2 * Copyright © 2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
31 * * Symbol table management
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
56 #include "glsl_types.h"
57 #include "program/hash_table.h"
61 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
62 exec_list *instructions);
65 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
67 _mesa_glsl_initialize_variables(instructions, state);
69 state->symbols->language_version = state->language_version;
71 state->current_function = NULL;
73 state->toplevel_ir = instructions;
75 /* Section 4.2 of the GLSL 1.20 specification states:
76 * "The built-in functions are scoped in a scope outside the global scope
77 * users declare global variables in. That is, a shader's global scope,
78 * available for user-defined functions and global variables, is nested
79 * inside the scope containing the built-in functions."
81 * Since built-in functions like ftransform() access built-in variables,
82 * it follows that those must be in the outer scope as well.
84 * We push scope here to create this nesting effect...but don't pop.
85 * This way, a shader's globals are still in the symbol table for use
88 state->symbols->push_scope();
90 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
91 ast->hir(instructions, state);
93 detect_recursion_unlinked(state, instructions);
94 detect_conflicting_assignments(state, instructions);
96 state->toplevel_ir = NULL;
101 * If a conversion is available, convert one operand to a different type
103 * The \c from \c ir_rvalue is converted "in place".
105 * \param to Type that the operand it to be converted to
106 * \param from Operand that is being converted
107 * \param state GLSL compiler state
110 * If a conversion is possible (or unnecessary), \c true is returned.
111 * Otherwise \c false is returned.
114 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
115 struct _mesa_glsl_parse_state *state)
118 if (to->base_type == from->type->base_type)
121 /* This conversion was added in GLSL 1.20. If the compilation mode is
122 * GLSL 1.10, the conversion is skipped.
124 if (state->language_version < 120)
127 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
129 * "There are no implicit array or structure conversions. For
130 * example, an array of int cannot be implicitly converted to an
131 * array of float. There are no implicit conversions between
132 * signed and unsigned integers."
134 /* FINISHME: The above comment is partially a lie. There is int/uint
135 * FINISHME: conversion for immediate constants.
137 if (!to->is_float() || !from->type->is_numeric())
140 /* Convert to a floating point type with the same number of components
141 * as the original type - i.e. int to float, not int to vec4.
143 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
144 from->type->matrix_columns);
146 switch (from->type->base_type) {
148 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
151 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
154 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
164 static const struct glsl_type *
165 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
167 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
169 const glsl_type *type_a = value_a->type;
170 const glsl_type *type_b = value_b->type;
172 /* From GLSL 1.50 spec, page 56:
174 * "The arithmetic binary operators add (+), subtract (-),
175 * multiply (*), and divide (/) operate on integer and
176 * floating-point scalars, vectors, and matrices."
178 if (!type_a->is_numeric() || !type_b->is_numeric()) {
179 _mesa_glsl_error(loc, state,
180 "Operands to arithmetic operators must be numeric");
181 return glsl_type::error_type;
185 /* "If one operand is floating-point based and the other is
186 * not, then the conversions from Section 4.1.10 "Implicit
187 * Conversions" are applied to the non-floating-point-based operand."
189 if (!apply_implicit_conversion(type_a, value_b, state)
190 && !apply_implicit_conversion(type_b, value_a, state)) {
191 _mesa_glsl_error(loc, state,
192 "Could not implicitly convert operands to "
193 "arithmetic operator");
194 return glsl_type::error_type;
196 type_a = value_a->type;
197 type_b = value_b->type;
199 /* "If the operands are integer types, they must both be signed or
202 * From this rule and the preceeding conversion it can be inferred that
203 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
204 * The is_numeric check above already filtered out the case where either
205 * type is not one of these, so now the base types need only be tested for
208 if (type_a->base_type != type_b->base_type) {
209 _mesa_glsl_error(loc, state,
210 "base type mismatch for arithmetic operator");
211 return glsl_type::error_type;
214 /* "All arithmetic binary operators result in the same fundamental type
215 * (signed integer, unsigned integer, or floating-point) as the
216 * operands they operate on, after operand type conversion. After
217 * conversion, the following cases are valid
219 * * The two operands are scalars. In this case the operation is
220 * applied, resulting in a scalar."
222 if (type_a->is_scalar() && type_b->is_scalar())
225 /* "* One operand is a scalar, and the other is a vector or matrix.
226 * In this case, the scalar operation is applied independently to each
227 * component of the vector or matrix, resulting in the same size
230 if (type_a->is_scalar()) {
231 if (!type_b->is_scalar())
233 } else if (type_b->is_scalar()) {
237 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
238 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
241 assert(!type_a->is_scalar());
242 assert(!type_b->is_scalar());
244 /* "* The two operands are vectors of the same size. In this case, the
245 * operation is done component-wise resulting in the same size
248 if (type_a->is_vector() && type_b->is_vector()) {
249 if (type_a == type_b) {
252 _mesa_glsl_error(loc, state,
253 "vector size mismatch for arithmetic operator");
254 return glsl_type::error_type;
258 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
259 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
260 * <vector, vector> have been handled. At least one of the operands must
261 * be matrix. Further, since there are no integer matrix types, the base
262 * type of both operands must be float.
264 assert(type_a->is_matrix() || type_b->is_matrix());
265 assert(type_a->base_type == GLSL_TYPE_FLOAT);
266 assert(type_b->base_type == GLSL_TYPE_FLOAT);
268 /* "* The operator is add (+), subtract (-), or divide (/), and the
269 * operands are matrices with the same number of rows and the same
270 * number of columns. In this case, the operation is done component-
271 * wise resulting in the same size matrix."
272 * * The operator is multiply (*), where both operands are matrices or
273 * one operand is a vector and the other a matrix. A right vector
274 * operand is treated as a column vector and a left vector operand as a
275 * row vector. In all these cases, it is required that the number of
276 * columns of the left operand is equal to the number of rows of the
277 * right operand. Then, the multiply (*) operation does a linear
278 * algebraic multiply, yielding an object that has the same number of
279 * rows as the left operand and the same number of columns as the right
280 * operand. Section 5.10 "Vector and Matrix Operations" explains in
281 * more detail how vectors and matrices are operated on."
284 if (type_a == type_b)
287 if (type_a->is_matrix() && type_b->is_matrix()) {
288 /* Matrix multiply. The columns of A must match the rows of B. Given
289 * the other previously tested constraints, this means the vector type
290 * of a row from A must be the same as the vector type of a column from
293 if (type_a->row_type() == type_b->column_type()) {
294 /* The resulting matrix has the number of columns of matrix B and
295 * the number of rows of matrix A. We get the row count of A by
296 * looking at the size of a vector that makes up a column. The
297 * transpose (size of a row) is done for B.
299 const glsl_type *const type =
300 glsl_type::get_instance(type_a->base_type,
301 type_a->column_type()->vector_elements,
302 type_b->row_type()->vector_elements);
303 assert(type != glsl_type::error_type);
307 } else if (type_a->is_matrix()) {
308 /* A is a matrix and B is a column vector. Columns of A must match
309 * rows of B. Given the other previously tested constraints, this
310 * means the vector type of a row from A must be the same as the
311 * vector the type of B.
313 if (type_a->row_type() == type_b) {
314 /* The resulting vector has a number of elements equal to
315 * the number of rows of matrix A. */
316 const glsl_type *const type =
317 glsl_type::get_instance(type_a->base_type,
318 type_a->column_type()->vector_elements,
320 assert(type != glsl_type::error_type);
325 assert(type_b->is_matrix());
327 /* A is a row vector and B is a matrix. Columns of A must match rows
328 * of B. Given the other previously tested constraints, this means
329 * the type of A must be the same as the vector type of a column from
332 if (type_a == type_b->column_type()) {
333 /* The resulting vector has a number of elements equal to
334 * the number of columns of matrix B. */
335 const glsl_type *const type =
336 glsl_type::get_instance(type_a->base_type,
337 type_b->row_type()->vector_elements,
339 assert(type != glsl_type::error_type);
345 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
346 return glsl_type::error_type;
350 /* "All other cases are illegal."
352 _mesa_glsl_error(loc, state, "type mismatch");
353 return glsl_type::error_type;
357 static const struct glsl_type *
358 unary_arithmetic_result_type(const struct glsl_type *type,
359 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
361 /* From GLSL 1.50 spec, page 57:
363 * "The arithmetic unary operators negate (-), post- and pre-increment
364 * and decrement (-- and ++) operate on integer or floating-point
365 * values (including vectors and matrices). All unary operators work
366 * component-wise on their operands. These result with the same type
369 if (!type->is_numeric()) {
370 _mesa_glsl_error(loc, state,
371 "Operands to arithmetic operators must be numeric");
372 return glsl_type::error_type;
379 * \brief Return the result type of a bit-logic operation.
381 * If the given types to the bit-logic operator are invalid, return
382 * glsl_type::error_type.
384 * \param type_a Type of LHS of bit-logic op
385 * \param type_b Type of RHS of bit-logic op
387 static const struct glsl_type *
388 bit_logic_result_type(const struct glsl_type *type_a,
389 const struct glsl_type *type_b,
391 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
393 if (state->language_version < 130) {
394 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
395 return glsl_type::error_type;
398 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
400 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
401 * (|). The operands must be of type signed or unsigned integers or
404 if (!type_a->is_integer()) {
405 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
406 ast_expression::operator_string(op));
407 return glsl_type::error_type;
409 if (!type_b->is_integer()) {
410 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
411 ast_expression::operator_string(op));
412 return glsl_type::error_type;
415 /* "The fundamental types of the operands (signed or unsigned) must
418 if (type_a->base_type != type_b->base_type) {
419 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
420 "base type", ast_expression::operator_string(op));
421 return glsl_type::error_type;
424 /* "The operands cannot be vectors of differing size." */
425 if (type_a->is_vector() &&
426 type_b->is_vector() &&
427 type_a->vector_elements != type_b->vector_elements) {
428 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
429 "different sizes", ast_expression::operator_string(op));
430 return glsl_type::error_type;
433 /* "If one operand is a scalar and the other a vector, the scalar is
434 * applied component-wise to the vector, resulting in the same type as
435 * the vector. The fundamental types of the operands [...] will be the
436 * resulting fundamental type."
438 if (type_a->is_scalar())
444 static const struct glsl_type *
445 modulus_result_type(const struct glsl_type *type_a,
446 const struct glsl_type *type_b,
447 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
449 if (state->language_version < 130) {
450 _mesa_glsl_error(loc, state,
451 "operator '%%' is reserved in %s",
452 state->version_string);
453 return glsl_type::error_type;
456 /* From GLSL 1.50 spec, page 56:
457 * "The operator modulus (%) operates on signed or unsigned integers or
458 * integer vectors. The operand types must both be signed or both be
461 if (!type_a->is_integer()) {
462 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer.");
463 return glsl_type::error_type;
465 if (!type_b->is_integer()) {
466 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer.");
467 return glsl_type::error_type;
469 if (type_a->base_type != type_b->base_type) {
470 _mesa_glsl_error(loc, state,
471 "operands of %% must have the same base type");
472 return glsl_type::error_type;
475 /* "The operands cannot be vectors of differing size. If one operand is
476 * a scalar and the other vector, then the scalar is applied component-
477 * wise to the vector, resulting in the same type as the vector. If both
478 * are vectors of the same size, the result is computed component-wise."
480 if (type_a->is_vector()) {
481 if (!type_b->is_vector()
482 || (type_a->vector_elements == type_b->vector_elements))
487 /* "The operator modulus (%) is not defined for any other data types
488 * (non-integer types)."
490 _mesa_glsl_error(loc, state, "type mismatch");
491 return glsl_type::error_type;
495 static const struct glsl_type *
496 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
497 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
499 const glsl_type *type_a = value_a->type;
500 const glsl_type *type_b = value_b->type;
502 /* From GLSL 1.50 spec, page 56:
503 * "The relational operators greater than (>), less than (<), greater
504 * than or equal (>=), and less than or equal (<=) operate only on
505 * scalar integer and scalar floating-point expressions."
507 if (!type_a->is_numeric()
508 || !type_b->is_numeric()
509 || !type_a->is_scalar()
510 || !type_b->is_scalar()) {
511 _mesa_glsl_error(loc, state,
512 "Operands to relational operators must be scalar and "
514 return glsl_type::error_type;
517 /* "Either the operands' types must match, or the conversions from
518 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
519 * operand, after which the types must match."
521 if (!apply_implicit_conversion(type_a, value_b, state)
522 && !apply_implicit_conversion(type_b, value_a, state)) {
523 _mesa_glsl_error(loc, state,
524 "Could not implicitly convert operands to "
525 "relational operator");
526 return glsl_type::error_type;
528 type_a = value_a->type;
529 type_b = value_b->type;
531 if (type_a->base_type != type_b->base_type) {
532 _mesa_glsl_error(loc, state, "base type mismatch");
533 return glsl_type::error_type;
536 /* "The result is scalar Boolean."
538 return glsl_type::bool_type;
542 * \brief Return the result type of a bit-shift operation.
544 * If the given types to the bit-shift operator are invalid, return
545 * glsl_type::error_type.
547 * \param type_a Type of LHS of bit-shift op
548 * \param type_b Type of RHS of bit-shift op
550 static const struct glsl_type *
551 shift_result_type(const struct glsl_type *type_a,
552 const struct glsl_type *type_b,
554 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
556 if (state->language_version < 130) {
557 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
558 return glsl_type::error_type;
561 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
563 * "The shift operators (<<) and (>>). For both operators, the operands
564 * must be signed or unsigned integers or integer vectors. One operand
565 * can be signed while the other is unsigned."
567 if (!type_a->is_integer()) {
568 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
569 "integer vector", ast_expression::operator_string(op));
570 return glsl_type::error_type;
573 if (!type_b->is_integer()) {
574 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
575 "integer vector", ast_expression::operator_string(op));
576 return glsl_type::error_type;
579 /* "If the first operand is a scalar, the second operand has to be
582 if (type_a->is_scalar() && !type_b->is_scalar()) {
583 _mesa_glsl_error(loc, state, "If the first operand of %s is scalar, the "
584 "second must be scalar as well",
585 ast_expression::operator_string(op));
586 return glsl_type::error_type;
589 /* If both operands are vectors, check that they have same number of
592 if (type_a->is_vector() &&
593 type_b->is_vector() &&
594 type_a->vector_elements != type_b->vector_elements) {
595 _mesa_glsl_error(loc, state, "Vector operands to operator %s must "
596 "have same number of elements",
597 ast_expression::operator_string(op));
598 return glsl_type::error_type;
601 /* "In all cases, the resulting type will be the same type as the left
608 * Validates that a value can be assigned to a location with a specified type
610 * Validates that \c rhs can be assigned to some location. If the types are
611 * not an exact match but an automatic conversion is possible, \c rhs will be
615 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
616 * Otherwise the actual RHS to be assigned will be returned. This may be
617 * \c rhs, or it may be \c rhs after some type conversion.
620 * In addition to being used for assignments, this function is used to
621 * type-check return values.
624 validate_assignment(struct _mesa_glsl_parse_state *state,
625 const glsl_type *lhs_type, ir_rvalue *rhs,
628 /* If there is already some error in the RHS, just return it. Anything
629 * else will lead to an avalanche of error message back to the user.
631 if (rhs->type->is_error())
634 /* If the types are identical, the assignment can trivially proceed.
636 if (rhs->type == lhs_type)
639 /* If the array element types are the same and the size of the LHS is zero,
640 * the assignment is okay for initializers embedded in variable
643 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
644 * is handled by ir_dereference::is_lvalue.
646 if (is_initializer && lhs_type->is_array() && rhs->type->is_array()
647 && (lhs_type->element_type() == rhs->type->element_type())
648 && (lhs_type->array_size() == 0)) {
652 /* Check for implicit conversion in GLSL 1.20 */
653 if (apply_implicit_conversion(lhs_type, rhs, state)) {
654 if (rhs->type == lhs_type)
662 mark_whole_array_access(ir_rvalue *access)
664 ir_dereference_variable *deref = access->as_dereference_variable();
666 if (deref && deref->var) {
667 deref->var->max_array_access = deref->type->length - 1;
672 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
673 const char *non_lvalue_description,
674 ir_rvalue *lhs, ir_rvalue *rhs, bool is_initializer,
678 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
680 ir_variable *lhs_var = lhs->variable_referenced();
682 lhs_var->assigned = true;
684 if (!error_emitted) {
685 if (non_lvalue_description != NULL) {
686 _mesa_glsl_error(&lhs_loc, state,
688 non_lvalue_description);
689 error_emitted = true;
690 } else if (lhs->variable_referenced() != NULL
691 && lhs->variable_referenced()->read_only) {
692 _mesa_glsl_error(&lhs_loc, state,
693 "assignment to read-only variable '%s'",
694 lhs->variable_referenced()->name);
695 error_emitted = true;
697 } else if (state->language_version <= 110 && lhs->type->is_array()) {
698 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
700 * "Other binary or unary expressions, non-dereferenced
701 * arrays, function names, swizzles with repeated fields,
702 * and constants cannot be l-values."
704 _mesa_glsl_error(&lhs_loc, state, "whole array assignment is not "
705 "allowed in GLSL 1.10 or GLSL ES 1.00.");
706 error_emitted = true;
707 } else if (!lhs->is_lvalue()) {
708 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
709 error_emitted = true;
714 validate_assignment(state, lhs->type, rhs, is_initializer);
715 if (new_rhs == NULL) {
716 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
720 /* If the LHS array was not declared with a size, it takes it size from
721 * the RHS. If the LHS is an l-value and a whole array, it must be a
722 * dereference of a variable. Any other case would require that the LHS
723 * is either not an l-value or not a whole array.
725 if (lhs->type->array_size() == 0) {
726 ir_dereference *const d = lhs->as_dereference();
730 ir_variable *const var = d->variable_referenced();
734 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
735 /* FINISHME: This should actually log the location of the RHS. */
736 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
738 var->max_array_access);
741 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
742 rhs->type->array_size());
745 mark_whole_array_access(rhs);
746 mark_whole_array_access(lhs);
749 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
750 * but not post_inc) need the converted assigned value as an rvalue
751 * to handle things like:
755 * So we always just store the computed value being assigned to a
756 * temporary and return a deref of that temporary. If the rvalue
757 * ends up not being used, the temp will get copy-propagated out.
759 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
761 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
762 instructions->push_tail(var);
763 instructions->push_tail(new(ctx) ir_assignment(deref_var, rhs));
764 deref_var = new(ctx) ir_dereference_variable(var);
767 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
769 return new(ctx) ir_dereference_variable(var);
773 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
775 void *ctx = ralloc_parent(lvalue);
778 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
780 instructions->push_tail(var);
781 var->mode = ir_var_auto;
783 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
786 return new(ctx) ir_dereference_variable(var);
791 ast_node::hir(exec_list *instructions,
792 struct _mesa_glsl_parse_state *state)
801 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
804 ir_rvalue *cmp = NULL;
806 if (operation == ir_binop_all_equal)
807 join_op = ir_binop_logic_and;
809 join_op = ir_binop_logic_or;
811 switch (op0->type->base_type) {
812 case GLSL_TYPE_FLOAT:
816 return new(mem_ctx) ir_expression(operation, op0, op1);
818 case GLSL_TYPE_ARRAY: {
819 for (unsigned int i = 0; i < op0->type->length; i++) {
820 ir_rvalue *e0, *e1, *result;
822 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
823 new(mem_ctx) ir_constant(i));
824 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
825 new(mem_ctx) ir_constant(i));
826 result = do_comparison(mem_ctx, operation, e0, e1);
829 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
835 mark_whole_array_access(op0);
836 mark_whole_array_access(op1);
840 case GLSL_TYPE_STRUCT: {
841 for (unsigned int i = 0; i < op0->type->length; i++) {
842 ir_rvalue *e0, *e1, *result;
843 const char *field_name = op0->type->fields.structure[i].name;
845 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
847 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
849 result = do_comparison(mem_ctx, operation, e0, e1);
852 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
860 case GLSL_TYPE_ERROR:
862 case GLSL_TYPE_SAMPLER:
863 /* I assume a comparison of a struct containing a sampler just
864 * ignores the sampler present in the type.
869 assert(!"Should not get here.");
874 cmp = new(mem_ctx) ir_constant(true);
879 /* For logical operations, we want to ensure that the operands are
880 * scalar booleans. If it isn't, emit an error and return a constant
881 * boolean to avoid triggering cascading error messages.
884 get_scalar_boolean_operand(exec_list *instructions,
885 struct _mesa_glsl_parse_state *state,
886 ast_expression *parent_expr,
888 const char *operand_name,
891 ast_expression *expr = parent_expr->subexpressions[operand];
893 ir_rvalue *val = expr->hir(instructions, state);
895 if (val->type->is_boolean() && val->type->is_scalar())
898 if (!*error_emitted) {
899 YYLTYPE loc = expr->get_location();
900 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
902 parent_expr->operator_string(parent_expr->oper));
903 *error_emitted = true;
906 return new(ctx) ir_constant(true);
910 * If name refers to a builtin array whose maximum allowed size is less than
911 * size, report an error and return true. Otherwise return false.
914 check_builtin_array_max_size(const char *name, unsigned size,
915 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
917 if ((strcmp("gl_TexCoord", name) == 0)
918 && (size > state->Const.MaxTextureCoords)) {
919 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
921 * "The size [of gl_TexCoord] can be at most
922 * gl_MaxTextureCoords."
924 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
925 "be larger than gl_MaxTextureCoords (%u)\n",
926 state->Const.MaxTextureCoords);
928 } else if (strcmp("gl_ClipDistance", name) == 0
929 && size > state->Const.MaxClipPlanes) {
930 /* From section 7.1 (Vertex Shader Special Variables) of the
933 * "The gl_ClipDistance array is predeclared as unsized and
934 * must be sized by the shader either redeclaring it with a
935 * size or indexing it only with integral constant
936 * expressions. ... The size can be at most
937 * gl_MaxClipDistances."
939 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
940 "be larger than gl_MaxClipDistances (%u)\n",
941 state->Const.MaxClipPlanes);
948 * Create the constant 1, of a which is appropriate for incrementing and
949 * decrementing values of the given GLSL type. For example, if type is vec4,
950 * this creates a constant value of 1.0 having type float.
952 * If the given type is invalid for increment and decrement operators, return
953 * a floating point 1--the error will be detected later.
956 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
958 switch (type->base_type) {
960 return new(ctx) ir_constant((unsigned) 1);
962 return new(ctx) ir_constant(1);
964 case GLSL_TYPE_FLOAT:
965 return new(ctx) ir_constant(1.0f);
970 ast_expression::hir(exec_list *instructions,
971 struct _mesa_glsl_parse_state *state)
974 static const int operations[AST_NUM_OPERATORS] = {
975 -1, /* ast_assign doesn't convert to ir_expression. */
976 -1, /* ast_plus doesn't convert to ir_expression. */
1000 /* Note: The following block of expression types actually convert
1001 * to multiple IR instructions.
1003 ir_binop_mul, /* ast_mul_assign */
1004 ir_binop_div, /* ast_div_assign */
1005 ir_binop_mod, /* ast_mod_assign */
1006 ir_binop_add, /* ast_add_assign */
1007 ir_binop_sub, /* ast_sub_assign */
1008 ir_binop_lshift, /* ast_ls_assign */
1009 ir_binop_rshift, /* ast_rs_assign */
1010 ir_binop_bit_and, /* ast_and_assign */
1011 ir_binop_bit_xor, /* ast_xor_assign */
1012 ir_binop_bit_or, /* ast_or_assign */
1014 -1, /* ast_conditional doesn't convert to ir_expression. */
1015 ir_binop_add, /* ast_pre_inc. */
1016 ir_binop_sub, /* ast_pre_dec. */
1017 ir_binop_add, /* ast_post_inc. */
1018 ir_binop_sub, /* ast_post_dec. */
1019 -1, /* ast_field_selection doesn't conv to ir_expression. */
1020 -1, /* ast_array_index doesn't convert to ir_expression. */
1021 -1, /* ast_function_call doesn't conv to ir_expression. */
1022 -1, /* ast_identifier doesn't convert to ir_expression. */
1023 -1, /* ast_int_constant doesn't convert to ir_expression. */
1024 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1025 -1, /* ast_float_constant doesn't conv to ir_expression. */
1026 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1027 -1, /* ast_sequence doesn't convert to ir_expression. */
1029 ir_rvalue *result = NULL;
1031 const struct glsl_type *type; /* a temporary variable for switch cases */
1032 bool error_emitted = false;
1035 loc = this->get_location();
1037 switch (this->oper) {
1039 op[0] = this->subexpressions[0]->hir(instructions, state);
1040 op[1] = this->subexpressions[1]->hir(instructions, state);
1042 result = do_assignment(instructions, state,
1043 this->subexpressions[0]->non_lvalue_description,
1044 op[0], op[1], false,
1045 this->subexpressions[0]->get_location());
1046 error_emitted = result->type->is_error();
1051 op[0] = this->subexpressions[0]->hir(instructions, state);
1053 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1055 error_emitted = type->is_error();
1061 op[0] = this->subexpressions[0]->hir(instructions, state);
1063 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1065 error_emitted = type->is_error();
1067 result = new(ctx) ir_expression(operations[this->oper], type,
1075 op[0] = this->subexpressions[0]->hir(instructions, state);
1076 op[1] = this->subexpressions[1]->hir(instructions, state);
1078 type = arithmetic_result_type(op[0], op[1],
1079 (this->oper == ast_mul),
1081 error_emitted = type->is_error();
1083 result = new(ctx) ir_expression(operations[this->oper], type,
1088 op[0] = this->subexpressions[0]->hir(instructions, state);
1089 op[1] = this->subexpressions[1]->hir(instructions, state);
1091 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1093 assert(operations[this->oper] == ir_binop_mod);
1095 result = new(ctx) ir_expression(operations[this->oper], type,
1097 error_emitted = type->is_error();
1102 if (state->language_version < 130) {
1103 _mesa_glsl_error(&loc, state, "operator %s requires GLSL 1.30",
1104 operator_string(this->oper));
1105 error_emitted = true;
1108 op[0] = this->subexpressions[0]->hir(instructions, state);
1109 op[1] = this->subexpressions[1]->hir(instructions, state);
1110 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1112 result = new(ctx) ir_expression(operations[this->oper], type,
1114 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1121 op[0] = this->subexpressions[0]->hir(instructions, state);
1122 op[1] = this->subexpressions[1]->hir(instructions, state);
1124 type = relational_result_type(op[0], op[1], state, & loc);
1126 /* The relational operators must either generate an error or result
1127 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1129 assert(type->is_error()
1130 || ((type->base_type == GLSL_TYPE_BOOL)
1131 && type->is_scalar()));
1133 result = new(ctx) ir_expression(operations[this->oper], type,
1135 error_emitted = type->is_error();
1140 op[0] = this->subexpressions[0]->hir(instructions, state);
1141 op[1] = this->subexpressions[1]->hir(instructions, state);
1143 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1145 * "The equality operators equal (==), and not equal (!=)
1146 * operate on all types. They result in a scalar Boolean. If
1147 * the operand types do not match, then there must be a
1148 * conversion from Section 4.1.10 "Implicit Conversions"
1149 * applied to one operand that can make them match, in which
1150 * case this conversion is done."
1152 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1153 && !apply_implicit_conversion(op[1]->type, op[0], state))
1154 || (op[0]->type != op[1]->type)) {
1155 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1156 "type", (this->oper == ast_equal) ? "==" : "!=");
1157 error_emitted = true;
1158 } else if ((state->language_version <= 110)
1159 && (op[0]->type->is_array() || op[1]->type->is_array())) {
1160 _mesa_glsl_error(& loc, state, "array comparisons forbidden in "
1162 error_emitted = true;
1165 if (error_emitted) {
1166 result = new(ctx) ir_constant(false);
1168 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1169 assert(result->type == glsl_type::bool_type);
1176 op[0] = this->subexpressions[0]->hir(instructions, state);
1177 op[1] = this->subexpressions[1]->hir(instructions, state);
1178 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1180 result = new(ctx) ir_expression(operations[this->oper], type,
1182 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1186 op[0] = this->subexpressions[0]->hir(instructions, state);
1188 if (state->language_version < 130) {
1189 _mesa_glsl_error(&loc, state, "bit-wise operations require GLSL 1.30");
1190 error_emitted = true;
1193 if (!op[0]->type->is_integer()) {
1194 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1195 error_emitted = true;
1198 type = error_emitted ? glsl_type::error_type : op[0]->type;
1199 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1202 case ast_logic_and: {
1203 exec_list rhs_instructions;
1204 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1205 "LHS", &error_emitted);
1206 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1207 "RHS", &error_emitted);
1209 if (rhs_instructions.is_empty()) {
1210 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1211 type = result->type;
1213 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1216 instructions->push_tail(tmp);
1218 ir_if *const stmt = new(ctx) ir_if(op[0]);
1219 instructions->push_tail(stmt);
1221 stmt->then_instructions.append_list(&rhs_instructions);
1222 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1223 ir_assignment *const then_assign =
1224 new(ctx) ir_assignment(then_deref, op[1]);
1225 stmt->then_instructions.push_tail(then_assign);
1227 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1228 ir_assignment *const else_assign =
1229 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1230 stmt->else_instructions.push_tail(else_assign);
1232 result = new(ctx) ir_dereference_variable(tmp);
1238 case ast_logic_or: {
1239 exec_list rhs_instructions;
1240 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1241 "LHS", &error_emitted);
1242 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1243 "RHS", &error_emitted);
1245 if (rhs_instructions.is_empty()) {
1246 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1247 type = result->type;
1249 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1252 instructions->push_tail(tmp);
1254 ir_if *const stmt = new(ctx) ir_if(op[0]);
1255 instructions->push_tail(stmt);
1257 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1258 ir_assignment *const then_assign =
1259 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1260 stmt->then_instructions.push_tail(then_assign);
1262 stmt->else_instructions.append_list(&rhs_instructions);
1263 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1264 ir_assignment *const else_assign =
1265 new(ctx) ir_assignment(else_deref, op[1]);
1266 stmt->else_instructions.push_tail(else_assign);
1268 result = new(ctx) ir_dereference_variable(tmp);
1275 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1277 * "The logical binary operators and (&&), or ( | | ), and
1278 * exclusive or (^^). They operate only on two Boolean
1279 * expressions and result in a Boolean expression."
1281 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1283 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1286 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1291 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1292 "operand", &error_emitted);
1294 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1298 case ast_mul_assign:
1299 case ast_div_assign:
1300 case ast_add_assign:
1301 case ast_sub_assign: {
1302 op[0] = this->subexpressions[0]->hir(instructions, state);
1303 op[1] = this->subexpressions[1]->hir(instructions, state);
1305 type = arithmetic_result_type(op[0], op[1],
1306 (this->oper == ast_mul_assign),
1309 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1312 result = do_assignment(instructions, state,
1313 this->subexpressions[0]->non_lvalue_description,
1314 op[0]->clone(ctx, NULL), temp_rhs, false,
1315 this->subexpressions[0]->get_location());
1316 error_emitted = (op[0]->type->is_error());
1318 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1319 * explicitly test for this because none of the binary expression
1320 * operators allow array operands either.
1326 case ast_mod_assign: {
1327 op[0] = this->subexpressions[0]->hir(instructions, state);
1328 op[1] = this->subexpressions[1]->hir(instructions, state);
1330 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1332 assert(operations[this->oper] == ir_binop_mod);
1334 ir_rvalue *temp_rhs;
1335 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1338 result = do_assignment(instructions, state,
1339 this->subexpressions[0]->non_lvalue_description,
1340 op[0]->clone(ctx, NULL), temp_rhs, false,
1341 this->subexpressions[0]->get_location());
1342 error_emitted = type->is_error();
1347 case ast_rs_assign: {
1348 op[0] = this->subexpressions[0]->hir(instructions, state);
1349 op[1] = this->subexpressions[1]->hir(instructions, state);
1350 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1352 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1353 type, op[0], op[1]);
1354 result = do_assignment(instructions, state,
1355 this->subexpressions[0]->non_lvalue_description,
1356 op[0]->clone(ctx, NULL), temp_rhs, false,
1357 this->subexpressions[0]->get_location());
1358 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1362 case ast_and_assign:
1363 case ast_xor_assign:
1364 case ast_or_assign: {
1365 op[0] = this->subexpressions[0]->hir(instructions, state);
1366 op[1] = this->subexpressions[1]->hir(instructions, state);
1367 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1369 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1370 type, op[0], op[1]);
1371 result = do_assignment(instructions, state,
1372 this->subexpressions[0]->non_lvalue_description,
1373 op[0]->clone(ctx, NULL), temp_rhs, false,
1374 this->subexpressions[0]->get_location());
1375 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1379 case ast_conditional: {
1380 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1382 * "The ternary selection operator (?:). It operates on three
1383 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1384 * first expression, which must result in a scalar Boolean."
1386 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1387 "condition", &error_emitted);
1389 /* The :? operator is implemented by generating an anonymous temporary
1390 * followed by an if-statement. The last instruction in each branch of
1391 * the if-statement assigns a value to the anonymous temporary. This
1392 * temporary is the r-value of the expression.
1394 exec_list then_instructions;
1395 exec_list else_instructions;
1397 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1398 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1400 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1402 * "The second and third expressions can be any type, as
1403 * long their types match, or there is a conversion in
1404 * Section 4.1.10 "Implicit Conversions" that can be applied
1405 * to one of the expressions to make their types match. This
1406 * resulting matching type is the type of the entire
1409 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1410 && !apply_implicit_conversion(op[2]->type, op[1], state))
1411 || (op[1]->type != op[2]->type)) {
1412 YYLTYPE loc = this->subexpressions[1]->get_location();
1414 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1415 "operator must have matching types.");
1416 error_emitted = true;
1417 type = glsl_type::error_type;
1422 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1424 * "The second and third expressions must be the same type, but can
1425 * be of any type other than an array."
1427 if ((state->language_version <= 110) && type->is_array()) {
1428 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1429 "operator must not be arrays.");
1430 error_emitted = true;
1433 ir_constant *cond_val = op[0]->constant_expression_value();
1434 ir_constant *then_val = op[1]->constant_expression_value();
1435 ir_constant *else_val = op[2]->constant_expression_value();
1437 if (then_instructions.is_empty()
1438 && else_instructions.is_empty()
1439 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1440 result = (cond_val->value.b[0]) ? then_val : else_val;
1442 ir_variable *const tmp =
1443 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1444 instructions->push_tail(tmp);
1446 ir_if *const stmt = new(ctx) ir_if(op[0]);
1447 instructions->push_tail(stmt);
1449 then_instructions.move_nodes_to(& stmt->then_instructions);
1450 ir_dereference *const then_deref =
1451 new(ctx) ir_dereference_variable(tmp);
1452 ir_assignment *const then_assign =
1453 new(ctx) ir_assignment(then_deref, op[1]);
1454 stmt->then_instructions.push_tail(then_assign);
1456 else_instructions.move_nodes_to(& stmt->else_instructions);
1457 ir_dereference *const else_deref =
1458 new(ctx) ir_dereference_variable(tmp);
1459 ir_assignment *const else_assign =
1460 new(ctx) ir_assignment(else_deref, op[2]);
1461 stmt->else_instructions.push_tail(else_assign);
1463 result = new(ctx) ir_dereference_variable(tmp);
1470 this->non_lvalue_description = (this->oper == ast_pre_inc)
1471 ? "pre-increment operation" : "pre-decrement operation";
1473 op[0] = this->subexpressions[0]->hir(instructions, state);
1474 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1476 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1478 ir_rvalue *temp_rhs;
1479 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1482 result = do_assignment(instructions, state,
1483 this->subexpressions[0]->non_lvalue_description,
1484 op[0]->clone(ctx, NULL), temp_rhs, false,
1485 this->subexpressions[0]->get_location());
1486 error_emitted = op[0]->type->is_error();
1491 case ast_post_dec: {
1492 this->non_lvalue_description = (this->oper == ast_post_inc)
1493 ? "post-increment operation" : "post-decrement operation";
1494 op[0] = this->subexpressions[0]->hir(instructions, state);
1495 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1497 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1499 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1501 ir_rvalue *temp_rhs;
1502 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1505 /* Get a temporary of a copy of the lvalue before it's modified.
1506 * This may get thrown away later.
1508 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1510 (void)do_assignment(instructions, state,
1511 this->subexpressions[0]->non_lvalue_description,
1512 op[0]->clone(ctx, NULL), temp_rhs, false,
1513 this->subexpressions[0]->get_location());
1515 error_emitted = op[0]->type->is_error();
1519 case ast_field_selection:
1520 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1523 case ast_array_index: {
1524 YYLTYPE index_loc = subexpressions[1]->get_location();
1526 op[0] = subexpressions[0]->hir(instructions, state);
1527 op[1] = subexpressions[1]->hir(instructions, state);
1529 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1531 ir_rvalue *const array = op[0];
1533 result = new(ctx) ir_dereference_array(op[0], op[1]);
1535 /* Do not use op[0] after this point. Use array.
1543 if (!array->type->is_array()
1544 && !array->type->is_matrix()
1545 && !array->type->is_vector()) {
1546 _mesa_glsl_error(& index_loc, state,
1547 "cannot dereference non-array / non-matrix / "
1549 error_emitted = true;
1552 if (!op[1]->type->is_integer()) {
1553 _mesa_glsl_error(& index_loc, state,
1554 "array index must be integer type");
1555 error_emitted = true;
1556 } else if (!op[1]->type->is_scalar()) {
1557 _mesa_glsl_error(& index_loc, state,
1558 "array index must be scalar");
1559 error_emitted = true;
1562 /* If the array index is a constant expression and the array has a
1563 * declared size, ensure that the access is in-bounds. If the array
1564 * index is not a constant expression, ensure that the array has a
1567 ir_constant *const const_index = op[1]->constant_expression_value();
1568 if (const_index != NULL) {
1569 const int idx = const_index->value.i[0];
1570 const char *type_name;
1573 if (array->type->is_matrix()) {
1574 type_name = "matrix";
1575 } else if (array->type->is_vector()) {
1576 type_name = "vector";
1578 type_name = "array";
1581 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
1583 * "It is illegal to declare an array with a size, and then
1584 * later (in the same shader) index the same array with an
1585 * integral constant expression greater than or equal to the
1586 * declared size. It is also illegal to index an array with a
1587 * negative constant expression."
1589 if (array->type->is_matrix()) {
1590 if (array->type->row_type()->vector_elements <= idx) {
1591 bound = array->type->row_type()->vector_elements;
1593 } else if (array->type->is_vector()) {
1594 if (array->type->vector_elements <= idx) {
1595 bound = array->type->vector_elements;
1598 if ((array->type->array_size() > 0)
1599 && (array->type->array_size() <= idx)) {
1600 bound = array->type->array_size();
1605 _mesa_glsl_error(& loc, state, "%s index must be < %u",
1607 error_emitted = true;
1608 } else if (idx < 0) {
1609 _mesa_glsl_error(& loc, state, "%s index must be >= 0",
1611 error_emitted = true;
1614 if (array->type->is_array()) {
1615 /* If the array is a variable dereference, it dereferences the
1616 * whole array, by definition. Use this to get the variable.
1618 * FINISHME: Should some methods for getting / setting / testing
1619 * FINISHME: array access limits be added to ir_dereference?
1621 ir_variable *const v = array->whole_variable_referenced();
1622 if ((v != NULL) && (unsigned(idx) > v->max_array_access)) {
1623 v->max_array_access = idx;
1625 /* Check whether this access will, as a side effect, implicitly
1626 * cause the size of a built-in array to be too large.
1628 if (check_builtin_array_max_size(v->name, idx+1, loc, state))
1629 error_emitted = true;
1632 } else if (array->type->array_size() == 0) {
1633 _mesa_glsl_error(&loc, state, "unsized array index must be constant");
1635 if (array->type->is_array()) {
1636 /* whole_variable_referenced can return NULL if the array is a
1637 * member of a structure. In this case it is safe to not update
1638 * the max_array_access field because it is never used for fields
1641 ir_variable *v = array->whole_variable_referenced();
1643 v->max_array_access = array->type->array_size() - 1;
1647 /* From page 23 (29 of the PDF) of the GLSL 1.30 spec:
1649 * "Samplers aggregated into arrays within a shader (using square
1650 * brackets [ ]) can only be indexed with integral constant
1651 * expressions [...]."
1653 * This restriction was added in GLSL 1.30. Shaders using earlier version
1654 * of the language should not be rejected by the compiler front-end for
1655 * using this construct. This allows useful things such as using a loop
1656 * counter as the index to an array of samplers. If the loop in unrolled,
1657 * the code should compile correctly. Instead, emit a warning.
1659 if (array->type->is_array() &&
1660 array->type->element_type()->is_sampler() &&
1661 const_index == NULL) {
1663 if (state->language_version == 100) {
1664 _mesa_glsl_warning(&loc, state,
1665 "sampler arrays indexed with non-constant "
1666 "expressions is optional in GLSL ES 1.00");
1667 } else if (state->language_version < 130) {
1668 _mesa_glsl_warning(&loc, state,
1669 "sampler arrays indexed with non-constant "
1670 "expressions is forbidden in GLSL 1.30 and "
1673 _mesa_glsl_error(&loc, state,
1674 "sampler arrays indexed with non-constant "
1675 "expressions is forbidden in GLSL 1.30 and "
1677 error_emitted = true;
1682 result->type = glsl_type::error_type;
1687 case ast_function_call:
1688 /* Should *NEVER* get here. ast_function_call should always be handled
1689 * by ast_function_expression::hir.
1694 case ast_identifier: {
1695 /* ast_identifier can appear several places in a full abstract syntax
1696 * tree. This particular use must be at location specified in the grammar
1697 * as 'variable_identifier'.
1700 state->symbols->get_variable(this->primary_expression.identifier);
1704 result = new(ctx) ir_dereference_variable(var);
1706 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1707 this->primary_expression.identifier);
1709 result = ir_rvalue::error_value(ctx);
1710 error_emitted = true;
1715 case ast_int_constant:
1716 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1719 case ast_uint_constant:
1720 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1723 case ast_float_constant:
1724 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1727 case ast_bool_constant:
1728 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1731 case ast_sequence: {
1732 /* It should not be possible to generate a sequence in the AST without
1733 * any expressions in it.
1735 assert(!this->expressions.is_empty());
1737 /* The r-value of a sequence is the last expression in the sequence. If
1738 * the other expressions in the sequence do not have side-effects (and
1739 * therefore add instructions to the instruction list), they get dropped
1742 exec_node *previous_tail_pred = NULL;
1743 YYLTYPE previous_operand_loc = loc;
1745 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1746 /* If one of the operands of comma operator does not generate any
1747 * code, we want to emit a warning. At each pass through the loop
1748 * previous_tail_pred will point to the last instruction in the
1749 * stream *before* processing the previous operand. Naturally,
1750 * instructions->tail_pred will point to the last instruction in the
1751 * stream *after* processing the previous operand. If the two
1752 * pointers match, then the previous operand had no effect.
1754 * The warning behavior here differs slightly from GCC. GCC will
1755 * only emit a warning if none of the left-hand operands have an
1756 * effect. However, it will emit a warning for each. I believe that
1757 * there are some cases in C (especially with GCC extensions) where
1758 * it is useful to have an intermediate step in a sequence have no
1759 * effect, but I don't think these cases exist in GLSL. Either way,
1760 * it would be a giant hassle to replicate that behavior.
1762 if (previous_tail_pred == instructions->tail_pred) {
1763 _mesa_glsl_warning(&previous_operand_loc, state,
1764 "left-hand operand of comma expression has "
1768 /* tail_pred is directly accessed instead of using the get_tail()
1769 * method for performance reasons. get_tail() has extra code to
1770 * return NULL when the list is empty. We don't care about that
1771 * here, so using tail_pred directly is fine.
1773 previous_tail_pred = instructions->tail_pred;
1774 previous_operand_loc = ast->get_location();
1776 result = ast->hir(instructions, state);
1779 /* Any errors should have already been emitted in the loop above.
1781 error_emitted = true;
1785 type = NULL; /* use result->type, not type. */
1786 assert(result != NULL);
1788 if (result->type->is_error() && !error_emitted)
1789 _mesa_glsl_error(& loc, state, "type mismatch");
1796 ast_expression_statement::hir(exec_list *instructions,
1797 struct _mesa_glsl_parse_state *state)
1799 /* It is possible to have expression statements that don't have an
1800 * expression. This is the solitary semicolon:
1802 * for (i = 0; i < 5; i++)
1805 * In this case the expression will be NULL. Test for NULL and don't do
1806 * anything in that case.
1808 if (expression != NULL)
1809 expression->hir(instructions, state);
1811 /* Statements do not have r-values.
1818 ast_compound_statement::hir(exec_list *instructions,
1819 struct _mesa_glsl_parse_state *state)
1822 state->symbols->push_scope();
1824 foreach_list_typed (ast_node, ast, link, &this->statements)
1825 ast->hir(instructions, state);
1828 state->symbols->pop_scope();
1830 /* Compound statements do not have r-values.
1836 static const glsl_type *
1837 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1838 struct _mesa_glsl_parse_state *state)
1840 unsigned length = 0;
1842 /* From page 19 (page 25) of the GLSL 1.20 spec:
1844 * "Only one-dimensional arrays may be declared."
1846 if (base->is_array()) {
1847 _mesa_glsl_error(loc, state,
1848 "invalid array of `%s' (only one-dimensional arrays "
1851 return glsl_type::error_type;
1854 if (array_size != NULL) {
1855 exec_list dummy_instructions;
1856 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1857 YYLTYPE loc = array_size->get_location();
1860 if (!ir->type->is_integer()) {
1861 _mesa_glsl_error(& loc, state, "array size must be integer type");
1862 } else if (!ir->type->is_scalar()) {
1863 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1865 ir_constant *const size = ir->constant_expression_value();
1868 _mesa_glsl_error(& loc, state, "array size must be a "
1869 "constant valued expression");
1870 } else if (size->value.i[0] <= 0) {
1871 _mesa_glsl_error(& loc, state, "array size must be > 0");
1873 assert(size->type == ir->type);
1874 length = size->value.u[0];
1876 /* If the array size is const (and we've verified that
1877 * it is) then no instructions should have been emitted
1878 * when we converted it to HIR. If they were emitted,
1879 * then either the array size isn't const after all, or
1880 * we are emitting unnecessary instructions.
1882 assert(dummy_instructions.is_empty());
1886 } else if (state->es_shader) {
1887 /* Section 10.17 of the GLSL ES 1.00 specification states that unsized
1888 * array declarations have been removed from the language.
1890 _mesa_glsl_error(loc, state, "unsized array declarations are not "
1891 "allowed in GLSL ES 1.00.");
1894 return glsl_type::get_array_instance(base, length);
1899 ast_type_specifier::glsl_type(const char **name,
1900 struct _mesa_glsl_parse_state *state) const
1902 const struct glsl_type *type;
1904 type = state->symbols->get_type(this->type_name);
1905 *name = this->type_name;
1907 if (this->is_array) {
1908 YYLTYPE loc = this->get_location();
1909 type = process_array_type(&loc, type, this->array_size, state);
1917 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1919 struct _mesa_glsl_parse_state *state,
1922 if (qual->flags.q.invariant) {
1924 _mesa_glsl_error(loc, state,
1925 "variable `%s' may not be redeclared "
1926 "`invariant' after being used",
1933 if (qual->flags.q.constant || qual->flags.q.attribute
1934 || qual->flags.q.uniform
1935 || (qual->flags.q.varying && (state->target == fragment_shader)))
1938 if (qual->flags.q.centroid)
1941 if (qual->flags.q.attribute && state->target != vertex_shader) {
1942 var->type = glsl_type::error_type;
1943 _mesa_glsl_error(loc, state,
1944 "`attribute' variables may not be declared in the "
1946 _mesa_glsl_shader_target_name(state->target));
1949 /* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1951 * "The varying qualifier can be used only with the data types
1952 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1955 if (qual->flags.q.varying) {
1956 const glsl_type *non_array_type;
1958 if (var->type && var->type->is_array())
1959 non_array_type = var->type->fields.array;
1961 non_array_type = var->type;
1963 if (non_array_type && non_array_type->base_type != GLSL_TYPE_FLOAT) {
1964 var->type = glsl_type::error_type;
1965 _mesa_glsl_error(loc, state,
1966 "varying variables must be of base type float");
1970 /* If there is no qualifier that changes the mode of the variable, leave
1971 * the setting alone.
1973 if (qual->flags.q.in && qual->flags.q.out)
1974 var->mode = ir_var_inout;
1975 else if (qual->flags.q.attribute || qual->flags.q.in
1976 || (qual->flags.q.varying && (state->target == fragment_shader)))
1977 var->mode = ir_var_in;
1978 else if (qual->flags.q.out
1979 || (qual->flags.q.varying && (state->target == vertex_shader)))
1980 var->mode = ir_var_out;
1981 else if (qual->flags.q.uniform)
1982 var->mode = ir_var_uniform;
1984 if (state->all_invariant && (state->current_function == NULL)) {
1985 switch (state->target) {
1987 if (var->mode == ir_var_out)
1988 var->invariant = true;
1990 case geometry_shader:
1991 if ((var->mode == ir_var_in) || (var->mode == ir_var_out))
1992 var->invariant = true;
1994 case fragment_shader:
1995 if (var->mode == ir_var_in)
1996 var->invariant = true;
2001 if (qual->flags.q.flat)
2002 var->interpolation = INTERP_QUALIFIER_FLAT;
2003 else if (qual->flags.q.noperspective)
2004 var->interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2005 else if (qual->flags.q.smooth)
2006 var->interpolation = INTERP_QUALIFIER_SMOOTH;
2008 var->interpolation = INTERP_QUALIFIER_NONE;
2010 if (var->interpolation != INTERP_QUALIFIER_NONE &&
2011 !(state->target == vertex_shader && var->mode == ir_var_out) &&
2012 !(state->target == fragment_shader && var->mode == ir_var_in)) {
2013 const char *qual_string = NULL;
2014 switch (var->interpolation) {
2015 case INTERP_QUALIFIER_FLAT:
2016 qual_string = "flat";
2018 case INTERP_QUALIFIER_NOPERSPECTIVE:
2019 qual_string = "noperspective";
2021 case INTERP_QUALIFIER_SMOOTH:
2022 qual_string = "smooth";
2026 _mesa_glsl_error(loc, state,
2027 "interpolation qualifier `%s' can only be applied to "
2028 "vertex shader outputs and fragment shader inputs.",
2033 var->pixel_center_integer = qual->flags.q.pixel_center_integer;
2034 var->origin_upper_left = qual->flags.q.origin_upper_left;
2035 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
2036 && (strcmp(var->name, "gl_FragCoord") != 0)) {
2037 const char *const qual_string = (qual->flags.q.origin_upper_left)
2038 ? "origin_upper_left" : "pixel_center_integer";
2040 _mesa_glsl_error(loc, state,
2041 "layout qualifier `%s' can only be applied to "
2042 "fragment shader input `gl_FragCoord'",
2046 if (qual->flags.q.explicit_location) {
2047 const bool global_scope = (state->current_function == NULL);
2049 const char *string = "";
2051 /* In the vertex shader only shader inputs can be given explicit
2054 * In the fragment shader only shader outputs can be given explicit
2057 switch (state->target) {
2059 if (!global_scope || (var->mode != ir_var_in)) {
2065 case geometry_shader:
2066 _mesa_glsl_error(loc, state,
2067 "geometry shader variables cannot be given "
2068 "explicit locations\n");
2071 case fragment_shader:
2072 if (!global_scope || (var->mode != ir_var_out)) {
2080 _mesa_glsl_error(loc, state,
2081 "only %s shader %s variables can be given an "
2082 "explicit location\n",
2083 _mesa_glsl_shader_target_name(state->target),
2086 var->explicit_location = true;
2088 /* This bit of silliness is needed because invalid explicit locations
2089 * are supposed to be flagged during linking. Small negative values
2090 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
2091 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
2092 * The linker needs to be able to differentiate these cases. This
2093 * ensures that negative values stay negative.
2095 if (qual->location >= 0) {
2096 var->location = (state->target == vertex_shader)
2097 ? (qual->location + VERT_ATTRIB_GENERIC0)
2098 : (qual->location + FRAG_RESULT_DATA0);
2100 var->location = qual->location;
2102 if (qual->flags.q.explicit_index) {
2103 var->explicit_index = true;
2104 var->index = qual->index;
2107 } else if (qual->flags.q.explicit_index) {
2108 _mesa_glsl_error(loc, state,
2109 "explicit index requires explicit location\n");
2112 /* Does the declaration use the 'layout' keyword?
2114 const bool uses_layout = qual->flags.q.pixel_center_integer
2115 || qual->flags.q.origin_upper_left
2116 || qual->flags.q.explicit_location; /* no need for index since it relies on location */
2118 /* Does the declaration use the deprecated 'attribute' or 'varying'
2121 const bool uses_deprecated_qualifier = qual->flags.q.attribute
2122 || qual->flags.q.varying;
2124 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
2125 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
2126 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
2127 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2128 * These extensions and all following extensions that add the 'layout'
2129 * keyword have been modified to require the use of 'in' or 'out'.
2131 * The following extension do not allow the deprecated keywords:
2133 * GL_AMD_conservative_depth
2134 * GL_ARB_conservative_depth
2135 * GL_ARB_gpu_shader5
2136 * GL_ARB_separate_shader_objects
2137 * GL_ARB_tesselation_shader
2138 * GL_ARB_transform_feedback3
2139 * GL_ARB_uniform_buffer_object
2141 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2142 * allow layout with the deprecated keywords.
2144 const bool relaxed_layout_qualifier_checking =
2145 state->ARB_fragment_coord_conventions_enable;
2147 if (uses_layout && uses_deprecated_qualifier) {
2148 if (relaxed_layout_qualifier_checking) {
2149 _mesa_glsl_warning(loc, state,
2150 "`layout' qualifier may not be used with "
2151 "`attribute' or `varying'");
2153 _mesa_glsl_error(loc, state,
2154 "`layout' qualifier may not be used with "
2155 "`attribute' or `varying'");
2159 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2160 * AMD_conservative_depth.
2162 int depth_layout_count = qual->flags.q.depth_any
2163 + qual->flags.q.depth_greater
2164 + qual->flags.q.depth_less
2165 + qual->flags.q.depth_unchanged;
2166 if (depth_layout_count > 0
2167 && !state->AMD_conservative_depth_enable
2168 && !state->ARB_conservative_depth_enable) {
2169 _mesa_glsl_error(loc, state,
2170 "extension GL_AMD_conservative_depth or "
2171 "GL_ARB_conservative_depth must be enabled "
2172 "to use depth layout qualifiers");
2173 } else if (depth_layout_count > 0
2174 && strcmp(var->name, "gl_FragDepth") != 0) {
2175 _mesa_glsl_error(loc, state,
2176 "depth layout qualifiers can be applied only to "
2178 } else if (depth_layout_count > 1
2179 && strcmp(var->name, "gl_FragDepth") == 0) {
2180 _mesa_glsl_error(loc, state,
2181 "at most one depth layout qualifier can be applied to "
2184 if (qual->flags.q.depth_any)
2185 var->depth_layout = ir_depth_layout_any;
2186 else if (qual->flags.q.depth_greater)
2187 var->depth_layout = ir_depth_layout_greater;
2188 else if (qual->flags.q.depth_less)
2189 var->depth_layout = ir_depth_layout_less;
2190 else if (qual->flags.q.depth_unchanged)
2191 var->depth_layout = ir_depth_layout_unchanged;
2193 var->depth_layout = ir_depth_layout_none;
2197 * Get the variable that is being redeclared by this declaration
2199 * Semantic checks to verify the validity of the redeclaration are also
2200 * performed. If semantic checks fail, compilation error will be emitted via
2201 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2204 * A pointer to an existing variable in the current scope if the declaration
2205 * is a redeclaration, \c NULL otherwise.
2208 get_variable_being_redeclared(ir_variable *var, ast_declaration *decl,
2209 struct _mesa_glsl_parse_state *state)
2211 /* Check if this declaration is actually a re-declaration, either to
2212 * resize an array or add qualifiers to an existing variable.
2214 * This is allowed for variables in the current scope, or when at
2215 * global scope (for built-ins in the implicit outer scope).
2217 ir_variable *earlier = state->symbols->get_variable(decl->identifier);
2218 if (earlier == NULL ||
2219 (state->current_function != NULL &&
2220 !state->symbols->name_declared_this_scope(decl->identifier))) {
2225 YYLTYPE loc = decl->get_location();
2227 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2229 * "It is legal to declare an array without a size and then
2230 * later re-declare the same name as an array of the same
2231 * type and specify a size."
2233 if ((earlier->type->array_size() == 0)
2234 && var->type->is_array()
2235 && (var->type->element_type() == earlier->type->element_type())) {
2236 /* FINISHME: This doesn't match the qualifiers on the two
2237 * FINISHME: declarations. It's not 100% clear whether this is
2238 * FINISHME: required or not.
2241 const unsigned size = unsigned(var->type->array_size());
2242 check_builtin_array_max_size(var->name, size, loc, state);
2243 if ((size > 0) && (size <= earlier->max_array_access)) {
2244 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2246 earlier->max_array_access);
2249 earlier->type = var->type;
2252 } else if (state->ARB_fragment_coord_conventions_enable
2253 && strcmp(var->name, "gl_FragCoord") == 0
2254 && earlier->type == var->type
2255 && earlier->mode == var->mode) {
2256 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2259 earlier->origin_upper_left = var->origin_upper_left;
2260 earlier->pixel_center_integer = var->pixel_center_integer;
2262 /* According to section 4.3.7 of the GLSL 1.30 spec,
2263 * the following built-in varaibles can be redeclared with an
2264 * interpolation qualifier:
2267 * * gl_FrontSecondaryColor
2268 * * gl_BackSecondaryColor
2270 * * gl_SecondaryColor
2272 } else if (state->language_version >= 130
2273 && (strcmp(var->name, "gl_FrontColor") == 0
2274 || strcmp(var->name, "gl_BackColor") == 0
2275 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2276 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2277 || strcmp(var->name, "gl_Color") == 0
2278 || strcmp(var->name, "gl_SecondaryColor") == 0)
2279 && earlier->type == var->type
2280 && earlier->mode == var->mode) {
2281 earlier->interpolation = var->interpolation;
2283 /* Layout qualifiers for gl_FragDepth. */
2284 } else if ((state->AMD_conservative_depth_enable ||
2285 state->ARB_conservative_depth_enable)
2286 && strcmp(var->name, "gl_FragDepth") == 0
2287 && earlier->type == var->type
2288 && earlier->mode == var->mode) {
2290 /** From the AMD_conservative_depth spec:
2291 * Within any shader, the first redeclarations of gl_FragDepth
2292 * must appear before any use of gl_FragDepth.
2294 if (earlier->used) {
2295 _mesa_glsl_error(&loc, state,
2296 "the first redeclaration of gl_FragDepth "
2297 "must appear before any use of gl_FragDepth");
2300 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2301 if (earlier->depth_layout != ir_depth_layout_none
2302 && earlier->depth_layout != var->depth_layout) {
2303 _mesa_glsl_error(&loc, state,
2304 "gl_FragDepth: depth layout is declared here "
2305 "as '%s, but it was previously declared as "
2307 depth_layout_string(var->depth_layout),
2308 depth_layout_string(earlier->depth_layout));
2311 earlier->depth_layout = var->depth_layout;
2314 _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
2321 * Generate the IR for an initializer in a variable declaration
2324 process_initializer(ir_variable *var, ast_declaration *decl,
2325 ast_fully_specified_type *type,
2326 exec_list *initializer_instructions,
2327 struct _mesa_glsl_parse_state *state)
2329 ir_rvalue *result = NULL;
2331 YYLTYPE initializer_loc = decl->initializer->get_location();
2333 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2335 * "All uniform variables are read-only and are initialized either
2336 * directly by an application via API commands, or indirectly by
2339 if ((state->language_version <= 110)
2340 && (var->mode == ir_var_uniform)) {
2341 _mesa_glsl_error(& initializer_loc, state,
2342 "cannot initialize uniforms in GLSL 1.10");
2345 if (var->type->is_sampler()) {
2346 _mesa_glsl_error(& initializer_loc, state,
2347 "cannot initialize samplers");
2350 if ((var->mode == ir_var_in) && (state->current_function == NULL)) {
2351 _mesa_glsl_error(& initializer_loc, state,
2352 "cannot initialize %s shader input / %s",
2353 _mesa_glsl_shader_target_name(state->target),
2354 (state->target == vertex_shader)
2355 ? "attribute" : "varying");
2358 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
2359 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions,
2362 /* Calculate the constant value if this is a const or uniform
2365 if (type->qualifier.flags.q.constant
2366 || type->qualifier.flags.q.uniform) {
2367 ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs, true);
2368 if (new_rhs != NULL) {
2371 ir_constant *constant_value = rhs->constant_expression_value();
2372 if (!constant_value) {
2373 _mesa_glsl_error(& initializer_loc, state,
2374 "initializer of %s variable `%s' must be a "
2375 "constant expression",
2376 (type->qualifier.flags.q.constant)
2377 ? "const" : "uniform",
2379 if (var->type->is_numeric()) {
2380 /* Reduce cascading errors. */
2381 var->constant_value = ir_constant::zero(state, var->type);
2384 rhs = constant_value;
2385 var->constant_value = constant_value;
2388 _mesa_glsl_error(&initializer_loc, state,
2389 "initializer of type %s cannot be assigned to "
2390 "variable of type %s",
2391 rhs->type->name, var->type->name);
2392 if (var->type->is_numeric()) {
2393 /* Reduce cascading errors. */
2394 var->constant_value = ir_constant::zero(state, var->type);
2399 if (rhs && !rhs->type->is_error()) {
2400 bool temp = var->read_only;
2401 if (type->qualifier.flags.q.constant)
2402 var->read_only = false;
2404 /* Never emit code to initialize a uniform.
2406 const glsl_type *initializer_type;
2407 if (!type->qualifier.flags.q.uniform) {
2408 result = do_assignment(initializer_instructions, state,
2411 type->get_location());
2412 initializer_type = result->type;
2414 initializer_type = rhs->type;
2416 var->constant_initializer = rhs->constant_expression_value();
2417 var->has_initializer = true;
2419 /* If the declared variable is an unsized array, it must inherrit
2420 * its full type from the initializer. A declaration such as
2422 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2426 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2428 * The assignment generated in the if-statement (below) will also
2429 * automatically handle this case for non-uniforms.
2431 * If the declared variable is not an array, the types must
2432 * already match exactly. As a result, the type assignment
2433 * here can be done unconditionally. For non-uniforms the call
2434 * to do_assignment can change the type of the initializer (via
2435 * the implicit conversion rules). For uniforms the initializer
2436 * must be a constant expression, and the type of that expression
2437 * was validated above.
2439 var->type = initializer_type;
2441 var->read_only = temp;
2448 ast_declarator_list::hir(exec_list *instructions,
2449 struct _mesa_glsl_parse_state *state)
2452 const struct glsl_type *decl_type;
2453 const char *type_name = NULL;
2454 ir_rvalue *result = NULL;
2455 YYLTYPE loc = this->get_location();
2457 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2459 * "To ensure that a particular output variable is invariant, it is
2460 * necessary to use the invariant qualifier. It can either be used to
2461 * qualify a previously declared variable as being invariant
2463 * invariant gl_Position; // make existing gl_Position be invariant"
2465 * In these cases the parser will set the 'invariant' flag in the declarator
2466 * list, and the type will be NULL.
2468 if (this->invariant) {
2469 assert(this->type == NULL);
2471 if (state->current_function != NULL) {
2472 _mesa_glsl_error(& loc, state,
2473 "All uses of `invariant' keyword must be at global "
2477 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2478 assert(!decl->is_array);
2479 assert(decl->array_size == NULL);
2480 assert(decl->initializer == NULL);
2482 ir_variable *const earlier =
2483 state->symbols->get_variable(decl->identifier);
2484 if (earlier == NULL) {
2485 _mesa_glsl_error(& loc, state,
2486 "Undeclared variable `%s' cannot be marked "
2487 "invariant\n", decl->identifier);
2488 } else if ((state->target == vertex_shader)
2489 && (earlier->mode != ir_var_out)) {
2490 _mesa_glsl_error(& loc, state,
2491 "`%s' cannot be marked invariant, vertex shader "
2492 "outputs only\n", decl->identifier);
2493 } else if ((state->target == fragment_shader)
2494 && (earlier->mode != ir_var_in)) {
2495 _mesa_glsl_error(& loc, state,
2496 "`%s' cannot be marked invariant, fragment shader "
2497 "inputs only\n", decl->identifier);
2498 } else if (earlier->used) {
2499 _mesa_glsl_error(& loc, state,
2500 "variable `%s' may not be redeclared "
2501 "`invariant' after being used",
2504 earlier->invariant = true;
2508 /* Invariant redeclarations do not have r-values.
2513 assert(this->type != NULL);
2514 assert(!this->invariant);
2516 /* The type specifier may contain a structure definition. Process that
2517 * before any of the variable declarations.
2519 (void) this->type->specifier->hir(instructions, state);
2521 decl_type = this->type->specifier->glsl_type(& type_name, state);
2522 if (this->declarations.is_empty()) {
2523 /* If there is no structure involved in the program text, there are two
2524 * possible scenarios:
2526 * - The program text contained something like 'vec4;'. This is an
2527 * empty declaration. It is valid but weird. Emit a warning.
2529 * - The program text contained something like 'S;' and 'S' is not the
2530 * name of a known structure type. This is both invalid and weird.
2533 * Note that if decl_type is NULL and there is a structure involved,
2534 * there must have been some sort of error with the structure. In this
2535 * case we assume that an error was already generated on this line of
2536 * code for the structure. There is no need to generate an additional,
2539 assert(this->type->specifier->structure == NULL || decl_type != NULL
2541 if (this->type->specifier->structure == NULL) {
2542 if (decl_type != NULL) {
2543 _mesa_glsl_warning(&loc, state, "empty declaration");
2545 _mesa_glsl_error(&loc, state,
2546 "invalid type `%s' in empty declaration",
2552 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2553 const struct glsl_type *var_type;
2556 /* FINISHME: Emit a warning if a variable declaration shadows a
2557 * FINISHME: declaration at a higher scope.
2560 if ((decl_type == NULL) || decl_type->is_void()) {
2561 if (type_name != NULL) {
2562 _mesa_glsl_error(& loc, state,
2563 "invalid type `%s' in declaration of `%s'",
2564 type_name, decl->identifier);
2566 _mesa_glsl_error(& loc, state,
2567 "invalid type in declaration of `%s'",
2573 if (decl->is_array) {
2574 var_type = process_array_type(&loc, decl_type, decl->array_size,
2576 if (var_type->is_error())
2579 var_type = decl_type;
2582 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2584 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2586 * "Global variables can only use the qualifiers const,
2587 * attribute, uni form, or varying. Only one may be
2590 * Local variables can only use the qualifier const."
2592 * This is relaxed in GLSL 1.30. It is also relaxed by any extension
2593 * that adds the 'layout' keyword.
2595 if ((state->language_version < 130)
2596 && !state->ARB_explicit_attrib_location_enable
2597 && !state->ARB_fragment_coord_conventions_enable) {
2598 if (this->type->qualifier.flags.q.out) {
2599 _mesa_glsl_error(& loc, state,
2600 "`out' qualifier in declaration of `%s' "
2601 "only valid for function parameters in %s.",
2602 decl->identifier, state->version_string);
2604 if (this->type->qualifier.flags.q.in) {
2605 _mesa_glsl_error(& loc, state,
2606 "`in' qualifier in declaration of `%s' "
2607 "only valid for function parameters in %s.",
2608 decl->identifier, state->version_string);
2610 /* FINISHME: Test for other invalid qualifiers. */
2613 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
2616 if (this->type->qualifier.flags.q.invariant) {
2617 if ((state->target == vertex_shader) && !(var->mode == ir_var_out ||
2618 var->mode == ir_var_inout)) {
2619 /* FINISHME: Note that this doesn't work for invariant on
2620 * a function signature outval
2622 _mesa_glsl_error(& loc, state,
2623 "`%s' cannot be marked invariant, vertex shader "
2624 "outputs only\n", var->name);
2625 } else if ((state->target == fragment_shader) &&
2626 !(var->mode == ir_var_in || var->mode == ir_var_inout)) {
2627 /* FINISHME: Note that this doesn't work for invariant on
2628 * a function signature inval
2630 _mesa_glsl_error(& loc, state,
2631 "`%s' cannot be marked invariant, fragment shader "
2632 "inputs only\n", var->name);
2636 if (state->current_function != NULL) {
2637 const char *mode = NULL;
2638 const char *extra = "";
2640 /* There is no need to check for 'inout' here because the parser will
2641 * only allow that in function parameter lists.
2643 if (this->type->qualifier.flags.q.attribute) {
2645 } else if (this->type->qualifier.flags.q.uniform) {
2647 } else if (this->type->qualifier.flags.q.varying) {
2649 } else if (this->type->qualifier.flags.q.in) {
2651 extra = " or in function parameter list";
2652 } else if (this->type->qualifier.flags.q.out) {
2654 extra = " or in function parameter list";
2658 _mesa_glsl_error(& loc, state,
2659 "%s variable `%s' must be declared at "
2661 mode, var->name, extra);
2663 } else if (var->mode == ir_var_in) {
2664 var->read_only = true;
2666 if (state->target == vertex_shader) {
2667 bool error_emitted = false;
2669 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
2671 * "Vertex shader inputs can only be float, floating-point
2672 * vectors, matrices, signed and unsigned integers and integer
2673 * vectors. Vertex shader inputs can also form arrays of these
2674 * types, but not structures."
2676 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
2678 * "Vertex shader inputs can only be float, floating-point
2679 * vectors, matrices, signed and unsigned integers and integer
2680 * vectors. They cannot be arrays or structures."
2682 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
2684 * "The attribute qualifier can be used only with float,
2685 * floating-point vectors, and matrices. Attribute variables
2686 * cannot be declared as arrays or structures."
2688 const glsl_type *check_type = var->type->is_array()
2689 ? var->type->fields.array : var->type;
2691 switch (check_type->base_type) {
2692 case GLSL_TYPE_FLOAT:
2694 case GLSL_TYPE_UINT:
2696 if (state->language_version > 120)
2700 _mesa_glsl_error(& loc, state,
2701 "vertex shader input / attribute cannot have "
2703 var->type->is_array() ? "array of " : "",
2705 error_emitted = true;
2708 if (!error_emitted && (state->language_version <= 130)
2709 && var->type->is_array()) {
2710 _mesa_glsl_error(& loc, state,
2711 "vertex shader input / attribute cannot have "
2713 error_emitted = true;
2718 /* Integer vertex outputs must be qualified with 'flat'.
2720 * From section 4.3.6 of the GLSL 1.30 spec:
2721 * "If a vertex output is a signed or unsigned integer or integer
2722 * vector, then it must be qualified with the interpolation qualifier
2725 if (state->language_version >= 130
2726 && state->target == vertex_shader
2727 && state->current_function == NULL
2728 && var->type->is_integer()
2729 && var->mode == ir_var_out
2730 && var->interpolation != INTERP_QUALIFIER_FLAT) {
2732 _mesa_glsl_error(&loc, state, "If a vertex output is an integer, "
2733 "then it must be qualified with 'flat'");
2737 /* Interpolation qualifiers cannot be applied to 'centroid' and
2738 * 'centroid varying'.
2740 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2741 * "interpolation qualifiers may only precede the qualifiers in,
2742 * centroid in, out, or centroid out in a declaration. They do not apply
2743 * to the deprecated storage qualifiers varying or centroid varying."
2745 if (state->language_version >= 130
2746 && this->type->qualifier.has_interpolation()
2747 && this->type->qualifier.flags.q.varying) {
2749 const char *i = this->type->qualifier.interpolation_string();
2752 if (this->type->qualifier.flags.q.centroid)
2753 s = "centroid varying";
2757 _mesa_glsl_error(&loc, state,
2758 "qualifier '%s' cannot be applied to the "
2759 "deprecated storage qualifier '%s'", i, s);
2763 /* Interpolation qualifiers can only apply to vertex shader outputs and
2764 * fragment shader inputs.
2766 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2767 * "Outputs from a vertex shader (out) and inputs to a fragment
2768 * shader (in) can be further qualified with one or more of these
2769 * interpolation qualifiers"
2771 if (state->language_version >= 130
2772 && this->type->qualifier.has_interpolation()) {
2774 const char *i = this->type->qualifier.interpolation_string();
2777 switch (state->target) {
2779 if (this->type->qualifier.flags.q.in) {
2780 _mesa_glsl_error(&loc, state,
2781 "qualifier '%s' cannot be applied to vertex "
2782 "shader inputs", i);
2785 case fragment_shader:
2786 if (this->type->qualifier.flags.q.out) {
2787 _mesa_glsl_error(&loc, state,
2788 "qualifier '%s' cannot be applied to fragment "
2789 "shader outputs", i);
2798 /* From section 4.3.4 of the GLSL 1.30 spec:
2799 * "It is an error to use centroid in in a vertex shader."
2801 if (state->language_version >= 130
2802 && this->type->qualifier.flags.q.centroid
2803 && this->type->qualifier.flags.q.in
2804 && state->target == vertex_shader) {
2806 _mesa_glsl_error(&loc, state,
2807 "'centroid in' cannot be used in a vertex shader");
2811 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
2813 if (this->type->specifier->precision != ast_precision_none
2814 && state->language_version != 100
2815 && state->language_version < 130) {
2817 _mesa_glsl_error(&loc, state,
2818 "precision qualifiers are supported only in GLSL ES "
2819 "1.00, and GLSL 1.30 and later");
2823 /* Precision qualifiers only apply to floating point and integer types.
2825 * From section 4.5.2 of the GLSL 1.30 spec:
2826 * "Any floating point or any integer declaration can have the type
2827 * preceded by one of these precision qualifiers [...] Literal
2828 * constants do not have precision qualifiers. Neither do Boolean
2831 * In GLSL ES, sampler types are also allowed.
2833 * From page 87 of the GLSL ES spec:
2834 * "RESOLUTION: Allow sampler types to take a precision qualifier."
2836 if (this->type->specifier->precision != ast_precision_none
2837 && !var->type->is_float()
2838 && !var->type->is_integer()
2839 && !(var->type->is_sampler() && state->es_shader)
2840 && !(var->type->is_array()
2841 && (var->type->fields.array->is_float()
2842 || var->type->fields.array->is_integer()))) {
2844 _mesa_glsl_error(&loc, state,
2845 "precision qualifiers apply only to floating point"
2846 "%s types", state->es_shader ? ", integer, and sampler"
2850 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
2852 * "[Sampler types] can only be declared as function
2853 * parameters or uniform variables (see Section 4.3.5
2856 if (var_type->contains_sampler() &&
2857 !this->type->qualifier.flags.q.uniform) {
2858 _mesa_glsl_error(&loc, state, "samplers must be declared uniform");
2861 /* Process the initializer and add its instructions to a temporary
2862 * list. This list will be added to the instruction stream (below) after
2863 * the declaration is added. This is done because in some cases (such as
2864 * redeclarations) the declaration may not actually be added to the
2865 * instruction stream.
2867 exec_list initializer_instructions;
2868 ir_variable *earlier = get_variable_being_redeclared(var, decl, state);
2870 if (decl->initializer != NULL) {
2871 result = process_initializer((earlier == NULL) ? var : earlier,
2873 &initializer_instructions, state);
2876 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
2878 * "It is an error to write to a const variable outside of
2879 * its declaration, so they must be initialized when
2882 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
2883 _mesa_glsl_error(& loc, state,
2884 "const declaration of `%s' must be initialized",
2888 /* If the declaration is not a redeclaration, there are a few additional
2889 * semantic checks that must be applied. In addition, variable that was
2890 * created for the declaration should be added to the IR stream.
2892 if (earlier == NULL) {
2893 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2895 * "Identifiers starting with "gl_" are reserved for use by
2896 * OpenGL, and may not be declared in a shader as either a
2897 * variable or a function."
2899 if (strncmp(decl->identifier, "gl_", 3) == 0)
2900 _mesa_glsl_error(& loc, state,
2901 "identifier `%s' uses reserved `gl_' prefix",
2903 else if (strstr(decl->identifier, "__")) {
2904 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
2907 * "In addition, all identifiers containing two
2908 * consecutive underscores (__) are reserved as
2909 * possible future keywords."
2911 _mesa_glsl_error(& loc, state,
2912 "identifier `%s' uses reserved `__' string",
2916 /* Add the variable to the symbol table. Note that the initializer's
2917 * IR was already processed earlier (though it hasn't been emitted
2918 * yet), without the variable in scope.
2920 * This differs from most C-like languages, but it follows the GLSL
2921 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
2924 * "Within a declaration, the scope of a name starts immediately
2925 * after the initializer if present or immediately after the name
2926 * being declared if not."
2928 if (!state->symbols->add_variable(var)) {
2929 YYLTYPE loc = this->get_location();
2930 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
2931 "current scope", decl->identifier);
2935 /* Push the variable declaration to the top. It means that all the
2936 * variable declarations will appear in a funny last-to-first order,
2937 * but otherwise we run into trouble if a function is prototyped, a
2938 * global var is decled, then the function is defined with usage of
2939 * the global var. See glslparsertest's CorrectModule.frag.
2941 instructions->push_head(var);
2944 instructions->append_list(&initializer_instructions);
2948 /* Generally, variable declarations do not have r-values. However,
2949 * one is used for the declaration in
2951 * while (bool b = some_condition()) {
2955 * so we return the rvalue from the last seen declaration here.
2962 ast_parameter_declarator::hir(exec_list *instructions,
2963 struct _mesa_glsl_parse_state *state)
2966 const struct glsl_type *type;
2967 const char *name = NULL;
2968 YYLTYPE loc = this->get_location();
2970 type = this->type->specifier->glsl_type(& name, state);
2974 _mesa_glsl_error(& loc, state,
2975 "invalid type `%s' in declaration of `%s'",
2976 name, this->identifier);
2978 _mesa_glsl_error(& loc, state,
2979 "invalid type in declaration of `%s'",
2983 type = glsl_type::error_type;
2986 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
2988 * "Functions that accept no input arguments need not use void in the
2989 * argument list because prototypes (or definitions) are required and
2990 * therefore there is no ambiguity when an empty argument list "( )" is
2991 * declared. The idiom "(void)" as a parameter list is provided for
2994 * Placing this check here prevents a void parameter being set up
2995 * for a function, which avoids tripping up checks for main taking
2996 * parameters and lookups of an unnamed symbol.
2998 if (type->is_void()) {
2999 if (this->identifier != NULL)
3000 _mesa_glsl_error(& loc, state,
3001 "named parameter cannot have type `void'");
3007 if (formal_parameter && (this->identifier == NULL)) {
3008 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
3012 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
3013 * call already handled the "vec4[..] foo" case.
3015 if (this->is_array) {
3016 type = process_array_type(&loc, type, this->array_size, state);
3019 if (!type->is_error() && type->array_size() == 0) {
3020 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
3021 "a declared size.");
3022 type = glsl_type::error_type;
3026 ir_variable *var = new(ctx) ir_variable(type, this->identifier, ir_var_in);
3028 /* Apply any specified qualifiers to the parameter declaration. Note that
3029 * for function parameters the default mode is 'in'.
3031 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc);
3033 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3035 * "Samplers cannot be treated as l-values; hence cannot be used
3036 * as out or inout function parameters, nor can they be assigned
3039 if ((var->mode == ir_var_inout || var->mode == ir_var_out)
3040 && type->contains_sampler()) {
3041 _mesa_glsl_error(&loc, state, "out and inout parameters cannot contain samplers");
3042 type = glsl_type::error_type;
3045 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
3047 * "When calling a function, expressions that do not evaluate to
3048 * l-values cannot be passed to parameters declared as out or inout."
3050 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
3052 * "Other binary or unary expressions, non-dereferenced arrays,
3053 * function names, swizzles with repeated fields, and constants
3054 * cannot be l-values."
3056 * So for GLSL 1.10, passing an array as an out or inout parameter is not
3057 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
3059 if ((var->mode == ir_var_inout || var->mode == ir_var_out)
3060 && type->is_array() && state->language_version == 110) {
3061 _mesa_glsl_error(&loc, state, "Arrays cannot be out or inout parameters in GLSL 1.10");
3062 type = glsl_type::error_type;
3065 instructions->push_tail(var);
3067 /* Parameter declarations do not have r-values.
3074 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
3076 exec_list *ir_parameters,
3077 _mesa_glsl_parse_state *state)
3079 ast_parameter_declarator *void_param = NULL;
3082 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
3083 param->formal_parameter = formal;
3084 param->hir(ir_parameters, state);
3092 if ((void_param != NULL) && (count > 1)) {
3093 YYLTYPE loc = void_param->get_location();
3095 _mesa_glsl_error(& loc, state,
3096 "`void' parameter must be only parameter");
3102 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
3104 /* IR invariants disallow function declarations or definitions
3105 * nested within other function definitions. But there is no
3106 * requirement about the relative order of function declarations
3107 * and definitions with respect to one another. So simply insert
3108 * the new ir_function block at the end of the toplevel instruction
3111 state->toplevel_ir->push_tail(f);
3116 ast_function::hir(exec_list *instructions,
3117 struct _mesa_glsl_parse_state *state)
3120 ir_function *f = NULL;
3121 ir_function_signature *sig = NULL;
3122 exec_list hir_parameters;
3124 const char *const name = identifier;
3126 /* New functions are always added to the top-level IR instruction stream,
3127 * so this instruction list pointer is ignored. See also emit_function
3130 (void) instructions;
3132 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
3134 * "Function declarations (prototypes) cannot occur inside of functions;
3135 * they must be at global scope, or for the built-in functions, outside
3136 * the global scope."
3138 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
3140 * "User defined functions may only be defined within the global scope."
3142 * Note that this language does not appear in GLSL 1.10.
3144 if ((state->current_function != NULL) && (state->language_version != 110)) {
3145 YYLTYPE loc = this->get_location();
3146 _mesa_glsl_error(&loc, state,
3147 "declaration of function `%s' not allowed within "
3148 "function body", name);
3151 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3153 * "Identifiers starting with "gl_" are reserved for use by
3154 * OpenGL, and may not be declared in a shader as either a
3155 * variable or a function."
3157 if (strncmp(name, "gl_", 3) == 0) {
3158 YYLTYPE loc = this->get_location();
3159 _mesa_glsl_error(&loc, state,
3160 "identifier `%s' uses reserved `gl_' prefix", name);
3163 /* Convert the list of function parameters to HIR now so that they can be
3164 * used below to compare this function's signature with previously seen
3165 * signatures for functions with the same name.
3167 ast_parameter_declarator::parameters_to_hir(& this->parameters,
3169 & hir_parameters, state);
3171 const char *return_type_name;
3172 const glsl_type *return_type =
3173 this->return_type->specifier->glsl_type(& return_type_name, state);
3176 YYLTYPE loc = this->get_location();
3177 _mesa_glsl_error(&loc, state,
3178 "function `%s' has undeclared return type `%s'",
3179 name, return_type_name);
3180 return_type = glsl_type::error_type;
3183 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
3184 * "No qualifier is allowed on the return type of a function."
3186 if (this->return_type->has_qualifiers()) {
3187 YYLTYPE loc = this->get_location();
3188 _mesa_glsl_error(& loc, state,
3189 "function `%s' return type has qualifiers", name);
3192 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3194 * "[Sampler types] can only be declared as function parameters
3195 * or uniform variables (see Section 4.3.5 "Uniform")".
3197 if (return_type->contains_sampler()) {
3198 YYLTYPE loc = this->get_location();
3199 _mesa_glsl_error(&loc, state,
3200 "function `%s' return type can't contain a sampler",
3204 /* Verify that this function's signature either doesn't match a previously
3205 * seen signature for a function with the same name, or, if a match is found,
3206 * that the previously seen signature does not have an associated definition.
3208 f = state->symbols->get_function(name);
3209 if (f != NULL && (state->es_shader || f->has_user_signature())) {
3210 sig = f->exact_matching_signature(&hir_parameters);
3212 const char *badvar = sig->qualifiers_match(&hir_parameters);
3213 if (badvar != NULL) {
3214 YYLTYPE loc = this->get_location();
3216 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
3217 "qualifiers don't match prototype", name, badvar);
3220 if (sig->return_type != return_type) {
3221 YYLTYPE loc = this->get_location();
3223 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
3224 "match prototype", name);
3227 if (is_definition && sig->is_defined) {
3228 YYLTYPE loc = this->get_location();
3230 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
3234 f = new(ctx) ir_function(name);
3235 if (!state->symbols->add_function(f)) {
3236 /* This function name shadows a non-function use of the same name. */
3237 YYLTYPE loc = this->get_location();
3239 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
3240 "non-function", name);
3244 emit_function(state, f);
3247 /* Verify the return type of main() */
3248 if (strcmp(name, "main") == 0) {
3249 if (! return_type->is_void()) {
3250 YYLTYPE loc = this->get_location();
3252 _mesa_glsl_error(& loc, state, "main() must return void");
3255 if (!hir_parameters.is_empty()) {
3256 YYLTYPE loc = this->get_location();
3258 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
3262 /* Finish storing the information about this new function in its signature.
3265 sig = new(ctx) ir_function_signature(return_type);
3266 f->add_signature(sig);
3269 sig->replace_parameters(&hir_parameters);
3272 /* Function declarations (prototypes) do not have r-values.
3279 ast_function_definition::hir(exec_list *instructions,
3280 struct _mesa_glsl_parse_state *state)
3282 prototype->is_definition = true;
3283 prototype->hir(instructions, state);
3285 ir_function_signature *signature = prototype->signature;
3286 if (signature == NULL)
3289 assert(state->current_function == NULL);
3290 state->current_function = signature;
3291 state->found_return = false;
3293 /* Duplicate parameters declared in the prototype as concrete variables.
3294 * Add these to the symbol table.
3296 state->symbols->push_scope();
3297 foreach_iter(exec_list_iterator, iter, signature->parameters) {
3298 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
3300 assert(var != NULL);
3302 /* The only way a parameter would "exist" is if two parameters have
3305 if (state->symbols->name_declared_this_scope(var->name)) {
3306 YYLTYPE loc = this->get_location();
3308 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
3310 state->symbols->add_variable(var);
3314 /* Convert the body of the function to HIR. */
3315 this->body->hir(&signature->body, state);
3316 signature->is_defined = true;
3318 state->symbols->pop_scope();
3320 assert(state->current_function == signature);
3321 state->current_function = NULL;
3323 if (!signature->return_type->is_void() && !state->found_return) {
3324 YYLTYPE loc = this->get_location();
3325 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
3326 "%s, but no return statement",
3327 signature->function_name(),
3328 signature->return_type->name);
3331 /* Function definitions do not have r-values.
3338 ast_jump_statement::hir(exec_list *instructions,
3339 struct _mesa_glsl_parse_state *state)
3346 assert(state->current_function);
3348 if (opt_return_value) {
3349 ir_rvalue *const ret = opt_return_value->hir(instructions, state);
3351 /* The value of the return type can be NULL if the shader says
3352 * 'return foo();' and foo() is a function that returns void.
3354 * NOTE: The GLSL spec doesn't say that this is an error. The type
3355 * of the return value is void. If the return type of the function is
3356 * also void, then this should compile without error. Seriously.
3358 const glsl_type *const ret_type =
3359 (ret == NULL) ? glsl_type::void_type : ret->type;
3361 /* Implicit conversions are not allowed for return values. */
3362 if (state->current_function->return_type != ret_type) {
3363 YYLTYPE loc = this->get_location();
3365 _mesa_glsl_error(& loc, state,
3366 "`return' with wrong type %s, in function `%s' "
3369 state->current_function->function_name(),
3370 state->current_function->return_type->name);
3373 inst = new(ctx) ir_return(ret);
3375 if (state->current_function->return_type->base_type !=
3377 YYLTYPE loc = this->get_location();
3379 _mesa_glsl_error(& loc, state,
3380 "`return' with no value, in function %s returning "
3382 state->current_function->function_name());
3384 inst = new(ctx) ir_return;
3387 state->found_return = true;
3388 instructions->push_tail(inst);
3393 if (state->target != fragment_shader) {
3394 YYLTYPE loc = this->get_location();
3396 _mesa_glsl_error(& loc, state,
3397 "`discard' may only appear in a fragment shader");
3399 instructions->push_tail(new(ctx) ir_discard);
3404 if (mode == ast_continue &&
3405 state->loop_nesting_ast == NULL) {
3406 YYLTYPE loc = this->get_location();
3408 _mesa_glsl_error(& loc, state,
3409 "continue may only appear in a loop");
3410 } else if (mode == ast_break &&
3411 state->loop_nesting_ast == NULL &&
3412 state->switch_state.switch_nesting_ast == NULL) {
3413 YYLTYPE loc = this->get_location();
3415 _mesa_glsl_error(& loc, state,
3416 "break may only appear in a loop or a switch");
3418 /* For a loop, inline the for loop expression again,
3419 * since we don't know where near the end of
3420 * the loop body the normal copy of it
3421 * is going to be placed.
3423 if (state->loop_nesting_ast != NULL &&
3424 mode == ast_continue &&
3425 state->loop_nesting_ast->rest_expression) {
3426 state->loop_nesting_ast->rest_expression->hir(instructions,
3430 if (state->switch_state.is_switch_innermost &&
3431 mode == ast_break) {
3432 /* Force break out of switch by setting is_break switch state.
3434 ir_variable *const is_break_var = state->switch_state.is_break_var;
3435 ir_dereference_variable *const deref_is_break_var =
3436 new(ctx) ir_dereference_variable(is_break_var);
3437 ir_constant *const true_val = new(ctx) ir_constant(true);
3438 ir_assignment *const set_break_var =
3439 new(ctx) ir_assignment(deref_is_break_var, true_val);
3441 instructions->push_tail(set_break_var);
3444 ir_loop_jump *const jump =
3445 new(ctx) ir_loop_jump((mode == ast_break)
3446 ? ir_loop_jump::jump_break
3447 : ir_loop_jump::jump_continue);
3448 instructions->push_tail(jump);
3455 /* Jump instructions do not have r-values.
3462 ast_selection_statement::hir(exec_list *instructions,
3463 struct _mesa_glsl_parse_state *state)
3467 ir_rvalue *const condition = this->condition->hir(instructions, state);
3469 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
3471 * "Any expression whose type evaluates to a Boolean can be used as the
3472 * conditional expression bool-expression. Vector types are not accepted
3473 * as the expression to if."
3475 * The checks are separated so that higher quality diagnostics can be
3476 * generated for cases where both rules are violated.
3478 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
3479 YYLTYPE loc = this->condition->get_location();
3481 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
3485 ir_if *const stmt = new(ctx) ir_if(condition);
3487 if (then_statement != NULL) {
3488 state->symbols->push_scope();
3489 then_statement->hir(& stmt->then_instructions, state);
3490 state->symbols->pop_scope();
3493 if (else_statement != NULL) {
3494 state->symbols->push_scope();
3495 else_statement->hir(& stmt->else_instructions, state);
3496 state->symbols->pop_scope();
3499 instructions->push_tail(stmt);
3501 /* if-statements do not have r-values.
3508 ast_switch_statement::hir(exec_list *instructions,
3509 struct _mesa_glsl_parse_state *state)
3513 ir_rvalue *const test_expression =
3514 this->test_expression->hir(instructions, state);
3516 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
3518 * "The type of init-expression in a switch statement must be a
3521 if (!test_expression->type->is_scalar() ||
3522 !test_expression->type->is_integer()) {
3523 YYLTYPE loc = this->test_expression->get_location();
3525 _mesa_glsl_error(& loc,
3527 "switch-statement expression must be scalar "
3531 /* Track the switch-statement nesting in a stack-like manner.
3533 struct glsl_switch_state saved = state->switch_state;
3535 state->switch_state.is_switch_innermost = true;
3536 state->switch_state.switch_nesting_ast = this;
3537 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
3538 hash_table_pointer_compare);
3539 state->switch_state.previous_default = NULL;
3541 /* Initalize is_fallthru state to false.
3543 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
3544 state->switch_state.is_fallthru_var =
3545 new(ctx) ir_variable(glsl_type::bool_type,
3546 "switch_is_fallthru_tmp",
3548 instructions->push_tail(state->switch_state.is_fallthru_var);
3550 ir_dereference_variable *deref_is_fallthru_var =
3551 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
3552 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
3555 /* Initalize is_break state to false.
3557 ir_rvalue *const is_break_val = new (ctx) ir_constant(false);
3558 state->switch_state.is_break_var = new(ctx) ir_variable(glsl_type::bool_type,
3559 "switch_is_break_tmp",
3561 instructions->push_tail(state->switch_state.is_break_var);
3563 ir_dereference_variable *deref_is_break_var =
3564 new(ctx) ir_dereference_variable(state->switch_state.is_break_var);
3565 instructions->push_tail(new(ctx) ir_assignment(deref_is_break_var,
3568 /* Cache test expression.
3570 test_to_hir(instructions, state);
3572 /* Emit code for body of switch stmt.
3574 body->hir(instructions, state);
3576 hash_table_dtor(state->switch_state.labels_ht);
3578 state->switch_state = saved;
3580 /* Switch statements do not have r-values. */
3586 ast_switch_statement::test_to_hir(exec_list *instructions,
3587 struct _mesa_glsl_parse_state *state)
3591 /* Cache value of test expression. */
3592 ir_rvalue *const test_val =
3593 test_expression->hir(instructions,
3596 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
3599 ir_dereference_variable *deref_test_var =
3600 new(ctx) ir_dereference_variable(state->switch_state.test_var);
3602 instructions->push_tail(state->switch_state.test_var);
3603 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
3608 ast_switch_body::hir(exec_list *instructions,
3609 struct _mesa_glsl_parse_state *state)
3612 stmts->hir(instructions, state);
3614 /* Switch bodies do not have r-values. */
3619 ast_case_statement_list::hir(exec_list *instructions,
3620 struct _mesa_glsl_parse_state *state)
3622 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases)
3623 case_stmt->hir(instructions, state);
3625 /* Case statements do not have r-values. */
3630 ast_case_statement::hir(exec_list *instructions,
3631 struct _mesa_glsl_parse_state *state)
3633 labels->hir(instructions, state);
3635 /* Conditionally set fallthru state based on break state. */
3636 ir_constant *const false_val = new(state) ir_constant(false);
3637 ir_dereference_variable *const deref_is_fallthru_var =
3638 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
3639 ir_dereference_variable *const deref_is_break_var =
3640 new(state) ir_dereference_variable(state->switch_state.is_break_var);
3641 ir_assignment *const reset_fallthru_on_break =
3642 new(state) ir_assignment(deref_is_fallthru_var,
3644 deref_is_break_var);
3645 instructions->push_tail(reset_fallthru_on_break);
3647 /* Guard case statements depending on fallthru state. */
3648 ir_dereference_variable *const deref_fallthru_guard =
3649 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
3650 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
3652 foreach_list_typed (ast_node, stmt, link, & this->stmts)
3653 stmt->hir(& test_fallthru->then_instructions, state);
3655 instructions->push_tail(test_fallthru);
3657 /* Case statements do not have r-values. */
3663 ast_case_label_list::hir(exec_list *instructions,
3664 struct _mesa_glsl_parse_state *state)
3666 foreach_list_typed (ast_case_label, label, link, & this->labels)
3667 label->hir(instructions, state);
3669 /* Case labels do not have r-values. */
3674 ast_case_label::hir(exec_list *instructions,
3675 struct _mesa_glsl_parse_state *state)
3679 ir_dereference_variable *deref_fallthru_var =
3680 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
3682 ir_rvalue *const true_val = new(ctx) ir_constant(true);
3684 /* If not default case, ... */
3685 if (this->test_value != NULL) {
3686 /* Conditionally set fallthru state based on
3687 * comparison of cached test expression value to case label.
3689 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
3690 ir_constant *label_const = label_rval->constant_expression_value();
3693 YYLTYPE loc = this->test_value->get_location();
3695 _mesa_glsl_error(& loc, state,
3696 "switch statement case label must be a "
3697 "constant expression");
3699 /* Stuff a dummy value in to allow processing to continue. */
3700 label_const = new(ctx) ir_constant(0);
3702 ast_expression *previous_label = (ast_expression *)
3703 hash_table_find(state->switch_state.labels_ht,
3704 (void *)(uintptr_t)label_const->value.u[0]);
3706 if (previous_label) {
3707 YYLTYPE loc = this->test_value->get_location();
3708 _mesa_glsl_error(& loc, state,
3709 "duplicate case value");
3711 loc = previous_label->get_location();
3712 _mesa_glsl_error(& loc, state,
3713 "this is the previous case label");
3715 hash_table_insert(state->switch_state.labels_ht,
3717 (void *)(uintptr_t)label_const->value.u[0]);
3721 ir_dereference_variable *deref_test_var =
3722 new(ctx) ir_dereference_variable(state->switch_state.test_var);
3724 ir_rvalue *const test_cond = new(ctx) ir_expression(ir_binop_all_equal,
3728 ir_assignment *set_fallthru_on_test =
3729 new(ctx) ir_assignment(deref_fallthru_var,
3733 instructions->push_tail(set_fallthru_on_test);
3734 } else { /* default case */
3735 if (state->switch_state.previous_default) {
3736 YYLTYPE loc = this->get_location();
3737 _mesa_glsl_error(& loc, state,
3738 "multiple default labels in one switch");
3740 loc = state->switch_state.previous_default->get_location();
3741 _mesa_glsl_error(& loc, state,
3742 "this is the first default label");
3744 state->switch_state.previous_default = this;
3746 /* Set falltrhu state. */
3747 ir_assignment *set_fallthru =
3748 new(ctx) ir_assignment(deref_fallthru_var, true_val);
3750 instructions->push_tail(set_fallthru);
3753 /* Case statements do not have r-values. */
3758 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
3759 struct _mesa_glsl_parse_state *state)
3763 if (condition != NULL) {
3764 ir_rvalue *const cond =
3765 condition->hir(& stmt->body_instructions, state);
3768 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
3769 YYLTYPE loc = condition->get_location();
3771 _mesa_glsl_error(& loc, state,
3772 "loop condition must be scalar boolean");
3774 /* As the first code in the loop body, generate a block that looks
3775 * like 'if (!condition) break;' as the loop termination condition.
3777 ir_rvalue *const not_cond =
3778 new(ctx) ir_expression(ir_unop_logic_not, cond);
3780 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
3782 ir_jump *const break_stmt =
3783 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
3785 if_stmt->then_instructions.push_tail(break_stmt);
3786 stmt->body_instructions.push_tail(if_stmt);
3793 ast_iteration_statement::hir(exec_list *instructions,
3794 struct _mesa_glsl_parse_state *state)
3798 /* For-loops and while-loops start a new scope, but do-while loops do not.
3800 if (mode != ast_do_while)
3801 state->symbols->push_scope();
3803 if (init_statement != NULL)
3804 init_statement->hir(instructions, state);
3806 ir_loop *const stmt = new(ctx) ir_loop();
3807 instructions->push_tail(stmt);
3809 /* Track the current loop nesting. */
3810 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
3812 state->loop_nesting_ast = this;
3814 /* Likewise, indicate that following code is closest to a loop,
3815 * NOT closest to a switch.
3817 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
3818 state->switch_state.is_switch_innermost = false;
3820 if (mode != ast_do_while)
3821 condition_to_hir(stmt, state);
3824 body->hir(& stmt->body_instructions, state);
3826 if (rest_expression != NULL)
3827 rest_expression->hir(& stmt->body_instructions, state);
3829 if (mode == ast_do_while)
3830 condition_to_hir(stmt, state);
3832 if (mode != ast_do_while)
3833 state->symbols->pop_scope();
3835 /* Restore previous nesting before returning. */
3836 state->loop_nesting_ast = nesting_ast;
3837 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
3839 /* Loops do not have r-values.
3846 ast_type_specifier::hir(exec_list *instructions,
3847 struct _mesa_glsl_parse_state *state)
3849 if (!this->is_precision_statement && this->structure == NULL)
3852 YYLTYPE loc = this->get_location();
3854 if (this->precision != ast_precision_none
3855 && state->language_version != 100
3856 && state->language_version < 130) {
3857 _mesa_glsl_error(&loc, state,
3858 "precision qualifiers exist only in "
3859 "GLSL ES 1.00, and GLSL 1.30 and later");
3862 if (this->precision != ast_precision_none
3863 && this->structure != NULL) {
3864 _mesa_glsl_error(&loc, state,
3865 "precision qualifiers do not apply to structures");
3869 /* If this is a precision statement, check that the type to which it is
3870 * applied is either float or int.
3872 * From section 4.5.3 of the GLSL 1.30 spec:
3873 * "The precision statement
3874 * precision precision-qualifier type;
3875 * can be used to establish a default precision qualifier. The type
3876 * field can be either int or float [...]. Any other types or
3877 * qualifiers will result in an error.
3879 if (this->is_precision_statement) {
3880 assert(this->precision != ast_precision_none);
3881 assert(this->structure == NULL); /* The check for structures was
3882 * performed above. */
3883 if (this->is_array) {
3884 _mesa_glsl_error(&loc, state,
3885 "default precision statements do not apply to "
3889 if (strcmp(this->type_name, "float") != 0 &&
3890 strcmp(this->type_name, "int") != 0) {
3891 _mesa_glsl_error(&loc, state,
3892 "default precision statements apply only to types "
3897 /* FINISHME: Translate precision statements into IR. */
3901 if (this->structure != NULL)
3902 return this->structure->hir(instructions, state);
3909 ast_struct_specifier::hir(exec_list *instructions,
3910 struct _mesa_glsl_parse_state *state)
3912 unsigned decl_count = 0;
3914 /* Make an initial pass over the list of structure fields to determine how
3915 * many there are. Each element in this list is an ast_declarator_list.
3916 * This means that we actually need to count the number of elements in the
3917 * 'declarations' list in each of the elements.
3919 foreach_list_typed (ast_declarator_list, decl_list, link,
3920 &this->declarations) {
3921 foreach_list_const (decl_ptr, & decl_list->declarations) {
3926 /* Allocate storage for the structure fields and process the field
3927 * declarations. As the declarations are processed, try to also convert
3928 * the types to HIR. This ensures that structure definitions embedded in
3929 * other structure definitions are processed.
3931 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
3935 foreach_list_typed (ast_declarator_list, decl_list, link,
3936 &this->declarations) {
3937 const char *type_name;
3939 decl_list->type->specifier->hir(instructions, state);
3941 /* Section 10.9 of the GLSL ES 1.00 specification states that
3942 * embedded structure definitions have been removed from the language.
3944 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
3945 YYLTYPE loc = this->get_location();
3946 _mesa_glsl_error(&loc, state, "Embedded structure definitions are "
3947 "not allowed in GLSL ES 1.00.");
3950 const glsl_type *decl_type =
3951 decl_list->type->specifier->glsl_type(& type_name, state);
3953 foreach_list_typed (ast_declaration, decl, link,
3954 &decl_list->declarations) {
3955 const struct glsl_type *field_type = decl_type;
3956 if (decl->is_array) {
3957 YYLTYPE loc = decl->get_location();
3958 field_type = process_array_type(&loc, decl_type, decl->array_size,
3961 fields[i].type = (field_type != NULL)
3962 ? field_type : glsl_type::error_type;
3963 fields[i].name = decl->identifier;
3968 assert(i == decl_count);
3970 const glsl_type *t =
3971 glsl_type::get_record_instance(fields, decl_count, this->name);
3973 YYLTYPE loc = this->get_location();
3974 if (!state->symbols->add_type(name, t)) {
3975 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
3977 const glsl_type **s = reralloc(state, state->user_structures,
3979 state->num_user_structures + 1);
3981 s[state->num_user_structures] = t;
3982 state->user_structures = s;
3983 state->num_user_structures++;
3987 /* Structure type definitions do not have r-values.
3993 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
3994 exec_list *instructions)
3996 bool gl_FragColor_assigned = false;
3997 bool gl_FragData_assigned = false;
3998 bool user_defined_fs_output_assigned = false;
3999 ir_variable *user_defined_fs_output = NULL;
4001 /* It would be nice to have proper location information. */
4003 memset(&loc, 0, sizeof(loc));
4005 foreach_list(node, instructions) {
4006 ir_variable *var = ((ir_instruction *)node)->as_variable();
4008 if (!var || !var->assigned)
4011 if (strcmp(var->name, "gl_FragColor") == 0)
4012 gl_FragColor_assigned = true;
4013 else if (strcmp(var->name, "gl_FragData") == 0)
4014 gl_FragData_assigned = true;
4015 else if (strncmp(var->name, "gl_", 3) != 0) {
4016 if (state->target == fragment_shader &&
4017 (var->mode == ir_var_out || var->mode == ir_var_inout)) {
4018 user_defined_fs_output_assigned = true;
4019 user_defined_fs_output = var;
4024 /* From the GLSL 1.30 spec:
4026 * "If a shader statically assigns a value to gl_FragColor, it
4027 * may not assign a value to any element of gl_FragData. If a
4028 * shader statically writes a value to any element of
4029 * gl_FragData, it may not assign a value to
4030 * gl_FragColor. That is, a shader may assign values to either
4031 * gl_FragColor or gl_FragData, but not both. Multiple shaders
4032 * linked together must also consistently write just one of
4033 * these variables. Similarly, if user declared output
4034 * variables are in use (statically assigned to), then the
4035 * built-in variables gl_FragColor and gl_FragData may not be
4036 * assigned to. These incorrect usages all generate compile
4039 if (gl_FragColor_assigned && gl_FragData_assigned) {
4040 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4041 "`gl_FragColor' and `gl_FragData'\n");
4042 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
4043 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4044 "`gl_FragColor' and `%s'\n",
4045 user_defined_fs_output->name);
4046 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
4047 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4048 "`gl_FragData' and `%s'\n",
4049 user_defined_fs_output->name);