3 * Copyright © 2010 Intel Corporation
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
33 #include "glsl_types.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
40 * \defgroup IR Intermediate representation nodes
48 * Each concrete class derived from \c ir_instruction has a value in this
49 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
50 * by the constructor. While using type tags is not very C++, it is extremely
51 * convenient. For example, during debugging you can simply inspect
52 * \c ir_instruction::ir_type to find out the actual type of the object.
54 * In addition, it is possible to use a switch-statement based on \c
55 * \c ir_instruction::ir_type to select different behavior for different object
56 * types. For functions that have only slight differences for several object
57 * types, this allows writing very straightforward, readable code.
61 * Zero is unused so that the IR validator can detect cases where
62 * \c ir_instruction::ir_type has not been initialized.
69 ir_type_dereference_array,
70 ir_type_dereference_record,
71 ir_type_dereference_variable,
75 ir_type_function_signature,
82 ir_type_max /**< maximum ir_type enum number, for validation */
86 * Base class of all IR instructions
88 class ir_instruction : public exec_node {
90 enum ir_node_type ir_type;
91 const struct glsl_type *type;
93 /** ir_print_visitor helper for debugging. */
94 void print(void) const;
96 virtual void accept(ir_visitor *) = 0;
97 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
98 virtual ir_instruction *clone(void *mem_ctx,
99 struct hash_table *ht) const = 0;
102 * \name IR instruction downcast functions
104 * These functions either cast the object to a derived class or return
105 * \c NULL if the object's type does not match the specified derived class.
106 * Additional downcast functions will be added as needed.
109 virtual class ir_variable * as_variable() { return NULL; }
110 virtual class ir_function * as_function() { return NULL; }
111 virtual class ir_dereference * as_dereference() { return NULL; }
112 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
113 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
114 virtual class ir_expression * as_expression() { return NULL; }
115 virtual class ir_rvalue * as_rvalue() { return NULL; }
116 virtual class ir_loop * as_loop() { return NULL; }
117 virtual class ir_assignment * as_assignment() { return NULL; }
118 virtual class ir_call * as_call() { return NULL; }
119 virtual class ir_return * as_return() { return NULL; }
120 virtual class ir_if * as_if() { return NULL; }
121 virtual class ir_swizzle * as_swizzle() { return NULL; }
122 virtual class ir_constant * as_constant() { return NULL; }
123 virtual class ir_discard * as_discard() { return NULL; }
129 ir_type = ir_type_unset;
136 * The base class for all "values"/expression trees.
138 class ir_rvalue : public ir_instruction {
140 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
142 virtual void accept(ir_visitor *v)
147 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
149 virtual ir_constant *constant_expression_value();
151 virtual ir_rvalue * as_rvalue()
156 ir_rvalue *as_rvalue_to_saturate();
158 virtual bool is_lvalue() const
164 * Get the variable that is ultimately referenced by an r-value
166 virtual ir_variable *variable_referenced() const
173 * If an r-value is a reference to a whole variable, get that variable
176 * Pointer to a variable that is completely dereferenced by the r-value. If
177 * the r-value is not a dereference or the dereference does not access the
178 * entire variable (i.e., it's just one array element, struct field), \c NULL
181 virtual ir_variable *whole_variable_referenced()
187 * Determine if an r-value has the value zero
189 * The base implementation of this function always returns \c false. The
190 * \c ir_constant class over-rides this function to return \c true \b only
191 * for vector and scalar types that have all elements set to the value
192 * zero (or \c false for booleans).
194 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
196 virtual bool is_zero() const;
199 * Determine if an r-value has the value one
201 * The base implementation of this function always returns \c false. The
202 * \c ir_constant class over-rides this function to return \c true \b only
203 * for vector and scalar types that have all elements set to the value
204 * one (or \c true for booleans).
206 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
208 virtual bool is_one() const;
211 * Determine if an r-value has the value negative one
213 * The base implementation of this function always returns \c false. The
214 * \c ir_constant class over-rides this function to return \c true \b only
215 * for vector and scalar types that have all elements set to the value
216 * negative one. For boolean times, the result is always \c false.
218 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
220 virtual bool is_negative_one() const;
224 * Return a generic value of error_type.
226 * Allocation will be performed with 'mem_ctx' as ralloc owner.
228 static ir_rvalue *error_value(void *mem_ctx);
236 * Variable storage classes
238 enum ir_variable_mode {
239 ir_var_auto = 0, /**< Function local variables and globals. */
240 ir_var_uniform, /**< Variable declared as a uniform. */
244 ir_var_const_in, /**< "in" param that must be a constant expression */
245 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
246 ir_var_temporary /**< Temporary variable generated during compilation. */
250 * \brief Layout qualifiers for gl_FragDepth.
252 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
253 * with a layout qualifier.
255 enum ir_depth_layout {
256 ir_depth_layout_none, /**< No depth layout is specified. */
258 ir_depth_layout_greater,
259 ir_depth_layout_less,
260 ir_depth_layout_unchanged
264 * \brief Convert depth layout qualifier to string.
267 depth_layout_string(ir_depth_layout layout);
270 * Description of built-in state associated with a uniform
272 * \sa ir_variable::state_slots
274 struct ir_state_slot {
279 class ir_variable : public ir_instruction {
281 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
283 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
285 virtual ir_variable *as_variable()
290 virtual void accept(ir_visitor *v)
295 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
299 * Get the string value for the interpolation qualifier
301 * \return The string that would be used in a shader to specify \c
302 * mode will be returned.
304 * This function is used to generate error messages of the form "shader
305 * uses %s interpolation qualifier", so in the case where there is no
306 * interpolation qualifier, it returns "no".
308 * This function should only be used on a shader input or output variable.
310 const char *interpolation_string() const;
313 * Determine how this variable should be interpolated based on its
314 * interpolation qualifier (if present), whether it is gl_Color or
315 * gl_SecondaryColor, and whether flatshading is enabled in the current GL
318 * The return value will always be either INTERP_QUALIFIER_SMOOTH,
319 * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT.
321 glsl_interp_qualifier determine_interpolation_mode(bool flat_shade);
324 * Delcared name of the variable
329 * Highest element accessed with a constant expression array index
331 * Not used for non-array variables.
333 unsigned max_array_access;
336 * Is the variable read-only?
338 * This is set for variables declared as \c const, shader inputs,
341 unsigned read_only:1;
343 unsigned invariant:1;
346 * Has this variable been used for reading or writing?
348 * Several GLSL semantic checks require knowledge of whether or not a
349 * variable has been used. For example, it is an error to redeclare a
350 * variable as invariant after it has been used.
355 * Storage class of the variable.
357 * \sa ir_variable_mode
362 * Interpolation mode for shader inputs / outputs
364 * \sa ir_variable_interpolation
366 unsigned interpolation:2;
369 * \name ARB_fragment_coord_conventions
372 unsigned origin_upper_left:1;
373 unsigned pixel_center_integer:1;
377 * Was the location explicitly set in the shader?
379 * If the location is explicitly set in the shader, it \b cannot be changed
380 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
383 unsigned explicit_location:1;
386 * Does this variable have an initializer?
388 * This is used by the linker to cross-validiate initializers of global
391 unsigned has_initializer:1;
394 * \brief Layout qualifier for gl_FragDepth.
396 * This is not equal to \c ir_depth_layout_none if and only if this
397 * variable is \c gl_FragDepth and a layout qualifier is specified.
399 ir_depth_layout depth_layout;
402 * Storage location of the base of this variable
404 * The precise meaning of this field depends on the nature of the variable.
406 * - Vertex shader input: one of the values from \c gl_vert_attrib.
407 * - Vertex shader output: one of the values from \c gl_vert_result.
408 * - Fragment shader input: one of the values from \c gl_frag_attrib.
409 * - Fragment shader output: one of the values from \c gl_frag_result.
410 * - Uniforms: Per-stage uniform slot number.
411 * - Other: This field is not currently used.
413 * If the variable is a uniform, shader input, or shader output, and the
414 * slot has not been assigned, the value will be -1.
419 * Built-in state that backs this uniform
421 * Once set at variable creation, \c state_slots must remain invariant.
422 * This is because, ideally, this array would be shared by all clones of
423 * this variable in the IR tree. In other words, we'd really like for it
424 * to be a fly-weight.
426 * If the variable is not a uniform, \c num_state_slots will be zero and
427 * \c state_slots will be \c NULL.
430 unsigned num_state_slots; /**< Number of state slots used */
431 ir_state_slot *state_slots; /**< State descriptors. */
435 * Emit a warning if this variable is accessed.
437 const char *warn_extension;
440 * Value assigned in the initializer of a variable declared "const"
442 ir_constant *constant_value;
445 * Constant expression assigned in the initializer of the variable
448 * This field and \c ::constant_value are distinct. Even if the two fields
449 * refer to constants with the same value, they must point to separate
452 ir_constant *constant_initializer;
458 * The representation of a function instance; may be the full definition or
459 * simply a prototype.
461 class ir_function_signature : public ir_instruction {
462 /* An ir_function_signature will be part of the list of signatures in
466 ir_function_signature(const glsl_type *return_type);
468 virtual ir_function_signature *clone(void *mem_ctx,
469 struct hash_table *ht) const;
470 ir_function_signature *clone_prototype(void *mem_ctx,
471 struct hash_table *ht) const;
473 virtual void accept(ir_visitor *v)
478 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
481 * Get the name of the function for which this is a signature
483 const char *function_name() const;
486 * Get a handle to the function for which this is a signature
488 * There is no setter function, this function returns a \c const pointer,
489 * and \c ir_function_signature::_function is private for a reason. The
490 * only way to make a connection between a function and function signature
491 * is via \c ir_function::add_signature. This helps ensure that certain
492 * invariants (i.e., a function signature is in the list of signatures for
493 * its \c _function) are met.
495 * \sa ir_function::add_signature
497 inline const class ir_function *function() const
499 return this->_function;
503 * Check whether the qualifiers match between this signature's parameters
504 * and the supplied parameter list. If not, returns the name of the first
505 * parameter with mismatched qualifiers (for use in error messages).
507 const char *qualifiers_match(exec_list *params);
510 * Replace the current parameter list with the given one. This is useful
511 * if the current information came from a prototype, and either has invalid
512 * or missing parameter names.
514 void replace_parameters(exec_list *new_params);
517 * Function return type.
519 * \note This discards the optional precision qualifier.
521 const struct glsl_type *return_type;
524 * List of ir_variable of function parameters.
526 * This represents the storage. The paramaters passed in a particular
527 * call will be in ir_call::actual_paramaters.
529 struct exec_list parameters;
531 /** Whether or not this function has a body (which may be empty). */
532 unsigned is_defined:1;
534 /** Whether or not this function signature is a built-in. */
535 unsigned is_builtin:1;
537 /** Body of instructions in the function. */
538 struct exec_list body;
541 /** Function of which this signature is one overload. */
542 class ir_function *_function;
544 friend class ir_function;
549 * Header for tracking multiple overloaded functions with the same name.
550 * Contains a list of ir_function_signatures representing each of the
553 class ir_function : public ir_instruction {
555 ir_function(const char *name);
557 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
559 virtual ir_function *as_function()
564 virtual void accept(ir_visitor *v)
569 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
571 void add_signature(ir_function_signature *sig)
573 sig->_function = this;
574 this->signatures.push_tail(sig);
578 * Get an iterator for the set of function signatures
580 exec_list_iterator iterator()
582 return signatures.iterator();
586 * Find a signature that matches a set of actual parameters, taking implicit
587 * conversions into account. Also flags whether the match was exact.
589 ir_function_signature *matching_signature(const exec_list *actual_param,
590 bool *match_is_exact);
593 * Find a signature that matches a set of actual parameters, taking implicit
594 * conversions into account.
596 ir_function_signature *matching_signature(const exec_list *actual_param);
599 * Find a signature that exactly matches a set of actual parameters without
600 * any implicit type conversions.
602 ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
605 * Name of the function.
609 /** Whether or not this function has a signature that isn't a built-in. */
610 bool has_user_signature();
613 * List of ir_function_signature for each overloaded function with this name.
615 struct exec_list signatures;
618 inline const char *ir_function_signature::function_name() const
620 return this->_function->name;
626 * IR instruction representing high-level if-statements
628 class ir_if : public ir_instruction {
630 ir_if(ir_rvalue *condition)
631 : condition(condition)
633 ir_type = ir_type_if;
636 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
638 virtual ir_if *as_if()
643 virtual void accept(ir_visitor *v)
648 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
650 ir_rvalue *condition;
651 /** List of ir_instruction for the body of the then branch */
652 exec_list then_instructions;
653 /** List of ir_instruction for the body of the else branch */
654 exec_list else_instructions;
659 * IR instruction representing a high-level loop structure.
661 class ir_loop : public ir_instruction {
665 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
667 virtual void accept(ir_visitor *v)
672 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
674 virtual ir_loop *as_loop()
680 * Get an iterator for the instructions of the loop body
682 exec_list_iterator iterator()
684 return body_instructions.iterator();
687 /** List of ir_instruction that make up the body of the loop. */
688 exec_list body_instructions;
691 * \name Loop counter and controls
693 * Represents a loop like a FORTRAN \c do-loop.
696 * If \c from and \c to are the same value, the loop will execute once.
699 ir_rvalue *from; /** Value of the loop counter on the first
700 * iteration of the loop.
702 ir_rvalue *to; /** Value of the loop counter on the last
703 * iteration of the loop.
705 ir_rvalue *increment;
706 ir_variable *counter;
709 * Comparison operation in the loop terminator.
711 * If any of the loop control fields are non-\c NULL, this field must be
712 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
713 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
720 class ir_assignment : public ir_instruction {
722 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
725 * Construct an assignment with an explicit write mask
728 * Since a write mask is supplied, the LHS must already be a bare
729 * \c ir_dereference. The cannot be any swizzles in the LHS.
731 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
732 unsigned write_mask);
734 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
736 virtual ir_constant *constant_expression_value();
738 virtual void accept(ir_visitor *v)
743 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
745 virtual ir_assignment * as_assignment()
751 * Get a whole variable written by an assignment
753 * If the LHS of the assignment writes a whole variable, the variable is
754 * returned. Otherwise \c NULL is returned. Examples of whole-variable
757 * - Assigning to a scalar
758 * - Assigning to all components of a vector
759 * - Whole array (or matrix) assignment
760 * - Whole structure assignment
762 ir_variable *whole_variable_written();
765 * Set the LHS of an assignment
767 void set_lhs(ir_rvalue *lhs);
770 * Left-hand side of the assignment.
772 * This should be treated as read only. If you need to set the LHS of an
773 * assignment, use \c ir_assignment::set_lhs.
778 * Value being assigned
783 * Optional condition for the assignment.
785 ir_rvalue *condition;
789 * Component mask written
791 * For non-vector types in the LHS, this field will be zero. For vector
792 * types, a bit will be set for each component that is written. Note that
793 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
795 * A partially-set write mask means that each enabled channel gets
796 * the value from a consecutive channel of the rhs. For example,
797 * to write just .xyw of gl_FrontColor with color:
799 * (assign (constant bool (1)) (xyw)
800 * (var_ref gl_FragColor)
801 * (swiz xyw (var_ref color)))
803 unsigned write_mask:4;
806 /* Update ir_expression::num_operands() and operator_strs when
807 * updating this list.
809 enum ir_expression_operation {
818 ir_unop_exp, /**< Log base e on gentype */
819 ir_unop_log, /**< Natural log on gentype */
822 ir_unop_f2i, /**< Float-to-integer conversion. */
823 ir_unop_i2f, /**< Integer-to-float conversion. */
824 ir_unop_f2b, /**< Float-to-boolean conversion */
825 ir_unop_b2f, /**< Boolean-to-float conversion */
826 ir_unop_i2b, /**< int-to-boolean conversion */
827 ir_unop_b2i, /**< Boolean-to-int conversion */
828 ir_unop_u2f, /**< Unsigned-to-float conversion. */
829 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
830 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
834 * \name Unary floating-point rounding operations.
845 * \name Trigonometric operations.
850 ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */
851 ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */
855 * \name Partial derivatives.
865 * A sentinel marking the last of the unary operations.
867 ir_last_unop = ir_unop_noise,
875 * Takes one of two combinations of arguments:
880 * Does not take integer types.
885 * \name Binary comparison operators which return a boolean vector.
886 * The type of both operands must be equal.
896 * Returns single boolean for whether all components of operands[0]
897 * equal the components of operands[1].
901 * Returns single boolean for whether any component of operands[0]
902 * is not equal to the corresponding component of operands[1].
908 * \name Bit-wise binary operations.
929 * A sentinel marking the last of the binary operations.
931 ir_last_binop = ir_binop_pow,
936 * A sentinel marking the last of all operations.
938 ir_last_opcode = ir_last_binop
941 class ir_expression : public ir_rvalue {
944 * Constructor for unary operation expressions
946 ir_expression(int op, const struct glsl_type *type, ir_rvalue *);
947 ir_expression(int op, ir_rvalue *);
950 * Constructor for binary operation expressions
952 ir_expression(int op, const struct glsl_type *type,
953 ir_rvalue *, ir_rvalue *);
954 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
957 * Constructor for quad operator expressions
959 ir_expression(int op, const struct glsl_type *type,
960 ir_rvalue *, ir_rvalue *, ir_rvalue *, ir_rvalue *);
962 virtual ir_expression *as_expression()
967 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
970 * Attempt to constant-fold the expression
972 * If the expression cannot be constant folded, this method will return
975 virtual ir_constant *constant_expression_value();
978 * Determine the number of operands used by an expression
980 static unsigned int get_num_operands(ir_expression_operation);
983 * Determine the number of operands used by an expression
985 unsigned int get_num_operands() const
987 return (this->operation == ir_quadop_vector)
988 ? this->type->vector_elements : get_num_operands(operation);
992 * Return a string representing this expression's operator.
994 const char *operator_string();
997 * Return a string representing this expression's operator.
999 static const char *operator_string(ir_expression_operation);
1003 * Do a reverse-lookup to translate the given string into an operator.
1005 static ir_expression_operation get_operator(const char *);
1007 virtual void accept(ir_visitor *v)
1012 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1014 ir_expression_operation operation;
1015 ir_rvalue *operands[4];
1020 * IR instruction representing a function call
1022 class ir_call : public ir_rvalue {
1024 ir_call(ir_function_signature *callee, exec_list *actual_parameters)
1027 ir_type = ir_type_call;
1028 assert(callee->return_type != NULL);
1029 type = callee->return_type;
1030 actual_parameters->move_nodes_to(& this->actual_parameters);
1031 this->use_builtin = callee->is_builtin;
1034 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1036 virtual ir_constant *constant_expression_value();
1038 virtual ir_call *as_call()
1043 virtual void accept(ir_visitor *v)
1048 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1051 * Get an iterator for the set of acutal parameters
1053 exec_list_iterator iterator()
1055 return actual_parameters.iterator();
1059 * Get the name of the function being called.
1061 const char *callee_name() const
1063 return callee->function_name();
1067 * Get the function signature bound to this function call
1069 ir_function_signature *get_callee()
1075 * Set the function call target
1077 void set_callee(ir_function_signature *sig);
1080 * Generates an inline version of the function before @ir,
1081 * returning the return value of the function.
1083 ir_rvalue *generate_inline(ir_instruction *ir);
1085 /* List of ir_rvalue of paramaters passed in this call. */
1086 exec_list actual_parameters;
1088 /** Should this call only bind to a built-in function? */
1092 ir_function_signature *callee;
1097 * \name Jump-like IR instructions.
1099 * These include \c break, \c continue, \c return, and \c discard.
1102 class ir_jump : public ir_instruction {
1106 ir_type = ir_type_unset;
1110 class ir_return : public ir_jump {
1115 this->ir_type = ir_type_return;
1118 ir_return(ir_rvalue *value)
1121 this->ir_type = ir_type_return;
1124 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1126 virtual ir_return *as_return()
1131 ir_rvalue *get_value() const
1136 virtual void accept(ir_visitor *v)
1141 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1148 * Jump instructions used inside loops
1150 * These include \c break and \c continue. The \c break within a loop is
1151 * different from the \c break within a switch-statement.
1153 * \sa ir_switch_jump
1155 class ir_loop_jump : public ir_jump {
1162 ir_loop_jump(jump_mode mode)
1164 this->ir_type = ir_type_loop_jump;
1169 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1171 virtual void accept(ir_visitor *v)
1176 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1178 bool is_break() const
1180 return mode == jump_break;
1183 bool is_continue() const
1185 return mode == jump_continue;
1188 /** Mode selector for the jump instruction. */
1189 enum jump_mode mode;
1191 /** Loop containing this break instruction. */
1196 * IR instruction representing discard statements.
1198 class ir_discard : public ir_jump {
1202 this->ir_type = ir_type_discard;
1203 this->condition = NULL;
1206 ir_discard(ir_rvalue *cond)
1208 this->ir_type = ir_type_discard;
1209 this->condition = cond;
1212 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1214 virtual void accept(ir_visitor *v)
1219 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1221 virtual ir_discard *as_discard()
1226 ir_rvalue *condition;
1232 * Texture sampling opcodes used in ir_texture
1234 enum ir_texture_opcode {
1235 ir_tex, /**< Regular texture look-up */
1236 ir_txb, /**< Texture look-up with LOD bias */
1237 ir_txl, /**< Texture look-up with explicit LOD */
1238 ir_txd, /**< Texture look-up with partial derivatvies */
1239 ir_txf, /**< Texel fetch with explicit LOD */
1240 ir_txs /**< Texture size */
1245 * IR instruction to sample a texture
1247 * The specific form of the IR instruction depends on the \c mode value
1248 * selected from \c ir_texture_opcodes. In the printed IR, these will
1251 * Texel offset (0 or an expression)
1252 * | Projection divisor
1253 * | | Shadow comparitor
1256 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1257 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1258 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1259 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1260 * (txf <type> <sampler> <coordinate> 0 <lod>)
1261 * (txs <type> <sampler> <lod>)
1263 class ir_texture : public ir_rvalue {
1265 ir_texture(enum ir_texture_opcode op)
1266 : op(op), projector(NULL), shadow_comparitor(NULL), offset(NULL)
1268 this->ir_type = ir_type_texture;
1271 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1273 virtual ir_constant *constant_expression_value();
1275 virtual void accept(ir_visitor *v)
1280 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1283 * Return a string representing the ir_texture_opcode.
1285 const char *opcode_string();
1287 /** Set the sampler and type. */
1288 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1291 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1293 static ir_texture_opcode get_opcode(const char *);
1295 enum ir_texture_opcode op;
1297 /** Sampler to use for the texture access. */
1298 ir_dereference *sampler;
1300 /** Texture coordinate to sample */
1301 ir_rvalue *coordinate;
1304 * Value used for projective divide.
1306 * If there is no projective divide (the common case), this will be
1307 * \c NULL. Optimization passes should check for this to point to a constant
1308 * of 1.0 and replace that with \c NULL.
1310 ir_rvalue *projector;
1313 * Coordinate used for comparison on shadow look-ups.
1315 * If there is no shadow comparison, this will be \c NULL. For the
1316 * \c ir_txf opcode, this *must* be \c NULL.
1318 ir_rvalue *shadow_comparitor;
1320 /** Texel offset. */
1324 ir_rvalue *lod; /**< Floating point LOD */
1325 ir_rvalue *bias; /**< Floating point LOD bias */
1327 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1328 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1334 struct ir_swizzle_mask {
1341 * Number of components in the swizzle.
1343 unsigned num_components:3;
1346 * Does the swizzle contain duplicate components?
1348 * L-value swizzles cannot contain duplicate components.
1350 unsigned has_duplicates:1;
1354 class ir_swizzle : public ir_rvalue {
1356 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1359 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1361 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1363 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1365 virtual ir_constant *constant_expression_value();
1367 virtual ir_swizzle *as_swizzle()
1373 * Construct an ir_swizzle from the textual representation. Can fail.
1375 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1377 virtual void accept(ir_visitor *v)
1382 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1384 bool is_lvalue() const
1386 return val->is_lvalue() && !mask.has_duplicates;
1390 * Get the variable that is ultimately referenced by an r-value
1392 virtual ir_variable *variable_referenced() const;
1395 ir_swizzle_mask mask;
1399 * Initialize the mask component of a swizzle
1401 * This is used by the \c ir_swizzle constructors.
1403 void init_mask(const unsigned *components, unsigned count);
1407 class ir_dereference : public ir_rvalue {
1409 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1411 virtual ir_dereference *as_dereference()
1416 bool is_lvalue() const;
1419 * Get the variable that is ultimately referenced by an r-value
1421 virtual ir_variable *variable_referenced() const = 0;
1425 class ir_dereference_variable : public ir_dereference {
1427 ir_dereference_variable(ir_variable *var);
1429 virtual ir_dereference_variable *clone(void *mem_ctx,
1430 struct hash_table *) const;
1432 virtual ir_constant *constant_expression_value();
1434 virtual ir_dereference_variable *as_dereference_variable()
1440 * Get the variable that is ultimately referenced by an r-value
1442 virtual ir_variable *variable_referenced() const
1447 virtual ir_variable *whole_variable_referenced()
1449 /* ir_dereference_variable objects always dereference the entire
1450 * variable. However, if this dereference is dereferenced by anything
1451 * else, the complete deferefernce chain is not a whole-variable
1452 * dereference. This method should only be called on the top most
1453 * ir_rvalue in a dereference chain.
1458 virtual void accept(ir_visitor *v)
1463 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1466 * Object being dereferenced.
1472 class ir_dereference_array : public ir_dereference {
1474 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1476 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1478 virtual ir_dereference_array *clone(void *mem_ctx,
1479 struct hash_table *) const;
1481 virtual ir_constant *constant_expression_value();
1483 virtual ir_dereference_array *as_dereference_array()
1489 * Get the variable that is ultimately referenced by an r-value
1491 virtual ir_variable *variable_referenced() const
1493 return this->array->variable_referenced();
1496 virtual void accept(ir_visitor *v)
1501 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1504 ir_rvalue *array_index;
1507 void set_array(ir_rvalue *value);
1511 class ir_dereference_record : public ir_dereference {
1513 ir_dereference_record(ir_rvalue *value, const char *field);
1515 ir_dereference_record(ir_variable *var, const char *field);
1517 virtual ir_dereference_record *clone(void *mem_ctx,
1518 struct hash_table *) const;
1520 virtual ir_constant *constant_expression_value();
1523 * Get the variable that is ultimately referenced by an r-value
1525 virtual ir_variable *variable_referenced() const
1527 return this->record->variable_referenced();
1530 virtual void accept(ir_visitor *v)
1535 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1543 * Data stored in an ir_constant
1545 union ir_constant_data {
1553 class ir_constant : public ir_rvalue {
1555 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1556 ir_constant(bool b);
1557 ir_constant(unsigned int u);
1559 ir_constant(float f);
1562 * Construct an ir_constant from a list of ir_constant values
1564 ir_constant(const struct glsl_type *type, exec_list *values);
1567 * Construct an ir_constant from a scalar component of another ir_constant
1569 * The new \c ir_constant inherits the type of the component from the
1573 * In the case of a matrix constant, the new constant is a scalar, \b not
1576 ir_constant(const ir_constant *c, unsigned i);
1579 * Return a new ir_constant of the specified type containing all zeros.
1581 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1583 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1585 virtual ir_constant *constant_expression_value();
1587 virtual ir_constant *as_constant()
1592 virtual void accept(ir_visitor *v)
1597 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1600 * Get a particular component of a constant as a specific type
1602 * This is useful, for example, to get a value from an integer constant
1603 * as a float or bool. This appears frequently when constructors are
1604 * called with all constant parameters.
1607 bool get_bool_component(unsigned i) const;
1608 float get_float_component(unsigned i) const;
1609 int get_int_component(unsigned i) const;
1610 unsigned get_uint_component(unsigned i) const;
1613 ir_constant *get_array_element(unsigned i) const;
1615 ir_constant *get_record_field(const char *name);
1618 * Determine whether a constant has the same value as another constant
1620 * \sa ir_constant::is_zero, ir_constant::is_one,
1621 * ir_constant::is_negative_one
1623 bool has_value(const ir_constant *) const;
1625 virtual bool is_zero() const;
1626 virtual bool is_one() const;
1627 virtual bool is_negative_one() const;
1630 * Value of the constant.
1632 * The field used to back the values supplied by the constant is determined
1633 * by the type associated with the \c ir_instruction. Constants may be
1634 * scalars, vectors, or matrices.
1636 union ir_constant_data value;
1638 /* Array elements */
1639 ir_constant **array_elements;
1641 /* Structure fields */
1642 exec_list components;
1646 * Parameterless constructor only used by the clone method
1654 * Apply a visitor to each IR node in a list
1657 visit_exec_list(exec_list *list, ir_visitor *visitor);
1660 * Validate invariants on each IR node in a list
1662 void validate_ir_tree(exec_list *instructions);
1664 struct _mesa_glsl_parse_state;
1665 struct gl_shader_program;
1668 * Detect whether an unlinked shader contains static recursion
1670 * If the list of instructions is determined to contain static recursion,
1671 * \c _mesa_glsl_error will be called to emit error messages for each function
1672 * that is in the recursion cycle.
1675 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
1676 exec_list *instructions);
1679 * Detect whether a linked shader contains static recursion
1681 * If the list of instructions is determined to contain static recursion,
1682 * \c link_error_printf will be called to emit error messages for each function
1683 * that is in the recursion cycle. In addition,
1684 * \c gl_shader_program::LinkStatus will be set to false.
1687 detect_recursion_linked(struct gl_shader_program *prog,
1688 exec_list *instructions);
1691 * Make a clone of each IR instruction in a list
1693 * \param in List of IR instructions that are to be cloned
1694 * \param out List to hold the cloned instructions
1697 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1700 _mesa_glsl_initialize_variables(exec_list *instructions,
1701 struct _mesa_glsl_parse_state *state);
1704 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
1707 _mesa_glsl_release_functions(void);
1710 reparent_ir(exec_list *list, void *mem_ctx);
1712 struct glsl_symbol_table;
1715 import_prototypes(const exec_list *source, exec_list *dest,
1716 struct glsl_symbol_table *symbols, void *mem_ctx);
1719 ir_has_call(ir_instruction *ir);
1722 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
1723 bool is_fragment_shader);
1726 prototype_string(const glsl_type *return_type, const char *name,
1727 exec_list *parameters);