3 * Copyright © 2010 Intel Corporation
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
36 #include "glsl_types.h"
38 #include "ir_visitor.h"
39 #include "ir_hierarchical_visitor.h"
42 * \defgroup IR Intermediate representation nodes
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
63 * Zero is unused so that the IR validator can detect cases where
64 * \c ir_instruction::ir_type has not been initialized.
71 ir_type_dereference_array,
72 ir_type_dereference_record,
73 ir_type_dereference_variable,
77 ir_type_function_signature,
84 ir_type_max /**< maximum ir_type enum number, for validation */
88 * Base class of all IR instructions
90 class ir_instruction : public exec_node {
92 enum ir_node_type ir_type;
93 const struct glsl_type *type;
95 /** ir_print_visitor helper for debugging. */
96 void print(void) const;
98 virtual void accept(ir_visitor *) = 0;
99 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
100 virtual ir_instruction *clone(void *mem_ctx,
101 struct hash_table *ht) const = 0;
104 * \name IR instruction downcast functions
106 * These functions either cast the object to a derived class or return
107 * \c NULL if the object's type does not match the specified derived class.
108 * Additional downcast functions will be added as needed.
111 virtual class ir_variable * as_variable() { return NULL; }
112 virtual class ir_function * as_function() { return NULL; }
113 virtual class ir_dereference * as_dereference() { return NULL; }
114 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
115 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
116 virtual class ir_expression * as_expression() { return NULL; }
117 virtual class ir_rvalue * as_rvalue() { return NULL; }
118 virtual class ir_loop * as_loop() { return NULL; }
119 virtual class ir_assignment * as_assignment() { return NULL; }
120 virtual class ir_call * as_call() { return NULL; }
121 virtual class ir_return * as_return() { return NULL; }
122 virtual class ir_if * as_if() { return NULL; }
123 virtual class ir_swizzle * as_swizzle() { return NULL; }
124 virtual class ir_constant * as_constant() { return NULL; }
125 virtual class ir_discard * as_discard() { return NULL; }
131 ir_type = ir_type_unset;
137 class ir_rvalue : public ir_instruction {
139 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const = 0;
141 virtual ir_constant *constant_expression_value() = 0;
143 virtual ir_rvalue * as_rvalue()
148 ir_rvalue *as_rvalue_to_saturate();
150 virtual bool is_lvalue()
156 * Get the variable that is ultimately referenced by an r-value
158 virtual ir_variable *variable_referenced()
165 * If an r-value is a reference to a whole variable, get that variable
168 * Pointer to a variable that is completely dereferenced by the r-value. If
169 * the r-value is not a dereference or the dereference does not access the
170 * entire variable (i.e., it's just one array element, struct field), \c NULL
173 virtual ir_variable *whole_variable_referenced()
179 * Determine if an r-value has the value zero
181 * The base implementation of this function always returns \c false. The
182 * \c ir_constant class over-rides this function to return \c true \b only
183 * for vector and scalar types that have all elements set to the value
184 * zero (or \c false for booleans).
186 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
188 virtual bool is_zero() const;
191 * Determine if an r-value has the value one
193 * The base implementation of this function always returns \c false. The
194 * \c ir_constant class over-rides this function to return \c true \b only
195 * for vector and scalar types that have all elements set to the value
196 * one (or \c true for booleans).
198 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
200 virtual bool is_one() const;
203 * Determine if an r-value has the value negative one
205 * The base implementation of this function always returns \c false. The
206 * \c ir_constant class over-rides this function to return \c true \b only
207 * for vector and scalar types that have all elements set to the value
208 * negative one. For boolean times, the result is always \c false.
210 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
212 virtual bool is_negative_one() const;
220 * Variable storage classes
222 enum ir_variable_mode {
223 ir_var_auto = 0, /**< Function local variables and globals. */
224 ir_var_uniform, /**< Variable declared as a uniform. */
228 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
229 ir_var_temporary /**< Temporary variable generated during compilation. */
232 enum ir_variable_interpolation {
239 * \brief Layout qualifiers for gl_FragDepth.
241 * The AMD_conservative_depth extension allows gl_FragDepth to be redeclared
242 * with a layout qualifier.
244 enum ir_depth_layout {
245 ir_depth_layout_none, /**< No depth layout is specified. */
247 ir_depth_layout_greater,
248 ir_depth_layout_less,
249 ir_depth_layout_unchanged
253 * \brief Convert depth layout qualifier to string.
256 depth_layout_string(ir_depth_layout layout);
258 class ir_variable : public ir_instruction {
260 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
262 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
264 virtual ir_variable *as_variable()
269 virtual void accept(ir_visitor *v)
274 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
278 * Get the string value for the interpolation qualifier
280 * \return The string that would be used in a shader to specify \c
281 * mode will be returned.
283 * This function should only be used on a shader input or output variable.
285 const char *interpolation_string() const;
288 * Calculate the number of slots required to hold this variable
290 * This is used to determine how many uniform or varying locations a variable
291 * occupies. The count is in units of floating point components.
293 unsigned component_slots() const;
296 * Delcared name of the variable
301 * Highest element accessed with a constant expression array index
303 * Not used for non-array variables.
305 unsigned max_array_access;
308 * Is the variable read-only?
310 * This is set for variables declared as \c const, shader inputs,
313 unsigned read_only:1;
315 unsigned invariant:1;
318 * Has this variable been used for reading or writing?
320 * Several GLSL semantic checks require knowledge of whether or not a
321 * variable has been used. For example, it is an error to redeclare a
322 * variable as invariant after it has been used.
327 * Storage class of the variable.
329 * \sa ir_variable_mode
334 * Interpolation mode for shader inputs / outputs
336 * \sa ir_variable_interpolation
338 unsigned interpolation:2;
341 * Flag that the whole array is assignable
343 * In GLSL 1.20 and later whole arrays are assignable (and comparable for
344 * equality). This flag enables this behavior.
346 unsigned array_lvalue:1;
349 * \name ARB_fragment_coord_conventions
352 unsigned origin_upper_left:1;
353 unsigned pixel_center_integer:1;
357 * Was the location explicitly set in the shader?
359 * If the location is explicitly set in the shader, it \b cannot be changed
360 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
363 unsigned explicit_location:1;
366 * Storage location of the base of this variable
368 * The precise meaning of this field depends on the nature of the variable.
370 * - Vertex shader input: one of the values from \c gl_vert_attrib.
371 * - Vertex shader output: one of the values from \c gl_vert_result.
372 * - Fragment shader input: one of the values from \c gl_frag_attrib.
373 * - Fragment shader output: one of the values from \c gl_frag_result.
374 * - Uniforms: Per-stage uniform slot number.
375 * - Other: This field is not currently used.
377 * If the variable is a uniform, shader input, or shader output, and the
378 * slot has not been assigned, the value will be -1.
383 * Emit a warning if this variable is accessed.
385 const char *warn_extension;
388 * Value assigned in the initializer of a variable declared "const"
390 ir_constant *constant_value;
396 * The representation of a function instance; may be the full definition or
397 * simply a prototype.
399 class ir_function_signature : public ir_instruction {
400 /* An ir_function_signature will be part of the list of signatures in
404 ir_function_signature(const glsl_type *return_type);
406 virtual ir_function_signature *clone(void *mem_ctx,
407 struct hash_table *ht) const;
408 ir_function_signature *clone_prototype(void *mem_ctx,
409 struct hash_table *ht) const;
411 virtual void accept(ir_visitor *v)
416 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
419 * Get the name of the function for which this is a signature
421 const char *function_name() const;
424 * Get a handle to the function for which this is a signature
426 * There is no setter function, this function returns a \c const pointer,
427 * and \c ir_function_signature::_function is private for a reason. The
428 * only way to make a connection between a function and function signature
429 * is via \c ir_function::add_signature. This helps ensure that certain
430 * invariants (i.e., a function signature is in the list of signatures for
431 * its \c _function) are met.
433 * \sa ir_function::add_signature
435 inline const class ir_function *function() const
437 return this->_function;
441 * Check whether the qualifiers match between this signature's parameters
442 * and the supplied parameter list. If not, returns the name of the first
443 * parameter with mismatched qualifiers (for use in error messages).
445 const char *qualifiers_match(exec_list *params);
448 * Replace the current parameter list with the given one. This is useful
449 * if the current information came from a prototype, and either has invalid
450 * or missing parameter names.
452 void replace_parameters(exec_list *new_params);
455 * Function return type.
457 * \note This discards the optional precision qualifier.
459 const struct glsl_type *return_type;
462 * List of ir_variable of function parameters.
464 * This represents the storage. The paramaters passed in a particular
465 * call will be in ir_call::actual_paramaters.
467 struct exec_list parameters;
469 /** Whether or not this function has a body (which may be empty). */
470 unsigned is_defined:1;
472 /** Whether or not this function signature is a built-in. */
473 unsigned is_builtin:1;
475 /** Body of instructions in the function. */
476 struct exec_list body;
479 /** Function of which this signature is one overload. */
480 class ir_function *_function;
482 friend class ir_function;
487 * Header for tracking multiple overloaded functions with the same name.
488 * Contains a list of ir_function_signatures representing each of the
491 class ir_function : public ir_instruction {
493 ir_function(const char *name);
495 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
497 virtual ir_function *as_function()
502 virtual void accept(ir_visitor *v)
507 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
509 void add_signature(ir_function_signature *sig)
511 sig->_function = this;
512 this->signatures.push_tail(sig);
516 * Get an iterator for the set of function signatures
518 exec_list_iterator iterator()
520 return signatures.iterator();
524 * Find a signature that matches a set of actual parameters, taking implicit
525 * conversions into account.
527 ir_function_signature *matching_signature(const exec_list *actual_param);
530 * Find a signature that exactly matches a set of actual parameters without
531 * any implicit type conversions.
533 ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
536 * Name of the function.
540 /** Whether or not this function has a signature that isn't a built-in. */
541 bool has_user_signature();
544 * List of ir_function_signature for each overloaded function with this name.
546 struct exec_list signatures;
549 inline const char *ir_function_signature::function_name() const
551 return this->_function->name;
557 * IR instruction representing high-level if-statements
559 class ir_if : public ir_instruction {
561 ir_if(ir_rvalue *condition)
562 : condition(condition)
564 ir_type = ir_type_if;
567 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
569 virtual ir_if *as_if()
574 virtual void accept(ir_visitor *v)
579 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
581 ir_rvalue *condition;
582 /** List of ir_instruction for the body of the then branch */
583 exec_list then_instructions;
584 /** List of ir_instruction for the body of the else branch */
585 exec_list else_instructions;
590 * IR instruction representing a high-level loop structure.
592 class ir_loop : public ir_instruction {
596 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
598 virtual void accept(ir_visitor *v)
603 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
605 virtual ir_loop *as_loop()
611 * Get an iterator for the instructions of the loop body
613 exec_list_iterator iterator()
615 return body_instructions.iterator();
618 /** List of ir_instruction that make up the body of the loop. */
619 exec_list body_instructions;
622 * \name Loop counter and controls
624 * Represents a loop like a FORTRAN \c do-loop.
627 * If \c from and \c to are the same value, the loop will execute once.
630 ir_rvalue *from; /** Value of the loop counter on the first
631 * iteration of the loop.
633 ir_rvalue *to; /** Value of the loop counter on the last
634 * iteration of the loop.
636 ir_rvalue *increment;
637 ir_variable *counter;
640 * Comparison operation in the loop terminator.
642 * If any of the loop control fields are non-\c NULL, this field must be
643 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
644 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
651 class ir_assignment : public ir_instruction {
653 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition);
656 * Construct an assignment with an explicit write mask
659 * Since a write mask is supplied, the LHS must already be a bare
660 * \c ir_dereference. The cannot be any swizzles in the LHS.
662 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
663 unsigned write_mask);
665 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
667 virtual ir_constant *constant_expression_value();
669 virtual void accept(ir_visitor *v)
674 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
676 virtual ir_assignment * as_assignment()
682 * Get a whole variable written by an assignment
684 * If the LHS of the assignment writes a whole variable, the variable is
685 * returned. Otherwise \c NULL is returned. Examples of whole-variable
688 * - Assigning to a scalar
689 * - Assigning to all components of a vector
690 * - Whole array (or matrix) assignment
691 * - Whole structure assignment
693 ir_variable *whole_variable_written();
696 * Set the LHS of an assignment
698 void set_lhs(ir_rvalue *lhs);
701 * Left-hand side of the assignment.
703 * This should be treated as read only. If you need to set the LHS of an
704 * assignment, use \c ir_assignment::set_lhs.
709 * Value being assigned
714 * Optional condition for the assignment.
716 ir_rvalue *condition;
720 * Component mask written
722 * For non-vector types in the LHS, this field will be zero. For vector
723 * types, a bit will be set for each component that is written. Note that
724 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
726 * A partially-set write mask means that each enabled channel gets
727 * the value from a consecutive channel of the rhs. For example,
728 * to write just .xyw of gl_FrontColor with color:
730 * (assign (constant bool (1)) (xyw)
731 * (var_ref gl_FragColor)
732 * (swiz xyw (var_ref color)))
734 unsigned write_mask:4;
737 /* Update ir_expression::num_operands() and operator_strs when
738 * updating this list.
740 enum ir_expression_operation {
749 ir_unop_exp, /**< Log base e on gentype */
750 ir_unop_log, /**< Natural log on gentype */
753 ir_unop_f2i, /**< Float-to-integer conversion. */
754 ir_unop_i2f, /**< Integer-to-float conversion. */
755 ir_unop_f2b, /**< Float-to-boolean conversion */
756 ir_unop_b2f, /**< Boolean-to-float conversion */
757 ir_unop_i2b, /**< int-to-boolean conversion */
758 ir_unop_b2i, /**< Boolean-to-int conversion */
759 ir_unop_u2f, /**< Unsigned-to-float conversion. */
763 * \name Unary floating-point rounding operations.
774 * \name Trigonometric operations.
779 ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */
780 ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */
784 * \name Partial derivatives.
794 * A sentinel marking the last of the unary operations.
796 ir_last_unop = ir_unop_noise,
804 * Takes one of two combinations of arguments:
809 * Does not take integer types.
814 * \name Binary comparison operators which return a boolean vector.
815 * The type of both operands must be equal.
825 * Returns single boolean for whether all components of operands[0]
826 * equal the components of operands[1].
830 * Returns single boolean for whether any component of operands[0]
831 * is not equal to the corresponding component of operands[1].
837 * \name Bit-wise binary operations.
858 * A sentinel marking the last of the binary operations.
860 ir_last_binop = ir_binop_pow,
865 * A sentinel marking the last of all operations.
867 ir_last_opcode = ir_last_binop
870 class ir_expression : public ir_rvalue {
873 * Constructor for unary operation expressions
875 ir_expression(int op, const struct glsl_type *type, ir_rvalue *);
876 ir_expression(int op, ir_rvalue *);
879 * Constructor for binary operation expressions
881 ir_expression(int op, const struct glsl_type *type,
882 ir_rvalue *, ir_rvalue *);
883 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
886 * Constructor for quad operator expressions
888 ir_expression(int op, const struct glsl_type *type,
889 ir_rvalue *, ir_rvalue *, ir_rvalue *, ir_rvalue *);
891 virtual ir_expression *as_expression()
896 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
899 * Attempt to constant-fold the expression
901 * If the expression cannot be constant folded, this method will return
904 virtual ir_constant *constant_expression_value();
907 * Determine the number of operands used by an expression
909 static unsigned int get_num_operands(ir_expression_operation);
912 * Determine the number of operands used by an expression
914 unsigned int get_num_operands() const
916 return (this->operation == ir_quadop_vector)
917 ? this->type->vector_elements : get_num_operands(operation);
921 * Return a string representing this expression's operator.
923 const char *operator_string();
926 * Return a string representing this expression's operator.
928 static const char *operator_string(ir_expression_operation);
932 * Do a reverse-lookup to translate the given string into an operator.
934 static ir_expression_operation get_operator(const char *);
936 virtual void accept(ir_visitor *v)
941 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
943 ir_expression_operation operation;
944 ir_rvalue *operands[4];
949 * IR instruction representing a function call
951 class ir_call : public ir_rvalue {
953 ir_call(ir_function_signature *callee, exec_list *actual_parameters)
956 ir_type = ir_type_call;
957 assert(callee->return_type != NULL);
958 type = callee->return_type;
959 actual_parameters->move_nodes_to(& this->actual_parameters);
962 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
964 virtual ir_constant *constant_expression_value();
966 virtual ir_call *as_call()
971 virtual void accept(ir_visitor *v)
976 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
979 * Get a generic ir_call object when an error occurs
981 * Any allocation will be performed with 'ctx' as talloc owner.
983 static ir_call *get_error_instruction(void *ctx);
986 * Get an iterator for the set of acutal parameters
988 exec_list_iterator iterator()
990 return actual_parameters.iterator();
994 * Get the name of the function being called.
996 const char *callee_name() const
998 return callee->function_name();
1002 * Get the function signature bound to this function call
1004 ir_function_signature *get_callee()
1010 * Set the function call target
1012 void set_callee(ir_function_signature *sig);
1015 * Generates an inline version of the function before @ir,
1016 * returning the return value of the function.
1018 ir_rvalue *generate_inline(ir_instruction *ir);
1020 /* List of ir_rvalue of paramaters passed in this call. */
1021 exec_list actual_parameters;
1027 this->ir_type = ir_type_call;
1030 ir_function_signature *callee;
1035 * \name Jump-like IR instructions.
1037 * These include \c break, \c continue, \c return, and \c discard.
1040 class ir_jump : public ir_instruction {
1044 ir_type = ir_type_unset;
1048 class ir_return : public ir_jump {
1053 this->ir_type = ir_type_return;
1056 ir_return(ir_rvalue *value)
1059 this->ir_type = ir_type_return;
1062 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1064 virtual ir_return *as_return()
1069 ir_rvalue *get_value() const
1074 virtual void accept(ir_visitor *v)
1079 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1086 * Jump instructions used inside loops
1088 * These include \c break and \c continue. The \c break within a loop is
1089 * different from the \c break within a switch-statement.
1091 * \sa ir_switch_jump
1093 class ir_loop_jump : public ir_jump {
1100 ir_loop_jump(jump_mode mode)
1102 this->ir_type = ir_type_loop_jump;
1107 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1109 virtual void accept(ir_visitor *v)
1114 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1116 bool is_break() const
1118 return mode == jump_break;
1121 bool is_continue() const
1123 return mode == jump_continue;
1126 /** Mode selector for the jump instruction. */
1127 enum jump_mode mode;
1129 /** Loop containing this break instruction. */
1134 * IR instruction representing discard statements.
1136 class ir_discard : public ir_jump {
1140 this->ir_type = ir_type_discard;
1141 this->condition = NULL;
1144 ir_discard(ir_rvalue *cond)
1146 this->ir_type = ir_type_discard;
1147 this->condition = cond;
1150 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1152 virtual void accept(ir_visitor *v)
1157 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1159 virtual ir_discard *as_discard()
1164 ir_rvalue *condition;
1170 * Texture sampling opcodes used in ir_texture
1172 enum ir_texture_opcode {
1173 ir_tex, /**< Regular texture look-up */
1174 ir_txb, /**< Texture look-up with LOD bias */
1175 ir_txl, /**< Texture look-up with explicit LOD */
1176 ir_txd, /**< Texture look-up with partial derivatvies */
1177 ir_txf /**< Texel fetch with explicit LOD */
1182 * IR instruction to sample a texture
1184 * The specific form of the IR instruction depends on the \c mode value
1185 * selected from \c ir_texture_opcodes. In the printed IR, these will
1189 * | Projection divisor
1190 * | | Shadow comparitor
1193 * (tex (sampler) (coordinate) (0 0 0) (1) ( ))
1194 * (txb (sampler) (coordinate) (0 0 0) (1) ( ) (bias))
1195 * (txl (sampler) (coordinate) (0 0 0) (1) ( ) (lod))
1196 * (txd (sampler) (coordinate) (0 0 0) (1) ( ) (dPdx dPdy))
1197 * (txf (sampler) (coordinate) (0 0 0) (lod))
1199 class ir_texture : public ir_rvalue {
1201 ir_texture(enum ir_texture_opcode op)
1202 : op(op), projector(NULL), shadow_comparitor(NULL)
1204 this->ir_type = ir_type_texture;
1207 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1209 virtual ir_constant *constant_expression_value();
1211 virtual void accept(ir_visitor *v)
1216 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1219 * Return a string representing the ir_texture_opcode.
1221 const char *opcode_string();
1223 /** Set the sampler and infer the type. */
1224 void set_sampler(ir_dereference *sampler);
1227 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1229 static ir_texture_opcode get_opcode(const char *);
1231 enum ir_texture_opcode op;
1233 /** Sampler to use for the texture access. */
1234 ir_dereference *sampler;
1236 /** Texture coordinate to sample */
1237 ir_rvalue *coordinate;
1240 * Value used for projective divide.
1242 * If there is no projective divide (the common case), this will be
1243 * \c NULL. Optimization passes should check for this to point to a constant
1244 * of 1.0 and replace that with \c NULL.
1246 ir_rvalue *projector;
1249 * Coordinate used for comparison on shadow look-ups.
1251 * If there is no shadow comparison, this will be \c NULL. For the
1252 * \c ir_txf opcode, this *must* be \c NULL.
1254 ir_rvalue *shadow_comparitor;
1256 /** Explicit texel offsets. */
1257 signed char offsets[3];
1260 ir_rvalue *lod; /**< Floating point LOD */
1261 ir_rvalue *bias; /**< Floating point LOD bias */
1263 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1264 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1270 struct ir_swizzle_mask {
1277 * Number of components in the swizzle.
1279 unsigned num_components:3;
1282 * Does the swizzle contain duplicate components?
1284 * L-value swizzles cannot contain duplicate components.
1286 unsigned has_duplicates:1;
1290 class ir_swizzle : public ir_rvalue {
1292 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1295 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1297 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1299 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1301 virtual ir_constant *constant_expression_value();
1303 virtual ir_swizzle *as_swizzle()
1309 * Construct an ir_swizzle from the textual representation. Can fail.
1311 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1313 virtual void accept(ir_visitor *v)
1318 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1322 return val->is_lvalue() && !mask.has_duplicates;
1326 * Get the variable that is ultimately referenced by an r-value
1328 virtual ir_variable *variable_referenced();
1331 ir_swizzle_mask mask;
1335 * Initialize the mask component of a swizzle
1337 * This is used by the \c ir_swizzle constructors.
1339 void init_mask(const unsigned *components, unsigned count);
1343 class ir_dereference : public ir_rvalue {
1345 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1347 virtual ir_dereference *as_dereference()
1355 * Get the variable that is ultimately referenced by an r-value
1357 virtual ir_variable *variable_referenced() = 0;
1361 class ir_dereference_variable : public ir_dereference {
1363 ir_dereference_variable(ir_variable *var);
1365 virtual ir_dereference_variable *clone(void *mem_ctx,
1366 struct hash_table *) const;
1368 virtual ir_constant *constant_expression_value();
1370 virtual ir_dereference_variable *as_dereference_variable()
1376 * Get the variable that is ultimately referenced by an r-value
1378 virtual ir_variable *variable_referenced()
1383 virtual ir_variable *whole_variable_referenced()
1385 /* ir_dereference_variable objects always dereference the entire
1386 * variable. However, if this dereference is dereferenced by anything
1387 * else, the complete deferefernce chain is not a whole-variable
1388 * dereference. This method should only be called on the top most
1389 * ir_rvalue in a dereference chain.
1394 virtual void accept(ir_visitor *v)
1399 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1402 * Object being dereferenced.
1408 class ir_dereference_array : public ir_dereference {
1410 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1412 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1414 virtual ir_dereference_array *clone(void *mem_ctx,
1415 struct hash_table *) const;
1417 virtual ir_constant *constant_expression_value();
1419 virtual ir_dereference_array *as_dereference_array()
1425 * Get the variable that is ultimately referenced by an r-value
1427 virtual ir_variable *variable_referenced()
1429 return this->array->variable_referenced();
1432 virtual void accept(ir_visitor *v)
1437 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1440 ir_rvalue *array_index;
1443 void set_array(ir_rvalue *value);
1447 class ir_dereference_record : public ir_dereference {
1449 ir_dereference_record(ir_rvalue *value, const char *field);
1451 ir_dereference_record(ir_variable *var, const char *field);
1453 virtual ir_dereference_record *clone(void *mem_ctx,
1454 struct hash_table *) const;
1456 virtual ir_constant *constant_expression_value();
1459 * Get the variable that is ultimately referenced by an r-value
1461 virtual ir_variable *variable_referenced()
1463 return this->record->variable_referenced();
1466 virtual void accept(ir_visitor *v)
1471 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1479 * Data stored in an ir_constant
1481 union ir_constant_data {
1489 class ir_constant : public ir_rvalue {
1491 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1492 ir_constant(bool b);
1493 ir_constant(unsigned int u);
1495 ir_constant(float f);
1498 * Construct an ir_constant from a list of ir_constant values
1500 ir_constant(const struct glsl_type *type, exec_list *values);
1503 * Construct an ir_constant from a scalar component of another ir_constant
1505 * The new \c ir_constant inherits the type of the component from the
1509 * In the case of a matrix constant, the new constant is a scalar, \b not
1512 ir_constant(const ir_constant *c, unsigned i);
1515 * Return a new ir_constant of the specified type containing all zeros.
1517 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1519 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1521 virtual ir_constant *constant_expression_value();
1523 virtual ir_constant *as_constant()
1528 virtual void accept(ir_visitor *v)
1533 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1536 * Get a particular component of a constant as a specific type
1538 * This is useful, for example, to get a value from an integer constant
1539 * as a float or bool. This appears frequently when constructors are
1540 * called with all constant parameters.
1543 bool get_bool_component(unsigned i) const;
1544 float get_float_component(unsigned i) const;
1545 int get_int_component(unsigned i) const;
1546 unsigned get_uint_component(unsigned i) const;
1549 ir_constant *get_array_element(unsigned i) const;
1551 ir_constant *get_record_field(const char *name);
1554 * Determine whether a constant has the same value as another constant
1556 * \sa ir_constant::is_zero, ir_constant::is_one,
1557 * ir_constant::is_negative_one
1559 bool has_value(const ir_constant *) const;
1561 virtual bool is_zero() const;
1562 virtual bool is_one() const;
1563 virtual bool is_negative_one() const;
1566 * Value of the constant.
1568 * The field used to back the values supplied by the constant is determined
1569 * by the type associated with the \c ir_instruction. Constants may be
1570 * scalars, vectors, or matrices.
1572 union ir_constant_data value;
1574 /* Array elements */
1575 ir_constant **array_elements;
1577 /* Structure fields */
1578 exec_list components;
1582 * Parameterless constructor only used by the clone method
1590 * Apply a visitor to each IR node in a list
1593 visit_exec_list(exec_list *list, ir_visitor *visitor);
1596 * Validate invariants on each IR node in a list
1598 void validate_ir_tree(exec_list *instructions);
1601 * Make a clone of each IR instruction in a list
1603 * \param in List of IR instructions that are to be cloned
1604 * \param out List to hold the cloned instructions
1607 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1610 _mesa_glsl_initialize_variables(exec_list *instructions,
1611 struct _mesa_glsl_parse_state *state);
1614 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
1617 _mesa_glsl_release_functions(void);
1620 reparent_ir(exec_list *list, void *mem_ctx);
1622 struct glsl_symbol_table;
1625 import_prototypes(const exec_list *source, exec_list *dest,
1626 struct glsl_symbol_table *symbols, void *mem_ctx);
1629 ir_has_call(ir_instruction *ir);
1632 do_set_program_inouts(exec_list *instructions, struct gl_program *prog);