dnsproxy: Handle partial TCP messages from client
[platform/upstream/connman.git] / src / dnsproxy.c
1 /*
2  *
3  *  Connection Manager
4  *
5  *  Copyright (C) 2007-2012  Intel Corporation. All rights reserved.
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License version 2 as
9  *  published by the Free Software Foundation.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, write to the Free Software
18  *  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  *
20  */
21
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <errno.h>
27 #include <stdlib.h>
28 #include <unistd.h>
29 #include <string.h>
30 #include <stdint.h>
31 #include <arpa/inet.h>
32 #include <netinet/in.h>
33 #include <sys/types.h>
34 #include <sys/socket.h>
35 #include <fcntl.h>
36 #include <netdb.h>
37 #include <resolv.h>
38 #include <gweb/gresolv.h>
39
40 #include <glib.h>
41
42 #include "connman.h"
43
44 #if __BYTE_ORDER == __LITTLE_ENDIAN
45 struct domain_hdr {
46         uint16_t id;
47         uint8_t rd:1;
48         uint8_t tc:1;
49         uint8_t aa:1;
50         uint8_t opcode:4;
51         uint8_t qr:1;
52         uint8_t rcode:4;
53         uint8_t z:3;
54         uint8_t ra:1;
55         uint16_t qdcount;
56         uint16_t ancount;
57         uint16_t nscount;
58         uint16_t arcount;
59 } __attribute__ ((packed));
60 #elif __BYTE_ORDER == __BIG_ENDIAN
61 struct domain_hdr {
62         uint16_t id;
63         uint8_t qr:1;
64         uint8_t opcode:4;
65         uint8_t aa:1;
66         uint8_t tc:1;
67         uint8_t rd:1;
68         uint8_t ra:1;
69         uint8_t z:3;
70         uint8_t rcode:4;
71         uint16_t qdcount;
72         uint16_t ancount;
73         uint16_t nscount;
74         uint16_t arcount;
75 } __attribute__ ((packed));
76 #else
77 #error "Unknown byte order"
78 #endif
79
80 struct partial_reply {
81         uint16_t len;
82         uint16_t received;
83         unsigned char buf[];
84 };
85
86 struct server_data {
87         int index;
88         GList *domains;
89         char *server;
90         struct sockaddr *server_addr;
91         socklen_t server_addr_len;
92         int protocol;
93         GIOChannel *channel;
94         guint watch;
95         guint timeout;
96         gboolean enabled;
97         gboolean connected;
98         struct partial_reply *incoming_reply;
99 };
100
101 struct request_data {
102         union {
103                 struct sockaddr_in6 __sin6; /* Only for the length */
104                 struct sockaddr sa;
105         };
106         socklen_t sa_len;
107         int client_sk;
108         int protocol;
109         int family;
110         guint16 srcid;
111         guint16 dstid;
112         guint16 altid;
113         guint timeout;
114         guint watch;
115         guint numserv;
116         guint numresp;
117         gpointer request;
118         gsize request_len;
119         gpointer name;
120         gpointer resp;
121         gsize resplen;
122         struct listener_data *ifdata;
123         gboolean append_domain;
124 };
125
126 struct listener_data {
127         int index;
128
129         GIOChannel *udp4_listener_channel;
130         GIOChannel *tcp4_listener_channel;
131         guint udp4_listener_watch;
132         guint tcp4_listener_watch;
133
134         GIOChannel *udp6_listener_channel;
135         GIOChannel *tcp6_listener_channel;
136         guint udp6_listener_watch;
137         guint tcp6_listener_watch;
138 };
139
140 /*
141  * The TCP client requires some extra handling as we need to
142  * be prepared to receive also partial DNS requests.
143  */
144 struct tcp_partial_client_data {
145         int family;
146         struct listener_data *ifdata;
147         GIOChannel *channel;
148         guint watch;
149         unsigned char *buf;
150         unsigned int buf_end;
151         guint timeout;
152 };
153
154 struct cache_data {
155         time_t inserted;
156         time_t valid_until;
157         time_t cache_until;
158         int timeout;
159         uint16_t type;
160         uint16_t answers;
161         unsigned int data_len;
162         unsigned char *data; /* contains DNS header + body */
163 };
164
165 struct cache_entry {
166         char *key;
167         int want_refresh;
168         int hits;
169         struct cache_data *ipv4;
170         struct cache_data *ipv6;
171 };
172
173 struct domain_question {
174         uint16_t type;
175         uint16_t class;
176 } __attribute__ ((packed));
177
178 struct domain_rr {
179         uint16_t type;
180         uint16_t class;
181         uint32_t ttl;
182         uint16_t rdlen;
183 } __attribute__ ((packed));
184
185 /*
186  * Max length of the DNS TCP packet.
187  */
188 #define TCP_MAX_BUF_LEN 4096
189
190 /*
191  * We limit how long the cached DNS entry stays in the cache.
192  * By default the TTL (time-to-live) of the DNS response is used
193  * when setting the cache entry life time. The value is in seconds.
194  */
195 #define MAX_CACHE_TTL (60 * 30)
196 /*
197  * Also limit the other end, cache at least for 30 seconds.
198  */
199 #define MIN_CACHE_TTL (30)
200
201 /*
202  * We limit the cache size to some sane value so that cached data does
203  * not occupy too much memory. Each cached entry occupies on average
204  * about 100 bytes memory (depending on DNS name length).
205  * Example: caching www.connman.net uses 97 bytes memory.
206  * The value is the max amount of cached DNS responses (count).
207  */
208 #define MAX_CACHE_SIZE 256
209
210 static int cache_size;
211 static GHashTable *cache;
212 static int cache_refcount;
213 static GSList *server_list = NULL;
214 static GSList *request_list = NULL;
215 static GHashTable *listener_table = NULL;
216 static time_t next_refresh;
217 static GHashTable *partial_tcp_req_table;
218
219 static guint16 get_id()
220 {
221         return random();
222 }
223
224 static int protocol_offset(int protocol)
225 {
226         switch (protocol) {
227         case IPPROTO_UDP:
228                 return 0;
229
230         case IPPROTO_TCP:
231                 return 2;
232
233         default:
234                 return -EINVAL;
235         }
236
237 }
238
239 /*
240  * There is a power and efficiency benefit to have entries
241  * in our cache expire at the same time. To this extend,
242  * we round down the cache valid time to common boundaries.
243  */
244 static time_t round_down_ttl(time_t end_time, int ttl)
245 {
246         if (ttl < 15)
247                 return end_time;
248
249         /* Less than 5 minutes, round to 10 second boundary */
250         if (ttl < 300) {
251                 end_time = end_time / 10;
252                 end_time = end_time * 10;
253         } else { /* 5 or more minutes, round to 30 seconds */
254                 end_time = end_time / 30;
255                 end_time = end_time * 30;
256         }
257         return end_time;
258 }
259
260 static struct request_data *find_request(guint16 id)
261 {
262         GSList *list;
263
264         for (list = request_list; list; list = list->next) {
265                 struct request_data *req = list->data;
266
267                 if (req->dstid == id || req->altid == id)
268                         return req;
269         }
270
271         return NULL;
272 }
273
274 static struct server_data *find_server(int index,
275                                         const char *server,
276                                                 int protocol)
277 {
278         GSList *list;
279
280         DBG("index %d server %s proto %d", index, server, protocol);
281
282         for (list = server_list; list; list = list->next) {
283                 struct server_data *data = list->data;
284
285                 if (index < 0 && data->index < 0 &&
286                                 g_str_equal(data->server, server) == TRUE &&
287                                 data->protocol == protocol)
288                         return data;
289
290                 if (index < 0 ||
291                                 data->index < 0 || data->server == NULL)
292                         continue;
293
294                 if (data->index == index &&
295                                 g_str_equal(data->server, server) == TRUE &&
296                                 data->protocol == protocol)
297                         return data;
298         }
299
300         return NULL;
301 }
302
303 /* we can keep using the same resolve's */
304 static GResolv *ipv4_resolve;
305 static GResolv *ipv6_resolve;
306
307 static void dummy_resolve_func(GResolvResultStatus status,
308                                         char **results, gpointer user_data)
309 {
310 }
311
312 /*
313  * Refresh a DNS entry, but also age the hit count a bit */
314 static void refresh_dns_entry(struct cache_entry *entry, char *name)
315 {
316         int age = 1;
317
318         if (ipv4_resolve == NULL) {
319                 ipv4_resolve = g_resolv_new(0);
320                 g_resolv_set_address_family(ipv4_resolve, AF_INET);
321                 g_resolv_add_nameserver(ipv4_resolve, "127.0.0.1", 53, 0);
322         }
323
324         if (ipv6_resolve == NULL) {
325                 ipv6_resolve = g_resolv_new(0);
326                 g_resolv_set_address_family(ipv6_resolve, AF_INET6);
327                 g_resolv_add_nameserver(ipv6_resolve, "::1", 53, 0);
328         }
329
330         if (entry->ipv4 == NULL) {
331                 DBG("Refresing A record for %s", name);
332                 g_resolv_lookup_hostname(ipv4_resolve, name,
333                                         dummy_resolve_func, NULL);
334                 age = 4;
335         }
336
337         if (entry->ipv6 == NULL) {
338                 DBG("Refresing AAAA record for %s", name);
339                 g_resolv_lookup_hostname(ipv6_resolve, name,
340                                         dummy_resolve_func, NULL);
341                 age = 4;
342         }
343
344         entry->hits -= age;
345         if (entry->hits < 0)
346                 entry->hits = 0;
347 }
348
349 static int dns_name_length(unsigned char *buf)
350 {
351         if ((buf[0] & NS_CMPRSFLGS) == NS_CMPRSFLGS) /* compressed name */
352                 return 2;
353         return strlen((char *)buf);
354 }
355
356 static void update_cached_ttl(unsigned char *buf, int len, int new_ttl)
357 {
358         unsigned char *c;
359         uint32_t *i;
360         uint16_t *w;
361         int l;
362
363         /* skip the header */
364         c = buf + 12;
365         len -= 12;
366
367         /* skip the query, which is a name and 2 16 bit words */
368         l = dns_name_length(c);
369         c += l;
370         len -= l;
371         c += 4;
372         len -= 4;
373
374         /* now we get the answer records */
375
376         while (len > 0) {
377                 /* first a name */
378                 l = dns_name_length(c);
379                 c += l;
380                 len -= l;
381                 if (len < 0)
382                         break;
383                 /* then type + class, 2 bytes each */
384                 c += 4;
385                 len -= 4;
386                 if (len < 0)
387                         break;
388
389                 /* now the 4 byte TTL field */
390                 i = (uint32_t *)c;
391                 *i = htonl(new_ttl);
392                 c += 4;
393                 len -= 4;
394                 if (len < 0)
395                         break;
396
397                 /* now the 2 byte rdlen field */
398                 w = (uint16_t *)c;
399                 c += ntohs(*w) + 2;
400                 len -= ntohs(*w) + 2;
401         }
402 }
403
404 static void send_cached_response(int sk, unsigned char *buf, int len,
405                                 const struct sockaddr *to, socklen_t tolen,
406                                 int protocol, int id, uint16_t answers, int ttl)
407 {
408         struct domain_hdr *hdr;
409         unsigned char *ptr = buf;
410         int err, offset, dns_len, adj_len = len - 2;
411
412         /*
413          * The cached packet contains always the TCP offset (two bytes)
414          * so skip them for UDP.
415          */
416         switch (protocol) {
417         case IPPROTO_UDP:
418                 ptr += 2;
419                 len -= 2;
420                 dns_len = len;
421                 offset = 0;
422                 break;
423         case IPPROTO_TCP:
424                 offset = 2;
425                 dns_len = ptr[0] * 256 + ptr[1];
426                 break;
427         default:
428                 return;
429         }
430
431         if (len < 12)
432                 return;
433
434         hdr = (void *) (ptr + offset);
435
436         hdr->id = id;
437         hdr->qr = 1;
438         hdr->rcode = 0;
439         hdr->ancount = htons(answers);
440         hdr->nscount = 0;
441         hdr->arcount = 0;
442
443         /* if this is a negative reply, we are authorative */
444         if (answers == 0)
445                 hdr->aa = 1;
446         else
447                 update_cached_ttl((unsigned char *)hdr, adj_len, ttl);
448
449         DBG("sk %d id 0x%04x answers %d ptr %p length %d dns %d",
450                 sk, hdr->id, answers, ptr, len, dns_len);
451
452         err = sendto(sk, ptr, len, MSG_NOSIGNAL, to, tolen);
453         if (err < 0) {
454                 connman_error("Cannot send cached DNS response: %s",
455                                 strerror(errno));
456                 return;
457         }
458
459         if (err != len || (dns_len != (len - 2) && protocol == IPPROTO_TCP) ||
460                                 (dns_len != len && protocol == IPPROTO_UDP))
461                 DBG("Packet length mismatch, sent %d wanted %d dns %d",
462                         err, len, dns_len);
463 }
464
465 static void send_response(int sk, unsigned char *buf, int len,
466                                 const struct sockaddr *to, socklen_t tolen,
467                                 int protocol)
468 {
469         struct domain_hdr *hdr;
470         int err, offset = protocol_offset(protocol);
471
472         DBG("sk %d", sk);
473
474         if (offset < 0)
475                 return;
476
477         if (len < 12)
478                 return;
479
480         hdr = (void *) (buf + offset);
481
482         DBG("id 0x%04x qr %d opcode %d", hdr->id, hdr->qr, hdr->opcode);
483
484         hdr->qr = 1;
485         hdr->rcode = 2;
486
487         hdr->ancount = 0;
488         hdr->nscount = 0;
489         hdr->arcount = 0;
490
491         err = sendto(sk, buf, len, MSG_NOSIGNAL, to, tolen);
492         if (err < 0) {
493                 connman_error("Failed to send DNS response to %d: %s",
494                                 sk, strerror(errno));
495                 return;
496         }
497 }
498
499 static int get_req_udp_socket(struct request_data *req)
500 {
501         GIOChannel *channel;
502
503         if (req->family == AF_INET)
504                 channel = req->ifdata->udp4_listener_channel;
505         else
506                 channel = req->ifdata->udp6_listener_channel;
507
508         if (channel == NULL)
509                 return -1;
510
511         return g_io_channel_unix_get_fd(channel);
512 }
513
514 static void destroy_request_data(struct request_data *req)
515 {
516         if (req->timeout > 0)
517                 g_source_remove(req->timeout);
518
519         g_free(req->resp);
520         g_free(req->request);
521         g_free(req->name);
522         g_free(req);
523 }
524
525 static gboolean request_timeout(gpointer user_data)
526 {
527         struct request_data *req = user_data;
528
529         if (req == NULL)
530                 return FALSE;
531
532         DBG("id 0x%04x", req->srcid);
533
534         request_list = g_slist_remove(request_list, req);
535         req->numserv--;
536
537         if (req->resplen > 0 && req->resp != NULL) {
538                 int sk, err;
539
540                 if (req->protocol == IPPROTO_UDP) {
541                         sk = get_req_udp_socket(req);
542                         if (sk < 0)
543                                 return FALSE;
544
545                         err = sendto(sk, req->resp, req->resplen, MSG_NOSIGNAL,
546                                 &req->sa, req->sa_len);
547                 } else {
548                         sk = req->client_sk;
549                         err = send(sk, req->resp, req->resplen, MSG_NOSIGNAL);
550                         if (err < 0)
551                                 close(sk);
552                 }
553                 if (err < 0)
554                         return FALSE;
555         } else if (req->request && req->numserv == 0) {
556                 struct domain_hdr *hdr;
557
558                 if (req->protocol == IPPROTO_TCP) {
559                         hdr = (void *) (req->request + 2);
560                         hdr->id = req->srcid;
561                         send_response(req->client_sk, req->request,
562                                 req->request_len, NULL, 0, IPPROTO_TCP);
563
564                 } else if (req->protocol == IPPROTO_UDP) {
565                         int sk;
566
567                         hdr = (void *) (req->request);
568                         hdr->id = req->srcid;
569
570                         sk = get_req_udp_socket(req);
571                         if (sk >= 0)
572                                 send_response(sk, req->request,
573                                         req->request_len, &req->sa,
574                                         req->sa_len, IPPROTO_UDP);
575                 }
576         }
577
578         /*
579          * We cannot leave TCP client hanging so just kick it out
580          * if we get a request timeout from server.
581          */
582         if (req->protocol == IPPROTO_TCP) {
583                 DBG("client %d removed", req->client_sk);
584                 g_hash_table_remove(partial_tcp_req_table,
585                                 GINT_TO_POINTER(req->client_sk));
586         }
587
588         req->timeout = 0;
589         destroy_request_data(req);
590
591         return FALSE;
592 }
593
594 static int append_query(unsigned char *buf, unsigned int size,
595                                 const char *query, const char *domain)
596 {
597         unsigned char *ptr = buf;
598         int len;
599
600         DBG("query %s domain %s", query, domain);
601
602         while (query != NULL) {
603                 const char *tmp;
604
605                 tmp = strchr(query, '.');
606                 if (tmp == NULL) {
607                         len = strlen(query);
608                         if (len == 0)
609                                 break;
610                         *ptr = len;
611                         memcpy(ptr + 1, query, len);
612                         ptr += len + 1;
613                         break;
614                 }
615
616                 *ptr = tmp - query;
617                 memcpy(ptr + 1, query, tmp - query);
618                 ptr += tmp - query + 1;
619
620                 query = tmp + 1;
621         }
622
623         while (domain != NULL) {
624                 const char *tmp;
625
626                 tmp = strchr(domain, '.');
627                 if (tmp == NULL) {
628                         len = strlen(domain);
629                         if (len == 0)
630                                 break;
631                         *ptr = len;
632                         memcpy(ptr + 1, domain, len);
633                         ptr += len + 1;
634                         break;
635                 }
636
637                 *ptr = tmp - domain;
638                 memcpy(ptr + 1, domain, tmp - domain);
639                 ptr += tmp - domain + 1;
640
641                 domain = tmp + 1;
642         }
643
644         *ptr++ = 0x00;
645
646         return ptr - buf;
647 }
648
649 static gboolean cache_check_is_valid(struct cache_data *data,
650                                 time_t current_time)
651 {
652         if (data == NULL)
653                 return FALSE;
654
655         if (data->cache_until < current_time)
656                 return FALSE;
657
658         return TRUE;
659 }
660
661 /*
662  * remove stale cached entries so that they can be refreshed
663  */
664 static void cache_enforce_validity(struct cache_entry *entry)
665 {
666         time_t current_time = time(NULL);
667
668         if (cache_check_is_valid(entry->ipv4, current_time) == FALSE
669                                                         && entry->ipv4) {
670                 DBG("cache timeout \"%s\" type A", entry->key);
671                 g_free(entry->ipv4->data);
672                 g_free(entry->ipv4);
673                 entry->ipv4 = NULL;
674
675         }
676
677         if (cache_check_is_valid(entry->ipv6, current_time) == FALSE
678                                                         && entry->ipv6) {
679                 DBG("cache timeout \"%s\" type AAAA", entry->key);
680                 g_free(entry->ipv6->data);
681                 g_free(entry->ipv6);
682                 entry->ipv6 = NULL;
683         }
684 }
685
686 static uint16_t cache_check_validity(char *question, uint16_t type,
687                                 struct cache_entry *entry)
688 {
689         time_t current_time = time(NULL);
690         int want_refresh = 0;
691
692         /*
693          * if we have a popular entry, we want a refresh instead of
694          * total destruction of the entry.
695          */
696         if (entry->hits > 2)
697                 want_refresh = 1;
698
699         cache_enforce_validity(entry);
700
701         switch (type) {
702         case 1:         /* IPv4 */
703                 if (cache_check_is_valid(entry->ipv4, current_time) == FALSE) {
704                         DBG("cache %s \"%s\" type A", entry->ipv4 ?
705                                         "timeout" : "entry missing", question);
706
707                         if (want_refresh)
708                                 entry->want_refresh = 1;
709
710                         /*
711                          * We do not remove cache entry if there is still
712                          * valid IPv6 entry found in the cache.
713                          */
714                         if (cache_check_is_valid(entry->ipv6, current_time)
715                                         == FALSE && want_refresh == FALSE) {
716                                 g_hash_table_remove(cache, question);
717                                 type = 0;
718                         }
719                 }
720                 break;
721
722         case 28:        /* IPv6 */
723                 if (cache_check_is_valid(entry->ipv6, current_time) == FALSE) {
724                         DBG("cache %s \"%s\" type AAAA", entry->ipv6 ?
725                                         "timeout" : "entry missing", question);
726
727                         if (want_refresh)
728                                 entry->want_refresh = 1;
729
730                         if (cache_check_is_valid(entry->ipv4, current_time)
731                                         == FALSE && want_refresh == FALSE) {
732                                 g_hash_table_remove(cache, question);
733                                 type = 0;
734                         }
735                 }
736                 break;
737         }
738
739         return type;
740 }
741
742 static void cache_element_destroy(gpointer value)
743 {
744         struct cache_entry *entry = value;
745
746         if (entry == NULL)
747                 return;
748
749         if (entry->ipv4 != NULL) {
750                 g_free(entry->ipv4->data);
751                 g_free(entry->ipv4);
752         }
753
754         if (entry->ipv6 != NULL) {
755                 g_free(entry->ipv6->data);
756                 g_free(entry->ipv6);
757         }
758
759         g_free(entry->key);
760         g_free(entry);
761
762         if (--cache_size < 0)
763                 cache_size = 0;
764 }
765
766 static gboolean try_remove_cache(gpointer user_data)
767 {
768         if (__sync_fetch_and_sub(&cache_refcount, 1) == 1) {
769                 DBG("No cache users, removing it.");
770
771                 g_hash_table_destroy(cache);
772                 cache = NULL;
773         }
774
775         return FALSE;
776 }
777
778 static void create_cache()
779 {
780         if (__sync_fetch_and_add(&cache_refcount, 1) == 0)
781                 cache = g_hash_table_new_full(g_str_hash,
782                                         g_str_equal,
783                                         NULL,
784                                         cache_element_destroy);
785 }
786
787 static struct cache_entry *cache_check(gpointer request, int *qtype, int proto)
788 {
789         char *question;
790         struct cache_entry *entry;
791         struct domain_question *q;
792         uint16_t type;
793         int offset, proto_offset;
794
795         if (request == NULL)
796                 return NULL;
797
798         proto_offset = protocol_offset(proto);
799         if (proto_offset < 0)
800                 return NULL;
801
802         question = request + proto_offset + 12;
803
804         offset = strlen(question) + 1;
805         q = (void *) (question + offset);
806         type = ntohs(q->type);
807
808         /* We only cache either A (1) or AAAA (28) requests */
809         if (type != 1 && type != 28)
810                 return NULL;
811
812         if (cache == NULL) {
813                 create_cache();
814                 return NULL;
815         }
816
817         entry = g_hash_table_lookup(cache, question);
818         if (entry == NULL)
819                 return NULL;
820
821         type = cache_check_validity(question, type, entry);
822         if (type == 0)
823                 return NULL;
824
825         *qtype = type;
826         return entry;
827 }
828
829 /*
830  * Get a label/name from DNS resource record. The function decompresses the
831  * label if necessary. The function does not convert the name to presentation
832  * form. This means that the result string will contain label lengths instead
833  * of dots between labels. We intentionally do not want to convert to dotted
834  * format so that we can cache the wire format string directly.
835  */
836 static int get_name(int counter,
837                 unsigned char *pkt, unsigned char *start, unsigned char *max,
838                 unsigned char *output, int output_max, int *output_len,
839                 unsigned char **end, char *name, int *name_len)
840 {
841         unsigned char *p;
842
843         /* Limit recursion to 10 (this means up to 10 labels in domain name) */
844         if (counter > 10)
845                 return -EINVAL;
846
847         p = start;
848         while (*p) {
849                 if ((*p & NS_CMPRSFLGS) == NS_CMPRSFLGS) {
850                         uint16_t offset = (*p & 0x3F) * 256 + *(p + 1);
851
852                         if (offset >= max - pkt)
853                                 return -ENOBUFS;
854
855                         if (*end == NULL)
856                                 *end = p + 2;
857
858                         return get_name(counter + 1, pkt, pkt + offset, max,
859                                         output, output_max, output_len, end,
860                                         name, name_len);
861                 } else {
862                         unsigned label_len = *p;
863
864                         if (pkt + label_len > max)
865                                 return -ENOBUFS;
866
867                         if (*output_len > output_max)
868                                 return -ENOBUFS;
869
870                         /*
871                          * We need the original name in order to check
872                          * if this answer is the correct one.
873                          */
874                         name[(*name_len)++] = label_len;
875                         memcpy(name + *name_len, p + 1, label_len + 1);
876                         *name_len += label_len;
877
878                         /* We compress the result */
879                         output[0] = NS_CMPRSFLGS;
880                         output[1] = 0x0C;
881                         *output_len = 2;
882
883                         p += label_len + 1;
884
885                         if (*end == NULL)
886                                 *end = p;
887
888                         if (p >= max)
889                                 return -ENOBUFS;
890                 }
891         }
892
893         return 0;
894 }
895
896 static int parse_rr(unsigned char *buf, unsigned char *start,
897                         unsigned char *max,
898                         unsigned char *response, unsigned int *response_size,
899                         uint16_t *type, uint16_t *class, int *ttl, int *rdlen,
900                         unsigned char **end,
901                         char *name)
902 {
903         struct domain_rr *rr;
904         int err, offset;
905         int name_len = 0, output_len = 0, max_rsp = *response_size;
906
907         err = get_name(0, buf, start, max, response, max_rsp,
908                 &output_len, end, name, &name_len);
909         if (err < 0)
910                 return err;
911
912         offset = output_len;
913
914         if ((unsigned int) offset > *response_size)
915                 return -ENOBUFS;
916
917         rr = (void *) (*end);
918
919         if (rr == NULL)
920                 return -EINVAL;
921
922         *type = ntohs(rr->type);
923         *class = ntohs(rr->class);
924         *ttl = ntohl(rr->ttl);
925         *rdlen = ntohs(rr->rdlen);
926
927         if (*ttl < 0)
928                 return -EINVAL;
929
930         memcpy(response + offset, *end, sizeof(struct domain_rr));
931
932         offset += sizeof(struct domain_rr);
933         *end += sizeof(struct domain_rr);
934
935         if ((unsigned int) (offset + *rdlen) > *response_size)
936                 return -ENOBUFS;
937
938         memcpy(response + offset, *end, *rdlen);
939
940         *end += *rdlen;
941
942         *response_size = offset + *rdlen;
943
944         return 0;
945 }
946
947 static gboolean check_alias(GSList *aliases, char *name)
948 {
949         GSList *list;
950
951         if (aliases != NULL) {
952                 for (list = aliases; list; list = list->next) {
953                         int len = strlen((char *)list->data);
954                         if (strncmp((char *)list->data, name, len) == 0)
955                                 return TRUE;
956                 }
957         }
958
959         return FALSE;
960 }
961
962 static int parse_response(unsigned char *buf, int buflen,
963                         char *question, int qlen,
964                         uint16_t *type, uint16_t *class, int *ttl,
965                         unsigned char *response, unsigned int *response_len,
966                         uint16_t *answers)
967 {
968         struct domain_hdr *hdr = (void *) buf;
969         struct domain_question *q;
970         unsigned char *ptr;
971         uint16_t qdcount = ntohs(hdr->qdcount);
972         uint16_t ancount = ntohs(hdr->ancount);
973         int err, i;
974         uint16_t qtype, qclass;
975         unsigned char *next = NULL;
976         unsigned int maxlen = *response_len;
977         GSList *aliases = NULL, *list;
978         char name[NS_MAXDNAME + 1];
979
980         if (buflen < 12)
981                 return -EINVAL;
982
983         DBG("qr %d qdcount %d", hdr->qr, qdcount);
984
985         /* We currently only cache responses where question count is 1 */
986         if (hdr->qr != 1 || qdcount != 1)
987                 return -EINVAL;
988
989         ptr = buf + sizeof(struct domain_hdr);
990
991         strncpy(question, (char *) ptr, qlen);
992         qlen = strlen(question);
993         ptr += qlen + 1; /* skip \0 */
994
995         q = (void *) ptr;
996         qtype = ntohs(q->type);
997
998         /* We cache only A and AAAA records */
999         if (qtype != 1 && qtype != 28)
1000                 return -ENOMSG;
1001
1002         qclass = ntohs(q->class);
1003
1004         ptr += 2 + 2; /* ptr points now to answers */
1005
1006         err = -ENOMSG;
1007         *response_len = 0;
1008         *answers = 0;
1009
1010         /*
1011          * We have a bunch of answers (like A, AAAA, CNAME etc) to
1012          * A or AAAA question. We traverse the answers and parse the
1013          * resource records. Only A and AAAA records are cached, all
1014          * the other records in answers are skipped.
1015          */
1016         for (i = 0; i < ancount; i++) {
1017                 /*
1018                  * Get one address at a time to this buffer.
1019                  * The max size of the answer is
1020                  *   2 (pointer) + 2 (type) + 2 (class) +
1021                  *   4 (ttl) + 2 (rdlen) + addr (16 or 4) = 28
1022                  * for A or AAAA record.
1023                  * For CNAME the size can be bigger.
1024                  */
1025                 unsigned char rsp[NS_MAXCDNAME];
1026                 unsigned int rsp_len = sizeof(rsp) - 1;
1027                 int ret, rdlen;
1028
1029                 memset(rsp, 0, sizeof(rsp));
1030
1031                 ret = parse_rr(buf, ptr, buf + buflen, rsp, &rsp_len,
1032                         type, class, ttl, &rdlen, &next, name);
1033                 if (ret != 0) {
1034                         err = ret;
1035                         goto out;
1036                 }
1037
1038                 /*
1039                  * Now rsp contains compressed or uncompressed resource
1040                  * record. Next we check if this record answers the question.
1041                  * The name var contains the uncompressed label.
1042                  * One tricky bit is the CNAME records as they alias
1043                  * the name we might be interested in.
1044                  */
1045
1046                 /*
1047                  * Go to next answer if the class is not the one we are
1048                  * looking for.
1049                  */
1050                 if (*class != qclass) {
1051                         ptr = next;
1052                         next = NULL;
1053                         continue;
1054                 }
1055
1056                 /*
1057                  * Try to resolve aliases also, type is CNAME(5).
1058                  * This is important as otherwise the aliased names would not
1059                  * be cached at all as the cache would not contain the aliased
1060                  * question.
1061                  *
1062                  * If any CNAME is found in DNS packet, then we cache the alias
1063                  * IP address instead of the question (as the server
1064                  * said that question has only an alias).
1065                  * This means in practice that if e.g., ipv6.google.com is
1066                  * queried, DNS server returns CNAME of that name which is
1067                  * ipv6.l.google.com. We then cache the address of the CNAME
1068                  * but return the question name to client. So the alias
1069                  * status of the name is not saved in cache and thus not
1070                  * returned to the client. We do not return DNS packets from
1071                  * cache to client saying that ipv6.google.com is an alias to
1072                  * ipv6.l.google.com but we return instead a DNS packet that
1073                  * says ipv6.google.com has address xxx which is in fact the
1074                  * address of ipv6.l.google.com. For caching purposes this
1075                  * should not cause any issues.
1076                  */
1077                 if (*type == 5 && strncmp(question, name, qlen) == 0) {
1078                         /*
1079                          * So now the alias answered the question. This is
1080                          * not very useful from caching point of view as
1081                          * the following A or AAAA records will not match the
1082                          * question. We need to find the real A/AAAA record
1083                          * of the alias and cache that.
1084                          */
1085                         unsigned char *end = NULL;
1086                         int name_len = 0, output_len;
1087
1088                         memset(rsp, 0, sizeof(rsp));
1089                         rsp_len = sizeof(rsp) - 1;
1090
1091                         /*
1092                          * Alias is in rdata part of the message,
1093                          * and next-rdlen points to it. So we need to get
1094                          * the real name of the alias.
1095                          */
1096                         ret = get_name(0, buf, next - rdlen, buf + buflen,
1097                                         rsp, rsp_len, &output_len, &end,
1098                                         name, &name_len);
1099                         if (ret != 0) {
1100                                 /* just ignore the error at this point */
1101                                 ptr = next;
1102                                 next = NULL;
1103                                 continue;
1104                         }
1105
1106                         /*
1107                          * We should now have the alias of the entry we might
1108                          * want to cache. Just remember it for a while.
1109                          * We check the alias list when we have parsed the
1110                          * A or AAAA record.
1111                          */
1112                         aliases = g_slist_prepend(aliases, g_strdup(name));
1113
1114                         ptr = next;
1115                         next = NULL;
1116                         continue;
1117                 }
1118
1119                 if (*type == qtype) {
1120                         /*
1121                          * We found correct type (A or AAAA)
1122                          */
1123                         if (check_alias(aliases, name) == TRUE ||
1124                                 (aliases == NULL && strncmp(question, name,
1125                                                         qlen) == 0)) {
1126                                 /*
1127                                  * We found an alias or the name of the rr
1128                                  * matches the question. If so, we append
1129                                  * the compressed label to the cache.
1130                                  * The end result is a response buffer that
1131                                  * will contain one or more cached and
1132                                  * compressed resource records.
1133                                  */
1134                                 if (*response_len + rsp_len > maxlen) {
1135                                         err = -ENOBUFS;
1136                                         goto out;
1137                                 }
1138                                 memcpy(response + *response_len, rsp, rsp_len);
1139                                 *response_len += rsp_len;
1140                                 (*answers)++;
1141                                 err = 0;
1142                         }
1143                 }
1144
1145                 ptr = next;
1146                 next = NULL;
1147         }
1148
1149 out:
1150         for (list = aliases; list; list = list->next)
1151                 g_free(list->data);
1152         g_slist_free(aliases);
1153
1154         return err;
1155 }
1156
1157 struct cache_timeout {
1158         time_t current_time;
1159         int max_timeout;
1160         int try_harder;
1161 };
1162
1163 static gboolean cache_check_entry(gpointer key, gpointer value,
1164                                         gpointer user_data)
1165 {
1166         struct cache_timeout *data = user_data;
1167         struct cache_entry *entry = value;
1168         int max_timeout;
1169
1170         /* Scale the number of hits by half as part of cache aging */
1171
1172         entry->hits /= 2;
1173
1174         /*
1175          * If either IPv4 or IPv6 cached entry has expired, we
1176          * remove both from the cache.
1177          */
1178
1179         if (entry->ipv4 != NULL && entry->ipv4->timeout > 0) {
1180                 max_timeout = entry->ipv4->cache_until;
1181                 if (max_timeout > data->max_timeout)
1182                         data->max_timeout = max_timeout;
1183
1184                 if (entry->ipv4->cache_until < data->current_time)
1185                         return TRUE;
1186         }
1187
1188         if (entry->ipv6 != NULL && entry->ipv6->timeout > 0) {
1189                 max_timeout = entry->ipv6->cache_until;
1190                 if (max_timeout > data->max_timeout)
1191                         data->max_timeout = max_timeout;
1192
1193                 if (entry->ipv6->cache_until < data->current_time)
1194                         return TRUE;
1195         }
1196
1197         /*
1198          * if we're asked to try harder, also remove entries that have
1199          * few hits
1200          */
1201         if (data->try_harder && entry->hits < 4)
1202                 return TRUE;
1203
1204         return FALSE;
1205 }
1206
1207 static void cache_cleanup(void)
1208 {
1209         static int max_timeout;
1210         struct cache_timeout data;
1211         int count = 0;
1212
1213         data.current_time = time(NULL);
1214         data.max_timeout = 0;
1215         data.try_harder = 0;
1216
1217         /*
1218          * In the first pass, we only remove entries that have timed out.
1219          * We use a cache of the first time to expire to do this only
1220          * when it makes sense.
1221          */
1222         if (max_timeout <= data.current_time) {
1223                 count = g_hash_table_foreach_remove(cache, cache_check_entry,
1224                                                 &data);
1225         }
1226         DBG("removed %d in the first pass", count);
1227
1228         /*
1229          * In the second pass, if the first pass turned up blank,
1230          * we also expire entries with a low hit count,
1231          * while aging the hit count at the same time.
1232          */
1233         data.try_harder = 1;
1234         if (count == 0)
1235                 count = g_hash_table_foreach_remove(cache, cache_check_entry,
1236                                                 &data);
1237
1238         if (count == 0)
1239                 /*
1240                  * If we could not remove anything, then remember
1241                  * what is the max timeout and do nothing if we
1242                  * have not yet reached it. This will prevent
1243                  * constant traversal of the cache if it is full.
1244                  */
1245                 max_timeout = data.max_timeout;
1246         else
1247                 max_timeout = 0;
1248 }
1249
1250 static gboolean cache_invalidate_entry(gpointer key, gpointer value,
1251                                         gpointer user_data)
1252 {
1253         struct cache_entry *entry = value;
1254
1255         /* first, delete any expired elements */
1256         cache_enforce_validity(entry);
1257
1258         /* if anything is not expired, mark the entry for refresh */
1259         if (entry->hits > 0 && (entry->ipv4 || entry->ipv6))
1260                 entry->want_refresh = 1;
1261
1262         /* delete the cached data */
1263         if (entry->ipv4) {
1264                 g_free(entry->ipv4->data);
1265                 g_free(entry->ipv4);
1266                 entry->ipv4 = NULL;
1267         }
1268
1269         if (entry->ipv6) {
1270                 g_free(entry->ipv6->data);
1271                 g_free(entry->ipv6);
1272                 entry->ipv6 = NULL;
1273         }
1274
1275         /* keep the entry if we want it refreshed, delete it otherwise */
1276         if (entry->want_refresh)
1277                 return FALSE;
1278         else
1279                 return TRUE;
1280 }
1281
1282 /*
1283  * cache_invalidate is called from places where the DNS landscape
1284  * has changed, say because connections are added or we entered a VPN.
1285  * The logic is to wipe all cache data, but mark all non-expired
1286  * parts of the cache for refresh rather than deleting the whole cache.
1287  */
1288 static void cache_invalidate(void)
1289 {
1290         DBG("Invalidating the DNS cache %p", cache);
1291
1292         if (cache == NULL)
1293                 return;
1294
1295         g_hash_table_foreach_remove(cache, cache_invalidate_entry, NULL);
1296 }
1297
1298 static void cache_refresh_entry(struct cache_entry *entry)
1299 {
1300
1301         cache_enforce_validity(entry);
1302
1303         if (entry->hits > 2 && entry->ipv4 == NULL)
1304                 entry->want_refresh = 1;
1305         if (entry->hits > 2 && entry->ipv6 == NULL)
1306                 entry->want_refresh = 1;
1307
1308         if (entry->want_refresh) {
1309                 char *c;
1310                 char dns_name[NS_MAXDNAME + 1];
1311                 entry->want_refresh = 0;
1312
1313                 /* turn a DNS name into a hostname with dots */
1314                 strncpy(dns_name, entry->key, NS_MAXDNAME);
1315                 c = dns_name;
1316                 while (c && *c) {
1317                         int jump;
1318                         jump = *c;
1319                         *c = '.';
1320                         c += jump + 1;
1321                 }
1322                 DBG("Refreshing %s\n", dns_name);
1323                 /* then refresh the hostname */
1324                 refresh_dns_entry(entry, &dns_name[1]);
1325         }
1326 }
1327
1328 static void cache_refresh_iterator(gpointer key, gpointer value,
1329                                         gpointer user_data)
1330 {
1331         struct cache_entry *entry = value;
1332
1333         cache_refresh_entry(entry);
1334 }
1335
1336 static void cache_refresh(void)
1337 {
1338         if (cache == NULL)
1339                 return;
1340
1341         g_hash_table_foreach(cache, cache_refresh_iterator, NULL);
1342 }
1343
1344 static int reply_query_type(unsigned char *msg, int len)
1345 {
1346         unsigned char *c;
1347         uint16_t *w;
1348         int l;
1349         int type;
1350
1351         /* skip the header */
1352         c = msg + sizeof(struct domain_hdr);
1353         len -= sizeof(struct domain_hdr);
1354
1355         if (len < 0)
1356                 return 0;
1357
1358         /* now the query, which is a name and 2 16 bit words */
1359         l = dns_name_length(c) + 1;
1360         c += l;
1361         w = (uint16_t *) c;
1362         type = ntohs(*w);
1363
1364         return type;
1365 }
1366
1367 static int cache_update(struct server_data *srv, unsigned char *msg,
1368                         unsigned int msg_len)
1369 {
1370         int offset = protocol_offset(srv->protocol);
1371         int err, qlen, ttl = 0;
1372         uint16_t answers = 0, type = 0, class = 0;
1373         struct domain_hdr *hdr = (void *)(msg + offset);
1374         struct domain_question *q;
1375         struct cache_entry *entry;
1376         struct cache_data *data;
1377         char question[NS_MAXDNAME + 1];
1378         unsigned char response[NS_MAXDNAME + 1];
1379         unsigned char *ptr;
1380         unsigned int rsplen;
1381         gboolean new_entry = TRUE;
1382         time_t current_time;
1383
1384         if (cache_size >= MAX_CACHE_SIZE) {
1385                 cache_cleanup();
1386                 if (cache_size >= MAX_CACHE_SIZE)
1387                         return 0;
1388         }
1389
1390         current_time = time(NULL);
1391
1392         /* don't do a cache refresh more than twice a minute */
1393         if (next_refresh < current_time) {
1394                 cache_refresh();
1395                 next_refresh = current_time + 30;
1396         }
1397
1398         if (offset < 0)
1399                 return 0;
1400
1401         DBG("offset %d hdr %p msg %p rcode %d", offset, hdr, msg, hdr->rcode);
1402
1403         /* Continue only if response code is 0 (=ok) */
1404         if (hdr->rcode != 0)
1405                 return 0;
1406
1407         rsplen = sizeof(response) - 1;
1408         question[sizeof(question) - 1] = '\0';
1409
1410         err = parse_response(msg + offset, msg_len - offset,
1411                                 question, sizeof(question) - 1,
1412                                 &type, &class, &ttl,
1413                                 response, &rsplen, &answers);
1414
1415         /*
1416          * special case: if we do a ipv6 lookup and get no result
1417          * for a record that's already in our ipv4 cache.. we want
1418          * to cache the negative response.
1419          */
1420         if ((err == -ENOMSG || err == -ENOBUFS) &&
1421                         reply_query_type(msg + offset,
1422                                         msg_len - offset) == 28) {
1423                 if (cache == NULL) {
1424                         create_cache();
1425                         entry = NULL;
1426                 } else
1427                         entry = g_hash_table_lookup(cache, question);
1428                 if (entry && entry->ipv4 && entry->ipv6 == NULL) {
1429                         int cache_offset = 0;
1430
1431                         data = g_try_new(struct cache_data, 1);
1432                         if (data == NULL)
1433                                 return -ENOMEM;
1434                         data->inserted = entry->ipv4->inserted;
1435                         data->type = type;
1436                         data->answers = ntohs(hdr->ancount);
1437                         data->timeout = entry->ipv4->timeout;
1438                         if (srv->protocol == IPPROTO_UDP)
1439                                 cache_offset = 2;
1440                         data->data_len = msg_len + cache_offset;
1441                         data->data = ptr = g_malloc(data->data_len);
1442                         ptr[0] = (data->data_len - 2) / 256;
1443                         ptr[1] = (data->data_len - 2) - ptr[0] * 256;
1444                         if (srv->protocol == IPPROTO_UDP)
1445                                 ptr += 2;
1446                         data->valid_until = entry->ipv4->valid_until;
1447                         data->cache_until = entry->ipv4->cache_until;
1448                         memcpy(ptr, msg, msg_len);
1449                         entry->ipv6 = data;
1450                         /*
1451                          * we will get a "hit" when we serve the response
1452                          * out of the cache
1453                          */
1454                         entry->hits--;
1455                         if (entry->hits < 0)
1456                                 entry->hits = 0;
1457                         return 0;
1458                 }
1459         }
1460
1461         if (err < 0 || ttl == 0)
1462                 return 0;
1463
1464         qlen = strlen(question);
1465
1466         /*
1467          * If the cache contains already data, check if the
1468          * type of the cached data is the same and do not add
1469          * to cache if data is already there.
1470          * This is needed so that we can cache both A and AAAA
1471          * records for the same name.
1472          */
1473         entry = g_hash_table_lookup(cache, question);
1474         if (entry == NULL) {
1475                 entry = g_try_new(struct cache_entry, 1);
1476                 if (entry == NULL)
1477                         return -ENOMEM;
1478
1479                 data = g_try_new(struct cache_data, 1);
1480                 if (data == NULL) {
1481                         g_free(entry);
1482                         return -ENOMEM;
1483                 }
1484
1485                 entry->key = g_strdup(question);
1486                 entry->ipv4 = entry->ipv6 = NULL;
1487                 entry->want_refresh = 0;
1488                 entry->hits = 0;
1489
1490                 if (type == 1)
1491                         entry->ipv4 = data;
1492                 else
1493                         entry->ipv6 = data;
1494         } else {
1495                 if (type == 1 && entry->ipv4 != NULL)
1496                         return 0;
1497
1498                 if (type == 28 && entry->ipv6 != NULL)
1499                         return 0;
1500
1501                 data = g_try_new(struct cache_data, 1);
1502                 if (data == NULL)
1503                         return -ENOMEM;
1504
1505                 if (type == 1)
1506                         entry->ipv4 = data;
1507                 else
1508                         entry->ipv6 = data;
1509
1510                 /*
1511                  * compensate for the hit we'll get for serving
1512                  * the response out of the cache
1513                  */
1514                 entry->hits--;
1515                 if (entry->hits < 0)
1516                         entry->hits = 0;
1517
1518                 new_entry = FALSE;
1519         }
1520
1521         if (ttl < MIN_CACHE_TTL)
1522                 ttl = MIN_CACHE_TTL;
1523
1524         data->inserted = current_time;
1525         data->type = type;
1526         data->answers = answers;
1527         data->timeout = ttl;
1528         /*
1529          * The "2" in start of the length is the TCP offset. We allocate it
1530          * here even for UDP packet because it simplifies the sending
1531          * of cached packet.
1532          */
1533         data->data_len = 2 + 12 + qlen + 1 + 2 + 2 + rsplen;
1534         data->data = ptr = g_malloc(data->data_len);
1535         data->valid_until = current_time + ttl;
1536
1537         /*
1538          * Restrict the cached DNS record TTL to some sane value
1539          * in order to prevent data staying in the cache too long.
1540          */
1541         if (ttl > MAX_CACHE_TTL)
1542                 ttl = MAX_CACHE_TTL;
1543
1544         data->cache_until = round_down_ttl(current_time + ttl, ttl);
1545
1546         if (data->data == NULL) {
1547                 g_free(entry->key);
1548                 g_free(data);
1549                 g_free(entry);
1550                 return -ENOMEM;
1551         }
1552
1553         /*
1554          * We cache the two extra bytes at the start of the message
1555          * in a TCP packet. When sending UDP packet, we skip the first
1556          * two bytes. This way we do not need to know the format
1557          * (UDP/TCP) of the cached message.
1558          */
1559         ptr[0] = (data->data_len - 2) / 256;
1560         ptr[1] = (data->data_len - 2) - ptr[0] * 256;
1561         if (srv->protocol == IPPROTO_UDP)
1562                 ptr += 2;
1563
1564         memcpy(ptr, msg, offset + 12);
1565         memcpy(ptr + offset + 12, question, qlen + 1); /* copy also the \0 */
1566
1567         q = (void *) (ptr + offset + 12 + qlen + 1);
1568         q->type = htons(type);
1569         q->class = htons(class);
1570         memcpy(ptr + offset + 12 + qlen + 1 + sizeof(struct domain_question),
1571                 response, rsplen);
1572
1573         if (new_entry == TRUE) {
1574                 g_hash_table_replace(cache, entry->key, entry);
1575                 cache_size++;
1576         }
1577
1578         DBG("cache %d %squestion \"%s\" type %d ttl %d size %zd packet %u "
1579                                                                 "dns len %u",
1580                 cache_size, new_entry ? "new " : "old ",
1581                 question, type, ttl,
1582                 sizeof(*entry) + sizeof(*data) + data->data_len + qlen,
1583                 data->data_len,
1584                 srv->protocol == IPPROTO_TCP ?
1585                         (unsigned int)(data->data[0] * 256 + data->data[1]) :
1586                         data->data_len);
1587
1588         return 0;
1589 }
1590
1591 static int ns_resolv(struct server_data *server, struct request_data *req,
1592                                 gpointer request, gpointer name)
1593 {
1594         GList *list;
1595         int sk, err, type = 0;
1596         char *dot, *lookup = (char *) name;
1597         struct cache_entry *entry;
1598
1599         entry = cache_check(request, &type, req->protocol);
1600         if (entry != NULL) {
1601                 int ttl_left = 0;
1602                 struct cache_data *data;
1603
1604                 DBG("cache hit %s type %s", lookup, type == 1 ? "A" : "AAAA");
1605                 if (type == 1)
1606                         data = entry->ipv4;
1607                 else
1608                         data = entry->ipv6;
1609
1610                 if (data) {
1611                         ttl_left = data->valid_until - time(NULL);
1612                         entry->hits++;
1613                 }
1614
1615                 if (data != NULL && req->protocol == IPPROTO_TCP) {
1616                         send_cached_response(req->client_sk, data->data,
1617                                         data->data_len, NULL, 0, IPPROTO_TCP,
1618                                         req->srcid, data->answers, ttl_left);
1619                         return 1;
1620                 }
1621
1622                 if (data != NULL && req->protocol == IPPROTO_UDP) {
1623                         int udp_sk = get_req_udp_socket(req);
1624
1625                         send_cached_response(udp_sk, data->data,
1626                                 data->data_len, &req->sa, req->sa_len,
1627                                 IPPROTO_UDP, req->srcid, data->answers,
1628                                 ttl_left);
1629                         return 1;
1630                 }
1631         }
1632
1633         sk = g_io_channel_unix_get_fd(server->channel);
1634
1635         err = sendto(sk, request, req->request_len, MSG_NOSIGNAL,
1636                         server->server_addr, server->server_addr_len);
1637         if (err < 0) {
1638                 DBG("Cannot send message to server %s sock %d "
1639                         "protocol %d (%s/%d)",
1640                         server->server, sk, server->protocol,
1641                         strerror(errno), errno);
1642                 return -EIO;
1643         }
1644
1645         req->numserv++;
1646
1647         /* If we have more than one dot, we don't add domains */
1648         dot = strchr(lookup, '.');
1649         if (dot != NULL && dot != lookup + strlen(lookup) - 1)
1650                 return 0;
1651
1652         if (server->domains != NULL && server->domains->data != NULL)
1653                 req->append_domain = TRUE;
1654
1655         for (list = server->domains; list; list = list->next) {
1656                 char *domain;
1657                 unsigned char alt[1024];
1658                 struct domain_hdr *hdr = (void *) &alt;
1659                 int altlen, domlen, offset;
1660
1661                 domain = list->data;
1662
1663                 if (domain == NULL)
1664                         continue;
1665
1666                 offset = protocol_offset(server->protocol);
1667                 if (offset < 0)
1668                         return offset;
1669
1670                 domlen = strlen(domain) + 1;
1671                 if (domlen < 5)
1672                         return -EINVAL;
1673
1674                 alt[offset] = req->altid & 0xff;
1675                 alt[offset + 1] = req->altid >> 8;
1676
1677                 memcpy(alt + offset + 2, request + offset + 2, 10);
1678                 hdr->qdcount = htons(1);
1679
1680                 altlen = append_query(alt + offset + 12, sizeof(alt) - 12,
1681                                         name, domain);
1682                 if (altlen < 0)
1683                         return -EINVAL;
1684
1685                 altlen += 12;
1686
1687                 memcpy(alt + offset + altlen,
1688                         request + offset + altlen - domlen,
1689                                 req->request_len - altlen - offset + domlen);
1690
1691                 if (server->protocol == IPPROTO_TCP) {
1692                         int req_len = req->request_len + domlen - 2;
1693
1694                         alt[0] = (req_len >> 8) & 0xff;
1695                         alt[1] = req_len & 0xff;
1696                 }
1697
1698                 DBG("req %p dstid 0x%04x altid 0x%04x", req, req->dstid,
1699                                 req->altid);
1700
1701                 err = send(sk, alt, req->request_len + domlen, MSG_NOSIGNAL);
1702                 if (err < 0)
1703                         return -EIO;
1704
1705                 req->numserv++;
1706         }
1707
1708         return 0;
1709 }
1710
1711 static int forward_dns_reply(unsigned char *reply, int reply_len, int protocol,
1712                                 struct server_data *data)
1713 {
1714         struct domain_hdr *hdr;
1715         struct request_data *req;
1716         int dns_id, sk, err, offset = protocol_offset(protocol);
1717
1718         if (offset < 0)
1719                 return offset;
1720
1721         hdr = (void *)(reply + offset);
1722         dns_id = reply[offset] | reply[offset + 1] << 8;
1723
1724         DBG("Received %d bytes (id 0x%04x)", reply_len, dns_id);
1725
1726         req = find_request(dns_id);
1727         if (req == NULL)
1728                 return -EINVAL;
1729
1730         DBG("req %p dstid 0x%04x altid 0x%04x rcode %d",
1731                         req, req->dstid, req->altid, hdr->rcode);
1732
1733         reply[offset] = req->srcid & 0xff;
1734         reply[offset + 1] = req->srcid >> 8;
1735
1736         req->numresp++;
1737
1738         if (hdr->rcode == 0 || req->resp == NULL) {
1739
1740                 /*
1741                  * If the domain name was append
1742                  * remove it before forwarding the reply.
1743                  */
1744                 if (req->append_domain == TRUE) {
1745                         unsigned int domain_len = 0;
1746                         unsigned char *ptr;
1747                         uint8_t host_len;
1748                         unsigned int header_len;
1749
1750                         /*
1751                          * ptr points to the first char of the hostname.
1752                          * ->hostname.domain.net
1753                          */
1754                         header_len = offset + sizeof(struct domain_hdr);
1755                         ptr = reply + header_len;
1756                         host_len = *ptr;
1757                         if (host_len > 0)
1758                                 domain_len = strnlen((const char *)ptr + 1 +
1759                                                 host_len,
1760                                                 reply_len - header_len);
1761
1762
1763                         DBG("host len %d domain len %d", host_len, domain_len);
1764
1765                         /*
1766                          * Remove the domain name and replace it by the end
1767                          * of reply. Check if the domain is really there
1768                          * before trying to copy the data. The domain_len can
1769                          * be 0 because if the original query did not contain
1770                          * a domain name, then we are sending two packets,
1771                          * first without the domain name and the second packet
1772                          * with domain name. The append_domain is set to true
1773                          * even if we sent the first packet without domain
1774                          * name. In this case we end up in this branch.
1775                          */
1776                         if (domain_len > 0) {
1777                                 /*
1778                                  * Note that we must use memmove() here,
1779                                  * because the memory areas can overlap.
1780                                  */
1781                                 memmove(ptr + host_len + 1,
1782                                         ptr + host_len + domain_len + 1,
1783                                         reply_len - header_len - domain_len);
1784
1785                                 reply_len = reply_len - domain_len;
1786                         }
1787                 }
1788
1789                 g_free(req->resp);
1790                 req->resplen = 0;
1791
1792                 req->resp = g_try_malloc(reply_len);
1793                 if (req->resp == NULL)
1794                         return -ENOMEM;
1795
1796                 memcpy(req->resp, reply, reply_len);
1797                 req->resplen = reply_len;
1798
1799                 cache_update(data, reply, reply_len);
1800         }
1801
1802         if (hdr->rcode > 0 && req->numresp < req->numserv)
1803                 return -EINVAL;
1804
1805         request_list = g_slist_remove(request_list, req);
1806
1807         if (protocol == IPPROTO_UDP) {
1808                 sk = get_req_udp_socket(req);
1809                 err = sendto(sk, req->resp, req->resplen, 0,
1810                              &req->sa, req->sa_len);
1811         } else {
1812                 sk = req->client_sk;
1813                 err = send(sk, req->resp, req->resplen, MSG_NOSIGNAL);
1814         }
1815
1816         if (err < 0)
1817                 DBG("Cannot send msg, sk %d proto %d errno %d/%s", sk,
1818                         protocol, errno, strerror(errno));
1819         else
1820                 DBG("proto %d sent %d bytes to %d", protocol, err, sk);
1821
1822         destroy_request_data(req);
1823
1824         return err;
1825 }
1826
1827 static void server_destroy_socket(struct server_data *data)
1828 {
1829         DBG("index %d server %s proto %d", data->index,
1830                                         data->server, data->protocol);
1831
1832         if (data->watch > 0) {
1833                 g_source_remove(data->watch);
1834                 data->watch = 0;
1835         }
1836
1837         if (data->timeout > 0) {
1838                 g_source_remove(data->timeout);
1839                 data->timeout = 0;
1840         }
1841
1842         if (data->channel != NULL) {
1843                 g_io_channel_shutdown(data->channel, TRUE, NULL);
1844                 g_io_channel_unref(data->channel);
1845                 data->channel = NULL;
1846         }
1847
1848         g_free(data->incoming_reply);
1849         data->incoming_reply = NULL;
1850 }
1851
1852 static void destroy_server(struct server_data *server)
1853 {
1854         GList *list;
1855
1856         DBG("index %d server %s sock %d", server->index, server->server,
1857                         server->channel != NULL ?
1858                         g_io_channel_unix_get_fd(server->channel): -1);
1859
1860         server_list = g_slist_remove(server_list, server);
1861         server_destroy_socket(server);
1862
1863         if (server->protocol == IPPROTO_UDP && server->enabled)
1864                 DBG("Removing DNS server %s", server->server);
1865
1866         g_free(server->server);
1867         for (list = server->domains; list; list = list->next) {
1868                 char *domain = list->data;
1869
1870                 server->domains = g_list_remove(server->domains, domain);
1871                 g_free(domain);
1872         }
1873         g_free(server->server_addr);
1874
1875         /*
1876          * We do not remove cache right away but delay it few seconds.
1877          * The idea is that when IPv6 DNS server is added via RDNSS, it has a
1878          * lifetime. When the lifetime expires we decrease the refcount so it
1879          * is possible that the cache is then removed. Because a new DNS server
1880          * is usually created almost immediately we would then loose the cache
1881          * without any good reason. The small delay allows the new RDNSS to
1882          * create a new DNS server instance and the refcount does not go to 0.
1883          */
1884         g_timeout_add_seconds(3, try_remove_cache, NULL);
1885
1886         g_free(server);
1887 }
1888
1889 static gboolean udp_server_event(GIOChannel *channel, GIOCondition condition,
1890                                                         gpointer user_data)
1891 {
1892         unsigned char buf[4096];
1893         int sk, err, len;
1894         struct server_data *data = user_data;
1895
1896         if (condition & (G_IO_NVAL | G_IO_ERR | G_IO_HUP)) {
1897                 connman_error("Error with UDP server %s", data->server);
1898                 server_destroy_socket(data);
1899                 return FALSE;
1900         }
1901
1902         sk = g_io_channel_unix_get_fd(channel);
1903
1904         len = recv(sk, buf, sizeof(buf), 0);
1905         if (len < 12)
1906                 return TRUE;
1907
1908         err = forward_dns_reply(buf, len, IPPROTO_UDP, data);
1909         if (err < 0)
1910                 return TRUE;
1911
1912         return TRUE;
1913 }
1914
1915 static gboolean tcp_server_event(GIOChannel *channel, GIOCondition condition,
1916                                                         gpointer user_data)
1917 {
1918         int sk;
1919         struct server_data *server = user_data;
1920
1921         sk = g_io_channel_unix_get_fd(channel);
1922         if (sk == 0)
1923                 return FALSE;
1924
1925         if (condition & (G_IO_NVAL | G_IO_ERR | G_IO_HUP)) {
1926                 GSList *list;
1927 hangup:
1928                 DBG("TCP server channel closed, sk %d", sk);
1929
1930                 /*
1931                  * Discard any partial response which is buffered; better
1932                  * to get a proper response from a working server.
1933                  */
1934                 g_free(server->incoming_reply);
1935                 server->incoming_reply = NULL;
1936
1937                 for (list = request_list; list; list = list->next) {
1938                         struct request_data *req = list->data;
1939                         struct domain_hdr *hdr;
1940
1941                         if (req->protocol == IPPROTO_UDP)
1942                                 continue;
1943
1944                         if (req->request == NULL)
1945                                 continue;
1946
1947                         /*
1948                          * If we're not waiting for any further response
1949                          * from another name server, then we send an error
1950                          * response to the client.
1951                          */
1952                         if (req->numserv && --(req->numserv))
1953                                 continue;
1954
1955                         hdr = (void *) (req->request + 2);
1956                         hdr->id = req->srcid;
1957                         send_response(req->client_sk, req->request,
1958                                 req->request_len, NULL, 0, IPPROTO_TCP);
1959
1960                         request_list = g_slist_remove(request_list, req);
1961                 }
1962
1963                 destroy_server(server);
1964
1965                 return FALSE;
1966         }
1967
1968         if ((condition & G_IO_OUT) && !server->connected) {
1969                 GSList *list;
1970                 GList *domains;
1971                 int no_request_sent = TRUE;
1972                 struct server_data *udp_server;
1973
1974                 udp_server = find_server(server->index, server->server,
1975                                                                 IPPROTO_UDP);
1976                 if (udp_server != NULL) {
1977                         for (domains = udp_server->domains; domains;
1978                                                 domains = domains->next) {
1979                                 char *dom = domains->data;
1980
1981                                 DBG("Adding domain %s to %s",
1982                                                 dom, server->server);
1983
1984                                 server->domains = g_list_append(server->domains,
1985                                                                 g_strdup(dom));
1986                         }
1987                 }
1988
1989                 server->connected = TRUE;
1990                 server_list = g_slist_append(server_list, server);
1991
1992                 if (server->timeout > 0) {
1993                         g_source_remove(server->timeout);
1994                         server->timeout = 0;
1995                 }
1996
1997                 for (list = request_list; list; ) {
1998                         struct request_data *req = list->data;
1999                         int status;
2000
2001                         if (req->protocol == IPPROTO_UDP) {
2002                                 list = list->next;
2003                                 continue;
2004                         }
2005
2006                         DBG("Sending req %s over TCP", (char *)req->name);
2007
2008                         status = ns_resolv(server, req,
2009                                                 req->request, req->name);
2010                         if (status > 0) {
2011                                 /*
2012                                  * A cached result was sent,
2013                                  * so the request can be released
2014                                  */
2015                                 list = list->next;
2016                                 request_list = g_slist_remove(request_list, req);
2017                                 destroy_request_data(req);
2018                                 continue;
2019                         }
2020
2021                         if (status < 0) {
2022                                 list = list->next;
2023                                 continue;
2024                         }
2025
2026                         no_request_sent = FALSE;
2027
2028                         if (req->timeout > 0)
2029                                 g_source_remove(req->timeout);
2030
2031                         req->timeout = g_timeout_add_seconds(30,
2032                                                 request_timeout, req);
2033                         list = list->next;
2034                 }
2035
2036                 if (no_request_sent == TRUE) {
2037                         destroy_server(server);
2038                         return FALSE;
2039                 }
2040
2041         } else if (condition & G_IO_IN) {
2042                 struct partial_reply *reply = server->incoming_reply;
2043                 int bytes_recv;
2044
2045                 if (!reply) {
2046                         unsigned char reply_len_buf[2];
2047                         uint16_t reply_len;
2048
2049                         bytes_recv = recv(sk, reply_len_buf, 2, MSG_PEEK);
2050                         if (!bytes_recv) {
2051                                 goto hangup;
2052                         } else if (bytes_recv < 0) {
2053                                 if (errno == EAGAIN || errno == EWOULDBLOCK)
2054                                         return TRUE;
2055
2056                                 connman_error("DNS proxy error %s",
2057                                                 strerror(errno));
2058                                 goto hangup;
2059                         } else if (bytes_recv < 2)
2060                                 return TRUE;
2061
2062                         reply_len = reply_len_buf[1] | reply_len_buf[0] << 8;
2063                         reply_len += 2;
2064
2065                         DBG("TCP reply %d bytes from %d", reply_len, sk);
2066
2067                         reply = g_try_malloc(sizeof(*reply) + reply_len + 2);
2068                         if (!reply)
2069                                 return TRUE;
2070
2071                         reply->len = reply_len;
2072                         reply->received = 0;
2073
2074                         server->incoming_reply = reply;
2075                 }
2076
2077                 while (reply->received < reply->len) {
2078                         bytes_recv = recv(sk, reply->buf + reply->received,
2079                                         reply->len - reply->received, 0);
2080                         if (!bytes_recv) {
2081                                 connman_error("DNS proxy TCP disconnect");
2082                                 break;
2083                         } else if (bytes_recv < 0) {
2084                                 if (errno == EAGAIN || errno == EWOULDBLOCK)
2085                                         return TRUE;
2086
2087                                 connman_error("DNS proxy error %s",
2088                                                 strerror(errno));
2089                                 break;
2090                         }
2091                         reply->received += bytes_recv;
2092                 }
2093
2094                 forward_dns_reply(reply->buf, reply->received, IPPROTO_TCP,
2095                                         server);
2096
2097                 g_free(reply);
2098                 server->incoming_reply = NULL;
2099
2100                 destroy_server(server);
2101
2102                 return FALSE;
2103         }
2104
2105         return TRUE;
2106 }
2107
2108 static gboolean tcp_idle_timeout(gpointer user_data)
2109 {
2110         struct server_data *server = user_data;
2111
2112         DBG("");
2113
2114         if (server == NULL)
2115                 return FALSE;
2116
2117         destroy_server(server);
2118
2119         return FALSE;
2120 }
2121
2122 static int server_create_socket(struct server_data *data)
2123 {
2124         int sk, err;
2125         char *interface;
2126
2127         DBG("index %d server %s proto %d", data->index,
2128                                         data->server, data->protocol);
2129
2130         sk = socket(data->server_addr->sa_family,
2131                 data->protocol == IPPROTO_TCP ? SOCK_STREAM : SOCK_DGRAM,
2132                 data->protocol);
2133         if (sk < 0) {
2134                 err = errno;
2135                 connman_error("Failed to create server %s socket",
2136                                                         data->server);
2137                 server_destroy_socket(data);
2138                 return -err;
2139         }
2140
2141         DBG("sk %d", sk);
2142
2143         interface = connman_inet_ifname(data->index);
2144         if (interface != NULL) {
2145                 if (setsockopt(sk, SOL_SOCKET, SO_BINDTODEVICE,
2146                                         interface,
2147                                         strlen(interface) + 1) < 0) {
2148                         err = errno;
2149                         connman_error("Failed to bind server %s "
2150                                                 "to interface %s",
2151                                                 data->server, interface);
2152                         close(sk);
2153                         server_destroy_socket(data);
2154                         g_free(interface);
2155                         return -err;
2156                 }
2157                 g_free(interface);
2158         }
2159
2160         data->channel = g_io_channel_unix_new(sk);
2161         if (data->channel == NULL) {
2162                 connman_error("Failed to create server %s channel",
2163                                                         data->server);
2164                 close(sk);
2165                 server_destroy_socket(data);
2166                 return -ENOMEM;
2167         }
2168
2169         g_io_channel_set_close_on_unref(data->channel, TRUE);
2170
2171         if (data->protocol == IPPROTO_TCP) {
2172                 g_io_channel_set_flags(data->channel, G_IO_FLAG_NONBLOCK, NULL);
2173                 data->watch = g_io_add_watch(data->channel,
2174                         G_IO_OUT | G_IO_IN | G_IO_HUP | G_IO_NVAL | G_IO_ERR,
2175                                                 tcp_server_event, data);
2176                 data->timeout = g_timeout_add_seconds(30, tcp_idle_timeout,
2177                                                                 data);
2178         } else
2179                 data->watch = g_io_add_watch(data->channel,
2180                         G_IO_IN | G_IO_NVAL | G_IO_ERR | G_IO_HUP,
2181                                                 udp_server_event, data);
2182
2183         if (connect(sk, data->server_addr, data->server_addr_len) < 0) {
2184                 err = errno;
2185
2186                 if ((data->protocol == IPPROTO_TCP && errno != EINPROGRESS) ||
2187                                 data->protocol == IPPROTO_UDP) {
2188
2189                         connman_error("Failed to connect to server %s",
2190                                                                 data->server);
2191                         server_destroy_socket(data);
2192                         return -err;
2193                 }
2194         }
2195
2196         create_cache();
2197
2198         return 0;
2199 }
2200
2201 static struct server_data *create_server(int index,
2202                                         const char *domain, const char *server,
2203                                         int protocol)
2204 {
2205         struct server_data *data;
2206         struct addrinfo hints, *rp;
2207         int ret;
2208
2209         DBG("index %d server %s", index, server);
2210
2211         data = g_try_new0(struct server_data, 1);
2212         if (data == NULL) {
2213                 connman_error("Failed to allocate server %s data", server);
2214                 return NULL;
2215         }
2216
2217         data->index = index;
2218         if (domain)
2219                 data->domains = g_list_append(data->domains, g_strdup(domain));
2220         data->server = g_strdup(server);
2221         data->protocol = protocol;
2222
2223         memset(&hints, 0, sizeof(hints));
2224
2225         switch (protocol) {
2226         case IPPROTO_UDP:
2227                 hints.ai_socktype = SOCK_DGRAM;
2228                 break;
2229
2230         case IPPROTO_TCP:
2231                 hints.ai_socktype = SOCK_STREAM;
2232                 break;
2233
2234         default:
2235                 destroy_server(data);
2236                 return NULL;
2237         }
2238         hints.ai_family = AF_UNSPEC;
2239         hints.ai_flags = AI_NUMERICSERV | AI_NUMERICHOST;
2240
2241         ret = getaddrinfo(data->server, "53", &hints, &rp);
2242         if (ret) {
2243                 connman_error("Failed to parse server %s address: %s\n",
2244                               data->server, gai_strerror(ret));
2245                 destroy_server(data);
2246                 return NULL;
2247         }
2248
2249         /* Do not blindly copy this code elsewhere; it doesn't loop over the
2250            results using ->ai_next as it should. That's OK in *this* case
2251            because it was a numeric lookup; we *know* there's only one. */
2252
2253         data->server_addr_len = rp->ai_addrlen;
2254
2255         switch (rp->ai_family) {
2256         case AF_INET:
2257                 data->server_addr = (struct sockaddr *)
2258                                         g_try_new0(struct sockaddr_in, 1);
2259                 break;
2260         case AF_INET6:
2261                 data->server_addr = (struct sockaddr *)
2262                                         g_try_new0(struct sockaddr_in6, 1);
2263                 break;
2264         default:
2265                 connman_error("Wrong address family %d", rp->ai_family);
2266                 break;
2267         }
2268         if (data->server_addr == NULL) {
2269                 freeaddrinfo(rp);
2270                 destroy_server(data);
2271                 return NULL;
2272         }
2273         memcpy(data->server_addr, rp->ai_addr, rp->ai_addrlen);
2274         freeaddrinfo(rp);
2275
2276         if (server_create_socket(data) != 0) {
2277                 destroy_server(data);
2278                 return NULL;
2279         }
2280
2281         if (protocol == IPPROTO_UDP) {
2282                 /* Enable new servers by default */
2283                 data->enabled = TRUE;
2284                 DBG("Adding DNS server %s", data->server);
2285
2286                 server_list = g_slist_append(server_list, data);
2287         }
2288
2289         return data;
2290 }
2291
2292 static gboolean resolv(struct request_data *req,
2293                                 gpointer request, gpointer name)
2294 {
2295         GSList *list;
2296
2297         for (list = server_list; list; list = list->next) {
2298                 struct server_data *data = list->data;
2299
2300                 if (data->protocol == IPPROTO_TCP) {
2301                         DBG("server %s ignored proto TCP", data->server);
2302                         continue;
2303                 }
2304
2305                 DBG("server %s enabled %d", data->server, data->enabled);
2306
2307                 if (data->enabled == FALSE)
2308                         continue;
2309
2310                 if (data->channel == NULL && data->protocol == IPPROTO_UDP) {
2311                         if (server_create_socket(data) < 0) {
2312                                 DBG("socket creation failed while resolving");
2313                                 continue;
2314                         }
2315                 }
2316
2317                 if (ns_resolv(data, req, request, name) > 0)
2318                         return TRUE;
2319         }
2320
2321         return FALSE;
2322 }
2323
2324 static void append_domain(int index, const char *domain)
2325 {
2326         GSList *list;
2327
2328         DBG("index %d domain %s", index, domain);
2329
2330         if (domain == NULL)
2331                 return;
2332
2333         for (list = server_list; list; list = list->next) {
2334                 struct server_data *data = list->data;
2335                 GList *dom_list;
2336                 char *dom;
2337                 gboolean dom_found = FALSE;
2338
2339                 if (data->index < 0)
2340                         continue;
2341
2342                 if (data->index != index)
2343                         continue;
2344
2345                 for (dom_list = data->domains; dom_list;
2346                                 dom_list = dom_list->next) {
2347                         dom = dom_list->data;
2348
2349                         if (g_str_equal(dom, domain)) {
2350                                 dom_found = TRUE;
2351                                 break;
2352                         }
2353                 }
2354
2355                 if (dom_found == FALSE) {
2356                         data->domains =
2357                                 g_list_append(data->domains, g_strdup(domain));
2358                 }
2359         }
2360 }
2361
2362 int __connman_dnsproxy_append(int index, const char *domain,
2363                                                         const char *server)
2364 {
2365         struct server_data *data;
2366
2367         DBG("index %d server %s", index, server);
2368
2369         if (server == NULL && domain == NULL)
2370                 return -EINVAL;
2371
2372         if (server == NULL) {
2373                 append_domain(index, domain);
2374
2375                 return 0;
2376         }
2377
2378         if (g_str_equal(server, "127.0.0.1") == TRUE)
2379                 return -ENODEV;
2380
2381         if (g_str_equal(server, "::1") == TRUE)
2382                 return -ENODEV;
2383
2384         data = find_server(index, server, IPPROTO_UDP);
2385         if (data != NULL) {
2386                 append_domain(index, domain);
2387                 return 0;
2388         }
2389
2390         data = create_server(index, domain, server, IPPROTO_UDP);
2391         if (data == NULL)
2392                 return -EIO;
2393
2394         return 0;
2395 }
2396
2397 static void remove_server(int index, const char *domain,
2398                         const char *server, int protocol)
2399 {
2400         struct server_data *data;
2401
2402         data = find_server(index, server, protocol);
2403         if (data == NULL)
2404                 return;
2405
2406         destroy_server(data);
2407 }
2408
2409 int __connman_dnsproxy_remove(int index, const char *domain,
2410                                                         const char *server)
2411 {
2412         DBG("index %d server %s", index, server);
2413
2414         if (server == NULL)
2415                 return -EINVAL;
2416
2417         if (g_str_equal(server, "127.0.0.1") == TRUE)
2418                 return -ENODEV;
2419
2420         if (g_str_equal(server, "::1") == TRUE)
2421                 return -ENODEV;
2422
2423         remove_server(index, domain, server, IPPROTO_UDP);
2424         remove_server(index, domain, server, IPPROTO_TCP);
2425
2426         return 0;
2427 }
2428
2429 void __connman_dnsproxy_flush(void)
2430 {
2431         GSList *list;
2432
2433         list = request_list;
2434         while (list) {
2435                 struct request_data *req = list->data;
2436
2437                 list = list->next;
2438
2439                 if (resolv(req, req->request, req->name) == TRUE) {
2440                         /*
2441                          * A cached result was sent,
2442                          * so the request can be released
2443                          */
2444                         request_list =
2445                                 g_slist_remove(request_list, req);
2446                         destroy_request_data(req);
2447                         continue;
2448                 }
2449
2450                 if (req->timeout > 0)
2451                         g_source_remove(req->timeout);
2452                 req->timeout = g_timeout_add_seconds(5, request_timeout, req);
2453         }
2454 }
2455
2456 static void dnsproxy_offline_mode(connman_bool_t enabled)
2457 {
2458         GSList *list;
2459
2460         DBG("enabled %d", enabled);
2461
2462         for (list = server_list; list; list = list->next) {
2463                 struct server_data *data = list->data;
2464
2465                 if (enabled == FALSE) {
2466                         DBG("Enabling DNS server %s", data->server);
2467                         data->enabled = TRUE;
2468                         cache_invalidate();
2469                         cache_refresh();
2470                 } else {
2471                         DBG("Disabling DNS server %s", data->server);
2472                         data->enabled = FALSE;
2473                         cache_invalidate();
2474                 }
2475         }
2476 }
2477
2478 static void dnsproxy_default_changed(struct connman_service *service)
2479 {
2480         GSList *list;
2481         int index;
2482
2483         DBG("service %p", service);
2484
2485         /* DNS has changed, invalidate the cache */
2486         cache_invalidate();
2487
2488         if (service == NULL) {
2489                 /* When no services are active, then disable DNS proxying */
2490                 dnsproxy_offline_mode(TRUE);
2491                 return;
2492         }
2493
2494         index = __connman_service_get_index(service);
2495         if (index < 0)
2496                 return;
2497
2498         for (list = server_list; list; list = list->next) {
2499                 struct server_data *data = list->data;
2500
2501                 if (data->index == index) {
2502                         DBG("Enabling DNS server %s", data->server);
2503                         data->enabled = TRUE;
2504                 } else {
2505                         DBG("Disabling DNS server %s", data->server);
2506                         data->enabled = FALSE;
2507                 }
2508         }
2509
2510         cache_refresh();
2511 }
2512
2513 static struct connman_notifier dnsproxy_notifier = {
2514         .name                   = "dnsproxy",
2515         .default_changed        = dnsproxy_default_changed,
2516         .offline_mode           = dnsproxy_offline_mode,
2517 };
2518
2519 static unsigned char opt_edns0_type[2] = { 0x00, 0x29 };
2520
2521 static int parse_request(unsigned char *buf, int len,
2522                                         char *name, unsigned int size)
2523 {
2524         struct domain_hdr *hdr = (void *) buf;
2525         uint16_t qdcount = ntohs(hdr->qdcount);
2526         uint16_t arcount = ntohs(hdr->arcount);
2527         unsigned char *ptr;
2528         char *last_label = NULL;
2529         unsigned int remain, used = 0;
2530
2531         if (len < 12)
2532                 return -EINVAL;
2533
2534         DBG("id 0x%04x qr %d opcode %d qdcount %d arcount %d",
2535                                         hdr->id, hdr->qr, hdr->opcode,
2536                                                         qdcount, arcount);
2537
2538         if (hdr->qr != 0 || qdcount != 1)
2539                 return -EINVAL;
2540
2541         name[0] = '\0';
2542
2543         ptr = buf + sizeof(struct domain_hdr);
2544         remain = len - sizeof(struct domain_hdr);
2545
2546         while (remain > 0) {
2547                 uint8_t label_len = *ptr;
2548
2549                 if (label_len == 0x00) {
2550                         last_label = (char *) (ptr + 1);
2551                         break;
2552                 }
2553
2554                 if (used + label_len + 1 > size)
2555                         return -ENOBUFS;
2556
2557                 strncat(name, (char *) (ptr + 1), label_len);
2558                 strcat(name, ".");
2559
2560                 used += label_len + 1;
2561
2562                 ptr += label_len + 1;
2563                 remain -= label_len + 1;
2564         }
2565
2566         if (last_label && arcount && remain >= 9 && last_label[4] == 0 &&
2567                                 !memcmp(last_label + 5, opt_edns0_type, 2)) {
2568                 uint16_t edns0_bufsize;
2569
2570                 edns0_bufsize = last_label[7] << 8 | last_label[8];
2571
2572                 DBG("EDNS0 buffer size %u", edns0_bufsize);
2573
2574                 /* This is an evil hack until full TCP support has been
2575                  * implemented.
2576                  *
2577                  * Somtimes the EDNS0 request gets send with a too-small
2578                  * buffer size. Since glibc doesn't seem to crash when it
2579                  * gets a response biffer then it requested, just bump
2580                  * the buffer size up to 4KiB.
2581                  */
2582                 if (edns0_bufsize < 0x1000) {
2583                         last_label[7] = 0x10;
2584                         last_label[8] = 0x00;
2585                 }
2586         }
2587
2588         DBG("query %s", name);
2589
2590         return 0;
2591 }
2592
2593 static void client_reset(struct tcp_partial_client_data *client)
2594 {
2595         if (client == NULL)
2596                 return;
2597
2598         if (client->channel != NULL) {
2599                 DBG("client %d closing",
2600                         g_io_channel_unix_get_fd(client->channel));
2601
2602                 g_io_channel_unref(client->channel);
2603                 client->channel = NULL;
2604         }
2605
2606         if (client->watch > 0) {
2607                 g_source_remove(client->watch);
2608                 client->watch = 0;
2609         }
2610
2611         if (client->timeout > 0) {
2612                 g_source_remove(client->timeout);
2613                 client->timeout = 0;
2614         }
2615
2616         g_free(client->buf);
2617         client->buf = NULL;
2618
2619         client->buf_end = 0;
2620 }
2621
2622 static unsigned int get_msg_len(unsigned char *buf)
2623 {
2624         return buf[0]<<8 | buf[1];
2625 }
2626
2627 static gboolean read_tcp_data(struct tcp_partial_client_data *client,
2628                                 void *client_addr, socklen_t client_addr_len,
2629                                 int read_len)
2630 {
2631         char query[TCP_MAX_BUF_LEN];
2632         struct request_data *req;
2633         int client_sk, err;
2634         unsigned int msg_len;
2635         GSList *list;
2636         int waiting_for_connect = FALSE, qtype = 0;
2637         struct cache_entry *entry;
2638
2639         client_sk = g_io_channel_unix_get_fd(client->channel);
2640
2641         if (read_len == 0) {
2642                 DBG("client %d closed, pending %d bytes",
2643                         client_sk, client->buf_end);
2644                 g_hash_table_remove(partial_tcp_req_table,
2645                                         GINT_TO_POINTER(client_sk));
2646                 return FALSE;
2647         }
2648
2649         DBG("client %d received %d bytes", client_sk, read_len);
2650
2651         client->buf_end += read_len;
2652
2653         if (client->buf_end < 2)
2654                 return TRUE;
2655
2656         msg_len = get_msg_len(client->buf);
2657         if (msg_len > TCP_MAX_BUF_LEN) {
2658                 DBG("client %d sent too much data %d", client_sk, msg_len);
2659                 g_hash_table_remove(partial_tcp_req_table,
2660                                         GINT_TO_POINTER(client_sk));
2661                 return FALSE;
2662         }
2663
2664 read_another:
2665         DBG("client %d msg len %d end %d past end %d", client_sk, msg_len,
2666                 client->buf_end, client->buf_end - (msg_len + 2));
2667
2668         if (client->buf_end < (msg_len + 2)) {
2669                 DBG("client %d still missing %d bytes",
2670                         client_sk,
2671                         msg_len + 2 - client->buf_end);
2672                 return TRUE;
2673         }
2674
2675         DBG("client %d all data %d received", client_sk, msg_len);
2676
2677         err = parse_request(client->buf + 2, msg_len,
2678                         query, sizeof(query));
2679         if (err < 0 || (g_slist_length(server_list) == 0)) {
2680                 send_response(client_sk, client->buf, msg_len + 2,
2681                         NULL, 0, IPPROTO_TCP);
2682                 return TRUE;
2683         }
2684
2685         req = g_try_new0(struct request_data, 1);
2686         if (req == NULL)
2687                 return TRUE;
2688
2689         memcpy(&req->sa, client_addr, client_addr_len);
2690         req->sa_len = client_addr_len;
2691         req->client_sk = client_sk;
2692         req->protocol = IPPROTO_TCP;
2693         req->family = client->family;
2694
2695         req->srcid = client->buf[2] | (client->buf[3] << 8);
2696         req->dstid = get_id();
2697         req->altid = get_id();
2698         req->request_len = msg_len + 2;
2699
2700         client->buf[2] = req->dstid & 0xff;
2701         client->buf[3] = req->dstid >> 8;
2702
2703         req->numserv = 0;
2704         req->ifdata = client->ifdata;
2705         req->append_domain = FALSE;
2706
2707         /*
2708          * Check if the answer is found in the cache before
2709          * creating sockets to the server.
2710          */
2711         entry = cache_check(client->buf, &qtype, IPPROTO_TCP);
2712         if (entry != NULL) {
2713                 int ttl_left = 0;
2714                 struct cache_data *data;
2715
2716                 DBG("cache hit %s type %s", query, qtype == 1 ? "A" : "AAAA");
2717                 if (qtype == 1)
2718                         data = entry->ipv4;
2719                 else
2720                         data = entry->ipv6;
2721
2722                 if (data != NULL) {
2723                         ttl_left = data->valid_until - time(NULL);
2724                         entry->hits++;
2725
2726                         send_cached_response(client_sk, data->data,
2727                                         data->data_len, NULL, 0, IPPROTO_TCP,
2728                                         req->srcid, data->answers, ttl_left);
2729
2730                         g_free(req);
2731                         goto out;
2732                 } else
2733                         DBG("data missing, ignoring cache for this query");
2734         }
2735
2736         for (list = server_list; list; list = list->next) {
2737                 struct server_data *data = list->data;
2738
2739                 if (data->protocol != IPPROTO_UDP || data->enabled == FALSE)
2740                         continue;
2741
2742                 if(create_server(data->index, NULL,
2743                                         data->server, IPPROTO_TCP) == NULL)
2744                         continue;
2745
2746                 waiting_for_connect = TRUE;
2747         }
2748
2749         if (waiting_for_connect == FALSE) {
2750                 /* No server is waiting for connect */
2751                 send_response(client_sk, client->buf,
2752                         req->request_len, NULL, 0, IPPROTO_TCP);
2753                 g_free(req);
2754                 return TRUE;
2755         }
2756
2757         /*
2758          * The server is not connected yet.
2759          * Copy the relevant buffers.
2760          * The request will actually be sent once we're
2761          * properly connected over TCP to the nameserver.
2762          */
2763         req->request = g_try_malloc0(req->request_len);
2764         if (req->request == NULL) {
2765                 send_response(client_sk, client->buf,
2766                         req->request_len, NULL, 0, IPPROTO_TCP);
2767                 g_free(req);
2768                 goto out;
2769         }
2770         memcpy(req->request, client->buf, req->request_len);
2771
2772         req->name = g_try_malloc0(sizeof(query));
2773         if (req->name == NULL) {
2774                 send_response(client_sk, client->buf,
2775                         req->request_len, NULL, 0, IPPROTO_TCP);
2776                 g_free(req->request);
2777                 g_free(req);
2778                 goto out;
2779         }
2780         memcpy(req->name, query, sizeof(query));
2781
2782         req->timeout = g_timeout_add_seconds(30, request_timeout, req);
2783
2784         request_list = g_slist_append(request_list, req);
2785
2786 out:
2787         if (client->buf_end > (msg_len + 2)) {
2788                 DBG("client %d buf %p -> %p end %d len %d new %d",
2789                         client_sk,
2790                         client->buf + msg_len + 2,
2791                         client->buf, client->buf_end,
2792                         TCP_MAX_BUF_LEN - client->buf_end,
2793                         client->buf_end - (msg_len + 2));
2794                 memmove(client->buf, client->buf + msg_len + 2,
2795                         TCP_MAX_BUF_LEN - client->buf_end);
2796                 client->buf_end = client->buf_end - (msg_len + 2);
2797
2798                 /*
2799                  * If we have a full message waiting, just read it
2800                  * immediately.
2801                  */
2802                 msg_len = get_msg_len(client->buf);
2803                 if ((msg_len + 2) == client->buf_end) {
2804                         DBG("client %d reading another %d bytes", client_sk,
2805                                                                 msg_len + 2);
2806                         goto read_another;
2807                 }
2808         } else {
2809                 DBG("client %d clearing reading buffer", client_sk);
2810
2811                 client->buf_end = 0;
2812                 memset(client->buf, 0, TCP_MAX_BUF_LEN);
2813
2814                 /*
2815                  * We received all the packets from client so we must also
2816                  * remove the timeout handler here otherwise we might get
2817                  * timeout while waiting the results from server.
2818                  */
2819                 g_source_remove(client->timeout);
2820                 client->timeout = 0;
2821         }
2822
2823         return TRUE;
2824 }
2825
2826 static gboolean tcp_client_event(GIOChannel *channel, GIOCondition condition,
2827                                 gpointer user_data)
2828 {
2829         struct tcp_partial_client_data *client = user_data;
2830         struct sockaddr_in6 client_addr6;
2831         socklen_t client_addr6_len = sizeof(client_addr6);
2832         struct sockaddr_in client_addr4;
2833         socklen_t client_addr4_len = sizeof(client_addr4);
2834         void *client_addr;
2835         socklen_t *client_addr_len;
2836         int len, client_sk;
2837
2838         client_sk = g_io_channel_unix_get_fd(channel);
2839
2840         if (condition & (G_IO_NVAL | G_IO_ERR | G_IO_HUP)) {
2841                 g_hash_table_remove(partial_tcp_req_table,
2842                                         GINT_TO_POINTER(client_sk));
2843
2844                 connman_error("Error with TCP client %d channel", client_sk);
2845                 return FALSE;
2846         }
2847
2848         switch (client->family) {
2849         case AF_INET:
2850                 client_addr = &client_addr4;
2851                 client_addr_len = &client_addr4_len;
2852                 break;
2853         case AF_INET6:
2854                 client_addr = &client_addr6;
2855                 client_addr_len = &client_addr6_len;
2856                 break;
2857         default:
2858                 g_hash_table_remove(partial_tcp_req_table,
2859                                         GINT_TO_POINTER(client_sk));
2860                 connman_error("client %p corrupted", client);
2861                 return FALSE;
2862         }
2863
2864         len = recvfrom(client_sk, client->buf + client->buf_end,
2865                         TCP_MAX_BUF_LEN - client->buf_end, 0,
2866                         client_addr, client_addr_len);
2867         if (len < 0) {
2868                 if (errno == EAGAIN || errno == EWOULDBLOCK)
2869                         return TRUE;
2870
2871                 DBG("client %d cannot read errno %d/%s", client_sk, -errno,
2872                         strerror(errno));
2873                 g_hash_table_remove(partial_tcp_req_table,
2874                                         GINT_TO_POINTER(client_sk));
2875                 return FALSE;
2876         }
2877
2878         return read_tcp_data(client, client_addr, *client_addr_len, len);
2879 }
2880
2881 static gboolean client_timeout(gpointer user_data)
2882 {
2883         struct tcp_partial_client_data *client = user_data;
2884         int sock;
2885
2886         sock = g_io_channel_unix_get_fd(client->channel);
2887
2888         DBG("client %d timeout pending %d bytes", sock, client->buf_end);
2889
2890         g_hash_table_remove(partial_tcp_req_table, GINT_TO_POINTER(sock));
2891
2892         return FALSE;
2893 }
2894
2895 static gboolean tcp_listener_event(GIOChannel *channel, GIOCondition condition,
2896                                 struct listener_data *ifdata, int family,
2897                                 guint *listener_watch)
2898 {
2899         int sk, client_sk, len;
2900         unsigned int msg_len;
2901         struct tcp_partial_client_data *client;
2902         struct sockaddr_in6 client_addr6;
2903         socklen_t client_addr6_len = sizeof(client_addr6);
2904         struct sockaddr_in client_addr4;
2905         socklen_t client_addr4_len = sizeof(client_addr4);
2906         void *client_addr;
2907         socklen_t *client_addr_len;
2908         struct timeval tv;
2909         fd_set readfds;
2910
2911         DBG("condition 0x%02x channel %p ifdata %p family %d",
2912                 condition, channel, ifdata, family);
2913
2914         if (condition & (G_IO_NVAL | G_IO_ERR | G_IO_HUP)) {
2915                 if (*listener_watch > 0)
2916                         g_source_remove(*listener_watch);
2917                 *listener_watch = 0;
2918
2919                 connman_error("Error with TCP listener channel");
2920
2921                 return FALSE;
2922         }
2923
2924         sk = g_io_channel_unix_get_fd(channel);
2925
2926         if (family == AF_INET) {
2927                 client_addr = &client_addr4;
2928                 client_addr_len = &client_addr4_len;
2929         } else {
2930                 client_addr = &client_addr6;
2931                 client_addr_len = &client_addr6_len;
2932         }
2933
2934         tv.tv_sec = tv.tv_usec = 0;
2935         FD_ZERO(&readfds);
2936         FD_SET(sk, &readfds);
2937
2938         select(sk + 1, &readfds, NULL, NULL, &tv);
2939         if (FD_ISSET(sk, &readfds)) {
2940                 client_sk = accept(sk, client_addr, client_addr_len);
2941                 DBG("client %d accepted", client_sk);
2942         } else {
2943                 DBG("No data to read from master %d, waiting.", sk);
2944                 return TRUE;
2945         }
2946
2947         if (client_sk < 0) {
2948                 connman_error("Accept failure on TCP listener");
2949                 *listener_watch = 0;
2950                 return FALSE;
2951         }
2952
2953         fcntl(client_sk, F_SETFL, O_NONBLOCK);
2954
2955         client = g_hash_table_lookup(partial_tcp_req_table,
2956                                         GINT_TO_POINTER(client_sk));
2957         if (client == NULL) {
2958                 client = g_try_new0(struct tcp_partial_client_data, 1);
2959                 if (client == NULL)
2960                         return FALSE;
2961
2962                 g_hash_table_insert(partial_tcp_req_table,
2963                                         GINT_TO_POINTER(client_sk),
2964                                         client);
2965
2966                 client->channel = g_io_channel_unix_new(client_sk);
2967                 g_io_channel_set_close_on_unref(client->channel, TRUE);
2968
2969                 client->watch = g_io_add_watch(client->channel,
2970                                                 G_IO_IN, tcp_client_event,
2971                                                 (gpointer)client);
2972
2973                 client->ifdata = ifdata;
2974
2975                 DBG("client %d created %p", client_sk, client);
2976         } else {
2977                 DBG("client %d already exists %p", client_sk, client);
2978         }
2979
2980         if (client->buf == NULL) {
2981                 client->buf = g_try_malloc(TCP_MAX_BUF_LEN);
2982                 if (client->buf == NULL)
2983                         return FALSE;
2984         }
2985         memset(client->buf, 0, TCP_MAX_BUF_LEN);
2986         client->buf_end = 0;
2987         client->family = family;
2988
2989         if (client->timeout == 0)
2990                 client->timeout = g_timeout_add_seconds(2, client_timeout,
2991                                                         client);
2992
2993         /*
2994          * Check how much data there is. If all is there, then we can
2995          * proceed normally, otherwise read the bits until everything
2996          * is received or timeout occurs.
2997          */
2998         len = recv(client_sk, client->buf, TCP_MAX_BUF_LEN, 0);
2999         if (len < 0) {
3000                 if (errno == EAGAIN || errno == EWOULDBLOCK) {
3001                         DBG("client %d no data to read, waiting", client_sk);
3002                         return TRUE;
3003                 }
3004
3005                 DBG("client %d cannot read errno %d/%s", client_sk, -errno,
3006                         strerror(errno));
3007                 g_hash_table_remove(partial_tcp_req_table,
3008                                         GINT_TO_POINTER(client_sk));
3009                 return TRUE;
3010         }
3011
3012         if (len < 2) {
3013                 DBG("client %d not enough data to read, waiting", client_sk);
3014                 client->buf_end += len;
3015                 return TRUE;
3016         }
3017
3018         msg_len = get_msg_len(client->buf);
3019         if (msg_len > TCP_MAX_BUF_LEN) {
3020                 DBG("client %d invalid message length %u ignoring packet",
3021                         client_sk, msg_len);
3022                 g_hash_table_remove(partial_tcp_req_table,
3023                                         GINT_TO_POINTER(client_sk));
3024                 return TRUE;
3025         }
3026
3027         /*
3028          * The packet length bytes do not contain the total message length,
3029          * that is the reason to -2 below.
3030          */
3031         if (msg_len != (unsigned int)(len - 2)) {
3032                 DBG("client %d sent %d bytes but expecting %u pending %d",
3033                         client_sk, len, msg_len + 2, msg_len + 2 - len);
3034
3035                 client->buf_end += len;
3036                 return TRUE;
3037         }
3038
3039         return read_tcp_data(client, client_addr, *client_addr_len, len);
3040 }
3041
3042 static gboolean tcp4_listener_event(GIOChannel *channel, GIOCondition condition,
3043                                 gpointer user_data)
3044 {
3045         struct listener_data *ifdata = user_data;
3046
3047         return tcp_listener_event(channel, condition, ifdata, AF_INET,
3048                                 &ifdata->tcp4_listener_watch);
3049 }
3050
3051 static gboolean tcp6_listener_event(GIOChannel *channel, GIOCondition condition,
3052                                 gpointer user_data)
3053 {
3054         struct listener_data *ifdata = user_data;
3055
3056         return tcp_listener_event(channel, condition, user_data, AF_INET6,
3057                                 &ifdata->tcp6_listener_watch);
3058 }
3059
3060 static gboolean udp_listener_event(GIOChannel *channel, GIOCondition condition,
3061                                 struct listener_data *ifdata, int family,
3062                                 guint *listener_watch)
3063 {
3064         unsigned char buf[768];
3065         char query[512];
3066         struct request_data *req;
3067         struct sockaddr_in6 client_addr6;
3068         socklen_t client_addr6_len = sizeof(client_addr6);
3069         struct sockaddr_in client_addr4;
3070         socklen_t client_addr4_len = sizeof(client_addr4);
3071         void *client_addr;
3072         socklen_t *client_addr_len;
3073         int sk, err, len;
3074
3075         if (condition & (G_IO_NVAL | G_IO_ERR | G_IO_HUP)) {
3076                 connman_error("Error with UDP listener channel");
3077                 *listener_watch = 0;
3078                 return FALSE;
3079         }
3080
3081         sk = g_io_channel_unix_get_fd(channel);
3082
3083         if (family == AF_INET) {
3084                 client_addr = &client_addr4;
3085                 client_addr_len = &client_addr4_len;
3086         } else {
3087                 client_addr = &client_addr6;
3088                 client_addr_len = &client_addr6_len;
3089         }
3090
3091         memset(client_addr, 0, *client_addr_len);
3092         len = recvfrom(sk, buf, sizeof(buf), 0, client_addr, client_addr_len);
3093         if (len < 2)
3094                 return TRUE;
3095
3096         DBG("Received %d bytes (id 0x%04x)", len, buf[0] | buf[1] << 8);
3097
3098         err = parse_request(buf, len, query, sizeof(query));
3099         if (err < 0 || (g_slist_length(server_list) == 0)) {
3100                 send_response(sk, buf, len, client_addr,
3101                                 *client_addr_len, IPPROTO_UDP);
3102                 return TRUE;
3103         }
3104
3105         req = g_try_new0(struct request_data, 1);
3106         if (req == NULL)
3107                 return TRUE;
3108
3109         memcpy(&req->sa, client_addr, *client_addr_len);
3110         req->sa_len = *client_addr_len;
3111         req->client_sk = 0;
3112         req->protocol = IPPROTO_UDP;
3113         req->family = family;
3114
3115         req->srcid = buf[0] | (buf[1] << 8);
3116         req->dstid = get_id();
3117         req->altid = get_id();
3118         req->request_len = len;
3119
3120         buf[0] = req->dstid & 0xff;
3121         buf[1] = req->dstid >> 8;
3122
3123         req->numserv = 0;
3124         req->ifdata = ifdata;
3125         req->append_domain = FALSE;
3126
3127         if (resolv(req, buf, query) == TRUE) {
3128                 /* a cached result was sent, so the request can be released */
3129                 g_free(req);
3130                 return TRUE;
3131         }
3132
3133         req->timeout = g_timeout_add_seconds(5, request_timeout, req);
3134         request_list = g_slist_append(request_list, req);
3135
3136         return TRUE;
3137 }
3138
3139 static gboolean udp4_listener_event(GIOChannel *channel, GIOCondition condition,
3140                                 gpointer user_data)
3141 {
3142         struct listener_data *ifdata = user_data;
3143
3144         return udp_listener_event(channel, condition, ifdata, AF_INET,
3145                                 &ifdata->udp4_listener_watch);
3146 }
3147
3148 static gboolean udp6_listener_event(GIOChannel *channel, GIOCondition condition,
3149                                 gpointer user_data)
3150 {
3151         struct listener_data *ifdata = user_data;
3152
3153         return udp_listener_event(channel, condition, user_data, AF_INET6,
3154                                 &ifdata->udp6_listener_watch);
3155 }
3156
3157 static GIOChannel *get_listener(int family, int protocol, int index)
3158 {
3159         GIOChannel *channel;
3160         const char *proto;
3161         union {
3162                 struct sockaddr sa;
3163                 struct sockaddr_in6 sin6;
3164                 struct sockaddr_in sin;
3165         } s;
3166         socklen_t slen;
3167         int sk, type;
3168         char *interface;
3169
3170         DBG("family %d protocol %d index %d", family, protocol, index);
3171
3172         switch (protocol) {
3173         case IPPROTO_UDP:
3174                 proto = "UDP";
3175                 type = SOCK_DGRAM | SOCK_CLOEXEC;
3176                 break;
3177
3178         case IPPROTO_TCP:
3179                 proto = "TCP";
3180                 type = SOCK_STREAM | SOCK_CLOEXEC;
3181                 break;
3182
3183         default:
3184                 return NULL;
3185         }
3186
3187         sk = socket(family, type, protocol);
3188         if (sk < 0 && family == AF_INET6 && errno == EAFNOSUPPORT) {
3189                 connman_error("No IPv6 support");
3190                 return NULL;
3191         }
3192
3193         if (sk < 0) {
3194                 connman_error("Failed to create %s listener socket", proto);
3195                 return NULL;
3196         }
3197
3198         interface = connman_inet_ifname(index);
3199         if (interface == NULL || setsockopt(sk, SOL_SOCKET, SO_BINDTODEVICE,
3200                                         interface,
3201                                         strlen(interface) + 1) < 0) {
3202                 connman_error("Failed to bind %s listener interface "
3203                         "for %s (%d/%s)",
3204                         proto, family == AF_INET ? "IPv4" : "IPv6",
3205                         -errno, strerror(errno));
3206                 close(sk);
3207                 g_free(interface);
3208                 return NULL;
3209         }
3210         g_free(interface);
3211
3212         if (family == AF_INET6) {
3213                 memset(&s.sin6, 0, sizeof(s.sin6));
3214                 s.sin6.sin6_family = AF_INET6;
3215                 s.sin6.sin6_port = htons(53);
3216                 slen = sizeof(s.sin6);
3217
3218                 if (__connman_inet_get_interface_address(index,
3219                                                 AF_INET6,
3220                                                 &s.sin6.sin6_addr) < 0) {
3221                         /* So we could not find suitable IPv6 address for
3222                          * the interface. This could happen if we have
3223                          * disabled IPv6 for the interface.
3224                          */
3225                         close(sk);
3226                         return NULL;
3227                 }
3228
3229         } else if (family == AF_INET) {
3230                 memset(&s.sin, 0, sizeof(s.sin));
3231                 s.sin.sin_family = AF_INET;
3232                 s.sin.sin_port = htons(53);
3233                 slen = sizeof(s.sin);
3234
3235                 if (__connman_inet_get_interface_address(index,
3236                                                 AF_INET,
3237                                                 &s.sin.sin_addr) < 0) {
3238                         close(sk);
3239                         return NULL;
3240                 }
3241         } else {
3242                 close(sk);
3243                 return NULL;
3244         }
3245
3246         if (bind(sk, &s.sa, slen) < 0) {
3247                 connman_error("Failed to bind %s listener socket", proto);
3248                 close(sk);
3249                 return NULL;
3250         }
3251
3252         if (protocol == IPPROTO_TCP) {
3253
3254                 if (listen(sk, 10) < 0) {
3255                         connman_error("Failed to listen on TCP socket %d/%s",
3256                                 -errno, strerror(errno));
3257                         close(sk);
3258                         return NULL;
3259                 }
3260
3261                 fcntl(sk, F_SETFL, O_NONBLOCK);
3262         }
3263
3264         channel = g_io_channel_unix_new(sk);
3265         if (channel == NULL) {
3266                 connman_error("Failed to create %s listener channel", proto);
3267                 close(sk);
3268                 return NULL;
3269         }
3270
3271         g_io_channel_set_close_on_unref(channel, TRUE);
3272
3273         return channel;
3274 }
3275
3276 #define UDP_IPv4_FAILED 0x01
3277 #define TCP_IPv4_FAILED 0x02
3278 #define UDP_IPv6_FAILED 0x04
3279 #define TCP_IPv6_FAILED 0x08
3280 #define UDP_FAILED (UDP_IPv4_FAILED | UDP_IPv6_FAILED)
3281 #define TCP_FAILED (TCP_IPv4_FAILED | TCP_IPv6_FAILED)
3282 #define IPv6_FAILED (UDP_IPv6_FAILED | TCP_IPv6_FAILED)
3283 #define IPv4_FAILED (UDP_IPv4_FAILED | TCP_IPv4_FAILED)
3284
3285 static int create_dns_listener(int protocol, struct listener_data *ifdata)
3286 {
3287         int ret = 0;
3288
3289         if (protocol == IPPROTO_TCP) {
3290                 ifdata->tcp4_listener_channel = get_listener(AF_INET, protocol,
3291                                                         ifdata->index);
3292                 if (ifdata->tcp4_listener_channel != NULL)
3293                         ifdata->tcp4_listener_watch =
3294                                 g_io_add_watch(ifdata->tcp4_listener_channel,
3295                                         G_IO_IN, tcp4_listener_event,
3296                                         (gpointer)ifdata);
3297                 else
3298                         ret |= TCP_IPv4_FAILED;
3299
3300                 ifdata->tcp6_listener_channel = get_listener(AF_INET6, protocol,
3301                                                         ifdata->index);
3302                 if (ifdata->tcp6_listener_channel != NULL)
3303                         ifdata->tcp6_listener_watch =
3304                                 g_io_add_watch(ifdata->tcp6_listener_channel,
3305                                         G_IO_IN, tcp6_listener_event,
3306                                         (gpointer)ifdata);
3307                 else
3308                         ret |= TCP_IPv6_FAILED;
3309         } else {
3310                 ifdata->udp4_listener_channel = get_listener(AF_INET, protocol,
3311                                                         ifdata->index);
3312                 if (ifdata->udp4_listener_channel != NULL)
3313                         ifdata->udp4_listener_watch =
3314                                 g_io_add_watch(ifdata->udp4_listener_channel,
3315                                         G_IO_IN, udp4_listener_event,
3316                                         (gpointer)ifdata);
3317                 else
3318                         ret |= UDP_IPv4_FAILED;
3319
3320                 ifdata->udp6_listener_channel = get_listener(AF_INET6, protocol,
3321                                                         ifdata->index);
3322                 if (ifdata->udp6_listener_channel != NULL)
3323                         ifdata->udp6_listener_watch =
3324                                 g_io_add_watch(ifdata->udp6_listener_channel,
3325                                         G_IO_IN, udp6_listener_event,
3326                                         (gpointer)ifdata);
3327                 else
3328                         ret |= UDP_IPv6_FAILED;
3329         }
3330
3331         return ret;
3332 }
3333
3334 static void destroy_udp_listener(struct listener_data *ifdata)
3335 {
3336         DBG("index %d", ifdata->index);
3337
3338         if (ifdata->udp4_listener_watch > 0)
3339                 g_source_remove(ifdata->udp4_listener_watch);
3340
3341         if (ifdata->udp6_listener_watch > 0)
3342                 g_source_remove(ifdata->udp6_listener_watch);
3343
3344         g_io_channel_unref(ifdata->udp4_listener_channel);
3345         g_io_channel_unref(ifdata->udp6_listener_channel);
3346 }
3347
3348 static void destroy_tcp_listener(struct listener_data *ifdata)
3349 {
3350         DBG("index %d", ifdata->index);
3351
3352         if (ifdata->tcp4_listener_watch > 0)
3353                 g_source_remove(ifdata->tcp4_listener_watch);
3354         if (ifdata->tcp6_listener_watch > 0)
3355                 g_source_remove(ifdata->tcp6_listener_watch);
3356
3357         g_io_channel_unref(ifdata->tcp4_listener_channel);
3358         g_io_channel_unref(ifdata->tcp6_listener_channel);
3359 }
3360
3361 static int create_listener(struct listener_data *ifdata)
3362 {
3363         int err, index;
3364
3365         err = create_dns_listener(IPPROTO_UDP, ifdata);
3366         if ((err & UDP_FAILED) == UDP_FAILED)
3367                 return -EIO;
3368
3369         err |= create_dns_listener(IPPROTO_TCP, ifdata);
3370         if ((err & TCP_FAILED) == TCP_FAILED) {
3371                 destroy_udp_listener(ifdata);
3372                 return -EIO;
3373         }
3374
3375         index = connman_inet_ifindex("lo");
3376         if (ifdata->index == index) {
3377                 if ((err & IPv6_FAILED) != IPv6_FAILED)
3378                         __connman_resolvfile_append(index, NULL, "::1");
3379
3380                 if ((err & IPv4_FAILED) != IPv4_FAILED)
3381                         __connman_resolvfile_append(index, NULL, "127.0.0.1");
3382         }
3383
3384         return 0;
3385 }
3386
3387 static void destroy_listener(struct listener_data *ifdata)
3388 {
3389         int index;
3390         GSList *list;
3391
3392         index = connman_inet_ifindex("lo");
3393         if (ifdata->index == index) {
3394                 __connman_resolvfile_remove(index, NULL, "127.0.0.1");
3395                 __connman_resolvfile_remove(index, NULL, "::1");
3396         }
3397
3398         for (list = request_list; list; list = list->next) {
3399                 struct request_data *req = list->data;
3400
3401                 DBG("Dropping request (id 0x%04x -> 0x%04x)",
3402                                                 req->srcid, req->dstid);
3403                 destroy_request_data(req);
3404                 list->data = NULL;
3405         }
3406
3407         g_slist_free(request_list);
3408         request_list = NULL;
3409
3410         destroy_tcp_listener(ifdata);
3411         destroy_udp_listener(ifdata);
3412 }
3413
3414 int __connman_dnsproxy_add_listener(int index)
3415 {
3416         struct listener_data *ifdata;
3417         int err;
3418
3419         DBG("index %d", index);
3420
3421         if (index < 0)
3422                 return -EINVAL;
3423
3424         if (listener_table == NULL)
3425                 return 0;
3426
3427         if (g_hash_table_lookup(listener_table, GINT_TO_POINTER(index)) != NULL)
3428                 return 0;
3429
3430         ifdata = g_try_new0(struct listener_data, 1);
3431         if (ifdata == NULL)
3432                 return -ENOMEM;
3433
3434         ifdata->index = index;
3435         ifdata->udp4_listener_channel = NULL;
3436         ifdata->udp4_listener_watch = 0;
3437         ifdata->tcp4_listener_channel = NULL;
3438         ifdata->tcp4_listener_watch = 0;
3439         ifdata->udp6_listener_channel = NULL;
3440         ifdata->udp6_listener_watch = 0;
3441         ifdata->tcp6_listener_channel = NULL;
3442         ifdata->tcp6_listener_watch = 0;
3443
3444         err = create_listener(ifdata);
3445         if (err < 0) {
3446                 connman_error("Couldn't create listener for index %d err %d",
3447                                 index, err);
3448                 g_free(ifdata);
3449                 return err;
3450         }
3451         g_hash_table_insert(listener_table, GINT_TO_POINTER(ifdata->index),
3452                         ifdata);
3453         return 0;
3454 }
3455
3456 void __connman_dnsproxy_remove_listener(int index)
3457 {
3458         struct listener_data *ifdata;
3459
3460         DBG("index %d", index);
3461
3462         if (listener_table == NULL)
3463                 return;
3464
3465         ifdata = g_hash_table_lookup(listener_table, GINT_TO_POINTER(index));
3466         if (ifdata == NULL)
3467                 return;
3468
3469         destroy_listener(ifdata);
3470
3471         g_hash_table_remove(listener_table, GINT_TO_POINTER(index));
3472 }
3473
3474 static void remove_listener(gpointer key, gpointer value, gpointer user_data)
3475 {
3476         int index = GPOINTER_TO_INT(key);
3477         struct listener_data *ifdata = value;
3478
3479         DBG("index %d", index);
3480
3481         destroy_listener(ifdata);
3482 }
3483
3484 static void free_partial_reqs(gpointer value)
3485 {
3486         struct tcp_partial_client_data *data = value;
3487
3488         client_reset(data);
3489         g_free(data);
3490 }
3491
3492 int __connman_dnsproxy_init(void)
3493 {
3494         int err, index;
3495
3496         DBG("");
3497
3498         srandom(time(NULL));
3499
3500         listener_table = g_hash_table_new_full(g_direct_hash, g_direct_equal,
3501                                                         NULL, g_free);
3502
3503         partial_tcp_req_table = g_hash_table_new_full(g_direct_hash,
3504                                                         g_direct_equal,
3505                                                         NULL,
3506                                                         free_partial_reqs);
3507
3508         index = connman_inet_ifindex("lo");
3509         err = __connman_dnsproxy_add_listener(index);
3510         if (err < 0)
3511                 return err;
3512
3513         err = connman_notifier_register(&dnsproxy_notifier);
3514         if (err < 0)
3515                 goto destroy;
3516
3517         return 0;
3518
3519 destroy:
3520         __connman_dnsproxy_remove_listener(index);
3521         g_hash_table_destroy(listener_table);
3522         g_hash_table_destroy(partial_tcp_req_table);
3523
3524         return err;
3525 }
3526
3527 void __connman_dnsproxy_cleanup(void)
3528 {
3529         DBG("");
3530
3531         connman_notifier_unregister(&dnsproxy_notifier);
3532
3533         g_hash_table_foreach(listener_table, remove_listener, NULL);
3534
3535         g_hash_table_destroy(listener_table);
3536
3537         g_hash_table_destroy(partial_tcp_req_table);
3538 }