dnsproxy: Fix invalid hash table cleanup
[platform/upstream/connman.git] / src / dnsproxy.c
1 /*
2  *
3  *  Connection Manager
4  *
5  *  Copyright (C) 2007-2010  Intel Corporation. All rights reserved.
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License version 2 as
9  *  published by the Free Software Foundation.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, write to the Free Software
18  *  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  *
20  */
21
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <errno.h>
27 #include <unistd.h>
28 #include <string.h>
29 #include <stdint.h>
30 #include <arpa/inet.h>
31 #include <netinet/in.h>
32 #include <sys/types.h>
33 #include <sys/socket.h>
34 #include <netdb.h>
35 #include <resolv.h>
36 #include <gweb/gresolv.h>
37
38 #include <glib.h>
39
40 #include "connman.h"
41
42 #if __BYTE_ORDER == __LITTLE_ENDIAN
43 struct domain_hdr {
44         uint16_t id;
45         uint8_t rd:1;
46         uint8_t tc:1;
47         uint8_t aa:1;
48         uint8_t opcode:4;
49         uint8_t qr:1;
50         uint8_t rcode:4;
51         uint8_t z:3;
52         uint8_t ra:1;
53         uint16_t qdcount;
54         uint16_t ancount;
55         uint16_t nscount;
56         uint16_t arcount;
57 } __attribute__ ((packed));
58 #elif __BYTE_ORDER == __BIG_ENDIAN
59 struct domain_hdr {
60         uint16_t id;
61         uint8_t qr:1;
62         uint8_t opcode:4;
63         uint8_t aa:1;
64         uint8_t tc:1;
65         uint8_t rd:1;
66         uint8_t ra:1;
67         uint8_t z:3;
68         uint8_t rcode:4;
69         uint16_t qdcount;
70         uint16_t ancount;
71         uint16_t nscount;
72         uint16_t arcount;
73 } __attribute__ ((packed));
74 #else
75 #error "Unknown byte order"
76 #endif
77
78 struct partial_reply {
79         uint16_t len;
80         uint16_t received;
81         unsigned char buf[];
82 };
83
84 struct server_data {
85         char *interface;
86         GList *domains;
87         char *server;
88         int protocol;
89         GIOChannel *channel;
90         guint watch;
91         guint timeout;
92         gboolean enabled;
93         gboolean connected;
94         struct partial_reply *incoming_reply;
95 };
96
97 struct request_data {
98         union {
99                 struct sockaddr_in6 __sin6; /* Only for the length */
100                 struct sockaddr sa;
101         };
102         socklen_t sa_len;
103         int client_sk;
104         int protocol;
105         guint16 srcid;
106         guint16 dstid;
107         guint16 altid;
108         guint timeout;
109         guint watch;
110         guint numserv;
111         guint numresp;
112         gpointer request;
113         gsize request_len;
114         gpointer name;
115         gpointer resp;
116         gsize resplen;
117         struct listener_data *ifdata;
118         gboolean append_domain;
119 };
120
121 struct listener_data {
122         char *ifname;
123         GIOChannel *udp_listener_channel;
124         guint udp_listener_watch;
125         GIOChannel *tcp_listener_channel;
126         guint tcp_listener_watch;
127 };
128
129 struct cache_data {
130         time_t inserted;
131         time_t valid_until;
132         time_t cache_until;
133         int timeout;
134         uint16_t type;
135         uint16_t answers;
136         unsigned int data_len;
137         unsigned char *data; /* contains DNS header + body */
138 };
139
140 struct cache_entry {
141         char *key;
142         int want_refresh;
143         int hits;
144         struct cache_data *ipv4;
145         struct cache_data *ipv6;
146 };
147
148 struct domain_question {
149         uint16_t type;
150         uint16_t class;
151 } __attribute__ ((packed));
152
153 struct domain_rr {
154         uint16_t type;
155         uint16_t class;
156         uint32_t ttl;
157         uint16_t rdlen;
158 } __attribute__ ((packed));
159
160 /*
161  * We limit how long the cached DNS entry stays in the cache.
162  * By default the TTL (time-to-live) of the DNS response is used
163  * when setting the cache entry life time. The value is in seconds.
164  */
165 #define MAX_CACHE_TTL (60 * 30)
166 /*
167  * Also limit the other end, cache at least for 30 seconds.
168  */
169 #define MIN_CACHE_TTL (30)
170
171 /*
172  * We limit the cache size to some sane value so that cached data does
173  * not occupy too much memory. Each cached entry occupies on average
174  * about 100 bytes memory (depending on DNS name length).
175  * Example: caching www.connman.net uses 97 bytes memory.
176  * The value is the max amount of cached DNS responses (count).
177  */
178 #define MAX_CACHE_SIZE 256
179
180 static int cache_size;
181 static GHashTable *cache;
182 static int cache_refcount;
183 static GSList *server_list = NULL;
184 static GSList *request_list = NULL;
185 static GSList *request_pending_list = NULL;
186 static guint16 request_id = 0x0000;
187 static GHashTable *listener_table = NULL;
188 static time_t next_refresh;
189
190 static int protocol_offset(int protocol)
191 {
192         switch (protocol) {
193         case IPPROTO_UDP:
194                 return 0;
195
196         case IPPROTO_TCP:
197                 return 2;
198
199         default:
200                 return -EINVAL;
201         }
202
203 }
204
205 /*
206  * There is a power and efficiency benefit to have entries
207  * in our cache expire at the same time. To this extend,
208  * we round down the cache valid time to common boundaries.
209  */
210 static time_t round_down_ttl(time_t end_time, int ttl)
211 {
212         if (ttl < 15)
213                 return end_time;
214
215         /* Less than 5 minutes, round to 10 second boundary */
216         if (ttl < 300) {
217                 end_time = end_time / 10;
218                 end_time = end_time * 10;
219         } else { /* 5 or more minutes, round to 30 seconds */
220                 end_time = end_time / 30;
221                 end_time = end_time * 30;
222         }
223         return end_time;
224 }
225
226 static struct request_data *find_request(guint16 id)
227 {
228         GSList *list;
229
230         for (list = request_list; list; list = list->next) {
231                 struct request_data *req = list->data;
232
233                 if (req->dstid == id || req->altid == id)
234                         return req;
235         }
236
237         return NULL;
238 }
239
240 static struct server_data *find_server(const char *interface,
241                                         const char *server,
242                                                 int protocol)
243 {
244         GSList *list;
245
246         DBG("interface %s server %s", interface, server);
247
248         for (list = server_list; list; list = list->next) {
249                 struct server_data *data = list->data;
250
251                 if (interface == NULL && data->interface == NULL &&
252                                 g_str_equal(data->server, server) == TRUE &&
253                                 data->protocol == protocol)
254                         return data;
255
256                 if (interface == NULL ||
257                                 data->interface == NULL || data->server == NULL)
258                         continue;
259
260                 if (g_str_equal(data->interface, interface) == TRUE &&
261                                 g_str_equal(data->server, server) == TRUE &&
262                                 data->protocol == protocol)
263                         return data;
264         }
265
266         return NULL;
267 }
268
269 /* we can keep using the same resolve's */
270 static GResolv *ipv4_resolve;
271 static GResolv *ipv6_resolve;
272
273 static void dummy_resolve_func(GResolvResultStatus status,
274                                         char **results, gpointer user_data)
275 {
276 }
277
278 /*
279  * Refresh a DNS entry, but also age the hit count a bit */
280 static void refresh_dns_entry(struct cache_entry *entry, char *name)
281 {
282         int age = 1;
283
284         if (ipv4_resolve == NULL) {
285                 ipv4_resolve = g_resolv_new(0);
286                 g_resolv_set_address_family(ipv4_resolve, AF_INET);
287                 g_resolv_add_nameserver(ipv4_resolve, "127.0.0.1", 53, 0);
288         }
289
290         if (ipv6_resolve == NULL) {
291                 ipv6_resolve = g_resolv_new(0);
292                 g_resolv_set_address_family(ipv6_resolve, AF_INET6);
293                 g_resolv_add_nameserver(ipv6_resolve, "127.0.0.1", 53, 0);
294         }
295
296         if (entry->ipv4 == NULL) {
297                 DBG("Refresing A record for %s", name);
298                 g_resolv_lookup_hostname(ipv4_resolve, name,
299                                         dummy_resolve_func, NULL);
300                 age = 4;
301         }
302
303         if (entry->ipv6 == NULL) {
304                 DBG("Refresing AAAA record for %s", name);
305                 g_resolv_lookup_hostname(ipv6_resolve, name,
306                                         dummy_resolve_func, NULL);
307                 age = 4;
308         }
309
310         entry->hits -= age;
311         if (entry->hits < 0)
312                 entry->hits = 0;
313 }
314
315 static int dns_name_length(unsigned char *buf)
316 {
317         if ((buf[0] & NS_CMPRSFLGS) == NS_CMPRSFLGS) /* compressed name */
318                 return 2;
319         return strlen((char *)buf);
320 }
321
322 static void update_cached_ttl(unsigned char *buf, int len, int new_ttl)
323 {
324         unsigned char *c;
325         uint32_t *i;
326         uint16_t *w;
327         int l;
328
329         /* skip the header */
330         c = buf + 12;
331         len -= 12;
332
333         /* skip the query, which is a name and 2 16 bit words */
334         l = dns_name_length(c);
335         c += l;
336         len -= l;
337         c += 4;
338         len -= 4;
339
340         /* now we get the answer records */
341
342         while (len > 0) {
343                 /* first a name */
344                 l = dns_name_length(c);
345                 c += l;
346                 len -= l;
347                 if (len < 0)
348                         break;
349                 /* then type + class, 2 bytes each */
350                 c += 4;
351                 len -= 4;
352                 if (len < 0)
353                         break;
354
355                 /* now the 4 byte TTL field */
356                 i = (uint32_t *)c;
357                 *i = htonl(new_ttl);
358                 c += 4;
359                 len -= 4;
360                 if (len < 0)
361                         break;
362
363                 /* now the 2 byte rdlen field */
364                 w = (uint16_t *)c;
365                 c += ntohs(*w) + 2;
366                 len -= ntohs(*w) + 2;
367         }
368 }
369
370 static void send_cached_response(int sk, unsigned char *buf, int len,
371                                 const struct sockaddr *to, socklen_t tolen,
372                                 int protocol, int id, uint16_t answers, int ttl)
373 {
374         struct domain_hdr *hdr;
375         int err, offset = protocol_offset(protocol);
376
377         if (offset < 0)
378                 return;
379
380         if (len < 12)
381                 return;
382
383         hdr = (void *) (buf + offset);
384
385         hdr->id = id;
386         hdr->qr = 1;
387         hdr->rcode = 0;
388         hdr->ancount = htons(answers);
389         hdr->nscount = 0;
390         hdr->arcount = 0;
391
392         /* if this is a negative reply, we are authorative */
393         if (answers == 0)
394                 hdr->aa = 1;
395         else
396                 update_cached_ttl(buf, len, ttl);
397
398         DBG("id 0x%04x answers %d", hdr->id, answers);
399
400         err = sendto(sk, buf, len, 0, to, tolen);
401         if (err < 0) {
402                 connman_error("Cannot send cached DNS response: %s",
403                                 strerror(errno));
404                 return;
405         }
406 }
407
408 static void send_response(int sk, unsigned char *buf, int len,
409                                 const struct sockaddr *to, socklen_t tolen,
410                                 int protocol)
411 {
412         struct domain_hdr *hdr;
413         int err, offset = protocol_offset(protocol);
414
415         DBG("");
416
417         if (offset < 0)
418                 return;
419
420         if (len < 12)
421                 return;
422
423         hdr = (void *) (buf + offset);
424
425         DBG("id 0x%04x qr %d opcode %d", hdr->id, hdr->qr, hdr->opcode);
426
427         hdr->qr = 1;
428         hdr->rcode = 2;
429
430         hdr->ancount = 0;
431         hdr->nscount = 0;
432         hdr->arcount = 0;
433
434         err = sendto(sk, buf, len, 0, to, tolen);
435         if (err < 0) {
436                 connman_error("Failed to send DNS response: %s",
437                                 strerror(errno));
438                 return;
439         }
440 }
441
442 static gboolean request_timeout(gpointer user_data)
443 {
444         struct request_data *req = user_data;
445         struct listener_data *ifdata;
446
447         DBG("id 0x%04x", req->srcid);
448
449         if (req == NULL)
450                 return FALSE;
451
452         ifdata = req->ifdata;
453
454         request_list = g_slist_remove(request_list, req);
455         req->numserv--;
456
457         if (req->resplen > 0 && req->resp != NULL) {
458                 int sk, err;
459
460                 sk = g_io_channel_unix_get_fd(ifdata->udp_listener_channel);
461
462                 err = sendto(sk, req->resp, req->resplen, 0,
463                                                 &req->sa, req->sa_len);
464                 if (err < 0)
465                         return FALSE;
466         } else if (req->request && req->numserv == 0) {
467                 struct domain_hdr *hdr;
468
469                 if (req->protocol == IPPROTO_TCP) {
470                         hdr = (void *) (req->request + 2);
471                         hdr->id = req->srcid;
472                         send_response(req->client_sk, req->request,
473                                 req->request_len, NULL, 0, IPPROTO_TCP);
474
475                 } else if (req->protocol == IPPROTO_UDP) {
476                         int sk;
477
478                         hdr = (void *) (req->request);
479                         hdr->id = req->srcid;
480                         sk = g_io_channel_unix_get_fd(
481                                                 ifdata->udp_listener_channel);
482                         send_response(sk, req->request, req->request_len,
483                                         &req->sa, req->sa_len, IPPROTO_UDP);
484                 }
485         }
486
487         g_free(req->resp);
488         g_free(req);
489
490         return FALSE;
491 }
492
493 static int append_query(unsigned char *buf, unsigned int size,
494                                 const char *query, const char *domain)
495 {
496         unsigned char *ptr = buf;
497         char *offset;
498         int len;
499
500         DBG("query %s domain %s", query, domain);
501
502         offset = (char *) query;
503         while (offset != NULL) {
504                 char *tmp;
505
506                 tmp = strchr(offset, '.');
507                 if (tmp == NULL) {
508                         len = strlen(offset);
509                         if (len == 0)
510                                 break;
511                         *ptr = len;
512                         memcpy(ptr + 1, offset, len);
513                         ptr += len + 1;
514                         break;
515                 }
516
517                 *ptr = tmp - offset;
518                 memcpy(ptr + 1, offset, tmp - offset);
519                 ptr += tmp - offset + 1;
520
521                 offset = tmp + 1;
522         }
523
524         offset = (char *) domain;
525         while (offset != NULL) {
526                 char *tmp;
527
528                 tmp = strchr(offset, '.');
529                 if (tmp == NULL) {
530                         len = strlen(offset);
531                         if (len == 0)
532                                 break;
533                         *ptr = len;
534                         memcpy(ptr + 1, offset, len);
535                         ptr += len + 1;
536                         break;
537                 }
538
539                 *ptr = tmp - offset;
540                 memcpy(ptr + 1, offset, tmp - offset);
541                 ptr += tmp - offset + 1;
542
543                 offset = tmp + 1;
544         }
545
546         *ptr++ = 0x00;
547
548         return ptr - buf;
549 }
550
551 static gboolean cache_check_is_valid(struct cache_data *data,
552                                 time_t current_time)
553 {
554         if (data == NULL)
555                 return FALSE;
556
557         if (data->cache_until < current_time)
558                 return FALSE;
559
560         return TRUE;
561 }
562
563 /*
564  * remove stale cached entries so that they can be refreshed
565  */
566 static void cache_enforce_validity(struct cache_entry *entry)
567 {
568         time_t current_time = time(0);
569
570         if (cache_check_is_valid(entry->ipv4, current_time) == FALSE
571                                                         && entry->ipv4) {
572                 DBG("cache timeout \"%s\" type A", entry->key);
573                 g_free(entry->ipv4->data);
574                 g_free(entry->ipv4);
575                 entry->ipv4 = NULL;
576
577         }
578
579         if (cache_check_is_valid(entry->ipv6, current_time) == FALSE
580                                                         && entry->ipv6) {
581                 DBG("cache timeout \"%s\" type AAAA", entry->key);
582                 g_free(entry->ipv6->data);
583                 g_free(entry->ipv6);
584                 entry->ipv6 = NULL;
585         }
586 }
587
588 static uint16_t cache_check_validity(char *question, uint16_t type,
589                                 struct cache_entry *entry)
590 {
591         time_t current_time = time(0);
592         int want_refresh = 0;
593
594         /*
595          * if we have a popular entry, we want a refresh instead of
596          * total destruction of the entry.
597          */
598         if (entry->hits > 2)
599                 want_refresh = 1;
600
601         cache_enforce_validity(entry);
602
603         switch (type) {
604         case 1:         /* IPv4 */
605                 if (cache_check_is_valid(entry->ipv4, current_time) == FALSE) {
606                         DBG("cache %s \"%s\" type A", entry->ipv4 ?
607                                         "timeout" : "entry missing", question);
608
609                         if (want_refresh)
610                                 entry->want_refresh = 1;
611
612                         /*
613                          * We do not remove cache entry if there is still
614                          * valid IPv6 entry found in the cache.
615                          */
616                         if (cache_check_is_valid(entry->ipv6, current_time)
617                                         == FALSE && want_refresh == FALSE) {
618                                 g_hash_table_remove(cache, question);
619                                 type = 0;
620                         }
621                 }
622                 break;
623
624         case 28:        /* IPv6 */
625                 if (cache_check_is_valid(entry->ipv6, current_time) == FALSE) {
626                         DBG("cache %s \"%s\" type AAAA", entry->ipv6 ?
627                                         "timeout" : "entry missing", question);
628
629                         if (want_refresh)
630                                 entry->want_refresh = 1;
631
632                         if (cache_check_is_valid(entry->ipv4, current_time)
633                                         == FALSE && want_refresh == FALSE) {
634                                 g_hash_table_remove(cache, question);
635                                 type = 0;
636                         }
637                 }
638                 break;
639         }
640
641         return type;
642 }
643
644 static struct cache_entry *cache_check(gpointer request, int *qtype)
645 {
646         char *question = request + 12;
647         struct cache_entry *entry;
648         struct domain_question *q;
649         uint16_t type;
650         int offset;
651
652         offset = strlen(question) + 1;
653         q = (void *) (question + offset);
654         type = ntohs(q->type);
655
656         /* We only cache either A (1) or AAAA (28) requests */
657         if (type != 1 && type != 28)
658                 return NULL;
659
660         entry = g_hash_table_lookup(cache, question);
661         if (entry == NULL)
662                 return NULL;
663
664         type = cache_check_validity(question, type, entry);
665         if (type == 0)
666                 return NULL;
667
668         *qtype = type;
669         return entry;
670 }
671
672 /*
673  * Get a label/name from DNS resource record. The function decompresses the
674  * label if necessary. The function does not convert the name to presentation
675  * form. This means that the result string will contain label lengths instead
676  * of dots between labels. We intentionally do not want to convert to dotted
677  * format so that we can cache the wire format string directly.
678  */
679 static int get_name(int counter,
680                 unsigned char *pkt, unsigned char *start, unsigned char *max,
681                 unsigned char *output, int output_max, int *output_len,
682                 unsigned char **end, char *name, int *name_len)
683 {
684         unsigned char *p;
685
686         /* Limit recursion to 10 (this means up to 10 labels in domain name) */
687         if (counter > 10)
688                 return -EINVAL;
689
690         p = start;
691         while (*p) {
692                 if ((*p & NS_CMPRSFLGS) == NS_CMPRSFLGS) {
693                         uint16_t offset = (*p & 0x3F) * 256 + *(p + 1);
694
695                         if (offset >= max - pkt)
696                                 return -ENOBUFS;
697
698                         if (*end == NULL)
699                                 *end = p + 2;
700
701                         return get_name(counter + 1, pkt, pkt + offset, max,
702                                         output, output_max, output_len, end,
703                                         name, name_len);
704                 } else {
705                         unsigned label_len = *p;
706
707                         if (pkt + label_len > max)
708                                 return -ENOBUFS;
709
710                         if (*output_len > output_max)
711                                 return -ENOBUFS;
712
713                         /*
714                          * We need the original name in order to check
715                          * if this answer is the correct one.
716                          */
717                         name[(*name_len)++] = label_len;
718                         memcpy(name + *name_len, p + 1, label_len + 1);
719                         *name_len += label_len;
720
721                         /* We compress the result */
722                         output[0] = NS_CMPRSFLGS;
723                         output[1] = 0x0C;
724                         *output_len = 2;
725
726                         p += label_len + 1;
727
728                         if (*end == NULL)
729                                 *end = p;
730
731                         if (p >= max)
732                                 return -ENOBUFS;
733                 }
734         }
735
736         return 0;
737 }
738
739 static int parse_rr(unsigned char *buf, unsigned char *start,
740                         unsigned char *max,
741                         unsigned char *response, unsigned int *response_size,
742                         uint16_t *type, uint16_t *class, int *ttl, int *rdlen,
743                         unsigned char **end,
744                         char *name)
745 {
746         struct domain_rr *rr;
747         int err, offset;
748         int name_len = 0, output_len = 0, max_rsp = *response_size;
749
750         err = get_name(0, buf, start, max, response, max_rsp,
751                 &output_len, end, name, &name_len);
752         if (err < 0)
753                 return err;
754
755         offset = output_len;
756
757         if ((unsigned int) offset > *response_size)
758                 return -ENOBUFS;
759
760         rr = (void *) (*end);
761
762         if (rr == NULL)
763                 return -EINVAL;
764
765         *type = ntohs(rr->type);
766         *class = ntohs(rr->class);
767         *ttl = ntohl(rr->ttl);
768         *rdlen = ntohs(rr->rdlen);
769
770         if (*ttl < 0)
771                 return -EINVAL;
772
773         memcpy(response + offset, *end, sizeof(struct domain_rr));
774
775         offset += sizeof(struct domain_rr);
776         *end += sizeof(struct domain_rr);
777
778         if ((unsigned int) (offset + *rdlen) > *response_size)
779                 return -ENOBUFS;
780
781         memcpy(response + offset, *end, *rdlen);
782
783         *end += *rdlen;
784
785         *response_size = offset + *rdlen;
786
787         return 0;
788 }
789
790 static gboolean check_alias(GSList *aliases, char *name)
791 {
792         GSList *list;
793
794         if (aliases != NULL) {
795                 for (list = aliases; list; list = list->next) {
796                         int len = strlen((char *)list->data);
797                         if (strncmp((char *)list->data, name, len) == 0)
798                                 return TRUE;
799                 }
800         }
801
802         return FALSE;
803 }
804
805 static int parse_response(unsigned char *buf, int buflen,
806                         char *question, int qlen,
807                         uint16_t *type, uint16_t *class, int *ttl,
808                         unsigned char *response, unsigned int *response_len,
809                         uint16_t *answers)
810 {
811         struct domain_hdr *hdr = (void *) buf;
812         struct domain_question *q;
813         unsigned char *ptr;
814         uint16_t qdcount = ntohs(hdr->qdcount);
815         uint16_t ancount = ntohs(hdr->ancount);
816         int err, i;
817         uint16_t qtype, qclass;
818         unsigned char *next = NULL;
819         unsigned int maxlen = *response_len;
820         GSList *aliases = NULL, *list;
821         char name[NS_MAXDNAME + 1];
822
823         if (buflen < 12)
824                 return -EINVAL;
825
826         DBG("qr %d qdcount %d", hdr->qr, qdcount);
827
828         /* We currently only cache responses where question count is 1 */
829         if (hdr->qr != 1 || qdcount != 1)
830                 return -EINVAL;
831
832         ptr = buf + sizeof(struct domain_hdr);
833
834         strncpy(question, (char *) ptr, qlen);
835         qlen = strlen(question);
836         ptr += qlen + 1; /* skip \0 */
837
838         q = (void *) ptr;
839         qtype = ntohs(q->type);
840
841         /* We cache only A and AAAA records */
842         if (qtype != 1 && qtype != 28)
843                 return -ENOMSG;
844
845         qclass = ntohs(q->class);
846
847         ptr += 2 + 2; /* ptr points now to answers */
848
849         err = -ENOMSG;
850         *response_len = 0;
851         *answers = 0;
852
853         /*
854          * We have a bunch of answers (like A, AAAA, CNAME etc) to
855          * A or AAAA question. We traverse the answers and parse the
856          * resource records. Only A and AAAA records are cached, all
857          * the other records in answers are skipped.
858          */
859         for (i = 0; i < ancount; i++) {
860                 /*
861                  * Get one address at a time to this buffer.
862                  * The max size of the answer is
863                  *   2 (pointer) + 2 (type) + 2 (class) +
864                  *   4 (ttl) + 2 (rdlen) + addr (16 or 4) = 28
865                  * for A or AAAA record.
866                  * For CNAME the size can be bigger.
867                  */
868                 unsigned char rsp[NS_MAXCDNAME];
869                 unsigned int rsp_len = sizeof(rsp) - 1;
870                 int ret, rdlen;
871
872                 memset(rsp, 0, sizeof(rsp));
873
874                 ret = parse_rr(buf, ptr, buf + buflen, rsp, &rsp_len,
875                         type, class, ttl, &rdlen, &next, name);
876                 if (ret != 0) {
877                         err = ret;
878                         goto out;
879                 }
880
881                 /*
882                  * Now rsp contains compressed or uncompressed resource
883                  * record. Next we check if this record answers the question.
884                  * The name var contains the uncompressed label.
885                  * One tricky bit is the CNAME records as they alias
886                  * the name we might be interested in.
887                  */
888
889                 /*
890                  * Go to next answer if the class is not the one we are
891                  * looking for.
892                  */
893                 if (*class != qclass) {
894                         ptr = next;
895                         next = NULL;
896                         continue;
897                 }
898
899                 /*
900                  * Try to resolve aliases also, type is CNAME(5).
901                  * This is important as otherwise the aliased names would not
902                  * be cached at all as the cache would not contain the aliased
903                  * question.
904                  *
905                  * If any CNAME is found in DNS packet, then we cache the alias
906                  * IP address instead of the question (as the server
907                  * said that question has only an alias).
908                  * This means in practice that if e.g., ipv6.google.com is
909                  * queried, DNS server returns CNAME of that name which is
910                  * ipv6.l.google.com. We then cache the address of the CNAME
911                  * but return the question name to client. So the alias
912                  * status of the name is not saved in cache and thus not
913                  * returned to the client. We do not return DNS packets from
914                  * cache to client saying that ipv6.google.com is an alias to
915                  * ipv6.l.google.com but we return instead a DNS packet that
916                  * says ipv6.google.com has address xxx which is in fact the
917                  * address of ipv6.l.google.com. For caching purposes this
918                  * should not cause any issues.
919                  */
920                 if (*type == 5 && strncmp(question, name, qlen) == 0) {
921                         /*
922                          * So now the alias answered the question. This is
923                          * not very useful from caching point of view as
924                          * the following A or AAAA records will not match the
925                          * question. We need to find the real A/AAAA record
926                          * of the alias and cache that.
927                          */
928                         unsigned char *end = NULL;
929                         int name_len = 0, output_len;
930
931                         memset(rsp, 0, sizeof(rsp));
932                         rsp_len = sizeof(rsp) - 1;
933
934                         /*
935                          * Alias is in rdata part of the message,
936                          * and next-rdlen points to it. So we need to get
937                          * the real name of the alias.
938                          */
939                         ret = get_name(0, buf, next - rdlen, buf + buflen,
940                                         rsp, rsp_len, &output_len, &end,
941                                         name, &name_len);
942                         if (ret != 0) {
943                                 /* just ignore the error at this point */
944                                 ptr = next;
945                                 next = NULL;
946                                 continue;
947                         }
948
949                         /*
950                          * We should now have the alias of the entry we might
951                          * want to cache. Just remember it for a while.
952                          * We check the alias list when we have parsed the
953                          * A or AAAA record.
954                          */
955                         aliases = g_slist_prepend(aliases, g_strdup(name));
956
957                         ptr = next;
958                         next = NULL;
959                         continue;
960                 }
961
962                 if (*type == qtype) {
963                         /*
964                          * We found correct type (A or AAAA)
965                          */
966                         if (check_alias(aliases, name) == TRUE ||
967                                 (aliases == NULL && strncmp(question, name,
968                                                         qlen) == 0)) {
969                                 /*
970                                  * We found an alias or the name of the rr
971                                  * matches the question. If so, we append
972                                  * the compressed label to the cache.
973                                  * The end result is a response buffer that
974                                  * will contain one or more cached and
975                                  * compressed resource records.
976                                  */
977                                 if (*response_len + rsp_len > maxlen) {
978                                         err = -ENOBUFS;
979                                         goto out;
980                                 }
981                                 memcpy(response + *response_len, rsp, rsp_len);
982                                 *response_len += rsp_len;
983                                 (*answers)++;
984                                 err = 0;
985                         }
986                 }
987
988                 ptr = next;
989                 next = NULL;
990         }
991
992 out:
993         for (list = aliases; list; list = list->next)
994                 g_free(list->data);
995         g_slist_free(aliases);
996
997         return err;
998 }
999
1000 struct cache_timeout {
1001         time_t current_time;
1002         int max_timeout;
1003         int try_harder;
1004 };
1005
1006 static gboolean cache_check_entry(gpointer key, gpointer value,
1007                                         gpointer user_data)
1008 {
1009         struct cache_timeout *data = user_data;
1010         struct cache_entry *entry = value;
1011         int max_timeout;
1012
1013         /* Scale the number of hits by half as part of cache aging */
1014
1015         entry->hits /= 2;
1016
1017         /*
1018          * If either IPv4 or IPv6 cached entry has expired, we
1019          * remove both from the cache.
1020          */
1021
1022         if (entry->ipv4 != NULL && entry->ipv4->timeout > 0) {
1023                 max_timeout = entry->ipv4->cache_until;
1024                 if (max_timeout > data->max_timeout)
1025                         data->max_timeout = max_timeout;
1026
1027                 if (entry->ipv4->cache_until < data->current_time)
1028                         return TRUE;
1029         }
1030
1031         if (entry->ipv6 != NULL && entry->ipv6->timeout > 0) {
1032                 max_timeout = entry->ipv6->cache_until;
1033                 if (max_timeout > data->max_timeout)
1034                         data->max_timeout = max_timeout;
1035
1036                 if (entry->ipv6->cache_until < data->current_time)
1037                         return TRUE;
1038         }
1039
1040         /*
1041          * if we're asked to try harder, also remove entries that have
1042          * few hits
1043          */
1044         if (data->try_harder && entry->hits < 4)
1045                 return TRUE;
1046
1047         return FALSE;
1048 }
1049
1050 static void cache_cleanup(void)
1051 {
1052         static int max_timeout;
1053         struct cache_timeout data;
1054         int count = 0;
1055
1056         data.current_time = time(0);
1057         data.max_timeout = 0;
1058         data.try_harder = 0;
1059
1060         /*
1061          * In the first pass, we only remove entries that have timed out.
1062          * We use a cache of the first time to expire to do this only
1063          * when it makes sense.
1064          */
1065         if (max_timeout <= data.current_time) {
1066                 count = g_hash_table_foreach_remove(cache, cache_check_entry,
1067                                                 &data);
1068         }
1069         DBG("removed %d in the first pass", count);
1070
1071         /*
1072          * In the second pass, if the first pass turned up blank,
1073          * we also expire entries with a low hit count,
1074          * while aging the hit count at the same time.
1075          */
1076         data.try_harder = 1;
1077         if (count == 0)
1078                 count = g_hash_table_foreach_remove(cache, cache_check_entry,
1079                                                 &data);
1080
1081         if (count == 0)
1082                 /*
1083                  * If we could not remove anything, then remember
1084                  * what is the max timeout and do nothing if we
1085                  * have not yet reached it. This will prevent
1086                  * constant traversal of the cache if it is full.
1087                  */
1088                 max_timeout = data.max_timeout;
1089         else
1090                 max_timeout = 0;
1091 }
1092
1093 static gboolean cache_invalidate_entry(gpointer key, gpointer value,
1094                                         gpointer user_data)
1095 {
1096         struct cache_entry *entry = value;
1097
1098         /* first, delete any expired elements */
1099         cache_enforce_validity(entry);
1100
1101         /* if anything is not expired, mark the entry for refresh */
1102         if (entry->hits > 0 && (entry->ipv4 || entry->ipv6))
1103                 entry->want_refresh = 1;
1104
1105         /* delete the cached data */
1106         if (entry->ipv4) {
1107                 g_free(entry->ipv4->data);
1108                 g_free(entry->ipv4);
1109                 entry->ipv4 = NULL;
1110         }
1111
1112         if (entry->ipv6) {
1113                 g_free(entry->ipv6->data);
1114                 g_free(entry->ipv6);
1115                 entry->ipv6 = NULL;
1116         }
1117
1118         /* keep the entry if we want it refreshed, delete it otherwise */
1119         if (entry->want_refresh)
1120                 return FALSE;
1121         else
1122                 return TRUE;
1123 }
1124
1125 /*
1126  * cache_invalidate is called from places where the DNS landscape
1127  * has changed, say because connections are added or we entered a VPN.
1128  * The logic is to wipe all cache data, but mark all non-expired
1129  * parts of the cache for refresh rather than deleting the whole cache.
1130  */
1131 static void cache_invalidate(void)
1132 {
1133         DBG("Invalidating the DNS cache");
1134          g_hash_table_foreach_remove(cache, cache_invalidate_entry,
1135                                                 NULL);
1136 }
1137
1138 static void cache_refresh_entry(struct cache_entry *entry)
1139 {
1140
1141         cache_enforce_validity(entry);
1142
1143         if (entry->hits > 2 && entry->ipv4 == NULL)
1144                 entry->want_refresh = 1;
1145         if (entry->hits > 2 && entry->ipv6 == NULL)
1146                 entry->want_refresh = 1;
1147
1148         if (entry->want_refresh) {
1149                 char *c;
1150                 char dns_name[NS_MAXDNAME + 1];
1151                 entry->want_refresh = 0;
1152
1153                 /* turn a DNS name into a hostname with dots */
1154                 strncpy(dns_name, entry->key, NS_MAXDNAME);
1155                 c = dns_name;
1156                 while (c && *c) {
1157                         int jump;
1158                         jump = *c;
1159                         *c = '.';
1160                         c += jump + 1;
1161                 }
1162                 DBG("Refreshing %s\n", dns_name);
1163                 /* then refresh the hostname */
1164                 refresh_dns_entry(entry, &dns_name[1]);
1165         }
1166 }
1167
1168 static void cache_refresh_iterator(gpointer key, gpointer value,
1169                                         gpointer user_data)
1170 {
1171         struct cache_entry *entry = value;
1172
1173         cache_refresh_entry(entry);
1174 }
1175
1176 static void cache_refresh(void)
1177 {
1178         g_hash_table_foreach(cache, cache_refresh_iterator, NULL);
1179 }
1180
1181 static int reply_query_type(unsigned char *msg, int len)
1182 {
1183         unsigned char *c;
1184         uint16_t *w;
1185         int l;
1186         int type;
1187
1188         /* skip the header */
1189         c = msg + sizeof(struct domain_hdr);
1190         len -= sizeof(struct domain_hdr);
1191
1192         if (len < 0)
1193                 return 0;
1194
1195         /* now the query, which is a name and 2 16 bit words */
1196         l = dns_name_length(c) + 1;
1197         c += l;
1198         len -= l;
1199         w = (uint16_t *) c;
1200         type = ntohs(*w);
1201
1202         return type;
1203 }
1204
1205 static int cache_update(struct server_data *srv, unsigned char *msg,
1206                         unsigned int msg_len)
1207 {
1208         int offset = protocol_offset(srv->protocol);
1209         int err, qlen, ttl = 0;
1210         uint16_t answers = 0, type = 0, class = 0;
1211         struct domain_question *q;
1212         struct cache_entry *entry;
1213         struct cache_data *data;
1214         char question[NS_MAXDNAME + 1];
1215         unsigned char response[NS_MAXDNAME + 1];
1216         unsigned char *ptr;
1217         unsigned int rsplen;
1218         gboolean new_entry = TRUE;
1219         time_t current_time;
1220
1221         if (cache_size >= MAX_CACHE_SIZE) {
1222                 cache_cleanup();
1223                 if (cache_size >= MAX_CACHE_SIZE)
1224                         return 0;
1225         }
1226
1227         current_time = time(0);
1228
1229         /* don't do a cache refresh more than twice a minute */
1230         if (next_refresh < current_time) {
1231                 cache_refresh();
1232                 next_refresh = current_time + 30;
1233         }
1234
1235
1236         /* Continue only if response code is 0 (=ok) */
1237         if (msg[3] & 0x0f)
1238                 return 0;
1239
1240         if (offset < 0)
1241                 return 0;
1242
1243         rsplen = sizeof(response) - 1;
1244         question[sizeof(question) - 1] = '\0';
1245
1246         err = parse_response(msg + offset, msg_len - offset,
1247                                 question, sizeof(question) - 1,
1248                                 &type, &class, &ttl,
1249                                 response, &rsplen, &answers);
1250
1251         /*
1252          * special case: if we do a ipv6 lookup and get no result
1253          * for a record that's already in our ipv4 cache.. we want
1254          * to cache the negative response.
1255          */
1256         if ((err == -ENOMSG || err == -ENOBUFS) &&
1257                         reply_query_type(msg, msg_len) == 28) {
1258                 entry = g_hash_table_lookup(cache, question);
1259                 if (entry && entry->ipv4 && entry->ipv6 == NULL) {
1260                         data = g_try_new(struct cache_data, 1);
1261                         if (data == NULL)
1262                                 return -ENOMEM;
1263                         data->inserted = entry->ipv4->inserted;
1264                         data->type = type;
1265                         data->answers = msg[5];
1266                         data->timeout = entry->ipv4->timeout;
1267                         data->data_len = msg_len;
1268                         data->data = ptr = g_malloc(msg_len);
1269                         data->valid_until = entry->ipv4->valid_until;
1270                         data->cache_until = entry->ipv4->cache_until;
1271                         memcpy(data->data, msg, msg_len);
1272                         entry->ipv6 = data;
1273                         /*
1274                          * we will get a "hit" when we serve the response
1275                          * out of the cache
1276                          */
1277                         entry->hits--;
1278                         if (entry->hits < 0)
1279                                 entry->hits = 0;
1280                         return 0;
1281                 }
1282         }
1283
1284         if (err < 0 || ttl == 0)
1285                 return 0;
1286
1287         qlen = strlen(question);
1288
1289         /*
1290          * If the cache contains already data, check if the
1291          * type of the cached data is the same and do not add
1292          * to cache if data is already there.
1293          * This is needed so that we can cache both A and AAAA
1294          * records for the same name.
1295          */
1296         entry = g_hash_table_lookup(cache, question);
1297         if (entry == NULL) {
1298                 entry = g_try_new(struct cache_entry, 1);
1299                 if (entry == NULL)
1300                         return -ENOMEM;
1301
1302                 data = g_try_new(struct cache_data, 1);
1303                 if (data == NULL) {
1304                         g_free(entry);
1305                         return -ENOMEM;
1306                 }
1307
1308                 entry->key = g_strdup(question);
1309                 entry->ipv4 = entry->ipv6 = NULL;
1310                 entry->want_refresh = 0;
1311                 entry->hits = 0;
1312
1313                 if (type == 1)
1314                         entry->ipv4 = data;
1315                 else
1316                         entry->ipv6 = data;
1317         } else {
1318                 if (type == 1 && entry->ipv4 != NULL)
1319                         return 0;
1320
1321                 if (type == 28 && entry->ipv6 != NULL)
1322                         return 0;
1323
1324                 data = g_try_new(struct cache_data, 1);
1325                 if (data == NULL)
1326                         return -ENOMEM;
1327
1328                 if (type == 1)
1329                         entry->ipv4 = data;
1330                 else
1331                         entry->ipv6 = data;
1332
1333                 /*
1334                  * compensate for the hit we'll get for serving
1335                  * the response out of the cache
1336                  */
1337                 entry->hits--;
1338                 if (entry->hits < 0)
1339                         entry->hits = 0;
1340
1341                 new_entry = FALSE;
1342         }
1343
1344         if (ttl < MIN_CACHE_TTL)
1345                 ttl = MIN_CACHE_TTL;
1346
1347         data->inserted = current_time;
1348         data->type = type;
1349         data->answers = answers;
1350         data->timeout = ttl;
1351         data->data_len = 12 + qlen + 1 + 2 + 2 + rsplen;
1352         data->data = ptr = g_malloc(data->data_len);
1353         data->valid_until = current_time + ttl;
1354
1355         /*
1356          * Restrict the cached DNS record TTL to some sane value
1357          * in order to prevent data staying in the cache too long.
1358          */
1359         if (ttl > MAX_CACHE_TTL)
1360                 ttl = MAX_CACHE_TTL;
1361
1362         data->cache_until = round_down_ttl(current_time + ttl, ttl);
1363
1364         if (data->data == NULL) {
1365                 g_free(entry->key);
1366                 g_free(data);
1367                 g_free(entry);
1368                 return -ENOMEM;
1369         }
1370
1371         memcpy(ptr, msg, 12);
1372         memcpy(ptr + 12, question, qlen + 1); /* copy also the \0 */
1373
1374         q = (void *) (ptr + 12 + qlen + 1);
1375         q->type = htons(type);
1376         q->class = htons(class);
1377         memcpy(ptr + 12 + qlen + 1 + sizeof(struct domain_question),
1378                 response, rsplen);
1379
1380         if (new_entry == TRUE) {
1381                 g_hash_table_replace(cache, entry->key, entry);
1382                 cache_size++;
1383         }
1384
1385         DBG("cache %d %squestion \"%s\" type %d ttl %d size %zd",
1386                 cache_size, new_entry ? "new " : "old ",
1387                 question, type, ttl,
1388                 sizeof(*entry) + sizeof(*data) + data->data_len + qlen);
1389
1390         return 0;
1391 }
1392
1393 static int ns_resolv(struct server_data *server, struct request_data *req,
1394                                 gpointer request, gpointer name)
1395 {
1396         GList *list;
1397         int sk, err, type = 0;
1398         char *dot, *lookup = (char *) name;
1399         struct cache_entry *entry;
1400
1401         entry = cache_check(request, &type);
1402         if (entry != NULL) {
1403                 int ttl_left = 0;
1404                 struct cache_data *data;
1405
1406                 DBG("cache hit %s type %s", lookup, type == 1 ? "A" : "AAAA");
1407                 if (type == 1)
1408                         data = entry->ipv4;
1409                 else
1410                         data = entry->ipv6;
1411
1412                 if (data) {
1413                         ttl_left = data->valid_until - time(0);
1414                         entry->hits++;
1415                 }
1416
1417                 if (data != NULL && req->protocol == IPPROTO_TCP) {
1418                         send_cached_response(req->client_sk, data->data,
1419                                         data->data_len, NULL, 0, IPPROTO_TCP,
1420                                         req->srcid, data->answers, ttl_left);
1421                         return 1;
1422                 }
1423
1424                 if (data != NULL && req->protocol == IPPROTO_UDP) {
1425                         int sk;
1426                         sk = g_io_channel_unix_get_fd(
1427                                         req->ifdata->udp_listener_channel);
1428
1429                         send_cached_response(sk, data->data,
1430                                 data->data_len, &req->sa, req->sa_len,
1431                                 IPPROTO_UDP, req->srcid, data->answers,
1432                                 ttl_left);
1433                         return 1;
1434                 }
1435         }
1436
1437         sk = g_io_channel_unix_get_fd(server->channel);
1438
1439         err = send(sk, request, req->request_len, 0);
1440
1441         req->numserv++;
1442
1443         /* If we have more than one dot, we don't add domains */
1444         dot = strchr(lookup, '.');
1445         if (dot != NULL && dot != lookup + strlen(lookup) - 1)
1446                 return 0;
1447
1448         if (server->domains != NULL && server->domains->data != NULL)
1449                 req->append_domain = TRUE;
1450
1451         for (list = server->domains; list; list = list->next) {
1452                 char *domain;
1453                 unsigned char alt[1024];
1454                 struct domain_hdr *hdr = (void *) &alt;
1455                 int altlen, domlen, offset;
1456
1457                 domain = list->data;
1458
1459                 if (domain == NULL)
1460                         continue;
1461
1462                 offset = protocol_offset(server->protocol);
1463                 if (offset < 0)
1464                         return offset;
1465
1466                 domlen = strlen(domain) + 1;
1467                 if (domlen < 5)
1468                         return -EINVAL;
1469
1470                 alt[offset] = req->altid & 0xff;
1471                 alt[offset + 1] = req->altid >> 8;
1472
1473                 memcpy(alt + offset + 2, request + offset + 2, 10);
1474                 hdr->qdcount = htons(1);
1475
1476                 altlen = append_query(alt + offset + 12, sizeof(alt) - 12,
1477                                         name, domain);
1478                 if (altlen < 0)
1479                         return -EINVAL;
1480
1481                 altlen += 12;
1482
1483                 memcpy(alt + offset + altlen,
1484                         request + offset + altlen - domlen,
1485                                 req->request_len - altlen - offset + domlen);
1486
1487                 if (server->protocol == IPPROTO_TCP) {
1488                         int req_len = req->request_len + domlen - 2;
1489
1490                         alt[0] = (req_len >> 8) & 0xff;
1491                         alt[1] = req_len & 0xff;
1492                 }
1493
1494                 err = send(sk, alt, req->request_len + domlen, 0);
1495                 if (err < 0)
1496                         return -EIO;
1497
1498                 req->numserv++;
1499         }
1500
1501         return 0;
1502 }
1503
1504 static int forward_dns_reply(unsigned char *reply, int reply_len, int protocol,
1505                                 struct server_data *data)
1506 {
1507         struct domain_hdr *hdr;
1508         struct request_data *req;
1509         int dns_id, sk, err, offset = protocol_offset(protocol);
1510         struct listener_data *ifdata;
1511
1512         if (offset < 0)
1513                 return offset;
1514
1515         hdr = (void *)(reply + offset);
1516         dns_id = reply[offset] | reply[offset + 1] << 8;
1517
1518         DBG("Received %d bytes (id 0x%04x)", reply_len, dns_id);
1519
1520         req = find_request(dns_id);
1521         if (req == NULL)
1522                 return -EINVAL;
1523
1524         DBG("id 0x%04x rcode %d", hdr->id, hdr->rcode);
1525
1526         ifdata = req->ifdata;
1527
1528         reply[offset] = req->srcid & 0xff;
1529         reply[offset + 1] = req->srcid >> 8;
1530
1531         req->numresp++;
1532
1533         if (hdr->rcode == 0 || req->resp == NULL) {
1534
1535                 /*
1536                  * If the domain name was append
1537                  * remove it before forwarding the reply.
1538                  */
1539                 if (req->append_domain == TRUE) {
1540                         unsigned char *ptr;
1541                         uint8_t host_len;
1542                         unsigned int domain_len;
1543
1544                         /*
1545                          * ptr points to the first char of the hostname.
1546                          * ->hostname.domain.net
1547                          */
1548                         ptr = reply + offset + sizeof(struct domain_hdr);
1549                         host_len = *ptr;
1550                         domain_len = strlen((const char *)ptr) - host_len - 1;
1551
1552                         /*
1553                          * remove the domain name and replaced it by the end
1554                          * of reply.
1555                          */
1556                         memmove(ptr + host_len + 1,
1557                                 ptr + host_len + domain_len + 1,
1558                                 reply_len - (ptr - reply + domain_len));
1559
1560                         reply_len = reply_len - domain_len;
1561                 }
1562
1563                 g_free(req->resp);
1564                 req->resplen = 0;
1565
1566                 req->resp = g_try_malloc(reply_len);
1567                 if (req->resp == NULL)
1568                         return -ENOMEM;
1569
1570                 memcpy(req->resp, reply, reply_len);
1571                 req->resplen = reply_len;
1572
1573                 cache_update(data, reply, reply_len);
1574         }
1575
1576         if (hdr->rcode > 0 && req->numresp < req->numserv)
1577                 return -EINVAL;
1578
1579         if (req->timeout > 0)
1580                 g_source_remove(req->timeout);
1581
1582         request_list = g_slist_remove(request_list, req);
1583
1584         if (protocol == IPPROTO_UDP) {
1585                 sk = g_io_channel_unix_get_fd(ifdata->udp_listener_channel);
1586                 err = sendto(sk, req->resp, req->resplen, 0,
1587                              &req->sa, req->sa_len);
1588         } else {
1589                 sk = req->client_sk;
1590                 err = send(sk, req->resp, req->resplen, 0);
1591                 close(sk);
1592         }
1593
1594         g_free(req->resp);
1595         g_free(req);
1596
1597         return err;
1598 }
1599
1600 static void cache_element_destroy(gpointer value)
1601 {
1602         struct cache_entry *entry = value;
1603
1604         if (entry == NULL)
1605                 return;
1606
1607         if (entry->ipv4 != NULL) {
1608                 g_free(entry->ipv4->data);
1609                 g_free(entry->ipv4);
1610         }
1611
1612         if (entry->ipv6 != NULL) {
1613                 g_free(entry->ipv6->data);
1614                 g_free(entry->ipv6);
1615         }
1616
1617         g_free(entry->key);
1618         g_free(entry);
1619
1620         if (--cache_size < 0)
1621                 cache_size = 0;
1622 }
1623
1624 static void destroy_server(struct server_data *server)
1625 {
1626         GList *list;
1627
1628         DBG("interface %s server %s", server->interface, server->server);
1629
1630         server_list = g_slist_remove(server_list, server);
1631
1632         if (server->watch > 0)
1633                 g_source_remove(server->watch);
1634
1635         if (server->timeout > 0)
1636                 g_source_remove(server->timeout);
1637
1638         g_io_channel_unref(server->channel);
1639
1640         if (server->protocol == IPPROTO_UDP)
1641                 connman_info("Removing DNS server %s", server->server);
1642
1643         g_free(server->incoming_reply);
1644         g_free(server->server);
1645         for (list = server->domains; list; list = list->next) {
1646                 char *domain = list->data;
1647
1648                 server->domains = g_list_remove(server->domains, domain);
1649                 g_free(domain);
1650         }
1651         g_free(server->interface);
1652
1653         if (__sync_fetch_and_sub(&cache_refcount, 1) == 1)
1654                 g_hash_table_destroy(cache);
1655
1656         g_free(server);
1657 }
1658
1659 static gboolean udp_server_event(GIOChannel *channel, GIOCondition condition,
1660                                                         gpointer user_data)
1661 {
1662         unsigned char buf[4096];
1663         int sk, err, len;
1664         struct server_data *data = user_data;
1665
1666         if (condition & (G_IO_NVAL | G_IO_ERR | G_IO_HUP)) {
1667                 connman_error("Error with UDP server %s", data->server);
1668                 data->watch = 0;
1669                 return FALSE;
1670         }
1671
1672         sk = g_io_channel_unix_get_fd(channel);
1673
1674         len = recv(sk, buf, sizeof(buf), 0);
1675         if (len < 12)
1676                 return TRUE;
1677
1678         err = forward_dns_reply(buf, len, IPPROTO_UDP, data);
1679         if (err < 0)
1680                 return TRUE;
1681
1682         return TRUE;
1683 }
1684
1685 static gboolean tcp_server_event(GIOChannel *channel, GIOCondition condition,
1686                                                         gpointer user_data)
1687 {
1688         int sk;
1689         struct server_data *server = user_data;
1690
1691         sk = g_io_channel_unix_get_fd(channel);
1692         if (sk == 0)
1693                 return FALSE;
1694
1695         if (condition & (G_IO_NVAL | G_IO_ERR | G_IO_HUP)) {
1696                 GSList *list;
1697 hangup:
1698                 DBG("TCP server channel closed");
1699
1700                 /*
1701                  * Discard any partial response which is buffered; better
1702                  * to get a proper response from a working server.
1703                  */
1704                 g_free(server->incoming_reply);
1705                 server->incoming_reply = NULL;
1706
1707                 for (list = request_list; list; list = list->next) {
1708                         struct request_data *req = list->data;
1709                         struct domain_hdr *hdr;
1710
1711                         if (req->protocol == IPPROTO_UDP)
1712                                 continue;
1713
1714                         if (req->request == NULL)
1715                                 continue;
1716
1717                         /*
1718                          * If we're not waiting for any further response
1719                          * from another name server, then we send an error
1720                          * response to the client.
1721                          */
1722                         if (req->numserv && --(req->numserv))
1723                                 continue;
1724
1725                         hdr = (void *) (req->request + 2);
1726                         hdr->id = req->srcid;
1727                         send_response(req->client_sk, req->request,
1728                                 req->request_len, NULL, 0, IPPROTO_TCP);
1729
1730                         request_list = g_slist_remove(request_list, req);
1731                 }
1732
1733                 destroy_server(server);
1734
1735                 return FALSE;
1736         }
1737
1738         if ((condition & G_IO_OUT) && !server->connected) {
1739                 GSList *list;
1740                 GList *domains;
1741                 struct server_data *udp_server;
1742
1743                 udp_server = find_server(server->interface, server->server,
1744                                                                 IPPROTO_UDP);
1745                 if (udp_server != NULL) {
1746                         for (domains = udp_server->domains; domains;
1747                                                 domains = domains->next) {
1748                                 char *dom = domains->data;
1749
1750                                 DBG("Adding domain %s to %s",
1751                                                 dom, server->server);
1752
1753                                 server->domains = g_list_append(server->domains,
1754                                                                 g_strdup(dom));
1755                         }
1756                 }
1757
1758                 server->connected = TRUE;
1759                 server_list = g_slist_append(server_list, server);
1760
1761                 if (server->timeout > 0) {
1762                         g_source_remove(server->timeout);
1763                         server->timeout = 0;
1764                 }
1765
1766                 for (list = request_list; list; list = list->next) {
1767                         struct request_data *req = list->data;
1768
1769                         if (req->protocol == IPPROTO_UDP)
1770                                 continue;
1771
1772                         DBG("Sending req %s over TCP", (char *)req->name);
1773
1774                         if (req->timeout > 0)
1775                                 g_source_remove(req->timeout);
1776
1777                         req->timeout = g_timeout_add_seconds(30,
1778                                                 request_timeout, req);
1779                         if (ns_resolv(server, req, req->request,
1780                                         req->name) > 0) {
1781                                 /* We sent cached result so no need for timeout
1782                                  * handler.
1783                                  */
1784                                 if (req->timeout > 0) {
1785                                         g_source_remove(req->timeout);
1786                                         req->timeout = 0;
1787                                 }
1788                         }
1789                 }
1790
1791         } else if (condition & G_IO_IN) {
1792                 struct partial_reply *reply = server->incoming_reply;
1793                 int bytes_recv;
1794
1795                 if (!reply) {
1796                         unsigned char reply_len_buf[2];
1797                         uint16_t reply_len;
1798
1799                         bytes_recv = recv(sk, reply_len_buf, 2, MSG_PEEK);
1800                         if (!bytes_recv) {
1801                                 goto hangup;
1802                         } else if (bytes_recv < 0) {
1803                                 if (errno == EAGAIN || errno == EWOULDBLOCK)
1804                                         return TRUE;
1805
1806                                 connman_error("DNS proxy error %s",
1807                                                 strerror(errno));
1808                                 goto hangup;
1809                         } else if (bytes_recv < 2)
1810                                 return TRUE;
1811
1812                         reply_len = reply_len_buf[1] | reply_len_buf[0] << 8;
1813                         reply_len += 2;
1814
1815                         DBG("TCP reply %d bytes", reply_len);
1816
1817                         reply = g_try_malloc(sizeof(*reply) + reply_len + 2);
1818                         if (!reply)
1819                                 return TRUE;
1820
1821                         reply->len = reply_len;
1822                         reply->received = 0;
1823
1824                         server->incoming_reply = reply;
1825                 }
1826
1827                 while (reply->received < reply->len) {
1828                         bytes_recv = recv(sk, reply->buf + reply->received,
1829                                         reply->len - reply->received, 0);
1830                         if (!bytes_recv) {
1831                                 connman_error("DNS proxy TCP disconnect");
1832                                 break;
1833                         } else if (bytes_recv < 0) {
1834                                 if (errno == EAGAIN || errno == EWOULDBLOCK)
1835                                         return TRUE;
1836
1837                                 connman_error("DNS proxy error %s",
1838                                                 strerror(errno));
1839                                 break;
1840                         }
1841                         reply->received += bytes_recv;
1842                 }
1843
1844                 forward_dns_reply(reply->buf, reply->received, IPPROTO_TCP,
1845                                         server);
1846
1847                 g_free(reply);
1848                 server->incoming_reply = NULL;
1849
1850                 destroy_server(server);
1851
1852                 return FALSE;
1853         }
1854
1855         return TRUE;
1856 }
1857
1858 static gboolean tcp_idle_timeout(gpointer user_data)
1859 {
1860         struct server_data *server = user_data;
1861
1862         DBG("");
1863
1864         if (server == NULL)
1865                 return FALSE;
1866
1867         destroy_server(server);
1868
1869         return FALSE;
1870 }
1871
1872 static struct server_data *create_server(const char *interface,
1873                                         const char *domain, const char *server,
1874                                         int protocol)
1875 {
1876         struct addrinfo hints, *rp;
1877         struct server_data *data;
1878         int sk, ret;
1879
1880         DBG("interface %s server %s", interface, server);
1881
1882         memset(&hints, 0, sizeof(hints));
1883
1884         switch (protocol) {
1885         case IPPROTO_UDP:
1886                 hints.ai_socktype = SOCK_DGRAM;
1887                 break;
1888
1889         case IPPROTO_TCP:
1890                 hints.ai_socktype = SOCK_STREAM;
1891                 break;
1892
1893         default:
1894                 return NULL;
1895         }
1896         hints.ai_family = AF_UNSPEC;
1897         hints.ai_flags = AI_PASSIVE | AI_NUMERICSERV | AI_NUMERICHOST;
1898
1899         ret = getaddrinfo(server, "53", &hints, &rp);
1900         if (ret) {
1901                 connman_error("Failed to parse server %s address: %s\n",
1902                               server, gai_strerror(ret));
1903                 return NULL;
1904         }
1905         /* Do not blindly copy this code elsewhere; it doesn't loop over the
1906            results using ->ai_next as it should. That's OK in *this* case
1907            because it was a numeric lookup; we *know* there's only one. */
1908
1909         sk = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol);
1910         if (sk < 0) {
1911                 connman_error("Failed to create server %s socket", server);
1912                 freeaddrinfo(rp);
1913                 return NULL;
1914         }
1915
1916         if (interface != NULL) {
1917                 if (setsockopt(sk, SOL_SOCKET, SO_BINDTODEVICE,
1918                                 interface, strlen(interface) + 1) < 0) {
1919                         connman_error("Failed to bind server %s "
1920                                                 "to interface %s",
1921                                                         server, interface);
1922                         freeaddrinfo(rp);
1923                         close(sk);
1924                         return NULL;
1925                 }
1926         }
1927
1928         data = g_try_new0(struct server_data, 1);
1929         if (data == NULL) {
1930                 connman_error("Failed to allocate server %s data", server);
1931                 freeaddrinfo(rp);
1932                 close(sk);
1933                 return NULL;
1934         }
1935
1936         data->channel = g_io_channel_unix_new(sk);
1937         if (data->channel == NULL) {
1938                 connman_error("Failed to create server %s channel", server);
1939                 freeaddrinfo(rp);
1940                 close(sk);
1941                 g_free(data);
1942                 return NULL;
1943         }
1944
1945         g_io_channel_set_close_on_unref(data->channel, TRUE);
1946
1947         if (protocol == IPPROTO_TCP) {
1948                 g_io_channel_set_flags(data->channel, G_IO_FLAG_NONBLOCK, NULL);
1949                 data->watch = g_io_add_watch(data->channel,
1950                         G_IO_OUT | G_IO_IN | G_IO_HUP | G_IO_NVAL | G_IO_ERR,
1951                                                 tcp_server_event, data);
1952                 data->timeout = g_timeout_add_seconds(30, tcp_idle_timeout,
1953                                                                 data);
1954         } else
1955                 data->watch = g_io_add_watch(data->channel,
1956                         G_IO_IN | G_IO_NVAL | G_IO_ERR | G_IO_HUP,
1957                                                 udp_server_event, data);
1958
1959         data->interface = g_strdup(interface);
1960         if (domain)
1961                 data->domains = g_list_append(data->domains, g_strdup(domain));
1962         data->server = g_strdup(server);
1963         data->protocol = protocol;
1964
1965         ret = connect(sk, rp->ai_addr, rp->ai_addrlen);
1966         freeaddrinfo(rp);
1967         if (ret < 0) {
1968                 if ((protocol == IPPROTO_TCP && errno != EINPROGRESS) ||
1969                                 protocol == IPPROTO_UDP) {
1970                         GList *list;
1971
1972                         connman_error("Failed to connect to server %s", server);
1973                         if (data->watch > 0)
1974                                 g_source_remove(data->watch);
1975                         if (data->timeout > 0)
1976                                 g_source_remove(data->timeout);
1977
1978                         g_io_channel_unref(data->channel);
1979                         close(sk);
1980
1981                         g_free(data->server);
1982                         g_free(data->interface);
1983                         for (list = data->domains; list; list = list->next) {
1984                                 char *domain = list->data;
1985
1986                                 data->domains = g_list_remove(data->domains,
1987                                                                         domain);
1988                                 g_free(domain);
1989                         }
1990                         g_free(data);
1991                         return NULL;
1992                 }
1993         }
1994
1995         if (__sync_fetch_and_add(&cache_refcount, 1) == 0)
1996                 cache = g_hash_table_new_full(g_str_hash,
1997                                         g_str_equal,
1998                                         NULL,
1999                                         cache_element_destroy);
2000
2001         if (protocol == IPPROTO_UDP) {
2002                 /* Enable new servers by default */
2003                 data->enabled = TRUE;
2004                 connman_info("Adding DNS server %s", data->server);
2005
2006                 server_list = g_slist_append(server_list, data);
2007
2008                 return data;
2009         }
2010
2011         return NULL;
2012 }
2013
2014 static gboolean resolv(struct request_data *req,
2015                                 gpointer request, gpointer name)
2016 {
2017         GSList *list;
2018         int status;
2019
2020         for (list = server_list; list; list = list->next) {
2021                 struct server_data *data = list->data;
2022
2023                 DBG("server %s enabled %d", data->server, data->enabled);
2024
2025                 if (data->enabled == FALSE)
2026                         continue;
2027
2028                 if (data->watch == 0 && data->protocol == IPPROTO_UDP)
2029                         data->watch = g_io_add_watch(data->channel,
2030                                 G_IO_IN | G_IO_NVAL | G_IO_ERR | G_IO_HUP,
2031                                                 udp_server_event, data);
2032
2033                 status = ns_resolv(data, req, request, name);
2034                 if (status < 0)
2035                         continue;
2036
2037                 if (status > 0) {
2038                         if (req->timeout > 0) {
2039                                 g_source_remove(req->timeout);
2040                                 req->timeout = 0;
2041                         }
2042                 }
2043         }
2044
2045         return TRUE;
2046 }
2047
2048 static void append_domain(const char *interface, const char *domain)
2049 {
2050         GSList *list;
2051
2052         DBG("interface %s domain %s", interface, domain);
2053
2054         if (domain == NULL)
2055                 return;
2056
2057         for (list = server_list; list; list = list->next) {
2058                 struct server_data *data = list->data;
2059                 GList *dom_list;
2060                 char *dom;
2061                 gboolean dom_found = FALSE;
2062
2063                 if (data->interface == NULL)
2064                         continue;
2065
2066                 if (g_str_equal(data->interface, interface) == FALSE)
2067                         continue;
2068
2069                 for (dom_list = data->domains; dom_list;
2070                                 dom_list = dom_list->next) {
2071                         dom = dom_list->data;
2072
2073                         if (g_str_equal(dom, domain)) {
2074                                 dom_found = TRUE;
2075                                 break;
2076                         }
2077                 }
2078
2079                 if (dom_found == FALSE) {
2080                         data->domains =
2081                                 g_list_append(data->domains, g_strdup(domain));
2082                 }
2083         }
2084 }
2085
2086 int __connman_dnsproxy_append(const char *interface, const char *domain,
2087                                                         const char *server)
2088 {
2089         struct server_data *data;
2090
2091         DBG("interface %s server %s", interface, server);
2092
2093         if (server == NULL && domain == NULL)
2094                 return -EINVAL;
2095
2096         if (server == NULL) {
2097                 append_domain(interface, domain);
2098
2099                 return 0;
2100         }
2101
2102         if (g_str_equal(server, "127.0.0.1") == TRUE)
2103                 return -ENODEV;
2104
2105         data = find_server(interface, server, IPPROTO_UDP);
2106         if (data != NULL) {
2107                 append_domain(interface, domain);
2108                 return 0;
2109         }
2110
2111         data = create_server(interface, domain, server, IPPROTO_UDP);
2112         if (data == NULL)
2113                 return -EIO;
2114
2115         return 0;
2116 }
2117
2118 static void remove_server(const char *interface, const char *domain,
2119                         const char *server, int protocol)
2120 {
2121         struct server_data *data;
2122
2123         data = find_server(interface, server, protocol);
2124         if (data == NULL)
2125                 return;
2126
2127         destroy_server(data);
2128 }
2129
2130 int __connman_dnsproxy_remove(const char *interface, const char *domain,
2131                                                         const char *server)
2132 {
2133         DBG("interface %s server %s", interface, server);
2134
2135         if (server == NULL)
2136                 return -EINVAL;
2137
2138         if (g_str_equal(server, "127.0.0.1") == TRUE)
2139                 return -ENODEV;
2140
2141         remove_server(interface, domain, server, IPPROTO_UDP);
2142         remove_server(interface, domain, server, IPPROTO_TCP);
2143
2144         return 0;
2145 }
2146
2147 void __connman_dnsproxy_flush(void)
2148 {
2149         GSList *list;
2150
2151         list = request_pending_list;
2152         while (list) {
2153                 struct request_data *req = list->data;
2154
2155                 list = list->next;
2156
2157                 request_pending_list =
2158                                 g_slist_remove(request_pending_list, req);
2159                 resolv(req, req->request, req->name);
2160                 g_free(req->request);
2161                 g_free(req->name);
2162         }
2163 }
2164
2165 static void dnsproxy_offline_mode(connman_bool_t enabled)
2166 {
2167         GSList *list;
2168
2169         DBG("enabled %d", enabled);
2170
2171         for (list = server_list; list; list = list->next) {
2172                 struct server_data *data = list->data;
2173
2174                 if (enabled == FALSE) {
2175                         connman_info("Enabling DNS server %s", data->server);
2176                         data->enabled = TRUE;
2177                         cache_invalidate();
2178                         cache_refresh();
2179                 } else {
2180                         connman_info("Disabling DNS server %s", data->server);
2181                         data->enabled = FALSE;
2182                         cache_invalidate();
2183                 }
2184         }
2185 }
2186
2187 static void dnsproxy_default_changed(struct connman_service *service)
2188 {
2189         GSList *list;
2190         char *interface;
2191
2192         DBG("service %p", service);
2193
2194         /* DNS has changed, invalidate the cache */
2195         cache_invalidate();
2196
2197         if (service == NULL) {
2198                 /* When no services are active, then disable DNS proxying */
2199                 dnsproxy_offline_mode(TRUE);
2200                 return;
2201         }
2202
2203         interface = connman_service_get_interface(service);
2204         if (interface == NULL)
2205                 return;
2206
2207         for (list = server_list; list; list = list->next) {
2208                 struct server_data *data = list->data;
2209
2210                 if (g_strcmp0(data->interface, interface) == 0) {
2211                         connman_info("Enabling DNS server %s", data->server);
2212                         data->enabled = TRUE;
2213                 } else {
2214                         connman_info("Disabling DNS server %s", data->server);
2215                         data->enabled = FALSE;
2216                 }
2217         }
2218
2219         g_free(interface);
2220         cache_refresh();
2221 }
2222
2223 static struct connman_notifier dnsproxy_notifier = {
2224         .name                   = "dnsproxy",
2225         .default_changed        = dnsproxy_default_changed,
2226         .offline_mode           = dnsproxy_offline_mode,
2227 };
2228
2229 static unsigned char opt_edns0_type[2] = { 0x00, 0x29 };
2230
2231 static int parse_request(unsigned char *buf, int len,
2232                                         char *name, unsigned int size)
2233 {
2234         struct domain_hdr *hdr = (void *) buf;
2235         uint16_t qdcount = ntohs(hdr->qdcount);
2236         uint16_t arcount = ntohs(hdr->arcount);
2237         unsigned char *ptr;
2238         char *last_label = NULL;
2239         unsigned int remain, used = 0;
2240
2241         if (len < 12)
2242                 return -EINVAL;
2243
2244         DBG("id 0x%04x qr %d opcode %d qdcount %d arcount %d",
2245                                         hdr->id, hdr->qr, hdr->opcode,
2246                                                         qdcount, arcount);
2247
2248         if (hdr->qr != 0 || qdcount != 1)
2249                 return -EINVAL;
2250
2251         memset(name, 0, size);
2252
2253         ptr = buf + sizeof(struct domain_hdr);
2254         remain = len - sizeof(struct domain_hdr);
2255
2256         while (remain > 0) {
2257                 uint8_t len = *ptr;
2258
2259                 if (len == 0x00) {
2260                         last_label = (char *) (ptr + 1);
2261                         break;
2262                 }
2263
2264                 if (used + len + 1 > size)
2265                         return -ENOBUFS;
2266
2267                 strncat(name, (char *) (ptr + 1), len);
2268                 strcat(name, ".");
2269
2270                 used += len + 1;
2271
2272                 ptr += len + 1;
2273                 remain -= len + 1;
2274         }
2275
2276         if (last_label && arcount && remain >= 9 && last_label[4] == 0 &&
2277                                 !memcmp(last_label + 5, opt_edns0_type, 2)) {
2278                 uint16_t edns0_bufsize;
2279
2280                 edns0_bufsize = last_label[7] << 8 | last_label[8];
2281
2282                 DBG("EDNS0 buffer size %u", edns0_bufsize);
2283
2284                 /* This is an evil hack until full TCP support has been
2285                  * implemented.
2286                  *
2287                  * Somtimes the EDNS0 request gets send with a too-small
2288                  * buffer size. Since glibc doesn't seem to crash when it
2289                  * gets a response biffer then it requested, just bump
2290                  * the buffer size up to 4KiB.
2291                  */
2292                 if (edns0_bufsize < 0x1000) {
2293                         last_label[7] = 0x10;
2294                         last_label[8] = 0x00;
2295                 }
2296         }
2297
2298         DBG("query %s", name);
2299
2300         return 0;
2301 }
2302
2303 static gboolean tcp_listener_event(GIOChannel *channel, GIOCondition condition,
2304                                                         gpointer user_data)
2305 {
2306         unsigned char buf[768];
2307         char query[512];
2308         struct request_data *req;
2309         struct server_data *server;
2310         int sk, client_sk, len, err;
2311         struct sockaddr_in6 client_addr;
2312         socklen_t client_addr_len = sizeof(client_addr);
2313         GSList *list;
2314         struct listener_data *ifdata = user_data;
2315
2316         DBG("condition 0x%x", condition);
2317
2318         if (condition & (G_IO_NVAL | G_IO_ERR | G_IO_HUP)) {
2319                 if (ifdata->tcp_listener_watch > 0)
2320                         g_source_remove(ifdata->tcp_listener_watch);
2321                 ifdata->tcp_listener_watch = 0;
2322
2323                 connman_error("Error with TCP listener channel");
2324
2325                 return FALSE;
2326         }
2327
2328         sk = g_io_channel_unix_get_fd(channel);
2329
2330         client_sk = accept(sk, (void *)&client_addr, &client_addr_len);
2331         if (client_sk < 0) {
2332                 connman_error("Accept failure on TCP listener");
2333                 ifdata->tcp_listener_watch = 0;
2334                 return FALSE;
2335         }
2336
2337         len = recv(client_sk, buf, sizeof(buf), 0);
2338         if (len < 2)
2339                 return TRUE;
2340
2341         DBG("Received %d bytes (id 0x%04x)", len, buf[2] | buf[3] << 8);
2342
2343         err = parse_request(buf + 2, len - 2, query, sizeof(query));
2344         if (err < 0 || (g_slist_length(server_list) == 0)) {
2345                 send_response(client_sk, buf, len, NULL, 0, IPPROTO_TCP);
2346                 return TRUE;
2347         }
2348
2349         req = g_try_new0(struct request_data, 1);
2350         if (req == NULL)
2351                 return TRUE;
2352
2353         memcpy(&req->sa, &client_addr, client_addr_len);
2354         req->sa_len = client_addr_len;
2355         req->client_sk = client_sk;
2356         req->protocol = IPPROTO_TCP;
2357
2358         request_id += 2;
2359         if (request_id == 0x0000 || request_id == 0xffff)
2360                 request_id += 2;
2361
2362         req->srcid = buf[2] | (buf[3] << 8);
2363         req->dstid = request_id;
2364         req->altid = request_id + 1;
2365         req->request_len = len;
2366
2367         buf[2] = req->dstid & 0xff;
2368         buf[3] = req->dstid >> 8;
2369
2370         req->numserv = 0;
2371         req->ifdata = (struct listener_data *) ifdata;
2372         req->append_domain = FALSE;
2373         request_list = g_slist_append(request_list, req);
2374
2375         for (list = server_list; list; list = list->next) {
2376                 struct server_data *data = list->data;
2377                 GList *domains;
2378
2379                 if (data->protocol != IPPROTO_UDP || data->enabled == FALSE)
2380                         continue;
2381
2382                 server = create_server(data->interface, NULL,
2383                                         data->server, IPPROTO_TCP);
2384
2385                 /*
2386                  * If server is NULL, we're not connected yet.
2387                  * Copy the relevant buffers and continue with
2388                  * the next nameserver.
2389                  * The request will actually be sent once we're
2390                  * properly connected over TCP to this nameserver.
2391                  */
2392                 if (server == NULL) {
2393                         req->request = g_try_malloc0(req->request_len);
2394                         if (req->request == NULL)
2395                                 return TRUE;
2396
2397                         memcpy(req->request, buf, req->request_len);
2398
2399                         req->name = g_try_malloc0(sizeof(query));
2400                         if (req->name == NULL) {
2401                                 g_free(req->request);
2402                                 return TRUE;
2403                         }
2404                         memcpy(req->name, query, sizeof(query));
2405
2406                         continue;
2407                 }
2408
2409                 if (req->timeout > 0)
2410                         g_source_remove(req->timeout);
2411
2412                 for (domains = data->domains; domains;
2413                                 domains = domains->next) {
2414                         char *dom = domains->data;
2415
2416                         DBG("Adding domain %s to %s", dom, server->server);
2417
2418                         server->domains = g_list_append(server->domains,
2419                                                 g_strdup(dom));
2420                 }
2421
2422                 req->timeout = g_timeout_add_seconds(30, request_timeout, req);
2423                 if (ns_resolv(server, req, buf, query) > 0) {
2424                         if (req->timeout > 0) {
2425                                 g_source_remove(req->timeout);
2426                                 req->timeout = 0;
2427                         }
2428                 }
2429         }
2430
2431         return TRUE;
2432 }
2433
2434 static gboolean udp_listener_event(GIOChannel *channel, GIOCondition condition,
2435                                                         gpointer user_data)
2436 {
2437         unsigned char buf[768];
2438         char query[512];
2439         struct request_data *req;
2440         struct sockaddr_in6 client_addr;
2441         socklen_t client_addr_len = sizeof(client_addr);
2442         int sk, err, len;
2443         struct listener_data *ifdata = user_data;
2444
2445         if (condition & (G_IO_NVAL | G_IO_ERR | G_IO_HUP)) {
2446                 connman_error("Error with UDP listener channel");
2447                 ifdata->udp_listener_watch = 0;
2448                 return FALSE;
2449         }
2450
2451         sk = g_io_channel_unix_get_fd(channel);
2452
2453         memset(&client_addr, 0, client_addr_len);
2454         len = recvfrom(sk, buf, sizeof(buf), 0, (void *)&client_addr,
2455                        &client_addr_len);
2456         if (len < 2)
2457                 return TRUE;
2458
2459         DBG("Received %d bytes (id 0x%04x)", len, buf[0] | buf[1] << 8);
2460
2461         err = parse_request(buf, len, query, sizeof(query));
2462         if (err < 0 || (g_slist_length(server_list) == 0)) {
2463                 send_response(sk, buf, len, (void *)&client_addr,
2464                                 client_addr_len, IPPROTO_UDP);
2465                 return TRUE;
2466         }
2467
2468         req = g_try_new0(struct request_data, 1);
2469         if (req == NULL)
2470                 return TRUE;
2471
2472         memcpy(&req->sa, &client_addr, client_addr_len);
2473         req->sa_len = client_addr_len;
2474         req->client_sk = 0;
2475         req->protocol = IPPROTO_UDP;
2476
2477         request_id += 2;
2478         if (request_id == 0x0000 || request_id == 0xffff)
2479                 request_id += 2;
2480
2481         req->srcid = buf[0] | (buf[1] << 8);
2482         req->dstid = request_id;
2483         req->altid = request_id + 1;
2484         req->request_len = len;
2485
2486         buf[0] = req->dstid & 0xff;
2487         buf[1] = req->dstid >> 8;
2488
2489         req->numserv = 0;
2490         req->ifdata = (struct listener_data *) ifdata;
2491         req->timeout = g_timeout_add_seconds(5, request_timeout, req);
2492         req->append_domain = FALSE;
2493         request_list = g_slist_append(request_list, req);
2494
2495         return resolv(req, buf, query);
2496 }
2497
2498 static int create_dns_listener(int protocol, struct listener_data *ifdata)
2499 {
2500         GIOChannel *channel;
2501         const char *proto;
2502         union {
2503                 struct sockaddr sa;
2504                 struct sockaddr_in6 sin6;
2505                 struct sockaddr_in sin;
2506         } s;
2507         socklen_t slen;
2508         int sk, type, v6only = 0;
2509         int family = AF_INET6;
2510
2511
2512         DBG("interface %s", ifdata->ifname);
2513
2514         switch (protocol) {
2515         case IPPROTO_UDP:
2516                 proto = "UDP";
2517                 type = SOCK_DGRAM | SOCK_CLOEXEC;
2518                 break;
2519
2520         case IPPROTO_TCP:
2521                 proto = "TCP";
2522                 type = SOCK_STREAM | SOCK_CLOEXEC;
2523                 break;
2524
2525         default:
2526                 return -EINVAL;
2527         }
2528
2529         sk = socket(family, type, protocol);
2530         if (sk < 0 && family == AF_INET6 && errno == EAFNOSUPPORT) {
2531                 connman_error("No IPv6 support; DNS proxy listening only on Legacy IP");
2532                 family = AF_INET;
2533                 sk = socket(family, type, protocol);
2534         }
2535         if (sk < 0) {
2536                 connman_error("Failed to create %s listener socket", proto);
2537                 return -EIO;
2538         }
2539
2540         if (setsockopt(sk, SOL_SOCKET, SO_BINDTODEVICE,
2541                                         ifdata->ifname,
2542                                         strlen(ifdata->ifname) + 1) < 0) {
2543                 connman_error("Failed to bind %s listener interface", proto);
2544                 close(sk);
2545                 return -EIO;
2546         }
2547         /* Ensure it accepts Legacy IP connections too */
2548         if (family == AF_INET6 &&
2549                         setsockopt(sk, SOL_IPV6, IPV6_V6ONLY,
2550                                         &v6only, sizeof(v6only)) < 0) {
2551                 connman_error("Failed to clear V6ONLY on %s listener socket",
2552                               proto);
2553                 close(sk);
2554                 return -EIO;
2555         }
2556
2557         if (family == AF_INET) {
2558                 memset(&s.sin, 0, sizeof(s.sin));
2559                 s.sin.sin_family = AF_INET;
2560                 s.sin.sin_port = htons(53);
2561                 s.sin.sin_addr.s_addr = htonl(INADDR_ANY);
2562                 slen = sizeof(s.sin);
2563         } else {
2564                 memset(&s.sin6, 0, sizeof(s.sin6));
2565                 s.sin6.sin6_family = AF_INET6;
2566                 s.sin6.sin6_port = htons(53);
2567                 s.sin6.sin6_addr = in6addr_any;
2568                 slen = sizeof(s.sin6);
2569         }
2570
2571         if (bind(sk, &s.sa, slen) < 0) {
2572                 connman_error("Failed to bind %s listener socket", proto);
2573                 close(sk);
2574                 return -EIO;
2575         }
2576
2577         if (protocol == IPPROTO_TCP && listen(sk, 10) < 0) {
2578                 connman_error("Failed to listen on TCP socket");
2579                 close(sk);
2580                 return -EIO;
2581         }
2582
2583         channel = g_io_channel_unix_new(sk);
2584         if (channel == NULL) {
2585                 connman_error("Failed to create %s listener channel", proto);
2586                 close(sk);
2587                 return -EIO;
2588         }
2589
2590         g_io_channel_set_close_on_unref(channel, TRUE);
2591
2592         if (protocol == IPPROTO_TCP) {
2593                 ifdata->tcp_listener_channel = channel;
2594                 ifdata->tcp_listener_watch = g_io_add_watch(channel,
2595                                 G_IO_IN, tcp_listener_event, (gpointer) ifdata);
2596         } else {
2597                 ifdata->udp_listener_channel = channel;
2598                 ifdata->udp_listener_watch = g_io_add_watch(channel,
2599                                 G_IO_IN, udp_listener_event, (gpointer) ifdata);
2600         }
2601
2602         return 0;
2603 }
2604
2605 static void destroy_udp_listener(struct listener_data *ifdata)
2606 {
2607         DBG("interface %s", ifdata->ifname);
2608
2609         if (ifdata->udp_listener_watch > 0)
2610                 g_source_remove(ifdata->udp_listener_watch);
2611
2612         g_io_channel_unref(ifdata->udp_listener_channel);
2613 }
2614
2615 static void destroy_tcp_listener(struct listener_data *ifdata)
2616 {
2617         DBG("interface %s", ifdata->ifname);
2618
2619         if (ifdata->tcp_listener_watch > 0)
2620                 g_source_remove(ifdata->tcp_listener_watch);
2621
2622         g_io_channel_unref(ifdata->tcp_listener_channel);
2623 }
2624
2625 static int create_listener(struct listener_data *ifdata)
2626 {
2627         int err;
2628
2629         err = create_dns_listener(IPPROTO_UDP, ifdata);
2630         if (err < 0)
2631                 return err;
2632
2633         err = create_dns_listener(IPPROTO_TCP, ifdata);
2634         if (err < 0) {
2635                 destroy_udp_listener(ifdata);
2636                 return err;
2637         }
2638
2639         if (g_strcmp0(ifdata->ifname, "lo") == 0)
2640                 __connman_resolvfile_append("lo", NULL, "127.0.0.1");
2641
2642         return 0;
2643 }
2644
2645 static void destroy_listener(struct listener_data *ifdata)
2646 {
2647         GSList *list;
2648
2649         if (g_strcmp0(ifdata->ifname, "lo") == 0)
2650                 __connman_resolvfile_remove("lo", NULL, "127.0.0.1");
2651
2652         for (list = request_pending_list; list; list = list->next) {
2653                 struct request_data *req = list->data;
2654
2655                 DBG("Dropping pending request (id 0x%04x -> 0x%04x)",
2656                                                 req->srcid, req->dstid);
2657
2658                 g_free(req->resp);
2659                 g_free(req->request);
2660                 g_free(req->name);
2661                 g_free(req);
2662                 list->data = NULL;
2663         }
2664
2665         g_slist_free(request_pending_list);
2666         request_pending_list = NULL;
2667
2668         for (list = request_list; list; list = list->next) {
2669                 struct request_data *req = list->data;
2670
2671                 DBG("Dropping request (id 0x%04x -> 0x%04x)",
2672                                                 req->srcid, req->dstid);
2673
2674                 g_free(req->resp);
2675                 g_free(req->request);
2676                 g_free(req->name);
2677                 g_free(req);
2678                 list->data = NULL;
2679         }
2680
2681         g_slist_free(request_list);
2682         request_list = NULL;
2683
2684         destroy_tcp_listener(ifdata);
2685         destroy_udp_listener(ifdata);
2686 }
2687
2688 int __connman_dnsproxy_add_listener(const char *interface)
2689 {
2690         struct listener_data *ifdata;
2691         int err;
2692
2693         DBG("interface %s", interface);
2694
2695         if (g_hash_table_lookup(listener_table, interface) != NULL)
2696                 return 0;
2697
2698         ifdata = g_try_new0(struct listener_data, 1);
2699         if (ifdata == NULL)
2700                 return -ENOMEM;
2701
2702         ifdata->ifname = g_strdup(interface);
2703         ifdata->udp_listener_channel = NULL;
2704         ifdata->udp_listener_watch = 0;
2705         ifdata->tcp_listener_channel = NULL;
2706         ifdata->tcp_listener_watch = 0;
2707
2708         err = create_listener(ifdata);
2709         if (err < 0) {
2710                 connman_error("Couldn't create listener for %s err %d",
2711                                 interface, err);
2712                 g_free(ifdata->ifname);
2713                 g_free(ifdata);
2714                 return err;
2715         }
2716         g_hash_table_insert(listener_table, ifdata->ifname, ifdata);
2717         return 0;
2718 }
2719
2720 void __connman_dnsproxy_remove_listener(const char *interface)
2721 {
2722         struct listener_data *ifdata;
2723
2724         DBG("interface %s", interface);
2725
2726         ifdata = g_hash_table_lookup(listener_table, interface);
2727         if (ifdata == NULL)
2728                 return;
2729
2730         destroy_listener(ifdata);
2731
2732         g_hash_table_remove(listener_table, interface);
2733 }
2734
2735 static void remove_listener(gpointer key, gpointer value, gpointer user_data)
2736 {
2737         const char *interface = key;
2738         struct listener_data *ifdata = value;
2739
2740         DBG("interface %s", interface);
2741
2742         destroy_listener(ifdata);
2743 }
2744
2745 int __connman_dnsproxy_init(void)
2746 {
2747         int err;
2748
2749         DBG("");
2750
2751         listener_table = g_hash_table_new_full(g_str_hash, g_str_equal,
2752                                                         g_free, g_free);
2753         err = __connman_dnsproxy_add_listener("lo");
2754         if (err < 0)
2755                 return err;
2756
2757         err = connman_notifier_register(&dnsproxy_notifier);
2758         if (err < 0)
2759                 goto destroy;
2760
2761         return 0;
2762
2763 destroy:
2764         __connman_dnsproxy_remove_listener("lo");
2765         g_hash_table_destroy(listener_table);
2766
2767         return err;
2768 }
2769
2770 void __connman_dnsproxy_cleanup(void)
2771 {
2772         DBG("");
2773
2774         connman_notifier_unregister(&dnsproxy_notifier);
2775
2776         g_hash_table_foreach(listener_table, remove_listener, NULL);
2777
2778         g_hash_table_destroy(listener_table);
2779 }