r300g: implement pipe_rasterizer_state::clip_halfz
[platform/upstream/mesa.git] / src / gallium / drivers / r300 / r300_emit.c
1 /*
2  * Copyright 2008 Corbin Simpson <MostAwesomeDude@gmail.com>
3  * Copyright 2009 Marek Olšák <maraeo@gmail.com>
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * on the rights to use, copy, modify, merge, publish, distribute, sub
9  * license, and/or sell copies of the Software, and to permit persons to whom
10  * the Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22  * USE OR OTHER DEALINGS IN THE SOFTWARE. */
23
24 /* r300_emit: Functions for emitting state. */
25
26 #include "util/u_format.h"
27 #include "util/u_math.h"
28 #include "util/u_mm.h"
29
30 #include "r300_context.h"
31 #include "r300_cb.h"
32 #include "r300_cs.h"
33 #include "r300_emit.h"
34 #include "r300_fs.h"
35 #include "r300_screen.h"
36 #include "r300_screen_buffer.h"
37 #include "r300_vs.h"
38
39 void r300_emit_blend_state(struct r300_context* r300,
40                            unsigned size, void* state)
41 {
42     struct r300_blend_state* blend = (struct r300_blend_state*)state;
43     struct pipe_framebuffer_state* fb =
44         (struct pipe_framebuffer_state*)r300->fb_state.state;
45     struct pipe_surface *cb;
46     CS_LOCALS(r300);
47
48     cb = fb->nr_cbufs ? r300_get_nonnull_cb(fb, 0) : NULL;
49
50     if (cb) {
51         if (cb->format == PIPE_FORMAT_R16G16B16A16_FLOAT) {
52             WRITE_CS_TABLE(blend->cb_noclamp, size);
53         } else if (cb->format == PIPE_FORMAT_R16G16B16X16_FLOAT) {
54             WRITE_CS_TABLE(blend->cb_noclamp_noalpha, size);
55         } else {
56             unsigned swz = r300_surface(cb)->colormask_swizzle;
57             WRITE_CS_TABLE(blend->cb_clamp[swz], size);
58         }
59     } else {
60         WRITE_CS_TABLE(blend->cb_no_readwrite, size);
61     }
62 }
63
64 void r300_emit_blend_color_state(struct r300_context* r300,
65                                  unsigned size, void* state)
66 {
67     struct r300_blend_color_state* bc = (struct r300_blend_color_state*)state;
68     CS_LOCALS(r300);
69
70     WRITE_CS_TABLE(bc->cb, size);
71 }
72
73 void r300_emit_clip_state(struct r300_context* r300,
74                           unsigned size, void* state)
75 {
76     struct r300_clip_state* clip = (struct r300_clip_state*)state;
77     CS_LOCALS(r300);
78
79     WRITE_CS_TABLE(clip->cb, size);
80 }
81
82 void r300_emit_dsa_state(struct r300_context* r300, unsigned size, void* state)
83 {
84     struct r300_dsa_state* dsa = (struct r300_dsa_state*)state;
85     struct pipe_framebuffer_state* fb =
86         (struct pipe_framebuffer_state*)r300->fb_state.state;
87     boolean is_r500 = r300->screen->caps.is_r500;
88     CS_LOCALS(r300);
89     uint32_t alpha_func = dsa->alpha_function;
90
91     /* Choose the alpha ref value between 8-bit (FG_ALPHA_FUNC.AM_VAL) and
92      * 16-bit (FG_ALPHA_VALUE). */
93     if (is_r500 && (alpha_func & R300_FG_ALPHA_FUNC_ENABLE)) {
94         struct pipe_surface *cb = fb->nr_cbufs ? r300_get_nonnull_cb(fb, 0) : NULL;
95
96         if (cb &&
97             (cb->format == PIPE_FORMAT_R16G16B16A16_FLOAT ||
98              cb->format == PIPE_FORMAT_R16G16B16X16_FLOAT)) {
99             alpha_func |= R500_FG_ALPHA_FUNC_FP16_ENABLE;
100         } else {
101             alpha_func |= R500_FG_ALPHA_FUNC_8BIT;
102         }
103     }
104
105     /* Setup alpha-to-coverage. */
106     if (r300->alpha_to_coverage && r300->msaa_enable) {
107         /* Always set 3/6, it improves precision even for 2x and 4x MSAA. */
108         alpha_func |= R300_FG_ALPHA_FUNC_MASK_ENABLE |
109                       R300_FG_ALPHA_FUNC_CFG_3_OF_6;
110     }
111
112     BEGIN_CS(size);
113     OUT_CS_REG(R300_FG_ALPHA_FUNC, alpha_func);
114     OUT_CS_TABLE(fb->zsbuf ? &dsa->cb_begin : dsa->cb_zb_no_readwrite, size-2);
115     END_CS;
116 }
117
118 static void get_rc_constant_state(
119     float vec[4],
120     struct r300_context * r300,
121     struct rc_constant * constant)
122 {
123     struct r300_textures_state* texstate = r300->textures_state.state;
124     struct r300_resource *tex;
125
126     assert(constant->Type == RC_CONSTANT_STATE);
127
128     /* vec should either be (0, 0, 0, 1), which should be a relatively safe
129      * RGBA or STRQ value, or it could be one of the RC_CONSTANT_STATE
130      * state factors. */
131
132     switch (constant->u.State[0]) {
133         /* Factor for converting rectangle coords to
134          * normalized coords. Should only show up on non-r500. */
135         case RC_STATE_R300_TEXRECT_FACTOR:
136             tex = r300_resource(texstate->sampler_views[constant->u.State[1]]->base.texture);
137             vec[0] = 1.0 / tex->tex.width0;
138             vec[1] = 1.0 / tex->tex.height0;
139             vec[2] = 0;
140             vec[3] = 1;
141             break;
142
143         case RC_STATE_R300_TEXSCALE_FACTOR:
144             tex = r300_resource(texstate->sampler_views[constant->u.State[1]]->base.texture);
145             /* Add a small number to the texture size to work around rounding errors in hw. */
146             vec[0] = tex->b.b.width0  / (tex->tex.width0  + 0.001f);
147             vec[1] = tex->b.b.height0 / (tex->tex.height0 + 0.001f);
148             vec[2] = tex->b.b.depth0  / (tex->tex.depth0  + 0.001f);
149             vec[3] = 1;
150             break;
151
152         case RC_STATE_R300_VIEWPORT_SCALE:
153             vec[0] = r300->viewport.scale[0];
154             vec[1] = r300->viewport.scale[1];
155             vec[2] = r300->viewport.scale[2];
156             vec[3] = 1;
157             break;
158
159         case RC_STATE_R300_VIEWPORT_OFFSET:
160             vec[0] = r300->viewport.translate[0];
161             vec[1] = r300->viewport.translate[1];
162             vec[2] = r300->viewport.translate[2];
163             vec[3] = 1;
164             break;
165
166         default:
167             fprintf(stderr, "r300: Implementation error: "
168                 "Unknown RC_CONSTANT type %d\n", constant->u.State[0]);
169             vec[0] = 0;
170             vec[1] = 0;
171             vec[2] = 0;
172             vec[3] = 1;
173     }
174 }
175
176 /* Convert a normal single-precision float into the 7.16 format
177  * used by the R300 fragment shader.
178  */
179 uint32_t pack_float24(float f)
180 {
181     union {
182         float fl;
183         uint32_t u;
184     } u;
185     float mantissa;
186     int exponent;
187     uint32_t float24 = 0;
188
189     if (f == 0.0)
190         return 0;
191
192     u.fl = f;
193
194     mantissa = frexpf(f, &exponent);
195
196     /* Handle -ve */
197     if (mantissa < 0) {
198         float24 |= (1 << 23);
199         mantissa = mantissa * -1.0;
200     }
201     /* Handle exponent, bias of 63 */
202     exponent += 62;
203     float24 |= (exponent << 16);
204     /* Kill 7 LSB of mantissa */
205     float24 |= (u.u & 0x7FFFFF) >> 7;
206
207     return float24;
208 }
209
210 void r300_emit_fs(struct r300_context* r300, unsigned size, void *state)
211 {
212     struct r300_fragment_shader *fs = r300_fs(r300);
213     CS_LOCALS(r300);
214
215     WRITE_CS_TABLE(fs->shader->cb_code, fs->shader->cb_code_size);
216 }
217
218 void r300_emit_fs_constants(struct r300_context* r300, unsigned size, void *state)
219 {
220     struct r300_fragment_shader *fs = r300_fs(r300);
221     struct r300_constant_buffer *buf = (struct r300_constant_buffer*)state;
222     unsigned count = fs->shader->externals_count;
223     unsigned i, j;
224     CS_LOCALS(r300);
225
226     if (count == 0)
227         return;
228
229     BEGIN_CS(size);
230     OUT_CS_REG_SEQ(R300_PFS_PARAM_0_X, count * 4);
231     if (buf->remap_table){
232         for (i = 0; i < count; i++) {
233             float *data = (float*)&buf->ptr[buf->remap_table[i]*4];
234             for (j = 0; j < 4; j++)
235                 OUT_CS(pack_float24(data[j]));
236         }
237     } else {
238         for (i = 0; i < count; i++)
239             for (j = 0; j < 4; j++)
240                 OUT_CS(pack_float24(*(float*)&buf->ptr[i*4+j]));
241     }
242
243     END_CS;
244 }
245
246 void r300_emit_fs_rc_constant_state(struct r300_context* r300, unsigned size, void *state)
247 {
248     struct r300_fragment_shader *fs = r300_fs(r300);
249     struct rc_constant_list *constants = &fs->shader->code.constants;
250     unsigned i;
251     unsigned count = fs->shader->rc_state_count;
252     unsigned first = fs->shader->externals_count;
253     unsigned end = constants->Count;
254     unsigned j;
255     CS_LOCALS(r300);
256
257     if (count == 0)
258         return;
259
260     BEGIN_CS(size);
261     for(i = first; i < end; ++i) {
262         if (constants->Constants[i].Type == RC_CONSTANT_STATE) {
263             float data[4];
264
265             get_rc_constant_state(data, r300, &constants->Constants[i]);
266
267             OUT_CS_REG_SEQ(R300_PFS_PARAM_0_X + i * 16, 4);
268             for (j = 0; j < 4; j++)
269                 OUT_CS(pack_float24(data[j]));
270         }
271     }
272     END_CS;
273 }
274
275 void r500_emit_fs(struct r300_context* r300, unsigned size, void *state)
276 {
277     struct r300_fragment_shader *fs = r300_fs(r300);
278     CS_LOCALS(r300);
279
280     WRITE_CS_TABLE(fs->shader->cb_code, fs->shader->cb_code_size);
281 }
282
283 void r500_emit_fs_constants(struct r300_context* r300, unsigned size, void *state)
284 {
285     struct r300_fragment_shader *fs = r300_fs(r300);
286     struct r300_constant_buffer *buf = (struct r300_constant_buffer*)state;
287     unsigned count = fs->shader->externals_count;
288     CS_LOCALS(r300);
289
290     if (count == 0)
291         return;
292
293     BEGIN_CS(size);
294     OUT_CS_REG(R500_GA_US_VECTOR_INDEX, R500_GA_US_VECTOR_INDEX_TYPE_CONST);
295     OUT_CS_ONE_REG(R500_GA_US_VECTOR_DATA, count * 4);
296     if (buf->remap_table){
297         for (unsigned i = 0; i < count; i++) {
298             uint32_t *data = &buf->ptr[buf->remap_table[i]*4];
299             OUT_CS_TABLE(data, 4);
300         }
301     } else {
302         OUT_CS_TABLE(buf->ptr, count * 4);
303     }
304     END_CS;
305 }
306
307 void r500_emit_fs_rc_constant_state(struct r300_context* r300, unsigned size, void *state)
308 {
309     struct r300_fragment_shader *fs = r300_fs(r300);
310     struct rc_constant_list *constants = &fs->shader->code.constants;
311     unsigned i;
312     unsigned count = fs->shader->rc_state_count;
313     unsigned first = fs->shader->externals_count;
314     unsigned end = constants->Count;
315     CS_LOCALS(r300);
316
317     if (count == 0)
318         return;
319
320     BEGIN_CS(size);
321     for(i = first; i < end; ++i) {
322         if (constants->Constants[i].Type == RC_CONSTANT_STATE) {
323             float data[4];
324
325             get_rc_constant_state(data, r300, &constants->Constants[i]);
326
327             OUT_CS_REG(R500_GA_US_VECTOR_INDEX,
328                        R500_GA_US_VECTOR_INDEX_TYPE_CONST |
329                        (i & R500_GA_US_VECTOR_INDEX_MASK));
330             OUT_CS_ONE_REG(R500_GA_US_VECTOR_DATA, 4);
331             OUT_CS_TABLE(data, 4);
332         }
333     }
334     END_CS;
335 }
336
337 void r300_emit_gpu_flush(struct r300_context *r300, unsigned size, void *state)
338 {
339     struct r300_gpu_flush *gpuflush = (struct r300_gpu_flush*)state;
340     struct pipe_framebuffer_state* fb =
341             (struct pipe_framebuffer_state*)r300->fb_state.state;
342     uint32_t height = fb->height;
343     uint32_t width = fb->width;
344     CS_LOCALS(r300);
345
346     if (r300->cbzb_clear) {
347         struct r300_surface *surf = r300_surface(fb->cbufs[0]);
348
349         height = surf->cbzb_height;
350         width = surf->cbzb_width;
351     }
352
353     DBG(r300, DBG_SCISSOR,
354         "r300: Scissor width: %i, height: %i, CBZB clear: %s\n",
355         width, height, r300->cbzb_clear ? "YES" : "NO");
356
357     BEGIN_CS(size);
358
359     /* Set up scissors.
360      * By writing to the SC registers, SC & US assert idle. */
361     OUT_CS_REG_SEQ(R300_SC_SCISSORS_TL, 2);
362     if (r300->screen->caps.is_r500) {
363         OUT_CS(0);
364         OUT_CS(((width  - 1) << R300_SCISSORS_X_SHIFT) |
365                ((height - 1) << R300_SCISSORS_Y_SHIFT));
366     } else {
367         OUT_CS((1440 << R300_SCISSORS_X_SHIFT) |
368                (1440 << R300_SCISSORS_Y_SHIFT));
369         OUT_CS(((width  + 1440-1) << R300_SCISSORS_X_SHIFT) |
370                ((height + 1440-1) << R300_SCISSORS_Y_SHIFT));
371     }
372
373     /* Flush CB & ZB caches and wait until the 3D engine is idle and clean. */
374     OUT_CS_TABLE(gpuflush->cb_flush_clean, 6);
375     END_CS;
376 }
377
378 void r300_emit_aa_state(struct r300_context *r300, unsigned size, void *state)
379 {
380     struct r300_aa_state *aa = (struct r300_aa_state*)state;
381     CS_LOCALS(r300);
382
383     BEGIN_CS(size);
384     OUT_CS_REG(R300_GB_AA_CONFIG, aa->aa_config);
385
386     if (aa->dest) {
387         OUT_CS_REG_SEQ(R300_RB3D_AARESOLVE_OFFSET, 3);
388         OUT_CS(aa->dest->offset);
389         OUT_CS(aa->dest->pitch & R300_RB3D_AARESOLVE_PITCH_MASK);
390         OUT_CS(R300_RB3D_AARESOLVE_CTL_AARESOLVE_MODE_RESOLVE |
391                R300_RB3D_AARESOLVE_CTL_AARESOLVE_ALPHA_AVERAGE);
392         OUT_CS_RELOC(aa->dest);
393     } else {
394         OUT_CS_REG(R300_RB3D_AARESOLVE_CTL, 0);
395     }
396
397     END_CS;
398 }
399
400 void r300_emit_fb_state(struct r300_context* r300, unsigned size, void* state)
401 {
402     struct pipe_framebuffer_state* fb = (struct pipe_framebuffer_state*)state;
403     struct r300_surface* surf;
404     unsigned i;
405     uint32_t rb3d_cctl = 0;
406
407     CS_LOCALS(r300);
408
409     BEGIN_CS(size);
410
411     if (r300->screen->caps.is_r500) {
412         rb3d_cctl = R300_RB3D_CCTL_INDEPENDENT_COLORFORMAT_ENABLE_ENABLE;
413     }
414     /* NUM_MULTIWRITES replicates COLOR[0] to all colorbuffers. */
415     if (fb->nr_cbufs && r300->fb_multiwrite) {
416         rb3d_cctl |= R300_RB3D_CCTL_NUM_MULTIWRITES(fb->nr_cbufs);
417     }
418     if (r300->cmask_in_use) {
419         rb3d_cctl |= R300_RB3D_CCTL_AA_COMPRESSION_ENABLE |
420                      R300_RB3D_CCTL_CMASK_ENABLE;
421     }
422
423     OUT_CS_REG(R300_RB3D_CCTL, rb3d_cctl);
424
425     /* Set up colorbuffers. */
426     for (i = 0; i < fb->nr_cbufs; i++) {
427         surf = r300_surface(r300_get_nonnull_cb(fb, i));
428
429         OUT_CS_REG(R300_RB3D_COLOROFFSET0 + (4 * i), surf->offset);
430         OUT_CS_RELOC(surf);
431
432         OUT_CS_REG(R300_RB3D_COLORPITCH0 + (4 * i), surf->pitch);
433         OUT_CS_RELOC(surf);
434
435         if (r300->cmask_in_use && i == 0) {
436             OUT_CS_REG(R300_RB3D_CMASK_OFFSET0, 0);
437             OUT_CS_REG(R300_RB3D_CMASK_PITCH0, surf->pitch_cmask);
438             OUT_CS_REG(R300_RB3D_COLOR_CLEAR_VALUE, r300->color_clear_value);
439             if (r300->screen->caps.is_r500 && r300->screen->info.drm_minor >= 29) {
440                 OUT_CS_REG_SEQ(R500_RB3D_COLOR_CLEAR_VALUE_AR, 2);
441                 OUT_CS(r300->color_clear_value_ar);
442                 OUT_CS(r300->color_clear_value_gb);
443             }
444         }
445     }
446
447     /* Set up the ZB part of the CBZB clear. */
448     if (r300->cbzb_clear) {
449         surf = r300_surface(fb->cbufs[0]);
450
451         OUT_CS_REG(R300_ZB_FORMAT, surf->cbzb_format);
452
453         OUT_CS_REG(R300_ZB_DEPTHOFFSET, surf->cbzb_midpoint_offset);
454         OUT_CS_RELOC(surf);
455
456         OUT_CS_REG(R300_ZB_DEPTHPITCH, surf->cbzb_pitch);
457         OUT_CS_RELOC(surf);
458
459         DBG(r300, DBG_CBZB,
460             "CBZB clearing cbuf %08x %08x\n", surf->cbzb_format,
461             surf->cbzb_pitch);
462     }
463     /* Set up a zbuffer. */
464     else if (fb->zsbuf) {
465         surf = r300_surface(fb->zsbuf);
466
467         OUT_CS_REG(R300_ZB_FORMAT, surf->format);
468
469         OUT_CS_REG(R300_ZB_DEPTHOFFSET, surf->offset);
470         OUT_CS_RELOC(surf);
471
472         OUT_CS_REG(R300_ZB_DEPTHPITCH, surf->pitch);
473         OUT_CS_RELOC(surf);
474
475         if (r300->hyperz_enabled) {
476             /* HiZ RAM. */
477             OUT_CS_REG(R300_ZB_HIZ_OFFSET, 0);
478             OUT_CS_REG(R300_ZB_HIZ_PITCH, surf->pitch_hiz);
479             /* Z Mask RAM. (compressed zbuffer) */
480             OUT_CS_REG(R300_ZB_ZMASK_OFFSET, 0);
481             OUT_CS_REG(R300_ZB_ZMASK_PITCH, surf->pitch_zmask);
482         }
483     }
484
485     END_CS;
486 }
487
488 void r300_emit_hyperz_state(struct r300_context *r300,
489                             unsigned size, void *state)
490 {
491     struct r300_hyperz_state *z = state;
492     CS_LOCALS(r300);
493
494     if (z->flush)
495         WRITE_CS_TABLE(&z->cb_flush_begin, size);
496     else
497         WRITE_CS_TABLE(&z->cb_begin, size - 2);
498 }
499
500 void r300_emit_hyperz_end(struct r300_context *r300)
501 {
502     struct r300_hyperz_state z =
503             *(struct r300_hyperz_state*)r300->hyperz_state.state;
504
505     z.flush = 1;
506     z.zb_bw_cntl = 0;
507     z.zb_depthclearvalue = 0;
508     z.sc_hyperz = R300_SC_HYPERZ_ADJ_2;
509     z.gb_z_peq_config = 0;
510
511     r300_emit_hyperz_state(r300, r300->hyperz_state.size, &z);
512 }
513
514 #define R300_NIBBLES(x0, y0, x1, y1, x2, y2, d0y, d0x)  \
515     (((x0) & 0xf) | (((y0) & 0xf) << 4) |                  \
516     (((x1) & 0xf) << 8) | (((y1) & 0xf) << 12) |           \
517     (((x2) & 0xf) << 16) | (((y2) & 0xf) << 20) |          \
518     (((d0y) & 0xf) << 24) | (((d0x) & 0xf) << 28))
519
520 static unsigned r300_get_mspos(int index, unsigned *p)
521 {
522     unsigned reg, i, distx, disty, dist;
523
524     if (index == 0) {
525         /* MSPOS0 contains positions for samples 0,1,2 as (X,Y) pairs of nibbles,
526          * followed by a (Y,X) pair containing the minimum distance from the pixel
527          * edge:
528          *     X0, Y0, X1, Y1, X2, Y2, D0_Y, D0_X
529          *
530          * There is a quirk when setting D0_X. The value represents the distance
531          * from the left edge of the pixel quad to the first sample in subpixels.
532          * All values less than eight should use the actual value, but „7‟ should
533          * be used for the distance „8‟. The hardware will convert 7 into 8 internally.
534          */
535         distx = 11;
536         for (i = 0; i < 12; i += 2) {
537             if (p[i] < distx)
538                 distx = p[i];
539         }
540
541         disty = 11;
542         for (i = 1; i < 12; i += 2) {
543             if (p[i] < disty)
544                 disty = p[i];
545         }
546
547         if (distx == 8)
548             distx = 7;
549
550         reg = R300_NIBBLES(p[0], p[1], p[2], p[3], p[4], p[5], disty, distx);
551     } else {
552         /* MSPOS1 contains positions for samples 3,4,5 as (X,Y) pairs of nibbles,
553          * followed by the minimum distance from the pixel edge (not sure if X or Y):
554          *     X3, Y3, X4, Y4, X5, Y5, D1
555          */
556         dist = 11;
557         for (i = 0; i < 12; i++) {
558             if (p[i] < dist)
559                 dist = p[i];
560         }
561
562         reg = R300_NIBBLES(p[6], p[7], p[8], p[9], p[10], p[11], dist, 0);
563     }
564     return reg;
565 }
566
567 void r300_emit_fb_state_pipelined(struct r300_context *r300,
568                                   unsigned size, void *state)
569 {
570     /* The sample coordinates are in the range [0,11], because
571      * GB_TILE_CONFIG.SUBPIXEL is set to the 1/12 subpixel precision.
572      *
573      * Some sample coordinates reach to neighboring pixels and should not be used.
574      * (e.g. Y=11)
575      *
576      * The unused samples must be set to the positions of other valid samples. */
577     static unsigned sample_locs_1x[12] = {
578         6,6,  6,6,  6,6,  6,6,  6,6,  6,6
579     };
580     static unsigned sample_locs_2x[12] = {
581         3,9,  9,3,  9,3,  9,3,  9,3,  9,3
582     };
583     static unsigned sample_locs_4x[12] = {
584         4,4,  8,8,  2,10,  10,2,  10,2,  10,2
585     };
586     static unsigned sample_locs_6x[12] = {
587         3,1,  7,3,  11,5,  1,7,  5,9,  9,10
588     };
589
590     struct pipe_framebuffer_state* fb =
591             (struct pipe_framebuffer_state*)r300->fb_state.state;
592     unsigned i, num_cbufs = fb->nr_cbufs;
593     unsigned mspos0, mspos1;
594     CS_LOCALS(r300);
595
596     /* If we use the multiwrite feature, the colorbuffers 2,3,4 must be
597      * marked as UNUSED in the US block. */
598     if (r300->fb_multiwrite) {
599         num_cbufs = MIN2(num_cbufs, 1);
600     }
601
602     BEGIN_CS(size);
603
604     /* Colorbuffer format in the US block.
605      * (must be written after unpipelined regs) */
606     OUT_CS_REG_SEQ(R300_US_OUT_FMT_0, 4);
607     for (i = 0; i < num_cbufs; i++) {
608         OUT_CS(r300_surface(r300_get_nonnull_cb(fb, i))->format);
609     }
610     for (; i < 1; i++) {
611         OUT_CS(R300_US_OUT_FMT_C4_8 |
612                R300_C0_SEL_B | R300_C1_SEL_G |
613                R300_C2_SEL_R | R300_C3_SEL_A);
614     }
615     for (; i < 4; i++) {
616         OUT_CS(R300_US_OUT_FMT_UNUSED);
617     }
618
619     /* Set sample positions. It depends on the framebuffer sample count.
620      * These are pipelined regs and as such cannot be moved to the AA state.
621      */
622     switch (r300->num_samples) {
623     default:
624         mspos0 = r300_get_mspos(0, sample_locs_1x);
625         mspos1 = r300_get_mspos(1, sample_locs_1x);
626         break;
627     case 2:
628         mspos0 = r300_get_mspos(0, sample_locs_2x);
629         mspos1 = r300_get_mspos(1, sample_locs_2x);
630         break;
631     case 4:
632         mspos0 = r300_get_mspos(0, sample_locs_4x);
633         mspos1 = r300_get_mspos(1, sample_locs_4x);
634         break;
635     case 6:
636         mspos0 = r300_get_mspos(0, sample_locs_6x);
637         mspos1 = r300_get_mspos(1, sample_locs_6x);
638         break;
639     }
640
641     OUT_CS_REG_SEQ(R300_GB_MSPOS0, 2);
642     OUT_CS(mspos0);
643     OUT_CS(mspos1);
644     END_CS;
645 }
646
647 void r300_emit_query_start(struct r300_context *r300, unsigned size, void*state)
648 {
649     struct r300_query *query = r300->query_current;
650     CS_LOCALS(r300);
651
652     if (!query)
653         return;
654
655     BEGIN_CS(size);
656     if (r300->screen->caps.family == CHIP_RV530) {
657         OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_ALL);
658     } else {
659         OUT_CS_REG(R300_SU_REG_DEST, R300_RASTER_PIPE_SELECT_ALL);
660     }
661     OUT_CS_REG(R300_ZB_ZPASS_DATA, 0);
662     END_CS;
663     query->begin_emitted = TRUE;
664 }
665
666 static void r300_emit_query_end_frag_pipes(struct r300_context *r300,
667                                            struct r300_query *query)
668 {
669     struct r300_capabilities* caps = &r300->screen->caps;
670     uint32_t gb_pipes = r300->screen->info.r300_num_gb_pipes;
671     CS_LOCALS(r300);
672
673     assert(gb_pipes);
674
675     BEGIN_CS(6 * gb_pipes + 2);
676     /* I'm not so sure I like this switch, but it's hard to be elegant
677      * when there's so many special cases...
678      *
679      * So here's the basic idea. For each pipe, enable writes to it only,
680      * then put out the relocation for ZPASS_ADDR, taking into account a
681      * 4-byte offset for each pipe. RV380 and older are special; they have
682      * only two pipes, and the second pipe's enable is on bit 3, not bit 1,
683      * so there's a chipset cap for that. */
684     switch (gb_pipes) {
685         case 4:
686             /* pipe 3 only */
687             OUT_CS_REG(R300_SU_REG_DEST, 1 << 3);
688             OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 3) * 4);
689             OUT_CS_RELOC(r300->query_current);
690         case 3:
691             /* pipe 2 only */
692             OUT_CS_REG(R300_SU_REG_DEST, 1 << 2);
693             OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 2) * 4);
694             OUT_CS_RELOC(r300->query_current);
695         case 2:
696             /* pipe 1 only */
697             /* As mentioned above, accomodate RV380 and older. */
698             OUT_CS_REG(R300_SU_REG_DEST,
699                     1 << (caps->high_second_pipe ? 3 : 1));
700             OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 1) * 4);
701             OUT_CS_RELOC(r300->query_current);
702         case 1:
703             /* pipe 0 only */
704             OUT_CS_REG(R300_SU_REG_DEST, 1 << 0);
705             OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 0) * 4);
706             OUT_CS_RELOC(r300->query_current);
707             break;
708         default:
709             fprintf(stderr, "r300: Implementation error: Chipset reports %d"
710                     " pixel pipes!\n", gb_pipes);
711             abort();
712     }
713
714     /* And, finally, reset it to normal... */
715     OUT_CS_REG(R300_SU_REG_DEST, 0xF);
716     END_CS;
717 }
718
719 static void rv530_emit_query_end_single_z(struct r300_context *r300,
720                                           struct r300_query *query)
721 {
722     CS_LOCALS(r300);
723
724     BEGIN_CS(8);
725     OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_0);
726     OUT_CS_REG(R300_ZB_ZPASS_ADDR, query->num_results * 4);
727     OUT_CS_RELOC(r300->query_current);
728     OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_ALL);
729     END_CS;
730 }
731
732 static void rv530_emit_query_end_double_z(struct r300_context *r300,
733                                           struct r300_query *query)
734 {
735     CS_LOCALS(r300);
736
737     BEGIN_CS(14);
738     OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_0);
739     OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 0) * 4);
740     OUT_CS_RELOC(r300->query_current);
741     OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_1);
742     OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 1) * 4);
743     OUT_CS_RELOC(r300->query_current);
744     OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_ALL);
745     END_CS;
746 }
747
748 void r300_emit_query_end(struct r300_context* r300)
749 {
750     struct r300_capabilities *caps = &r300->screen->caps;
751     struct r300_query *query = r300->query_current;
752
753     if (!query)
754         return;
755
756     if (query->begin_emitted == FALSE)
757         return;
758
759     if (caps->family == CHIP_RV530) {
760         if (r300->screen->info.r300_num_z_pipes == 2)
761             rv530_emit_query_end_double_z(r300, query);
762         else
763             rv530_emit_query_end_single_z(r300, query);
764     } else 
765         r300_emit_query_end_frag_pipes(r300, query);
766
767     query->begin_emitted = FALSE;
768     query->num_results += query->num_pipes;
769
770     /* XXX grab all the results and reset the counter. */
771     if (query->num_results >= query->buf->size / 4 - 4) {
772         query->num_results = (query->buf->size / 4) / 2;
773         fprintf(stderr, "r300: Rewinding OQBO...\n");
774     }
775 }
776
777 void r300_emit_invariant_state(struct r300_context *r300,
778                                unsigned size, void *state)
779 {
780     CS_LOCALS(r300);
781     WRITE_CS_TABLE(state, size);
782 }
783
784 void r300_emit_rs_state(struct r300_context* r300, unsigned size, void* state)
785 {
786     struct r300_rs_state* rs = state;
787     CS_LOCALS(r300);
788
789     BEGIN_CS(size);
790     OUT_CS_TABLE(rs->cb_main, RS_STATE_MAIN_SIZE);
791     if (rs->polygon_offset_enable) {
792         if (r300->zbuffer_bpp == 16) {
793             OUT_CS_TABLE(rs->cb_poly_offset_zb16, 5);
794         } else {
795             OUT_CS_TABLE(rs->cb_poly_offset_zb24, 5);
796         }
797     }
798     END_CS;
799 }
800
801 void r300_emit_rs_block_state(struct r300_context* r300,
802                               unsigned size, void* state)
803 {
804     struct r300_rs_block* rs = (struct r300_rs_block*)state;
805     unsigned i;
806     /* It's the same for both INST and IP tables */
807     unsigned count = (rs->inst_count & R300_RS_INST_COUNT_MASK) + 1;
808     CS_LOCALS(r300);
809
810     if (DBG_ON(r300, DBG_RS_BLOCK)) {
811         r500_dump_rs_block(rs);
812
813         fprintf(stderr, "r300: RS emit:\n");
814
815         for (i = 0; i < count; i++)
816             fprintf(stderr, "    : ip %d: 0x%08x\n", i, rs->ip[i]);
817
818         for (i = 0; i < count; i++)
819             fprintf(stderr, "    : inst %d: 0x%08x\n", i, rs->inst[i]);
820
821         fprintf(stderr, "    : count: 0x%08x inst_count: 0x%08x\n",
822             rs->count, rs->inst_count);
823     }
824
825     BEGIN_CS(size);
826     OUT_CS_REG_SEQ(R300_VAP_VTX_STATE_CNTL, 2);
827     OUT_CS(rs->vap_vtx_state_cntl);
828     OUT_CS(rs->vap_vsm_vtx_assm);
829     OUT_CS_REG_SEQ(R300_VAP_OUTPUT_VTX_FMT_0, 2);
830     OUT_CS(rs->vap_out_vtx_fmt[0]);
831     OUT_CS(rs->vap_out_vtx_fmt[1]);
832     OUT_CS_REG_SEQ(R300_GB_ENABLE, 1);
833     OUT_CS(rs->gb_enable);
834
835     if (r300->screen->caps.is_r500) {
836         OUT_CS_REG_SEQ(R500_RS_IP_0, count);
837     } else {
838         OUT_CS_REG_SEQ(R300_RS_IP_0, count);
839     }
840     OUT_CS_TABLE(rs->ip, count);
841
842     OUT_CS_REG_SEQ(R300_RS_COUNT, 2);
843     OUT_CS(rs->count);
844     OUT_CS(rs->inst_count);
845
846     if (r300->screen->caps.is_r500) {
847         OUT_CS_REG_SEQ(R500_RS_INST_0, count);
848     } else {
849         OUT_CS_REG_SEQ(R300_RS_INST_0, count);
850     }
851     OUT_CS_TABLE(rs->inst, count);
852     END_CS;
853 }
854
855 void r300_emit_sample_mask(struct r300_context *r300,
856                            unsigned size, void *state)
857 {
858     unsigned mask = (*(unsigned*)state) & ((1 << 6)-1);
859     CS_LOCALS(r300);
860
861     BEGIN_CS(size);
862     OUT_CS_REG(R300_SC_SCREENDOOR,
863                mask | (mask << 6) | (mask << 12) | (mask << 18));
864     END_CS;
865 }
866
867 void r300_emit_scissor_state(struct r300_context* r300,
868                              unsigned size, void* state)
869 {
870     struct pipe_scissor_state* scissor = (struct pipe_scissor_state*)state;
871     CS_LOCALS(r300);
872
873     BEGIN_CS(size);
874     OUT_CS_REG_SEQ(R300_SC_CLIPRECT_TL_0, 2);
875     if (r300->screen->caps.is_r500) {
876         OUT_CS((scissor->minx << R300_CLIPRECT_X_SHIFT) |
877                (scissor->miny << R300_CLIPRECT_Y_SHIFT));
878         OUT_CS(((scissor->maxx - 1) << R300_CLIPRECT_X_SHIFT) |
879                ((scissor->maxy - 1) << R300_CLIPRECT_Y_SHIFT));
880     } else {
881         OUT_CS(((scissor->minx + 1440) << R300_CLIPRECT_X_SHIFT) |
882                ((scissor->miny + 1440) << R300_CLIPRECT_Y_SHIFT));
883         OUT_CS(((scissor->maxx + 1440-1) << R300_CLIPRECT_X_SHIFT) |
884                ((scissor->maxy + 1440-1) << R300_CLIPRECT_Y_SHIFT));
885     }
886     END_CS;
887 }
888
889 void r300_emit_textures_state(struct r300_context *r300,
890                               unsigned size, void *state)
891 {
892     struct r300_textures_state *allstate = (struct r300_textures_state*)state;
893     struct r300_texture_sampler_state *texstate;
894     struct r300_resource *tex;
895     unsigned i;
896     boolean has_us_format = r300->screen->caps.has_us_format;
897     CS_LOCALS(r300);
898
899     BEGIN_CS(size);
900     OUT_CS_REG(R300_TX_ENABLE, allstate->tx_enable);
901
902     for (i = 0; i < allstate->count; i++) {
903         if ((1 << i) & allstate->tx_enable) {
904             texstate = &allstate->regs[i];
905             tex = r300_resource(allstate->sampler_views[i]->base.texture);
906
907             OUT_CS_REG(R300_TX_FILTER0_0 + (i * 4), texstate->filter0);
908             OUT_CS_REG(R300_TX_FILTER1_0 + (i * 4), texstate->filter1);
909             OUT_CS_REG(R300_TX_BORDER_COLOR_0 + (i * 4),
910                        texstate->border_color);
911
912             OUT_CS_REG(R300_TX_FORMAT0_0 + (i * 4), texstate->format.format0);
913             OUT_CS_REG(R300_TX_FORMAT1_0 + (i * 4), texstate->format.format1);
914             OUT_CS_REG(R300_TX_FORMAT2_0 + (i * 4), texstate->format.format2);
915
916             OUT_CS_REG(R300_TX_OFFSET_0 + (i * 4), texstate->format.tile_config);
917             OUT_CS_RELOC(tex);
918
919             if (has_us_format) {
920                 OUT_CS_REG(R500_US_FORMAT0_0 + (i * 4),
921                            texstate->format.us_format0);
922             }
923         }
924     }
925     END_CS;
926 }
927
928 void r300_emit_vertex_arrays(struct r300_context* r300, int offset,
929                              boolean indexed, int instance_id)
930 {
931     struct pipe_vertex_buffer *vbuf = r300->vertex_buffer;
932     struct pipe_vertex_element *velem = r300->velems->velem;
933     struct r300_resource *buf;
934     int i;
935     unsigned vertex_array_count = r300->velems->count;
936     unsigned packet_size = (vertex_array_count * 3 + 1) / 2;
937     struct pipe_vertex_buffer *vb1, *vb2;
938     unsigned *hw_format_size = r300->velems->format_size;
939     unsigned size1, size2, offset1, offset2, stride1, stride2;
940     CS_LOCALS(r300);
941
942     BEGIN_CS(2 + packet_size + vertex_array_count * 2);
943     OUT_CS_PKT3(R300_PACKET3_3D_LOAD_VBPNTR, packet_size);
944     OUT_CS(vertex_array_count | (!indexed ? R300_VC_FORCE_PREFETCH : 0));
945
946     if (instance_id == -1) {
947         /* Non-instanced arrays. This ignores instance_divisor and instance_id. */
948         for (i = 0; i < vertex_array_count - 1; i += 2) {
949             vb1 = &vbuf[velem[i].vertex_buffer_index];
950             vb2 = &vbuf[velem[i+1].vertex_buffer_index];
951             size1 = hw_format_size[i];
952             size2 = hw_format_size[i+1];
953
954             OUT_CS(R300_VBPNTR_SIZE0(size1) | R300_VBPNTR_STRIDE0(vb1->stride) |
955                    R300_VBPNTR_SIZE1(size2) | R300_VBPNTR_STRIDE1(vb2->stride));
956             OUT_CS(vb1->buffer_offset + velem[i].src_offset   + offset * vb1->stride);
957             OUT_CS(vb2->buffer_offset + velem[i+1].src_offset + offset * vb2->stride);
958         }
959
960         if (vertex_array_count & 1) {
961             vb1 = &vbuf[velem[i].vertex_buffer_index];
962             size1 = hw_format_size[i];
963
964             OUT_CS(R300_VBPNTR_SIZE0(size1) | R300_VBPNTR_STRIDE0(vb1->stride));
965             OUT_CS(vb1->buffer_offset + velem[i].src_offset + offset * vb1->stride);
966         }
967
968         for (i = 0; i < vertex_array_count; i++) {
969             buf = r300_resource(vbuf[velem[i].vertex_buffer_index].buffer);
970             OUT_CS_RELOC(buf);
971         }
972     } else {
973         /* Instanced arrays. */
974         for (i = 0; i < vertex_array_count - 1; i += 2) {
975             vb1 = &vbuf[velem[i].vertex_buffer_index];
976             vb2 = &vbuf[velem[i+1].vertex_buffer_index];
977             size1 = hw_format_size[i];
978             size2 = hw_format_size[i+1];
979
980             if (velem[i].instance_divisor) {
981                 stride1 = 0;
982                 offset1 = vb1->buffer_offset + velem[i].src_offset +
983                           (instance_id / velem[i].instance_divisor) * vb1->stride;
984             } else {
985                 stride1 = vb1->stride;
986                 offset1 = vb1->buffer_offset + velem[i].src_offset + offset * vb1->stride;
987             }
988             if (velem[i+1].instance_divisor) {
989                 stride2 = 0;
990                 offset2 = vb2->buffer_offset + velem[i+1].src_offset +
991                           (instance_id / velem[i+1].instance_divisor) * vb2->stride;
992             } else {
993                 stride2 = vb2->stride;
994                 offset2 = vb2->buffer_offset + velem[i+1].src_offset + offset * vb2->stride;
995             }
996
997             OUT_CS(R300_VBPNTR_SIZE0(size1) | R300_VBPNTR_STRIDE0(stride1) |
998                    R300_VBPNTR_SIZE1(size2) | R300_VBPNTR_STRIDE1(stride2));
999             OUT_CS(offset1);
1000             OUT_CS(offset2);
1001         }
1002
1003         if (vertex_array_count & 1) {
1004             vb1 = &vbuf[velem[i].vertex_buffer_index];
1005             size1 = hw_format_size[i];
1006
1007             if (velem[i].instance_divisor) {
1008                 stride1 = 0;
1009                 offset1 = vb1->buffer_offset + velem[i].src_offset +
1010                           (instance_id / velem[i].instance_divisor) * vb1->stride;
1011             } else {
1012                 stride1 = vb1->stride;
1013                 offset1 = vb1->buffer_offset + velem[i].src_offset + offset * vb1->stride;
1014             }
1015
1016             OUT_CS(R300_VBPNTR_SIZE0(size1) | R300_VBPNTR_STRIDE0(stride1));
1017             OUT_CS(offset1);
1018         }
1019
1020         for (i = 0; i < vertex_array_count; i++) {
1021             buf = r300_resource(vbuf[velem[i].vertex_buffer_index].buffer);
1022             OUT_CS_RELOC(buf);
1023         }
1024     }
1025     END_CS;
1026 }
1027
1028 void r300_emit_vertex_arrays_swtcl(struct r300_context *r300, boolean indexed)
1029 {
1030     CS_LOCALS(r300);
1031
1032     DBG(r300, DBG_SWTCL, "r300: Preparing vertex buffer %p for render, "
1033             "vertex size %d\n", r300->vbo,
1034             r300->vertex_info.size);
1035     /* Set the pointer to our vertex buffer. The emitted values are this:
1036      * PACKET3 [3D_LOAD_VBPNTR]
1037      * COUNT   [1]
1038      * FORMAT  [size | stride << 8]
1039      * OFFSET  [offset into BO]
1040      * VBPNTR  [relocated BO]
1041      */
1042     BEGIN_CS(7);
1043     OUT_CS_PKT3(R300_PACKET3_3D_LOAD_VBPNTR, 3);
1044     OUT_CS(1 | (!indexed ? R300_VC_FORCE_PREFETCH : 0));
1045     OUT_CS(r300->vertex_info.size |
1046             (r300->vertex_info.size << 8));
1047     OUT_CS(r300->draw_vbo_offset);
1048     OUT_CS(0);
1049
1050     assert(r300->vbo_cs);
1051     OUT_CS(0xc0001000); /* PKT3_NOP */
1052     OUT_CS(r300->rws->cs_get_reloc(r300->cs, r300->vbo_cs) * 4);
1053     END_CS;
1054 }
1055
1056 void r300_emit_vertex_stream_state(struct r300_context* r300,
1057                                    unsigned size, void* state)
1058 {
1059     struct r300_vertex_stream_state *streams =
1060         (struct r300_vertex_stream_state*)state;
1061     unsigned i;
1062     CS_LOCALS(r300);
1063
1064     if (DBG_ON(r300, DBG_PSC)) {
1065         fprintf(stderr, "r300: PSC emit:\n");
1066
1067         for (i = 0; i < streams->count; i++) {
1068             fprintf(stderr, "    : prog_stream_cntl%d: 0x%08x\n", i,
1069                    streams->vap_prog_stream_cntl[i]);
1070         }
1071
1072         for (i = 0; i < streams->count; i++) {
1073             fprintf(stderr, "    : prog_stream_cntl_ext%d: 0x%08x\n", i,
1074                    streams->vap_prog_stream_cntl_ext[i]);
1075         }
1076     }
1077
1078     BEGIN_CS(size);
1079     OUT_CS_REG_SEQ(R300_VAP_PROG_STREAM_CNTL_0, streams->count);
1080     OUT_CS_TABLE(streams->vap_prog_stream_cntl, streams->count);
1081     OUT_CS_REG_SEQ(R300_VAP_PROG_STREAM_CNTL_EXT_0, streams->count);
1082     OUT_CS_TABLE(streams->vap_prog_stream_cntl_ext, streams->count);
1083     END_CS;
1084 }
1085
1086 void r300_emit_pvs_flush(struct r300_context* r300, unsigned size, void* state)
1087 {
1088     CS_LOCALS(r300);
1089
1090     BEGIN_CS(size);
1091     OUT_CS_REG(R300_VAP_PVS_STATE_FLUSH_REG, 0x0);
1092     END_CS;
1093 }
1094
1095 void r300_emit_vap_invariant_state(struct r300_context *r300,
1096                                    unsigned size, void *state)
1097 {
1098     CS_LOCALS(r300);
1099     WRITE_CS_TABLE(state, size);
1100 }
1101
1102 void r300_emit_vs_state(struct r300_context* r300, unsigned size, void* state)
1103 {
1104     struct r300_vertex_shader* vs = (struct r300_vertex_shader*)state;
1105     struct r300_vertex_program_code* code = &vs->code;
1106     struct r300_screen* r300screen = r300->screen;
1107     unsigned instruction_count = code->length / 4;
1108
1109     unsigned vtx_mem_size = r300screen->caps.is_r500 ? 128 : 72;
1110     unsigned input_count = MAX2(util_bitcount(code->InputsRead), 1);
1111     unsigned output_count = MAX2(util_bitcount(code->OutputsWritten), 1);
1112     unsigned temp_count = MAX2(code->num_temporaries, 1);
1113
1114     unsigned pvs_num_slots = MIN3(vtx_mem_size / input_count,
1115                                   vtx_mem_size / output_count, 10);
1116     unsigned pvs_num_controllers = MIN2(vtx_mem_size / temp_count, 5);
1117
1118     CS_LOCALS(r300);
1119
1120     BEGIN_CS(size);
1121
1122     /* R300_VAP_PVS_CODE_CNTL_0
1123      * R300_VAP_PVS_CONST_CNTL
1124      * R300_VAP_PVS_CODE_CNTL_1
1125      * See the r5xx docs for instructions on how to use these. */
1126     OUT_CS_REG(R300_VAP_PVS_CODE_CNTL_0, R300_PVS_FIRST_INST(0) |
1127                R300_PVS_XYZW_VALID_INST(instruction_count - 1) |
1128                R300_PVS_LAST_INST(instruction_count - 1));
1129     OUT_CS_REG(R300_VAP_PVS_CODE_CNTL_1, instruction_count - 1);
1130
1131     OUT_CS_REG(R300_VAP_PVS_VECTOR_INDX_REG, 0);
1132     OUT_CS_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, code->length);
1133     OUT_CS_TABLE(code->body.d, code->length);
1134
1135     OUT_CS_REG(R300_VAP_CNTL, R300_PVS_NUM_SLOTS(pvs_num_slots) |
1136             R300_PVS_NUM_CNTLRS(pvs_num_controllers) |
1137             R300_PVS_NUM_FPUS(r300screen->caps.num_vert_fpus) |
1138             R300_PVS_VF_MAX_VTX_NUM(12) |
1139             (r300->clip_halfz ? R300_DX_CLIP_SPACE_DEF : 0) |
1140             (r300screen->caps.is_r500 ? R500_TCL_STATE_OPTIMIZATION : 0));
1141
1142     /* Emit flow control instructions.  Even if there are no fc instructions,
1143      * we still need to write the registers to make sure they are cleared. */
1144     OUT_CS_REG(R300_VAP_PVS_FLOW_CNTL_OPC, code->fc_ops);
1145     if (r300screen->caps.is_r500) {
1146         OUT_CS_REG_SEQ(R500_VAP_PVS_FLOW_CNTL_ADDRS_LW_0, R300_VS_MAX_FC_OPS * 2);
1147         OUT_CS_TABLE(code->fc_op_addrs.r500, R300_VS_MAX_FC_OPS * 2);
1148     } else {
1149         OUT_CS_REG_SEQ(R300_VAP_PVS_FLOW_CNTL_ADDRS_0, R300_VS_MAX_FC_OPS);
1150         OUT_CS_TABLE(code->fc_op_addrs.r300, R300_VS_MAX_FC_OPS);
1151     }
1152     OUT_CS_REG_SEQ(R300_VAP_PVS_FLOW_CNTL_LOOP_INDEX_0, R300_VS_MAX_FC_OPS);
1153     OUT_CS_TABLE(code->fc_loop_index, R300_VS_MAX_FC_OPS);
1154
1155     END_CS;
1156 }
1157
1158 void r300_emit_vs_constants(struct r300_context* r300,
1159                             unsigned size, void *state)
1160 {
1161     unsigned count =
1162         ((struct r300_vertex_shader*)r300->vs_state.state)->externals_count;
1163     struct r300_constant_buffer *buf = (struct r300_constant_buffer*)state;
1164     struct r300_vertex_shader *vs = (struct r300_vertex_shader*)r300->vs_state.state;
1165     unsigned i;
1166     int imm_first = vs->externals_count;
1167     int imm_end = vs->code.constants.Count;
1168     int imm_count = vs->immediates_count;
1169     CS_LOCALS(r300);
1170
1171     BEGIN_CS(size);
1172     OUT_CS_REG(R300_VAP_PVS_CONST_CNTL,
1173                R300_PVS_CONST_BASE_OFFSET(buf->buffer_base) |
1174                R300_PVS_MAX_CONST_ADDR(MAX2(imm_end - 1, 0)));
1175     if (vs->externals_count) {
1176         OUT_CS_REG(R300_VAP_PVS_VECTOR_INDX_REG,
1177                    (r300->screen->caps.is_r500 ?
1178                    R500_PVS_CONST_START : R300_PVS_CONST_START) + buf->buffer_base);
1179         OUT_CS_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, count * 4);
1180         if (buf->remap_table){
1181             for (i = 0; i < count; i++) {
1182                 uint32_t *data = &buf->ptr[buf->remap_table[i]*4];
1183                 OUT_CS_TABLE(data, 4);
1184             }
1185         } else {
1186             OUT_CS_TABLE(buf->ptr, count * 4);
1187         }
1188     }
1189
1190     /* Emit immediates. */
1191     if (imm_count) {
1192         OUT_CS_REG(R300_VAP_PVS_VECTOR_INDX_REG,
1193                    (r300->screen->caps.is_r500 ?
1194                    R500_PVS_CONST_START : R300_PVS_CONST_START) +
1195                    buf->buffer_base + imm_first);
1196         OUT_CS_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, imm_count * 4);
1197         for (i = imm_first; i < imm_end; i++) {
1198             const float *data = vs->code.constants.Constants[i].u.Immediate;
1199             OUT_CS_TABLE(data, 4);
1200         }
1201     }
1202     END_CS;
1203 }
1204
1205 void r300_emit_viewport_state(struct r300_context* r300,
1206                               unsigned size, void* state)
1207 {
1208     struct r300_viewport_state* viewport = (struct r300_viewport_state*)state;
1209     CS_LOCALS(r300);
1210
1211     BEGIN_CS(size);
1212     OUT_CS_REG_SEQ(R300_SE_VPORT_XSCALE, 6);
1213     OUT_CS_TABLE(&viewport->xscale, 6);
1214     OUT_CS_REG(R300_VAP_VTE_CNTL, viewport->vte_control);
1215     END_CS;
1216 }
1217
1218 void r300_emit_hiz_clear(struct r300_context *r300, unsigned size, void *state)
1219 {
1220     struct pipe_framebuffer_state *fb =
1221         (struct pipe_framebuffer_state*)r300->fb_state.state;
1222     struct r300_resource* tex;
1223     CS_LOCALS(r300);
1224
1225     tex = r300_resource(fb->zsbuf->texture);
1226
1227     BEGIN_CS(size);
1228     OUT_CS_PKT3(R300_PACKET3_3D_CLEAR_HIZ, 2);
1229     OUT_CS(0);
1230     OUT_CS(tex->tex.hiz_dwords[fb->zsbuf->u.tex.level]);
1231     OUT_CS(r300->hiz_clear_value);
1232     END_CS;
1233
1234     /* Mark the current zbuffer's hiz ram as in use. */
1235     r300->hiz_in_use = TRUE;
1236     r300->hiz_func = HIZ_FUNC_NONE;
1237     r300_mark_atom_dirty(r300, &r300->hyperz_state);
1238 }
1239
1240 void r300_emit_zmask_clear(struct r300_context *r300, unsigned size, void *state)
1241 {
1242     struct pipe_framebuffer_state *fb =
1243         (struct pipe_framebuffer_state*)r300->fb_state.state;
1244     struct r300_resource *tex;
1245     CS_LOCALS(r300);
1246
1247     tex = r300_resource(fb->zsbuf->texture);
1248
1249     BEGIN_CS(size);
1250     OUT_CS_PKT3(R300_PACKET3_3D_CLEAR_ZMASK, 2);
1251     OUT_CS(0);
1252     OUT_CS(tex->tex.zmask_dwords[fb->zsbuf->u.tex.level]);
1253     OUT_CS(0);
1254     END_CS;
1255
1256     /* Mark the current zbuffer's zmask as in use. */
1257     r300->zmask_in_use = TRUE;
1258     r300_mark_atom_dirty(r300, &r300->hyperz_state);
1259 }
1260
1261 void r300_emit_cmask_clear(struct r300_context *r300, unsigned size, void *state)
1262 {
1263     struct pipe_framebuffer_state *fb =
1264         (struct pipe_framebuffer_state*)r300->fb_state.state;
1265     struct r300_resource *tex;
1266     CS_LOCALS(r300);
1267
1268     tex = r300_resource(fb->cbufs[0]->texture);
1269
1270     BEGIN_CS(size);
1271     OUT_CS_PKT3(R300_PACKET3_3D_CLEAR_CMASK, 2);
1272     OUT_CS(0);
1273     OUT_CS(tex->tex.cmask_dwords);
1274     OUT_CS(0);
1275     END_CS;
1276
1277     /* Mark the current zbuffer's zmask as in use. */
1278     r300->cmask_in_use = TRUE;
1279     r300_mark_fb_state_dirty(r300, R300_CHANGED_CMASK_ENABLE);
1280 }
1281
1282 void r300_emit_ztop_state(struct r300_context* r300,
1283                           unsigned size, void* state)
1284 {
1285     struct r300_ztop_state* ztop = (struct r300_ztop_state*)state;
1286     CS_LOCALS(r300);
1287
1288     BEGIN_CS(size);
1289     OUT_CS_REG(R300_ZB_ZTOP, ztop->z_buffer_top);
1290     END_CS;
1291 }
1292
1293 void r300_emit_texture_cache_inval(struct r300_context* r300, unsigned size, void* state)
1294 {
1295     CS_LOCALS(r300);
1296
1297     BEGIN_CS(size);
1298     OUT_CS_REG(R300_TX_INVALTAGS, 0);
1299     END_CS;
1300 }
1301
1302 boolean r300_emit_buffer_validate(struct r300_context *r300,
1303                                   boolean do_validate_vertex_buffers,
1304                                   struct pipe_resource *index_buffer)
1305 {
1306     struct pipe_framebuffer_state *fb =
1307         (struct pipe_framebuffer_state*)r300->fb_state.state;
1308     struct r300_aa_state *aa = (struct r300_aa_state*)r300->aa_state.state;
1309     struct r300_textures_state *texstate =
1310         (struct r300_textures_state*)r300->textures_state.state;
1311     struct r300_resource *tex;
1312     unsigned i;
1313     boolean flushed = FALSE;
1314
1315 validate:
1316     if (r300->fb_state.dirty) {
1317         /* Color buffers... */
1318         for (i = 0; i < fb->nr_cbufs; i++) {
1319             if (!fb->cbufs[i])
1320                 continue;
1321             tex = r300_resource(fb->cbufs[i]->texture);
1322             assert(tex && tex->buf && "cbuf is marked, but NULL!");
1323             r300->rws->cs_add_reloc(r300->cs, tex->cs_buf,
1324                                     RADEON_USAGE_READWRITE,
1325                                     r300_surface(fb->cbufs[i])->domain,
1326                                     tex->b.b.nr_samples > 1 ?
1327                                     RADEON_PRIO_COLOR_BUFFER_MSAA :
1328                                     RADEON_PRIO_COLOR_BUFFER);
1329         }
1330         /* ...depth buffer... */
1331         if (fb->zsbuf) {
1332             tex = r300_resource(fb->zsbuf->texture);
1333             assert(tex && tex->buf && "zsbuf is marked, but NULL!");
1334             r300->rws->cs_add_reloc(r300->cs, tex->cs_buf,
1335                                     RADEON_USAGE_READWRITE,
1336                                     r300_surface(fb->zsbuf)->domain,
1337                                     tex->b.b.nr_samples > 1 ?
1338                                     RADEON_PRIO_DEPTH_BUFFER_MSAA :
1339                                     RADEON_PRIO_DEPTH_BUFFER);
1340         }
1341     }
1342     /* The AA resolve buffer. */
1343     if (r300->aa_state.dirty) {
1344         if (aa->dest) {
1345             r300->rws->cs_add_reloc(r300->cs, aa->dest->cs_buf,
1346                                     RADEON_USAGE_WRITE,
1347                                     aa->dest->domain,
1348                                     RADEON_PRIO_COLOR_BUFFER);
1349         }
1350     }
1351     if (r300->textures_state.dirty) {
1352         /* ...textures... */
1353         for (i = 0; i < texstate->count; i++) {
1354             if (!(texstate->tx_enable & (1 << i))) {
1355                 continue;
1356             }
1357
1358             tex = r300_resource(texstate->sampler_views[i]->base.texture);
1359             r300->rws->cs_add_reloc(r300->cs, tex->cs_buf, RADEON_USAGE_READ,
1360                                     tex->domain, RADEON_PRIO_SHADER_TEXTURE_RO);
1361         }
1362     }
1363     /* ...occlusion query buffer... */
1364     if (r300->query_current)
1365         r300->rws->cs_add_reloc(r300->cs, r300->query_current->cs_buf,
1366                                 RADEON_USAGE_WRITE, RADEON_DOMAIN_GTT,
1367                                 RADEON_PRIO_MIN);
1368     /* ...vertex buffer for SWTCL path... */
1369     if (r300->vbo_cs)
1370         r300->rws->cs_add_reloc(r300->cs, r300->vbo_cs,
1371                                 RADEON_USAGE_READ, RADEON_DOMAIN_GTT,
1372                                 RADEON_PRIO_MIN);
1373     /* ...vertex buffers for HWTCL path... */
1374     if (do_validate_vertex_buffers && r300->vertex_arrays_dirty) {
1375         struct pipe_vertex_buffer *vbuf = r300->vertex_buffer;
1376         struct pipe_vertex_buffer *last = r300->vertex_buffer +
1377                                       r300->nr_vertex_buffers;
1378         struct pipe_resource *buf;
1379
1380         for (; vbuf != last; vbuf++) {
1381             buf = vbuf->buffer;
1382             if (!buf)
1383                 continue;
1384
1385             r300->rws->cs_add_reloc(r300->cs, r300_resource(buf)->cs_buf,
1386                                     RADEON_USAGE_READ,
1387                                     r300_resource(buf)->domain,
1388                                     RADEON_PRIO_SHADER_BUFFER_RO);
1389         }
1390     }
1391     /* ...and index buffer for HWTCL path. */
1392     if (index_buffer)
1393         r300->rws->cs_add_reloc(r300->cs, r300_resource(index_buffer)->cs_buf,
1394                                 RADEON_USAGE_READ,
1395                                 r300_resource(index_buffer)->domain,
1396                                 RADEON_PRIO_MIN);
1397
1398     /* Now do the validation (flush is called inside cs_validate on failure). */
1399     if (!r300->rws->cs_validate(r300->cs)) {
1400         /* Ooops, an infinite loop, give up. */
1401         if (flushed)
1402             return FALSE;
1403
1404         flushed = TRUE;
1405         goto validate;
1406     }
1407
1408     return TRUE;
1409 }
1410
1411 unsigned r300_get_num_dirty_dwords(struct r300_context *r300)
1412 {
1413     struct r300_atom* atom;
1414     unsigned dwords = 0;
1415
1416     foreach_dirty_atom(r300, atom) {
1417         if (atom->dirty) {
1418             dwords += atom->size;
1419         }
1420     }
1421
1422     /* let's reserve some more, just in case */
1423     dwords += 32;
1424
1425     return dwords;
1426 }
1427
1428 unsigned r300_get_num_cs_end_dwords(struct r300_context *r300)
1429 {
1430     unsigned dwords = 0;
1431
1432     /* Emitted in flush. */
1433     dwords += 26; /* emit_query_end */
1434     dwords += r300->hyperz_state.size + 2; /* emit_hyperz_end + zcache flush */
1435     if (r300->screen->caps.is_r500)
1436         dwords += 2; /* emit_index_bias */
1437     if (r300->screen->info.drm_minor >= 6)
1438         dwords += 3; /* MSPOS */
1439
1440     return dwords;
1441 }
1442
1443 /* Emit all dirty state. */
1444 void r300_emit_dirty_state(struct r300_context* r300)
1445 {
1446     struct r300_atom *atom;
1447
1448     foreach_dirty_atom(r300, atom) {
1449         if (atom->dirty) {
1450             atom->emit(r300, atom->size, atom->state);
1451             atom->dirty = FALSE;
1452         }
1453     }
1454
1455     r300->first_dirty = NULL;
1456     r300->last_dirty = NULL;
1457     r300->dirty_hw++;
1458 }