
332    }
333
334    const exec_node *get_head() const
335    {
336       return !is_empty() ? head : NULL;
337    }
338
339    exec_node *get_head()
340    {
341       return !is_empty() ? head : NULL;
342    }
343
344    const exec_node *get_tail() const
345    {
346       return !is_empty() ? tail_pred : NULL;
347    }
348
349    exec_node *get_tail()
350    {
351       return !is_empty() ? tail_pred : NULL;
352    }
353
354    void push_head(exec_node *n)
355    {
356       n->next = head;
357       n->prev = (exec_node *) &head;
358
359       n->next->prev = n;
360       head = n;
361    }
362
363    void push_tail(exec_node *n)
364    {
365       n->next = (exec_node *) &tail;
366       n->prev = tail_pred;
367
368       n->prev->next = n;
369       tail_pred = n;
370    }
371
372    void push_degenerate_list_at_head(exec_node *n)
373    {
374       assert(n->prev->next == n);
375
376       n->prev->next = head;
377       head->prev = n->prev;
378       n->prev = (exec_node *) &head;
379       head = n;
380    }
381
382    /**
383     * Remove the first node from a list and return it
384     *
385     * \return
386     * The first node in the list or \c NULL if the list is empty.
387     *
388     * \sa exec_list::get_head
389     */
390    exec_node *pop_head()
391    {
392       exec_node *const n = this->get_head();
393       if (n != NULL)
394          n->remove();
395
396       return n;
397    }
398
399    /**
400     * Move all of the nodes from this list to the target list
401     */
402    void move_nodes_to(exec_list *target)
403    {
404       if (is_empty()) {
405          target->make_empty();
406       } else {
407          target->head = head;
408          target->tail = NULL;
409          target->tail_pred = tail_pred;
410
411          target->head->prev = (exec_node *) &target->head;
412          target->tail_pred->next = (exec_node *) &target->tail;
413
414          make_empty();
415       }
416    }
417
418    /**
419     * Append all nodes from the source list to the target list
420     */
421    void
422    append_list(exec_list *source)
423    {
424       if (source->is_empty())
425          return;
426
427       /* Link the first node of the source with the last node of the target list.
428        */
429       this->tail_pred->next = source->head;
430       source->head->prev = this->tail_pred;
431
432       /* Make the tail of the source list be the tail of the target list.
433        */
434       this->tail_pred = source->tail_pred;
435       this->tail_pred->next = (exec_node *) &this->tail;
436
437       /* Make the source list empty for good measure.
438        */
439       source->make_empty();
440    }
441
442    exec_list_iterator iterator()
443    {
444       return exec_list_iterator(head);
445    }
446
447    exec_list_iterator iterator() const
448    {
449       return exec_list_iterator((exec_node *) head);
450    }
451 #endif
452 };
453
454
455 #ifdef __cplusplus
456 inline void exec_node::insert_before(exec_list *before)
457 {
458    if (before->is_empty())
459       return;
460
461    before->tail_pred->next = this;
462    before->head->prev = this->prev;
463
464    this->prev->next = before->head;
465    this->prev = before->tail_pred;
466
467    before->make_empty();
468 }
469 #endif
470
471 /**
472  * This version is safe even if the current node is removed.
473  */ 
474 #define foreach_list_safe(__node, __list)                            \
475    for (exec_node * __node = (__list)->head, * __next = __node->next \
476         ; __next != NULL                                             \
477         ; __node = __next, __next = __next->next)
478
479 #define foreach_list(__node, __list)                    \
480    for (exec_node * __node = (__list)->head             \
481         ; (__node)->next != NULL                        \
482         ; (__node) = (__node)->next)
483
484 #define foreach_list_const(__node, __list)              \
485    for (const exec_node * __node = (__list)->head       \
486         ; (__node)->next != NULL                        \
487         ; (__node) = (__node)->next)
488
489 #define foreach_list_typed(__type, __node, __field, __list)             \
490    for (__type * __node =                                               \
491            exec_node_data(__type, (__list)->head, __field);             \
492         (__node)->__field.next != NULL;                                 \
493         (__node) = exec_node_data(__type, (__node)->__field.next, __field))
494
495 #define foreach_list_typed_const(__type, __node, __field, __list)       \
496    for (const __type * __node =                                         \
497            exec_node_data(__type, (__list)->head, __field);             \
498         (__node)->__field.next != NULL;                                 \
499         (__node) = exec_node_data(__type, (__node)->__field.next, __field))
500
501 #endif /* LIST_CONTAINER_H */