1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "src/factory.h"
7 #include "src/allocation-site-scopes.h"
8 #include "src/base/bits.h"
9 #include "src/bootstrapper.h"
10 #include "src/conversions.h"
11 #include "src/macro-assembler.h"
18 Handle<T> Factory::New(Handle<Map> map, AllocationSpace space) {
21 isolate()->heap()->Allocate(*map, space),
27 Handle<T> Factory::New(Handle<Map> map,
28 AllocationSpace space,
29 Handle<AllocationSite> allocation_site) {
32 isolate()->heap()->Allocate(*map, space, *allocation_site),
37 Handle<HeapObject> Factory::NewFillerObject(int size,
39 AllocationSpace space) {
42 isolate()->heap()->AllocateFillerObject(size, double_align, space),
47 Handle<Box> Factory::NewBox(Handle<Object> value) {
48 Handle<Box> result = Handle<Box>::cast(NewStruct(BOX_TYPE));
49 result->set_value(*value);
54 Handle<PrototypeInfo> Factory::NewPrototypeInfo() {
55 Handle<PrototypeInfo> result =
56 Handle<PrototypeInfo>::cast(NewStruct(PROTOTYPE_INFO_TYPE));
57 result->set_prototype_users(WeakFixedArray::Empty());
58 result->set_registry_slot(PrototypeInfo::UNREGISTERED);
59 result->set_validity_cell(Smi::FromInt(0));
60 result->set_constructor_name(Smi::FromInt(0));
65 Handle<Oddball> Factory::NewOddball(Handle<Map> map, const char* to_string,
66 Handle<Object> to_number,
67 const char* type_of, byte kind) {
68 Handle<Oddball> oddball = New<Oddball>(map, OLD_SPACE);
69 Oddball::Initialize(isolate(), oddball, to_string, to_number, type_of, kind);
74 Handle<FixedArray> Factory::NewFixedArray(int size, PretenureFlag pretenure) {
78 isolate()->heap()->AllocateFixedArray(size, pretenure),
83 Handle<FixedArray> Factory::NewFixedArrayWithHoles(int size,
84 PretenureFlag pretenure) {
88 isolate()->heap()->AllocateFixedArrayWithFiller(size,
95 Handle<FixedArray> Factory::NewUninitializedFixedArray(int size) {
98 isolate()->heap()->AllocateUninitializedFixedArray(size),
103 Handle<FixedArrayBase> Factory::NewFixedDoubleArray(int size,
104 PretenureFlag pretenure) {
108 isolate()->heap()->AllocateUninitializedFixedDoubleArray(size, pretenure),
113 Handle<FixedArrayBase> Factory::NewFixedDoubleArrayWithHoles(
115 PretenureFlag pretenure) {
117 Handle<FixedArrayBase> array = NewFixedDoubleArray(size, pretenure);
119 Handle<FixedDoubleArray> double_array =
120 Handle<FixedDoubleArray>::cast(array);
121 for (int i = 0; i < size; ++i) {
122 double_array->set_the_hole(i);
129 Handle<OrderedHashSet> Factory::NewOrderedHashSet() {
130 return OrderedHashSet::Allocate(isolate(), OrderedHashSet::kMinCapacity);
134 Handle<OrderedHashMap> Factory::NewOrderedHashMap() {
135 return OrderedHashMap::Allocate(isolate(), OrderedHashMap::kMinCapacity);
139 Handle<AccessorPair> Factory::NewAccessorPair() {
140 Handle<AccessorPair> accessors =
141 Handle<AccessorPair>::cast(NewStruct(ACCESSOR_PAIR_TYPE));
142 accessors->set_getter(*the_hole_value(), SKIP_WRITE_BARRIER);
143 accessors->set_setter(*the_hole_value(), SKIP_WRITE_BARRIER);
148 Handle<TypeFeedbackInfo> Factory::NewTypeFeedbackInfo() {
149 Handle<TypeFeedbackInfo> info =
150 Handle<TypeFeedbackInfo>::cast(NewStruct(TYPE_FEEDBACK_INFO_TYPE));
151 info->initialize_storage();
156 // Internalized strings are created in the old generation (data space).
157 Handle<String> Factory::InternalizeUtf8String(Vector<const char> string) {
158 Utf8StringKey key(string, isolate()->heap()->HashSeed());
159 return InternalizeStringWithKey(&key);
163 // Internalized strings are created in the old generation (data space).
164 Handle<String> Factory::InternalizeString(Handle<String> string) {
165 if (string->IsInternalizedString()) return string;
166 return StringTable::LookupString(isolate(), string);
170 Handle<String> Factory::InternalizeOneByteString(Vector<const uint8_t> string) {
171 OneByteStringKey key(string, isolate()->heap()->HashSeed());
172 return InternalizeStringWithKey(&key);
176 Handle<String> Factory::InternalizeOneByteString(
177 Handle<SeqOneByteString> string, int from, int length) {
178 SeqOneByteSubStringKey key(string, from, length);
179 return InternalizeStringWithKey(&key);
183 Handle<String> Factory::InternalizeTwoByteString(Vector<const uc16> string) {
184 TwoByteStringKey key(string, isolate()->heap()->HashSeed());
185 return InternalizeStringWithKey(&key);
189 template<class StringTableKey>
190 Handle<String> Factory::InternalizeStringWithKey(StringTableKey* key) {
191 return StringTable::LookupKey(isolate(), key);
195 MaybeHandle<String> Factory::NewStringFromOneByte(Vector<const uint8_t> string,
196 PretenureFlag pretenure) {
197 int length = string.length();
198 if (length == 1) return LookupSingleCharacterStringFromCode(string[0]);
199 Handle<SeqOneByteString> result;
200 ASSIGN_RETURN_ON_EXCEPTION(
203 NewRawOneByteString(string.length(), pretenure),
206 DisallowHeapAllocation no_gc;
207 // Copy the characters into the new object.
208 CopyChars(SeqOneByteString::cast(*result)->GetChars(),
214 MaybeHandle<String> Factory::NewStringFromUtf8(Vector<const char> string,
215 PretenureFlag pretenure) {
216 // Check for ASCII first since this is the common case.
217 const char* start = string.start();
218 int length = string.length();
219 int non_ascii_start = String::NonAsciiStart(start, length);
220 if (non_ascii_start >= length) {
221 // If the string is ASCII, we do not need to convert the characters
222 // since UTF8 is backwards compatible with ASCII.
223 return NewStringFromOneByte(Vector<const uint8_t>::cast(string), pretenure);
226 // Non-ASCII and we need to decode.
227 Access<UnicodeCache::Utf8Decoder>
228 decoder(isolate()->unicode_cache()->utf8_decoder());
229 decoder->Reset(string.start() + non_ascii_start,
230 length - non_ascii_start);
231 int utf16_length = static_cast<int>(decoder->Utf16Length());
232 DCHECK(utf16_length > 0);
234 Handle<SeqTwoByteString> result;
235 ASSIGN_RETURN_ON_EXCEPTION(
237 NewRawTwoByteString(non_ascii_start + utf16_length, pretenure),
239 // Copy ASCII portion.
240 uint16_t* data = result->GetChars();
241 const char* ascii_data = string.start();
242 for (int i = 0; i < non_ascii_start; i++) {
243 *data++ = *ascii_data++;
245 // Now write the remainder.
246 decoder->WriteUtf16(data, utf16_length);
251 MaybeHandle<String> Factory::NewStringFromTwoByte(Vector<const uc16> string,
252 PretenureFlag pretenure) {
253 int length = string.length();
254 const uc16* start = string.start();
255 if (String::IsOneByte(start, length)) {
256 if (length == 1) return LookupSingleCharacterStringFromCode(string[0]);
257 Handle<SeqOneByteString> result;
258 ASSIGN_RETURN_ON_EXCEPTION(
261 NewRawOneByteString(length, pretenure),
263 CopyChars(result->GetChars(), start, length);
266 Handle<SeqTwoByteString> result;
267 ASSIGN_RETURN_ON_EXCEPTION(
270 NewRawTwoByteString(length, pretenure),
272 CopyChars(result->GetChars(), start, length);
278 Handle<String> Factory::NewInternalizedStringFromUtf8(Vector<const char> str,
280 uint32_t hash_field) {
283 isolate()->heap()->AllocateInternalizedStringFromUtf8(
284 str, chars, hash_field),
289 MUST_USE_RESULT Handle<String> Factory::NewOneByteInternalizedString(
290 Vector<const uint8_t> str,
291 uint32_t hash_field) {
294 isolate()->heap()->AllocateOneByteInternalizedString(str, hash_field),
299 MUST_USE_RESULT Handle<String> Factory::NewOneByteInternalizedSubString(
300 Handle<SeqOneByteString> string, int offset, int length,
301 uint32_t hash_field) {
303 isolate(), isolate()->heap()->AllocateOneByteInternalizedString(
304 Vector<const uint8_t>(string->GetChars() + offset, length),
310 MUST_USE_RESULT Handle<String> Factory::NewTwoByteInternalizedString(
311 Vector<const uc16> str,
312 uint32_t hash_field) {
315 isolate()->heap()->AllocateTwoByteInternalizedString(str, hash_field),
320 Handle<String> Factory::NewInternalizedStringImpl(
321 Handle<String> string, int chars, uint32_t hash_field) {
324 isolate()->heap()->AllocateInternalizedStringImpl(
325 *string, chars, hash_field),
330 MaybeHandle<Map> Factory::InternalizedStringMapForString(
331 Handle<String> string) {
332 // If the string is in new space it cannot be used as internalized.
333 if (isolate()->heap()->InNewSpace(*string)) return MaybeHandle<Map>();
335 // Find the corresponding internalized string map for strings.
336 switch (string->map()->instance_type()) {
337 case STRING_TYPE: return internalized_string_map();
338 case ONE_BYTE_STRING_TYPE:
339 return one_byte_internalized_string_map();
340 case EXTERNAL_STRING_TYPE: return external_internalized_string_map();
341 case EXTERNAL_ONE_BYTE_STRING_TYPE:
342 return external_one_byte_internalized_string_map();
343 case EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
344 return external_internalized_string_with_one_byte_data_map();
345 case SHORT_EXTERNAL_STRING_TYPE:
346 return short_external_internalized_string_map();
347 case SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE:
348 return short_external_one_byte_internalized_string_map();
349 case SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
350 return short_external_internalized_string_with_one_byte_data_map();
351 default: return MaybeHandle<Map>(); // No match found.
356 MaybeHandle<SeqOneByteString> Factory::NewRawOneByteString(
357 int length, PretenureFlag pretenure) {
358 if (length > String::kMaxLength || length < 0) {
359 THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), SeqOneByteString);
363 isolate()->heap()->AllocateRawOneByteString(length, pretenure),
368 MaybeHandle<SeqTwoByteString> Factory::NewRawTwoByteString(
369 int length, PretenureFlag pretenure) {
370 if (length > String::kMaxLength || length < 0) {
371 THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), SeqTwoByteString);
375 isolate()->heap()->AllocateRawTwoByteString(length, pretenure),
380 Handle<String> Factory::LookupSingleCharacterStringFromCode(uint32_t code) {
381 if (code <= String::kMaxOneByteCharCodeU) {
383 DisallowHeapAllocation no_allocation;
384 Object* value = single_character_string_cache()->get(code);
385 if (value != *undefined_value()) {
386 return handle(String::cast(value), isolate());
390 buffer[0] = static_cast<uint8_t>(code);
391 Handle<String> result =
392 InternalizeOneByteString(Vector<const uint8_t>(buffer, 1));
393 single_character_string_cache()->set(code, *result);
396 DCHECK(code <= String::kMaxUtf16CodeUnitU);
398 Handle<SeqTwoByteString> result = NewRawTwoByteString(1).ToHandleChecked();
399 result->SeqTwoByteStringSet(0, static_cast<uint16_t>(code));
404 // Returns true for a character in a range. Both limits are inclusive.
405 static inline bool Between(uint32_t character, uint32_t from, uint32_t to) {
406 // This makes uses of the the unsigned wraparound.
407 return character - from <= to - from;
411 static inline Handle<String> MakeOrFindTwoCharacterString(Isolate* isolate,
414 // Numeric strings have a different hash algorithm not known by
415 // LookupTwoCharsStringIfExists, so we skip this step for such strings.
416 if (!Between(c1, '0', '9') || !Between(c2, '0', '9')) {
417 Handle<String> result;
418 if (StringTable::LookupTwoCharsStringIfExists(isolate, c1, c2).
424 // Now we know the length is 2, we might as well make use of that fact
425 // when building the new string.
426 if (static_cast<unsigned>(c1 | c2) <= String::kMaxOneByteCharCodeU) {
428 DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCodeU +
429 1)); // because of this.
430 Handle<SeqOneByteString> str =
431 isolate->factory()->NewRawOneByteString(2).ToHandleChecked();
432 uint8_t* dest = str->GetChars();
433 dest[0] = static_cast<uint8_t>(c1);
434 dest[1] = static_cast<uint8_t>(c2);
437 Handle<SeqTwoByteString> str =
438 isolate->factory()->NewRawTwoByteString(2).ToHandleChecked();
439 uc16* dest = str->GetChars();
447 template<typename SinkChar, typename StringType>
448 Handle<String> ConcatStringContent(Handle<StringType> result,
449 Handle<String> first,
450 Handle<String> second) {
451 DisallowHeapAllocation pointer_stays_valid;
452 SinkChar* sink = result->GetChars();
453 String::WriteToFlat(*first, sink, 0, first->length());
454 String::WriteToFlat(*second, sink + first->length(), 0, second->length());
459 MaybeHandle<String> Factory::NewConsString(Handle<String> left,
460 Handle<String> right) {
461 int left_length = left->length();
462 if (left_length == 0) return right;
463 int right_length = right->length();
464 if (right_length == 0) return left;
466 int length = left_length + right_length;
469 uint16_t c1 = left->Get(0);
470 uint16_t c2 = right->Get(0);
471 return MakeOrFindTwoCharacterString(isolate(), c1, c2);
474 // Make sure that an out of memory exception is thrown if the length
475 // of the new cons string is too large.
476 if (length > String::kMaxLength || length < 0) {
477 THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
480 bool left_is_one_byte = left->IsOneByteRepresentation();
481 bool right_is_one_byte = right->IsOneByteRepresentation();
482 bool is_one_byte = left_is_one_byte && right_is_one_byte;
483 bool is_one_byte_data_in_two_byte_string = false;
485 // At least one of the strings uses two-byte representation so we
486 // can't use the fast case code for short one-byte strings below, but
487 // we can try to save memory if all chars actually fit in one-byte.
488 is_one_byte_data_in_two_byte_string =
489 left->HasOnlyOneByteChars() && right->HasOnlyOneByteChars();
490 if (is_one_byte_data_in_two_byte_string) {
491 isolate()->counters()->string_add_runtime_ext_to_one_byte()->Increment();
495 // If the resulting string is small make a flat string.
496 if (length < ConsString::kMinLength) {
497 // Note that neither of the two inputs can be a slice because:
498 STATIC_ASSERT(ConsString::kMinLength <= SlicedString::kMinLength);
499 DCHECK(left->IsFlat());
500 DCHECK(right->IsFlat());
502 STATIC_ASSERT(ConsString::kMinLength <= String::kMaxLength);
504 Handle<SeqOneByteString> result =
505 NewRawOneByteString(length).ToHandleChecked();
506 DisallowHeapAllocation no_gc;
507 uint8_t* dest = result->GetChars();
510 left->IsExternalString()
511 ? Handle<ExternalOneByteString>::cast(left)->GetChars()
512 : Handle<SeqOneByteString>::cast(left)->GetChars();
513 for (int i = 0; i < left_length; i++) *dest++ = src[i];
515 src = right->IsExternalString()
516 ? Handle<ExternalOneByteString>::cast(right)->GetChars()
517 : Handle<SeqOneByteString>::cast(right)->GetChars();
518 for (int i = 0; i < right_length; i++) *dest++ = src[i];
522 return (is_one_byte_data_in_two_byte_string)
523 ? ConcatStringContent<uint8_t>(
524 NewRawOneByteString(length).ToHandleChecked(), left, right)
525 : ConcatStringContent<uc16>(
526 NewRawTwoByteString(length).ToHandleChecked(), left, right);
529 return (is_one_byte || is_one_byte_data_in_two_byte_string)
530 ? NewOneByteConsString(length, left, right)
531 : NewTwoByteConsString(length, left, right);
535 MaybeHandle<String> Factory::NewOneByteConsString(int length,
537 Handle<String> right) {
538 return NewRawConsString(cons_one_byte_string_map(), length, left, right);
542 MaybeHandle<String> Factory::NewTwoByteConsString(int length,
544 Handle<String> right) {
545 return NewRawConsString(cons_string_map(), length, left, right);
549 MaybeHandle<String> Factory::NewRawConsString(Handle<Map> map, int length,
551 Handle<String> right) {
552 Handle<ConsString> result = New<ConsString>(map, NEW_SPACE);
554 DisallowHeapAllocation no_gc;
555 WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
557 result->set_hash_field(String::kEmptyHashField);
558 result->set_length(length);
559 result->set_first(*left, mode);
560 result->set_second(*right, mode);
565 Handle<String> Factory::NewProperSubString(Handle<String> str,
569 if (FLAG_verify_heap) str->StringVerify();
571 DCHECK(begin > 0 || end < str->length());
573 str = String::Flatten(str);
575 int length = end - begin;
576 if (length <= 0) return empty_string();
578 return LookupSingleCharacterStringFromCode(str->Get(begin));
581 // Optimization for 2-byte strings often used as keys in a decompression
582 // dictionary. Check whether we already have the string in the string
583 // table to prevent creation of many unnecessary strings.
584 uint16_t c1 = str->Get(begin);
585 uint16_t c2 = str->Get(begin + 1);
586 return MakeOrFindTwoCharacterString(isolate(), c1, c2);
589 if (!FLAG_string_slices || length < SlicedString::kMinLength) {
590 if (str->IsOneByteRepresentation()) {
591 Handle<SeqOneByteString> result =
592 NewRawOneByteString(length).ToHandleChecked();
593 uint8_t* dest = result->GetChars();
594 DisallowHeapAllocation no_gc;
595 String::WriteToFlat(*str, dest, begin, end);
598 Handle<SeqTwoByteString> result =
599 NewRawTwoByteString(length).ToHandleChecked();
600 uc16* dest = result->GetChars();
601 DisallowHeapAllocation no_gc;
602 String::WriteToFlat(*str, dest, begin, end);
609 if (str->IsSlicedString()) {
610 Handle<SlicedString> slice = Handle<SlicedString>::cast(str);
611 str = Handle<String>(slice->parent(), isolate());
612 offset += slice->offset();
615 DCHECK(str->IsSeqString() || str->IsExternalString());
616 Handle<Map> map = str->IsOneByteRepresentation()
617 ? sliced_one_byte_string_map()
618 : sliced_string_map();
619 Handle<SlicedString> slice = New<SlicedString>(map, NEW_SPACE);
621 slice->set_hash_field(String::kEmptyHashField);
622 slice->set_length(length);
623 slice->set_parent(*str);
624 slice->set_offset(offset);
629 MaybeHandle<String> Factory::NewExternalStringFromOneByte(
630 const ExternalOneByteString::Resource* resource) {
631 size_t length = resource->length();
632 if (length > static_cast<size_t>(String::kMaxLength)) {
633 THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
636 Handle<Map> map = external_one_byte_string_map();
637 Handle<ExternalOneByteString> external_string =
638 New<ExternalOneByteString>(map, NEW_SPACE);
639 external_string->set_length(static_cast<int>(length));
640 external_string->set_hash_field(String::kEmptyHashField);
641 external_string->set_resource(resource);
643 return external_string;
647 MaybeHandle<String> Factory::NewExternalStringFromTwoByte(
648 const ExternalTwoByteString::Resource* resource) {
649 size_t length = resource->length();
650 if (length > static_cast<size_t>(String::kMaxLength)) {
651 THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
654 // For small strings we check whether the resource contains only
655 // one byte characters. If yes, we use a different string map.
656 static const size_t kOneByteCheckLengthLimit = 32;
657 bool is_one_byte = length <= kOneByteCheckLengthLimit &&
658 String::IsOneByte(resource->data(), static_cast<int>(length));
659 Handle<Map> map = is_one_byte ?
660 external_string_with_one_byte_data_map() : external_string_map();
661 Handle<ExternalTwoByteString> external_string =
662 New<ExternalTwoByteString>(map, NEW_SPACE);
663 external_string->set_length(static_cast<int>(length));
664 external_string->set_hash_field(String::kEmptyHashField);
665 external_string->set_resource(resource);
667 return external_string;
671 Handle<Symbol> Factory::NewSymbol() {
674 isolate()->heap()->AllocateSymbol(),
679 Handle<Symbol> Factory::NewPrivateSymbol(Handle<Object> name) {
680 Handle<Symbol> symbol = NewSymbol();
681 symbol->set_is_private(true);
682 if (name->IsString()) {
683 symbol->set_name(*name);
685 DCHECK(name->IsUndefined());
691 Handle<Context> Factory::NewNativeContext() {
692 Handle<FixedArray> array =
693 NewFixedArray(Context::NATIVE_CONTEXT_SLOTS, TENURED);
694 array->set_map_no_write_barrier(*native_context_map());
695 Handle<Context> context = Handle<Context>::cast(array);
696 context->set_js_array_maps(*undefined_value());
697 DCHECK(context->IsNativeContext());
702 Handle<Context> Factory::NewScriptContext(Handle<JSFunction> function,
703 Handle<ScopeInfo> scope_info) {
704 Handle<FixedArray> array =
705 NewFixedArray(scope_info->ContextLength(), TENURED);
706 array->set_map_no_write_barrier(*script_context_map());
707 Handle<Context> context = Handle<Context>::cast(array);
708 context->set_closure(*function);
709 context->set_previous(function->context());
710 context->set_extension(*scope_info);
711 context->set_global_object(function->context()->global_object());
712 DCHECK(context->IsScriptContext());
717 Handle<ScriptContextTable> Factory::NewScriptContextTable() {
718 Handle<FixedArray> array = NewFixedArray(1);
719 array->set_map_no_write_barrier(*script_context_table_map());
720 Handle<ScriptContextTable> context_table =
721 Handle<ScriptContextTable>::cast(array);
722 context_table->set_used(0);
723 return context_table;
727 Handle<Context> Factory::NewModuleContext(Handle<ScopeInfo> scope_info) {
728 Handle<FixedArray> array =
729 NewFixedArray(scope_info->ContextLength(), TENURED);
730 array->set_map_no_write_barrier(*module_context_map());
731 // Instance link will be set later.
732 Handle<Context> context = Handle<Context>::cast(array);
733 context->set_extension(Smi::FromInt(0));
738 Handle<Context> Factory::NewFunctionContext(int length,
739 Handle<JSFunction> function) {
740 DCHECK(length >= Context::MIN_CONTEXT_SLOTS);
741 Handle<FixedArray> array = NewFixedArray(length);
742 array->set_map_no_write_barrier(*function_context_map());
743 Handle<Context> context = Handle<Context>::cast(array);
744 context->set_closure(*function);
745 context->set_previous(function->context());
746 context->set_extension(Smi::FromInt(0));
747 context->set_global_object(function->context()->global_object());
752 Handle<Context> Factory::NewCatchContext(Handle<JSFunction> function,
753 Handle<Context> previous,
755 Handle<Object> thrown_object) {
756 STATIC_ASSERT(Context::MIN_CONTEXT_SLOTS == Context::THROWN_OBJECT_INDEX);
757 Handle<FixedArray> array = NewFixedArray(Context::MIN_CONTEXT_SLOTS + 1);
758 array->set_map_no_write_barrier(*catch_context_map());
759 Handle<Context> context = Handle<Context>::cast(array);
760 context->set_closure(*function);
761 context->set_previous(*previous);
762 context->set_extension(*name);
763 context->set_global_object(previous->global_object());
764 context->set(Context::THROWN_OBJECT_INDEX, *thrown_object);
769 Handle<Context> Factory::NewWithContext(Handle<JSFunction> function,
770 Handle<Context> previous,
771 Handle<JSReceiver> extension) {
772 Handle<FixedArray> array = NewFixedArray(Context::MIN_CONTEXT_SLOTS);
773 array->set_map_no_write_barrier(*with_context_map());
774 Handle<Context> context = Handle<Context>::cast(array);
775 context->set_closure(*function);
776 context->set_previous(*previous);
777 context->set_extension(*extension);
778 context->set_global_object(previous->global_object());
783 Handle<Context> Factory::NewBlockContext(Handle<JSFunction> function,
784 Handle<Context> previous,
785 Handle<ScopeInfo> scope_info) {
786 Handle<FixedArray> array =
787 NewFixedArrayWithHoles(scope_info->ContextLength());
788 array->set_map_no_write_barrier(*block_context_map());
789 Handle<Context> context = Handle<Context>::cast(array);
790 context->set_closure(*function);
791 context->set_previous(*previous);
792 context->set_extension(*scope_info);
793 context->set_global_object(previous->global_object());
798 Handle<Struct> Factory::NewStruct(InstanceType type) {
801 isolate()->heap()->AllocateStruct(type),
806 Handle<CodeCache> Factory::NewCodeCache() {
807 Handle<CodeCache> code_cache =
808 Handle<CodeCache>::cast(NewStruct(CODE_CACHE_TYPE));
809 code_cache->set_default_cache(*empty_fixed_array(), SKIP_WRITE_BARRIER);
810 code_cache->set_normal_type_cache(*undefined_value(), SKIP_WRITE_BARRIER);
815 Handle<AliasedArgumentsEntry> Factory::NewAliasedArgumentsEntry(
816 int aliased_context_slot) {
817 Handle<AliasedArgumentsEntry> entry = Handle<AliasedArgumentsEntry>::cast(
818 NewStruct(ALIASED_ARGUMENTS_ENTRY_TYPE));
819 entry->set_aliased_context_slot(aliased_context_slot);
824 Handle<ExecutableAccessorInfo> Factory::NewExecutableAccessorInfo() {
825 Handle<ExecutableAccessorInfo> info =
826 Handle<ExecutableAccessorInfo>::cast(
827 NewStruct(EXECUTABLE_ACCESSOR_INFO_TYPE));
828 info->set_flag(0); // Must clear the flag, it was initialized as undefined.
833 Handle<Script> Factory::NewScript(Handle<String> source) {
834 // Create and initialize script object.
835 Heap* heap = isolate()->heap();
836 Handle<Script> script = Handle<Script>::cast(NewStruct(SCRIPT_TYPE));
837 script->set_source(*source);
838 script->set_name(heap->undefined_value());
839 script->set_id(isolate()->heap()->NextScriptId());
840 script->set_line_offset(Smi::FromInt(0));
841 script->set_column_offset(Smi::FromInt(0));
842 script->set_context_data(heap->undefined_value());
843 script->set_type(Smi::FromInt(Script::TYPE_NORMAL));
844 script->set_wrapper(heap->undefined_value());
845 script->set_line_ends(heap->undefined_value());
846 script->set_eval_from_shared(heap->undefined_value());
847 script->set_eval_from_instructions_offset(Smi::FromInt(0));
848 script->set_shared_function_infos(Smi::FromInt(0));
849 script->set_flags(Smi::FromInt(0));
855 Handle<Foreign> Factory::NewForeign(Address addr, PretenureFlag pretenure) {
856 CALL_HEAP_FUNCTION(isolate(),
857 isolate()->heap()->AllocateForeign(addr, pretenure),
862 Handle<Foreign> Factory::NewForeign(const AccessorDescriptor* desc) {
863 return NewForeign((Address) desc, TENURED);
867 Handle<ByteArray> Factory::NewByteArray(int length, PretenureFlag pretenure) {
871 isolate()->heap()->AllocateByteArray(length, pretenure),
876 Handle<BytecodeArray> Factory::NewBytecodeArray(int length,
877 const byte* raw_bytecodes,
880 CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateBytecodeArray(
881 length, raw_bytecodes, frame_size),
886 Handle<FixedTypedArrayBase> Factory::NewFixedTypedArrayWithExternalPointer(
887 int length, ExternalArrayType array_type, void* external_pointer,
888 PretenureFlag pretenure) {
889 DCHECK(0 <= length && length <= Smi::kMaxValue);
891 isolate(), isolate()->heap()->AllocateFixedTypedArrayWithExternalPointer(
892 length, array_type, external_pointer, pretenure),
893 FixedTypedArrayBase);
897 Handle<FixedTypedArrayBase> Factory::NewFixedTypedArray(
898 int length, ExternalArrayType array_type, bool initialize,
899 PretenureFlag pretenure) {
900 DCHECK(0 <= length && length <= Smi::kMaxValue);
901 CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateFixedTypedArray(
902 length, array_type, initialize, pretenure),
903 FixedTypedArrayBase);
907 Handle<Cell> Factory::NewCell(Handle<Object> value) {
908 AllowDeferredHandleDereference convert_to_cell;
911 isolate()->heap()->AllocateCell(*value),
916 Handle<PropertyCell> Factory::NewPropertyCell() {
919 isolate()->heap()->AllocatePropertyCell(),
924 Handle<WeakCell> Factory::NewWeakCell(Handle<HeapObject> value) {
925 // It is safe to dereference the value because we are embedding it
926 // in cell and not inspecting its fields.
927 AllowDeferredHandleDereference convert_to_cell;
928 CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateWeakCell(*value),
933 Handle<AllocationSite> Factory::NewAllocationSite() {
934 Handle<Map> map = allocation_site_map();
935 Handle<AllocationSite> site = New<AllocationSite>(map, OLD_SPACE);
939 site->set_weak_next(isolate()->heap()->allocation_sites_list());
940 isolate()->heap()->set_allocation_sites_list(*site);
945 Handle<Map> Factory::NewMap(InstanceType type,
947 ElementsKind elements_kind) {
950 isolate()->heap()->AllocateMap(type, instance_size, elements_kind),
955 Handle<JSObject> Factory::CopyJSObject(Handle<JSObject> object) {
956 CALL_HEAP_FUNCTION(isolate(),
957 isolate()->heap()->CopyJSObject(*object, NULL),
962 Handle<JSObject> Factory::CopyJSObjectWithAllocationSite(
963 Handle<JSObject> object,
964 Handle<AllocationSite> site) {
965 CALL_HEAP_FUNCTION(isolate(),
966 isolate()->heap()->CopyJSObject(
968 site.is_null() ? NULL : *site),
973 Handle<FixedArray> Factory::CopyFixedArrayWithMap(Handle<FixedArray> array,
975 CALL_HEAP_FUNCTION(isolate(),
976 isolate()->heap()->CopyFixedArrayWithMap(*array, *map),
981 Handle<FixedArray> Factory::CopyFixedArrayAndGrow(Handle<FixedArray> array,
983 PretenureFlag pretenure) {
984 CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->CopyFixedArrayAndGrow(
985 *array, grow_by, pretenure),
990 Handle<FixedArray> Factory::CopyFixedArray(Handle<FixedArray> array) {
991 CALL_HEAP_FUNCTION(isolate(),
992 isolate()->heap()->CopyFixedArray(*array),
997 Handle<FixedArray> Factory::CopyAndTenureFixedCOWArray(
998 Handle<FixedArray> array) {
999 DCHECK(isolate()->heap()->InNewSpace(*array));
1000 CALL_HEAP_FUNCTION(isolate(),
1001 isolate()->heap()->CopyAndTenureFixedCOWArray(*array),
1006 Handle<FixedDoubleArray> Factory::CopyFixedDoubleArray(
1007 Handle<FixedDoubleArray> array) {
1008 CALL_HEAP_FUNCTION(isolate(),
1009 isolate()->heap()->CopyFixedDoubleArray(*array),
1014 Handle<Object> Factory::NewNumber(double value,
1015 PretenureFlag pretenure) {
1016 // We need to distinguish the minus zero value and this cannot be
1017 // done after conversion to int. Doing this by comparing bit
1018 // patterns is faster than using fpclassify() et al.
1019 if (IsMinusZero(value)) return NewHeapNumber(-0.0, IMMUTABLE, pretenure);
1021 int int_value = FastD2IChecked(value);
1022 if (value == int_value && Smi::IsValid(int_value)) {
1023 return handle(Smi::FromInt(int_value), isolate());
1026 // Materialize the value in the heap.
1027 return NewHeapNumber(value, IMMUTABLE, pretenure);
1031 Handle<Object> Factory::NewNumberFromInt(int32_t value,
1032 PretenureFlag pretenure) {
1033 if (Smi::IsValid(value)) return handle(Smi::FromInt(value), isolate());
1034 // Bypass NewNumber to avoid various redundant checks.
1035 return NewHeapNumber(FastI2D(value), IMMUTABLE, pretenure);
1039 Handle<Object> Factory::NewNumberFromUint(uint32_t value,
1040 PretenureFlag pretenure) {
1041 int32_t int32v = static_cast<int32_t>(value);
1042 if (int32v >= 0 && Smi::IsValid(int32v)) {
1043 return handle(Smi::FromInt(int32v), isolate());
1045 return NewHeapNumber(FastUI2D(value), IMMUTABLE, pretenure);
1049 Handle<HeapNumber> Factory::NewHeapNumber(double value,
1051 PretenureFlag pretenure) {
1054 isolate()->heap()->AllocateHeapNumber(value, mode, pretenure),
1059 Handle<Float32x4> Factory::NewFloat32x4(float lanes[4],
1060 PretenureFlag pretenure) {
1061 CALL_HEAP_FUNCTION(isolate(),
1062 isolate()->heap()->AllocateFloat32x4(lanes, pretenure),
1067 Handle<Int32x4> Factory::NewInt32x4(int32_t lanes[4], PretenureFlag pretenure) {
1069 isolate(), isolate()->heap()->AllocateInt32x4(lanes, pretenure), Int32x4);
1073 Handle<Bool32x4> Factory::NewBool32x4(bool lanes[4], PretenureFlag pretenure) {
1074 CALL_HEAP_FUNCTION(isolate(),
1075 isolate()->heap()->AllocateBool32x4(lanes, pretenure),
1080 Handle<Int16x8> Factory::NewInt16x8(int16_t lanes[8], PretenureFlag pretenure) {
1082 isolate(), isolate()->heap()->AllocateInt16x8(lanes, pretenure), Int16x8);
1086 Handle<Bool16x8> Factory::NewBool16x8(bool lanes[8], PretenureFlag pretenure) {
1087 CALL_HEAP_FUNCTION(isolate(),
1088 isolate()->heap()->AllocateBool16x8(lanes, pretenure),
1093 Handle<Int8x16> Factory::NewInt8x16(int8_t lanes[16], PretenureFlag pretenure) {
1095 isolate(), isolate()->heap()->AllocateInt8x16(lanes, pretenure), Int8x16);
1099 Handle<Bool8x16> Factory::NewBool8x16(bool lanes[16], PretenureFlag pretenure) {
1100 CALL_HEAP_FUNCTION(isolate(),
1101 isolate()->heap()->AllocateBool8x16(lanes, pretenure),
1106 Handle<Object> Factory::NewError(const char* maker,
1107 MessageTemplate::Template template_index,
1108 Handle<Object> arg0, Handle<Object> arg1,
1109 Handle<Object> arg2) {
1110 HandleScope scope(isolate());
1111 Handle<String> error_maker = InternalizeUtf8String(maker);
1112 if (isolate()->bootstrapper()->IsActive()) {
1113 // If this exception is being thrown during bootstrapping,
1114 // js_builtins_object is unavailable. We return the error maker
1115 // name's string as the exception since we have nothing better
1117 return scope.CloseAndEscape(error_maker);
1119 Handle<Object> fun_obj = Object::GetProperty(isolate()->js_builtins_object(),
1120 error_maker).ToHandleChecked();
1122 Handle<JSFunction> fun = Handle<JSFunction>::cast(fun_obj);
1123 Handle<Object> message_type(Smi::FromInt(template_index), isolate());
1124 if (arg0.is_null()) arg0 = undefined_value();
1125 if (arg1.is_null()) arg1 = undefined_value();
1126 if (arg2.is_null()) arg2 = undefined_value();
1127 Handle<Object> argv[] = {message_type, arg0, arg1, arg2};
1129 // Invoke the JavaScript factory method. If an exception is thrown while
1130 // running the factory method, use the exception as the result.
1131 Handle<Object> result;
1132 MaybeHandle<Object> exception;
1133 if (!Execution::TryCall(fun, isolate()->js_builtins_object(), arraysize(argv),
1134 argv, &exception).ToHandle(&result)) {
1135 Handle<Object> exception_obj;
1136 if (exception.ToHandle(&exception_obj)) {
1137 result = exception_obj;
1139 result = undefined_value();
1142 return scope.CloseAndEscape(result);
1146 Handle<Object> Factory::NewError(MessageTemplate::Template template_index,
1147 Handle<Object> arg0, Handle<Object> arg1,
1148 Handle<Object> arg2) {
1149 return NewError("MakeError", template_index, arg0, arg1, arg2);
1153 Handle<Object> Factory::NewTypeError(MessageTemplate::Template template_index,
1154 Handle<Object> arg0, Handle<Object> arg1,
1155 Handle<Object> arg2) {
1156 return NewError("MakeTypeError", template_index, arg0, arg1, arg2);
1160 Handle<Object> Factory::NewSyntaxError(MessageTemplate::Template template_index,
1161 Handle<Object> arg0, Handle<Object> arg1,
1162 Handle<Object> arg2) {
1163 return NewError("MakeSyntaxError", template_index, arg0, arg1, arg2);
1167 Handle<Object> Factory::NewReferenceError(
1168 MessageTemplate::Template template_index, Handle<Object> arg0,
1169 Handle<Object> arg1, Handle<Object> arg2) {
1170 return NewError("MakeReferenceError", template_index, arg0, arg1, arg2);
1174 Handle<Object> Factory::NewRangeError(MessageTemplate::Template template_index,
1175 Handle<Object> arg0, Handle<Object> arg1,
1176 Handle<Object> arg2) {
1177 return NewError("MakeRangeError", template_index, arg0, arg1, arg2);
1181 Handle<Object> Factory::NewEvalError(MessageTemplate::Template template_index,
1182 Handle<Object> arg0, Handle<Object> arg1,
1183 Handle<Object> arg2) {
1184 return NewError("MakeEvalError", template_index, arg0, arg1, arg2);
1188 Handle<String> Factory::EmergencyNewError(const char* message,
1189 Handle<JSArray> args) {
1190 const int kBufferSize = 1000;
1191 char buffer[kBufferSize];
1192 size_t space = kBufferSize;
1193 char* p = &buffer[0];
1195 Vector<char> v(buffer, kBufferSize);
1196 StrNCpy(v, message, space);
1197 space -= Min(space, strlen(message));
1198 p = &buffer[kBufferSize] - space;
1200 for (int i = 0; i < Smi::cast(args->length())->value(); i++) {
1205 Handle<String> arg_str = Handle<String>::cast(
1206 Object::GetElement(isolate(), args, i).ToHandleChecked());
1207 base::SmartArrayPointer<char> arg = arg_str->ToCString();
1208 Vector<char> v2(p, static_cast<int>(space));
1209 StrNCpy(v2, arg.get(), space);
1210 space -= Min(space, strlen(arg.get()));
1211 p = &buffer[kBufferSize] - space;
1218 buffer[kBufferSize - 1] = '\0';
1220 return NewStringFromUtf8(CStrVector(buffer), TENURED).ToHandleChecked();
1224 Handle<Object> Factory::NewError(const char* maker, const char* message,
1225 Handle<JSArray> args) {
1226 Handle<String> make_str = InternalizeUtf8String(maker);
1227 Handle<Object> fun_obj = Object::GetProperty(
1228 isolate()->js_builtins_object(), make_str).ToHandleChecked();
1229 // If the builtins haven't been properly configured yet this error
1230 // constructor may not have been defined. Bail out.
1231 if (!fun_obj->IsJSFunction()) {
1232 return EmergencyNewError(message, args);
1234 Handle<JSFunction> fun = Handle<JSFunction>::cast(fun_obj);
1235 Handle<Object> message_obj = InternalizeUtf8String(message);
1236 Handle<Object> argv[] = { message_obj, args };
1238 // Invoke the JavaScript factory method. If an exception is thrown while
1239 // running the factory method, use the exception as the result.
1240 Handle<Object> result;
1241 MaybeHandle<Object> exception;
1242 if (!Execution::TryCall(fun,
1243 isolate()->js_builtins_object(),
1246 &exception).ToHandle(&result)) {
1247 Handle<Object> exception_obj;
1248 if (exception.ToHandle(&exception_obj)) return exception_obj;
1249 return undefined_value();
1255 Handle<Object> Factory::NewError(const char* constructor,
1256 Handle<String> message) {
1257 Handle<String> constr = InternalizeUtf8String(constructor);
1258 Handle<JSFunction> fun = Handle<JSFunction>::cast(Object::GetProperty(
1259 isolate()->js_builtins_object(), constr).ToHandleChecked());
1260 Handle<Object> argv[] = { message };
1262 // Invoke the JavaScript factory method. If an exception is thrown while
1263 // running the factory method, use the exception as the result.
1264 Handle<Object> result;
1265 MaybeHandle<Object> exception;
1266 if (!Execution::TryCall(fun,
1267 isolate()->js_builtins_object(),
1270 &exception).ToHandle(&result)) {
1271 Handle<Object> exception_obj;
1272 if (exception.ToHandle(&exception_obj)) return exception_obj;
1273 return undefined_value();
1279 void Factory::InitializeFunction(Handle<JSFunction> function,
1280 Handle<SharedFunctionInfo> info,
1281 Handle<Context> context) {
1282 function->initialize_properties();
1283 function->initialize_elements();
1284 function->set_shared(*info);
1285 function->set_code(info->code());
1286 function->set_context(*context);
1287 function->set_prototype_or_initial_map(*the_hole_value());
1288 function->set_literals_or_bindings(*empty_fixed_array());
1289 function->set_next_function_link(*undefined_value(), SKIP_WRITE_BARRIER);
1293 Handle<JSFunction> Factory::NewFunction(Handle<Map> map,
1294 Handle<SharedFunctionInfo> info,
1295 Handle<Context> context,
1296 PretenureFlag pretenure) {
1297 AllocationSpace space = pretenure == TENURED ? OLD_SPACE : NEW_SPACE;
1298 Handle<JSFunction> result = New<JSFunction>(map, space);
1299 InitializeFunction(result, info, context);
1304 Handle<JSFunction> Factory::NewFunction(Handle<Map> map,
1305 Handle<String> name,
1306 MaybeHandle<Code> code) {
1307 Handle<Context> context(isolate()->native_context());
1308 Handle<SharedFunctionInfo> info = NewSharedFunctionInfo(name, code);
1309 DCHECK(is_sloppy(info->language_mode()) &&
1310 (map.is_identical_to(isolate()->sloppy_function_map()) ||
1311 map.is_identical_to(
1312 isolate()->sloppy_function_without_prototype_map()) ||
1313 map.is_identical_to(
1314 isolate()->sloppy_function_with_readonly_prototype_map()) ||
1315 map.is_identical_to(isolate()->strict_function_map())));
1316 return NewFunction(map, info, context);
1320 Handle<JSFunction> Factory::NewFunction(Handle<String> name) {
1322 isolate()->sloppy_function_map(), name, MaybeHandle<Code>());
1326 Handle<JSFunction> Factory::NewFunctionWithoutPrototype(Handle<String> name,
1329 Handle<Map> map = is_strict
1330 ? isolate()->strict_function_without_prototype_map()
1331 : isolate()->sloppy_function_without_prototype_map();
1332 return NewFunction(map, name, code);
1336 Handle<JSFunction> Factory::NewFunction(Handle<String> name, Handle<Code> code,
1337 Handle<Object> prototype,
1338 bool read_only_prototype,
1340 // In strict mode, readonly strict map is only available during bootstrap
1341 DCHECK(!is_strict || !read_only_prototype ||
1342 isolate()->bootstrapper()->IsActive());
1344 is_strict ? isolate()->strict_function_map()
1345 : read_only_prototype
1346 ? isolate()->sloppy_function_with_readonly_prototype_map()
1347 : isolate()->sloppy_function_map();
1348 Handle<JSFunction> result = NewFunction(map, name, code);
1349 result->set_prototype_or_initial_map(*prototype);
1354 Handle<JSFunction> Factory::NewFunction(Handle<String> name, Handle<Code> code,
1355 Handle<Object> prototype,
1356 InstanceType type, int instance_size,
1357 bool read_only_prototype,
1358 bool install_constructor,
1360 // Allocate the function
1361 Handle<JSFunction> function =
1362 NewFunction(name, code, prototype, read_only_prototype, is_strict);
1364 ElementsKind elements_kind =
1365 type == JS_ARRAY_TYPE ? FAST_SMI_ELEMENTS : FAST_HOLEY_SMI_ELEMENTS;
1366 Handle<Map> initial_map = NewMap(type, instance_size, elements_kind);
1367 if (!function->shared()->is_generator()) {
1368 if (prototype->IsTheHole()) {
1369 prototype = NewFunctionPrototype(function);
1370 } else if (install_constructor) {
1371 JSObject::AddProperty(Handle<JSObject>::cast(prototype),
1372 constructor_string(), function, DONT_ENUM);
1376 JSFunction::SetInitialMap(function, initial_map,
1377 Handle<JSReceiver>::cast(prototype));
1383 Handle<JSFunction> Factory::NewFunction(Handle<String> name,
1386 int instance_size) {
1387 return NewFunction(name, code, the_hole_value(), type, instance_size);
1391 Handle<JSObject> Factory::NewFunctionPrototype(Handle<JSFunction> function) {
1392 // Make sure to use globals from the function's context, since the function
1393 // can be from a different context.
1394 Handle<Context> native_context(function->context()->native_context());
1395 Handle<Map> new_map;
1396 if (function->shared()->is_generator()) {
1397 // Generator prototypes can share maps since they don't have "constructor"
1399 new_map = handle(native_context->generator_object_prototype_map());
1401 // Each function prototype gets a fresh map to avoid unwanted sharing of
1402 // maps between prototypes of different constructors.
1403 Handle<JSFunction> object_function(native_context->object_function());
1404 DCHECK(object_function->has_initial_map());
1405 new_map = handle(object_function->initial_map());
1408 DCHECK(!new_map->is_prototype_map());
1409 Handle<JSObject> prototype = NewJSObjectFromMap(new_map);
1411 if (!function->shared()->is_generator()) {
1412 JSObject::AddProperty(prototype, constructor_string(), function, DONT_ENUM);
1419 Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo(
1420 Handle<SharedFunctionInfo> info,
1421 Handle<Context> context,
1422 PretenureFlag pretenure) {
1424 Context::FunctionMapIndex(info->language_mode(), info->kind());
1425 Handle<Map> map(Map::cast(context->native_context()->get(map_index)));
1426 Handle<JSFunction> result = NewFunction(map, info, context, pretenure);
1428 if (info->ic_age() != isolate()->heap()->global_ic_age()) {
1429 info->ResetForNewContext(isolate()->heap()->global_ic_age());
1432 if (FLAG_always_opt && info->allows_lazy_compilation()) {
1433 result->MarkForOptimization();
1436 CodeAndLiterals cached = info->SearchOptimizedCodeMap(
1437 context->native_context(), BailoutId::None());
1438 if (cached.code != nullptr) {
1439 // Caching of optimized code enabled and optimized code found.
1440 if (cached.literals != nullptr) result->set_literals(cached.literals);
1441 DCHECK(!cached.code->marked_for_deoptimization());
1442 DCHECK(result->shared()->is_compiled());
1443 result->ReplaceCode(cached.code);
1446 if (cached.literals == nullptr && !info->bound()) {
1447 int number_of_literals = info->num_literals();
1448 // TODO(mstarzinger): Consider sharing the newly created literals array.
1449 Handle<FixedArray> literals = NewFixedArray(number_of_literals, pretenure);
1450 result->set_literals(*literals);
1457 Handle<ScopeInfo> Factory::NewScopeInfo(int length) {
1458 Handle<FixedArray> array = NewFixedArray(length, TENURED);
1459 array->set_map_no_write_barrier(*scope_info_map());
1460 Handle<ScopeInfo> scope_info = Handle<ScopeInfo>::cast(array);
1465 Handle<JSObject> Factory::NewExternal(void* value) {
1466 Handle<Foreign> foreign = NewForeign(static_cast<Address>(value));
1467 Handle<JSObject> external = NewJSObjectFromMap(external_map());
1468 external->SetInternalField(0, *foreign);
1473 Handle<Code> Factory::NewCodeRaw(int object_size, bool immovable) {
1474 CALL_HEAP_FUNCTION(isolate(),
1475 isolate()->heap()->AllocateCode(object_size, immovable),
1480 Handle<Code> Factory::NewCode(const CodeDesc& desc,
1482 Handle<Object> self_ref,
1485 int prologue_offset,
1487 Handle<ByteArray> reloc_info = NewByteArray(desc.reloc_size, TENURED);
1490 int body_size = RoundUp(desc.instr_size, kObjectAlignment);
1491 int obj_size = Code::SizeFor(body_size);
1493 Handle<Code> code = NewCodeRaw(obj_size, immovable);
1494 DCHECK(isolate()->code_range() == NULL || !isolate()->code_range()->valid() ||
1495 isolate()->code_range()->contains(code->address()) ||
1496 obj_size <= isolate()->heap()->code_space()->AreaSize());
1498 // The code object has not been fully initialized yet. We rely on the
1499 // fact that no allocation will happen from this point on.
1500 DisallowHeapAllocation no_gc;
1501 code->set_gc_metadata(Smi::FromInt(0));
1502 code->set_ic_age(isolate()->heap()->global_ic_age());
1503 code->set_instruction_size(desc.instr_size);
1504 code->set_relocation_info(*reloc_info);
1505 code->set_flags(flags);
1506 code->set_raw_kind_specific_flags1(0);
1507 code->set_raw_kind_specific_flags2(0);
1508 code->set_is_crankshafted(crankshafted);
1509 code->set_deoptimization_data(*empty_fixed_array(), SKIP_WRITE_BARRIER);
1510 code->set_raw_type_feedback_info(Smi::FromInt(0));
1511 code->set_next_code_link(*undefined_value());
1512 code->set_handler_table(*empty_fixed_array(), SKIP_WRITE_BARRIER);
1513 code->set_prologue_offset(prologue_offset);
1514 if (FLAG_enable_embedded_constant_pool) {
1515 code->set_constant_pool_offset(desc.instr_size - desc.constant_pool_size);
1517 if (code->kind() == Code::OPTIMIZED_FUNCTION) {
1518 code->set_marked_for_deoptimization(false);
1522 DCHECK(code->kind() == Code::FUNCTION);
1523 code->set_has_debug_break_slots(true);
1526 // Allow self references to created code object by patching the handle to
1527 // point to the newly allocated Code object.
1528 if (!self_ref.is_null()) *(self_ref.location()) = *code;
1530 // Migrate generated code.
1531 // The generated code can contain Object** values (typically from handles)
1532 // that are dereferenced during the copy to point directly to the actual heap
1533 // objects. These pointers can include references to the code object itself,
1534 // through the self_reference parameter.
1535 code->CopyFrom(desc);
1538 if (FLAG_verify_heap) code->ObjectVerify();
1544 Handle<Code> Factory::CopyCode(Handle<Code> code) {
1545 CALL_HEAP_FUNCTION(isolate(),
1546 isolate()->heap()->CopyCode(*code),
1551 Handle<Code> Factory::CopyCode(Handle<Code> code, Vector<byte> reloc_info) {
1552 CALL_HEAP_FUNCTION(isolate(),
1553 isolate()->heap()->CopyCode(*code, reloc_info),
1558 Handle<JSObject> Factory::NewJSObject(Handle<JSFunction> constructor,
1559 PretenureFlag pretenure) {
1560 JSFunction::EnsureHasInitialMap(constructor);
1563 isolate()->heap()->AllocateJSObject(*constructor, pretenure), JSObject);
1567 Handle<JSObject> Factory::NewJSObjectWithMemento(
1568 Handle<JSFunction> constructor,
1569 Handle<AllocationSite> site) {
1570 JSFunction::EnsureHasInitialMap(constructor);
1573 isolate()->heap()->AllocateJSObject(*constructor, NOT_TENURED, *site),
1578 Handle<JSModule> Factory::NewJSModule(Handle<Context> context,
1579 Handle<ScopeInfo> scope_info) {
1580 // Allocate a fresh map. Modules do not have a prototype.
1581 Handle<Map> map = NewMap(JS_MODULE_TYPE, JSModule::kSize);
1582 // Allocate the object based on the map.
1583 Handle<JSModule> module =
1584 Handle<JSModule>::cast(NewJSObjectFromMap(map, TENURED));
1585 module->set_context(*context);
1586 module->set_scope_info(*scope_info);
1591 Handle<GlobalObject> Factory::NewGlobalObject(Handle<JSFunction> constructor) {
1592 DCHECK(constructor->has_initial_map());
1593 Handle<Map> map(constructor->initial_map());
1594 DCHECK(map->is_dictionary_map());
1596 // Make sure no field properties are described in the initial map.
1597 // This guarantees us that normalizing the properties does not
1598 // require us to change property values to PropertyCells.
1599 DCHECK(map->NextFreePropertyIndex() == 0);
1601 // Make sure we don't have a ton of pre-allocated slots in the
1602 // global objects. They will be unused once we normalize the object.
1603 DCHECK(map->unused_property_fields() == 0);
1604 DCHECK(map->inobject_properties() == 0);
1606 // Initial size of the backing store to avoid resize of the storage during
1607 // bootstrapping. The size differs between the JS global object ad the
1609 int initial_size = map->instance_type() == JS_GLOBAL_OBJECT_TYPE ? 64 : 512;
1611 // Allocate a dictionary object for backing storage.
1612 int at_least_space_for = map->NumberOfOwnDescriptors() * 2 + initial_size;
1613 Handle<GlobalDictionary> dictionary =
1614 GlobalDictionary::New(isolate(), at_least_space_for);
1616 // The global object might be created from an object template with accessors.
1617 // Fill these accessors into the dictionary.
1618 Handle<DescriptorArray> descs(map->instance_descriptors());
1619 for (int i = 0; i < map->NumberOfOwnDescriptors(); i++) {
1620 PropertyDetails details = descs->GetDetails(i);
1621 // Only accessors are expected.
1622 DCHECK_EQ(ACCESSOR_CONSTANT, details.type());
1623 PropertyDetails d(details.attributes(), ACCESSOR_CONSTANT, i + 1,
1624 PropertyCellType::kMutable);
1625 Handle<Name> name(descs->GetKey(i));
1626 Handle<PropertyCell> cell = NewPropertyCell();
1627 cell->set_value(descs->GetCallbacksObject(i));
1628 // |dictionary| already contains enough space for all properties.
1629 USE(GlobalDictionary::Add(dictionary, name, cell, d));
1632 // Allocate the global object and initialize it with the backing store.
1633 Handle<GlobalObject> global = New<GlobalObject>(map, OLD_SPACE);
1634 isolate()->heap()->InitializeJSObjectFromMap(*global, *dictionary, *map);
1636 // Create a new map for the global object.
1637 Handle<Map> new_map = Map::CopyDropDescriptors(map);
1638 new_map->set_dictionary_map(true);
1640 // Set up the global object as a normalized object.
1641 global->set_map(*new_map);
1642 global->set_properties(*dictionary);
1644 // Make sure result is a global object with properties in dictionary.
1645 DCHECK(global->IsGlobalObject() && !global->HasFastProperties());
1650 Handle<JSObject> Factory::NewJSObjectFromMap(
1652 PretenureFlag pretenure,
1653 Handle<AllocationSite> allocation_site) {
1656 isolate()->heap()->AllocateJSObjectFromMap(
1659 allocation_site.is_null() ? NULL : *allocation_site),
1664 Handle<JSArray> Factory::NewJSArray(ElementsKind elements_kind,
1666 PretenureFlag pretenure) {
1667 Map* map = isolate()->get_initial_js_array_map(elements_kind, strength);
1668 if (map == nullptr) {
1669 DCHECK(strength == Strength::WEAK);
1670 Context* native_context = isolate()->context()->native_context();
1671 JSFunction* array_function = native_context->array_function();
1672 map = array_function->initial_map();
1674 return Handle<JSArray>::cast(NewJSObjectFromMap(handle(map), pretenure));
1678 Handle<JSArray> Factory::NewJSArray(ElementsKind elements_kind, int length,
1679 int capacity, Strength strength,
1680 ArrayStorageAllocationMode mode,
1681 PretenureFlag pretenure) {
1682 Handle<JSArray> array = NewJSArray(elements_kind, strength, pretenure);
1683 NewJSArrayStorage(array, length, capacity, mode);
1688 Handle<JSArray> Factory::NewJSArrayWithElements(Handle<FixedArrayBase> elements,
1689 ElementsKind elements_kind,
1690 int length, Strength strength,
1691 PretenureFlag pretenure) {
1692 DCHECK(length <= elements->length());
1693 Handle<JSArray> array = NewJSArray(elements_kind, strength, pretenure);
1695 array->set_elements(*elements);
1696 array->set_length(Smi::FromInt(length));
1697 JSObject::ValidateElements(array);
1702 void Factory::NewJSArrayStorage(Handle<JSArray> array,
1705 ArrayStorageAllocationMode mode) {
1706 DCHECK(capacity >= length);
1708 if (capacity == 0) {
1709 array->set_length(Smi::FromInt(0));
1710 array->set_elements(*empty_fixed_array());
1714 HandleScope inner_scope(isolate());
1715 Handle<FixedArrayBase> elms;
1716 ElementsKind elements_kind = array->GetElementsKind();
1717 if (IsFastDoubleElementsKind(elements_kind)) {
1718 if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
1719 elms = NewFixedDoubleArray(capacity);
1721 DCHECK(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
1722 elms = NewFixedDoubleArrayWithHoles(capacity);
1725 DCHECK(IsFastSmiOrObjectElementsKind(elements_kind));
1726 if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
1727 elms = NewUninitializedFixedArray(capacity);
1729 DCHECK(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
1730 elms = NewFixedArrayWithHoles(capacity);
1734 array->set_elements(*elms);
1735 array->set_length(Smi::FromInt(length));
1739 Handle<JSGeneratorObject> Factory::NewJSGeneratorObject(
1740 Handle<JSFunction> function) {
1741 DCHECK(function->shared()->is_generator());
1742 JSFunction::EnsureHasInitialMap(function);
1743 Handle<Map> map(function->initial_map());
1744 DCHECK(map->instance_type() == JS_GENERATOR_OBJECT_TYPE);
1747 isolate()->heap()->AllocateJSObjectFromMap(*map),
1752 Handle<JSArrayBuffer> Factory::NewJSArrayBuffer(SharedFlag shared) {
1753 Handle<JSFunction> array_buffer_fun(
1754 shared == SharedFlag::kShared
1755 ? isolate()->native_context()->shared_array_buffer_fun()
1756 : isolate()->native_context()->array_buffer_fun());
1759 isolate()->heap()->AllocateJSObject(*array_buffer_fun),
1764 Handle<JSDataView> Factory::NewJSDataView() {
1765 Handle<JSFunction> data_view_fun(
1766 isolate()->native_context()->data_view_fun());
1769 isolate()->heap()->AllocateJSObject(*data_view_fun),
1774 Handle<JSMap> Factory::NewJSMap() {
1775 Handle<Map> map(isolate()->native_context()->js_map_map());
1776 Handle<JSMap> js_map = Handle<JSMap>::cast(NewJSObjectFromMap(map));
1777 Runtime::JSMapInitialize(isolate(), js_map);
1782 Handle<JSSet> Factory::NewJSSet() {
1783 Handle<Map> map(isolate()->native_context()->js_set_map());
1784 Handle<JSSet> js_set = Handle<JSSet>::cast(NewJSObjectFromMap(map));
1785 Runtime::JSSetInitialize(isolate(), js_set);
1790 Handle<JSMapIterator> Factory::NewJSMapIterator() {
1791 Handle<Map> map(isolate()->native_context()->map_iterator_map());
1792 CALL_HEAP_FUNCTION(isolate(),
1793 isolate()->heap()->AllocateJSObjectFromMap(*map),
1798 Handle<JSSetIterator> Factory::NewJSSetIterator() {
1799 Handle<Map> map(isolate()->native_context()->set_iterator_map());
1800 CALL_HEAP_FUNCTION(isolate(),
1801 isolate()->heap()->AllocateJSObjectFromMap(*map),
1808 ElementsKind GetExternalArrayElementsKind(ExternalArrayType type) {
1810 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
1811 case kExternal##Type##Array: \
1812 return TYPE##_ELEMENTS;
1813 TYPED_ARRAYS(TYPED_ARRAY_CASE)
1816 return FIRST_FIXED_TYPED_ARRAY_ELEMENTS_KIND;
1817 #undef TYPED_ARRAY_CASE
1821 size_t GetExternalArrayElementSize(ExternalArrayType type) {
1823 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
1824 case kExternal##Type##Array: \
1826 TYPED_ARRAYS(TYPED_ARRAY_CASE)
1831 #undef TYPED_ARRAY_CASE
1835 size_t GetFixedTypedArraysElementSize(ElementsKind kind) {
1837 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
1838 case TYPE##_ELEMENTS: \
1840 TYPED_ARRAYS(TYPED_ARRAY_CASE)
1845 #undef TYPED_ARRAY_CASE
1849 ExternalArrayType GetArrayTypeFromElementsKind(ElementsKind kind) {
1851 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
1852 case TYPE##_ELEMENTS: \
1853 return kExternal##Type##Array;
1854 TYPED_ARRAYS(TYPED_ARRAY_CASE)
1857 return kExternalInt8Array;
1859 #undef TYPED_ARRAY_CASE
1863 JSFunction* GetTypedArrayFun(ExternalArrayType type, Isolate* isolate) {
1864 Context* native_context = isolate->context()->native_context();
1866 #define TYPED_ARRAY_FUN(Type, type, TYPE, ctype, size) \
1867 case kExternal##Type##Array: \
1868 return native_context->type##_array_fun();
1870 TYPED_ARRAYS(TYPED_ARRAY_FUN)
1871 #undef TYPED_ARRAY_FUN
1880 JSFunction* GetTypedArrayFun(ElementsKind elements_kind, Isolate* isolate) {
1881 Context* native_context = isolate->context()->native_context();
1882 switch (elements_kind) {
1883 #define TYPED_ARRAY_FUN(Type, type, TYPE, ctype, size) \
1884 case TYPE##_ELEMENTS: \
1885 return native_context->type##_array_fun();
1887 TYPED_ARRAYS(TYPED_ARRAY_FUN)
1888 #undef TYPED_ARRAY_FUN
1897 void SetupArrayBufferView(i::Isolate* isolate,
1898 i::Handle<i::JSArrayBufferView> obj,
1899 i::Handle<i::JSArrayBuffer> buffer,
1900 size_t byte_offset, size_t byte_length) {
1901 DCHECK(byte_offset + byte_length <=
1902 static_cast<size_t>(buffer->byte_length()->Number()));
1904 obj->set_buffer(*buffer);
1906 i::Handle<i::Object> byte_offset_object =
1907 isolate->factory()->NewNumberFromSize(byte_offset);
1908 obj->set_byte_offset(*byte_offset_object);
1910 i::Handle<i::Object> byte_length_object =
1911 isolate->factory()->NewNumberFromSize(byte_length);
1912 obj->set_byte_length(*byte_length_object);
1919 Handle<JSTypedArray> Factory::NewJSTypedArray(ExternalArrayType type) {
1920 Handle<JSFunction> typed_array_fun_handle(GetTypedArrayFun(type, isolate()));
1924 isolate()->heap()->AllocateJSObject(*typed_array_fun_handle),
1929 Handle<JSTypedArray> Factory::NewJSTypedArray(ElementsKind elements_kind) {
1930 Handle<JSFunction> typed_array_fun_handle(
1931 GetTypedArrayFun(elements_kind, isolate()));
1934 isolate(), isolate()->heap()->AllocateJSObject(*typed_array_fun_handle),
1939 Handle<JSTypedArray> Factory::NewJSTypedArray(ExternalArrayType type,
1940 Handle<JSArrayBuffer> buffer,
1943 Handle<JSTypedArray> obj = NewJSTypedArray(type);
1945 size_t element_size = GetExternalArrayElementSize(type);
1946 ElementsKind elements_kind = GetExternalArrayElementsKind(type);
1948 CHECK(byte_offset % element_size == 0);
1950 CHECK(length <= (std::numeric_limits<size_t>::max() / element_size));
1951 CHECK(length <= static_cast<size_t>(Smi::kMaxValue));
1952 size_t byte_length = length * element_size;
1953 SetupArrayBufferView(isolate(), obj, buffer, byte_offset, byte_length);
1955 Handle<Object> length_object = NewNumberFromSize(length);
1956 obj->set_length(*length_object);
1958 Handle<FixedTypedArrayBase> elements = NewFixedTypedArrayWithExternalPointer(
1959 static_cast<int>(length), type,
1960 static_cast<uint8_t*>(buffer->backing_store()) + byte_offset);
1961 Handle<Map> map = JSObject::GetElementsTransitionMap(obj, elements_kind);
1962 JSObject::SetMapAndElements(obj, map, elements);
1967 Handle<JSTypedArray> Factory::NewJSTypedArray(ElementsKind elements_kind,
1968 size_t number_of_elements) {
1969 Handle<JSTypedArray> obj = NewJSTypedArray(elements_kind);
1971 size_t element_size = GetFixedTypedArraysElementSize(elements_kind);
1972 ExternalArrayType array_type = GetArrayTypeFromElementsKind(elements_kind);
1974 CHECK(number_of_elements <=
1975 (std::numeric_limits<size_t>::max() / element_size));
1976 CHECK(number_of_elements <= static_cast<size_t>(Smi::kMaxValue));
1977 size_t byte_length = number_of_elements * element_size;
1979 obj->set_byte_offset(Smi::FromInt(0));
1980 i::Handle<i::Object> byte_length_object =
1981 isolate()->factory()->NewNumberFromSize(byte_length);
1982 obj->set_byte_length(*byte_length_object);
1983 Handle<Object> length_object = NewNumberFromSize(number_of_elements);
1984 obj->set_length(*length_object);
1986 Handle<JSArrayBuffer> buffer = isolate()->factory()->NewJSArrayBuffer();
1987 Runtime::SetupArrayBuffer(isolate(), buffer, true, NULL, byte_length,
1988 SharedFlag::kNotShared);
1989 obj->set_buffer(*buffer);
1990 Handle<FixedTypedArrayBase> elements =
1991 isolate()->factory()->NewFixedTypedArray(
1992 static_cast<int>(number_of_elements), array_type, true);
1993 obj->set_elements(*elements);
1998 Handle<JSDataView> Factory::NewJSDataView(Handle<JSArrayBuffer> buffer,
2000 size_t byte_length) {
2001 Handle<JSDataView> obj = NewJSDataView();
2002 SetupArrayBufferView(isolate(), obj, buffer, byte_offset, byte_length);
2007 Handle<JSProxy> Factory::NewJSProxy(Handle<Object> handler,
2008 Handle<Object> prototype) {
2010 // TODO(rossberg): Once we optimize proxies, think about a scheme to share
2011 // maps. Will probably depend on the identity of the handler object, too.
2012 Handle<Map> map = NewMap(JS_PROXY_TYPE, JSProxy::kSize);
2013 Map::SetPrototype(map, prototype);
2015 // Allocate the proxy object.
2016 Handle<JSProxy> result = New<JSProxy>(map, NEW_SPACE);
2017 result->InitializeBody(map->instance_size(), Smi::FromInt(0));
2018 result->set_handler(*handler);
2019 result->set_hash(*undefined_value(), SKIP_WRITE_BARRIER);
2024 Handle<JSProxy> Factory::NewJSFunctionProxy(Handle<Object> handler,
2025 Handle<Object> call_trap,
2026 Handle<Object> construct_trap,
2027 Handle<Object> prototype) {
2029 // TODO(rossberg): Once we optimize proxies, think about a scheme to share
2030 // maps. Will probably depend on the identity of the handler object, too.
2031 Handle<Map> map = NewMap(JS_FUNCTION_PROXY_TYPE, JSFunctionProxy::kSize);
2032 Map::SetPrototype(map, prototype);
2034 // Allocate the proxy object.
2035 Handle<JSFunctionProxy> result = New<JSFunctionProxy>(map, NEW_SPACE);
2036 result->InitializeBody(map->instance_size(), Smi::FromInt(0));
2037 result->set_handler(*handler);
2038 result->set_hash(*undefined_value(), SKIP_WRITE_BARRIER);
2039 result->set_call_trap(*call_trap);
2040 result->set_construct_trap(*construct_trap);
2045 void Factory::ReinitializeJSProxy(Handle<JSProxy> proxy, InstanceType type,
2047 DCHECK(type == JS_OBJECT_TYPE || type == JS_FUNCTION_TYPE);
2049 Handle<Map> proxy_map(proxy->map());
2050 Handle<Map> map = Map::FixProxy(proxy_map, type, size);
2052 // Check that the receiver has at least the size of the fresh object.
2053 int size_difference = proxy_map->instance_size() - map->instance_size();
2054 DCHECK(size_difference >= 0);
2056 // Allocate the backing storage for the properties.
2057 Handle<FixedArray> properties = empty_fixed_array();
2059 Heap* heap = isolate()->heap();
2060 MaybeHandle<SharedFunctionInfo> shared;
2061 if (type == JS_FUNCTION_TYPE) {
2062 OneByteStringKey key(STATIC_CHAR_VECTOR("<freezing call trap>"),
2064 Handle<String> name = InternalizeStringWithKey(&key);
2065 shared = NewSharedFunctionInfo(name, MaybeHandle<Code>());
2068 // In order to keep heap in consistent state there must be no allocations
2069 // before object re-initialization is finished and filler object is installed.
2070 DisallowHeapAllocation no_allocation;
2072 // Put in filler if the new object is smaller than the old.
2073 if (size_difference > 0) {
2074 Address address = proxy->address();
2075 heap->CreateFillerObjectAt(address + map->instance_size(), size_difference);
2076 heap->AdjustLiveBytes(*proxy, -size_difference,
2077 Heap::CONCURRENT_TO_SWEEPER);
2080 // Reset the map for the object.
2081 proxy->synchronized_set_map(*map);
2082 Handle<JSObject> jsobj = Handle<JSObject>::cast(proxy);
2084 // Reinitialize the object from the constructor map.
2085 heap->InitializeJSObjectFromMap(*jsobj, *properties, *map);
2087 // The current native context is used to set up certain bits.
2088 // TODO(adamk): Using the current context seems wrong, it should be whatever
2089 // context the JSProxy originated in. But that context isn't stored anywhere.
2090 Handle<Context> context(isolate()->native_context());
2092 // Functions require some minimal initialization.
2093 if (type == JS_FUNCTION_TYPE) {
2094 map->set_function_with_prototype(true);
2095 Handle<JSFunction> js_function = Handle<JSFunction>::cast(proxy);
2096 InitializeFunction(js_function, shared.ToHandleChecked(), context);
2098 // Provide JSObjects with a constructor.
2099 map->SetConstructor(context->object_function());
2104 Handle<JSGlobalProxy> Factory::NewUninitializedJSGlobalProxy() {
2105 // Create an empty shell of a JSGlobalProxy that needs to be reinitialized
2106 // via ReinitializeJSGlobalProxy later.
2107 Handle<Map> map = NewMap(JS_GLOBAL_PROXY_TYPE, JSGlobalProxy::kSize);
2108 // Maintain invariant expected from any JSGlobalProxy.
2109 map->set_is_access_check_needed(true);
2111 isolate(), isolate()->heap()->AllocateJSObjectFromMap(*map, NOT_TENURED),
2116 void Factory::ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> object,
2117 Handle<JSFunction> constructor) {
2118 DCHECK(constructor->has_initial_map());
2119 Handle<Map> map(constructor->initial_map(), isolate());
2121 // The proxy's hash should be retained across reinitialization.
2122 Handle<Object> hash(object->hash(), isolate());
2124 // Check that the already allocated object has the same size and type as
2125 // objects allocated using the constructor.
2126 DCHECK(map->instance_size() == object->map()->instance_size());
2127 DCHECK(map->instance_type() == object->map()->instance_type());
2129 // Allocate the backing storage for the properties.
2130 Handle<FixedArray> properties = empty_fixed_array();
2132 // In order to keep heap in consistent state there must be no allocations
2133 // before object re-initialization is finished.
2134 DisallowHeapAllocation no_allocation;
2136 // Reset the map for the object.
2137 object->synchronized_set_map(*map);
2139 Heap* heap = isolate()->heap();
2140 // Reinitialize the object from the constructor map.
2141 heap->InitializeJSObjectFromMap(*object, *properties, *map);
2143 // Restore the saved hash.
2144 object->set_hash(*hash);
2148 void Factory::BecomeJSObject(Handle<JSProxy> proxy) {
2149 ReinitializeJSProxy(proxy, JS_OBJECT_TYPE, JSObject::kHeaderSize);
2153 void Factory::BecomeJSFunction(Handle<JSProxy> proxy) {
2154 ReinitializeJSProxy(proxy, JS_FUNCTION_TYPE, JSFunction::kSize);
2158 template Handle<TypeFeedbackVector> Factory::NewTypeFeedbackVector(
2159 const ZoneFeedbackVectorSpec* spec);
2160 template Handle<TypeFeedbackVector> Factory::NewTypeFeedbackVector(
2161 const FeedbackVectorSpec* spec);
2163 template <typename Spec>
2164 Handle<TypeFeedbackVector> Factory::NewTypeFeedbackVector(const Spec* spec) {
2165 return TypeFeedbackVector::Allocate<Spec>(isolate(), spec);
2169 Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfo(
2170 Handle<String> name, int number_of_literals, FunctionKind kind,
2171 Handle<Code> code, Handle<ScopeInfo> scope_info,
2172 Handle<TypeFeedbackVector> feedback_vector) {
2173 DCHECK(IsValidFunctionKind(kind));
2174 Handle<SharedFunctionInfo> shared = NewSharedFunctionInfo(name, code);
2175 shared->set_scope_info(*scope_info);
2176 shared->set_feedback_vector(*feedback_vector);
2177 shared->set_kind(kind);
2178 shared->set_num_literals(number_of_literals);
2179 if (IsGeneratorFunction(kind)) {
2180 shared->set_instance_class_name(isolate()->heap()->Generator_string());
2181 shared->DisableOptimization(kGenerator);
2187 Handle<JSMessageObject> Factory::NewJSMessageObject(
2188 MessageTemplate::Template message, Handle<Object> argument,
2189 int start_position, int end_position, Handle<Object> script,
2190 Handle<Object> stack_frames) {
2191 Handle<Map> map = message_object_map();
2192 Handle<JSMessageObject> message_obj = New<JSMessageObject>(map, NEW_SPACE);
2193 message_obj->set_properties(*empty_fixed_array(), SKIP_WRITE_BARRIER);
2194 message_obj->initialize_elements();
2195 message_obj->set_elements(*empty_fixed_array(), SKIP_WRITE_BARRIER);
2196 message_obj->set_type(message);
2197 message_obj->set_argument(*argument);
2198 message_obj->set_start_position(start_position);
2199 message_obj->set_end_position(end_position);
2200 message_obj->set_script(*script);
2201 message_obj->set_stack_frames(*stack_frames);
2206 Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfo(
2207 Handle<String> name,
2208 MaybeHandle<Code> maybe_code) {
2209 Handle<Map> map = shared_function_info_map();
2210 Handle<SharedFunctionInfo> share = New<SharedFunctionInfo>(map, OLD_SPACE);
2212 // Set pointer fields.
2213 share->set_name(*name);
2215 if (!maybe_code.ToHandle(&code)) {
2216 code = handle(isolate()->builtins()->builtin(Builtins::kIllegal));
2218 share->set_code(*code);
2219 share->set_optimized_code_map(Smi::FromInt(0));
2220 share->set_scope_info(ScopeInfo::Empty(isolate()));
2221 Code* construct_stub =
2222 isolate()->builtins()->builtin(Builtins::kJSConstructStubGeneric);
2223 share->set_construct_stub(construct_stub);
2224 share->set_instance_class_name(*Object_string());
2225 share->set_function_data(*undefined_value(), SKIP_WRITE_BARRIER);
2226 share->set_script(*undefined_value(), SKIP_WRITE_BARRIER);
2227 share->set_debug_info(*undefined_value(), SKIP_WRITE_BARRIER);
2228 share->set_inferred_name(*empty_string(), SKIP_WRITE_BARRIER);
2229 FeedbackVectorSpec empty_spec(0);
2230 Handle<TypeFeedbackVector> feedback_vector =
2231 NewTypeFeedbackVector(&empty_spec);
2232 share->set_feedback_vector(*feedback_vector, SKIP_WRITE_BARRIER);
2234 share->set_unique_id(isolate()->GetNextUniqueSharedFunctionInfoId());
2236 share->set_profiler_ticks(0);
2237 share->set_ast_node_count(0);
2238 share->set_counters(0);
2240 // Set integer fields (smi or int, depending on the architecture).
2241 share->set_length(0);
2242 share->set_internal_formal_parameter_count(0);
2243 share->set_expected_nof_properties(0);
2244 share->set_num_literals(0);
2245 share->set_start_position_and_type(0);
2246 share->set_end_position(0);
2247 share->set_function_token_position(0);
2248 // All compiler hints default to false or 0.
2249 share->set_compiler_hints(0);
2250 share->set_opt_count_and_bailout_reason(0);
2256 static inline int NumberCacheHash(Handle<FixedArray> cache,
2257 Handle<Object> number) {
2258 int mask = (cache->length() >> 1) - 1;
2259 if (number->IsSmi()) {
2260 return Handle<Smi>::cast(number)->value() & mask;
2262 DoubleRepresentation rep(number->Number());
2264 (static_cast<int>(rep.bits) ^ static_cast<int>(rep.bits >> 32)) & mask;
2269 Handle<Object> Factory::GetNumberStringCache(Handle<Object> number) {
2270 DisallowHeapAllocation no_gc;
2271 int hash = NumberCacheHash(number_string_cache(), number);
2272 Object* key = number_string_cache()->get(hash * 2);
2273 if (key == *number || (key->IsHeapNumber() && number->IsHeapNumber() &&
2274 key->Number() == number->Number())) {
2275 return Handle<String>(
2276 String::cast(number_string_cache()->get(hash * 2 + 1)), isolate());
2278 return undefined_value();
2282 void Factory::SetNumberStringCache(Handle<Object> number,
2283 Handle<String> string) {
2284 int hash = NumberCacheHash(number_string_cache(), number);
2285 if (number_string_cache()->get(hash * 2) != *undefined_value()) {
2286 int full_size = isolate()->heap()->FullSizeNumberStringCacheLength();
2287 if (number_string_cache()->length() != full_size) {
2288 Handle<FixedArray> new_cache = NewFixedArray(full_size, TENURED);
2289 isolate()->heap()->set_number_string_cache(*new_cache);
2293 number_string_cache()->set(hash * 2, *number);
2294 number_string_cache()->set(hash * 2 + 1, *string);
2298 Handle<String> Factory::NumberToString(Handle<Object> number,
2299 bool check_number_string_cache) {
2300 isolate()->counters()->number_to_string_runtime()->Increment();
2301 if (check_number_string_cache) {
2302 Handle<Object> cached = GetNumberStringCache(number);
2303 if (!cached->IsUndefined()) return Handle<String>::cast(cached);
2307 Vector<char> buffer(arr, arraysize(arr));
2309 if (number->IsSmi()) {
2310 int num = Handle<Smi>::cast(number)->value();
2311 str = IntToCString(num, buffer);
2313 double num = Handle<HeapNumber>::cast(number)->value();
2314 str = DoubleToCString(num, buffer);
2317 // We tenure the allocated string since it is referenced from the
2318 // number-string cache which lives in the old space.
2319 Handle<String> js_string = NewStringFromAsciiChecked(str, TENURED);
2320 SetNumberStringCache(number, js_string);
2325 Handle<DebugInfo> Factory::NewDebugInfo(Handle<SharedFunctionInfo> shared) {
2326 // Allocate initial fixed array for active break points before allocating the
2327 // debug info object to avoid allocation while setting up the debug info
2329 Handle<FixedArray> break_points(
2330 NewFixedArray(DebugInfo::kEstimatedNofBreakPointsInFunction));
2332 // Create and set up the debug info object. Debug info contains function, a
2333 // copy of the original code, the executing code and initial fixed array for
2334 // active break points.
2335 Handle<DebugInfo> debug_info =
2336 Handle<DebugInfo>::cast(NewStruct(DEBUG_INFO_TYPE));
2337 debug_info->set_shared(*shared);
2338 debug_info->set_code(shared->code());
2339 debug_info->set_break_points(*break_points);
2341 // Link debug info to function.
2342 shared->set_debug_info(*debug_info);
2348 Handle<JSObject> Factory::NewArgumentsObject(Handle<JSFunction> callee,
2350 bool strict_mode_callee = is_strict(callee->shared()->language_mode()) ||
2351 !callee->has_simple_parameters();
2352 Handle<Map> map = strict_mode_callee ? isolate()->strict_arguments_map()
2353 : isolate()->sloppy_arguments_map();
2354 AllocationSiteUsageContext context(isolate(), Handle<AllocationSite>(),
2356 DCHECK(!isolate()->has_pending_exception());
2357 Handle<JSObject> result = NewJSObjectFromMap(map);
2358 Handle<Smi> value(Smi::FromInt(length), isolate());
2359 Object::SetProperty(result, length_string(), value, STRICT).Assert();
2360 if (!strict_mode_callee) {
2361 Object::SetProperty(result, callee_string(), callee, STRICT).Assert();
2367 Handle<JSWeakMap> Factory::NewJSWeakMap() {
2368 // TODO(adamk): Currently the map is only created three times per
2369 // isolate. If it's created more often, the map should be moved into the
2370 // strong root list.
2371 Handle<Map> map = NewMap(JS_WEAK_MAP_TYPE, JSWeakMap::kSize);
2372 return Handle<JSWeakMap>::cast(NewJSObjectFromMap(map));
2376 Handle<Map> Factory::ObjectLiteralMapFromCache(Handle<Context> context,
2377 int number_of_properties,
2379 bool* is_result_from_cache) {
2380 const int kMapCacheSize = 128;
2382 // We do not cache maps for too many properties or when running builtin code.
2383 if (number_of_properties > kMapCacheSize ||
2384 isolate()->bootstrapper()->IsActive()) {
2385 *is_result_from_cache = false;
2386 Handle<Map> map = Map::Create(isolate(), number_of_properties);
2387 if (is_strong) map->set_is_strong();
2390 *is_result_from_cache = true;
2391 if (number_of_properties == 0) {
2392 // Reuse the initial map of the Object function if the literal has no
2393 // predeclared properties, or the strong map if strong.
2394 return handle(is_strong
2395 ? context->js_object_strong_map()
2396 : context->object_function()->initial_map(), isolate());
2399 int cache_index = number_of_properties - 1;
2400 Handle<Object> maybe_cache(is_strong ? context->strong_map_cache()
2401 : context->map_cache(), isolate());
2402 if (maybe_cache->IsUndefined()) {
2403 // Allocate the new map cache for the native context.
2404 maybe_cache = NewFixedArray(kMapCacheSize, TENURED);
2406 context->set_strong_map_cache(*maybe_cache);
2408 context->set_map_cache(*maybe_cache);
2411 // Check to see whether there is a matching element in the cache.
2412 Handle<FixedArray> cache = Handle<FixedArray>::cast(maybe_cache);
2413 Object* result = cache->get(cache_index);
2414 if (result->IsWeakCell()) {
2415 WeakCell* cell = WeakCell::cast(result);
2416 if (!cell->cleared()) {
2417 return handle(Map::cast(cell->value()), isolate());
2421 // Create a new map and add it to the cache.
2422 Handle<FixedArray> cache = Handle<FixedArray>::cast(maybe_cache);
2423 Handle<Map> map = Map::Create(isolate(), number_of_properties);
2424 if (is_strong) map->set_is_strong();
2425 Handle<WeakCell> cell = NewWeakCell(map);
2426 cache->set(cache_index, *cell);
2431 void Factory::SetRegExpAtomData(Handle<JSRegExp> regexp,
2432 JSRegExp::Type type,
2433 Handle<String> source,
2434 JSRegExp::Flags flags,
2435 Handle<Object> data) {
2436 Handle<FixedArray> store = NewFixedArray(JSRegExp::kAtomDataSize);
2438 store->set(JSRegExp::kTagIndex, Smi::FromInt(type));
2439 store->set(JSRegExp::kSourceIndex, *source);
2440 store->set(JSRegExp::kFlagsIndex, Smi::FromInt(flags.value()));
2441 store->set(JSRegExp::kAtomPatternIndex, *data);
2442 regexp->set_data(*store);
2446 void Factory::SetRegExpIrregexpData(Handle<JSRegExp> regexp,
2447 JSRegExp::Type type,
2448 Handle<String> source,
2449 JSRegExp::Flags flags,
2450 int capture_count) {
2451 Handle<FixedArray> store = NewFixedArray(JSRegExp::kIrregexpDataSize);
2452 Smi* uninitialized = Smi::FromInt(JSRegExp::kUninitializedValue);
2453 store->set(JSRegExp::kTagIndex, Smi::FromInt(type));
2454 store->set(JSRegExp::kSourceIndex, *source);
2455 store->set(JSRegExp::kFlagsIndex, Smi::FromInt(flags.value()));
2456 store->set(JSRegExp::kIrregexpLatin1CodeIndex, uninitialized);
2457 store->set(JSRegExp::kIrregexpUC16CodeIndex, uninitialized);
2458 store->set(JSRegExp::kIrregexpLatin1CodeSavedIndex, uninitialized);
2459 store->set(JSRegExp::kIrregexpUC16CodeSavedIndex, uninitialized);
2460 store->set(JSRegExp::kIrregexpMaxRegisterCountIndex, Smi::FromInt(0));
2461 store->set(JSRegExp::kIrregexpCaptureCountIndex,
2462 Smi::FromInt(capture_count));
2463 regexp->set_data(*store);
2467 Handle<Object> Factory::GlobalConstantFor(Handle<Name> name) {
2468 if (Name::Equals(name, undefined_string())) return undefined_value();
2469 if (Name::Equals(name, nan_string())) return nan_value();
2470 if (Name::Equals(name, infinity_string())) return infinity_value();
2471 return Handle<Object>::null();
2475 Handle<Object> Factory::ToBoolean(bool value) {
2476 return value ? true_value() : false_value();
2480 } // namespace internal