1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
9 #include "src/code-factory.h"
10 #include "src/code-stubs.h"
11 #include "src/codegen.h"
12 #include "src/compiler.h"
13 #include "src/debug/debug.h"
14 #include "src/full-codegen/full-codegen.h"
15 #include "src/ic/ic.h"
16 #include "src/parser.h"
17 #include "src/scopes.h"
22 #define __ ACCESS_MASM(masm_)
25 class JumpPatchSite BASE_EMBEDDED {
27 explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm) {
29 info_emitted_ = false;
34 DCHECK(patch_site_.is_bound() == info_emitted_);
37 void EmitJumpIfNotSmi(Register reg,
39 Label::Distance near_jump = Label::kFar) {
40 __ testb(reg, Immediate(kSmiTagMask));
41 EmitJump(not_carry, target, near_jump); // Always taken before patched.
44 void EmitJumpIfSmi(Register reg,
46 Label::Distance near_jump = Label::kFar) {
47 __ testb(reg, Immediate(kSmiTagMask));
48 EmitJump(carry, target, near_jump); // Never taken before patched.
51 void EmitPatchInfo() {
52 if (patch_site_.is_bound()) {
53 int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(&patch_site_);
54 DCHECK(is_uint8(delta_to_patch_site));
55 __ testl(rax, Immediate(delta_to_patch_site));
60 __ nop(); // Signals no inlined code.
65 // jc will be patched with jz, jnc will become jnz.
66 void EmitJump(Condition cc, Label* target, Label::Distance near_jump) {
67 DCHECK(!patch_site_.is_bound() && !info_emitted_);
68 DCHECK(cc == carry || cc == not_carry);
69 __ bind(&patch_site_);
70 __ j(cc, target, near_jump);
73 MacroAssembler* masm_;
81 // Generate code for a JS function. On entry to the function the receiver
82 // and arguments have been pushed on the stack left to right, with the
83 // return address on top of them. The actual argument count matches the
84 // formal parameter count expected by the function.
86 // The live registers are:
87 // o rdi: the JS function object being called (i.e. ourselves)
89 // o rbp: our caller's frame pointer
90 // o rsp: stack pointer (pointing to return address)
92 // The function builds a JS frame. Please see JavaScriptFrameConstants in
93 // frames-x64.h for its layout.
94 void FullCodeGenerator::Generate() {
95 CompilationInfo* info = info_;
96 profiling_counter_ = isolate()->factory()->NewCell(
97 Handle<Smi>(Smi::FromInt(FLAG_interrupt_budget), isolate()));
98 SetFunctionPosition(function());
99 Comment cmnt(masm_, "[ function compiled by full code generator");
101 ProfileEntryHookStub::MaybeCallEntryHook(masm_);
104 if (strlen(FLAG_stop_at) > 0 &&
105 info->function()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
110 // Sloppy mode functions and builtins need to replace the receiver with the
111 // global proxy when called as functions (without an explicit receiver
113 if (is_sloppy(info->language_mode()) && !info->is_native() &&
114 info->MayUseThis() && info->scope()->has_this_declaration()) {
116 // +1 for return address.
117 StackArgumentsAccessor args(rsp, info->scope()->num_parameters());
118 __ movp(rcx, args.GetReceiverOperand());
120 __ CompareRoot(rcx, Heap::kUndefinedValueRootIndex);
121 __ j(not_equal, &ok, Label::kNear);
123 __ movp(rcx, GlobalObjectOperand());
124 __ movp(rcx, FieldOperand(rcx, GlobalObject::kGlobalProxyOffset));
126 __ movp(args.GetReceiverOperand(), rcx);
131 // Open a frame scope to indicate that there is a frame on the stack. The
132 // MANUAL indicates that the scope shouldn't actually generate code to set up
133 // the frame (that is done below).
134 FrameScope frame_scope(masm_, StackFrame::MANUAL);
136 info->set_prologue_offset(masm_->pc_offset());
137 __ Prologue(info->IsCodePreAgingActive());
138 info->AddNoFrameRange(0, masm_->pc_offset());
140 { Comment cmnt(masm_, "[ Allocate locals");
141 int locals_count = info->scope()->num_stack_slots();
142 // Generators allocate locals, if any, in context slots.
143 DCHECK(!IsGeneratorFunction(info->function()->kind()) || locals_count == 0);
144 if (locals_count == 1) {
145 __ PushRoot(Heap::kUndefinedValueRootIndex);
146 } else if (locals_count > 1) {
147 if (locals_count >= 128) {
150 __ subp(rcx, Immediate(locals_count * kPointerSize));
151 __ CompareRoot(rcx, Heap::kRealStackLimitRootIndex);
152 __ j(above_equal, &ok, Label::kNear);
153 __ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION);
156 __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
157 const int kMaxPushes = 32;
158 if (locals_count >= kMaxPushes) {
159 int loop_iterations = locals_count / kMaxPushes;
160 __ movp(rcx, Immediate(loop_iterations));
162 __ bind(&loop_header);
164 for (int i = 0; i < kMaxPushes; i++) {
167 // Continue loop if not done.
169 __ j(not_zero, &loop_header, Label::kNear);
171 int remaining = locals_count % kMaxPushes;
172 // Emit the remaining pushes.
173 for (int i = 0; i < remaining; i++) {
179 bool function_in_register = true;
181 // Possibly allocate a local context.
182 if (info->scope()->num_heap_slots() > 0) {
183 Comment cmnt(masm_, "[ Allocate context");
184 bool need_write_barrier = true;
185 int slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
186 // Argument to NewContext is the function, which is still in rdi.
187 if (info->scope()->is_script_scope()) {
189 __ Push(info->scope()->GetScopeInfo(info->isolate()));
190 __ CallRuntime(Runtime::kNewScriptContext, 2);
191 } else if (slots <= FastNewContextStub::kMaximumSlots) {
192 FastNewContextStub stub(isolate(), slots);
194 // Result of FastNewContextStub is always in new space.
195 need_write_barrier = false;
198 __ CallRuntime(Runtime::kNewFunctionContext, 1);
200 function_in_register = false;
201 // Context is returned in rax. It replaces the context passed to us.
202 // It's saved in the stack and kept live in rsi.
204 __ movp(Operand(rbp, StandardFrameConstants::kContextOffset), rax);
206 // Copy any necessary parameters into the context.
207 int num_parameters = info->scope()->num_parameters();
208 int first_parameter = info->scope()->has_this_declaration() ? -1 : 0;
209 for (int i = first_parameter; i < num_parameters; i++) {
210 Variable* var = (i == -1) ? scope()->receiver() : scope()->parameter(i);
211 if (var->IsContextSlot()) {
212 int parameter_offset = StandardFrameConstants::kCallerSPOffset +
213 (num_parameters - 1 - i) * kPointerSize;
214 // Load parameter from stack.
215 __ movp(rax, Operand(rbp, parameter_offset));
216 // Store it in the context.
217 int context_offset = Context::SlotOffset(var->index());
218 __ movp(Operand(rsi, context_offset), rax);
219 // Update the write barrier. This clobbers rax and rbx.
220 if (need_write_barrier) {
221 __ RecordWriteContextSlot(
222 rsi, context_offset, rax, rbx, kDontSaveFPRegs);
223 } else if (FLAG_debug_code) {
225 __ JumpIfInNewSpace(rsi, rax, &done, Label::kNear);
226 __ Abort(kExpectedNewSpaceObject);
233 // Possibly set up a local binding to the this function which is used in
234 // derived constructors with super calls.
235 Variable* this_function_var = scope()->this_function_var();
236 if (this_function_var != nullptr) {
237 Comment cmnt(masm_, "[ This function");
238 if (!function_in_register) {
239 __ movp(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
240 // The write barrier clobbers register again, keep is marked as such.
242 SetVar(this_function_var, rdi, rbx, rdx);
245 Variable* new_target_var = scope()->new_target_var();
246 if (new_target_var != nullptr) {
247 Comment cmnt(masm_, "[ new.target");
249 __ movp(rax, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
250 Label non_adaptor_frame;
251 __ Cmp(Operand(rax, StandardFrameConstants::kContextOffset),
252 Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
253 __ j(not_equal, &non_adaptor_frame);
254 __ movp(rax, Operand(rax, StandardFrameConstants::kCallerFPOffset));
256 __ bind(&non_adaptor_frame);
257 __ Cmp(Operand(rax, StandardFrameConstants::kMarkerOffset),
258 Smi::FromInt(StackFrame::CONSTRUCT));
260 Label non_construct_frame, done;
261 __ j(not_equal, &non_construct_frame);
265 Operand(rax, ConstructFrameConstants::kOriginalConstructorOffset));
268 // Non-construct frame
269 __ bind(&non_construct_frame);
270 __ LoadRoot(rax, Heap::kUndefinedValueRootIndex);
273 SetVar(new_target_var, rax, rbx, rdx);
276 // Possibly allocate RestParameters
278 Variable* rest_param = scope()->rest_parameter(&rest_index);
280 Comment cmnt(masm_, "[ Allocate rest parameter array");
282 int num_parameters = info->scope()->num_parameters();
283 int offset = num_parameters * kPointerSize;
286 Operand(rbp, StandardFrameConstants::kCallerSPOffset + offset));
288 __ Push(Smi::FromInt(num_parameters));
289 __ Push(Smi::FromInt(rest_index));
290 __ Push(Smi::FromInt(language_mode()));
292 RestParamAccessStub stub(isolate());
295 SetVar(rest_param, rax, rbx, rdx);
298 // Possibly allocate an arguments object.
299 Variable* arguments = scope()->arguments();
300 if (arguments != NULL) {
301 // Arguments object must be allocated after the context object, in
302 // case the "arguments" or ".arguments" variables are in the context.
303 Comment cmnt(masm_, "[ Allocate arguments object");
304 if (function_in_register) {
307 __ Push(Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
309 // The receiver is just before the parameters on the caller's stack.
310 int num_parameters = info->scope()->num_parameters();
311 int offset = num_parameters * kPointerSize;
313 Operand(rbp, StandardFrameConstants::kCallerSPOffset + offset));
315 __ Push(Smi::FromInt(num_parameters));
316 // Arguments to ArgumentsAccessStub:
317 // function, receiver address, parameter count.
318 // The stub will rewrite receiver and parameter count if the previous
319 // stack frame was an arguments adapter frame.
321 ArgumentsAccessStub::Type type;
322 if (is_strict(language_mode()) || !is_simple_parameter_list()) {
323 type = ArgumentsAccessStub::NEW_STRICT;
324 } else if (function()->has_duplicate_parameters()) {
325 type = ArgumentsAccessStub::NEW_SLOPPY_SLOW;
327 type = ArgumentsAccessStub::NEW_SLOPPY_FAST;
329 ArgumentsAccessStub stub(isolate(), type);
332 SetVar(arguments, rax, rbx, rdx);
336 __ CallRuntime(Runtime::kTraceEnter, 0);
339 // Visit the declarations and body unless there is an illegal
341 if (scope()->HasIllegalRedeclaration()) {
342 Comment cmnt(masm_, "[ Declarations");
343 scope()->VisitIllegalRedeclaration(this);
346 PrepareForBailoutForId(BailoutId::FunctionEntry(), NO_REGISTERS);
347 { Comment cmnt(masm_, "[ Declarations");
348 VisitDeclarations(scope()->declarations());
351 // Assert that the declarations do not use ICs. Otherwise the debugger
352 // won't be able to redirect a PC at an IC to the correct IC in newly
354 DCHECK_EQ(0, ic_total_count_);
356 { Comment cmnt(masm_, "[ Stack check");
357 PrepareForBailoutForId(BailoutId::Declarations(), NO_REGISTERS);
359 __ CompareRoot(rsp, Heap::kStackLimitRootIndex);
360 __ j(above_equal, &ok, Label::kNear);
361 __ call(isolate()->builtins()->StackCheck(), RelocInfo::CODE_TARGET);
365 { Comment cmnt(masm_, "[ Body");
366 DCHECK(loop_depth() == 0);
367 VisitStatements(function()->body());
368 DCHECK(loop_depth() == 0);
372 // Always emit a 'return undefined' in case control fell off the end of
374 { Comment cmnt(masm_, "[ return <undefined>;");
375 __ LoadRoot(rax, Heap::kUndefinedValueRootIndex);
376 EmitReturnSequence();
381 void FullCodeGenerator::ClearAccumulator() {
386 void FullCodeGenerator::EmitProfilingCounterDecrement(int delta) {
387 __ Move(rbx, profiling_counter_, RelocInfo::EMBEDDED_OBJECT);
388 __ SmiAddConstant(FieldOperand(rbx, Cell::kValueOffset),
389 Smi::FromInt(-delta));
393 void FullCodeGenerator::EmitProfilingCounterReset() {
394 int reset_value = FLAG_interrupt_budget;
395 __ Move(rbx, profiling_counter_, RelocInfo::EMBEDDED_OBJECT);
396 __ Move(kScratchRegister, Smi::FromInt(reset_value));
397 __ movp(FieldOperand(rbx, Cell::kValueOffset), kScratchRegister);
401 static const byte kJnsOffset = kPointerSize == kInt64Size ? 0x1d : 0x14;
404 void FullCodeGenerator::EmitBackEdgeBookkeeping(IterationStatement* stmt,
405 Label* back_edge_target) {
406 Comment cmnt(masm_, "[ Back edge bookkeeping");
409 DCHECK(back_edge_target->is_bound());
410 int distance = masm_->SizeOfCodeGeneratedSince(back_edge_target);
411 int weight = Min(kMaxBackEdgeWeight,
412 Max(1, distance / kCodeSizeMultiplier));
413 EmitProfilingCounterDecrement(weight);
415 __ j(positive, &ok, Label::kNear);
417 PredictableCodeSizeScope predictible_code_size_scope(masm_, kJnsOffset);
418 DontEmitDebugCodeScope dont_emit_debug_code_scope(masm_);
419 __ call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET);
421 // Record a mapping of this PC offset to the OSR id. This is used to find
422 // the AST id from the unoptimized code in order to use it as a key into
423 // the deoptimization input data found in the optimized code.
424 RecordBackEdge(stmt->OsrEntryId());
426 EmitProfilingCounterReset();
430 PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
431 // Record a mapping of the OSR id to this PC. This is used if the OSR
432 // entry becomes the target of a bailout. We don't expect it to be, but
433 // we want it to work if it is.
434 PrepareForBailoutForId(stmt->OsrEntryId(), NO_REGISTERS);
438 void FullCodeGenerator::EmitReturnSequence() {
439 Comment cmnt(masm_, "[ Return sequence");
440 if (return_label_.is_bound()) {
441 __ jmp(&return_label_);
443 __ bind(&return_label_);
446 __ CallRuntime(Runtime::kTraceExit, 1);
448 // Pretend that the exit is a backwards jump to the entry.
450 if (info_->ShouldSelfOptimize()) {
451 weight = FLAG_interrupt_budget / FLAG_self_opt_count;
453 int distance = masm_->pc_offset();
454 weight = Min(kMaxBackEdgeWeight,
455 Max(1, distance / kCodeSizeMultiplier));
457 EmitProfilingCounterDecrement(weight);
459 __ j(positive, &ok, Label::kNear);
461 __ call(isolate()->builtins()->InterruptCheck(),
462 RelocInfo::CODE_TARGET);
464 EmitProfilingCounterReset();
467 SetReturnPosition(function());
468 int no_frame_start = masm_->pc_offset();
471 int arg_count = info_->scope()->num_parameters() + 1;
472 int arguments_bytes = arg_count * kPointerSize;
473 __ Ret(arguments_bytes, rcx);
475 info_->AddNoFrameRange(no_frame_start, masm_->pc_offset());
480 void FullCodeGenerator::StackValueContext::Plug(Variable* var) const {
481 DCHECK(var->IsStackAllocated() || var->IsContextSlot());
482 MemOperand operand = codegen()->VarOperand(var, result_register());
487 void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const {
491 void FullCodeGenerator::AccumulatorValueContext::Plug(
492 Heap::RootListIndex index) const {
493 __ LoadRoot(result_register(), index);
497 void FullCodeGenerator::StackValueContext::Plug(
498 Heap::RootListIndex index) const {
503 void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const {
504 codegen()->PrepareForBailoutBeforeSplit(condition(),
508 if (index == Heap::kUndefinedValueRootIndex ||
509 index == Heap::kNullValueRootIndex ||
510 index == Heap::kFalseValueRootIndex) {
511 if (false_label_ != fall_through_) __ jmp(false_label_);
512 } else if (index == Heap::kTrueValueRootIndex) {
513 if (true_label_ != fall_through_) __ jmp(true_label_);
515 __ LoadRoot(result_register(), index);
516 codegen()->DoTest(this);
521 void FullCodeGenerator::EffectContext::Plug(Handle<Object> lit) const {
525 void FullCodeGenerator::AccumulatorValueContext::Plug(
526 Handle<Object> lit) const {
528 __ SafeMove(result_register(), Smi::cast(*lit));
530 __ Move(result_register(), lit);
535 void FullCodeGenerator::StackValueContext::Plug(Handle<Object> lit) const {
537 __ SafePush(Smi::cast(*lit));
544 void FullCodeGenerator::TestContext::Plug(Handle<Object> lit) const {
545 codegen()->PrepareForBailoutBeforeSplit(condition(),
549 DCHECK(!lit->IsUndetectableObject()); // There are no undetectable literals.
550 if (lit->IsUndefined() || lit->IsNull() || lit->IsFalse()) {
551 if (false_label_ != fall_through_) __ jmp(false_label_);
552 } else if (lit->IsTrue() || lit->IsJSObject()) {
553 if (true_label_ != fall_through_) __ jmp(true_label_);
554 } else if (lit->IsString()) {
555 if (String::cast(*lit)->length() == 0) {
556 if (false_label_ != fall_through_) __ jmp(false_label_);
558 if (true_label_ != fall_through_) __ jmp(true_label_);
560 } else if (lit->IsSmi()) {
561 if (Smi::cast(*lit)->value() == 0) {
562 if (false_label_ != fall_through_) __ jmp(false_label_);
564 if (true_label_ != fall_through_) __ jmp(true_label_);
567 // For simplicity we always test the accumulator register.
568 __ Move(result_register(), lit);
569 codegen()->DoTest(this);
574 void FullCodeGenerator::EffectContext::DropAndPlug(int count,
575 Register reg) const {
581 void FullCodeGenerator::AccumulatorValueContext::DropAndPlug(
583 Register reg) const {
586 __ Move(result_register(), reg);
590 void FullCodeGenerator::StackValueContext::DropAndPlug(int count,
591 Register reg) const {
593 if (count > 1) __ Drop(count - 1);
594 __ movp(Operand(rsp, 0), reg);
598 void FullCodeGenerator::TestContext::DropAndPlug(int count,
599 Register reg) const {
601 // For simplicity we always test the accumulator register.
603 __ Move(result_register(), reg);
604 codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
605 codegen()->DoTest(this);
609 void FullCodeGenerator::EffectContext::Plug(Label* materialize_true,
610 Label* materialize_false) const {
611 DCHECK(materialize_true == materialize_false);
612 __ bind(materialize_true);
616 void FullCodeGenerator::AccumulatorValueContext::Plug(
617 Label* materialize_true,
618 Label* materialize_false) const {
620 __ bind(materialize_true);
621 __ Move(result_register(), isolate()->factory()->true_value());
622 __ jmp(&done, Label::kNear);
623 __ bind(materialize_false);
624 __ Move(result_register(), isolate()->factory()->false_value());
629 void FullCodeGenerator::StackValueContext::Plug(
630 Label* materialize_true,
631 Label* materialize_false) const {
633 __ bind(materialize_true);
634 __ Push(isolate()->factory()->true_value());
635 __ jmp(&done, Label::kNear);
636 __ bind(materialize_false);
637 __ Push(isolate()->factory()->false_value());
642 void FullCodeGenerator::TestContext::Plug(Label* materialize_true,
643 Label* materialize_false) const {
644 DCHECK(materialize_true == true_label_);
645 DCHECK(materialize_false == false_label_);
649 void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const {
650 Heap::RootListIndex value_root_index =
651 flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
652 __ LoadRoot(result_register(), value_root_index);
656 void FullCodeGenerator::StackValueContext::Plug(bool flag) const {
657 Heap::RootListIndex value_root_index =
658 flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
659 __ PushRoot(value_root_index);
663 void FullCodeGenerator::TestContext::Plug(bool flag) const {
664 codegen()->PrepareForBailoutBeforeSplit(condition(),
669 if (true_label_ != fall_through_) __ jmp(true_label_);
671 if (false_label_ != fall_through_) __ jmp(false_label_);
676 void FullCodeGenerator::DoTest(Expression* condition,
679 Label* fall_through) {
680 Handle<Code> ic = ToBooleanStub::GetUninitialized(isolate());
681 CallIC(ic, condition->test_id());
682 __ testp(result_register(), result_register());
683 // The stub returns nonzero for true.
684 Split(not_zero, if_true, if_false, fall_through);
688 void FullCodeGenerator::Split(Condition cc,
691 Label* fall_through) {
692 if (if_false == fall_through) {
694 } else if (if_true == fall_through) {
695 __ j(NegateCondition(cc), if_false);
703 MemOperand FullCodeGenerator::StackOperand(Variable* var) {
704 DCHECK(var->IsStackAllocated());
705 // Offset is negative because higher indexes are at lower addresses.
706 int offset = -var->index() * kPointerSize;
707 // Adjust by a (parameter or local) base offset.
708 if (var->IsParameter()) {
709 offset += kFPOnStackSize + kPCOnStackSize +
710 (info_->scope()->num_parameters() - 1) * kPointerSize;
712 offset += JavaScriptFrameConstants::kLocal0Offset;
714 return Operand(rbp, offset);
718 MemOperand FullCodeGenerator::VarOperand(Variable* var, Register scratch) {
719 DCHECK(var->IsContextSlot() || var->IsStackAllocated());
720 if (var->IsContextSlot()) {
721 int context_chain_length = scope()->ContextChainLength(var->scope());
722 __ LoadContext(scratch, context_chain_length);
723 return ContextOperand(scratch, var->index());
725 return StackOperand(var);
730 void FullCodeGenerator::GetVar(Register dest, Variable* var) {
731 DCHECK(var->IsContextSlot() || var->IsStackAllocated());
732 MemOperand location = VarOperand(var, dest);
733 __ movp(dest, location);
737 void FullCodeGenerator::SetVar(Variable* var,
741 DCHECK(var->IsContextSlot() || var->IsStackAllocated());
742 DCHECK(!scratch0.is(src));
743 DCHECK(!scratch0.is(scratch1));
744 DCHECK(!scratch1.is(src));
745 MemOperand location = VarOperand(var, scratch0);
746 __ movp(location, src);
748 // Emit the write barrier code if the location is in the heap.
749 if (var->IsContextSlot()) {
750 int offset = Context::SlotOffset(var->index());
751 __ RecordWriteContextSlot(scratch0, offset, src, scratch1, kDontSaveFPRegs);
756 void FullCodeGenerator::PrepareForBailoutBeforeSplit(Expression* expr,
757 bool should_normalize,
760 // Only prepare for bailouts before splits if we're in a test
761 // context. Otherwise, we let the Visit function deal with the
762 // preparation to avoid preparing with the same AST id twice.
763 if (!context()->IsTest() || !info_->IsOptimizable()) return;
766 if (should_normalize) __ jmp(&skip, Label::kNear);
767 PrepareForBailout(expr, TOS_REG);
768 if (should_normalize) {
769 __ CompareRoot(rax, Heap::kTrueValueRootIndex);
770 Split(equal, if_true, if_false, NULL);
776 void FullCodeGenerator::EmitDebugCheckDeclarationContext(Variable* variable) {
777 // The variable in the declaration always resides in the current context.
778 DCHECK_EQ(0, scope()->ContextChainLength(variable->scope()));
779 if (generate_debug_code_) {
780 // Check that we're not inside a with or catch context.
781 __ movp(rbx, FieldOperand(rsi, HeapObject::kMapOffset));
782 __ CompareRoot(rbx, Heap::kWithContextMapRootIndex);
783 __ Check(not_equal, kDeclarationInWithContext);
784 __ CompareRoot(rbx, Heap::kCatchContextMapRootIndex);
785 __ Check(not_equal, kDeclarationInCatchContext);
790 void FullCodeGenerator::VisitVariableDeclaration(
791 VariableDeclaration* declaration) {
792 // If it was not possible to allocate the variable at compile time, we
793 // need to "declare" it at runtime to make sure it actually exists in the
795 VariableProxy* proxy = declaration->proxy();
796 VariableMode mode = declaration->mode();
797 Variable* variable = proxy->var();
798 bool hole_init = mode == LET || mode == CONST || mode == CONST_LEGACY;
799 switch (variable->location()) {
800 case VariableLocation::GLOBAL:
801 case VariableLocation::UNALLOCATED:
802 globals_->Add(variable->name(), zone());
803 globals_->Add(variable->binding_needs_init()
804 ? isolate()->factory()->the_hole_value()
805 : isolate()->factory()->undefined_value(),
809 case VariableLocation::PARAMETER:
810 case VariableLocation::LOCAL:
812 Comment cmnt(masm_, "[ VariableDeclaration");
813 __ LoadRoot(kScratchRegister, Heap::kTheHoleValueRootIndex);
814 __ movp(StackOperand(variable), kScratchRegister);
818 case VariableLocation::CONTEXT:
820 Comment cmnt(masm_, "[ VariableDeclaration");
821 EmitDebugCheckDeclarationContext(variable);
822 __ LoadRoot(kScratchRegister, Heap::kTheHoleValueRootIndex);
823 __ movp(ContextOperand(rsi, variable->index()), kScratchRegister);
824 // No write barrier since the hole value is in old space.
825 PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
829 case VariableLocation::LOOKUP: {
830 Comment cmnt(masm_, "[ VariableDeclaration");
831 __ Push(variable->name());
832 // Declaration nodes are always introduced in one of four modes.
833 DCHECK(IsDeclaredVariableMode(mode));
834 // Push initial value, if any.
835 // Note: For variables we must not push an initial value (such as
836 // 'undefined') because we may have a (legal) redeclaration and we
837 // must not destroy the current value.
839 __ PushRoot(Heap::kTheHoleValueRootIndex);
841 __ Push(Smi::FromInt(0)); // Indicates no initial value.
843 __ CallRuntime(IsImmutableVariableMode(mode)
844 ? Runtime::kDeclareReadOnlyLookupSlot
845 : Runtime::kDeclareLookupSlot,
853 void FullCodeGenerator::VisitFunctionDeclaration(
854 FunctionDeclaration* declaration) {
855 VariableProxy* proxy = declaration->proxy();
856 Variable* variable = proxy->var();
857 switch (variable->location()) {
858 case VariableLocation::GLOBAL:
859 case VariableLocation::UNALLOCATED: {
860 globals_->Add(variable->name(), zone());
861 Handle<SharedFunctionInfo> function =
862 Compiler::GetSharedFunctionInfo(declaration->fun(), script(), info_);
863 // Check for stack-overflow exception.
864 if (function.is_null()) return SetStackOverflow();
865 globals_->Add(function, zone());
869 case VariableLocation::PARAMETER:
870 case VariableLocation::LOCAL: {
871 Comment cmnt(masm_, "[ FunctionDeclaration");
872 VisitForAccumulatorValue(declaration->fun());
873 __ movp(StackOperand(variable), result_register());
877 case VariableLocation::CONTEXT: {
878 Comment cmnt(masm_, "[ FunctionDeclaration");
879 EmitDebugCheckDeclarationContext(variable);
880 VisitForAccumulatorValue(declaration->fun());
881 __ movp(ContextOperand(rsi, variable->index()), result_register());
882 int offset = Context::SlotOffset(variable->index());
883 // We know that we have written a function, which is not a smi.
884 __ RecordWriteContextSlot(rsi,
891 PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
895 case VariableLocation::LOOKUP: {
896 Comment cmnt(masm_, "[ FunctionDeclaration");
897 __ Push(variable->name());
898 VisitForStackValue(declaration->fun());
899 __ CallRuntime(Runtime::kDeclareLookupSlot, 2);
906 void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
907 // Call the runtime to declare the globals.
909 __ Push(Smi::FromInt(DeclareGlobalsFlags()));
910 __ CallRuntime(Runtime::kDeclareGlobals, 2);
911 // Return value is ignored.
915 void FullCodeGenerator::DeclareModules(Handle<FixedArray> descriptions) {
916 // Call the runtime to declare the modules.
917 __ Push(descriptions);
918 __ CallRuntime(Runtime::kDeclareModules, 1);
919 // Return value is ignored.
923 void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) {
924 Comment cmnt(masm_, "[ SwitchStatement");
925 Breakable nested_statement(this, stmt);
926 SetStatementPosition(stmt);
928 // Keep the switch value on the stack until a case matches.
929 VisitForStackValue(stmt->tag());
930 PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
932 ZoneList<CaseClause*>* clauses = stmt->cases();
933 CaseClause* default_clause = NULL; // Can occur anywhere in the list.
935 Label next_test; // Recycled for each test.
936 // Compile all the tests with branches to their bodies.
937 for (int i = 0; i < clauses->length(); i++) {
938 CaseClause* clause = clauses->at(i);
939 clause->body_target()->Unuse();
941 // The default is not a test, but remember it as final fall through.
942 if (clause->is_default()) {
943 default_clause = clause;
947 Comment cmnt(masm_, "[ Case comparison");
951 // Compile the label expression.
952 VisitForAccumulatorValue(clause->label());
954 // Perform the comparison as if via '==='.
955 __ movp(rdx, Operand(rsp, 0)); // Switch value.
956 bool inline_smi_code = ShouldInlineSmiCase(Token::EQ_STRICT);
957 JumpPatchSite patch_site(masm_);
958 if (inline_smi_code) {
962 patch_site.EmitJumpIfNotSmi(rcx, &slow_case, Label::kNear);
965 __ j(not_equal, &next_test);
966 __ Drop(1); // Switch value is no longer needed.
967 __ jmp(clause->body_target());
971 // Record position before stub call for type feedback.
972 SetExpressionPosition(clause);
973 Handle<Code> ic = CodeFactory::CompareIC(isolate(), Token::EQ_STRICT,
974 strength(language_mode())).code();
975 CallIC(ic, clause->CompareId());
976 patch_site.EmitPatchInfo();
979 __ jmp(&skip, Label::kNear);
980 PrepareForBailout(clause, TOS_REG);
981 __ CompareRoot(rax, Heap::kTrueValueRootIndex);
982 __ j(not_equal, &next_test);
984 __ jmp(clause->body_target());
988 __ j(not_equal, &next_test);
989 __ Drop(1); // Switch value is no longer needed.
990 __ jmp(clause->body_target());
993 // Discard the test value and jump to the default if present, otherwise to
994 // the end of the statement.
996 __ Drop(1); // Switch value is no longer needed.
997 if (default_clause == NULL) {
998 __ jmp(nested_statement.break_label());
1000 __ jmp(default_clause->body_target());
1003 // Compile all the case bodies.
1004 for (int i = 0; i < clauses->length(); i++) {
1005 Comment cmnt(masm_, "[ Case body");
1006 CaseClause* clause = clauses->at(i);
1007 __ bind(clause->body_target());
1008 PrepareForBailoutForId(clause->EntryId(), NO_REGISTERS);
1009 VisitStatements(clause->statements());
1012 __ bind(nested_statement.break_label());
1013 PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
1017 void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) {
1018 Comment cmnt(masm_, "[ ForInStatement");
1019 SetStatementPosition(stmt, SKIP_BREAK);
1021 FeedbackVectorSlot slot = stmt->ForInFeedbackSlot();
1024 ForIn loop_statement(this, stmt);
1025 increment_loop_depth();
1027 // Get the object to enumerate over. If the object is null or undefined, skip
1028 // over the loop. See ECMA-262 version 5, section 12.6.4.
1029 SetExpressionAsStatementPosition(stmt->enumerable());
1030 VisitForAccumulatorValue(stmt->enumerable());
1031 __ CompareRoot(rax, Heap::kUndefinedValueRootIndex);
1033 Register null_value = rdi;
1034 __ LoadRoot(null_value, Heap::kNullValueRootIndex);
1035 __ cmpp(rax, null_value);
1038 PrepareForBailoutForId(stmt->PrepareId(), TOS_REG);
1040 // Convert the object to a JS object.
1041 Label convert, done_convert;
1042 __ JumpIfSmi(rax, &convert, Label::kNear);
1043 __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rcx);
1044 __ j(above_equal, &done_convert, Label::kNear);
1046 ToObjectStub stub(isolate());
1048 __ bind(&done_convert);
1049 PrepareForBailoutForId(stmt->ToObjectId(), TOS_REG);
1052 // Check for proxies.
1054 STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
1055 __ CmpObjectType(rax, LAST_JS_PROXY_TYPE, rcx);
1056 __ j(below_equal, &call_runtime);
1058 // Check cache validity in generated code. This is a fast case for
1059 // the JSObject::IsSimpleEnum cache validity checks. If we cannot
1060 // guarantee cache validity, call the runtime system to check cache
1061 // validity or get the property names in a fixed array.
1062 __ CheckEnumCache(null_value, &call_runtime);
1064 // The enum cache is valid. Load the map of the object being
1065 // iterated over and use the cache for the iteration.
1067 __ movp(rax, FieldOperand(rax, HeapObject::kMapOffset));
1068 __ jmp(&use_cache, Label::kNear);
1070 // Get the set of properties to enumerate.
1071 __ bind(&call_runtime);
1072 __ Push(rax); // Duplicate the enumerable object on the stack.
1073 __ CallRuntime(Runtime::kGetPropertyNamesFast, 1);
1074 PrepareForBailoutForId(stmt->EnumId(), TOS_REG);
1076 // If we got a map from the runtime call, we can do a fast
1077 // modification check. Otherwise, we got a fixed array, and we have
1078 // to do a slow check.
1080 __ CompareRoot(FieldOperand(rax, HeapObject::kMapOffset),
1081 Heap::kMetaMapRootIndex);
1082 __ j(not_equal, &fixed_array);
1084 // We got a map in register rax. Get the enumeration cache from it.
1085 __ bind(&use_cache);
1087 Label no_descriptors;
1089 __ EnumLength(rdx, rax);
1090 __ Cmp(rdx, Smi::FromInt(0));
1091 __ j(equal, &no_descriptors);
1093 __ LoadInstanceDescriptors(rax, rcx);
1094 __ movp(rcx, FieldOperand(rcx, DescriptorArray::kEnumCacheOffset));
1095 __ movp(rcx, FieldOperand(rcx, DescriptorArray::kEnumCacheBridgeCacheOffset));
1097 // Set up the four remaining stack slots.
1098 __ Push(rax); // Map.
1099 __ Push(rcx); // Enumeration cache.
1100 __ Push(rdx); // Number of valid entries for the map in the enum cache.
1101 __ Push(Smi::FromInt(0)); // Initial index.
1104 __ bind(&no_descriptors);
1105 __ addp(rsp, Immediate(kPointerSize));
1108 // We got a fixed array in register rax. Iterate through that.
1110 __ bind(&fixed_array);
1112 // No need for a write barrier, we are storing a Smi in the feedback vector.
1113 __ Move(rbx, FeedbackVector());
1114 int vector_index = FeedbackVector()->GetIndex(slot);
1115 __ Move(FieldOperand(rbx, FixedArray::OffsetOfElementAt(vector_index)),
1116 TypeFeedbackVector::MegamorphicSentinel(isolate()));
1117 __ Move(rbx, Smi::FromInt(1)); // Smi indicates slow check
1118 __ movp(rcx, Operand(rsp, 0 * kPointerSize)); // Get enumerated object
1119 STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
1120 __ CmpObjectType(rcx, LAST_JS_PROXY_TYPE, rcx);
1121 __ j(above, &non_proxy);
1122 __ Move(rbx, Smi::FromInt(0)); // Zero indicates proxy
1123 __ bind(&non_proxy);
1124 __ Push(rbx); // Smi
1125 __ Push(rax); // Array
1126 __ movp(rax, FieldOperand(rax, FixedArray::kLengthOffset));
1127 __ Push(rax); // Fixed array length (as smi).
1128 __ Push(Smi::FromInt(0)); // Initial index.
1130 // Generate code for doing the condition check.
1131 PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS);
1133 SetExpressionAsStatementPosition(stmt->each());
1135 __ movp(rax, Operand(rsp, 0 * kPointerSize)); // Get the current index.
1136 __ cmpp(rax, Operand(rsp, 1 * kPointerSize)); // Compare to the array length.
1137 __ j(above_equal, loop_statement.break_label());
1139 // Get the current entry of the array into register rbx.
1140 __ movp(rbx, Operand(rsp, 2 * kPointerSize));
1141 SmiIndex index = masm()->SmiToIndex(rax, rax, kPointerSizeLog2);
1142 __ movp(rbx, FieldOperand(rbx,
1145 FixedArray::kHeaderSize));
1147 // Get the expected map from the stack or a smi in the
1148 // permanent slow case into register rdx.
1149 __ movp(rdx, Operand(rsp, 3 * kPointerSize));
1151 // Check if the expected map still matches that of the enumerable.
1152 // If not, we may have to filter the key.
1154 __ movp(rcx, Operand(rsp, 4 * kPointerSize));
1155 __ cmpp(rdx, FieldOperand(rcx, HeapObject::kMapOffset));
1156 __ j(equal, &update_each, Label::kNear);
1158 // For proxies, no filtering is done.
1159 // TODO(rossberg): What if only a prototype is a proxy? Not specified yet.
1160 __ Cmp(rdx, Smi::FromInt(0));
1161 __ j(equal, &update_each, Label::kNear);
1163 // Convert the entry to a string or null if it isn't a property
1164 // anymore. If the property has been removed while iterating, we
1166 __ Push(rcx); // Enumerable.
1167 __ Push(rbx); // Current entry.
1168 __ CallRuntime(Runtime::kForInFilter, 2);
1169 PrepareForBailoutForId(stmt->FilterId(), TOS_REG);
1170 __ CompareRoot(rax, Heap::kUndefinedValueRootIndex);
1171 __ j(equal, loop_statement.continue_label());
1174 // Update the 'each' property or variable from the possibly filtered
1175 // entry in register rbx.
1176 __ bind(&update_each);
1177 __ movp(result_register(), rbx);
1178 // Perform the assignment as if via '='.
1179 { EffectContext context(this);
1180 EmitAssignment(stmt->each(), stmt->EachFeedbackSlot());
1181 PrepareForBailoutForId(stmt->AssignmentId(), NO_REGISTERS);
1184 // Generate code for the body of the loop.
1185 Visit(stmt->body());
1187 // Generate code for going to the next element by incrementing the
1188 // index (smi) stored on top of the stack.
1189 __ bind(loop_statement.continue_label());
1190 __ SmiAddConstant(Operand(rsp, 0 * kPointerSize), Smi::FromInt(1));
1192 EmitBackEdgeBookkeeping(stmt, &loop);
1195 // Remove the pointers stored on the stack.
1196 __ bind(loop_statement.break_label());
1197 __ addp(rsp, Immediate(5 * kPointerSize));
1199 // Exit and decrement the loop depth.
1200 PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
1202 decrement_loop_depth();
1206 void FullCodeGenerator::EmitNewClosure(Handle<SharedFunctionInfo> info,
1208 // Use the fast case closure allocation code that allocates in new
1209 // space for nested functions that don't need literals cloning. If
1210 // we're running with the --always-opt or the --prepare-always-opt
1211 // flag, we need to use the runtime function so that the new function
1212 // we are creating here gets a chance to have its code optimized and
1213 // doesn't just get a copy of the existing unoptimized code.
1214 if (!FLAG_always_opt &&
1215 !FLAG_prepare_always_opt &&
1217 scope()->is_function_scope() &&
1218 info->num_literals() == 0) {
1219 FastNewClosureStub stub(isolate(), info->language_mode(), info->kind());
1226 ? isolate()->factory()->true_value()
1227 : isolate()->factory()->false_value());
1228 __ CallRuntime(Runtime::kNewClosure, 3);
1230 context()->Plug(rax);
1234 void FullCodeGenerator::EmitSetHomeObjectIfNeeded(Expression* initializer,
1236 FeedbackVectorICSlot slot) {
1237 if (NeedsHomeObject(initializer)) {
1238 __ movp(StoreDescriptor::ReceiverRegister(), Operand(rsp, 0));
1239 __ Move(StoreDescriptor::NameRegister(),
1240 isolate()->factory()->home_object_symbol());
1241 __ movp(StoreDescriptor::ValueRegister(),
1242 Operand(rsp, offset * kPointerSize));
1243 if (FLAG_vector_stores) EmitLoadStoreICSlot(slot);
1249 void FullCodeGenerator::EmitLoadGlobalCheckExtensions(VariableProxy* proxy,
1250 TypeofMode typeof_mode,
1252 Register context = rsi;
1253 Register temp = rdx;
1257 if (s->num_heap_slots() > 0) {
1258 if (s->calls_sloppy_eval()) {
1259 // Check that extension is NULL.
1260 __ cmpp(ContextOperand(context, Context::EXTENSION_INDEX),
1262 __ j(not_equal, slow);
1264 // Load next context in chain.
1265 __ movp(temp, ContextOperand(context, Context::PREVIOUS_INDEX));
1266 // Walk the rest of the chain without clobbering rsi.
1269 // If no outer scope calls eval, we do not need to check more
1270 // context extensions. If we have reached an eval scope, we check
1271 // all extensions from this point.
1272 if (!s->outer_scope_calls_sloppy_eval() || s->is_eval_scope()) break;
1273 s = s->outer_scope();
1276 if (s != NULL && s->is_eval_scope()) {
1277 // Loop up the context chain. There is no frame effect so it is
1278 // safe to use raw labels here.
1280 if (!context.is(temp)) {
1281 __ movp(temp, context);
1283 // Load map for comparison into register, outside loop.
1284 __ LoadRoot(kScratchRegister, Heap::kNativeContextMapRootIndex);
1286 // Terminate at native context.
1287 __ cmpp(kScratchRegister, FieldOperand(temp, HeapObject::kMapOffset));
1288 __ j(equal, &fast, Label::kNear);
1289 // Check that extension is NULL.
1290 __ cmpp(ContextOperand(temp, Context::EXTENSION_INDEX), Immediate(0));
1291 __ j(not_equal, slow);
1292 // Load next context in chain.
1293 __ movp(temp, ContextOperand(temp, Context::PREVIOUS_INDEX));
1298 // All extension objects were empty and it is safe to use a normal global
1300 EmitGlobalVariableLoad(proxy, typeof_mode);
1304 MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var,
1306 DCHECK(var->IsContextSlot());
1307 Register context = rsi;
1308 Register temp = rbx;
1310 for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) {
1311 if (s->num_heap_slots() > 0) {
1312 if (s->calls_sloppy_eval()) {
1313 // Check that extension is NULL.
1314 __ cmpp(ContextOperand(context, Context::EXTENSION_INDEX),
1316 __ j(not_equal, slow);
1318 __ movp(temp, ContextOperand(context, Context::PREVIOUS_INDEX));
1319 // Walk the rest of the chain without clobbering rsi.
1323 // Check that last extension is NULL.
1324 __ cmpp(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0));
1325 __ j(not_equal, slow);
1327 // This function is used only for loads, not stores, so it's safe to
1328 // return an rsi-based operand (the write barrier cannot be allowed to
1329 // destroy the rsi register).
1330 return ContextOperand(context, var->index());
1334 void FullCodeGenerator::EmitDynamicLookupFastCase(VariableProxy* proxy,
1335 TypeofMode typeof_mode,
1336 Label* slow, Label* done) {
1337 // Generate fast-case code for variables that might be shadowed by
1338 // eval-introduced variables. Eval is used a lot without
1339 // introducing variables. In those cases, we do not want to
1340 // perform a runtime call for all variables in the scope
1341 // containing the eval.
1342 Variable* var = proxy->var();
1343 if (var->mode() == DYNAMIC_GLOBAL) {
1344 EmitLoadGlobalCheckExtensions(proxy, typeof_mode, slow);
1346 } else if (var->mode() == DYNAMIC_LOCAL) {
1347 Variable* local = var->local_if_not_shadowed();
1348 __ movp(rax, ContextSlotOperandCheckExtensions(local, slow));
1349 if (local->mode() == LET || local->mode() == CONST ||
1350 local->mode() == CONST_LEGACY) {
1351 __ CompareRoot(rax, Heap::kTheHoleValueRootIndex);
1352 __ j(not_equal, done);
1353 if (local->mode() == CONST_LEGACY) {
1354 __ LoadRoot(rax, Heap::kUndefinedValueRootIndex);
1355 } else { // LET || CONST
1356 __ Push(var->name());
1357 __ CallRuntime(Runtime::kThrowReferenceError, 1);
1365 void FullCodeGenerator::EmitGlobalVariableLoad(VariableProxy* proxy,
1366 TypeofMode typeof_mode) {
1367 Variable* var = proxy->var();
1368 DCHECK(var->IsUnallocatedOrGlobalSlot() ||
1369 (var->IsLookupSlot() && var->mode() == DYNAMIC_GLOBAL));
1370 if (var->IsGlobalSlot()) {
1371 DCHECK(var->index() > 0);
1372 DCHECK(var->IsStaticGlobalObjectProperty());
1373 int const slot = var->index();
1374 int const depth = scope()->ContextChainLength(var->scope());
1375 if (depth <= LoadGlobalViaContextStub::kMaximumDepth) {
1376 __ Set(LoadGlobalViaContextDescriptor::SlotRegister(), slot);
1377 LoadGlobalViaContextStub stub(isolate(), depth);
1380 __ Push(Smi::FromInt(slot));
1381 __ CallRuntime(Runtime::kLoadGlobalViaContext, 1);
1385 __ Move(LoadDescriptor::NameRegister(), var->name());
1386 __ movp(LoadDescriptor::ReceiverRegister(), GlobalObjectOperand());
1387 __ Move(LoadDescriptor::SlotRegister(),
1388 SmiFromSlot(proxy->VariableFeedbackSlot()));
1389 CallLoadIC(typeof_mode);
1394 void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy,
1395 TypeofMode typeof_mode) {
1396 // Record position before possible IC call.
1397 SetExpressionPosition(proxy);
1398 PrepareForBailoutForId(proxy->BeforeId(), NO_REGISTERS);
1399 Variable* var = proxy->var();
1401 // Three cases: global variables, lookup variables, and all other types of
1403 switch (var->location()) {
1404 case VariableLocation::GLOBAL:
1405 case VariableLocation::UNALLOCATED: {
1406 Comment cmnt(masm_, "[ Global variable");
1407 EmitGlobalVariableLoad(proxy, typeof_mode);
1408 context()->Plug(rax);
1412 case VariableLocation::PARAMETER:
1413 case VariableLocation::LOCAL:
1414 case VariableLocation::CONTEXT: {
1415 DCHECK_EQ(NOT_INSIDE_TYPEOF, typeof_mode);
1416 Comment cmnt(masm_, var->IsContextSlot() ? "[ Context slot"
1418 if (var->binding_needs_init()) {
1419 // var->scope() may be NULL when the proxy is located in eval code and
1420 // refers to a potential outside binding. Currently those bindings are
1421 // always looked up dynamically, i.e. in that case
1422 // var->location() == LOOKUP.
1424 DCHECK(var->scope() != NULL);
1426 // Check if the binding really needs an initialization check. The check
1427 // can be skipped in the following situation: we have a LET or CONST
1428 // binding in harmony mode, both the Variable and the VariableProxy have
1429 // the same declaration scope (i.e. they are both in global code, in the
1430 // same function or in the same eval code) and the VariableProxy is in
1431 // the source physically located after the initializer of the variable.
1433 // We cannot skip any initialization checks for CONST in non-harmony
1434 // mode because const variables may be declared but never initialized:
1435 // if (false) { const x; }; var y = x;
1437 // The condition on the declaration scopes is a conservative check for
1438 // nested functions that access a binding and are called before the
1439 // binding is initialized:
1440 // function() { f(); let x = 1; function f() { x = 2; } }
1442 bool skip_init_check;
1443 if (var->scope()->DeclarationScope() != scope()->DeclarationScope()) {
1444 skip_init_check = false;
1445 } else if (var->is_this()) {
1446 CHECK(info_->function() != nullptr &&
1447 (info_->function()->kind() & kSubclassConstructor) != 0);
1448 // TODO(dslomov): implement 'this' hole check elimination.
1449 skip_init_check = false;
1451 // Check that we always have valid source position.
1452 DCHECK(var->initializer_position() != RelocInfo::kNoPosition);
1453 DCHECK(proxy->position() != RelocInfo::kNoPosition);
1454 skip_init_check = var->mode() != CONST_LEGACY &&
1455 var->initializer_position() < proxy->position();
1458 if (!skip_init_check) {
1459 // Let and const need a read barrier.
1462 __ CompareRoot(rax, Heap::kTheHoleValueRootIndex);
1463 __ j(not_equal, &done, Label::kNear);
1464 if (var->mode() == LET || var->mode() == CONST) {
1465 // Throw a reference error when using an uninitialized let/const
1466 // binding in harmony mode.
1467 __ Push(var->name());
1468 __ CallRuntime(Runtime::kThrowReferenceError, 1);
1470 // Uninitalized const bindings outside of harmony mode are unholed.
1471 DCHECK(var->mode() == CONST_LEGACY);
1472 __ LoadRoot(rax, Heap::kUndefinedValueRootIndex);
1475 context()->Plug(rax);
1479 context()->Plug(var);
1483 case VariableLocation::LOOKUP: {
1484 Comment cmnt(masm_, "[ Lookup slot");
1486 // Generate code for loading from variables potentially shadowed
1487 // by eval-introduced variables.
1488 EmitDynamicLookupFastCase(proxy, typeof_mode, &slow, &done);
1490 __ Push(rsi); // Context.
1491 __ Push(var->name());
1492 Runtime::FunctionId function_id =
1493 typeof_mode == NOT_INSIDE_TYPEOF
1494 ? Runtime::kLoadLookupSlot
1495 : Runtime::kLoadLookupSlotNoReferenceError;
1496 __ CallRuntime(function_id, 2);
1498 context()->Plug(rax);
1505 void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) {
1506 Comment cmnt(masm_, "[ RegExpLiteral");
1508 // Registers will be used as follows:
1509 // rdi = JS function.
1510 // rcx = literals array.
1511 // rbx = regexp literal.
1512 // rax = regexp literal clone.
1513 __ movp(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
1514 __ movp(rcx, FieldOperand(rdi, JSFunction::kLiteralsOffset));
1515 int literal_offset =
1516 FixedArray::kHeaderSize + expr->literal_index() * kPointerSize;
1517 __ movp(rbx, FieldOperand(rcx, literal_offset));
1518 __ CompareRoot(rbx, Heap::kUndefinedValueRootIndex);
1519 __ j(not_equal, &materialized, Label::kNear);
1521 // Create regexp literal using runtime function
1522 // Result will be in rax.
1524 __ Push(Smi::FromInt(expr->literal_index()));
1525 __ Push(expr->pattern());
1526 __ Push(expr->flags());
1527 __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
1530 __ bind(&materialized);
1531 int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
1532 Label allocated, runtime_allocate;
1533 __ Allocate(size, rax, rcx, rdx, &runtime_allocate, TAG_OBJECT);
1536 __ bind(&runtime_allocate);
1538 __ Push(Smi::FromInt(size));
1539 __ CallRuntime(Runtime::kAllocateInNewSpace, 1);
1542 __ bind(&allocated);
1543 // Copy the content into the newly allocated memory.
1544 // (Unroll copy loop once for better throughput).
1545 for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) {
1546 __ movp(rdx, FieldOperand(rbx, i));
1547 __ movp(rcx, FieldOperand(rbx, i + kPointerSize));
1548 __ movp(FieldOperand(rax, i), rdx);
1549 __ movp(FieldOperand(rax, i + kPointerSize), rcx);
1551 if ((size % (2 * kPointerSize)) != 0) {
1552 __ movp(rdx, FieldOperand(rbx, size - kPointerSize));
1553 __ movp(FieldOperand(rax, size - kPointerSize), rdx);
1555 context()->Plug(rax);
1559 void FullCodeGenerator::EmitAccessor(Expression* expression) {
1560 if (expression == NULL) {
1561 __ PushRoot(Heap::kNullValueRootIndex);
1563 VisitForStackValue(expression);
1568 void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) {
1569 Comment cmnt(masm_, "[ ObjectLiteral");
1571 Handle<FixedArray> constant_properties = expr->constant_properties();
1572 int flags = expr->ComputeFlags();
1573 if (MustCreateObjectLiteralWithRuntime(expr)) {
1574 __ movp(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
1575 __ Push(FieldOperand(rdi, JSFunction::kLiteralsOffset));
1576 __ Push(Smi::FromInt(expr->literal_index()));
1577 __ Push(constant_properties);
1578 __ Push(Smi::FromInt(flags));
1579 __ CallRuntime(Runtime::kCreateObjectLiteral, 4);
1581 __ movp(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
1582 __ movp(rax, FieldOperand(rdi, JSFunction::kLiteralsOffset));
1583 __ Move(rbx, Smi::FromInt(expr->literal_index()));
1584 __ Move(rcx, constant_properties);
1585 __ Move(rdx, Smi::FromInt(flags));
1586 FastCloneShallowObjectStub stub(isolate(), expr->properties_count());
1589 PrepareForBailoutForId(expr->CreateLiteralId(), TOS_REG);
1591 // If result_saved is true the result is on top of the stack. If
1592 // result_saved is false the result is in rax.
1593 bool result_saved = false;
1595 AccessorTable accessor_table(zone());
1596 int property_index = 0;
1597 // store_slot_index points to the vector IC slot for the next store IC used.
1598 // ObjectLiteral::ComputeFeedbackRequirements controls the allocation of slots
1599 // and must be updated if the number of store ICs emitted here changes.
1600 int store_slot_index = 0;
1601 for (; property_index < expr->properties()->length(); property_index++) {
1602 ObjectLiteral::Property* property = expr->properties()->at(property_index);
1603 if (property->is_computed_name()) break;
1604 if (property->IsCompileTimeValue()) continue;
1606 Literal* key = property->key()->AsLiteral();
1607 Expression* value = property->value();
1608 if (!result_saved) {
1609 __ Push(rax); // Save result on the stack
1610 result_saved = true;
1612 switch (property->kind()) {
1613 case ObjectLiteral::Property::CONSTANT:
1615 case ObjectLiteral::Property::MATERIALIZED_LITERAL:
1616 DCHECK(!CompileTimeValue::IsCompileTimeValue(value));
1618 case ObjectLiteral::Property::COMPUTED:
1619 // It is safe to use [[Put]] here because the boilerplate already
1620 // contains computed properties with an uninitialized value.
1621 if (key->value()->IsInternalizedString()) {
1622 if (property->emit_store()) {
1623 VisitForAccumulatorValue(value);
1624 DCHECK(StoreDescriptor::ValueRegister().is(rax));
1625 __ Move(StoreDescriptor::NameRegister(), key->value());
1626 __ movp(StoreDescriptor::ReceiverRegister(), Operand(rsp, 0));
1627 if (FLAG_vector_stores) {
1628 EmitLoadStoreICSlot(expr->GetNthSlot(store_slot_index++));
1631 CallStoreIC(key->LiteralFeedbackId());
1633 PrepareForBailoutForId(key->id(), NO_REGISTERS);
1635 if (NeedsHomeObject(value)) {
1636 __ movp(StoreDescriptor::ReceiverRegister(), rax);
1637 __ Move(StoreDescriptor::NameRegister(),
1638 isolate()->factory()->home_object_symbol());
1639 __ movp(StoreDescriptor::ValueRegister(), Operand(rsp, 0));
1640 if (FLAG_vector_stores) {
1641 EmitLoadStoreICSlot(expr->GetNthSlot(store_slot_index++));
1646 VisitForEffect(value);
1650 __ Push(Operand(rsp, 0)); // Duplicate receiver.
1651 VisitForStackValue(key);
1652 VisitForStackValue(value);
1653 if (property->emit_store()) {
1654 EmitSetHomeObjectIfNeeded(
1655 value, 2, expr->SlotForHomeObject(value, &store_slot_index));
1656 __ Push(Smi::FromInt(SLOPPY)); // Language mode
1657 __ CallRuntime(Runtime::kSetProperty, 4);
1662 case ObjectLiteral::Property::PROTOTYPE:
1663 __ Push(Operand(rsp, 0)); // Duplicate receiver.
1664 VisitForStackValue(value);
1665 DCHECK(property->emit_store());
1666 __ CallRuntime(Runtime::kInternalSetPrototype, 2);
1668 case ObjectLiteral::Property::GETTER:
1669 if (property->emit_store()) {
1670 accessor_table.lookup(key)->second->getter = value;
1673 case ObjectLiteral::Property::SETTER:
1674 if (property->emit_store()) {
1675 accessor_table.lookup(key)->second->setter = value;
1681 // Emit code to define accessors, using only a single call to the runtime for
1682 // each pair of corresponding getters and setters.
1683 for (AccessorTable::Iterator it = accessor_table.begin();
1684 it != accessor_table.end();
1686 __ Push(Operand(rsp, 0)); // Duplicate receiver.
1687 VisitForStackValue(it->first);
1688 EmitAccessor(it->second->getter);
1689 EmitSetHomeObjectIfNeeded(
1690 it->second->getter, 2,
1691 expr->SlotForHomeObject(it->second->getter, &store_slot_index));
1692 EmitAccessor(it->second->setter);
1693 EmitSetHomeObjectIfNeeded(
1694 it->second->setter, 3,
1695 expr->SlotForHomeObject(it->second->setter, &store_slot_index));
1696 __ Push(Smi::FromInt(NONE));
1697 __ CallRuntime(Runtime::kDefineAccessorPropertyUnchecked, 5);
1700 // Object literals have two parts. The "static" part on the left contains no
1701 // computed property names, and so we can compute its map ahead of time; see
1702 // runtime.cc::CreateObjectLiteralBoilerplate. The second "dynamic" part
1703 // starts with the first computed property name, and continues with all
1704 // properties to its right. All the code from above initializes the static
1705 // component of the object literal, and arranges for the map of the result to
1706 // reflect the static order in which the keys appear. For the dynamic
1707 // properties, we compile them into a series of "SetOwnProperty" runtime
1708 // calls. This will preserve insertion order.
1709 for (; property_index < expr->properties()->length(); property_index++) {
1710 ObjectLiteral::Property* property = expr->properties()->at(property_index);
1712 Expression* value = property->value();
1713 if (!result_saved) {
1714 __ Push(rax); // Save result on the stack
1715 result_saved = true;
1718 __ Push(Operand(rsp, 0)); // Duplicate receiver.
1720 if (property->kind() == ObjectLiteral::Property::PROTOTYPE) {
1721 DCHECK(!property->is_computed_name());
1722 VisitForStackValue(value);
1723 DCHECK(property->emit_store());
1724 __ CallRuntime(Runtime::kInternalSetPrototype, 2);
1726 EmitPropertyKey(property, expr->GetIdForProperty(property_index));
1727 VisitForStackValue(value);
1728 EmitSetHomeObjectIfNeeded(
1729 value, 2, expr->SlotForHomeObject(value, &store_slot_index));
1731 switch (property->kind()) {
1732 case ObjectLiteral::Property::CONSTANT:
1733 case ObjectLiteral::Property::MATERIALIZED_LITERAL:
1734 case ObjectLiteral::Property::COMPUTED:
1735 if (property->emit_store()) {
1736 __ Push(Smi::FromInt(NONE));
1737 __ CallRuntime(Runtime::kDefineDataPropertyUnchecked, 4);
1743 case ObjectLiteral::Property::PROTOTYPE:
1747 case ObjectLiteral::Property::GETTER:
1748 __ Push(Smi::FromInt(NONE));
1749 __ CallRuntime(Runtime::kDefineGetterPropertyUnchecked, 4);
1752 case ObjectLiteral::Property::SETTER:
1753 __ Push(Smi::FromInt(NONE));
1754 __ CallRuntime(Runtime::kDefineSetterPropertyUnchecked, 4);
1760 if (expr->has_function()) {
1761 DCHECK(result_saved);
1762 __ Push(Operand(rsp, 0));
1763 __ CallRuntime(Runtime::kToFastProperties, 1);
1767 context()->PlugTOS();
1769 context()->Plug(rax);
1772 // Verify that compilation exactly consumed the number of store ic slots that
1773 // the ObjectLiteral node had to offer.
1774 DCHECK(!FLAG_vector_stores || store_slot_index == expr->slot_count());
1778 void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) {
1779 Comment cmnt(masm_, "[ ArrayLiteral");
1781 expr->BuildConstantElements(isolate());
1782 Handle<FixedArray> constant_elements = expr->constant_elements();
1783 bool has_constant_fast_elements =
1784 IsFastObjectElementsKind(expr->constant_elements_kind());
1786 AllocationSiteMode allocation_site_mode = TRACK_ALLOCATION_SITE;
1787 if (has_constant_fast_elements && !FLAG_allocation_site_pretenuring) {
1788 // If the only customer of allocation sites is transitioning, then
1789 // we can turn it off if we don't have anywhere else to transition to.
1790 allocation_site_mode = DONT_TRACK_ALLOCATION_SITE;
1793 if (MustCreateArrayLiteralWithRuntime(expr)) {
1794 __ movp(rbx, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
1795 __ Push(FieldOperand(rbx, JSFunction::kLiteralsOffset));
1796 __ Push(Smi::FromInt(expr->literal_index()));
1797 __ Push(constant_elements);
1798 __ Push(Smi::FromInt(expr->ComputeFlags()));
1799 __ CallRuntime(Runtime::kCreateArrayLiteral, 4);
1801 __ movp(rbx, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
1802 __ movp(rax, FieldOperand(rbx, JSFunction::kLiteralsOffset));
1803 __ Move(rbx, Smi::FromInt(expr->literal_index()));
1804 __ Move(rcx, constant_elements);
1805 FastCloneShallowArrayStub stub(isolate(), allocation_site_mode);
1808 PrepareForBailoutForId(expr->CreateLiteralId(), TOS_REG);
1810 bool result_saved = false; // Is the result saved to the stack?
1811 ZoneList<Expression*>* subexprs = expr->values();
1812 int length = subexprs->length();
1814 // Emit code to evaluate all the non-constant subexpressions and to store
1815 // them into the newly cloned array.
1816 int array_index = 0;
1817 for (; array_index < length; array_index++) {
1818 Expression* subexpr = subexprs->at(array_index);
1819 if (subexpr->IsSpread()) break;
1821 // If the subexpression is a literal or a simple materialized literal it
1822 // is already set in the cloned array.
1823 if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
1825 if (!result_saved) {
1826 __ Push(rax); // array literal
1827 __ Push(Smi::FromInt(expr->literal_index()));
1828 result_saved = true;
1830 VisitForAccumulatorValue(subexpr);
1832 if (has_constant_fast_elements) {
1833 // Fast-case array literal with ElementsKind of FAST_*_ELEMENTS, they
1834 // cannot transition and don't need to call the runtime stub.
1835 int offset = FixedArray::kHeaderSize + (array_index * kPointerSize);
1836 __ movp(rbx, Operand(rsp, kPointerSize)); // Copy of array literal.
1837 __ movp(rbx, FieldOperand(rbx, JSObject::kElementsOffset));
1838 // Store the subexpression value in the array's elements.
1839 __ movp(FieldOperand(rbx, offset), result_register());
1840 // Update the write barrier for the array store.
1841 __ RecordWriteField(rbx, offset, result_register(), rcx,
1843 EMIT_REMEMBERED_SET,
1846 // Store the subexpression value in the array's elements.
1847 __ Move(rcx, Smi::FromInt(array_index));
1848 StoreArrayLiteralElementStub stub(isolate());
1852 PrepareForBailoutForId(expr->GetIdForElement(array_index), NO_REGISTERS);
1855 // In case the array literal contains spread expressions it has two parts. The
1856 // first part is the "static" array which has a literal index is handled
1857 // above. The second part is the part after the first spread expression
1858 // (inclusive) and these elements gets appended to the array. Note that the
1859 // number elements an iterable produces is unknown ahead of time.
1860 if (array_index < length && result_saved) {
1861 __ Drop(1); // literal index
1863 result_saved = false;
1865 for (; array_index < length; array_index++) {
1866 Expression* subexpr = subexprs->at(array_index);
1869 if (subexpr->IsSpread()) {
1870 VisitForStackValue(subexpr->AsSpread()->expression());
1871 __ InvokeBuiltin(Builtins::CONCAT_ITERABLE_TO_ARRAY, CALL_FUNCTION);
1873 VisitForStackValue(subexpr);
1874 __ CallRuntime(Runtime::kAppendElement, 2);
1877 PrepareForBailoutForId(expr->GetIdForElement(array_index), NO_REGISTERS);
1881 __ Drop(1); // literal index
1882 context()->PlugTOS();
1884 context()->Plug(rax);
1889 void FullCodeGenerator::VisitAssignment(Assignment* expr) {
1890 DCHECK(expr->target()->IsValidReferenceExpressionOrThis());
1892 Comment cmnt(masm_, "[ Assignment");
1893 SetExpressionPosition(expr, INSERT_BREAK);
1895 Property* property = expr->target()->AsProperty();
1896 LhsKind assign_type = Property::GetAssignType(property);
1898 // Evaluate LHS expression.
1899 switch (assign_type) {
1901 // Nothing to do here.
1903 case NAMED_PROPERTY:
1904 if (expr->is_compound()) {
1905 // We need the receiver both on the stack and in the register.
1906 VisitForStackValue(property->obj());
1907 __ movp(LoadDescriptor::ReceiverRegister(), Operand(rsp, 0));
1909 VisitForStackValue(property->obj());
1912 case NAMED_SUPER_PROPERTY:
1914 property->obj()->AsSuperPropertyReference()->this_var());
1915 VisitForAccumulatorValue(
1916 property->obj()->AsSuperPropertyReference()->home_object());
1917 __ Push(result_register());
1918 if (expr->is_compound()) {
1919 __ Push(MemOperand(rsp, kPointerSize));
1920 __ Push(result_register());
1923 case KEYED_SUPER_PROPERTY:
1925 property->obj()->AsSuperPropertyReference()->this_var());
1927 property->obj()->AsSuperPropertyReference()->home_object());
1928 VisitForAccumulatorValue(property->key());
1929 __ Push(result_register());
1930 if (expr->is_compound()) {
1931 __ Push(MemOperand(rsp, 2 * kPointerSize));
1932 __ Push(MemOperand(rsp, 2 * kPointerSize));
1933 __ Push(result_register());
1936 case KEYED_PROPERTY: {
1937 if (expr->is_compound()) {
1938 VisitForStackValue(property->obj());
1939 VisitForStackValue(property->key());
1940 __ movp(LoadDescriptor::ReceiverRegister(), Operand(rsp, kPointerSize));
1941 __ movp(LoadDescriptor::NameRegister(), Operand(rsp, 0));
1943 VisitForStackValue(property->obj());
1944 VisitForStackValue(property->key());
1950 // For compound assignments we need another deoptimization point after the
1951 // variable/property load.
1952 if (expr->is_compound()) {
1953 { AccumulatorValueContext context(this);
1954 switch (assign_type) {
1956 EmitVariableLoad(expr->target()->AsVariableProxy());
1957 PrepareForBailout(expr->target(), TOS_REG);
1959 case NAMED_PROPERTY:
1960 EmitNamedPropertyLoad(property);
1961 PrepareForBailoutForId(property->LoadId(), TOS_REG);
1963 case NAMED_SUPER_PROPERTY:
1964 EmitNamedSuperPropertyLoad(property);
1965 PrepareForBailoutForId(property->LoadId(), TOS_REG);
1967 case KEYED_SUPER_PROPERTY:
1968 EmitKeyedSuperPropertyLoad(property);
1969 PrepareForBailoutForId(property->LoadId(), TOS_REG);
1971 case KEYED_PROPERTY:
1972 EmitKeyedPropertyLoad(property);
1973 PrepareForBailoutForId(property->LoadId(), TOS_REG);
1978 Token::Value op = expr->binary_op();
1979 __ Push(rax); // Left operand goes on the stack.
1980 VisitForAccumulatorValue(expr->value());
1982 AccumulatorValueContext context(this);
1983 if (ShouldInlineSmiCase(op)) {
1984 EmitInlineSmiBinaryOp(expr->binary_operation(),
1989 EmitBinaryOp(expr->binary_operation(), op);
1991 // Deoptimization point in case the binary operation may have side effects.
1992 PrepareForBailout(expr->binary_operation(), TOS_REG);
1994 VisitForAccumulatorValue(expr->value());
1997 SetExpressionPosition(expr);
2000 switch (assign_type) {
2002 EmitVariableAssignment(expr->target()->AsVariableProxy()->var(),
2003 expr->op(), expr->AssignmentSlot());
2004 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
2005 context()->Plug(rax);
2007 case NAMED_PROPERTY:
2008 EmitNamedPropertyAssignment(expr);
2010 case NAMED_SUPER_PROPERTY:
2011 EmitNamedSuperPropertyStore(property);
2012 context()->Plug(rax);
2014 case KEYED_SUPER_PROPERTY:
2015 EmitKeyedSuperPropertyStore(property);
2016 context()->Plug(rax);
2018 case KEYED_PROPERTY:
2019 EmitKeyedPropertyAssignment(expr);
2025 void FullCodeGenerator::VisitYield(Yield* expr) {
2026 Comment cmnt(masm_, "[ Yield");
2027 SetExpressionPosition(expr);
2029 // Evaluate yielded value first; the initial iterator definition depends on
2030 // this. It stays on the stack while we update the iterator.
2031 VisitForStackValue(expr->expression());
2033 switch (expr->yield_kind()) {
2034 case Yield::kSuspend:
2035 // Pop value from top-of-stack slot; box result into result register.
2036 EmitCreateIteratorResult(false);
2037 __ Push(result_register());
2039 case Yield::kInitial: {
2040 Label suspend, continuation, post_runtime, resume;
2043 __ bind(&continuation);
2044 __ RecordGeneratorContinuation();
2048 VisitForAccumulatorValue(expr->generator_object());
2049 DCHECK(continuation.pos() > 0 && Smi::IsValid(continuation.pos()));
2050 __ Move(FieldOperand(rax, JSGeneratorObject::kContinuationOffset),
2051 Smi::FromInt(continuation.pos()));
2052 __ movp(FieldOperand(rax, JSGeneratorObject::kContextOffset), rsi);
2054 __ RecordWriteField(rax, JSGeneratorObject::kContextOffset, rcx, rdx,
2056 __ leap(rbx, Operand(rbp, StandardFrameConstants::kExpressionsOffset));
2058 __ j(equal, &post_runtime);
2059 __ Push(rax); // generator object
2060 __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1);
2061 __ movp(context_register(),
2062 Operand(rbp, StandardFrameConstants::kContextOffset));
2063 __ bind(&post_runtime);
2065 __ Pop(result_register());
2066 EmitReturnSequence();
2069 context()->Plug(result_register());
2073 case Yield::kFinal: {
2074 VisitForAccumulatorValue(expr->generator_object());
2075 __ Move(FieldOperand(result_register(),
2076 JSGeneratorObject::kContinuationOffset),
2077 Smi::FromInt(JSGeneratorObject::kGeneratorClosed));
2078 // Pop value from top-of-stack slot, box result into result register.
2079 EmitCreateIteratorResult(true);
2080 EmitUnwindBeforeReturn();
2081 EmitReturnSequence();
2085 case Yield::kDelegating: {
2086 VisitForStackValue(expr->generator_object());
2088 // Initial stack layout is as follows:
2089 // [sp + 1 * kPointerSize] iter
2090 // [sp + 0 * kPointerSize] g
2092 Label l_catch, l_try, l_suspend, l_continuation, l_resume;
2093 Label l_next, l_call, l_loop;
2094 Register load_receiver = LoadDescriptor::ReceiverRegister();
2095 Register load_name = LoadDescriptor::NameRegister();
2097 // Initial send value is undefined.
2098 __ LoadRoot(rax, Heap::kUndefinedValueRootIndex);
2101 // catch (e) { receiver = iter; f = 'throw'; arg = e; goto l_call; }
2103 __ LoadRoot(load_name, Heap::kthrow_stringRootIndex); // "throw"
2105 __ Push(Operand(rsp, 2 * kPointerSize)); // iter
2106 __ Push(rax); // exception
2109 // try { received = %yield result }
2110 // Shuffle the received result above a try handler and yield it without
2113 __ Pop(rax); // result
2114 int handler_index = NewHandlerTableEntry();
2115 EnterTryBlock(handler_index, &l_catch);
2116 const int try_block_size = TryCatch::kElementCount * kPointerSize;
2117 __ Push(rax); // result
2120 __ bind(&l_continuation);
2121 __ RecordGeneratorContinuation();
2124 __ bind(&l_suspend);
2125 const int generator_object_depth = kPointerSize + try_block_size;
2126 __ movp(rax, Operand(rsp, generator_object_depth));
2128 __ Push(Smi::FromInt(handler_index)); // handler-index
2129 DCHECK(l_continuation.pos() > 0 && Smi::IsValid(l_continuation.pos()));
2130 __ Move(FieldOperand(rax, JSGeneratorObject::kContinuationOffset),
2131 Smi::FromInt(l_continuation.pos()));
2132 __ movp(FieldOperand(rax, JSGeneratorObject::kContextOffset), rsi);
2134 __ RecordWriteField(rax, JSGeneratorObject::kContextOffset, rcx, rdx,
2136 __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 2);
2137 __ movp(context_register(),
2138 Operand(rbp, StandardFrameConstants::kContextOffset));
2139 __ Pop(rax); // result
2140 EmitReturnSequence();
2141 __ bind(&l_resume); // received in rax
2142 ExitTryBlock(handler_index);
2144 // receiver = iter; f = 'next'; arg = received;
2147 __ LoadRoot(load_name, Heap::knext_stringRootIndex);
2148 __ Push(load_name); // "next"
2149 __ Push(Operand(rsp, 2 * kPointerSize)); // iter
2150 __ Push(rax); // received
2152 // result = receiver[f](arg);
2154 __ movp(load_receiver, Operand(rsp, kPointerSize));
2155 __ Move(LoadDescriptor::SlotRegister(),
2156 SmiFromSlot(expr->KeyedLoadFeedbackSlot()));
2157 Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate(), SLOPPY).code();
2158 CallIC(ic, TypeFeedbackId::None());
2160 __ movp(Operand(rsp, 2 * kPointerSize), rdi);
2162 SetCallPosition(expr, 1);
2163 CallFunctionStub stub(isolate(), 1, CALL_AS_METHOD);
2166 __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
2167 __ Drop(1); // The function is still on the stack; drop it.
2169 // if (!result.done) goto l_try;
2171 __ Move(load_receiver, rax);
2172 __ Push(load_receiver); // save result
2173 __ LoadRoot(load_name, Heap::kdone_stringRootIndex); // "done"
2174 __ Move(LoadDescriptor::SlotRegister(),
2175 SmiFromSlot(expr->DoneFeedbackSlot()));
2176 CallLoadIC(NOT_INSIDE_TYPEOF); // rax=result.done
2177 Handle<Code> bool_ic = ToBooleanStub::GetUninitialized(isolate());
2179 __ testp(result_register(), result_register());
2183 __ Pop(load_receiver); // result
2184 __ LoadRoot(load_name, Heap::kvalue_stringRootIndex); // "value"
2185 __ Move(LoadDescriptor::SlotRegister(),
2186 SmiFromSlot(expr->ValueFeedbackSlot()));
2187 CallLoadIC(NOT_INSIDE_TYPEOF); // result.value in rax
2188 context()->DropAndPlug(2, rax); // drop iter and g
2195 void FullCodeGenerator::EmitGeneratorResume(Expression *generator,
2197 JSGeneratorObject::ResumeMode resume_mode) {
2198 // The value stays in rax, and is ultimately read by the resumed generator, as
2199 // if CallRuntime(Runtime::kSuspendJSGeneratorObject) returned it. Or it
2200 // is read to throw the value when the resumed generator is already closed.
2201 // rbx will hold the generator object until the activation has been resumed.
2202 VisitForStackValue(generator);
2203 VisitForAccumulatorValue(value);
2206 // Load suspended function and context.
2207 __ movp(rsi, FieldOperand(rbx, JSGeneratorObject::kContextOffset));
2208 __ movp(rdi, FieldOperand(rbx, JSGeneratorObject::kFunctionOffset));
2211 __ Push(FieldOperand(rbx, JSGeneratorObject::kReceiverOffset));
2213 // Push holes for arguments to generator function.
2214 __ movp(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
2215 __ LoadSharedFunctionInfoSpecialField(rdx, rdx,
2216 SharedFunctionInfo::kFormalParameterCountOffset);
2217 __ LoadRoot(rcx, Heap::kTheHoleValueRootIndex);
2218 Label push_argument_holes, push_frame;
2219 __ bind(&push_argument_holes);
2220 __ subp(rdx, Immediate(1));
2221 __ j(carry, &push_frame);
2223 __ jmp(&push_argument_holes);
2225 // Enter a new JavaScript frame, and initialize its slots as they were when
2226 // the generator was suspended.
2227 Label resume_frame, done;
2228 __ bind(&push_frame);
2229 __ call(&resume_frame);
2231 __ bind(&resume_frame);
2232 __ pushq(rbp); // Caller's frame pointer.
2234 __ Push(rsi); // Callee's context.
2235 __ Push(rdi); // Callee's JS Function.
2237 // Load the operand stack size.
2238 __ movp(rdx, FieldOperand(rbx, JSGeneratorObject::kOperandStackOffset));
2239 __ movp(rdx, FieldOperand(rdx, FixedArray::kLengthOffset));
2240 __ SmiToInteger32(rdx, rdx);
2242 // If we are sending a value and there is no operand stack, we can jump back
2244 if (resume_mode == JSGeneratorObject::NEXT) {
2246 __ cmpp(rdx, Immediate(0));
2247 __ j(not_zero, &slow_resume);
2248 __ movp(rdx, FieldOperand(rdi, JSFunction::kCodeEntryOffset));
2249 __ SmiToInteger64(rcx,
2250 FieldOperand(rbx, JSGeneratorObject::kContinuationOffset));
2252 __ Move(FieldOperand(rbx, JSGeneratorObject::kContinuationOffset),
2253 Smi::FromInt(JSGeneratorObject::kGeneratorExecuting));
2255 __ bind(&slow_resume);
2258 // Otherwise, we push holes for the operand stack and call the runtime to fix
2259 // up the stack and the handlers.
2260 Label push_operand_holes, call_resume;
2261 __ bind(&push_operand_holes);
2262 __ subp(rdx, Immediate(1));
2263 __ j(carry, &call_resume);
2265 __ jmp(&push_operand_holes);
2266 __ bind(&call_resume);
2268 __ Push(result_register());
2269 __ Push(Smi::FromInt(resume_mode));
2270 __ CallRuntime(Runtime::kResumeJSGeneratorObject, 3);
2271 // Not reached: the runtime call returns elsewhere.
2272 __ Abort(kGeneratorFailedToResume);
2275 context()->Plug(result_register());
2279 void FullCodeGenerator::EmitCreateIteratorResult(bool done) {
2283 const int instance_size = 5 * kPointerSize;
2284 DCHECK_EQ(isolate()->native_context()->iterator_result_map()->instance_size(),
2287 __ Allocate(instance_size, rax, rcx, rdx, &gc_required, TAG_OBJECT);
2290 __ bind(&gc_required);
2291 __ Push(Smi::FromInt(instance_size));
2292 __ CallRuntime(Runtime::kAllocateInNewSpace, 1);
2293 __ movp(context_register(),
2294 Operand(rbp, StandardFrameConstants::kContextOffset));
2296 __ bind(&allocated);
2297 __ movp(rbx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
2298 __ movp(rbx, FieldOperand(rbx, GlobalObject::kNativeContextOffset));
2299 __ movp(rbx, ContextOperand(rbx, Context::ITERATOR_RESULT_MAP_INDEX));
2301 __ Move(rdx, isolate()->factory()->ToBoolean(done));
2302 __ movp(FieldOperand(rax, HeapObject::kMapOffset), rbx);
2303 __ Move(FieldOperand(rax, JSObject::kPropertiesOffset),
2304 isolate()->factory()->empty_fixed_array());
2305 __ Move(FieldOperand(rax, JSObject::kElementsOffset),
2306 isolate()->factory()->empty_fixed_array());
2307 __ movp(FieldOperand(rax, JSGeneratorObject::kResultValuePropertyOffset),
2309 __ movp(FieldOperand(rax, JSGeneratorObject::kResultDonePropertyOffset),
2312 // Only the value field needs a write barrier, as the other values are in the
2314 __ RecordWriteField(rax, JSGeneratorObject::kResultValuePropertyOffset,
2315 rcx, rdx, kDontSaveFPRegs);
2319 void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) {
2320 SetExpressionPosition(prop);
2321 Literal* key = prop->key()->AsLiteral();
2322 DCHECK(!prop->IsSuperAccess());
2324 __ Move(LoadDescriptor::NameRegister(), key->value());
2325 __ Move(LoadDescriptor::SlotRegister(),
2326 SmiFromSlot(prop->PropertyFeedbackSlot()));
2327 CallLoadIC(NOT_INSIDE_TYPEOF, language_mode());
2331 void FullCodeGenerator::EmitNamedSuperPropertyLoad(Property* prop) {
2332 // Stack: receiver, home_object
2333 SetExpressionPosition(prop);
2334 Literal* key = prop->key()->AsLiteral();
2335 DCHECK(!key->value()->IsSmi());
2336 DCHECK(prop->IsSuperAccess());
2338 __ Push(key->value());
2339 __ Push(Smi::FromInt(language_mode()));
2340 __ CallRuntime(Runtime::kLoadFromSuper, 4);
2344 void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) {
2345 SetExpressionPosition(prop);
2346 Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate(), language_mode()).code();
2347 __ Move(LoadDescriptor::SlotRegister(),
2348 SmiFromSlot(prop->PropertyFeedbackSlot()));
2353 void FullCodeGenerator::EmitKeyedSuperPropertyLoad(Property* prop) {
2354 // Stack: receiver, home_object, key.
2355 SetExpressionPosition(prop);
2356 __ Push(Smi::FromInt(language_mode()));
2357 __ CallRuntime(Runtime::kLoadKeyedFromSuper, 4);
2361 void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr,
2364 Expression* right) {
2365 // Do combined smi check of the operands. Left operand is on the
2366 // stack (popped into rdx). Right operand is in rax but moved into
2367 // rcx to make the shifts easier.
2368 Label done, stub_call, smi_case;
2372 JumpPatchSite patch_site(masm_);
2373 patch_site.EmitJumpIfSmi(rax, &smi_case, Label::kNear);
2375 __ bind(&stub_call);
2378 CodeFactory::BinaryOpIC(isolate(), op, strength(language_mode())).code();
2379 CallIC(code, expr->BinaryOperationFeedbackId());
2380 patch_site.EmitPatchInfo();
2381 __ jmp(&done, Label::kNear);
2386 __ SmiShiftArithmeticRight(rax, rdx, rcx);
2389 __ SmiShiftLeft(rax, rdx, rcx, &stub_call);
2392 __ SmiShiftLogicalRight(rax, rdx, rcx, &stub_call);
2395 __ SmiAdd(rax, rdx, rcx, &stub_call);
2398 __ SmiSub(rax, rdx, rcx, &stub_call);
2401 __ SmiMul(rax, rdx, rcx, &stub_call);
2404 __ SmiOr(rax, rdx, rcx);
2406 case Token::BIT_AND:
2407 __ SmiAnd(rax, rdx, rcx);
2409 case Token::BIT_XOR:
2410 __ SmiXor(rax, rdx, rcx);
2418 context()->Plug(rax);
2422 void FullCodeGenerator::EmitClassDefineProperties(ClassLiteral* lit,
2423 int* used_store_slots) {
2424 // Constructor is in rax.
2425 DCHECK(lit != NULL);
2428 // No access check is needed here since the constructor is created by the
2430 Register scratch = rbx;
2431 __ movp(scratch, FieldOperand(rax, JSFunction::kPrototypeOrInitialMapOffset));
2434 for (int i = 0; i < lit->properties()->length(); i++) {
2435 ObjectLiteral::Property* property = lit->properties()->at(i);
2436 Expression* value = property->value();
2438 if (property->is_static()) {
2439 __ Push(Operand(rsp, kPointerSize)); // constructor
2441 __ Push(Operand(rsp, 0)); // prototype
2443 EmitPropertyKey(property, lit->GetIdForProperty(i));
2445 // The static prototype property is read only. We handle the non computed
2446 // property name case in the parser. Since this is the only case where we
2447 // need to check for an own read only property we special case this so we do
2448 // not need to do this for every property.
2449 if (property->is_static() && property->is_computed_name()) {
2450 __ CallRuntime(Runtime::kThrowIfStaticPrototype, 1);
2454 VisitForStackValue(value);
2455 EmitSetHomeObjectIfNeeded(value, 2,
2456 lit->SlotForHomeObject(value, used_store_slots));
2458 switch (property->kind()) {
2459 case ObjectLiteral::Property::CONSTANT:
2460 case ObjectLiteral::Property::MATERIALIZED_LITERAL:
2461 case ObjectLiteral::Property::PROTOTYPE:
2463 case ObjectLiteral::Property::COMPUTED:
2464 __ CallRuntime(Runtime::kDefineClassMethod, 3);
2467 case ObjectLiteral::Property::GETTER:
2468 __ Push(Smi::FromInt(DONT_ENUM));
2469 __ CallRuntime(Runtime::kDefineGetterPropertyUnchecked, 4);
2472 case ObjectLiteral::Property::SETTER:
2473 __ Push(Smi::FromInt(DONT_ENUM));
2474 __ CallRuntime(Runtime::kDefineSetterPropertyUnchecked, 4);
2482 // Set both the prototype and constructor to have fast properties, and also
2483 // freeze them in strong mode.
2484 __ CallRuntime(is_strong(language_mode())
2485 ? Runtime::kFinalizeClassDefinitionStrong
2486 : Runtime::kFinalizeClassDefinition,
2491 void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr, Token::Value op) {
2494 CodeFactory::BinaryOpIC(isolate(), op, strength(language_mode())).code();
2495 JumpPatchSite patch_site(masm_); // unbound, signals no inlined smi code.
2496 CallIC(code, expr->BinaryOperationFeedbackId());
2497 patch_site.EmitPatchInfo();
2498 context()->Plug(rax);
2502 void FullCodeGenerator::EmitAssignment(Expression* expr,
2503 FeedbackVectorICSlot slot) {
2504 DCHECK(expr->IsValidReferenceExpressionOrThis());
2506 Property* prop = expr->AsProperty();
2507 LhsKind assign_type = Property::GetAssignType(prop);
2509 switch (assign_type) {
2511 Variable* var = expr->AsVariableProxy()->var();
2512 EffectContext context(this);
2513 EmitVariableAssignment(var, Token::ASSIGN, slot);
2516 case NAMED_PROPERTY: {
2517 __ Push(rax); // Preserve value.
2518 VisitForAccumulatorValue(prop->obj());
2519 __ Move(StoreDescriptor::ReceiverRegister(), rax);
2520 __ Pop(StoreDescriptor::ValueRegister()); // Restore value.
2521 __ Move(StoreDescriptor::NameRegister(),
2522 prop->key()->AsLiteral()->value());
2523 if (FLAG_vector_stores) EmitLoadStoreICSlot(slot);
2527 case NAMED_SUPER_PROPERTY: {
2529 VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
2530 VisitForAccumulatorValue(
2531 prop->obj()->AsSuperPropertyReference()->home_object());
2532 // stack: value, this; rax: home_object
2533 Register scratch = rcx;
2534 Register scratch2 = rdx;
2535 __ Move(scratch, result_register()); // home_object
2536 __ movp(rax, MemOperand(rsp, kPointerSize)); // value
2537 __ movp(scratch2, MemOperand(rsp, 0)); // this
2538 __ movp(MemOperand(rsp, kPointerSize), scratch2); // this
2539 __ movp(MemOperand(rsp, 0), scratch); // home_object
2540 // stack: this, home_object; rax: value
2541 EmitNamedSuperPropertyStore(prop);
2544 case KEYED_SUPER_PROPERTY: {
2546 VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
2548 prop->obj()->AsSuperPropertyReference()->home_object());
2549 VisitForAccumulatorValue(prop->key());
2550 Register scratch = rcx;
2551 Register scratch2 = rdx;
2552 __ movp(scratch2, MemOperand(rsp, 2 * kPointerSize)); // value
2553 // stack: value, this, home_object; rax: key, rdx: value
2554 __ movp(scratch, MemOperand(rsp, kPointerSize)); // this
2555 __ movp(MemOperand(rsp, 2 * kPointerSize), scratch);
2556 __ movp(scratch, MemOperand(rsp, 0)); // home_object
2557 __ movp(MemOperand(rsp, kPointerSize), scratch);
2558 __ movp(MemOperand(rsp, 0), rax);
2559 __ Move(rax, scratch2);
2560 // stack: this, home_object, key; rax: value.
2561 EmitKeyedSuperPropertyStore(prop);
2564 case KEYED_PROPERTY: {
2565 __ Push(rax); // Preserve value.
2566 VisitForStackValue(prop->obj());
2567 VisitForAccumulatorValue(prop->key());
2568 __ Move(StoreDescriptor::NameRegister(), rax);
2569 __ Pop(StoreDescriptor::ReceiverRegister());
2570 __ Pop(StoreDescriptor::ValueRegister()); // Restore value.
2571 if (FLAG_vector_stores) EmitLoadStoreICSlot(slot);
2573 CodeFactory::KeyedStoreIC(isolate(), language_mode()).code();
2578 context()->Plug(rax);
2582 void FullCodeGenerator::EmitStoreToStackLocalOrContextSlot(
2583 Variable* var, MemOperand location) {
2584 __ movp(location, rax);
2585 if (var->IsContextSlot()) {
2587 __ RecordWriteContextSlot(
2588 rcx, Context::SlotOffset(var->index()), rdx, rbx, kDontSaveFPRegs);
2593 void FullCodeGenerator::EmitVariableAssignment(Variable* var, Token::Value op,
2594 FeedbackVectorICSlot slot) {
2595 if (var->IsUnallocated()) {
2596 // Global var, const, or let.
2597 __ Move(StoreDescriptor::NameRegister(), var->name());
2598 __ movp(StoreDescriptor::ReceiverRegister(), GlobalObjectOperand());
2599 if (FLAG_vector_stores) EmitLoadStoreICSlot(slot);
2602 } else if (var->IsGlobalSlot()) {
2603 // Global var, const, or let.
2604 DCHECK(var->index() > 0);
2605 DCHECK(var->IsStaticGlobalObjectProperty());
2606 int const slot = var->index();
2607 int const depth = scope()->ContextChainLength(var->scope());
2608 if (depth <= StoreGlobalViaContextStub::kMaximumDepth) {
2609 __ Set(StoreGlobalViaContextDescriptor::SlotRegister(), slot);
2610 DCHECK(StoreGlobalViaContextDescriptor::ValueRegister().is(rax));
2611 StoreGlobalViaContextStub stub(isolate(), depth, language_mode());
2614 __ Push(Smi::FromInt(slot));
2616 __ CallRuntime(is_strict(language_mode())
2617 ? Runtime::kStoreGlobalViaContext_Strict
2618 : Runtime::kStoreGlobalViaContext_Sloppy,
2622 } else if (var->mode() == LET && op != Token::INIT_LET) {
2623 // Non-initializing assignment to let variable needs a write barrier.
2624 DCHECK(!var->IsLookupSlot());
2625 DCHECK(var->IsStackAllocated() || var->IsContextSlot());
2627 MemOperand location = VarOperand(var, rcx);
2628 __ movp(rdx, location);
2629 __ CompareRoot(rdx, Heap::kTheHoleValueRootIndex);
2630 __ j(not_equal, &assign, Label::kNear);
2631 __ Push(var->name());
2632 __ CallRuntime(Runtime::kThrowReferenceError, 1);
2634 EmitStoreToStackLocalOrContextSlot(var, location);
2636 } else if (var->mode() == CONST && op != Token::INIT_CONST) {
2637 // Assignment to const variable needs a write barrier.
2638 DCHECK(!var->IsLookupSlot());
2639 DCHECK(var->IsStackAllocated() || var->IsContextSlot());
2641 MemOperand location = VarOperand(var, rcx);
2642 __ movp(rdx, location);
2643 __ CompareRoot(rdx, Heap::kTheHoleValueRootIndex);
2644 __ j(not_equal, &const_error, Label::kNear);
2645 __ Push(var->name());
2646 __ CallRuntime(Runtime::kThrowReferenceError, 1);
2647 __ bind(&const_error);
2648 __ CallRuntime(Runtime::kThrowConstAssignError, 0);
2650 } else if (var->is_this() && op == Token::INIT_CONST) {
2651 // Initializing assignment to const {this} needs a write barrier.
2652 DCHECK(var->IsStackAllocated() || var->IsContextSlot());
2653 Label uninitialized_this;
2654 MemOperand location = VarOperand(var, rcx);
2655 __ movp(rdx, location);
2656 __ CompareRoot(rdx, Heap::kTheHoleValueRootIndex);
2657 __ j(equal, &uninitialized_this);
2658 __ Push(var->name());
2659 __ CallRuntime(Runtime::kThrowReferenceError, 1);
2660 __ bind(&uninitialized_this);
2661 EmitStoreToStackLocalOrContextSlot(var, location);
2663 } else if (!var->is_const_mode() || op == Token::INIT_CONST) {
2664 if (var->IsLookupSlot()) {
2665 // Assignment to var.
2666 __ Push(rax); // Value.
2667 __ Push(rsi); // Context.
2668 __ Push(var->name());
2669 __ Push(Smi::FromInt(language_mode()));
2670 __ CallRuntime(Runtime::kStoreLookupSlot, 4);
2672 // Assignment to var or initializing assignment to let/const in harmony
2674 DCHECK(var->IsStackAllocated() || var->IsContextSlot());
2675 MemOperand location = VarOperand(var, rcx);
2676 if (generate_debug_code_ && op == Token::INIT_LET) {
2677 // Check for an uninitialized let binding.
2678 __ movp(rdx, location);
2679 __ CompareRoot(rdx, Heap::kTheHoleValueRootIndex);
2680 __ Check(equal, kLetBindingReInitialization);
2682 EmitStoreToStackLocalOrContextSlot(var, location);
2685 } else if (op == Token::INIT_CONST_LEGACY) {
2686 // Const initializers need a write barrier.
2687 DCHECK(var->mode() == CONST_LEGACY);
2688 DCHECK(!var->IsParameter()); // No const parameters.
2689 if (var->IsLookupSlot()) {
2692 __ Push(var->name());
2693 __ CallRuntime(Runtime::kInitializeLegacyConstLookupSlot, 3);
2695 DCHECK(var->IsStackLocal() || var->IsContextSlot());
2697 MemOperand location = VarOperand(var, rcx);
2698 __ movp(rdx, location);
2699 __ CompareRoot(rdx, Heap::kTheHoleValueRootIndex);
2700 __ j(not_equal, &skip);
2701 EmitStoreToStackLocalOrContextSlot(var, location);
2706 DCHECK(var->mode() == CONST_LEGACY && op != Token::INIT_CONST_LEGACY);
2707 if (is_strict(language_mode())) {
2708 __ CallRuntime(Runtime::kThrowConstAssignError, 0);
2710 // Silently ignore store in sloppy mode.
2715 void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) {
2716 // Assignment to a property, using a named store IC.
2717 Property* prop = expr->target()->AsProperty();
2718 DCHECK(prop != NULL);
2719 DCHECK(prop->key()->IsLiteral());
2721 __ Move(StoreDescriptor::NameRegister(), prop->key()->AsLiteral()->value());
2722 __ Pop(StoreDescriptor::ReceiverRegister());
2723 if (FLAG_vector_stores) {
2724 EmitLoadStoreICSlot(expr->AssignmentSlot());
2727 CallStoreIC(expr->AssignmentFeedbackId());
2730 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
2731 context()->Plug(rax);
2735 void FullCodeGenerator::EmitNamedSuperPropertyStore(Property* prop) {
2736 // Assignment to named property of super.
2738 // stack : receiver ('this'), home_object
2739 DCHECK(prop != NULL);
2740 Literal* key = prop->key()->AsLiteral();
2741 DCHECK(key != NULL);
2743 __ Push(key->value());
2745 __ CallRuntime((is_strict(language_mode()) ? Runtime::kStoreToSuper_Strict
2746 : Runtime::kStoreToSuper_Sloppy),
2751 void FullCodeGenerator::EmitKeyedSuperPropertyStore(Property* prop) {
2752 // Assignment to named property of super.
2754 // stack : receiver ('this'), home_object, key
2755 DCHECK(prop != NULL);
2759 (is_strict(language_mode()) ? Runtime::kStoreKeyedToSuper_Strict
2760 : Runtime::kStoreKeyedToSuper_Sloppy),
2765 void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) {
2766 // Assignment to a property, using a keyed store IC.
2767 __ Pop(StoreDescriptor::NameRegister()); // Key.
2768 __ Pop(StoreDescriptor::ReceiverRegister());
2769 DCHECK(StoreDescriptor::ValueRegister().is(rax));
2771 CodeFactory::KeyedStoreIC(isolate(), language_mode()).code();
2772 if (FLAG_vector_stores) {
2773 EmitLoadStoreICSlot(expr->AssignmentSlot());
2776 CallIC(ic, expr->AssignmentFeedbackId());
2779 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
2780 context()->Plug(rax);
2784 void FullCodeGenerator::VisitProperty(Property* expr) {
2785 Comment cmnt(masm_, "[ Property");
2786 SetExpressionPosition(expr);
2788 Expression* key = expr->key();
2790 if (key->IsPropertyName()) {
2791 if (!expr->IsSuperAccess()) {
2792 VisitForAccumulatorValue(expr->obj());
2793 DCHECK(!rax.is(LoadDescriptor::ReceiverRegister()));
2794 __ movp(LoadDescriptor::ReceiverRegister(), rax);
2795 EmitNamedPropertyLoad(expr);
2797 VisitForStackValue(expr->obj()->AsSuperPropertyReference()->this_var());
2799 expr->obj()->AsSuperPropertyReference()->home_object());
2800 EmitNamedSuperPropertyLoad(expr);
2803 if (!expr->IsSuperAccess()) {
2804 VisitForStackValue(expr->obj());
2805 VisitForAccumulatorValue(expr->key());
2806 __ Move(LoadDescriptor::NameRegister(), rax);
2807 __ Pop(LoadDescriptor::ReceiverRegister());
2808 EmitKeyedPropertyLoad(expr);
2810 VisitForStackValue(expr->obj()->AsSuperPropertyReference()->this_var());
2812 expr->obj()->AsSuperPropertyReference()->home_object());
2813 VisitForStackValue(expr->key());
2814 EmitKeyedSuperPropertyLoad(expr);
2817 PrepareForBailoutForId(expr->LoadId(), TOS_REG);
2818 context()->Plug(rax);
2822 void FullCodeGenerator::CallIC(Handle<Code> code,
2823 TypeFeedbackId ast_id) {
2825 __ call(code, RelocInfo::CODE_TARGET, ast_id);
2829 // Code common for calls using the IC.
2830 void FullCodeGenerator::EmitCallWithLoadIC(Call* expr) {
2831 Expression* callee = expr->expression();
2833 CallICState::CallType call_type =
2834 callee->IsVariableProxy() ? CallICState::FUNCTION : CallICState::METHOD;
2835 // Get the target function.
2836 if (call_type == CallICState::FUNCTION) {
2837 { StackValueContext context(this);
2838 EmitVariableLoad(callee->AsVariableProxy());
2839 PrepareForBailout(callee, NO_REGISTERS);
2841 // Push undefined as receiver. This is patched in the method prologue if it
2842 // is a sloppy mode method.
2843 __ Push(isolate()->factory()->undefined_value());
2845 // Load the function from the receiver.
2846 DCHECK(callee->IsProperty());
2847 DCHECK(!callee->AsProperty()->IsSuperAccess());
2848 __ movp(LoadDescriptor::ReceiverRegister(), Operand(rsp, 0));
2849 EmitNamedPropertyLoad(callee->AsProperty());
2850 PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG);
2851 // Push the target function under the receiver.
2852 __ Push(Operand(rsp, 0));
2853 __ movp(Operand(rsp, kPointerSize), rax);
2856 EmitCall(expr, call_type);
2860 void FullCodeGenerator::EmitSuperCallWithLoadIC(Call* expr) {
2861 Expression* callee = expr->expression();
2862 DCHECK(callee->IsProperty());
2863 Property* prop = callee->AsProperty();
2864 DCHECK(prop->IsSuperAccess());
2865 SetExpressionPosition(prop);
2867 Literal* key = prop->key()->AsLiteral();
2868 DCHECK(!key->value()->IsSmi());
2869 // Load the function from the receiver.
2870 SuperPropertyReference* super_ref = prop->obj()->AsSuperPropertyReference();
2871 VisitForStackValue(super_ref->home_object());
2872 VisitForAccumulatorValue(super_ref->this_var());
2875 __ Push(Operand(rsp, kPointerSize * 2));
2876 __ Push(key->value());
2877 __ Push(Smi::FromInt(language_mode()));
2881 // - this (receiver)
2882 // - this (receiver) <-- LoadFromSuper will pop here and below.
2886 __ CallRuntime(Runtime::kLoadFromSuper, 4);
2888 // Replace home_object with target function.
2889 __ movp(Operand(rsp, kPointerSize), rax);
2892 // - target function
2893 // - this (receiver)
2894 EmitCall(expr, CallICState::METHOD);
2898 // Common code for calls using the IC.
2899 void FullCodeGenerator::EmitKeyedCallWithLoadIC(Call* expr,
2902 VisitForAccumulatorValue(key);
2904 Expression* callee = expr->expression();
2906 // Load the function from the receiver.
2907 DCHECK(callee->IsProperty());
2908 __ movp(LoadDescriptor::ReceiverRegister(), Operand(rsp, 0));
2909 __ Move(LoadDescriptor::NameRegister(), rax);
2910 EmitKeyedPropertyLoad(callee->AsProperty());
2911 PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG);
2913 // Push the target function under the receiver.
2914 __ Push(Operand(rsp, 0));
2915 __ movp(Operand(rsp, kPointerSize), rax);
2917 EmitCall(expr, CallICState::METHOD);
2921 void FullCodeGenerator::EmitKeyedSuperCallWithLoadIC(Call* expr) {
2922 Expression* callee = expr->expression();
2923 DCHECK(callee->IsProperty());
2924 Property* prop = callee->AsProperty();
2925 DCHECK(prop->IsSuperAccess());
2927 SetExpressionPosition(prop);
2928 // Load the function from the receiver.
2929 SuperPropertyReference* super_ref = prop->obj()->AsSuperPropertyReference();
2930 VisitForStackValue(super_ref->home_object());
2931 VisitForAccumulatorValue(super_ref->this_var());
2934 __ Push(Operand(rsp, kPointerSize * 2));
2935 VisitForStackValue(prop->key());
2936 __ Push(Smi::FromInt(language_mode()));
2940 // - this (receiver)
2941 // - this (receiver) <-- LoadKeyedFromSuper will pop here and below.
2945 __ CallRuntime(Runtime::kLoadKeyedFromSuper, 4);
2947 // Replace home_object with target function.
2948 __ movp(Operand(rsp, kPointerSize), rax);
2951 // - target function
2952 // - this (receiver)
2953 EmitCall(expr, CallICState::METHOD);
2957 void FullCodeGenerator::EmitCall(Call* expr, CallICState::CallType call_type) {
2958 // Load the arguments.
2959 ZoneList<Expression*>* args = expr->arguments();
2960 int arg_count = args->length();
2961 for (int i = 0; i < arg_count; i++) {
2962 VisitForStackValue(args->at(i));
2965 SetCallPosition(expr, arg_count);
2966 Handle<Code> ic = CodeFactory::CallIC(isolate(), arg_count, call_type).code();
2967 __ Move(rdx, SmiFromSlot(expr->CallFeedbackICSlot()));
2968 __ movp(rdi, Operand(rsp, (arg_count + 1) * kPointerSize));
2969 // Don't assign a type feedback id to the IC, since type feedback is provided
2970 // by the vector above.
2973 RecordJSReturnSite(expr);
2975 // Restore context register.
2976 __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
2977 // Discard the function left on TOS.
2978 context()->DropAndPlug(1, rax);
2982 void FullCodeGenerator::EmitResolvePossiblyDirectEval(int arg_count) {
2983 // Push copy of the first argument or undefined if it doesn't exist.
2984 if (arg_count > 0) {
2985 __ Push(Operand(rsp, arg_count * kPointerSize));
2987 __ PushRoot(Heap::kUndefinedValueRootIndex);
2990 // Push the enclosing function.
2991 __ Push(Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
2993 // Push the language mode.
2994 __ Push(Smi::FromInt(language_mode()));
2996 // Push the start position of the scope the calls resides in.
2997 __ Push(Smi::FromInt(scope()->start_position()));
2999 // Do the runtime call.
3000 __ CallRuntime(Runtime::kResolvePossiblyDirectEval, 5);
3004 // See http://www.ecma-international.org/ecma-262/6.0/#sec-function-calls.
3005 void FullCodeGenerator::PushCalleeAndWithBaseObject(Call* expr) {
3006 VariableProxy* callee = expr->expression()->AsVariableProxy();
3007 if (callee->var()->IsLookupSlot()) {
3009 SetExpressionPosition(callee);
3010 // Generate code for loading from variables potentially shadowed by
3011 // eval-introduced variables.
3012 EmitDynamicLookupFastCase(callee, NOT_INSIDE_TYPEOF, &slow, &done);
3014 // Call the runtime to find the function to call (returned in rax) and
3015 // the object holding it (returned in rdx).
3016 __ Push(context_register());
3017 __ Push(callee->name());
3018 __ CallRuntime(Runtime::kLoadLookupSlot, 2);
3019 __ Push(rax); // Function.
3020 __ Push(rdx); // Receiver.
3021 PrepareForBailoutForId(expr->LookupId(), NO_REGISTERS);
3023 // If fast case code has been generated, emit code to push the function
3024 // and receiver and have the slow path jump around this code.
3025 if (done.is_linked()) {
3027 __ jmp(&call, Label::kNear);
3031 // Pass undefined as the receiver, which is the WithBaseObject of a
3032 // non-object environment record. If the callee is sloppy, it will patch
3033 // it up to be the global receiver.
3034 __ PushRoot(Heap::kUndefinedValueRootIndex);
3038 VisitForStackValue(callee);
3039 // refEnv.WithBaseObject()
3040 __ PushRoot(Heap::kUndefinedValueRootIndex);
3045 void FullCodeGenerator::VisitCall(Call* expr) {
3047 // We want to verify that RecordJSReturnSite gets called on all paths
3048 // through this function. Avoid early returns.
3049 expr->return_is_recorded_ = false;
3052 Comment cmnt(masm_, "[ Call");
3053 Expression* callee = expr->expression();
3054 Call::CallType call_type = expr->GetCallType(isolate());
3056 if (call_type == Call::POSSIBLY_EVAL_CALL) {
3057 // In a call to eval, we first call RuntimeHidden_ResolvePossiblyDirectEval
3058 // to resolve the function we need to call. Then we call the resolved
3059 // function using the given arguments.
3060 ZoneList<Expression*>* args = expr->arguments();
3061 int arg_count = args->length();
3062 PushCalleeAndWithBaseObject(expr);
3064 // Push the arguments.
3065 for (int i = 0; i < arg_count; i++) {
3066 VisitForStackValue(args->at(i));
3069 // Push a copy of the function (found below the arguments) and resolve
3071 __ Push(Operand(rsp, (arg_count + 1) * kPointerSize));
3072 EmitResolvePossiblyDirectEval(arg_count);
3074 // Touch up the callee.
3075 __ movp(Operand(rsp, (arg_count + 1) * kPointerSize), rax);
3077 PrepareForBailoutForId(expr->EvalId(), NO_REGISTERS);
3079 SetCallPosition(expr, arg_count);
3080 CallFunctionStub stub(isolate(), arg_count, NO_CALL_FUNCTION_FLAGS);
3081 __ movp(rdi, Operand(rsp, (arg_count + 1) * kPointerSize));
3083 RecordJSReturnSite(expr);
3084 // Restore context register.
3085 __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
3086 context()->DropAndPlug(1, rax);
3087 } else if (call_type == Call::GLOBAL_CALL) {
3088 EmitCallWithLoadIC(expr);
3090 } else if (call_type == Call::LOOKUP_SLOT_CALL) {
3091 // Call to a lookup slot (dynamically introduced variable).
3092 PushCalleeAndWithBaseObject(expr);
3094 } else if (call_type == Call::PROPERTY_CALL) {
3095 Property* property = callee->AsProperty();
3096 bool is_named_call = property->key()->IsPropertyName();
3097 if (property->IsSuperAccess()) {
3098 if (is_named_call) {
3099 EmitSuperCallWithLoadIC(expr);
3101 EmitKeyedSuperCallWithLoadIC(expr);
3104 VisitForStackValue(property->obj());
3105 if (is_named_call) {
3106 EmitCallWithLoadIC(expr);
3108 EmitKeyedCallWithLoadIC(expr, property->key());
3111 } else if (call_type == Call::SUPER_CALL) {
3112 EmitSuperConstructorCall(expr);
3114 DCHECK(call_type == Call::OTHER_CALL);
3115 // Call to an arbitrary expression not handled specially above.
3116 VisitForStackValue(callee);
3117 __ PushRoot(Heap::kUndefinedValueRootIndex);
3118 // Emit function call.
3123 // RecordJSReturnSite should have been called.
3124 DCHECK(expr->return_is_recorded_);
3129 void FullCodeGenerator::VisitCallNew(CallNew* expr) {
3130 Comment cmnt(masm_, "[ CallNew");
3131 // According to ECMA-262, section 11.2.2, page 44, the function
3132 // expression in new calls must be evaluated before the
3135 // Push constructor on the stack. If it's not a function it's used as
3136 // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is
3138 DCHECK(!expr->expression()->IsSuperPropertyReference());
3139 VisitForStackValue(expr->expression());
3141 // Push the arguments ("left-to-right") on the stack.
3142 ZoneList<Expression*>* args = expr->arguments();
3143 int arg_count = args->length();
3144 for (int i = 0; i < arg_count; i++) {
3145 VisitForStackValue(args->at(i));
3148 // Call the construct call builtin that handles allocation and
3149 // constructor invocation.
3150 SetConstructCallPosition(expr);
3152 // Load function and argument count into rdi and rax.
3153 __ Set(rax, arg_count);
3154 __ movp(rdi, Operand(rsp, arg_count * kPointerSize));
3156 // Record call targets in unoptimized code, but not in the snapshot.
3157 if (FLAG_pretenuring_call_new) {
3158 EnsureSlotContainsAllocationSite(expr->AllocationSiteFeedbackSlot());
3159 DCHECK(expr->AllocationSiteFeedbackSlot().ToInt() ==
3160 expr->CallNewFeedbackSlot().ToInt() + 1);
3163 __ Move(rbx, FeedbackVector());
3164 __ Move(rdx, SmiFromSlot(expr->CallNewFeedbackSlot()));
3166 CallConstructStub stub(isolate(), RECORD_CONSTRUCTOR_TARGET);
3167 __ Call(stub.GetCode(), RelocInfo::CONSTRUCT_CALL);
3168 PrepareForBailoutForId(expr->ReturnId(), TOS_REG);
3169 context()->Plug(rax);
3173 void FullCodeGenerator::EmitSuperConstructorCall(Call* expr) {
3174 SuperCallReference* super_call_ref =
3175 expr->expression()->AsSuperCallReference();
3176 DCHECK_NOT_NULL(super_call_ref);
3178 EmitLoadSuperConstructor(super_call_ref);
3179 __ Push(result_register());
3181 // Push the arguments ("left-to-right") on the stack.
3182 ZoneList<Expression*>* args = expr->arguments();
3183 int arg_count = args->length();
3184 for (int i = 0; i < arg_count; i++) {
3185 VisitForStackValue(args->at(i));
3188 // Call the construct call builtin that handles allocation and
3189 // constructor invocation.
3190 SetConstructCallPosition(expr);
3192 // Load original constructor into rcx.
3193 VisitForAccumulatorValue(super_call_ref->new_target_var());
3194 __ movp(rcx, result_register());
3196 // Load function and argument count into rdi and rax.
3197 __ Set(rax, arg_count);
3198 __ movp(rdi, Operand(rsp, arg_count * kPointerSize));
3200 // Record call targets in unoptimized code.
3201 if (FLAG_pretenuring_call_new) {
3203 /* TODO(dslomov): support pretenuring.
3204 EnsureSlotContainsAllocationSite(expr->AllocationSiteFeedbackSlot());
3205 DCHECK(expr->AllocationSiteFeedbackSlot().ToInt() ==
3206 expr->CallNewFeedbackSlot().ToInt() + 1);
3210 __ Move(rbx, FeedbackVector());
3211 __ Move(rdx, SmiFromSlot(expr->CallFeedbackSlot()));
3213 CallConstructStub stub(isolate(), SUPER_CALL_RECORD_TARGET);
3214 __ call(stub.GetCode(), RelocInfo::CONSTRUCT_CALL);
3216 RecordJSReturnSite(expr);
3218 context()->Plug(rax);
3222 void FullCodeGenerator::EmitIsSmi(CallRuntime* expr) {
3223 ZoneList<Expression*>* args = expr->arguments();
3224 DCHECK(args->length() == 1);
3226 VisitForAccumulatorValue(args->at(0));
3228 Label materialize_true, materialize_false;
3229 Label* if_true = NULL;
3230 Label* if_false = NULL;
3231 Label* fall_through = NULL;
3232 context()->PrepareTest(&materialize_true, &materialize_false,
3233 &if_true, &if_false, &fall_through);
3235 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3236 __ JumpIfSmi(rax, if_true);
3239 context()->Plug(if_true, if_false);
3243 void FullCodeGenerator::EmitIsNonNegativeSmi(CallRuntime* expr) {
3244 ZoneList<Expression*>* args = expr->arguments();
3245 DCHECK(args->length() == 1);
3247 VisitForAccumulatorValue(args->at(0));
3249 Label materialize_true, materialize_false;
3250 Label* if_true = NULL;
3251 Label* if_false = NULL;
3252 Label* fall_through = NULL;
3253 context()->PrepareTest(&materialize_true, &materialize_false,
3254 &if_true, &if_false, &fall_through);
3256 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3257 Condition non_negative_smi = masm()->CheckNonNegativeSmi(rax);
3258 Split(non_negative_smi, if_true, if_false, fall_through);
3260 context()->Plug(if_true, if_false);
3264 void FullCodeGenerator::EmitIsObject(CallRuntime* expr) {
3265 ZoneList<Expression*>* args = expr->arguments();
3266 DCHECK(args->length() == 1);
3268 VisitForAccumulatorValue(args->at(0));
3270 Label materialize_true, materialize_false;
3271 Label* if_true = NULL;
3272 Label* if_false = NULL;
3273 Label* fall_through = NULL;
3274 context()->PrepareTest(&materialize_true, &materialize_false,
3275 &if_true, &if_false, &fall_through);
3277 __ JumpIfSmi(rax, if_false);
3278 __ CompareRoot(rax, Heap::kNullValueRootIndex);
3279 __ j(equal, if_true);
3280 __ movp(rbx, FieldOperand(rax, HeapObject::kMapOffset));
3281 // Undetectable objects behave like undefined when tested with typeof.
3282 __ testb(FieldOperand(rbx, Map::kBitFieldOffset),
3283 Immediate(1 << Map::kIsUndetectable));
3284 __ j(not_zero, if_false);
3285 __ movzxbp(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
3286 __ cmpp(rbx, Immediate(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
3287 __ j(below, if_false);
3288 __ cmpp(rbx, Immediate(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
3289 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3290 Split(below_equal, if_true, if_false, fall_through);
3292 context()->Plug(if_true, if_false);
3296 void FullCodeGenerator::EmitIsSpecObject(CallRuntime* expr) {
3297 ZoneList<Expression*>* args = expr->arguments();
3298 DCHECK(args->length() == 1);
3300 VisitForAccumulatorValue(args->at(0));
3302 Label materialize_true, materialize_false;
3303 Label* if_true = NULL;
3304 Label* if_false = NULL;
3305 Label* fall_through = NULL;
3306 context()->PrepareTest(&materialize_true, &materialize_false,
3307 &if_true, &if_false, &fall_through);
3309 __ JumpIfSmi(rax, if_false);
3310 __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rbx);
3311 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3312 Split(above_equal, if_true, if_false, fall_through);
3314 context()->Plug(if_true, if_false);
3318 void FullCodeGenerator::EmitIsUndetectableObject(CallRuntime* expr) {
3319 ZoneList<Expression*>* args = expr->arguments();
3320 DCHECK(args->length() == 1);
3322 VisitForAccumulatorValue(args->at(0));
3324 Label materialize_true, materialize_false;
3325 Label* if_true = NULL;
3326 Label* if_false = NULL;
3327 Label* fall_through = NULL;
3328 context()->PrepareTest(&materialize_true, &materialize_false,
3329 &if_true, &if_false, &fall_through);
3331 __ JumpIfSmi(rax, if_false);
3332 __ movp(rbx, FieldOperand(rax, HeapObject::kMapOffset));
3333 __ testb(FieldOperand(rbx, Map::kBitFieldOffset),
3334 Immediate(1 << Map::kIsUndetectable));
3335 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3336 Split(not_zero, if_true, if_false, fall_through);
3338 context()->Plug(if_true, if_false);
3342 void FullCodeGenerator::EmitIsStringWrapperSafeForDefaultValueOf(
3343 CallRuntime* expr) {
3344 ZoneList<Expression*>* args = expr->arguments();
3345 DCHECK(args->length() == 1);
3347 VisitForAccumulatorValue(args->at(0));
3349 Label materialize_true, materialize_false, skip_lookup;
3350 Label* if_true = NULL;
3351 Label* if_false = NULL;
3352 Label* fall_through = NULL;
3353 context()->PrepareTest(&materialize_true, &materialize_false,
3354 &if_true, &if_false, &fall_through);
3356 __ AssertNotSmi(rax);
3358 // Check whether this map has already been checked to be safe for default
3360 __ movp(rbx, FieldOperand(rax, HeapObject::kMapOffset));
3361 __ testb(FieldOperand(rbx, Map::kBitField2Offset),
3362 Immediate(1 << Map::kStringWrapperSafeForDefaultValueOf));
3363 __ j(not_zero, &skip_lookup);
3365 // Check for fast case object. Generate false result for slow case object.
3366 __ movp(rcx, FieldOperand(rax, JSObject::kPropertiesOffset));
3367 __ movp(rcx, FieldOperand(rcx, HeapObject::kMapOffset));
3368 __ CompareRoot(rcx, Heap::kHashTableMapRootIndex);
3369 __ j(equal, if_false);
3371 // Look for valueOf string in the descriptor array, and indicate false if
3372 // found. Since we omit an enumeration index check, if it is added via a
3373 // transition that shares its descriptor array, this is a false positive.
3374 Label entry, loop, done;
3376 // Skip loop if no descriptors are valid.
3377 __ NumberOfOwnDescriptors(rcx, rbx);
3378 __ cmpp(rcx, Immediate(0));
3381 __ LoadInstanceDescriptors(rbx, r8);
3382 // rbx: descriptor array.
3383 // rcx: valid entries in the descriptor array.
3384 // Calculate the end of the descriptor array.
3385 __ imulp(rcx, rcx, Immediate(DescriptorArray::kDescriptorSize));
3387 Operand(r8, rcx, times_pointer_size, DescriptorArray::kFirstOffset));
3388 // Calculate location of the first key name.
3389 __ addp(r8, Immediate(DescriptorArray::kFirstOffset));
3390 // Loop through all the keys in the descriptor array. If one of these is the
3391 // internalized string "valueOf" the result is false.
3394 __ movp(rdx, FieldOperand(r8, 0));
3395 __ Cmp(rdx, isolate()->factory()->value_of_string());
3396 __ j(equal, if_false);
3397 __ addp(r8, Immediate(DescriptorArray::kDescriptorSize * kPointerSize));
3400 __ j(not_equal, &loop);
3404 // Set the bit in the map to indicate that there is no local valueOf field.
3405 __ orp(FieldOperand(rbx, Map::kBitField2Offset),
3406 Immediate(1 << Map::kStringWrapperSafeForDefaultValueOf));
3408 __ bind(&skip_lookup);
3410 // If a valueOf property is not found on the object check that its
3411 // prototype is the un-modified String prototype. If not result is false.
3412 __ movp(rcx, FieldOperand(rbx, Map::kPrototypeOffset));
3413 __ testp(rcx, Immediate(kSmiTagMask));
3414 __ j(zero, if_false);
3415 __ movp(rcx, FieldOperand(rcx, HeapObject::kMapOffset));
3416 __ movp(rdx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
3417 __ movp(rdx, FieldOperand(rdx, GlobalObject::kNativeContextOffset));
3419 ContextOperand(rdx, Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX));
3420 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3421 Split(equal, if_true, if_false, fall_through);
3423 context()->Plug(if_true, if_false);
3427 void FullCodeGenerator::EmitIsFunction(CallRuntime* expr) {
3428 ZoneList<Expression*>* args = expr->arguments();
3429 DCHECK(args->length() == 1);
3431 VisitForAccumulatorValue(args->at(0));
3433 Label materialize_true, materialize_false;
3434 Label* if_true = NULL;
3435 Label* if_false = NULL;
3436 Label* fall_through = NULL;
3437 context()->PrepareTest(&materialize_true, &materialize_false,
3438 &if_true, &if_false, &fall_through);
3440 __ JumpIfSmi(rax, if_false);
3441 __ CmpObjectType(rax, JS_FUNCTION_TYPE, rbx);
3442 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3443 Split(equal, if_true, if_false, fall_through);
3445 context()->Plug(if_true, if_false);
3449 void FullCodeGenerator::EmitIsMinusZero(CallRuntime* expr) {
3450 ZoneList<Expression*>* args = expr->arguments();
3451 DCHECK(args->length() == 1);
3453 VisitForAccumulatorValue(args->at(0));
3455 Label materialize_true, materialize_false;
3456 Label* if_true = NULL;
3457 Label* if_false = NULL;
3458 Label* fall_through = NULL;
3459 context()->PrepareTest(&materialize_true, &materialize_false,
3460 &if_true, &if_false, &fall_through);
3462 Handle<Map> map = masm()->isolate()->factory()->heap_number_map();
3463 __ CheckMap(rax, map, if_false, DO_SMI_CHECK);
3464 __ cmpl(FieldOperand(rax, HeapNumber::kExponentOffset),
3466 __ j(no_overflow, if_false);
3467 __ cmpl(FieldOperand(rax, HeapNumber::kMantissaOffset),
3468 Immediate(0x00000000));
3469 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3470 Split(equal, if_true, if_false, fall_through);
3472 context()->Plug(if_true, if_false);
3476 void FullCodeGenerator::EmitIsArray(CallRuntime* expr) {
3477 ZoneList<Expression*>* args = expr->arguments();
3478 DCHECK(args->length() == 1);
3480 VisitForAccumulatorValue(args->at(0));
3482 Label materialize_true, materialize_false;
3483 Label* if_true = NULL;
3484 Label* if_false = NULL;
3485 Label* fall_through = NULL;
3486 context()->PrepareTest(&materialize_true, &materialize_false,
3487 &if_true, &if_false, &fall_through);
3489 __ JumpIfSmi(rax, if_false);
3490 __ CmpObjectType(rax, JS_ARRAY_TYPE, rbx);
3491 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3492 Split(equal, if_true, if_false, fall_through);
3494 context()->Plug(if_true, if_false);
3498 void FullCodeGenerator::EmitIsTypedArray(CallRuntime* expr) {
3499 ZoneList<Expression*>* args = expr->arguments();
3500 DCHECK(args->length() == 1);
3502 VisitForAccumulatorValue(args->at(0));
3504 Label materialize_true, materialize_false;
3505 Label* if_true = NULL;
3506 Label* if_false = NULL;
3507 Label* fall_through = NULL;
3508 context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
3509 &if_false, &fall_through);
3511 __ JumpIfSmi(rax, if_false);
3512 __ CmpObjectType(rax, JS_TYPED_ARRAY_TYPE, rbx);
3513 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3514 Split(equal, if_true, if_false, fall_through);
3516 context()->Plug(if_true, if_false);
3520 void FullCodeGenerator::EmitIsRegExp(CallRuntime* expr) {
3521 ZoneList<Expression*>* args = expr->arguments();
3522 DCHECK(args->length() == 1);
3524 VisitForAccumulatorValue(args->at(0));
3526 Label materialize_true, materialize_false;
3527 Label* if_true = NULL;
3528 Label* if_false = NULL;
3529 Label* fall_through = NULL;
3530 context()->PrepareTest(&materialize_true, &materialize_false,
3531 &if_true, &if_false, &fall_through);
3533 __ JumpIfSmi(rax, if_false);
3534 __ CmpObjectType(rax, JS_REGEXP_TYPE, rbx);
3535 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3536 Split(equal, if_true, if_false, fall_through);
3538 context()->Plug(if_true, if_false);
3542 void FullCodeGenerator::EmitIsJSProxy(CallRuntime* expr) {
3543 ZoneList<Expression*>* args = expr->arguments();
3544 DCHECK(args->length() == 1);
3546 VisitForAccumulatorValue(args->at(0));
3548 Label materialize_true, materialize_false;
3549 Label* if_true = NULL;
3550 Label* if_false = NULL;
3551 Label* fall_through = NULL;
3552 context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
3553 &if_false, &fall_through);
3555 __ JumpIfSmi(rax, if_false);
3557 __ movp(map, FieldOperand(rax, HeapObject::kMapOffset));
3558 __ CmpInstanceType(map, FIRST_JS_PROXY_TYPE);
3559 __ j(less, if_false);
3560 __ CmpInstanceType(map, LAST_JS_PROXY_TYPE);
3561 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3562 Split(less_equal, if_true, if_false, fall_through);
3564 context()->Plug(if_true, if_false);
3568 void FullCodeGenerator::EmitIsConstructCall(CallRuntime* expr) {
3569 DCHECK(expr->arguments()->length() == 0);
3571 Label materialize_true, materialize_false;
3572 Label* if_true = NULL;
3573 Label* if_false = NULL;
3574 Label* fall_through = NULL;
3575 context()->PrepareTest(&materialize_true, &materialize_false,
3576 &if_true, &if_false, &fall_through);
3578 // Get the frame pointer for the calling frame.
3579 __ movp(rax, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
3581 // Skip the arguments adaptor frame if it exists.
3582 Label check_frame_marker;
3583 __ Cmp(Operand(rax, StandardFrameConstants::kContextOffset),
3584 Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
3585 __ j(not_equal, &check_frame_marker);
3586 __ movp(rax, Operand(rax, StandardFrameConstants::kCallerFPOffset));
3588 // Check the marker in the calling frame.
3589 __ bind(&check_frame_marker);
3590 __ Cmp(Operand(rax, StandardFrameConstants::kMarkerOffset),
3591 Smi::FromInt(StackFrame::CONSTRUCT));
3592 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3593 Split(equal, if_true, if_false, fall_through);
3595 context()->Plug(if_true, if_false);
3599 void FullCodeGenerator::EmitObjectEquals(CallRuntime* expr) {
3600 ZoneList<Expression*>* args = expr->arguments();
3601 DCHECK(args->length() == 2);
3603 // Load the two objects into registers and perform the comparison.
3604 VisitForStackValue(args->at(0));
3605 VisitForAccumulatorValue(args->at(1));
3607 Label materialize_true, materialize_false;
3608 Label* if_true = NULL;
3609 Label* if_false = NULL;
3610 Label* fall_through = NULL;
3611 context()->PrepareTest(&materialize_true, &materialize_false,
3612 &if_true, &if_false, &fall_through);
3616 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3617 Split(equal, if_true, if_false, fall_through);
3619 context()->Plug(if_true, if_false);
3623 void FullCodeGenerator::EmitArguments(CallRuntime* expr) {
3624 ZoneList<Expression*>* args = expr->arguments();
3625 DCHECK(args->length() == 1);
3627 // ArgumentsAccessStub expects the key in rdx and the formal
3628 // parameter count in rax.
3629 VisitForAccumulatorValue(args->at(0));
3631 __ Move(rax, Smi::FromInt(info_->scope()->num_parameters()));
3632 ArgumentsAccessStub stub(isolate(), ArgumentsAccessStub::READ_ELEMENT);
3634 context()->Plug(rax);
3638 void FullCodeGenerator::EmitArgumentsLength(CallRuntime* expr) {
3639 DCHECK(expr->arguments()->length() == 0);
3642 // Get the number of formal parameters.
3643 __ Move(rax, Smi::FromInt(info_->scope()->num_parameters()));
3645 // Check if the calling frame is an arguments adaptor frame.
3646 __ movp(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
3647 __ Cmp(Operand(rbx, StandardFrameConstants::kContextOffset),
3648 Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
3649 __ j(not_equal, &exit, Label::kNear);
3651 // Arguments adaptor case: Read the arguments length from the
3653 __ movp(rax, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset));
3657 context()->Plug(rax);
3661 void FullCodeGenerator::EmitClassOf(CallRuntime* expr) {
3662 ZoneList<Expression*>* args = expr->arguments();
3663 DCHECK(args->length() == 1);
3664 Label done, null, function, non_function_constructor;
3666 VisitForAccumulatorValue(args->at(0));
3668 // If the object is a smi, we return null.
3669 __ JumpIfSmi(rax, &null);
3671 // Check that the object is a JS object but take special care of JS
3672 // functions to make sure they have 'Function' as their class.
3673 // Assume that there are only two callable types, and one of them is at
3674 // either end of the type range for JS object types. Saves extra comparisons.
3675 STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
3676 __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rax);
3677 // Map is now in rax.
3679 STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
3680 FIRST_SPEC_OBJECT_TYPE + 1);
3681 __ j(equal, &function);
3683 __ CmpInstanceType(rax, LAST_SPEC_OBJECT_TYPE);
3684 STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
3685 LAST_SPEC_OBJECT_TYPE - 1);
3686 __ j(equal, &function);
3687 // Assume that there is no larger type.
3688 STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == LAST_TYPE - 1);
3690 // Check if the constructor in the map is a JS function.
3691 __ GetMapConstructor(rax, rax, rbx);
3692 __ CmpInstanceType(rbx, JS_FUNCTION_TYPE);
3693 __ j(not_equal, &non_function_constructor);
3695 // rax now contains the constructor function. Grab the
3696 // instance class name from there.
3697 __ movp(rax, FieldOperand(rax, JSFunction::kSharedFunctionInfoOffset));
3698 __ movp(rax, FieldOperand(rax, SharedFunctionInfo::kInstanceClassNameOffset));
3701 // Functions have class 'Function'.
3703 __ Move(rax, isolate()->factory()->Function_string());
3706 // Objects with a non-function constructor have class 'Object'.
3707 __ bind(&non_function_constructor);
3708 __ Move(rax, isolate()->factory()->Object_string());
3711 // Non-JS objects have class null.
3713 __ LoadRoot(rax, Heap::kNullValueRootIndex);
3718 context()->Plug(rax);
3722 void FullCodeGenerator::EmitValueOf(CallRuntime* expr) {
3723 ZoneList<Expression*>* args = expr->arguments();
3724 DCHECK(args->length() == 1);
3726 VisitForAccumulatorValue(args->at(0)); // Load the object.
3729 // If the object is a smi return the object.
3730 __ JumpIfSmi(rax, &done);
3731 // If the object is not a value type, return the object.
3732 __ CmpObjectType(rax, JS_VALUE_TYPE, rbx);
3733 __ j(not_equal, &done);
3734 __ movp(rax, FieldOperand(rax, JSValue::kValueOffset));
3737 context()->Plug(rax);
3741 void FullCodeGenerator::EmitIsDate(CallRuntime* expr) {
3742 ZoneList<Expression*>* args = expr->arguments();
3743 DCHECK_EQ(1, args->length());
3745 VisitForAccumulatorValue(args->at(0));
3747 Label materialize_true, materialize_false;
3748 Label* if_true = nullptr;
3749 Label* if_false = nullptr;
3750 Label* fall_through = nullptr;
3751 context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
3752 &if_false, &fall_through);
3754 __ JumpIfSmi(rax, if_false);
3755 __ CmpObjectType(rax, JS_DATE_TYPE, rbx);
3756 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3757 Split(equal, if_true, if_false, fall_through);
3759 context()->Plug(if_true, if_false);
3763 void FullCodeGenerator::EmitDateField(CallRuntime* expr) {
3764 ZoneList<Expression*>* args = expr->arguments();
3765 DCHECK(args->length() == 2);
3766 DCHECK_NOT_NULL(args->at(1)->AsLiteral());
3767 Smi* index = Smi::cast(*(args->at(1)->AsLiteral()->value()));
3769 VisitForAccumulatorValue(args->at(0)); // Load the object.
3771 Register object = rax;
3772 Register result = rax;
3773 Register scratch = rcx;
3775 if (FLAG_debug_code) {
3776 __ AssertNotSmi(object);
3777 __ CmpObjectType(object, JS_DATE_TYPE, scratch);
3778 __ Check(equal, kOperandIsNotADate);
3781 if (index->value() == 0) {
3782 __ movp(result, FieldOperand(object, JSDate::kValueOffset));
3784 Label runtime, done;
3785 if (index->value() < JSDate::kFirstUncachedField) {
3786 ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
3787 Operand stamp_operand = __ ExternalOperand(stamp);
3788 __ movp(scratch, stamp_operand);
3789 __ cmpp(scratch, FieldOperand(object, JSDate::kCacheStampOffset));
3790 __ j(not_equal, &runtime, Label::kNear);
3791 __ movp(result, FieldOperand(object, JSDate::kValueOffset +
3792 kPointerSize * index->value()));
3793 __ jmp(&done, Label::kNear);
3796 __ PrepareCallCFunction(2);
3797 __ movp(arg_reg_1, object);
3798 __ Move(arg_reg_2, index, Assembler::RelocInfoNone());
3799 __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
3800 __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
3804 context()->Plug(rax);
3808 void FullCodeGenerator::EmitOneByteSeqStringSetChar(CallRuntime* expr) {
3809 ZoneList<Expression*>* args = expr->arguments();
3810 DCHECK_EQ(3, args->length());
3812 Register string = rax;
3813 Register index = rbx;
3814 Register value = rcx;
3816 VisitForStackValue(args->at(0)); // index
3817 VisitForStackValue(args->at(1)); // value
3818 VisitForAccumulatorValue(args->at(2)); // string
3822 if (FLAG_debug_code) {
3823 __ Check(__ CheckSmi(value), kNonSmiValue);
3824 __ Check(__ CheckSmi(index), kNonSmiValue);
3827 __ SmiToInteger32(value, value);
3828 __ SmiToInteger32(index, index);
3830 if (FLAG_debug_code) {
3831 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
3832 __ EmitSeqStringSetCharCheck(string, index, value, one_byte_seq_type);
3835 __ movb(FieldOperand(string, index, times_1, SeqOneByteString::kHeaderSize),
3837 context()->Plug(string);
3841 void FullCodeGenerator::EmitTwoByteSeqStringSetChar(CallRuntime* expr) {
3842 ZoneList<Expression*>* args = expr->arguments();
3843 DCHECK_EQ(3, args->length());
3845 Register string = rax;
3846 Register index = rbx;
3847 Register value = rcx;
3849 VisitForStackValue(args->at(0)); // index
3850 VisitForStackValue(args->at(1)); // value
3851 VisitForAccumulatorValue(args->at(2)); // string
3855 if (FLAG_debug_code) {
3856 __ Check(__ CheckSmi(value), kNonSmiValue);
3857 __ Check(__ CheckSmi(index), kNonSmiValue);
3860 __ SmiToInteger32(value, value);
3861 __ SmiToInteger32(index, index);
3863 if (FLAG_debug_code) {
3864 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
3865 __ EmitSeqStringSetCharCheck(string, index, value, two_byte_seq_type);
3868 __ movw(FieldOperand(string, index, times_2, SeqTwoByteString::kHeaderSize),
3870 context()->Plug(rax);
3874 void FullCodeGenerator::EmitSetValueOf(CallRuntime* expr) {
3875 ZoneList<Expression*>* args = expr->arguments();
3876 DCHECK(args->length() == 2);
3878 VisitForStackValue(args->at(0)); // Load the object.
3879 VisitForAccumulatorValue(args->at(1)); // Load the value.
3880 __ Pop(rbx); // rax = value. rbx = object.
3883 // If the object is a smi, return the value.
3884 __ JumpIfSmi(rbx, &done);
3886 // If the object is not a value type, return the value.
3887 __ CmpObjectType(rbx, JS_VALUE_TYPE, rcx);
3888 __ j(not_equal, &done);
3891 __ movp(FieldOperand(rbx, JSValue::kValueOffset), rax);
3892 // Update the write barrier. Save the value as it will be
3893 // overwritten by the write barrier code and is needed afterward.
3895 __ RecordWriteField(rbx, JSValue::kValueOffset, rdx, rcx, kDontSaveFPRegs);
3898 context()->Plug(rax);
3902 void FullCodeGenerator::EmitNumberToString(CallRuntime* expr) {
3903 ZoneList<Expression*>* args = expr->arguments();
3904 DCHECK_EQ(args->length(), 1);
3906 // Load the argument into rax and call the stub.
3907 VisitForAccumulatorValue(args->at(0));
3909 NumberToStringStub stub(isolate());
3911 context()->Plug(rax);
3915 void FullCodeGenerator::EmitToObject(CallRuntime* expr) {
3916 ZoneList<Expression*>* args = expr->arguments();
3917 DCHECK_EQ(1, args->length());
3919 // Load the argument into rax and convert it.
3920 VisitForAccumulatorValue(args->at(0));
3922 ToObjectStub stub(isolate());
3924 context()->Plug(rax);
3928 void FullCodeGenerator::EmitStringCharFromCode(CallRuntime* expr) {
3929 ZoneList<Expression*>* args = expr->arguments();
3930 DCHECK(args->length() == 1);
3932 VisitForAccumulatorValue(args->at(0));
3935 StringCharFromCodeGenerator generator(rax, rbx);
3936 generator.GenerateFast(masm_);
3939 NopRuntimeCallHelper call_helper;
3940 generator.GenerateSlow(masm_, call_helper);
3943 context()->Plug(rbx);
3947 void FullCodeGenerator::EmitStringCharCodeAt(CallRuntime* expr) {
3948 ZoneList<Expression*>* args = expr->arguments();
3949 DCHECK(args->length() == 2);
3951 VisitForStackValue(args->at(0));
3952 VisitForAccumulatorValue(args->at(1));
3954 Register object = rbx;
3955 Register index = rax;
3956 Register result = rdx;
3960 Label need_conversion;
3961 Label index_out_of_range;
3963 StringCharCodeAtGenerator generator(object,
3968 &index_out_of_range,
3969 STRING_INDEX_IS_NUMBER);
3970 generator.GenerateFast(masm_);
3973 __ bind(&index_out_of_range);
3974 // When the index is out of range, the spec requires us to return
3976 __ LoadRoot(result, Heap::kNanValueRootIndex);
3979 __ bind(&need_conversion);
3980 // Move the undefined value into the result register, which will
3981 // trigger conversion.
3982 __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
3985 NopRuntimeCallHelper call_helper;
3986 generator.GenerateSlow(masm_, NOT_PART_OF_IC_HANDLER, call_helper);
3989 context()->Plug(result);
3993 void FullCodeGenerator::EmitStringCharAt(CallRuntime* expr) {
3994 ZoneList<Expression*>* args = expr->arguments();
3995 DCHECK(args->length() == 2);
3997 VisitForStackValue(args->at(0));
3998 VisitForAccumulatorValue(args->at(1));
4000 Register object = rbx;
4001 Register index = rax;
4002 Register scratch = rdx;
4003 Register result = rax;
4007 Label need_conversion;
4008 Label index_out_of_range;
4010 StringCharAtGenerator generator(object,
4016 &index_out_of_range,
4017 STRING_INDEX_IS_NUMBER);
4018 generator.GenerateFast(masm_);
4021 __ bind(&index_out_of_range);
4022 // When the index is out of range, the spec requires us to return
4023 // the empty string.
4024 __ LoadRoot(result, Heap::kempty_stringRootIndex);
4027 __ bind(&need_conversion);
4028 // Move smi zero into the result register, which will trigger
4030 __ Move(result, Smi::FromInt(0));
4033 NopRuntimeCallHelper call_helper;
4034 generator.GenerateSlow(masm_, NOT_PART_OF_IC_HANDLER, call_helper);
4037 context()->Plug(result);
4041 void FullCodeGenerator::EmitStringAdd(CallRuntime* expr) {
4042 ZoneList<Expression*>* args = expr->arguments();
4043 DCHECK_EQ(2, args->length());
4044 VisitForStackValue(args->at(0));
4045 VisitForAccumulatorValue(args->at(1));
4048 StringAddStub stub(isolate(), STRING_ADD_CHECK_BOTH, NOT_TENURED);
4050 context()->Plug(rax);
4054 void FullCodeGenerator::EmitCallFunction(CallRuntime* expr) {
4055 ZoneList<Expression*>* args = expr->arguments();
4056 DCHECK(args->length() >= 2);
4058 int arg_count = args->length() - 2; // 2 ~ receiver and function.
4059 for (int i = 0; i < arg_count + 1; i++) {
4060 VisitForStackValue(args->at(i));
4062 VisitForAccumulatorValue(args->last()); // Function.
4064 Label runtime, done;
4065 // Check for non-function argument (including proxy).
4066 __ JumpIfSmi(rax, &runtime);
4067 __ CmpObjectType(rax, JS_FUNCTION_TYPE, rbx);
4068 __ j(not_equal, &runtime);
4070 // InvokeFunction requires the function in rdi. Move it in there.
4071 __ movp(rdi, result_register());
4072 ParameterCount count(arg_count);
4073 __ InvokeFunction(rdi, count, CALL_FUNCTION, NullCallWrapper());
4074 __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
4079 __ CallRuntime(Runtime::kCall, args->length());
4082 context()->Plug(rax);
4086 void FullCodeGenerator::EmitDefaultConstructorCallSuper(CallRuntime* expr) {
4087 ZoneList<Expression*>* args = expr->arguments();
4088 DCHECK(args->length() == 2);
4091 VisitForStackValue(args->at(0));
4094 VisitForStackValue(args->at(1));
4095 __ CallRuntime(Runtime::kGetPrototype, 1);
4096 __ Push(result_register());
4098 // Load original constructor into rcx.
4099 __ movp(rcx, Operand(rsp, 1 * kPointerSize));
4101 // Check if the calling frame is an arguments adaptor frame.
4102 Label adaptor_frame, args_set_up, runtime;
4103 __ movp(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
4104 __ movp(rbx, Operand(rdx, StandardFrameConstants::kContextOffset));
4105 __ Cmp(rbx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
4106 __ j(equal, &adaptor_frame);
4107 // default constructor has no arguments, so no adaptor frame means no args.
4108 __ movp(rax, Immediate(0));
4109 __ jmp(&args_set_up);
4111 // Copy arguments from adaptor frame.
4113 __ bind(&adaptor_frame);
4114 __ movp(rbx, Operand(rdx, ArgumentsAdaptorFrameConstants::kLengthOffset));
4115 __ SmiToInteger64(rbx, rbx);
4118 __ leap(rdx, Operand(rdx, rbx, times_pointer_size,
4119 StandardFrameConstants::kCallerSPOffset));
4122 __ Push(Operand(rdx, -1 * kPointerSize));
4123 __ subp(rdx, Immediate(kPointerSize));
4125 __ j(not_zero, &loop);
4128 __ bind(&args_set_up);
4129 __ movp(rdi, Operand(rsp, rax, times_pointer_size, 0));
4130 __ LoadRoot(rbx, Heap::kUndefinedValueRootIndex);
4132 CallConstructStub stub(isolate(), SUPER_CONSTRUCTOR_CALL);
4133 __ call(stub.GetCode(), RelocInfo::CONSTRUCT_CALL);
4137 context()->Plug(result_register());
4141 void FullCodeGenerator::EmitRegExpConstructResult(CallRuntime* expr) {
4142 RegExpConstructResultStub stub(isolate());
4143 ZoneList<Expression*>* args = expr->arguments();
4144 DCHECK(args->length() == 3);
4145 VisitForStackValue(args->at(0));
4146 VisitForStackValue(args->at(1));
4147 VisitForAccumulatorValue(args->at(2));
4151 context()->Plug(rax);
4155 void FullCodeGenerator::EmitGetFromCache(CallRuntime* expr) {
4156 ZoneList<Expression*>* args = expr->arguments();
4157 DCHECK_EQ(2, args->length());
4159 DCHECK_NOT_NULL(args->at(0)->AsLiteral());
4160 int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->value()))->value();
4162 Handle<FixedArray> jsfunction_result_caches(
4163 isolate()->native_context()->jsfunction_result_caches());
4164 if (jsfunction_result_caches->length() <= cache_id) {
4165 __ Abort(kAttemptToUseUndefinedCache);
4166 __ LoadRoot(rax, Heap::kUndefinedValueRootIndex);
4167 context()->Plug(rax);
4171 VisitForAccumulatorValue(args->at(1));
4174 Register cache = rbx;
4176 __ movp(cache, ContextOperand(rsi, Context::GLOBAL_OBJECT_INDEX));
4178 FieldOperand(cache, GlobalObject::kNativeContextOffset));
4180 ContextOperand(cache, Context::JSFUNCTION_RESULT_CACHES_INDEX));
4182 FieldOperand(cache, FixedArray::OffsetOfElementAt(cache_id)));
4184 Label done, not_found;
4185 STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
4186 __ movp(tmp, FieldOperand(cache, JSFunctionResultCache::kFingerOffset));
4187 // tmp now holds finger offset as a smi.
4189 __ SmiToIndex(kScratchRegister, tmp, kPointerSizeLog2);
4190 __ cmpp(key, FieldOperand(cache,
4193 FixedArray::kHeaderSize));
4194 __ j(not_equal, ¬_found, Label::kNear);
4195 __ movp(rax, FieldOperand(cache,
4198 FixedArray::kHeaderSize + kPointerSize));
4199 __ jmp(&done, Label::kNear);
4201 __ bind(¬_found);
4202 // Call runtime to perform the lookup.
4205 __ CallRuntime(Runtime::kGetFromCacheRT, 2);
4208 context()->Plug(rax);
4212 void FullCodeGenerator::EmitHasCachedArrayIndex(CallRuntime* expr) {
4213 ZoneList<Expression*>* args = expr->arguments();
4214 DCHECK(args->length() == 1);
4216 VisitForAccumulatorValue(args->at(0));
4218 Label materialize_true, materialize_false;
4219 Label* if_true = NULL;
4220 Label* if_false = NULL;
4221 Label* fall_through = NULL;
4222 context()->PrepareTest(&materialize_true, &materialize_false,
4223 &if_true, &if_false, &fall_through);
4225 __ testl(FieldOperand(rax, String::kHashFieldOffset),
4226 Immediate(String::kContainsCachedArrayIndexMask));
4227 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4228 __ j(zero, if_true);
4231 context()->Plug(if_true, if_false);
4235 void FullCodeGenerator::EmitGetCachedArrayIndex(CallRuntime* expr) {
4236 ZoneList<Expression*>* args = expr->arguments();
4237 DCHECK(args->length() == 1);
4238 VisitForAccumulatorValue(args->at(0));
4240 __ AssertString(rax);
4242 __ movl(rax, FieldOperand(rax, String::kHashFieldOffset));
4243 DCHECK(String::kHashShift >= kSmiTagSize);
4244 __ IndexFromHash(rax, rax);
4246 context()->Plug(rax);
4250 void FullCodeGenerator::EmitFastOneByteArrayJoin(CallRuntime* expr) {
4251 Label bailout, return_result, done, one_char_separator, long_separator,
4252 non_trivial_array, not_size_one_array, loop,
4253 loop_1, loop_1_condition, loop_2, loop_2_entry, loop_3, loop_3_entry;
4254 ZoneList<Expression*>* args = expr->arguments();
4255 DCHECK(args->length() == 2);
4256 // We will leave the separator on the stack until the end of the function.
4257 VisitForStackValue(args->at(1));
4258 // Load this to rax (= array)
4259 VisitForAccumulatorValue(args->at(0));
4260 // All aliases of the same register have disjoint lifetimes.
4261 Register array = rax;
4262 Register elements = no_reg; // Will be rax.
4264 Register index = rdx;
4266 Register string_length = rcx;
4268 Register string = rsi;
4270 Register scratch = rbx;
4272 Register array_length = rdi;
4273 Register result_pos = no_reg; // Will be rdi.
4275 Operand separator_operand = Operand(rsp, 2 * kPointerSize);
4276 Operand result_operand = Operand(rsp, 1 * kPointerSize);
4277 Operand array_length_operand = Operand(rsp, 0 * kPointerSize);
4278 // Separator operand is already pushed. Make room for the two
4279 // other stack fields, and clear the direction flag in anticipation
4280 // of calling CopyBytes.
4281 __ subp(rsp, Immediate(2 * kPointerSize));
4283 // Check that the array is a JSArray
4284 __ JumpIfSmi(array, &bailout);
4285 __ CmpObjectType(array, JS_ARRAY_TYPE, scratch);
4286 __ j(not_equal, &bailout);
4288 // Check that the array has fast elements.
4289 __ CheckFastElements(scratch, &bailout);
4291 // Array has fast elements, so its length must be a smi.
4292 // If the array has length zero, return the empty string.
4293 __ movp(array_length, FieldOperand(array, JSArray::kLengthOffset));
4294 __ SmiCompare(array_length, Smi::FromInt(0));
4295 __ j(not_zero, &non_trivial_array);
4296 __ LoadRoot(rax, Heap::kempty_stringRootIndex);
4297 __ jmp(&return_result);
4299 // Save the array length on the stack.
4300 __ bind(&non_trivial_array);
4301 __ SmiToInteger32(array_length, array_length);
4302 __ movl(array_length_operand, array_length);
4304 // Save the FixedArray containing array's elements.
4305 // End of array's live range.
4307 __ movp(elements, FieldOperand(array, JSArray::kElementsOffset));
4311 // Check that all array elements are sequential one-byte strings, and
4312 // accumulate the sum of their lengths, as a smi-encoded value.
4314 __ Set(string_length, 0);
4315 // Loop condition: while (index < array_length).
4316 // Live loop registers: index(int32), array_length(int32), string(String*),
4317 // scratch, string_length(int32), elements(FixedArray*).
4318 if (generate_debug_code_) {
4319 __ cmpp(index, array_length);
4320 __ Assert(below, kNoEmptyArraysHereInEmitFastOneByteArrayJoin);
4323 __ movp(string, FieldOperand(elements,
4326 FixedArray::kHeaderSize));
4327 __ JumpIfSmi(string, &bailout);
4328 __ movp(scratch, FieldOperand(string, HeapObject::kMapOffset));
4329 __ movzxbl(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
4330 __ andb(scratch, Immediate(
4331 kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask));
4332 __ cmpb(scratch, Immediate(kStringTag | kOneByteStringTag | kSeqStringTag));
4333 __ j(not_equal, &bailout);
4334 __ AddSmiField(string_length,
4335 FieldOperand(string, SeqOneByteString::kLengthOffset));
4336 __ j(overflow, &bailout);
4338 __ cmpl(index, array_length);
4342 // string_length: Sum of string lengths.
4343 // elements: FixedArray of strings.
4344 // index: Array length.
4345 // array_length: Array length.
4347 // If array_length is 1, return elements[0], a string.
4348 __ cmpl(array_length, Immediate(1));
4349 __ j(not_equal, ¬_size_one_array);
4350 __ movp(rax, FieldOperand(elements, FixedArray::kHeaderSize));
4351 __ jmp(&return_result);
4353 __ bind(¬_size_one_array);
4355 // End of array_length live range.
4356 result_pos = array_length;
4357 array_length = no_reg;
4360 // string_length: Sum of string lengths.
4361 // elements: FixedArray of strings.
4362 // index: Array length.
4364 // Check that the separator is a sequential one-byte string.
4365 __ movp(string, separator_operand);
4366 __ JumpIfSmi(string, &bailout);
4367 __ movp(scratch, FieldOperand(string, HeapObject::kMapOffset));
4368 __ movzxbl(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
4369 __ andb(scratch, Immediate(
4370 kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask));
4371 __ cmpb(scratch, Immediate(kStringTag | kOneByteStringTag | kSeqStringTag));
4372 __ j(not_equal, &bailout);
4375 // string_length: Sum of string lengths.
4376 // elements: FixedArray of strings.
4377 // index: Array length.
4378 // string: Separator string.
4380 // Add (separator length times (array_length - 1)) to string_length.
4381 __ SmiToInteger32(scratch,
4382 FieldOperand(string, SeqOneByteString::kLengthOffset));
4384 __ imull(scratch, index);
4385 __ j(overflow, &bailout);
4386 __ addl(string_length, scratch);
4387 __ j(overflow, &bailout);
4389 // Live registers and stack values:
4390 // string_length: Total length of result string.
4391 // elements: FixedArray of strings.
4392 __ AllocateOneByteString(result_pos, string_length, scratch, index, string,
4394 __ movp(result_operand, result_pos);
4395 __ leap(result_pos, FieldOperand(result_pos, SeqOneByteString::kHeaderSize));
4397 __ movp(string, separator_operand);
4398 __ SmiCompare(FieldOperand(string, SeqOneByteString::kLengthOffset),
4400 __ j(equal, &one_char_separator);
4401 __ j(greater, &long_separator);
4404 // Empty separator case:
4406 __ movl(scratch, array_length_operand);
4407 __ jmp(&loop_1_condition);
4408 // Loop condition: while (index < array_length).
4410 // Each iteration of the loop concatenates one string to the result.
4411 // Live values in registers:
4412 // index: which element of the elements array we are adding to the result.
4413 // result_pos: the position to which we are currently copying characters.
4414 // elements: the FixedArray of strings we are joining.
4415 // scratch: array length.
4417 // Get string = array[index].
4418 __ movp(string, FieldOperand(elements, index,
4420 FixedArray::kHeaderSize));
4421 __ SmiToInteger32(string_length,
4422 FieldOperand(string, String::kLengthOffset));
4424 FieldOperand(string, SeqOneByteString::kHeaderSize));
4425 __ CopyBytes(result_pos, string, string_length);
4427 __ bind(&loop_1_condition);
4428 __ cmpl(index, scratch);
4429 __ j(less, &loop_1); // Loop while (index < array_length).
4432 // Generic bailout code used from several places.
4434 __ LoadRoot(rax, Heap::kUndefinedValueRootIndex);
4435 __ jmp(&return_result);
4438 // One-character separator case
4439 __ bind(&one_char_separator);
4440 // Get the separator one-byte character value.
4441 // Register "string" holds the separator.
4442 __ movzxbl(scratch, FieldOperand(string, SeqOneByteString::kHeaderSize));
4444 // Jump into the loop after the code that copies the separator, so the first
4445 // element is not preceded by a separator
4446 __ jmp(&loop_2_entry);
4447 // Loop condition: while (index < length).
4449 // Each iteration of the loop concatenates one string to the result.
4450 // Live values in registers:
4451 // elements: The FixedArray of strings we are joining.
4452 // index: which element of the elements array we are adding to the result.
4453 // result_pos: the position to which we are currently copying characters.
4454 // scratch: Separator character.
4456 // Copy the separator character to the result.
4457 __ movb(Operand(result_pos, 0), scratch);
4458 __ incp(result_pos);
4460 __ bind(&loop_2_entry);
4461 // Get string = array[index].
4462 __ movp(string, FieldOperand(elements, index,
4464 FixedArray::kHeaderSize));
4465 __ SmiToInteger32(string_length,
4466 FieldOperand(string, String::kLengthOffset));
4468 FieldOperand(string, SeqOneByteString::kHeaderSize));
4469 __ CopyBytes(result_pos, string, string_length);
4471 __ cmpl(index, array_length_operand);
4472 __ j(less, &loop_2); // End while (index < length).
4476 // Long separator case (separator is more than one character).
4477 __ bind(&long_separator);
4479 // Make elements point to end of elements array, and index
4480 // count from -array_length to zero, so we don't need to maintain
4482 __ movl(index, array_length_operand);
4483 __ leap(elements, FieldOperand(elements, index, times_pointer_size,
4484 FixedArray::kHeaderSize));
4487 // Replace separator string with pointer to its first character, and
4488 // make scratch be its length.
4489 __ movp(string, separator_operand);
4490 __ SmiToInteger32(scratch,
4491 FieldOperand(string, String::kLengthOffset));
4493 FieldOperand(string, SeqOneByteString::kHeaderSize));
4494 __ movp(separator_operand, string);
4496 // Jump into the loop after the code that copies the separator, so the first
4497 // element is not preceded by a separator
4498 __ jmp(&loop_3_entry);
4499 // Loop condition: while (index < length).
4501 // Each iteration of the loop concatenates one string to the result.
4502 // Live values in registers:
4503 // index: which element of the elements array we are adding to the result.
4504 // result_pos: the position to which we are currently copying characters.
4505 // scratch: Separator length.
4506 // separator_operand (rsp[0x10]): Address of first char of separator.
4508 // Copy the separator to the result.
4509 __ movp(string, separator_operand);
4510 __ movl(string_length, scratch);
4511 __ CopyBytes(result_pos, string, string_length, 2);
4513 __ bind(&loop_3_entry);
4514 // Get string = array[index].
4515 __ movp(string, Operand(elements, index, times_pointer_size, 0));
4516 __ SmiToInteger32(string_length,
4517 FieldOperand(string, String::kLengthOffset));
4519 FieldOperand(string, SeqOneByteString::kHeaderSize));
4520 __ CopyBytes(result_pos, string, string_length);
4522 __ j(not_equal, &loop_3); // Loop while (index < 0).
4525 __ movp(rax, result_operand);
4527 __ bind(&return_result);
4528 // Drop temp values from the stack, and restore context register.
4529 __ addp(rsp, Immediate(3 * kPointerSize));
4530 __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
4531 context()->Plug(rax);
4535 void FullCodeGenerator::EmitDebugIsActive(CallRuntime* expr) {
4536 DCHECK(expr->arguments()->length() == 0);
4537 ExternalReference debug_is_active =
4538 ExternalReference::debug_is_active_address(isolate());
4539 __ Move(kScratchRegister, debug_is_active);
4540 __ movzxbp(rax, Operand(kScratchRegister, 0));
4541 __ Integer32ToSmi(rax, rax);
4542 context()->Plug(rax);
4546 void FullCodeGenerator::EmitLoadJSRuntimeFunction(CallRuntime* expr) {
4547 // Push the builtins object as receiver.
4548 __ movp(rax, GlobalObjectOperand());
4549 __ Push(FieldOperand(rax, GlobalObject::kBuiltinsOffset));
4551 // Load the function from the receiver.
4552 __ movp(LoadDescriptor::ReceiverRegister(), Operand(rsp, 0));
4553 __ Move(LoadDescriptor::NameRegister(), expr->name());
4554 __ Move(LoadDescriptor::SlotRegister(),
4555 SmiFromSlot(expr->CallRuntimeFeedbackSlot()));
4556 CallLoadIC(NOT_INSIDE_TYPEOF);
4560 void FullCodeGenerator::EmitCallJSRuntimeFunction(CallRuntime* expr) {
4561 ZoneList<Expression*>* args = expr->arguments();
4562 int arg_count = args->length();
4564 SetCallPosition(expr, arg_count);
4565 CallFunctionStub stub(isolate(), arg_count, NO_CALL_FUNCTION_FLAGS);
4566 __ movp(rdi, Operand(rsp, (arg_count + 1) * kPointerSize));
4571 void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) {
4572 ZoneList<Expression*>* args = expr->arguments();
4573 int arg_count = args->length();
4575 if (expr->is_jsruntime()) {
4576 Comment cmnt(masm_, "[ CallRuntime");
4578 EmitLoadJSRuntimeFunction(expr);
4580 // Push the target function under the receiver.
4581 __ Push(Operand(rsp, 0));
4582 __ movp(Operand(rsp, kPointerSize), rax);
4584 // Push the arguments ("left-to-right").
4585 for (int i = 0; i < arg_count; i++) {
4586 VisitForStackValue(args->at(i));
4589 PrepareForBailoutForId(expr->CallId(), NO_REGISTERS);
4590 EmitCallJSRuntimeFunction(expr);
4592 // Restore context register.
4593 __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
4594 context()->DropAndPlug(1, rax);
4597 const Runtime::Function* function = expr->function();
4598 switch (function->function_id) {
4599 #define CALL_INTRINSIC_GENERATOR(Name) \
4600 case Runtime::kInline##Name: { \
4601 Comment cmnt(masm_, "[ Inline" #Name); \
4602 return Emit##Name(expr); \
4604 FOR_EACH_FULL_CODE_INTRINSIC(CALL_INTRINSIC_GENERATOR)
4605 #undef CALL_INTRINSIC_GENERATOR
4607 Comment cmnt(masm_, "[ CallRuntime for unhandled intrinsic");
4608 // Push the arguments ("left-to-right").
4609 for (int i = 0; i < arg_count; i++) {
4610 VisitForStackValue(args->at(i));
4613 // Call the C runtime.
4614 PrepareForBailoutForId(expr->CallId(), NO_REGISTERS);
4615 __ CallRuntime(function, arg_count);
4616 context()->Plug(rax);
4623 void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) {
4624 switch (expr->op()) {
4625 case Token::DELETE: {
4626 Comment cmnt(masm_, "[ UnaryOperation (DELETE)");
4627 Property* property = expr->expression()->AsProperty();
4628 VariableProxy* proxy = expr->expression()->AsVariableProxy();
4630 if (property != NULL) {
4631 VisitForStackValue(property->obj());
4632 VisitForStackValue(property->key());
4633 __ Push(Smi::FromInt(language_mode()));
4634 __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
4635 context()->Plug(rax);
4636 } else if (proxy != NULL) {
4637 Variable* var = proxy->var();
4638 // Delete of an unqualified identifier is disallowed in strict mode but
4639 // "delete this" is allowed.
4640 bool is_this = var->HasThisName(isolate());
4641 DCHECK(is_sloppy(language_mode()) || is_this);
4642 if (var->IsUnallocatedOrGlobalSlot()) {
4643 __ Push(GlobalObjectOperand());
4644 __ Push(var->name());
4645 __ Push(Smi::FromInt(SLOPPY));
4646 __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
4647 context()->Plug(rax);
4648 } else if (var->IsStackAllocated() || var->IsContextSlot()) {
4649 // Result of deleting non-global variables is false. 'this' is
4650 // not really a variable, though we implement it as one. The
4651 // subexpression does not have side effects.
4652 context()->Plug(is_this);
4654 // Non-global variable. Call the runtime to try to delete from the
4655 // context where the variable was introduced.
4656 __ Push(context_register());
4657 __ Push(var->name());
4658 __ CallRuntime(Runtime::kDeleteLookupSlot, 2);
4659 context()->Plug(rax);
4662 // Result of deleting non-property, non-variable reference is true.
4663 // The subexpression may have side effects.
4664 VisitForEffect(expr->expression());
4665 context()->Plug(true);
4671 Comment cmnt(masm_, "[ UnaryOperation (VOID)");
4672 VisitForEffect(expr->expression());
4673 context()->Plug(Heap::kUndefinedValueRootIndex);
4678 Comment cmnt(masm_, "[ UnaryOperation (NOT)");
4679 if (context()->IsEffect()) {
4680 // Unary NOT has no side effects so it's only necessary to visit the
4681 // subexpression. Match the optimizing compiler by not branching.
4682 VisitForEffect(expr->expression());
4683 } else if (context()->IsTest()) {
4684 const TestContext* test = TestContext::cast(context());
4685 // The labels are swapped for the recursive call.
4686 VisitForControl(expr->expression(),
4687 test->false_label(),
4689 test->fall_through());
4690 context()->Plug(test->true_label(), test->false_label());
4692 // We handle value contexts explicitly rather than simply visiting
4693 // for control and plugging the control flow into the context,
4694 // because we need to prepare a pair of extra administrative AST ids
4695 // for the optimizing compiler.
4696 DCHECK(context()->IsAccumulatorValue() || context()->IsStackValue());
4697 Label materialize_true, materialize_false, done;
4698 VisitForControl(expr->expression(),
4702 __ bind(&materialize_true);
4703 PrepareForBailoutForId(expr->MaterializeTrueId(), NO_REGISTERS);
4704 if (context()->IsAccumulatorValue()) {
4705 __ LoadRoot(rax, Heap::kTrueValueRootIndex);
4707 __ PushRoot(Heap::kTrueValueRootIndex);
4709 __ jmp(&done, Label::kNear);
4710 __ bind(&materialize_false);
4711 PrepareForBailoutForId(expr->MaterializeFalseId(), NO_REGISTERS);
4712 if (context()->IsAccumulatorValue()) {
4713 __ LoadRoot(rax, Heap::kFalseValueRootIndex);
4715 __ PushRoot(Heap::kFalseValueRootIndex);
4722 case Token::TYPEOF: {
4723 Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)");
4725 AccumulatorValueContext context(this);
4726 VisitForTypeofValue(expr->expression());
4729 TypeofStub typeof_stub(isolate());
4730 __ CallStub(&typeof_stub);
4731 context()->Plug(rax);
4741 void FullCodeGenerator::VisitCountOperation(CountOperation* expr) {
4742 DCHECK(expr->expression()->IsValidReferenceExpressionOrThis());
4744 Comment cmnt(masm_, "[ CountOperation");
4746 Property* prop = expr->expression()->AsProperty();
4747 LhsKind assign_type = Property::GetAssignType(prop);
4749 // Evaluate expression and get value.
4750 if (assign_type == VARIABLE) {
4751 DCHECK(expr->expression()->AsVariableProxy()->var() != NULL);
4752 AccumulatorValueContext context(this);
4753 EmitVariableLoad(expr->expression()->AsVariableProxy());
4755 // Reserve space for result of postfix operation.
4756 if (expr->is_postfix() && !context()->IsEffect()) {
4757 __ Push(Smi::FromInt(0));
4759 switch (assign_type) {
4760 case NAMED_PROPERTY: {
4761 VisitForStackValue(prop->obj());
4762 __ movp(LoadDescriptor::ReceiverRegister(), Operand(rsp, 0));
4763 EmitNamedPropertyLoad(prop);
4767 case NAMED_SUPER_PROPERTY: {
4768 VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
4769 VisitForAccumulatorValue(
4770 prop->obj()->AsSuperPropertyReference()->home_object());
4771 __ Push(result_register());
4772 __ Push(MemOperand(rsp, kPointerSize));
4773 __ Push(result_register());
4774 EmitNamedSuperPropertyLoad(prop);
4778 case KEYED_SUPER_PROPERTY: {
4779 VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
4781 prop->obj()->AsSuperPropertyReference()->home_object());
4782 VisitForAccumulatorValue(prop->key());
4783 __ Push(result_register());
4784 __ Push(MemOperand(rsp, 2 * kPointerSize));
4785 __ Push(MemOperand(rsp, 2 * kPointerSize));
4786 __ Push(result_register());
4787 EmitKeyedSuperPropertyLoad(prop);
4791 case KEYED_PROPERTY: {
4792 VisitForStackValue(prop->obj());
4793 VisitForStackValue(prop->key());
4794 // Leave receiver on stack
4795 __ movp(LoadDescriptor::ReceiverRegister(), Operand(rsp, kPointerSize));
4796 // Copy of key, needed for later store.
4797 __ movp(LoadDescriptor::NameRegister(), Operand(rsp, 0));
4798 EmitKeyedPropertyLoad(prop);
4807 // We need a second deoptimization point after loading the value
4808 // in case evaluating the property load my have a side effect.
4809 if (assign_type == VARIABLE) {
4810 PrepareForBailout(expr->expression(), TOS_REG);
4812 PrepareForBailoutForId(prop->LoadId(), TOS_REG);
4815 // Inline smi case if we are in a loop.
4816 Label done, stub_call;
4817 JumpPatchSite patch_site(masm_);
4818 if (ShouldInlineSmiCase(expr->op())) {
4820 patch_site.EmitJumpIfNotSmi(rax, &slow, Label::kNear);
4822 // Save result for postfix expressions.
4823 if (expr->is_postfix()) {
4824 if (!context()->IsEffect()) {
4825 // Save the result on the stack. If we have a named or keyed property
4826 // we store the result under the receiver that is currently on top
4828 switch (assign_type) {
4832 case NAMED_PROPERTY:
4833 __ movp(Operand(rsp, kPointerSize), rax);
4835 case NAMED_SUPER_PROPERTY:
4836 __ movp(Operand(rsp, 2 * kPointerSize), rax);
4838 case KEYED_PROPERTY:
4839 __ movp(Operand(rsp, 2 * kPointerSize), rax);
4841 case KEYED_SUPER_PROPERTY:
4842 __ movp(Operand(rsp, 3 * kPointerSize), rax);
4848 SmiOperationConstraints constraints =
4849 SmiOperationConstraint::kPreserveSourceRegister |
4850 SmiOperationConstraint::kBailoutOnNoOverflow;
4851 if (expr->op() == Token::INC) {
4852 __ SmiAddConstant(rax, rax, Smi::FromInt(1), constraints, &done,
4855 __ SmiSubConstant(rax, rax, Smi::FromInt(1), constraints, &done,
4858 __ jmp(&stub_call, Label::kNear);
4861 if (!is_strong(language_mode())) {
4862 ToNumberStub convert_stub(isolate());
4863 __ CallStub(&convert_stub);
4864 PrepareForBailoutForId(expr->ToNumberId(), TOS_REG);
4867 // Save result for postfix expressions.
4868 if (expr->is_postfix()) {
4869 if (!context()->IsEffect()) {
4870 // Save the result on the stack. If we have a named or keyed property
4871 // we store the result under the receiver that is currently on top
4873 switch (assign_type) {
4877 case NAMED_PROPERTY:
4878 __ movp(Operand(rsp, kPointerSize), rax);
4880 case NAMED_SUPER_PROPERTY:
4881 __ movp(Operand(rsp, 2 * kPointerSize), rax);
4883 case KEYED_PROPERTY:
4884 __ movp(Operand(rsp, 2 * kPointerSize), rax);
4886 case KEYED_SUPER_PROPERTY:
4887 __ movp(Operand(rsp, 3 * kPointerSize), rax);
4893 SetExpressionPosition(expr);
4895 // Call stub for +1/-1.
4896 __ bind(&stub_call);
4898 __ Move(rax, Smi::FromInt(1));
4899 Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), expr->binary_op(),
4900 strength(language_mode())).code();
4901 CallIC(code, expr->CountBinOpFeedbackId());
4902 patch_site.EmitPatchInfo();
4905 if (is_strong(language_mode())) {
4906 PrepareForBailoutForId(expr->ToNumberId(), TOS_REG);
4908 // Store the value returned in rax.
4909 switch (assign_type) {
4911 if (expr->is_postfix()) {
4912 // Perform the assignment as if via '='.
4913 { EffectContext context(this);
4914 EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
4915 Token::ASSIGN, expr->CountSlot());
4916 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4919 // For all contexts except kEffect: We have the result on
4920 // top of the stack.
4921 if (!context()->IsEffect()) {
4922 context()->PlugTOS();
4925 // Perform the assignment as if via '='.
4926 EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
4927 Token::ASSIGN, expr->CountSlot());
4928 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4929 context()->Plug(rax);
4932 case NAMED_PROPERTY: {
4933 __ Move(StoreDescriptor::NameRegister(),
4934 prop->key()->AsLiteral()->value());
4935 __ Pop(StoreDescriptor::ReceiverRegister());
4936 if (FLAG_vector_stores) {
4937 EmitLoadStoreICSlot(expr->CountSlot());
4940 CallStoreIC(expr->CountStoreFeedbackId());
4942 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4943 if (expr->is_postfix()) {
4944 if (!context()->IsEffect()) {
4945 context()->PlugTOS();
4948 context()->Plug(rax);
4952 case NAMED_SUPER_PROPERTY: {
4953 EmitNamedSuperPropertyStore(prop);
4954 if (expr->is_postfix()) {
4955 if (!context()->IsEffect()) {
4956 context()->PlugTOS();
4959 context()->Plug(rax);
4963 case KEYED_SUPER_PROPERTY: {
4964 EmitKeyedSuperPropertyStore(prop);
4965 if (expr->is_postfix()) {
4966 if (!context()->IsEffect()) {
4967 context()->PlugTOS();
4970 context()->Plug(rax);
4974 case KEYED_PROPERTY: {
4975 __ Pop(StoreDescriptor::NameRegister());
4976 __ Pop(StoreDescriptor::ReceiverRegister());
4978 CodeFactory::KeyedStoreIC(isolate(), language_mode()).code();
4979 if (FLAG_vector_stores) {
4980 EmitLoadStoreICSlot(expr->CountSlot());
4983 CallIC(ic, expr->CountStoreFeedbackId());
4985 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4986 if (expr->is_postfix()) {
4987 if (!context()->IsEffect()) {
4988 context()->PlugTOS();
4991 context()->Plug(rax);
4999 void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr,
5000 Expression* sub_expr,
5001 Handle<String> check) {
5002 Label materialize_true, materialize_false;
5003 Label* if_true = NULL;
5004 Label* if_false = NULL;
5005 Label* fall_through = NULL;
5006 context()->PrepareTest(&materialize_true, &materialize_false,
5007 &if_true, &if_false, &fall_through);
5009 { AccumulatorValueContext context(this);
5010 VisitForTypeofValue(sub_expr);
5012 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
5014 Factory* factory = isolate()->factory();
5015 if (String::Equals(check, factory->number_string())) {
5016 __ JumpIfSmi(rax, if_true);
5017 __ movp(rax, FieldOperand(rax, HeapObject::kMapOffset));
5018 __ CompareRoot(rax, Heap::kHeapNumberMapRootIndex);
5019 Split(equal, if_true, if_false, fall_through);
5020 } else if (String::Equals(check, factory->string_string())) {
5021 __ JumpIfSmi(rax, if_false);
5022 // Check for undetectable objects => false.
5023 __ CmpObjectType(rax, FIRST_NONSTRING_TYPE, rdx);
5024 __ j(above_equal, if_false);
5025 __ testb(FieldOperand(rdx, Map::kBitFieldOffset),
5026 Immediate(1 << Map::kIsUndetectable));
5027 Split(zero, if_true, if_false, fall_through);
5028 } else if (String::Equals(check, factory->symbol_string())) {
5029 __ JumpIfSmi(rax, if_false);
5030 __ CmpObjectType(rax, SYMBOL_TYPE, rdx);
5031 Split(equal, if_true, if_false, fall_through);
5032 } else if (String::Equals(check, factory->float32x4_string())) {
5033 __ JumpIfSmi(rax, if_false);
5034 __ CmpObjectType(rax, FLOAT32X4_TYPE, rdx);
5035 Split(equal, if_true, if_false, fall_through);
5036 } else if (String::Equals(check, factory->boolean_string())) {
5037 __ CompareRoot(rax, Heap::kTrueValueRootIndex);
5038 __ j(equal, if_true);
5039 __ CompareRoot(rax, Heap::kFalseValueRootIndex);
5040 Split(equal, if_true, if_false, fall_through);
5041 } else if (String::Equals(check, factory->undefined_string())) {
5042 __ CompareRoot(rax, Heap::kUndefinedValueRootIndex);
5043 __ j(equal, if_true);
5044 __ JumpIfSmi(rax, if_false);
5045 // Check for undetectable objects => true.
5046 __ movp(rdx, FieldOperand(rax, HeapObject::kMapOffset));
5047 __ testb(FieldOperand(rdx, Map::kBitFieldOffset),
5048 Immediate(1 << Map::kIsUndetectable));
5049 Split(not_zero, if_true, if_false, fall_through);
5050 } else if (String::Equals(check, factory->function_string())) {
5051 __ JumpIfSmi(rax, if_false);
5052 STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
5053 __ CmpObjectType(rax, JS_FUNCTION_TYPE, rdx);
5054 __ j(equal, if_true);
5055 __ CmpInstanceType(rdx, JS_FUNCTION_PROXY_TYPE);
5056 Split(equal, if_true, if_false, fall_through);
5057 } else if (String::Equals(check, factory->object_string())) {
5058 __ JumpIfSmi(rax, if_false);
5059 __ CompareRoot(rax, Heap::kNullValueRootIndex);
5060 __ j(equal, if_true);
5061 __ CmpObjectType(rax, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE, rdx);
5062 __ j(below, if_false);
5063 __ CmpInstanceType(rdx, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
5064 __ j(above, if_false);
5065 // Check for undetectable objects => false.
5066 __ testb(FieldOperand(rdx, Map::kBitFieldOffset),
5067 Immediate(1 << Map::kIsUndetectable));
5068 Split(zero, if_true, if_false, fall_through);
5070 if (if_false != fall_through) __ jmp(if_false);
5072 context()->Plug(if_true, if_false);
5076 void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) {
5077 Comment cmnt(masm_, "[ CompareOperation");
5078 SetExpressionPosition(expr);
5080 // First we try a fast inlined version of the compare when one of
5081 // the operands is a literal.
5082 if (TryLiteralCompare(expr)) return;
5084 // Always perform the comparison for its control flow. Pack the result
5085 // into the expression's context after the comparison is performed.
5086 Label materialize_true, materialize_false;
5087 Label* if_true = NULL;
5088 Label* if_false = NULL;
5089 Label* fall_through = NULL;
5090 context()->PrepareTest(&materialize_true, &materialize_false,
5091 &if_true, &if_false, &fall_through);
5093 Token::Value op = expr->op();
5094 VisitForStackValue(expr->left());
5097 VisitForStackValue(expr->right());
5098 __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION);
5099 PrepareForBailoutBeforeSplit(expr, false, NULL, NULL);
5100 __ CompareRoot(rax, Heap::kTrueValueRootIndex);
5101 Split(equal, if_true, if_false, fall_through);
5104 case Token::INSTANCEOF: {
5105 VisitForStackValue(expr->right());
5106 InstanceofStub stub(isolate(), InstanceofStub::kNoFlags);
5108 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
5110 // The stub returns 0 for true.
5111 Split(zero, if_true, if_false, fall_through);
5116 VisitForAccumulatorValue(expr->right());
5117 Condition cc = CompareIC::ComputeCondition(op);
5120 bool inline_smi_code = ShouldInlineSmiCase(op);
5121 JumpPatchSite patch_site(masm_);
5122 if (inline_smi_code) {
5126 patch_site.EmitJumpIfNotSmi(rcx, &slow_case, Label::kNear);
5128 Split(cc, if_true, if_false, NULL);
5129 __ bind(&slow_case);
5132 Handle<Code> ic = CodeFactory::CompareIC(
5133 isolate(), op, strength(language_mode())).code();
5134 CallIC(ic, expr->CompareOperationFeedbackId());
5135 patch_site.EmitPatchInfo();
5137 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
5139 Split(cc, if_true, if_false, fall_through);
5143 // Convert the result of the comparison into one expected for this
5144 // expression's context.
5145 context()->Plug(if_true, if_false);
5149 void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr,
5150 Expression* sub_expr,
5152 Label materialize_true, materialize_false;
5153 Label* if_true = NULL;
5154 Label* if_false = NULL;
5155 Label* fall_through = NULL;
5156 context()->PrepareTest(&materialize_true, &materialize_false,
5157 &if_true, &if_false, &fall_through);
5159 VisitForAccumulatorValue(sub_expr);
5160 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
5161 if (expr->op() == Token::EQ_STRICT) {
5162 Heap::RootListIndex nil_value = nil == kNullValue ?
5163 Heap::kNullValueRootIndex :
5164 Heap::kUndefinedValueRootIndex;
5165 __ CompareRoot(rax, nil_value);
5166 Split(equal, if_true, if_false, fall_through);
5168 Handle<Code> ic = CompareNilICStub::GetUninitialized(isolate(), nil);
5169 CallIC(ic, expr->CompareOperationFeedbackId());
5171 Split(not_zero, if_true, if_false, fall_through);
5173 context()->Plug(if_true, if_false);
5177 void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) {
5178 __ movp(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
5179 context()->Plug(rax);
5183 Register FullCodeGenerator::result_register() {
5188 Register FullCodeGenerator::context_register() {
5193 void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) {
5194 DCHECK(IsAligned(frame_offset, kPointerSize));
5195 __ movp(Operand(rbp, frame_offset), value);
5199 void FullCodeGenerator::LoadContextField(Register dst, int context_index) {
5200 __ movp(dst, ContextOperand(rsi, context_index));
5204 void FullCodeGenerator::PushFunctionArgumentForContextAllocation() {
5205 Scope* closure_scope = scope()->ClosureScope();
5206 if (closure_scope->is_script_scope() ||
5207 closure_scope->is_module_scope()) {
5208 // Contexts nested in the native context have a canonical empty function
5209 // as their closure, not the anonymous closure containing the global
5210 // code. Pass a smi sentinel and let the runtime look up the empty
5212 __ Push(Smi::FromInt(0));
5213 } else if (closure_scope->is_eval_scope()) {
5214 // Contexts created by a call to eval have the same closure as the
5215 // context calling eval, not the anonymous closure containing the eval
5216 // code. Fetch it from the context.
5217 __ Push(ContextOperand(rsi, Context::CLOSURE_INDEX));
5219 DCHECK(closure_scope->is_function_scope());
5220 __ Push(Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
5225 // ----------------------------------------------------------------------------
5226 // Non-local control flow support.
5229 void FullCodeGenerator::EnterFinallyBlock() {
5230 DCHECK(!result_register().is(rdx));
5231 DCHECK(!result_register().is(rcx));
5232 // Cook return address on top of stack (smi encoded Code* delta)
5233 __ PopReturnAddressTo(rdx);
5234 __ Move(rcx, masm_->CodeObject());
5236 __ Integer32ToSmi(rdx, rdx);
5239 // Store result register while executing finally block.
5240 __ Push(result_register());
5242 // Store pending message while executing finally block.
5243 ExternalReference pending_message_obj =
5244 ExternalReference::address_of_pending_message_obj(isolate());
5245 __ Load(rdx, pending_message_obj);
5248 ClearPendingMessage();
5252 void FullCodeGenerator::ExitFinallyBlock() {
5253 DCHECK(!result_register().is(rdx));
5254 DCHECK(!result_register().is(rcx));
5255 // Restore pending message from stack.
5257 ExternalReference pending_message_obj =
5258 ExternalReference::address_of_pending_message_obj(isolate());
5259 __ Store(pending_message_obj, rdx);
5261 // Restore result register from stack.
5262 __ Pop(result_register());
5264 // Uncook return address.
5266 __ SmiToInteger32(rdx, rdx);
5267 __ Move(rcx, masm_->CodeObject());
5273 void FullCodeGenerator::ClearPendingMessage() {
5274 DCHECK(!result_register().is(rdx));
5275 ExternalReference pending_message_obj =
5276 ExternalReference::address_of_pending_message_obj(isolate());
5277 __ LoadRoot(rdx, Heap::kTheHoleValueRootIndex);
5278 __ Store(pending_message_obj, rdx);
5282 void FullCodeGenerator::EmitLoadStoreICSlot(FeedbackVectorICSlot slot) {
5283 DCHECK(FLAG_vector_stores && !slot.IsInvalid());
5284 __ Move(VectorStoreICTrampolineDescriptor::SlotRegister(), SmiFromSlot(slot));
5291 static const byte kJnsInstruction = 0x79;
5292 static const byte kNopByteOne = 0x66;
5293 static const byte kNopByteTwo = 0x90;
5295 static const byte kCallInstruction = 0xe8;
5299 void BackEdgeTable::PatchAt(Code* unoptimized_code,
5301 BackEdgeState target_state,
5302 Code* replacement_code) {
5303 Address call_target_address = pc - kIntSize;
5304 Address jns_instr_address = call_target_address - 3;
5305 Address jns_offset_address = call_target_address - 2;
5307 switch (target_state) {
5309 // sub <profiling_counter>, <delta> ;; Not changed
5311 // call <interrupt stub>
5313 *jns_instr_address = kJnsInstruction;
5314 *jns_offset_address = kJnsOffset;
5316 case ON_STACK_REPLACEMENT:
5317 case OSR_AFTER_STACK_CHECK:
5318 // sub <profiling_counter>, <delta> ;; Not changed
5321 // call <on-stack replacment>
5323 *jns_instr_address = kNopByteOne;
5324 *jns_offset_address = kNopByteTwo;
5328 Assembler::set_target_address_at(call_target_address,
5330 replacement_code->entry());
5331 unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
5332 unoptimized_code, call_target_address, replacement_code);
5336 BackEdgeTable::BackEdgeState BackEdgeTable::GetBackEdgeState(
5338 Code* unoptimized_code,
5340 Address call_target_address = pc - kIntSize;
5341 Address jns_instr_address = call_target_address - 3;
5342 DCHECK_EQ(kCallInstruction, *(call_target_address - 1));
5344 if (*jns_instr_address == kJnsInstruction) {
5345 DCHECK_EQ(kJnsOffset, *(call_target_address - 2));
5346 DCHECK_EQ(isolate->builtins()->InterruptCheck()->entry(),
5347 Assembler::target_address_at(call_target_address,
5352 DCHECK_EQ(kNopByteOne, *jns_instr_address);
5353 DCHECK_EQ(kNopByteTwo, *(call_target_address - 2));
5355 if (Assembler::target_address_at(call_target_address,
5356 unoptimized_code) ==
5357 isolate->builtins()->OnStackReplacement()->entry()) {
5358 return ON_STACK_REPLACEMENT;
5361 DCHECK_EQ(isolate->builtins()->OsrAfterStackCheck()->entry(),
5362 Assembler::target_address_at(call_target_address,
5364 return OSR_AFTER_STACK_CHECK;
5368 } // namespace internal
5371 #endif // V8_TARGET_ARCH_X64