1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
13 #include "src/base/build_config.h"
14 #include "src/base/logging.h"
15 #include "src/base/macros.h"
17 // Unfortunately, the INFINITY macro cannot be used with the '-pedantic'
18 // warning flag and certain versions of GCC due to a bug:
19 // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=11931
20 // For now, we use the more involved template-based version from <limits>, but
21 // only when compiling with GCC versions affected by the bug (2.96.x - 4.0.x)
22 #if V8_CC_GNU && V8_GNUC_PREREQ(2, 96, 0) && !V8_GNUC_PREREQ(4, 1, 0)
23 # include <limits> // NOLINT
24 # define V8_INFINITY std::numeric_limits<double>::infinity()
26 # define V8_INFINITY HUGE_VAL
28 #define V8_INFINITY (__builtin_inff())
30 # define V8_INFINITY INFINITY
33 #if V8_TARGET_ARCH_IA32 || (V8_TARGET_ARCH_X64 && !V8_TARGET_ARCH_32_BIT) || \
34 V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_MIPS || \
35 V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_X87
37 #define V8_TURBOFAN_BACKEND 1
38 #if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_MIPS64 || \
40 // 64-bit TurboFan backends support 64-bit integer arithmetic.
41 #define V8_TURBOFAN_BACKEND_64 1
43 #define V8_TURBOFAN_BACKEND_64 0
47 #define V8_TURBOFAN_BACKEND 0
50 #if V8_TURBOFAN_BACKEND
51 #define V8_TURBOFAN_TARGET 1
53 #define V8_TURBOFAN_TARGET 0
66 // Determine whether we are running in a simulated environment.
67 // Setting USE_SIMULATOR explicitly from the build script will force
68 // the use of a simulated environment.
69 #if !defined(USE_SIMULATOR)
70 #if (V8_TARGET_ARCH_ARM64 && !V8_HOST_ARCH_ARM64)
71 #define USE_SIMULATOR 1
73 #if (V8_TARGET_ARCH_ARM && !V8_HOST_ARCH_ARM)
74 #define USE_SIMULATOR 1
76 #if (V8_TARGET_ARCH_PPC && !V8_HOST_ARCH_PPC)
77 #define USE_SIMULATOR 1
79 #if (V8_TARGET_ARCH_MIPS && !V8_HOST_ARCH_MIPS)
80 #define USE_SIMULATOR 1
82 #if (V8_TARGET_ARCH_MIPS64 && !V8_HOST_ARCH_MIPS64)
83 #define USE_SIMULATOR 1
87 // Determine whether the architecture uses an embedded constant pool
88 // (contiguous constant pool embedded in code object).
89 #if V8_TARGET_ARCH_PPC
90 #define V8_EMBEDDED_CONSTANT_POOL 1
92 #define V8_EMBEDDED_CONSTANT_POOL 0
95 #ifdef V8_TARGET_ARCH_ARM
96 // Set stack limit lower for ARM than for other architectures because
97 // stack allocating MacroAssembler takes 120K bytes.
98 // See issue crbug.com/405338
99 #define V8_DEFAULT_STACK_SIZE_KB 864
101 // Slightly less than 1MB, since Windows' default stack size for
102 // the main execution thread is 1MB for both 32 and 64-bit.
103 #define V8_DEFAULT_STACK_SIZE_KB 984
107 // Determine whether double field unboxing feature is enabled.
108 #if V8_TARGET_ARCH_64_BIT
109 #define V8_DOUBLE_FIELDS_UNBOXING 1
111 #define V8_DOUBLE_FIELDS_UNBOXING 0
115 typedef uint8_t byte;
116 typedef byte* Address;
118 // -----------------------------------------------------------------------------
122 const int MB = KB * KB;
123 const int GB = KB * KB * KB;
124 const int kMaxInt = 0x7FFFFFFF;
125 const int kMinInt = -kMaxInt - 1;
126 const int kMaxInt8 = (1 << 7) - 1;
127 const int kMinInt8 = -(1 << 7);
128 const int kMaxUInt8 = (1 << 8) - 1;
129 const int kMinUInt8 = 0;
130 const int kMaxInt16 = (1 << 15) - 1;
131 const int kMinInt16 = -(1 << 15);
132 const int kMaxUInt16 = (1 << 16) - 1;
133 const int kMinUInt16 = 0;
135 const uint32_t kMaxUInt32 = 0xFFFFFFFFu;
137 const int kCharSize = sizeof(char); // NOLINT
138 const int kShortSize = sizeof(short); // NOLINT
139 const int kIntSize = sizeof(int); // NOLINT
140 const int kInt32Size = sizeof(int32_t); // NOLINT
141 const int kInt64Size = sizeof(int64_t); // NOLINT
142 const int kFloatSize = sizeof(float); // NOLINT
143 const int kDoubleSize = sizeof(double); // NOLINT
144 const int kIntptrSize = sizeof(intptr_t); // NOLINT
145 const int kPointerSize = sizeof(void*); // NOLINT
146 #if V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT
147 const int kRegisterSize = kPointerSize + kPointerSize;
149 const int kRegisterSize = kPointerSize;
151 const int kPCOnStackSize = kRegisterSize;
152 const int kFPOnStackSize = kRegisterSize;
154 const int kDoubleSizeLog2 = 3;
156 #if V8_HOST_ARCH_64_BIT
157 const int kPointerSizeLog2 = 3;
158 const intptr_t kIntptrSignBit = V8_INT64_C(0x8000000000000000);
159 const uintptr_t kUintptrAllBitsSet = V8_UINT64_C(0xFFFFFFFFFFFFFFFF);
160 const bool kRequiresCodeRange = true;
161 #if V8_TARGET_ARCH_MIPS64
162 // To use pseudo-relative jumps such as j/jal instructions which have 28-bit
163 // encoded immediate, the addresses have to be in range of 256MB aligned
164 // region. Used only for large object space.
165 const size_t kMaximalCodeRangeSize = 256 * MB;
167 const size_t kMaximalCodeRangeSize = 512 * MB;
170 const size_t kMinimumCodeRangeSize = 4 * MB;
171 const size_t kReservedCodeRangePages = 1;
173 const size_t kMinimumCodeRangeSize = 3 * MB;
174 const size_t kReservedCodeRangePages = 0;
177 const int kPointerSizeLog2 = 2;
178 const intptr_t kIntptrSignBit = 0x80000000;
179 const uintptr_t kUintptrAllBitsSet = 0xFFFFFFFFu;
180 #if V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT
181 // x32 port also requires code range.
182 const bool kRequiresCodeRange = true;
183 const size_t kMaximalCodeRangeSize = 256 * MB;
184 const size_t kMinimumCodeRangeSize = 3 * MB;
185 const size_t kReservedCodeRangePages = 0;
187 const bool kRequiresCodeRange = false;
188 const size_t kMaximalCodeRangeSize = 0 * MB;
189 const size_t kMinimumCodeRangeSize = 0 * MB;
190 const size_t kReservedCodeRangePages = 0;
194 STATIC_ASSERT(kPointerSize == (1 << kPointerSizeLog2));
196 const int kBitsPerByte = 8;
197 const int kBitsPerByteLog2 = 3;
198 const int kBitsPerPointer = kPointerSize * kBitsPerByte;
199 const int kBitsPerInt = kIntSize * kBitsPerByte;
201 // IEEE 754 single precision floating point number bit layout.
202 const uint32_t kBinary32SignMask = 0x80000000u;
203 const uint32_t kBinary32ExponentMask = 0x7f800000u;
204 const uint32_t kBinary32MantissaMask = 0x007fffffu;
205 const int kBinary32ExponentBias = 127;
206 const int kBinary32MaxExponent = 0xFE;
207 const int kBinary32MinExponent = 0x01;
208 const int kBinary32MantissaBits = 23;
209 const int kBinary32ExponentShift = 23;
211 // Quiet NaNs have bits 51 to 62 set, possibly the sign bit, and no
213 const uint64_t kQuietNaNMask = static_cast<uint64_t>(0xfff) << 51;
215 // Latin1/UTF-16 constants
216 // Code-point values in Unicode 4.0 are 21 bits wide.
217 // Code units in UTF-16 are 16 bits wide.
218 typedef uint16_t uc16;
219 typedef int32_t uc32;
220 const int kOneByteSize = kCharSize;
221 const int kUC16Size = sizeof(uc16); // NOLINT
223 // 128 bit SIMD value size.
224 const int kSimd128Size = 16;
226 // Round up n to be a multiple of sz, where sz is a power of 2.
227 #define ROUND_UP(n, sz) (((n) + ((sz) - 1)) & ~((sz) - 1))
230 // FUNCTION_ADDR(f) gets the address of a C function f.
231 #define FUNCTION_ADDR(f) \
232 (reinterpret_cast<v8::internal::Address>(reinterpret_cast<intptr_t>(f)))
235 // FUNCTION_CAST<F>(addr) casts an address into a function
236 // of type F. Used to invoke generated code from within C.
237 template <typename F>
238 F FUNCTION_CAST(Address addr) {
239 return reinterpret_cast<F>(reinterpret_cast<intptr_t>(addr));
243 // -----------------------------------------------------------------------------
244 // Forward declarations for frequently used classes
245 // (sorted alphabetically)
247 class FreeStoreAllocationPolicy;
248 template <typename T, class P = FreeStoreAllocationPolicy> class List;
250 // -----------------------------------------------------------------------------
251 // Declarations for use in both the preparser and the rest of V8.
253 // The Strict Mode (ECMA-262 5th edition, 4.2.2).
256 // LanguageMode is expressed as a bitmask. Descriptions of the bits:
261 // Shorthands for some common language modes.
264 STRONG = STRICT_BIT | STRONG_BIT
268 inline std::ostream& operator<<(std::ostream& os, const LanguageMode& mode) {
271 return os << "sloppy";
273 return os << "strict";
275 return os << "strong";
277 return os << "unknown";
282 inline bool is_sloppy(LanguageMode language_mode) {
283 return (language_mode & STRICT_BIT) == 0;
287 inline bool is_strict(LanguageMode language_mode) {
288 return language_mode & STRICT_BIT;
292 inline bool is_strong(LanguageMode language_mode) {
293 return language_mode & STRONG_BIT;
297 inline bool is_valid_language_mode(int language_mode) {
298 return language_mode == SLOPPY || language_mode == STRICT ||
299 language_mode == STRONG;
303 inline LanguageMode construct_language_mode(bool strict_bit, bool strong_bit) {
304 int language_mode = 0;
305 if (strict_bit) language_mode |= STRICT_BIT;
306 if (strong_bit) language_mode |= STRONG_BIT;
307 DCHECK(is_valid_language_mode(language_mode));
308 return static_cast<LanguageMode>(language_mode);
312 // Strong mode behaviour must sometimes be signalled by a two valued enum where
313 // caching is involved, to prevent sloppy and strict mode from being incorrectly
315 enum class Strength : bool {
316 WEAK, // sloppy, strict behaviour
317 STRONG // strong behaviour
321 inline bool is_strong(Strength strength) {
322 return strength == Strength::STRONG;
326 inline std::ostream& operator<<(std::ostream& os, const Strength& strength) {
327 return os << (is_strong(strength) ? "strong" : "weak");
331 inline Strength strength(LanguageMode language_mode) {
332 return is_strong(language_mode) ? Strength::STRONG : Strength::WEAK;
336 inline size_t hash_value(Strength strength) {
337 return static_cast<size_t>(strength);
341 // Mask for the sign bit in a smi.
342 const intptr_t kSmiSignMask = kIntptrSignBit;
344 const int kObjectAlignmentBits = kPointerSizeLog2;
345 const intptr_t kObjectAlignment = 1 << kObjectAlignmentBits;
346 const intptr_t kObjectAlignmentMask = kObjectAlignment - 1;
348 // Desired alignment for pointers.
349 const intptr_t kPointerAlignment = (1 << kPointerSizeLog2);
350 const intptr_t kPointerAlignmentMask = kPointerAlignment - 1;
352 // Desired alignment for double values.
353 const intptr_t kDoubleAlignment = 8;
354 const intptr_t kDoubleAlignmentMask = kDoubleAlignment - 1;
356 // Desired alignment for 128 bit SIMD values.
357 const intptr_t kSimd128Alignment = 16;
358 const intptr_t kSimd128AlignmentMask = kSimd128Alignment - 1;
360 // Desired alignment for generated code is 32 bytes (to improve cache line
362 const int kCodeAlignmentBits = 5;
363 const intptr_t kCodeAlignment = 1 << kCodeAlignmentBits;
364 const intptr_t kCodeAlignmentMask = kCodeAlignment - 1;
366 // The owner field of a page is tagged with the page header tag. We need that
367 // to find out if a slot is part of a large object. If we mask out the lower
368 // 0xfffff bits (1M pages), go to the owner offset, and see that this field
369 // is tagged with the page header tag, we can just look up the owner.
370 // Otherwise, we know that we are somewhere (not within the first 1M) in a
372 const int kPageHeaderTag = 3;
373 const int kPageHeaderTagSize = 2;
374 const intptr_t kPageHeaderTagMask = (1 << kPageHeaderTagSize) - 1;
377 // Zap-value: The value used for zapping dead objects.
378 // Should be a recognizable hex value tagged as a failure.
379 #ifdef V8_HOST_ARCH_64_BIT
380 const Address kZapValue =
381 reinterpret_cast<Address>(V8_UINT64_C(0xdeadbeedbeadbeef));
382 const Address kHandleZapValue =
383 reinterpret_cast<Address>(V8_UINT64_C(0x1baddead0baddeaf));
384 const Address kGlobalHandleZapValue =
385 reinterpret_cast<Address>(V8_UINT64_C(0x1baffed00baffedf));
386 const Address kFromSpaceZapValue =
387 reinterpret_cast<Address>(V8_UINT64_C(0x1beefdad0beefdaf));
388 const uint64_t kDebugZapValue = V8_UINT64_C(0xbadbaddbbadbaddb);
389 const uint64_t kSlotsZapValue = V8_UINT64_C(0xbeefdeadbeefdeef);
390 const uint64_t kFreeListZapValue = 0xfeed1eaffeed1eaf;
392 const Address kZapValue = reinterpret_cast<Address>(0xdeadbeef);
393 const Address kHandleZapValue = reinterpret_cast<Address>(0xbaddeaf);
394 const Address kGlobalHandleZapValue = reinterpret_cast<Address>(0xbaffedf);
395 const Address kFromSpaceZapValue = reinterpret_cast<Address>(0xbeefdaf);
396 const uint32_t kSlotsZapValue = 0xbeefdeef;
397 const uint32_t kDebugZapValue = 0xbadbaddb;
398 const uint32_t kFreeListZapValue = 0xfeed1eaf;
401 const int kCodeZapValue = 0xbadc0de;
402 const uint32_t kPhantomReferenceZap = 0xca11bac;
404 // On Intel architecture, cache line size is 64 bytes.
405 // On ARM it may be less (32 bytes), but as far this constant is
406 // used for aligning data, it doesn't hurt to align on a greater value.
407 #define PROCESSOR_CACHE_LINE_SIZE 64
409 // Constants relevant to double precision floating point numbers.
410 // If looking only at the top 32 bits, the QNaN mask is bits 19 to 30.
411 const uint32_t kQuietNaNHighBitsMask = 0xfff << (51 - 32);
414 // -----------------------------------------------------------------------------
415 // Forward declarations for frequently used classes
429 class DescriptorArray;
430 class TransitionArray;
431 class ExternalReference;
433 class FunctionTemplateInfo;
435 class SeededNumberDictionary;
436 class UnseededNumberDictionary;
437 class NameDictionary;
438 class GlobalDictionary;
439 template <typename T> class MaybeHandle;
440 template <typename T> class Handle;
444 class InterceptorInfo;
450 class LargeObjectSpace;
451 class MacroAssembler;
454 class MarkCompactCollector;
463 template <typename Config, class Allocator = FreeStoreAllocationPolicy>
472 class MessageLocation;
474 typedef bool (*WeakSlotCallback)(Object** pointer);
476 typedef bool (*WeakSlotCallbackWithHeap)(Heap* heap, Object** pointer);
478 // -----------------------------------------------------------------------------
481 // NOTE: SpaceIterator depends on AllocationSpace enumeration values being
483 // Keep this enum in sync with the ObjectSpace enum in v8.h
484 enum AllocationSpace {
485 NEW_SPACE, // Semispaces collected with copying collector.
486 OLD_SPACE, // May contain pointers to new space.
487 CODE_SPACE, // No pointers to new space, marked executable.
488 MAP_SPACE, // Only and all map objects.
489 LO_SPACE, // Promoted large objects.
491 FIRST_SPACE = NEW_SPACE,
492 LAST_SPACE = LO_SPACE,
493 FIRST_PAGED_SPACE = OLD_SPACE,
494 LAST_PAGED_SPACE = MAP_SPACE
496 const int kSpaceTagSize = 3;
497 const int kSpaceTagMask = (1 << kSpaceTagSize) - 1;
499 enum AllocationAlignment {
506 // A flag that indicates whether objects should be pretenured when
507 // allocated (allocated directly into the old generation) or not
508 // (allocated in the young generation if the object size and type
510 enum PretenureFlag { NOT_TENURED, TENURED };
512 inline std::ostream& operator<<(std::ostream& os, const PretenureFlag& flag) {
515 return os << "NotTenured";
517 return os << "Tenured";
523 enum MinimumCapacity {
524 USE_DEFAULT_MINIMUM_CAPACITY,
525 USE_CUSTOM_MINIMUM_CAPACITY
528 enum GarbageCollector { SCAVENGER, MARK_COMPACTOR };
530 enum Executability { NOT_EXECUTABLE, EXECUTABLE };
534 VISIT_ALL_IN_SCAVENGE,
535 VISIT_ALL_IN_SWEEP_NEWSPACE,
539 // Flag indicating whether code is built into the VM (one of the natives files).
540 enum NativesFlag { NOT_NATIVES_CODE, NATIVES_CODE };
543 // ParseRestriction is used to restrict the set of valid statements in a
544 // unit of compilation. Restriction violations cause a syntax error.
545 enum ParseRestriction {
546 NO_PARSE_RESTRICTION, // All expressions are allowed.
547 ONLY_SINGLE_FUNCTION_LITERAL // Only a single FunctionLiteral expression.
550 // A CodeDesc describes a buffer holding instructions and relocation
551 // information. The instructions start at the beginning of the buffer
552 // and grow forward, the relocation information starts at the end of
553 // the buffer and grows backward. A constant pool may exist at the
554 // end of the instructions.
556 // |<--------------- buffer_size ----------------------------------->|
557 // |<------------- instr_size ---------->| |<-- reloc_size -->|
558 // | |<- const_pool_size ->| |
559 // +=====================================+========+==================+
560 // | instructions | data | free | reloc info |
561 // +=====================================+========+==================+
571 int constant_pool_size;
576 // Callback function used for iterating objects in heap spaces,
577 // for example, scanning heap objects.
578 typedef int (*HeapObjectCallback)(HeapObject* obj);
581 // Callback function used for checking constraints when copying/relocating
582 // objects. Returns true if an object can be copied/relocated from its
583 // old_addr to a new_addr.
584 typedef bool (*ConstraintCallback)(Address new_addr, Address old_addr);
587 // Callback function on inline caches, used for iterating over inline caches
589 typedef void (*InlineCacheCallback)(Code* code, Address ic);
592 // State for inline cache call sites. Aliased as IC::State.
593 enum InlineCacheState {
594 // Has never been executed.
596 // Has been executed but monomorhic state has been delayed.
598 // Has been executed and only one receiver type has been seen.
600 // Check failed due to prototype (or map deprecation).
602 // Multiple receiver types have been seen.
604 // Many receiver types have been seen.
606 // A generic handler is installed and no extra typefeedback is recorded.
608 // Special state for debug break or step in prepare stubs.
610 // Type-vector-based ICs have a default state, with the full calculation
611 // of IC state only determined by a look at the IC and the typevector
617 enum CallFunctionFlags {
618 NO_CALL_FUNCTION_FLAGS,
620 // Always wrap the receiver and call to the JSFunction. Only use this flag
621 // both the receiver type and the target method are statically known.
626 enum CallConstructorFlags {
627 NO_CALL_CONSTRUCTOR_FLAGS = 0,
628 // The call target is cached in the instruction stream.
629 RECORD_CONSTRUCTOR_TARGET = 1,
630 SUPER_CONSTRUCTOR_CALL = 1 << 1,
631 SUPER_CALL_RECORD_TARGET = SUPER_CONSTRUCTOR_CALL | RECORD_CONSTRUCTOR_TARGET
635 enum CacheHolderFlag {
637 kCacheOnPrototypeReceiverIsDictionary,
638 kCacheOnPrototypeReceiverIsPrimitive,
643 // The Store Buffer (GC).
645 kStoreBufferFullEvent,
646 kStoreBufferStartScanningPagesEvent,
647 kStoreBufferScanningPageEvent
651 typedef void (*StoreBufferCallback)(Heap* heap,
653 StoreBufferEvent event);
656 // Union used for fast testing of specific double values.
657 union DoubleRepresentation {
660 DoubleRepresentation(double x) { value = x; }
661 bool operator==(const DoubleRepresentation& other) const {
662 return bits == other.bits;
667 // Union used for customized checking of the IEEE double types
668 // inlined within v8 runtime, rather than going to the underlying
669 // platform headers and libraries
670 union IeeeDoubleLittleEndianArchType {
673 unsigned int man_low :32;
674 unsigned int man_high :20;
675 unsigned int exp :11;
676 unsigned int sign :1;
681 union IeeeDoubleBigEndianArchType {
684 unsigned int sign :1;
685 unsigned int exp :11;
686 unsigned int man_high :20;
687 unsigned int man_low :32;
693 struct AccessorDescriptor {
694 Object* (*getter)(Isolate* isolate, Object* object, void* data);
696 Isolate* isolate, JSObject* object, Object* value, void* data);
701 // -----------------------------------------------------------------------------
706 #define HAS_SMI_TAG(value) \
707 ((reinterpret_cast<intptr_t>(value) & kSmiTagMask) == kSmiTag)
709 // OBJECT_POINTER_ALIGN returns the value aligned as a HeapObject pointer
710 #define OBJECT_POINTER_ALIGN(value) \
711 (((value) + kObjectAlignmentMask) & ~kObjectAlignmentMask)
713 // POINTER_SIZE_ALIGN returns the value aligned as a pointer.
714 #define POINTER_SIZE_ALIGN(value) \
715 (((value) + kPointerAlignmentMask) & ~kPointerAlignmentMask)
717 // CODE_POINTER_ALIGN returns the value aligned as a generated code segment.
718 #define CODE_POINTER_ALIGN(value) \
719 (((value) + kCodeAlignmentMask) & ~kCodeAlignmentMask)
721 // DOUBLE_POINTER_ALIGN returns the value algined for double pointers.
722 #define DOUBLE_POINTER_ALIGN(value) \
723 (((value) + kDoubleAlignmentMask) & ~kDoubleAlignmentMask)
726 // CPU feature flags.
746 MOVW_MOVT_IMMEDIATE_LOADS,
762 NUMBER_OF_CPU_FEATURES
766 // Used to specify if a macro instruction must perform a smi check on tagged
775 EVAL_SCOPE, // The top-level scope for an eval source.
776 FUNCTION_SCOPE, // The top-level scope for a function.
777 MODULE_SCOPE, // The scope introduced by a module literal
778 SCRIPT_SCOPE, // The top-level scope for a script or a top-level eval.
779 CATCH_SCOPE, // The scope introduced by catch.
780 BLOCK_SCOPE, // The scope introduced by a new block.
781 WITH_SCOPE, // The scope introduced by with.
782 ARROW_SCOPE // The top-level scope for an arrow function literal.
785 // The mips architecture prior to revision 5 has inverted encoding for sNaN.
786 #if (V8_TARGET_ARCH_MIPS && !defined(_MIPS_ARCH_MIPS32R6)) || \
787 (V8_TARGET_ARCH_MIPS64 && !defined(_MIPS_ARCH_MIPS64R6))
788 const uint32_t kHoleNanUpper32 = 0xFFFF7FFF;
789 const uint32_t kHoleNanLower32 = 0xFFFF7FFF;
791 const uint32_t kHoleNanUpper32 = 0xFFF7FFFF;
792 const uint32_t kHoleNanLower32 = 0xFFF7FFFF;
795 const uint64_t kHoleNanInt64 =
796 (static_cast<uint64_t>(kHoleNanUpper32) << 32) | kHoleNanLower32;
799 // The order of this enum has to be kept in sync with the predicates below.
801 // User declared variables:
802 VAR, // declared via 'var', and 'function' declarations
804 CONST_LEGACY, // declared via legacy 'const' declarations
806 LET, // declared via 'let' declarations (first lexical)
808 CONST, // declared via 'const' declarations
810 IMPORT, // declared via 'import' declarations (last lexical)
812 // Variables introduced by the compiler:
813 INTERNAL, // like VAR, but not user-visible (may or may not
816 TEMPORARY, // temporary variables (not user-visible), stack-allocated
817 // unless the scope as a whole has forced context allocation
819 DYNAMIC, // always require dynamic lookup (we don't know
822 DYNAMIC_GLOBAL, // requires dynamic lookup, but we know that the
823 // variable is global unless it has been shadowed
824 // by an eval-introduced variable
826 DYNAMIC_LOCAL // requires dynamic lookup, but we know that the
827 // variable is local and where it is unless it
828 // has been shadowed by an eval-introduced
833 inline bool IsDynamicVariableMode(VariableMode mode) {
834 return mode >= DYNAMIC && mode <= DYNAMIC_LOCAL;
838 inline bool IsDeclaredVariableMode(VariableMode mode) {
839 return mode >= VAR && mode <= IMPORT;
843 inline bool IsLexicalVariableMode(VariableMode mode) {
844 return mode >= LET && mode <= IMPORT;
848 inline bool IsImmutableVariableMode(VariableMode mode) {
849 return mode == CONST || mode == CONST_LEGACY || mode == IMPORT;
853 enum class VariableLocation {
854 // Before and during variable allocation, a variable whose location is
855 // not yet determined. After allocation, a variable looked up as a
856 // property on the global object (and possibly absent). name() is the
857 // variable name, index() is invalid.
860 // A slot in the parameter section on the stack. index() is the
861 // parameter index, counting left-to-right. The receiver is index -1;
862 // the first parameter is index 0.
865 // A slot in the local section on the stack. index() is the variable
866 // index in the stack frame, starting at 0.
869 // An indexed slot in a heap context. index() is the variable index in
870 // the context object on the heap, starting at 0. scope() is the
871 // corresponding scope.
874 // An indexed slot in a script context that contains a respective global
875 // property cell. name() is the variable name, index() is the variable
876 // index in the context object on the heap, starting at 0. scope() is the
877 // corresponding script scope.
880 // A named slot in a heap context. name() is the variable name in the
881 // context object on the heap, with lookup starting at the current
882 // context. index() is invalid.
887 // ES6 Draft Rev3 10.2 specifies declarative environment records with mutable
888 // and immutable bindings that can be in two states: initialized and
889 // uninitialized. In ES5 only immutable bindings have these two states. When
890 // accessing a binding, it needs to be checked for initialization. However in
891 // the following cases the binding is initialized immediately after creation
892 // so the initialization check can always be skipped:
893 // 1. Var declared local variables.
895 // 2. A local variable introduced by a function declaration.
898 // function x(foo) {}
899 // 4. Catch bound variables.
900 // try {} catch (foo) {}
901 // 6. Function variables of named function expressions.
902 // var x = function foo() {}
903 // 7. Implicit binding of 'this'.
904 // 8. Implicit binding of 'arguments' in functions.
906 // ES5 specified object environment records which are introduced by ES elements
907 // such as Program and WithStatement that associate identifier bindings with the
908 // properties of some object. In the specification only mutable bindings exist
909 // (which may be non-writable) and have no distinct initialization step. However
910 // V8 allows const declarations in global code with distinct creation and
911 // initialization steps which are represented by non-writable properties in the
912 // global object. As a result also these bindings need to be checked for
915 // The following enum specifies a flag that indicates if the binding needs a
916 // distinct initialization step (kNeedsInitialization) or if the binding is
917 // immediately initialized upon creation (kCreatedInitialized).
918 enum InitializationFlag {
919 kNeedsInitialization,
924 enum MaybeAssignedFlag { kNotAssigned, kMaybeAssigned };
927 // Serialized in PreparseData, so numeric values should not be changed.
928 enum ParseErrorType { kSyntaxError = 0, kReferenceError = 1 };
931 enum ClearExceptionFlag {
938 TREAT_MINUS_ZERO_AS_ZERO,
943 enum Signedness { kSigned, kUnsigned };
948 kArrowFunction = 1 << 0,
949 kGeneratorFunction = 1 << 1,
950 kConciseMethod = 1 << 2,
951 kConciseGeneratorMethod = kGeneratorFunction | kConciseMethod,
952 kAccessorFunction = 1 << 3,
953 kDefaultConstructor = 1 << 4,
954 kSubclassConstructor = 1 << 5,
955 kBaseConstructor = 1 << 6,
956 kInObjectLiteral = 1 << 7,
957 kDefaultBaseConstructor = kDefaultConstructor | kBaseConstructor,
958 kDefaultSubclassConstructor = kDefaultConstructor | kSubclassConstructor,
959 kConciseMethodInObjectLiteral = kConciseMethod | kInObjectLiteral,
960 kConciseGeneratorMethodInObjectLiteral =
961 kConciseGeneratorMethod | kInObjectLiteral,
962 kAccessorFunctionInObjectLiteral = kAccessorFunction | kInObjectLiteral,
966 inline bool IsValidFunctionKind(FunctionKind kind) {
967 return kind == FunctionKind::kNormalFunction ||
968 kind == FunctionKind::kArrowFunction ||
969 kind == FunctionKind::kGeneratorFunction ||
970 kind == FunctionKind::kConciseMethod ||
971 kind == FunctionKind::kConciseGeneratorMethod ||
972 kind == FunctionKind::kAccessorFunction ||
973 kind == FunctionKind::kDefaultBaseConstructor ||
974 kind == FunctionKind::kDefaultSubclassConstructor ||
975 kind == FunctionKind::kBaseConstructor ||
976 kind == FunctionKind::kSubclassConstructor ||
977 kind == FunctionKind::kConciseMethodInObjectLiteral ||
978 kind == FunctionKind::kConciseGeneratorMethodInObjectLiteral ||
979 kind == FunctionKind::kAccessorFunctionInObjectLiteral;
983 inline bool IsArrowFunction(FunctionKind kind) {
984 DCHECK(IsValidFunctionKind(kind));
985 return kind & FunctionKind::kArrowFunction;
989 inline bool IsGeneratorFunction(FunctionKind kind) {
990 DCHECK(IsValidFunctionKind(kind));
991 return kind & FunctionKind::kGeneratorFunction;
995 inline bool IsConciseMethod(FunctionKind kind) {
996 DCHECK(IsValidFunctionKind(kind));
997 return kind & FunctionKind::kConciseMethod;
1001 inline bool IsAccessorFunction(FunctionKind kind) {
1002 DCHECK(IsValidFunctionKind(kind));
1003 return kind & FunctionKind::kAccessorFunction;
1007 inline bool IsDefaultConstructor(FunctionKind kind) {
1008 DCHECK(IsValidFunctionKind(kind));
1009 return kind & FunctionKind::kDefaultConstructor;
1013 inline bool IsBaseConstructor(FunctionKind kind) {
1014 DCHECK(IsValidFunctionKind(kind));
1015 return kind & FunctionKind::kBaseConstructor;
1019 inline bool IsSubclassConstructor(FunctionKind kind) {
1020 DCHECK(IsValidFunctionKind(kind));
1021 return kind & FunctionKind::kSubclassConstructor;
1025 inline bool IsConstructor(FunctionKind kind) {
1026 DCHECK(IsValidFunctionKind(kind));
1028 (FunctionKind::kBaseConstructor | FunctionKind::kSubclassConstructor |
1029 FunctionKind::kDefaultConstructor);
1033 inline bool IsInObjectLiteral(FunctionKind kind) {
1034 DCHECK(IsValidFunctionKind(kind));
1035 return kind & FunctionKind::kInObjectLiteral;
1039 inline FunctionKind WithObjectLiteralBit(FunctionKind kind) {
1040 kind = static_cast<FunctionKind>(kind | FunctionKind::kInObjectLiteral);
1041 DCHECK(IsValidFunctionKind(kind));
1044 } } // namespace v8::internal
1046 namespace i = v8::internal;
1048 #endif // V8_GLOBALS_H_