dnsproxy: Do not overwrite protocol and channel in server struct
[platform/upstream/connman.git] / src / dnsproxy.c
1 /*
2  *
3  *  Connection Manager
4  *
5  *  Copyright (C) 2007-2012  Intel Corporation. All rights reserved.
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License version 2 as
9  *  published by the Free Software Foundation.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, write to the Free Software
18  *  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  *
20  */
21
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <errno.h>
27 #include <stdlib.h>
28 #include <unistd.h>
29 #include <string.h>
30 #include <stdint.h>
31 #include <arpa/inet.h>
32 #include <netinet/in.h>
33 #include <sys/types.h>
34 #include <sys/socket.h>
35 #include <netdb.h>
36 #include <resolv.h>
37 #include <gweb/gresolv.h>
38
39 #include <glib.h>
40
41 #include "connman.h"
42
43 #if __BYTE_ORDER == __LITTLE_ENDIAN
44 struct domain_hdr {
45         uint16_t id;
46         uint8_t rd:1;
47         uint8_t tc:1;
48         uint8_t aa:1;
49         uint8_t opcode:4;
50         uint8_t qr:1;
51         uint8_t rcode:4;
52         uint8_t z:3;
53         uint8_t ra:1;
54         uint16_t qdcount;
55         uint16_t ancount;
56         uint16_t nscount;
57         uint16_t arcount;
58 } __attribute__ ((packed));
59 #elif __BYTE_ORDER == __BIG_ENDIAN
60 struct domain_hdr {
61         uint16_t id;
62         uint8_t qr:1;
63         uint8_t opcode:4;
64         uint8_t aa:1;
65         uint8_t tc:1;
66         uint8_t rd:1;
67         uint8_t ra:1;
68         uint8_t z:3;
69         uint8_t rcode:4;
70         uint16_t qdcount;
71         uint16_t ancount;
72         uint16_t nscount;
73         uint16_t arcount;
74 } __attribute__ ((packed));
75 #else
76 #error "Unknown byte order"
77 #endif
78
79 struct partial_reply {
80         uint16_t len;
81         uint16_t received;
82         unsigned char buf[];
83 };
84
85 struct server_data {
86         char *interface;
87         GList *domains;
88         char *server;
89         struct sockaddr *server_addr;
90         socklen_t server_addr_len;
91         int protocol;
92         GIOChannel *channel;
93         guint watch;
94         guint timeout;
95         gboolean enabled;
96         gboolean connected;
97         struct partial_reply *incoming_reply;
98 };
99
100 struct request_data {
101         union {
102                 struct sockaddr_in6 __sin6; /* Only for the length */
103                 struct sockaddr sa;
104         };
105         socklen_t sa_len;
106         int client_sk;
107         int protocol;
108         guint16 srcid;
109         guint16 dstid;
110         guint16 altid;
111         guint timeout;
112         guint watch;
113         guint numserv;
114         guint numresp;
115         gpointer request;
116         gsize request_len;
117         gpointer name;
118         gpointer resp;
119         gsize resplen;
120         struct listener_data *ifdata;
121         gboolean append_domain;
122 };
123
124 struct listener_data {
125         char *ifname;
126         GIOChannel *udp_listener_channel;
127         guint udp_listener_watch;
128         GIOChannel *tcp_listener_channel;
129         guint tcp_listener_watch;
130 };
131
132 struct cache_data {
133         time_t inserted;
134         time_t valid_until;
135         time_t cache_until;
136         int timeout;
137         uint16_t type;
138         uint16_t answers;
139         unsigned int data_len;
140         unsigned char *data; /* contains DNS header + body */
141 };
142
143 struct cache_entry {
144         char *key;
145         int want_refresh;
146         int hits;
147         struct cache_data *ipv4;
148         struct cache_data *ipv6;
149 };
150
151 struct domain_question {
152         uint16_t type;
153         uint16_t class;
154 } __attribute__ ((packed));
155
156 struct domain_rr {
157         uint16_t type;
158         uint16_t class;
159         uint32_t ttl;
160         uint16_t rdlen;
161 } __attribute__ ((packed));
162
163 /*
164  * We limit how long the cached DNS entry stays in the cache.
165  * By default the TTL (time-to-live) of the DNS response is used
166  * when setting the cache entry life time. The value is in seconds.
167  */
168 #define MAX_CACHE_TTL (60 * 30)
169 /*
170  * Also limit the other end, cache at least for 30 seconds.
171  */
172 #define MIN_CACHE_TTL (30)
173
174 /*
175  * We limit the cache size to some sane value so that cached data does
176  * not occupy too much memory. Each cached entry occupies on average
177  * about 100 bytes memory (depending on DNS name length).
178  * Example: caching www.connman.net uses 97 bytes memory.
179  * The value is the max amount of cached DNS responses (count).
180  */
181 #define MAX_CACHE_SIZE 256
182
183 static int cache_size;
184 static GHashTable *cache;
185 static int cache_refcount;
186 static GSList *server_list = NULL;
187 static GSList *request_list = NULL;
188 static GHashTable *listener_table = NULL;
189 static time_t next_refresh;
190
191 static guint16 get_id()
192 {
193         return random();
194 }
195
196 static int protocol_offset(int protocol)
197 {
198         switch (protocol) {
199         case IPPROTO_UDP:
200                 return 0;
201
202         case IPPROTO_TCP:
203                 return 2;
204
205         default:
206                 return -EINVAL;
207         }
208
209 }
210
211 /*
212  * There is a power and efficiency benefit to have entries
213  * in our cache expire at the same time. To this extend,
214  * we round down the cache valid time to common boundaries.
215  */
216 static time_t round_down_ttl(time_t end_time, int ttl)
217 {
218         if (ttl < 15)
219                 return end_time;
220
221         /* Less than 5 minutes, round to 10 second boundary */
222         if (ttl < 300) {
223                 end_time = end_time / 10;
224                 end_time = end_time * 10;
225         } else { /* 5 or more minutes, round to 30 seconds */
226                 end_time = end_time / 30;
227                 end_time = end_time * 30;
228         }
229         return end_time;
230 }
231
232 static struct request_data *find_request(guint16 id)
233 {
234         GSList *list;
235
236         for (list = request_list; list; list = list->next) {
237                 struct request_data *req = list->data;
238
239                 if (req->dstid == id || req->altid == id)
240                         return req;
241         }
242
243         return NULL;
244 }
245
246 static struct server_data *find_server(const char *interface,
247                                         const char *server,
248                                                 int protocol)
249 {
250         GSList *list;
251
252         DBG("interface %s server %s proto %d", interface, server, protocol);
253
254         for (list = server_list; list; list = list->next) {
255                 struct server_data *data = list->data;
256
257                 if (interface == NULL && data->interface == NULL &&
258                                 g_str_equal(data->server, server) == TRUE &&
259                                 data->protocol == protocol)
260                         return data;
261
262                 if (interface == NULL ||
263                                 data->interface == NULL || data->server == NULL)
264                         continue;
265
266                 if (g_str_equal(data->interface, interface) == TRUE &&
267                                 g_str_equal(data->server, server) == TRUE &&
268                                 data->protocol == protocol)
269                         return data;
270         }
271
272         return NULL;
273 }
274
275 /* we can keep using the same resolve's */
276 static GResolv *ipv4_resolve;
277 static GResolv *ipv6_resolve;
278
279 static void dummy_resolve_func(GResolvResultStatus status,
280                                         char **results, gpointer user_data)
281 {
282 }
283
284 /*
285  * Refresh a DNS entry, but also age the hit count a bit */
286 static void refresh_dns_entry(struct cache_entry *entry, char *name)
287 {
288         int age = 1;
289
290         if (ipv4_resolve == NULL) {
291                 ipv4_resolve = g_resolv_new(0);
292                 g_resolv_set_address_family(ipv4_resolve, AF_INET);
293                 g_resolv_add_nameserver(ipv4_resolve, "127.0.0.1", 53, 0);
294         }
295
296         if (ipv6_resolve == NULL) {
297                 ipv6_resolve = g_resolv_new(0);
298                 g_resolv_set_address_family(ipv6_resolve, AF_INET6);
299                 g_resolv_add_nameserver(ipv6_resolve, "127.0.0.1", 53, 0);
300         }
301
302         if (entry->ipv4 == NULL) {
303                 DBG("Refresing A record for %s", name);
304                 g_resolv_lookup_hostname(ipv4_resolve, name,
305                                         dummy_resolve_func, NULL);
306                 age = 4;
307         }
308
309         if (entry->ipv6 == NULL) {
310                 DBG("Refresing AAAA record for %s", name);
311                 g_resolv_lookup_hostname(ipv6_resolve, name,
312                                         dummy_resolve_func, NULL);
313                 age = 4;
314         }
315
316         entry->hits -= age;
317         if (entry->hits < 0)
318                 entry->hits = 0;
319 }
320
321 static int dns_name_length(unsigned char *buf)
322 {
323         if ((buf[0] & NS_CMPRSFLGS) == NS_CMPRSFLGS) /* compressed name */
324                 return 2;
325         return strlen((char *)buf);
326 }
327
328 static void update_cached_ttl(unsigned char *buf, int len, int new_ttl)
329 {
330         unsigned char *c;
331         uint32_t *i;
332         uint16_t *w;
333         int l;
334
335         /* skip the header */
336         c = buf + 12;
337         len -= 12;
338
339         /* skip the query, which is a name and 2 16 bit words */
340         l = dns_name_length(c);
341         c += l;
342         len -= l;
343         c += 4;
344         len -= 4;
345
346         /* now we get the answer records */
347
348         while (len > 0) {
349                 /* first a name */
350                 l = dns_name_length(c);
351                 c += l;
352                 len -= l;
353                 if (len < 0)
354                         break;
355                 /* then type + class, 2 bytes each */
356                 c += 4;
357                 len -= 4;
358                 if (len < 0)
359                         break;
360
361                 /* now the 4 byte TTL field */
362                 i = (uint32_t *)c;
363                 *i = htonl(new_ttl);
364                 c += 4;
365                 len -= 4;
366                 if (len < 0)
367                         break;
368
369                 /* now the 2 byte rdlen field */
370                 w = (uint16_t *)c;
371                 c += ntohs(*w) + 2;
372                 len -= ntohs(*w) + 2;
373         }
374 }
375
376 static void send_cached_response(int sk, unsigned char *buf, int len,
377                                 const struct sockaddr *to, socklen_t tolen,
378                                 int protocol, int id, uint16_t answers, int ttl)
379 {
380         struct domain_hdr *hdr;
381         unsigned char *ptr = buf;
382         int err, offset, dns_len, adj_len = len - 2;
383
384         /*
385          * The cached packet contains always the TCP offset (two bytes)
386          * so skip them for UDP.
387          */
388         switch (protocol) {
389         case IPPROTO_UDP:
390                 ptr += 2;
391                 len -= 2;
392                 dns_len = len;
393                 offset = 0;
394                 break;
395         case IPPROTO_TCP:
396                 offset = 2;
397                 dns_len = ptr[0] * 256 + ptr[1];
398                 break;
399         default:
400                 return;
401         }
402
403         if (len < 12)
404                 return;
405
406         hdr = (void *) (ptr + offset);
407
408         hdr->id = id;
409         hdr->qr = 1;
410         hdr->rcode = 0;
411         hdr->ancount = htons(answers);
412         hdr->nscount = 0;
413         hdr->arcount = 0;
414
415         /* if this is a negative reply, we are authorative */
416         if (answers == 0)
417                 hdr->aa = 1;
418         else
419                 update_cached_ttl((unsigned char *)hdr, adj_len, ttl);
420
421         DBG("sk %d id 0x%04x answers %d ptr %p length %d dns %d",
422                 sk, hdr->id, answers, ptr, len, dns_len);
423
424         err = sendto(sk, ptr, len, MSG_NOSIGNAL, to, tolen);
425         if (err < 0) {
426                 connman_error("Cannot send cached DNS response: %s",
427                                 strerror(errno));
428                 return;
429         }
430
431         if (err != len || (dns_len != (len - 2) && protocol == IPPROTO_TCP) ||
432                                 (dns_len != len && protocol == IPPROTO_UDP))
433                 DBG("Packet length mismatch, sent %d wanted %d dns %d",
434                         err, len, dns_len);
435 }
436
437 static void send_response(int sk, unsigned char *buf, int len,
438                                 const struct sockaddr *to, socklen_t tolen,
439                                 int protocol)
440 {
441         struct domain_hdr *hdr;
442         int err, offset = protocol_offset(protocol);
443
444         DBG("sk %d", sk);
445
446         if (offset < 0)
447                 return;
448
449         if (len < 12)
450                 return;
451
452         hdr = (void *) (buf + offset);
453
454         DBG("id 0x%04x qr %d opcode %d", hdr->id, hdr->qr, hdr->opcode);
455
456         hdr->qr = 1;
457         hdr->rcode = 2;
458
459         hdr->ancount = 0;
460         hdr->nscount = 0;
461         hdr->arcount = 0;
462
463         err = sendto(sk, buf, len, MSG_NOSIGNAL, to, tolen);
464         if (err < 0) {
465                 connman_error("Failed to send DNS response to %d: %s",
466                                 sk, strerror(errno));
467                 return;
468         }
469 }
470
471 static gboolean request_timeout(gpointer user_data)
472 {
473         struct request_data *req = user_data;
474         struct listener_data *ifdata;
475
476         DBG("id 0x%04x", req->srcid);
477
478         if (req == NULL)
479                 return FALSE;
480
481         ifdata = req->ifdata;
482
483         request_list = g_slist_remove(request_list, req);
484         req->numserv--;
485
486         if (req->resplen > 0 && req->resp != NULL) {
487                 int sk, err;
488
489                 sk = g_io_channel_unix_get_fd(ifdata->udp_listener_channel);
490
491                 err = sendto(sk, req->resp, req->resplen, MSG_NOSIGNAL,
492                                                 &req->sa, req->sa_len);
493                 if (err < 0)
494                         return FALSE;
495         } else if (req->request && req->numserv == 0) {
496                 struct domain_hdr *hdr;
497
498                 if (req->protocol == IPPROTO_TCP) {
499                         hdr = (void *) (req->request + 2);
500                         hdr->id = req->srcid;
501                         send_response(req->client_sk, req->request,
502                                 req->request_len, NULL, 0, IPPROTO_TCP);
503
504                 } else if (req->protocol == IPPROTO_UDP) {
505                         int sk;
506
507                         hdr = (void *) (req->request);
508                         hdr->id = req->srcid;
509                         sk = g_io_channel_unix_get_fd(
510                                                 ifdata->udp_listener_channel);
511                         send_response(sk, req->request, req->request_len,
512                                         &req->sa, req->sa_len, IPPROTO_UDP);
513                 }
514         }
515
516         g_free(req->resp);
517         g_free(req);
518
519         return FALSE;
520 }
521
522 static int append_query(unsigned char *buf, unsigned int size,
523                                 const char *query, const char *domain)
524 {
525         unsigned char *ptr = buf;
526         int len;
527
528         DBG("query %s domain %s", query, domain);
529
530         while (query != NULL) {
531                 const char *tmp;
532
533                 tmp = strchr(query, '.');
534                 if (tmp == NULL) {
535                         len = strlen(query);
536                         if (len == 0)
537                                 break;
538                         *ptr = len;
539                         memcpy(ptr + 1, query, len);
540                         ptr += len + 1;
541                         break;
542                 }
543
544                 *ptr = tmp - query;
545                 memcpy(ptr + 1, query, tmp - query);
546                 ptr += tmp - query + 1;
547
548                 query = tmp + 1;
549         }
550
551         while (domain != NULL) {
552                 const char *tmp;
553
554                 tmp = strchr(domain, '.');
555                 if (tmp == NULL) {
556                         len = strlen(domain);
557                         if (len == 0)
558                                 break;
559                         *ptr = len;
560                         memcpy(ptr + 1, domain, len);
561                         ptr += len + 1;
562                         break;
563                 }
564
565                 *ptr = tmp - domain;
566                 memcpy(ptr + 1, domain, tmp - domain);
567                 ptr += tmp - domain + 1;
568
569                 domain = tmp + 1;
570         }
571
572         *ptr++ = 0x00;
573
574         return ptr - buf;
575 }
576
577 static gboolean cache_check_is_valid(struct cache_data *data,
578                                 time_t current_time)
579 {
580         if (data == NULL)
581                 return FALSE;
582
583         if (data->cache_until < current_time)
584                 return FALSE;
585
586         return TRUE;
587 }
588
589 /*
590  * remove stale cached entries so that they can be refreshed
591  */
592 static void cache_enforce_validity(struct cache_entry *entry)
593 {
594         time_t current_time = time(NULL);
595
596         if (cache_check_is_valid(entry->ipv4, current_time) == FALSE
597                                                         && entry->ipv4) {
598                 DBG("cache timeout \"%s\" type A", entry->key);
599                 g_free(entry->ipv4->data);
600                 g_free(entry->ipv4);
601                 entry->ipv4 = NULL;
602
603         }
604
605         if (cache_check_is_valid(entry->ipv6, current_time) == FALSE
606                                                         && entry->ipv6) {
607                 DBG("cache timeout \"%s\" type AAAA", entry->key);
608                 g_free(entry->ipv6->data);
609                 g_free(entry->ipv6);
610                 entry->ipv6 = NULL;
611         }
612 }
613
614 static uint16_t cache_check_validity(char *question, uint16_t type,
615                                 struct cache_entry *entry)
616 {
617         time_t current_time = time(NULL);
618         int want_refresh = 0;
619
620         /*
621          * if we have a popular entry, we want a refresh instead of
622          * total destruction of the entry.
623          */
624         if (entry->hits > 2)
625                 want_refresh = 1;
626
627         cache_enforce_validity(entry);
628
629         switch (type) {
630         case 1:         /* IPv4 */
631                 if (cache_check_is_valid(entry->ipv4, current_time) == FALSE) {
632                         DBG("cache %s \"%s\" type A", entry->ipv4 ?
633                                         "timeout" : "entry missing", question);
634
635                         if (want_refresh)
636                                 entry->want_refresh = 1;
637
638                         /*
639                          * We do not remove cache entry if there is still
640                          * valid IPv6 entry found in the cache.
641                          */
642                         if (cache_check_is_valid(entry->ipv6, current_time)
643                                         == FALSE && want_refresh == FALSE) {
644                                 g_hash_table_remove(cache, question);
645                                 type = 0;
646                         }
647                 }
648                 break;
649
650         case 28:        /* IPv6 */
651                 if (cache_check_is_valid(entry->ipv6, current_time) == FALSE) {
652                         DBG("cache %s \"%s\" type AAAA", entry->ipv6 ?
653                                         "timeout" : "entry missing", question);
654
655                         if (want_refresh)
656                                 entry->want_refresh = 1;
657
658                         if (cache_check_is_valid(entry->ipv4, current_time)
659                                         == FALSE && want_refresh == FALSE) {
660                                 g_hash_table_remove(cache, question);
661                                 type = 0;
662                         }
663                 }
664                 break;
665         }
666
667         return type;
668 }
669
670 static struct cache_entry *cache_check(gpointer request, int *qtype, int proto)
671 {
672         char *question;
673         struct cache_entry *entry;
674         struct domain_question *q;
675         uint16_t type;
676         int offset, proto_offset;
677
678         if (request == NULL)
679                 return NULL;
680
681         proto_offset = protocol_offset(proto);
682         if (proto_offset < 0)
683                 return NULL;
684
685         question = request + proto_offset + 12;
686
687         offset = strlen(question) + 1;
688         q = (void *) (question + offset);
689         type = ntohs(q->type);
690
691         /* We only cache either A (1) or AAAA (28) requests */
692         if (type != 1 && type != 28)
693                 return NULL;
694
695         entry = g_hash_table_lookup(cache, question);
696         if (entry == NULL)
697                 return NULL;
698
699         type = cache_check_validity(question, type, entry);
700         if (type == 0)
701                 return NULL;
702
703         *qtype = type;
704         return entry;
705 }
706
707 /*
708  * Get a label/name from DNS resource record. The function decompresses the
709  * label if necessary. The function does not convert the name to presentation
710  * form. This means that the result string will contain label lengths instead
711  * of dots between labels. We intentionally do not want to convert to dotted
712  * format so that we can cache the wire format string directly.
713  */
714 static int get_name(int counter,
715                 unsigned char *pkt, unsigned char *start, unsigned char *max,
716                 unsigned char *output, int output_max, int *output_len,
717                 unsigned char **end, char *name, int *name_len)
718 {
719         unsigned char *p;
720
721         /* Limit recursion to 10 (this means up to 10 labels in domain name) */
722         if (counter > 10)
723                 return -EINVAL;
724
725         p = start;
726         while (*p) {
727                 if ((*p & NS_CMPRSFLGS) == NS_CMPRSFLGS) {
728                         uint16_t offset = (*p & 0x3F) * 256 + *(p + 1);
729
730                         if (offset >= max - pkt)
731                                 return -ENOBUFS;
732
733                         if (*end == NULL)
734                                 *end = p + 2;
735
736                         return get_name(counter + 1, pkt, pkt + offset, max,
737                                         output, output_max, output_len, end,
738                                         name, name_len);
739                 } else {
740                         unsigned label_len = *p;
741
742                         if (pkt + label_len > max)
743                                 return -ENOBUFS;
744
745                         if (*output_len > output_max)
746                                 return -ENOBUFS;
747
748                         /*
749                          * We need the original name in order to check
750                          * if this answer is the correct one.
751                          */
752                         name[(*name_len)++] = label_len;
753                         memcpy(name + *name_len, p + 1, label_len + 1);
754                         *name_len += label_len;
755
756                         /* We compress the result */
757                         output[0] = NS_CMPRSFLGS;
758                         output[1] = 0x0C;
759                         *output_len = 2;
760
761                         p += label_len + 1;
762
763                         if (*end == NULL)
764                                 *end = p;
765
766                         if (p >= max)
767                                 return -ENOBUFS;
768                 }
769         }
770
771         return 0;
772 }
773
774 static int parse_rr(unsigned char *buf, unsigned char *start,
775                         unsigned char *max,
776                         unsigned char *response, unsigned int *response_size,
777                         uint16_t *type, uint16_t *class, int *ttl, int *rdlen,
778                         unsigned char **end,
779                         char *name)
780 {
781         struct domain_rr *rr;
782         int err, offset;
783         int name_len = 0, output_len = 0, max_rsp = *response_size;
784
785         err = get_name(0, buf, start, max, response, max_rsp,
786                 &output_len, end, name, &name_len);
787         if (err < 0)
788                 return err;
789
790         offset = output_len;
791
792         if ((unsigned int) offset > *response_size)
793                 return -ENOBUFS;
794
795         rr = (void *) (*end);
796
797         if (rr == NULL)
798                 return -EINVAL;
799
800         *type = ntohs(rr->type);
801         *class = ntohs(rr->class);
802         *ttl = ntohl(rr->ttl);
803         *rdlen = ntohs(rr->rdlen);
804
805         if (*ttl < 0)
806                 return -EINVAL;
807
808         memcpy(response + offset, *end, sizeof(struct domain_rr));
809
810         offset += sizeof(struct domain_rr);
811         *end += sizeof(struct domain_rr);
812
813         if ((unsigned int) (offset + *rdlen) > *response_size)
814                 return -ENOBUFS;
815
816         memcpy(response + offset, *end, *rdlen);
817
818         *end += *rdlen;
819
820         *response_size = offset + *rdlen;
821
822         return 0;
823 }
824
825 static gboolean check_alias(GSList *aliases, char *name)
826 {
827         GSList *list;
828
829         if (aliases != NULL) {
830                 for (list = aliases; list; list = list->next) {
831                         int len = strlen((char *)list->data);
832                         if (strncmp((char *)list->data, name, len) == 0)
833                                 return TRUE;
834                 }
835         }
836
837         return FALSE;
838 }
839
840 static int parse_response(unsigned char *buf, int buflen,
841                         char *question, int qlen,
842                         uint16_t *type, uint16_t *class, int *ttl,
843                         unsigned char *response, unsigned int *response_len,
844                         uint16_t *answers)
845 {
846         struct domain_hdr *hdr = (void *) buf;
847         struct domain_question *q;
848         unsigned char *ptr;
849         uint16_t qdcount = ntohs(hdr->qdcount);
850         uint16_t ancount = ntohs(hdr->ancount);
851         int err, i;
852         uint16_t qtype, qclass;
853         unsigned char *next = NULL;
854         unsigned int maxlen = *response_len;
855         GSList *aliases = NULL, *list;
856         char name[NS_MAXDNAME + 1];
857
858         if (buflen < 12)
859                 return -EINVAL;
860
861         DBG("qr %d qdcount %d", hdr->qr, qdcount);
862
863         /* We currently only cache responses where question count is 1 */
864         if (hdr->qr != 1 || qdcount != 1)
865                 return -EINVAL;
866
867         ptr = buf + sizeof(struct domain_hdr);
868
869         strncpy(question, (char *) ptr, qlen);
870         qlen = strlen(question);
871         ptr += qlen + 1; /* skip \0 */
872
873         q = (void *) ptr;
874         qtype = ntohs(q->type);
875
876         /* We cache only A and AAAA records */
877         if (qtype != 1 && qtype != 28)
878                 return -ENOMSG;
879
880         qclass = ntohs(q->class);
881
882         ptr += 2 + 2; /* ptr points now to answers */
883
884         err = -ENOMSG;
885         *response_len = 0;
886         *answers = 0;
887
888         /*
889          * We have a bunch of answers (like A, AAAA, CNAME etc) to
890          * A or AAAA question. We traverse the answers and parse the
891          * resource records. Only A and AAAA records are cached, all
892          * the other records in answers are skipped.
893          */
894         for (i = 0; i < ancount; i++) {
895                 /*
896                  * Get one address at a time to this buffer.
897                  * The max size of the answer is
898                  *   2 (pointer) + 2 (type) + 2 (class) +
899                  *   4 (ttl) + 2 (rdlen) + addr (16 or 4) = 28
900                  * for A or AAAA record.
901                  * For CNAME the size can be bigger.
902                  */
903                 unsigned char rsp[NS_MAXCDNAME];
904                 unsigned int rsp_len = sizeof(rsp) - 1;
905                 int ret, rdlen;
906
907                 memset(rsp, 0, sizeof(rsp));
908
909                 ret = parse_rr(buf, ptr, buf + buflen, rsp, &rsp_len,
910                         type, class, ttl, &rdlen, &next, name);
911                 if (ret != 0) {
912                         err = ret;
913                         goto out;
914                 }
915
916                 /*
917                  * Now rsp contains compressed or uncompressed resource
918                  * record. Next we check if this record answers the question.
919                  * The name var contains the uncompressed label.
920                  * One tricky bit is the CNAME records as they alias
921                  * the name we might be interested in.
922                  */
923
924                 /*
925                  * Go to next answer if the class is not the one we are
926                  * looking for.
927                  */
928                 if (*class != qclass) {
929                         ptr = next;
930                         next = NULL;
931                         continue;
932                 }
933
934                 /*
935                  * Try to resolve aliases also, type is CNAME(5).
936                  * This is important as otherwise the aliased names would not
937                  * be cached at all as the cache would not contain the aliased
938                  * question.
939                  *
940                  * If any CNAME is found in DNS packet, then we cache the alias
941                  * IP address instead of the question (as the server
942                  * said that question has only an alias).
943                  * This means in practice that if e.g., ipv6.google.com is
944                  * queried, DNS server returns CNAME of that name which is
945                  * ipv6.l.google.com. We then cache the address of the CNAME
946                  * but return the question name to client. So the alias
947                  * status of the name is not saved in cache and thus not
948                  * returned to the client. We do not return DNS packets from
949                  * cache to client saying that ipv6.google.com is an alias to
950                  * ipv6.l.google.com but we return instead a DNS packet that
951                  * says ipv6.google.com has address xxx which is in fact the
952                  * address of ipv6.l.google.com. For caching purposes this
953                  * should not cause any issues.
954                  */
955                 if (*type == 5 && strncmp(question, name, qlen) == 0) {
956                         /*
957                          * So now the alias answered the question. This is
958                          * not very useful from caching point of view as
959                          * the following A or AAAA records will not match the
960                          * question. We need to find the real A/AAAA record
961                          * of the alias and cache that.
962                          */
963                         unsigned char *end = NULL;
964                         int name_len = 0, output_len;
965
966                         memset(rsp, 0, sizeof(rsp));
967                         rsp_len = sizeof(rsp) - 1;
968
969                         /*
970                          * Alias is in rdata part of the message,
971                          * and next-rdlen points to it. So we need to get
972                          * the real name of the alias.
973                          */
974                         ret = get_name(0, buf, next - rdlen, buf + buflen,
975                                         rsp, rsp_len, &output_len, &end,
976                                         name, &name_len);
977                         if (ret != 0) {
978                                 /* just ignore the error at this point */
979                                 ptr = next;
980                                 next = NULL;
981                                 continue;
982                         }
983
984                         /*
985                          * We should now have the alias of the entry we might
986                          * want to cache. Just remember it for a while.
987                          * We check the alias list when we have parsed the
988                          * A or AAAA record.
989                          */
990                         aliases = g_slist_prepend(aliases, g_strdup(name));
991
992                         ptr = next;
993                         next = NULL;
994                         continue;
995                 }
996
997                 if (*type == qtype) {
998                         /*
999                          * We found correct type (A or AAAA)
1000                          */
1001                         if (check_alias(aliases, name) == TRUE ||
1002                                 (aliases == NULL && strncmp(question, name,
1003                                                         qlen) == 0)) {
1004                                 /*
1005                                  * We found an alias or the name of the rr
1006                                  * matches the question. If so, we append
1007                                  * the compressed label to the cache.
1008                                  * The end result is a response buffer that
1009                                  * will contain one or more cached and
1010                                  * compressed resource records.
1011                                  */
1012                                 if (*response_len + rsp_len > maxlen) {
1013                                         err = -ENOBUFS;
1014                                         goto out;
1015                                 }
1016                                 memcpy(response + *response_len, rsp, rsp_len);
1017                                 *response_len += rsp_len;
1018                                 (*answers)++;
1019                                 err = 0;
1020                         }
1021                 }
1022
1023                 ptr = next;
1024                 next = NULL;
1025         }
1026
1027 out:
1028         for (list = aliases; list; list = list->next)
1029                 g_free(list->data);
1030         g_slist_free(aliases);
1031
1032         return err;
1033 }
1034
1035 struct cache_timeout {
1036         time_t current_time;
1037         int max_timeout;
1038         int try_harder;
1039 };
1040
1041 static gboolean cache_check_entry(gpointer key, gpointer value,
1042                                         gpointer user_data)
1043 {
1044         struct cache_timeout *data = user_data;
1045         struct cache_entry *entry = value;
1046         int max_timeout;
1047
1048         /* Scale the number of hits by half as part of cache aging */
1049
1050         entry->hits /= 2;
1051
1052         /*
1053          * If either IPv4 or IPv6 cached entry has expired, we
1054          * remove both from the cache.
1055          */
1056
1057         if (entry->ipv4 != NULL && entry->ipv4->timeout > 0) {
1058                 max_timeout = entry->ipv4->cache_until;
1059                 if (max_timeout > data->max_timeout)
1060                         data->max_timeout = max_timeout;
1061
1062                 if (entry->ipv4->cache_until < data->current_time)
1063                         return TRUE;
1064         }
1065
1066         if (entry->ipv6 != NULL && entry->ipv6->timeout > 0) {
1067                 max_timeout = entry->ipv6->cache_until;
1068                 if (max_timeout > data->max_timeout)
1069                         data->max_timeout = max_timeout;
1070
1071                 if (entry->ipv6->cache_until < data->current_time)
1072                         return TRUE;
1073         }
1074
1075         /*
1076          * if we're asked to try harder, also remove entries that have
1077          * few hits
1078          */
1079         if (data->try_harder && entry->hits < 4)
1080                 return TRUE;
1081
1082         return FALSE;
1083 }
1084
1085 static void cache_cleanup(void)
1086 {
1087         static int max_timeout;
1088         struct cache_timeout data;
1089         int count = 0;
1090
1091         data.current_time = time(NULL);
1092         data.max_timeout = 0;
1093         data.try_harder = 0;
1094
1095         /*
1096          * In the first pass, we only remove entries that have timed out.
1097          * We use a cache of the first time to expire to do this only
1098          * when it makes sense.
1099          */
1100         if (max_timeout <= data.current_time) {
1101                 count = g_hash_table_foreach_remove(cache, cache_check_entry,
1102                                                 &data);
1103         }
1104         DBG("removed %d in the first pass", count);
1105
1106         /*
1107          * In the second pass, if the first pass turned up blank,
1108          * we also expire entries with a low hit count,
1109          * while aging the hit count at the same time.
1110          */
1111         data.try_harder = 1;
1112         if (count == 0)
1113                 count = g_hash_table_foreach_remove(cache, cache_check_entry,
1114                                                 &data);
1115
1116         if (count == 0)
1117                 /*
1118                  * If we could not remove anything, then remember
1119                  * what is the max timeout and do nothing if we
1120                  * have not yet reached it. This will prevent
1121                  * constant traversal of the cache if it is full.
1122                  */
1123                 max_timeout = data.max_timeout;
1124         else
1125                 max_timeout = 0;
1126 }
1127
1128 static gboolean cache_invalidate_entry(gpointer key, gpointer value,
1129                                         gpointer user_data)
1130 {
1131         struct cache_entry *entry = value;
1132
1133         /* first, delete any expired elements */
1134         cache_enforce_validity(entry);
1135
1136         /* if anything is not expired, mark the entry for refresh */
1137         if (entry->hits > 0 && (entry->ipv4 || entry->ipv6))
1138                 entry->want_refresh = 1;
1139
1140         /* delete the cached data */
1141         if (entry->ipv4) {
1142                 g_free(entry->ipv4->data);
1143                 g_free(entry->ipv4);
1144                 entry->ipv4 = NULL;
1145         }
1146
1147         if (entry->ipv6) {
1148                 g_free(entry->ipv6->data);
1149                 g_free(entry->ipv6);
1150                 entry->ipv6 = NULL;
1151         }
1152
1153         /* keep the entry if we want it refreshed, delete it otherwise */
1154         if (entry->want_refresh)
1155                 return FALSE;
1156         else
1157                 return TRUE;
1158 }
1159
1160 /*
1161  * cache_invalidate is called from places where the DNS landscape
1162  * has changed, say because connections are added or we entered a VPN.
1163  * The logic is to wipe all cache data, but mark all non-expired
1164  * parts of the cache for refresh rather than deleting the whole cache.
1165  */
1166 static void cache_invalidate(void)
1167 {
1168         DBG("Invalidating the DNS cache %p", cache);
1169
1170         if (cache == NULL)
1171                 return;
1172
1173         g_hash_table_foreach_remove(cache, cache_invalidate_entry, NULL);
1174 }
1175
1176 static void cache_refresh_entry(struct cache_entry *entry)
1177 {
1178
1179         cache_enforce_validity(entry);
1180
1181         if (entry->hits > 2 && entry->ipv4 == NULL)
1182                 entry->want_refresh = 1;
1183         if (entry->hits > 2 && entry->ipv6 == NULL)
1184                 entry->want_refresh = 1;
1185
1186         if (entry->want_refresh) {
1187                 char *c;
1188                 char dns_name[NS_MAXDNAME + 1];
1189                 entry->want_refresh = 0;
1190
1191                 /* turn a DNS name into a hostname with dots */
1192                 strncpy(dns_name, entry->key, NS_MAXDNAME);
1193                 c = dns_name;
1194                 while (c && *c) {
1195                         int jump;
1196                         jump = *c;
1197                         *c = '.';
1198                         c += jump + 1;
1199                 }
1200                 DBG("Refreshing %s\n", dns_name);
1201                 /* then refresh the hostname */
1202                 refresh_dns_entry(entry, &dns_name[1]);
1203         }
1204 }
1205
1206 static void cache_refresh_iterator(gpointer key, gpointer value,
1207                                         gpointer user_data)
1208 {
1209         struct cache_entry *entry = value;
1210
1211         cache_refresh_entry(entry);
1212 }
1213
1214 static void cache_refresh(void)
1215 {
1216         if (cache == NULL)
1217                 return;
1218
1219         g_hash_table_foreach(cache, cache_refresh_iterator, NULL);
1220 }
1221
1222 static int reply_query_type(unsigned char *msg, int len)
1223 {
1224         unsigned char *c;
1225         uint16_t *w;
1226         int l;
1227         int type;
1228
1229         /* skip the header */
1230         c = msg + sizeof(struct domain_hdr);
1231         len -= sizeof(struct domain_hdr);
1232
1233         if (len < 0)
1234                 return 0;
1235
1236         /* now the query, which is a name and 2 16 bit words */
1237         l = dns_name_length(c) + 1;
1238         c += l;
1239         w = (uint16_t *) c;
1240         type = ntohs(*w);
1241
1242         return type;
1243 }
1244
1245 static int cache_update(struct server_data *srv, unsigned char *msg,
1246                         unsigned int msg_len)
1247 {
1248         int offset = protocol_offset(srv->protocol);
1249         int err, qlen, ttl = 0;
1250         uint16_t answers = 0, type = 0, class = 0;
1251         struct domain_hdr *hdr = (void *)(msg + offset);
1252         struct domain_question *q;
1253         struct cache_entry *entry;
1254         struct cache_data *data;
1255         char question[NS_MAXDNAME + 1];
1256         unsigned char response[NS_MAXDNAME + 1];
1257         unsigned char *ptr;
1258         unsigned int rsplen;
1259         gboolean new_entry = TRUE;
1260         time_t current_time;
1261
1262         if (cache_size >= MAX_CACHE_SIZE) {
1263                 cache_cleanup();
1264                 if (cache_size >= MAX_CACHE_SIZE)
1265                         return 0;
1266         }
1267
1268         current_time = time(NULL);
1269
1270         /* don't do a cache refresh more than twice a minute */
1271         if (next_refresh < current_time) {
1272                 cache_refresh();
1273                 next_refresh = current_time + 30;
1274         }
1275
1276         if (offset < 0)
1277                 return 0;
1278
1279         DBG("offset %d hdr %p msg %p rcode %d", offset, hdr, msg, hdr->rcode);
1280
1281         /* Continue only if response code is 0 (=ok) */
1282         if (hdr->rcode != 0)
1283                 return 0;
1284
1285         rsplen = sizeof(response) - 1;
1286         question[sizeof(question) - 1] = '\0';
1287
1288         err = parse_response(msg + offset, msg_len - offset,
1289                                 question, sizeof(question) - 1,
1290                                 &type, &class, &ttl,
1291                                 response, &rsplen, &answers);
1292
1293         /*
1294          * special case: if we do a ipv6 lookup and get no result
1295          * for a record that's already in our ipv4 cache.. we want
1296          * to cache the negative response.
1297          */
1298         if ((err == -ENOMSG || err == -ENOBUFS) &&
1299                         reply_query_type(msg + offset,
1300                                         msg_len - offset) == 28) {
1301                 entry = g_hash_table_lookup(cache, question);
1302                 if (entry && entry->ipv4 && entry->ipv6 == NULL) {
1303                         int cache_offset = 0;
1304
1305                         data = g_try_new(struct cache_data, 1);
1306                         if (data == NULL)
1307                                 return -ENOMEM;
1308                         data->inserted = entry->ipv4->inserted;
1309                         data->type = type;
1310                         data->answers = hdr->ancount;
1311                         data->timeout = entry->ipv4->timeout;
1312                         if (srv->protocol == IPPROTO_UDP)
1313                                 cache_offset = 2;
1314                         data->data_len = msg_len + cache_offset;
1315                         data->data = ptr = g_malloc(data->data_len);
1316                         ptr[0] = (data->data_len - 2) / 256;
1317                         ptr[1] = (data->data_len - 2) - ptr[0] * 256;
1318                         if (srv->protocol == IPPROTO_UDP)
1319                                 ptr += 2;
1320                         data->valid_until = entry->ipv4->valid_until;
1321                         data->cache_until = entry->ipv4->cache_until;
1322                         memcpy(ptr, msg, msg_len);
1323                         entry->ipv6 = data;
1324                         /*
1325                          * we will get a "hit" when we serve the response
1326                          * out of the cache
1327                          */
1328                         entry->hits--;
1329                         if (entry->hits < 0)
1330                                 entry->hits = 0;
1331                         return 0;
1332                 }
1333         }
1334
1335         if (err < 0 || ttl == 0)
1336                 return 0;
1337
1338         qlen = strlen(question);
1339
1340         /*
1341          * If the cache contains already data, check if the
1342          * type of the cached data is the same and do not add
1343          * to cache if data is already there.
1344          * This is needed so that we can cache both A and AAAA
1345          * records for the same name.
1346          */
1347         entry = g_hash_table_lookup(cache, question);
1348         if (entry == NULL) {
1349                 entry = g_try_new(struct cache_entry, 1);
1350                 if (entry == NULL)
1351                         return -ENOMEM;
1352
1353                 data = g_try_new(struct cache_data, 1);
1354                 if (data == NULL) {
1355                         g_free(entry);
1356                         return -ENOMEM;
1357                 }
1358
1359                 entry->key = g_strdup(question);
1360                 entry->ipv4 = entry->ipv6 = NULL;
1361                 entry->want_refresh = 0;
1362                 entry->hits = 0;
1363
1364                 if (type == 1)
1365                         entry->ipv4 = data;
1366                 else
1367                         entry->ipv6 = data;
1368         } else {
1369                 if (type == 1 && entry->ipv4 != NULL)
1370                         return 0;
1371
1372                 if (type == 28 && entry->ipv6 != NULL)
1373                         return 0;
1374
1375                 data = g_try_new(struct cache_data, 1);
1376                 if (data == NULL)
1377                         return -ENOMEM;
1378
1379                 if (type == 1)
1380                         entry->ipv4 = data;
1381                 else
1382                         entry->ipv6 = data;
1383
1384                 /*
1385                  * compensate for the hit we'll get for serving
1386                  * the response out of the cache
1387                  */
1388                 entry->hits--;
1389                 if (entry->hits < 0)
1390                         entry->hits = 0;
1391
1392                 new_entry = FALSE;
1393         }
1394
1395         if (ttl < MIN_CACHE_TTL)
1396                 ttl = MIN_CACHE_TTL;
1397
1398         data->inserted = current_time;
1399         data->type = type;
1400         data->answers = answers;
1401         data->timeout = ttl;
1402         /*
1403          * The "2" in start of the length is the TCP offset. We allocate it
1404          * here even for UDP packet because it simplifies the sending
1405          * of cached packet.
1406          */
1407         data->data_len = 2 + 12 + qlen + 1 + 2 + 2 + rsplen;
1408         data->data = ptr = g_malloc(data->data_len);
1409         data->valid_until = current_time + ttl;
1410
1411         /*
1412          * Restrict the cached DNS record TTL to some sane value
1413          * in order to prevent data staying in the cache too long.
1414          */
1415         if (ttl > MAX_CACHE_TTL)
1416                 ttl = MAX_CACHE_TTL;
1417
1418         data->cache_until = round_down_ttl(current_time + ttl, ttl);
1419
1420         if (data->data == NULL) {
1421                 g_free(entry->key);
1422                 g_free(data);
1423                 g_free(entry);
1424                 return -ENOMEM;
1425         }
1426
1427         /*
1428          * We cache the two extra bytes at the start of the message
1429          * in a TCP packet. When sending UDP packet, we skip the first
1430          * two bytes. This way we do not need to know the format
1431          * (UDP/TCP) of the cached message.
1432          */
1433         ptr[0] = (data->data_len - 2) / 256;
1434         ptr[1] = (data->data_len - 2) - ptr[0] * 256;
1435         if (srv->protocol == IPPROTO_UDP)
1436                 ptr += 2;
1437
1438         memcpy(ptr, msg, offset + 12);
1439         memcpy(ptr + offset + 12, question, qlen + 1); /* copy also the \0 */
1440
1441         q = (void *) (ptr + offset + 12 + qlen + 1);
1442         q->type = htons(type);
1443         q->class = htons(class);
1444         memcpy(ptr + offset + 12 + qlen + 1 + sizeof(struct domain_question),
1445                 response, rsplen);
1446
1447         if (new_entry == TRUE) {
1448                 g_hash_table_replace(cache, entry->key, entry);
1449                 cache_size++;
1450         }
1451
1452         DBG("cache %d %squestion \"%s\" type %d ttl %d size %zd packet %u "
1453                                                                 "dns len %u",
1454                 cache_size, new_entry ? "new " : "old ",
1455                 question, type, ttl,
1456                 sizeof(*entry) + sizeof(*data) + data->data_len + qlen,
1457                 data->data_len,
1458                 srv->protocol == IPPROTO_TCP ?
1459                         (unsigned int)(data->data[0] * 256 + data->data[1]) :
1460                         data->data_len);
1461
1462         return 0;
1463 }
1464
1465 static int ns_resolv(struct server_data *server, struct request_data *req,
1466                                 gpointer request, gpointer name)
1467 {
1468         GList *list;
1469         int sk, err, type = 0;
1470         char *dot, *lookup = (char *) name;
1471         struct cache_entry *entry;
1472
1473         entry = cache_check(request, &type, req->protocol);
1474         if (entry != NULL) {
1475                 int ttl_left = 0;
1476                 struct cache_data *data;
1477
1478                 DBG("cache hit %s type %s", lookup, type == 1 ? "A" : "AAAA");
1479                 if (type == 1)
1480                         data = entry->ipv4;
1481                 else
1482                         data = entry->ipv6;
1483
1484                 if (data) {
1485                         ttl_left = data->valid_until - time(NULL);
1486                         entry->hits++;
1487                 }
1488
1489                 if (data != NULL && req->protocol == IPPROTO_TCP) {
1490                         send_cached_response(req->client_sk, data->data,
1491                                         data->data_len, NULL, 0, IPPROTO_TCP,
1492                                         req->srcid, data->answers, ttl_left);
1493                         return 1;
1494                 }
1495
1496                 if (data != NULL && req->protocol == IPPROTO_UDP) {
1497                         int udp_sk = g_io_channel_unix_get_fd(
1498                                         req->ifdata->udp_listener_channel);
1499
1500                         send_cached_response(udp_sk, data->data,
1501                                 data->data_len, &req->sa, req->sa_len,
1502                                 IPPROTO_UDP, req->srcid, data->answers,
1503                                 ttl_left);
1504                         return 1;
1505                 }
1506         }
1507
1508         sk = g_io_channel_unix_get_fd(server->channel);
1509
1510         err = sendto(sk, request, req->request_len, MSG_NOSIGNAL,
1511                         server->server_addr, server->server_addr_len);
1512         if (err < 0) {
1513                 DBG("Cannot send message to server %s sock %d "
1514                         "protocol %d (%s/%d)",
1515                         server->server, sk, server->protocol,
1516                         strerror(errno), errno);
1517                 return -EIO;
1518         }
1519
1520         req->numserv++;
1521
1522         /* If we have more than one dot, we don't add domains */
1523         dot = strchr(lookup, '.');
1524         if (dot != NULL && dot != lookup + strlen(lookup) - 1)
1525                 return 0;
1526
1527         if (server->domains != NULL && server->domains->data != NULL)
1528                 req->append_domain = TRUE;
1529
1530         for (list = server->domains; list; list = list->next) {
1531                 char *domain;
1532                 unsigned char alt[1024];
1533                 struct domain_hdr *hdr = (void *) &alt;
1534                 int altlen, domlen, offset;
1535
1536                 domain = list->data;
1537
1538                 if (domain == NULL)
1539                         continue;
1540
1541                 offset = protocol_offset(server->protocol);
1542                 if (offset < 0)
1543                         return offset;
1544
1545                 domlen = strlen(domain) + 1;
1546                 if (domlen < 5)
1547                         return -EINVAL;
1548
1549                 alt[offset] = req->altid & 0xff;
1550                 alt[offset + 1] = req->altid >> 8;
1551
1552                 memcpy(alt + offset + 2, request + offset + 2, 10);
1553                 hdr->qdcount = htons(1);
1554
1555                 altlen = append_query(alt + offset + 12, sizeof(alt) - 12,
1556                                         name, domain);
1557                 if (altlen < 0)
1558                         return -EINVAL;
1559
1560                 altlen += 12;
1561
1562                 memcpy(alt + offset + altlen,
1563                         request + offset + altlen - domlen,
1564                                 req->request_len - altlen - offset + domlen);
1565
1566                 if (server->protocol == IPPROTO_TCP) {
1567                         int req_len = req->request_len + domlen - 2;
1568
1569                         alt[0] = (req_len >> 8) & 0xff;
1570                         alt[1] = req_len & 0xff;
1571                 }
1572
1573                 err = send(sk, alt, req->request_len + domlen, MSG_NOSIGNAL);
1574                 if (err < 0)
1575                         return -EIO;
1576
1577                 req->numserv++;
1578         }
1579
1580         return 0;
1581 }
1582
1583 static void destroy_request_data(struct request_data *req)
1584 {
1585         if (req->timeout > 0)
1586                 g_source_remove(req->timeout);
1587
1588         g_free(req->resp);
1589         g_free(req->request);
1590         g_free(req->name);
1591         g_free(req);
1592 }
1593
1594 static int forward_dns_reply(unsigned char *reply, int reply_len, int protocol,
1595                                 struct server_data *data)
1596 {
1597         struct domain_hdr *hdr;
1598         struct request_data *req;
1599         int dns_id, sk, err, offset = protocol_offset(protocol);
1600         struct listener_data *ifdata;
1601
1602         if (offset < 0)
1603                 return offset;
1604
1605         hdr = (void *)(reply + offset);
1606         dns_id = reply[offset] | reply[offset + 1] << 8;
1607
1608         DBG("Received %d bytes (id 0x%04x)", reply_len, dns_id);
1609
1610         req = find_request(dns_id);
1611         if (req == NULL)
1612                 return -EINVAL;
1613
1614         DBG("id 0x%04x rcode %d", hdr->id, hdr->rcode);
1615
1616         ifdata = req->ifdata;
1617
1618         reply[offset] = req->srcid & 0xff;
1619         reply[offset + 1] = req->srcid >> 8;
1620
1621         req->numresp++;
1622
1623         if (hdr->rcode == 0 || req->resp == NULL) {
1624
1625                 /*
1626                  * If the domain name was append
1627                  * remove it before forwarding the reply.
1628                  */
1629                 if (req->append_domain == TRUE) {
1630                         unsigned char *ptr;
1631                         uint8_t host_len;
1632                         unsigned int domain_len;
1633
1634                         /*
1635                          * ptr points to the first char of the hostname.
1636                          * ->hostname.domain.net
1637                          */
1638                         ptr = reply + offset + sizeof(struct domain_hdr);
1639                         host_len = *ptr;
1640                         domain_len = strlen((const char *)ptr + host_len + 1);
1641
1642                         /*
1643                          * Remove the domain name and replace it by the end
1644                          * of reply. Check if the domain is really there
1645                          * before trying to copy the data. The domain_len can
1646                          * be 0 because if the original query did not contain
1647                          * a domain name, then we are sending two packets,
1648                          * first without the domain name and the second packet
1649                          * with domain name. The append_domain is set to true
1650                          * even if we sent the first packet without domain
1651                          * name. In this case we end up in this branch.
1652                          */
1653                         if (domain_len > 0) {
1654                                 /*
1655                                  * Note that we must use memmove() here,
1656                                  * because the memory areas can overlap.
1657                                  */
1658                                 memmove(ptr + host_len + 1,
1659                                         ptr + host_len + domain_len + 1,
1660                                         reply_len - (ptr - reply + domain_len));
1661
1662                                 reply_len = reply_len - domain_len;
1663                         }
1664                 }
1665
1666                 g_free(req->resp);
1667                 req->resplen = 0;
1668
1669                 req->resp = g_try_malloc(reply_len);
1670                 if (req->resp == NULL)
1671                         return -ENOMEM;
1672
1673                 memcpy(req->resp, reply, reply_len);
1674                 req->resplen = reply_len;
1675
1676                 cache_update(data, reply, reply_len);
1677         }
1678
1679         if (hdr->rcode > 0 && req->numresp < req->numserv)
1680                 return -EINVAL;
1681
1682         request_list = g_slist_remove(request_list, req);
1683
1684         if (protocol == IPPROTO_UDP) {
1685                 sk = g_io_channel_unix_get_fd(ifdata->udp_listener_channel);
1686                 err = sendto(sk, req->resp, req->resplen, 0,
1687                              &req->sa, req->sa_len);
1688         } else {
1689                 sk = req->client_sk;
1690                 err = send(sk, req->resp, req->resplen, MSG_NOSIGNAL);
1691                 close(sk);
1692         }
1693
1694         if (err < 0)
1695                 DBG("Cannot send msg, sk %d proto %d errno %d/%s", sk,
1696                         protocol, errno, strerror(errno));
1697         else
1698                 DBG("proto %d sent %d bytes to %d", protocol, err, sk);
1699
1700         destroy_request_data(req);
1701
1702         return err;
1703 }
1704
1705 static void cache_element_destroy(gpointer value)
1706 {
1707         struct cache_entry *entry = value;
1708
1709         if (entry == NULL)
1710                 return;
1711
1712         if (entry->ipv4 != NULL) {
1713                 g_free(entry->ipv4->data);
1714                 g_free(entry->ipv4);
1715         }
1716
1717         if (entry->ipv6 != NULL) {
1718                 g_free(entry->ipv6->data);
1719                 g_free(entry->ipv6);
1720         }
1721
1722         g_free(entry->key);
1723         g_free(entry);
1724
1725         if (--cache_size < 0)
1726                 cache_size = 0;
1727 }
1728
1729 static gboolean try_remove_cache(gpointer user_data)
1730 {
1731         if (__sync_fetch_and_sub(&cache_refcount, 1) == 1) {
1732                 DBG("No cache users, removing it.");
1733
1734                 g_hash_table_destroy(cache);
1735                 cache = NULL;
1736         }
1737
1738         return FALSE;
1739 }
1740
1741 static void destroy_server(struct server_data *server)
1742 {
1743         GList *list;
1744
1745         DBG("interface %s server %s sock %d", server->interface, server->server,
1746                 g_io_channel_unix_get_fd(server->channel));
1747
1748         server_list = g_slist_remove(server_list, server);
1749
1750         if (server->watch > 0)
1751                 g_source_remove(server->watch);
1752
1753         if (server->timeout > 0)
1754                 g_source_remove(server->timeout);
1755
1756         g_io_channel_unref(server->channel);
1757
1758         if (server->protocol == IPPROTO_UDP)
1759                 DBG("Removing DNS server %s", server->server);
1760
1761         g_free(server->incoming_reply);
1762         g_free(server->server);
1763         for (list = server->domains; list; list = list->next) {
1764                 char *domain = list->data;
1765
1766                 server->domains = g_list_remove(server->domains, domain);
1767                 g_free(domain);
1768         }
1769         g_free(server->interface);
1770         g_free(server->server_addr);
1771
1772         /*
1773          * We do not remove cache right away but delay it few seconds.
1774          * The idea is that when IPv6 DNS server is added via RDNSS, it has a
1775          * lifetime. When the lifetime expires we decrease the refcount so it
1776          * is possible that the cache is then removed. Because a new DNS server
1777          * is usually created almost immediately we would then loose the cache
1778          * without any good reason. The small delay allows the new RDNSS to
1779          * create a new DNS server instance and the refcount does not go to 0.
1780          */
1781         g_timeout_add_seconds(3, try_remove_cache, NULL);
1782
1783         g_free(server);
1784 }
1785
1786 static gboolean udp_server_event(GIOChannel *channel, GIOCondition condition,
1787                                                         gpointer user_data)
1788 {
1789         unsigned char buf[4096];
1790         int sk, err, len;
1791         struct server_data *data = user_data;
1792
1793         if (condition & (G_IO_NVAL | G_IO_ERR | G_IO_HUP)) {
1794                 connman_error("Error with UDP server %s", data->server);
1795                 data->watch = 0;
1796                 return FALSE;
1797         }
1798
1799         sk = g_io_channel_unix_get_fd(channel);
1800
1801         len = recv(sk, buf, sizeof(buf), 0);
1802         if (len < 12)
1803                 return TRUE;
1804
1805         err = forward_dns_reply(buf, len, IPPROTO_UDP, data);
1806         if (err < 0)
1807                 return TRUE;
1808
1809         return TRUE;
1810 }
1811
1812 static gboolean tcp_server_event(GIOChannel *channel, GIOCondition condition,
1813                                                         gpointer user_data)
1814 {
1815         int sk;
1816         struct server_data *server = user_data;
1817
1818         sk = g_io_channel_unix_get_fd(channel);
1819         if (sk == 0)
1820                 return FALSE;
1821
1822         if (condition & (G_IO_NVAL | G_IO_ERR | G_IO_HUP)) {
1823                 GSList *list;
1824 hangup:
1825                 DBG("TCP server channel closed, sk %d", sk);
1826
1827                 /*
1828                  * Discard any partial response which is buffered; better
1829                  * to get a proper response from a working server.
1830                  */
1831                 g_free(server->incoming_reply);
1832                 server->incoming_reply = NULL;
1833
1834                 for (list = request_list; list; list = list->next) {
1835                         struct request_data *req = list->data;
1836                         struct domain_hdr *hdr;
1837
1838                         if (req->protocol == IPPROTO_UDP)
1839                                 continue;
1840
1841                         if (req->request == NULL)
1842                                 continue;
1843
1844                         /*
1845                          * If we're not waiting for any further response
1846                          * from another name server, then we send an error
1847                          * response to the client.
1848                          */
1849                         if (req->numserv && --(req->numserv))
1850                                 continue;
1851
1852                         hdr = (void *) (req->request + 2);
1853                         hdr->id = req->srcid;
1854                         send_response(req->client_sk, req->request,
1855                                 req->request_len, NULL, 0, IPPROTO_TCP);
1856
1857                         request_list = g_slist_remove(request_list, req);
1858                 }
1859
1860                 destroy_server(server);
1861
1862                 return FALSE;
1863         }
1864
1865         if ((condition & G_IO_OUT) && !server->connected) {
1866                 GSList *list;
1867                 GList *domains;
1868                 int no_request_sent = TRUE;
1869                 struct server_data *udp_server;
1870
1871                 udp_server = find_server(server->interface, server->server,
1872                                                                 IPPROTO_UDP);
1873                 if (udp_server != NULL) {
1874                         for (domains = udp_server->domains; domains;
1875                                                 domains = domains->next) {
1876                                 char *dom = domains->data;
1877
1878                                 DBG("Adding domain %s to %s",
1879                                                 dom, server->server);
1880
1881                                 server->domains = g_list_append(server->domains,
1882                                                                 g_strdup(dom));
1883                         }
1884                 }
1885
1886                 server->connected = TRUE;
1887                 server_list = g_slist_append(server_list, server);
1888
1889                 if (server->timeout > 0) {
1890                         g_source_remove(server->timeout);
1891                         server->timeout = 0;
1892                 }
1893
1894                 for (list = request_list; list; ) {
1895                         struct request_data *req = list->data;
1896                         int status;
1897
1898                         if (req->protocol == IPPROTO_UDP) {
1899                                 list = list->next;
1900                                 continue;
1901                         }
1902
1903                         DBG("Sending req %s over TCP", (char *)req->name);
1904
1905                         status = ns_resolv(server, req,
1906                                                 req->request, req->name);
1907                         if (status > 0) {
1908                                 /*
1909                                  * A cached result was sent,
1910                                  * so the request can be released
1911                                  */
1912                                 list = list->next;
1913                                 request_list = g_slist_remove(request_list, req);
1914                                 destroy_request_data(req);
1915                                 continue;
1916                         }
1917
1918                         if (status < 0) {
1919                                 list = list->next;
1920                                 continue;
1921                         }
1922
1923                         no_request_sent = FALSE;
1924
1925                         if (req->timeout > 0)
1926                                 g_source_remove(req->timeout);
1927
1928                         req->timeout = g_timeout_add_seconds(30,
1929                                                 request_timeout, req);
1930                         list = list->next;
1931                 }
1932
1933                 if (no_request_sent == TRUE) {
1934                         destroy_server(server);
1935                         return FALSE;
1936                 }
1937
1938         } else if (condition & G_IO_IN) {
1939                 struct partial_reply *reply = server->incoming_reply;
1940                 int bytes_recv;
1941
1942                 if (!reply) {
1943                         unsigned char reply_len_buf[2];
1944                         uint16_t reply_len;
1945
1946                         bytes_recv = recv(sk, reply_len_buf, 2, MSG_PEEK);
1947                         if (!bytes_recv) {
1948                                 goto hangup;
1949                         } else if (bytes_recv < 0) {
1950                                 if (errno == EAGAIN || errno == EWOULDBLOCK)
1951                                         return TRUE;
1952
1953                                 connman_error("DNS proxy error %s",
1954                                                 strerror(errno));
1955                                 goto hangup;
1956                         } else if (bytes_recv < 2)
1957                                 return TRUE;
1958
1959                         reply_len = reply_len_buf[1] | reply_len_buf[0] << 8;
1960                         reply_len += 2;
1961
1962                         DBG("TCP reply %d bytes from %d", reply_len, sk);
1963
1964                         reply = g_try_malloc(sizeof(*reply) + reply_len + 2);
1965                         if (!reply)
1966                                 return TRUE;
1967
1968                         reply->len = reply_len;
1969                         reply->received = 0;
1970
1971                         server->incoming_reply = reply;
1972                 }
1973
1974                 while (reply->received < reply->len) {
1975                         bytes_recv = recv(sk, reply->buf + reply->received,
1976                                         reply->len - reply->received, 0);
1977                         if (!bytes_recv) {
1978                                 connman_error("DNS proxy TCP disconnect");
1979                                 break;
1980                         } else if (bytes_recv < 0) {
1981                                 if (errno == EAGAIN || errno == EWOULDBLOCK)
1982                                         return TRUE;
1983
1984                                 connman_error("DNS proxy error %s",
1985                                                 strerror(errno));
1986                                 break;
1987                         }
1988                         reply->received += bytes_recv;
1989                 }
1990
1991                 forward_dns_reply(reply->buf, reply->received, IPPROTO_TCP,
1992                                         server);
1993
1994                 g_free(reply);
1995                 server->incoming_reply = NULL;
1996
1997                 destroy_server(server);
1998
1999                 return FALSE;
2000         }
2001
2002         return TRUE;
2003 }
2004
2005 static gboolean tcp_idle_timeout(gpointer user_data)
2006 {
2007         struct server_data *server = user_data;
2008
2009         DBG("");
2010
2011         if (server == NULL)
2012                 return FALSE;
2013
2014         destroy_server(server);
2015
2016         return FALSE;
2017 }
2018
2019 static struct server_data *create_server(const char *interface,
2020                                         const char *domain, const char *server,
2021                                         int protocol)
2022 {
2023         struct addrinfo hints, *rp;
2024         struct server_data *data;
2025         int sk, ret;
2026
2027         DBG("interface %s server %s proto %d", interface, server, protocol);
2028
2029         memset(&hints, 0, sizeof(hints));
2030
2031         switch (protocol) {
2032         case IPPROTO_UDP:
2033                 hints.ai_socktype = SOCK_DGRAM;
2034                 break;
2035
2036         case IPPROTO_TCP:
2037                 hints.ai_socktype = SOCK_STREAM;
2038                 break;
2039
2040         default:
2041                 return NULL;
2042         }
2043         hints.ai_family = AF_UNSPEC;
2044         hints.ai_flags = AI_NUMERICSERV | AI_NUMERICHOST;
2045
2046         ret = getaddrinfo(server, "53", &hints, &rp);
2047         if (ret) {
2048                 connman_error("Failed to parse server %s address: %s\n",
2049                               server, gai_strerror(ret));
2050                 return NULL;
2051         }
2052         /* Do not blindly copy this code elsewhere; it doesn't loop over the
2053            results using ->ai_next as it should. That's OK in *this* case
2054            because it was a numeric lookup; we *know* there's only one. */
2055
2056         sk = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol);
2057         if (sk < 0) {
2058                 connman_error("Failed to create server %s socket", server);
2059                 freeaddrinfo(rp);
2060                 return NULL;
2061         }
2062
2063         DBG("sk %d", sk);
2064
2065         if (interface != NULL) {
2066                 if (setsockopt(sk, SOL_SOCKET, SO_BINDTODEVICE,
2067                                 interface, strlen(interface) + 1) < 0) {
2068                         connman_error("Failed to bind server %s "
2069                                                 "to interface %s",
2070                                                         server, interface);
2071                         freeaddrinfo(rp);
2072                         close(sk);
2073                         return NULL;
2074                 }
2075         }
2076
2077         data = g_try_new0(struct server_data, 1);
2078         if (data == NULL) {
2079                 connman_error("Failed to allocate server %s data", server);
2080                 freeaddrinfo(rp);
2081                 close(sk);
2082                 return NULL;
2083         }
2084
2085         data->channel = g_io_channel_unix_new(sk);
2086         if (data->channel == NULL) {
2087                 connman_error("Failed to create server %s channel", server);
2088                 freeaddrinfo(rp);
2089                 close(sk);
2090                 g_free(data);
2091                 return NULL;
2092         }
2093
2094         g_io_channel_set_close_on_unref(data->channel, TRUE);
2095
2096         if (protocol == IPPROTO_TCP) {
2097                 g_io_channel_set_flags(data->channel, G_IO_FLAG_NONBLOCK, NULL);
2098                 data->watch = g_io_add_watch(data->channel,
2099                         G_IO_OUT | G_IO_IN | G_IO_HUP | G_IO_NVAL | G_IO_ERR,
2100                                                 tcp_server_event, data);
2101                 data->timeout = g_timeout_add_seconds(30, tcp_idle_timeout,
2102                                                                 data);
2103         } else
2104                 data->watch = g_io_add_watch(data->channel,
2105                         G_IO_IN | G_IO_NVAL | G_IO_ERR | G_IO_HUP,
2106                                                 udp_server_event, data);
2107
2108         data->interface = g_strdup(interface);
2109         if (domain)
2110                 data->domains = g_list_append(data->domains, g_strdup(domain));
2111         data->server = g_strdup(server);
2112         data->protocol = protocol;
2113         data->server_addr_len = rp->ai_addrlen;
2114
2115         switch (rp->ai_family) {
2116         case AF_INET:
2117                 data->server_addr = (struct sockaddr *)
2118                                         g_try_new0(struct sockaddr_in, 1);
2119                 break;
2120         case AF_INET6:
2121                 data->server_addr = (struct sockaddr *)
2122                                         g_try_new0(struct sockaddr_in6, 1);
2123                 break;
2124         default:
2125                 connman_error("Wrong address family %d", rp->ai_family);
2126                 break;
2127         }
2128         if (data->server_addr == NULL) {
2129                 freeaddrinfo(rp);
2130                 close(sk);
2131                 g_free(data);
2132                 return NULL;
2133         }
2134         memcpy(data->server_addr, rp->ai_addr, rp->ai_addrlen);
2135
2136         ret = connect(sk, rp->ai_addr, rp->ai_addrlen);
2137         freeaddrinfo(rp);
2138         if (ret < 0) {
2139                 if ((protocol == IPPROTO_TCP && errno != EINPROGRESS) ||
2140                                 protocol == IPPROTO_UDP) {
2141                         GList *list;
2142
2143                         connman_error("Failed to connect to server %s", server);
2144                         if (data->watch > 0)
2145                                 g_source_remove(data->watch);
2146                         if (data->timeout > 0)
2147                                 g_source_remove(data->timeout);
2148
2149                         g_io_channel_unref(data->channel);
2150                         close(sk);
2151
2152                         g_free(data->server);
2153                         g_free(data->interface);
2154                         for (list = data->domains; list; list = list->next) {
2155                                 char *tmp_domain = list->data;
2156
2157                                 data->domains = g_list_remove(data->domains,
2158                                                                 tmp_domain);
2159                                 g_free(tmp_domain);
2160                         }
2161                         g_free(data);
2162                         return NULL;
2163                 }
2164         }
2165
2166         if (__sync_fetch_and_add(&cache_refcount, 1) == 0)
2167                 cache = g_hash_table_new_full(g_str_hash,
2168                                         g_str_equal,
2169                                         NULL,
2170                                         cache_element_destroy);
2171
2172         if (protocol == IPPROTO_UDP) {
2173                 /* Enable new servers by default */
2174                 data->enabled = TRUE;
2175                 DBG("Adding DNS server %s", data->server);
2176
2177                 server_list = g_slist_append(server_list, data);
2178         }
2179
2180         return data;
2181 }
2182
2183 static gboolean resolv(struct request_data *req,
2184                                 gpointer request, gpointer name)
2185 {
2186         GSList *list;
2187
2188         for (list = server_list; list; list = list->next) {
2189                 struct server_data *data = list->data;
2190
2191                 DBG("server %s enabled %d", data->server, data->enabled);
2192
2193                 if (data->enabled == FALSE)
2194                         continue;
2195
2196                 if (data->watch == 0 && data->protocol == IPPROTO_UDP)
2197                         data->watch = g_io_add_watch(data->channel,
2198                                 G_IO_IN | G_IO_NVAL | G_IO_ERR | G_IO_HUP,
2199                                                 udp_server_event, data);
2200
2201                 if (ns_resolv(data, req, request, name) > 0)
2202                         return TRUE;
2203         }
2204
2205         return FALSE;
2206 }
2207
2208 static void append_domain(const char *interface, const char *domain)
2209 {
2210         GSList *list;
2211
2212         DBG("interface %s domain %s", interface, domain);
2213
2214         if (domain == NULL)
2215                 return;
2216
2217         for (list = server_list; list; list = list->next) {
2218                 struct server_data *data = list->data;
2219                 GList *dom_list;
2220                 char *dom;
2221                 gboolean dom_found = FALSE;
2222
2223                 if (data->interface == NULL)
2224                         continue;
2225
2226                 if (g_str_equal(data->interface, interface) == FALSE)
2227                         continue;
2228
2229                 for (dom_list = data->domains; dom_list;
2230                                 dom_list = dom_list->next) {
2231                         dom = dom_list->data;
2232
2233                         if (g_str_equal(dom, domain)) {
2234                                 dom_found = TRUE;
2235                                 break;
2236                         }
2237                 }
2238
2239                 if (dom_found == FALSE) {
2240                         data->domains =
2241                                 g_list_append(data->domains, g_strdup(domain));
2242                 }
2243         }
2244 }
2245
2246 int __connman_dnsproxy_append(const char *interface, const char *domain,
2247                                                         const char *server)
2248 {
2249         struct server_data *data;
2250
2251         DBG("interface %s server %s", interface, server);
2252
2253         if (server == NULL && domain == NULL)
2254                 return -EINVAL;
2255
2256         if (server == NULL) {
2257                 append_domain(interface, domain);
2258
2259                 return 0;
2260         }
2261
2262         if (g_str_equal(server, "127.0.0.1") == TRUE)
2263                 return -ENODEV;
2264
2265         data = find_server(interface, server, IPPROTO_UDP);
2266         if (data != NULL) {
2267                 append_domain(interface, domain);
2268                 return 0;
2269         }
2270
2271         data = create_server(interface, domain, server, IPPROTO_UDP);
2272         if (data == NULL)
2273                 return -EIO;
2274
2275         return 0;
2276 }
2277
2278 static void remove_server(const char *interface, const char *domain,
2279                         const char *server, int protocol)
2280 {
2281         struct server_data *data;
2282
2283         data = find_server(interface, server, protocol);
2284         if (data == NULL)
2285                 return;
2286
2287         destroy_server(data);
2288 }
2289
2290 int __connman_dnsproxy_remove(const char *interface, const char *domain,
2291                                                         const char *server)
2292 {
2293         DBG("interface %s server %s", interface, server);
2294
2295         if (server == NULL)
2296                 return -EINVAL;
2297
2298         if (g_str_equal(server, "127.0.0.1") == TRUE)
2299                 return -ENODEV;
2300
2301         remove_server(interface, domain, server, IPPROTO_UDP);
2302         remove_server(interface, domain, server, IPPROTO_TCP);
2303
2304         return 0;
2305 }
2306
2307 void __connman_dnsproxy_flush(void)
2308 {
2309         GSList *list;
2310
2311         list = request_list;
2312         while (list) {
2313                 struct request_data *req = list->data;
2314
2315                 list = list->next;
2316
2317                 if (resolv(req, req->request, req->name) == TRUE) {
2318                         /*
2319                          * A cached result was sent,
2320                          * so the request can be released
2321                          */
2322                         request_list =
2323                                 g_slist_remove(request_list, req);
2324                         destroy_request_data(req);
2325                         continue;
2326                 }
2327
2328                 if (req->timeout > 0)
2329                         g_source_remove(req->timeout);
2330                 req->timeout = g_timeout_add_seconds(5, request_timeout, req);
2331         }
2332 }
2333
2334 static void dnsproxy_offline_mode(connman_bool_t enabled)
2335 {
2336         GSList *list;
2337
2338         DBG("enabled %d", enabled);
2339
2340         for (list = server_list; list; list = list->next) {
2341                 struct server_data *data = list->data;
2342
2343                 if (enabled == FALSE) {
2344                         DBG("Enabling DNS server %s", data->server);
2345                         data->enabled = TRUE;
2346                         cache_invalidate();
2347                         cache_refresh();
2348                 } else {
2349                         DBG("Disabling DNS server %s", data->server);
2350                         data->enabled = FALSE;
2351                         cache_invalidate();
2352                 }
2353         }
2354 }
2355
2356 static void dnsproxy_default_changed(struct connman_service *service)
2357 {
2358         GSList *list;
2359         char *interface;
2360
2361         DBG("service %p", service);
2362
2363         /* DNS has changed, invalidate the cache */
2364         cache_invalidate();
2365
2366         if (service == NULL) {
2367                 /* When no services are active, then disable DNS proxying */
2368                 dnsproxy_offline_mode(TRUE);
2369                 return;
2370         }
2371
2372         interface = connman_service_get_interface(service);
2373         if (interface == NULL)
2374                 return;
2375
2376         for (list = server_list; list; list = list->next) {
2377                 struct server_data *data = list->data;
2378
2379                 if (g_strcmp0(data->interface, interface) == 0) {
2380                         DBG("Enabling DNS server %s", data->server);
2381                         data->enabled = TRUE;
2382                 } else {
2383                         DBG("Disabling DNS server %s", data->server);
2384                         data->enabled = FALSE;
2385                 }
2386         }
2387
2388         g_free(interface);
2389         cache_refresh();
2390 }
2391
2392 static struct connman_notifier dnsproxy_notifier = {
2393         .name                   = "dnsproxy",
2394         .default_changed        = dnsproxy_default_changed,
2395         .offline_mode           = dnsproxy_offline_mode,
2396 };
2397
2398 static unsigned char opt_edns0_type[2] = { 0x00, 0x29 };
2399
2400 static int parse_request(unsigned char *buf, int len,
2401                                         char *name, unsigned int size)
2402 {
2403         struct domain_hdr *hdr = (void *) buf;
2404         uint16_t qdcount = ntohs(hdr->qdcount);
2405         uint16_t arcount = ntohs(hdr->arcount);
2406         unsigned char *ptr;
2407         char *last_label = NULL;
2408         unsigned int remain, used = 0;
2409
2410         if (len < 12)
2411                 return -EINVAL;
2412
2413         DBG("id 0x%04x qr %d opcode %d qdcount %d arcount %d",
2414                                         hdr->id, hdr->qr, hdr->opcode,
2415                                                         qdcount, arcount);
2416
2417         if (hdr->qr != 0 || qdcount != 1)
2418                 return -EINVAL;
2419
2420         name[0] = '\0';
2421
2422         ptr = buf + sizeof(struct domain_hdr);
2423         remain = len - sizeof(struct domain_hdr);
2424
2425         while (remain > 0) {
2426                 uint8_t label_len = *ptr;
2427
2428                 if (label_len == 0x00) {
2429                         last_label = (char *) (ptr + 1);
2430                         break;
2431                 }
2432
2433                 if (used + label_len + 1 > size)
2434                         return -ENOBUFS;
2435
2436                 strncat(name, (char *) (ptr + 1), label_len);
2437                 strcat(name, ".");
2438
2439                 used += label_len + 1;
2440
2441                 ptr += label_len + 1;
2442                 remain -= label_len + 1;
2443         }
2444
2445         if (last_label && arcount && remain >= 9 && last_label[4] == 0 &&
2446                                 !memcmp(last_label + 5, opt_edns0_type, 2)) {
2447                 uint16_t edns0_bufsize;
2448
2449                 edns0_bufsize = last_label[7] << 8 | last_label[8];
2450
2451                 DBG("EDNS0 buffer size %u", edns0_bufsize);
2452
2453                 /* This is an evil hack until full TCP support has been
2454                  * implemented.
2455                  *
2456                  * Somtimes the EDNS0 request gets send with a too-small
2457                  * buffer size. Since glibc doesn't seem to crash when it
2458                  * gets a response biffer then it requested, just bump
2459                  * the buffer size up to 4KiB.
2460                  */
2461                 if (edns0_bufsize < 0x1000) {
2462                         last_label[7] = 0x10;
2463                         last_label[8] = 0x00;
2464                 }
2465         }
2466
2467         DBG("query %s", name);
2468
2469         return 0;
2470 }
2471
2472 static gboolean tcp_listener_event(GIOChannel *channel, GIOCondition condition,
2473                                                         gpointer user_data)
2474 {
2475         unsigned char buf[768];
2476         char query[512];
2477         struct request_data *req;
2478         int sk, client_sk, len, err;
2479         struct sockaddr_in6 client_addr;
2480         socklen_t client_addr_len = sizeof(client_addr);
2481         GSList *list;
2482         struct listener_data *ifdata = user_data;
2483         int waiting_for_connect = FALSE, qtype = 0;
2484         struct cache_entry *entry;
2485
2486         DBG("condition 0x%x", condition);
2487
2488         if (condition & (G_IO_NVAL | G_IO_ERR | G_IO_HUP)) {
2489                 if (ifdata->tcp_listener_watch > 0)
2490                         g_source_remove(ifdata->tcp_listener_watch);
2491                 ifdata->tcp_listener_watch = 0;
2492
2493                 connman_error("Error with TCP listener channel");
2494
2495                 return FALSE;
2496         }
2497
2498         sk = g_io_channel_unix_get_fd(channel);
2499
2500         client_sk = accept(sk, (void *)&client_addr, &client_addr_len);
2501         if (client_sk < 0) {
2502                 connman_error("Accept failure on TCP listener");
2503                 ifdata->tcp_listener_watch = 0;
2504                 return FALSE;
2505         }
2506
2507         len = recv(client_sk, buf, sizeof(buf), 0);
2508         if (len < 2)
2509                 return TRUE;
2510
2511         DBG("Received %d bytes (id 0x%04x) from %d", len,
2512                 buf[2] | buf[3] << 8, client_sk);
2513
2514         err = parse_request(buf + 2, len - 2, query, sizeof(query));
2515         if (err < 0 || (g_slist_length(server_list) == 0)) {
2516                 send_response(client_sk, buf, len, NULL, 0, IPPROTO_TCP);
2517                 return TRUE;
2518         }
2519
2520         req = g_try_new0(struct request_data, 1);
2521         if (req == NULL)
2522                 return TRUE;
2523
2524         memcpy(&req->sa, &client_addr, client_addr_len);
2525         req->sa_len = client_addr_len;
2526         req->client_sk = client_sk;
2527         req->protocol = IPPROTO_TCP;
2528
2529         req->srcid = buf[2] | (buf[3] << 8);
2530         req->dstid = get_id();
2531         req->altid = get_id();
2532         req->request_len = len;
2533
2534         buf[2] = req->dstid & 0xff;
2535         buf[3] = req->dstid >> 8;
2536
2537         req->numserv = 0;
2538         req->ifdata = (struct listener_data *) ifdata;
2539         req->append_domain = FALSE;
2540
2541         /*
2542          * Check if the answer is found in the cache before
2543          * creating sockets to the server.
2544          */
2545         entry = cache_check(buf, &qtype, IPPROTO_TCP);
2546         if (entry != NULL) {
2547                 int ttl_left = 0;
2548                 struct cache_data *data;
2549
2550                 DBG("cache hit %s type %s", query, qtype == 1 ? "A" : "AAAA");
2551                 if (qtype == 1)
2552                         data = entry->ipv4;
2553                 else
2554                         data = entry->ipv6;
2555
2556                 if (data != NULL) {
2557                         ttl_left = data->valid_until - time(NULL);
2558                         entry->hits++;
2559
2560                         send_cached_response(client_sk, data->data,
2561                                         data->data_len, NULL, 0, IPPROTO_TCP,
2562                                         req->srcid, data->answers, ttl_left);
2563
2564                         g_free(req);
2565                         return TRUE;
2566                 } else
2567                         DBG("data missing, ignoring cache for this query");
2568         }
2569
2570         for (list = server_list; list; list = list->next) {
2571                 struct server_data *data = list->data;
2572
2573                 if (data->protocol != IPPROTO_UDP || data->enabled == FALSE)
2574                         continue;
2575
2576                 if(create_server(data->interface, NULL,
2577                                         data->server, IPPROTO_TCP) == NULL)
2578                         continue;
2579
2580                 waiting_for_connect = TRUE;
2581         }
2582
2583         if (waiting_for_connect == FALSE) {
2584                 /* No server is waiting for connect */
2585                 send_response(client_sk, buf, len, NULL, 0, IPPROTO_TCP);
2586                 g_free(req);
2587                 return TRUE;
2588         }
2589
2590         /*
2591          * The server is not connected yet.
2592          * Copy the relevant buffers.
2593          * The request will actually be sent once we're
2594          * properly connected over TCP to the nameserver.
2595          */
2596         req->request = g_try_malloc0(req->request_len);
2597         if (req->request == NULL) {
2598                 send_response(client_sk, buf, len, NULL, 0, IPPROTO_TCP);
2599                 g_free(req);
2600                 return TRUE;
2601         }
2602         memcpy(req->request, buf, req->request_len);
2603
2604         req->name = g_try_malloc0(sizeof(query));
2605         if (req->name == NULL) {
2606                 send_response(client_sk, buf, len, NULL, 0, IPPROTO_TCP);
2607                 g_free(req->request);
2608                 g_free(req);
2609                 return TRUE;
2610         }
2611         memcpy(req->name, query, sizeof(query));
2612
2613         req->timeout = g_timeout_add_seconds(30, request_timeout, req);
2614
2615         request_list = g_slist_append(request_list, req);
2616
2617         return TRUE;
2618 }
2619
2620 static gboolean udp_listener_event(GIOChannel *channel, GIOCondition condition,
2621                                                         gpointer user_data)
2622 {
2623         unsigned char buf[768];
2624         char query[512];
2625         struct request_data *req;
2626         struct sockaddr_in6 client_addr;
2627         socklen_t client_addr_len = sizeof(client_addr);
2628         int sk, err, len;
2629         struct listener_data *ifdata = user_data;
2630
2631         if (condition & (G_IO_NVAL | G_IO_ERR | G_IO_HUP)) {
2632                 connman_error("Error with UDP listener channel");
2633                 ifdata->udp_listener_watch = 0;
2634                 return FALSE;
2635         }
2636
2637         sk = g_io_channel_unix_get_fd(channel);
2638
2639         memset(&client_addr, 0, client_addr_len);
2640         len = recvfrom(sk, buf, sizeof(buf), 0, (void *)&client_addr,
2641                        &client_addr_len);
2642         if (len < 2)
2643                 return TRUE;
2644
2645         DBG("Received %d bytes (id 0x%04x)", len, buf[0] | buf[1] << 8);
2646
2647         err = parse_request(buf, len, query, sizeof(query));
2648         if (err < 0 || (g_slist_length(server_list) == 0)) {
2649                 send_response(sk, buf, len, (void *)&client_addr,
2650                                 client_addr_len, IPPROTO_UDP);
2651                 return TRUE;
2652         }
2653
2654         req = g_try_new0(struct request_data, 1);
2655         if (req == NULL)
2656                 return TRUE;
2657
2658         memcpy(&req->sa, &client_addr, client_addr_len);
2659         req->sa_len = client_addr_len;
2660         req->client_sk = 0;
2661         req->protocol = IPPROTO_UDP;
2662
2663         req->srcid = buf[0] | (buf[1] << 8);
2664         req->dstid = get_id();
2665         req->altid = get_id();
2666         req->request_len = len;
2667
2668         buf[0] = req->dstid & 0xff;
2669         buf[1] = req->dstid >> 8;
2670
2671         req->numserv = 0;
2672         req->ifdata = (struct listener_data *) ifdata;
2673         req->append_domain = FALSE;
2674
2675         if (resolv(req, buf, query) == TRUE) {
2676                 /* a cached result was sent, so the request can be released */
2677                 g_free(req);
2678                 return TRUE;
2679         }
2680
2681         req->timeout = g_timeout_add_seconds(5, request_timeout, req);
2682         request_list = g_slist_append(request_list, req);
2683
2684         return TRUE;
2685 }
2686
2687 static int create_dns_listener(int protocol, struct listener_data *ifdata)
2688 {
2689         GIOChannel *channel;
2690         const char *proto;
2691         union {
2692                 struct sockaddr sa;
2693                 struct sockaddr_in6 sin6;
2694                 struct sockaddr_in sin;
2695         } s;
2696         socklen_t slen;
2697         int sk, type, v6only = 0;
2698         int family = AF_INET6;
2699
2700
2701         DBG("interface %s", ifdata->ifname);
2702
2703         switch (protocol) {
2704         case IPPROTO_UDP:
2705                 proto = "UDP";
2706                 type = SOCK_DGRAM | SOCK_CLOEXEC;
2707                 break;
2708
2709         case IPPROTO_TCP:
2710                 proto = "TCP";
2711                 type = SOCK_STREAM | SOCK_CLOEXEC;
2712                 break;
2713
2714         default:
2715                 return -EINVAL;
2716         }
2717
2718         sk = socket(family, type, protocol);
2719         if (sk < 0 && family == AF_INET6 && errno == EAFNOSUPPORT) {
2720                 connman_error("No IPv6 support; DNS proxy listening only on Legacy IP");
2721                 family = AF_INET;
2722                 sk = socket(family, type, protocol);
2723         }
2724         if (sk < 0) {
2725                 connman_error("Failed to create %s listener socket", proto);
2726                 return -EIO;
2727         }
2728
2729         if (setsockopt(sk, SOL_SOCKET, SO_BINDTODEVICE,
2730                                         ifdata->ifname,
2731                                         strlen(ifdata->ifname) + 1) < 0) {
2732                 connman_error("Failed to bind %s listener interface", proto);
2733                 close(sk);
2734                 return -EIO;
2735         }
2736         /* Ensure it accepts Legacy IP connections too */
2737         if (family == AF_INET6 &&
2738                         setsockopt(sk, SOL_IPV6, IPV6_V6ONLY,
2739                                         &v6only, sizeof(v6only)) < 0) {
2740                 connman_error("Failed to clear V6ONLY on %s listener socket",
2741                               proto);
2742                 close(sk);
2743                 return -EIO;
2744         }
2745
2746         if (family == AF_INET) {
2747                 memset(&s.sin, 0, sizeof(s.sin));
2748                 s.sin.sin_family = AF_INET;
2749                 s.sin.sin_port = htons(53);
2750                 s.sin.sin_addr.s_addr = htonl(INADDR_ANY);
2751                 slen = sizeof(s.sin);
2752         } else {
2753                 memset(&s.sin6, 0, sizeof(s.sin6));
2754                 s.sin6.sin6_family = AF_INET6;
2755                 s.sin6.sin6_port = htons(53);
2756                 s.sin6.sin6_addr = in6addr_any;
2757                 slen = sizeof(s.sin6);
2758         }
2759
2760         if (bind(sk, &s.sa, slen) < 0) {
2761                 connman_error("Failed to bind %s listener socket", proto);
2762                 close(sk);
2763                 return -EIO;
2764         }
2765
2766         if (protocol == IPPROTO_TCP && listen(sk, 10) < 0) {
2767                 connman_error("Failed to listen on TCP socket");
2768                 close(sk);
2769                 return -EIO;
2770         }
2771
2772         channel = g_io_channel_unix_new(sk);
2773         if (channel == NULL) {
2774                 connman_error("Failed to create %s listener channel", proto);
2775                 close(sk);
2776                 return -EIO;
2777         }
2778
2779         g_io_channel_set_close_on_unref(channel, TRUE);
2780
2781         if (protocol == IPPROTO_TCP) {
2782                 ifdata->tcp_listener_channel = channel;
2783                 ifdata->tcp_listener_watch = g_io_add_watch(channel,
2784                                 G_IO_IN, tcp_listener_event, (gpointer) ifdata);
2785         } else {
2786                 ifdata->udp_listener_channel = channel;
2787                 ifdata->udp_listener_watch = g_io_add_watch(channel,
2788                                 G_IO_IN, udp_listener_event, (gpointer) ifdata);
2789         }
2790
2791         return 0;
2792 }
2793
2794 static void destroy_udp_listener(struct listener_data *ifdata)
2795 {
2796         DBG("interface %s", ifdata->ifname);
2797
2798         if (ifdata->udp_listener_watch > 0)
2799                 g_source_remove(ifdata->udp_listener_watch);
2800
2801         g_io_channel_unref(ifdata->udp_listener_channel);
2802 }
2803
2804 static void destroy_tcp_listener(struct listener_data *ifdata)
2805 {
2806         DBG("interface %s", ifdata->ifname);
2807
2808         if (ifdata->tcp_listener_watch > 0)
2809                 g_source_remove(ifdata->tcp_listener_watch);
2810
2811         g_io_channel_unref(ifdata->tcp_listener_channel);
2812 }
2813
2814 static int create_listener(struct listener_data *ifdata)
2815 {
2816         int err;
2817
2818         err = create_dns_listener(IPPROTO_UDP, ifdata);
2819         if (err < 0)
2820                 return err;
2821
2822         err = create_dns_listener(IPPROTO_TCP, ifdata);
2823         if (err < 0) {
2824                 destroy_udp_listener(ifdata);
2825                 return err;
2826         }
2827
2828         if (g_strcmp0(ifdata->ifname, "lo") == 0)
2829                 __connman_resolvfile_append("lo", NULL, "127.0.0.1");
2830
2831         return 0;
2832 }
2833
2834 static void destroy_listener(struct listener_data *ifdata)
2835 {
2836         GSList *list;
2837
2838         if (g_strcmp0(ifdata->ifname, "lo") == 0)
2839                 __connman_resolvfile_remove("lo", NULL, "127.0.0.1");
2840
2841         for (list = request_list; list; list = list->next) {
2842                 struct request_data *req = list->data;
2843
2844                 DBG("Dropping request (id 0x%04x -> 0x%04x)",
2845                                                 req->srcid, req->dstid);
2846                 destroy_request_data(req);
2847                 list->data = NULL;
2848         }
2849
2850         g_slist_free(request_list);
2851         request_list = NULL;
2852
2853         destroy_tcp_listener(ifdata);
2854         destroy_udp_listener(ifdata);
2855 }
2856
2857 int __connman_dnsproxy_add_listener(const char *interface)
2858 {
2859         struct listener_data *ifdata;
2860         int err;
2861
2862         DBG("interface %s", interface);
2863
2864         if (g_hash_table_lookup(listener_table, interface) != NULL)
2865                 return 0;
2866
2867         ifdata = g_try_new0(struct listener_data, 1);
2868         if (ifdata == NULL)
2869                 return -ENOMEM;
2870
2871         ifdata->ifname = g_strdup(interface);
2872         ifdata->udp_listener_channel = NULL;
2873         ifdata->udp_listener_watch = 0;
2874         ifdata->tcp_listener_channel = NULL;
2875         ifdata->tcp_listener_watch = 0;
2876
2877         err = create_listener(ifdata);
2878         if (err < 0) {
2879                 connman_error("Couldn't create listener for %s err %d",
2880                                 interface, err);
2881                 g_free(ifdata->ifname);
2882                 g_free(ifdata);
2883                 return err;
2884         }
2885         g_hash_table_insert(listener_table, ifdata->ifname, ifdata);
2886         return 0;
2887 }
2888
2889 void __connman_dnsproxy_remove_listener(const char *interface)
2890 {
2891         struct listener_data *ifdata;
2892
2893         DBG("interface %s", interface);
2894
2895         ifdata = g_hash_table_lookup(listener_table, interface);
2896         if (ifdata == NULL)
2897                 return;
2898
2899         destroy_listener(ifdata);
2900
2901         g_hash_table_remove(listener_table, interface);
2902 }
2903
2904 static void remove_listener(gpointer key, gpointer value, gpointer user_data)
2905 {
2906         const char *interface = key;
2907         struct listener_data *ifdata = value;
2908
2909         DBG("interface %s", interface);
2910
2911         destroy_listener(ifdata);
2912 }
2913
2914 int __connman_dnsproxy_init(void)
2915 {
2916         int err;
2917
2918         DBG("");
2919
2920         srandom(time(NULL));
2921
2922         listener_table = g_hash_table_new_full(g_str_hash, g_str_equal,
2923                                                         g_free, g_free);
2924         err = __connman_dnsproxy_add_listener("lo");
2925         if (err < 0)
2926                 return err;
2927
2928         err = connman_notifier_register(&dnsproxy_notifier);
2929         if (err < 0)
2930                 goto destroy;
2931
2932         return 0;
2933
2934 destroy:
2935         __connman_dnsproxy_remove_listener("lo");
2936         g_hash_table_destroy(listener_table);
2937
2938         return err;
2939 }
2940
2941 void __connman_dnsproxy_cleanup(void)
2942 {
2943         DBG("");
2944
2945         connman_notifier_unregister(&dnsproxy_notifier);
2946
2947         g_hash_table_foreach(listener_table, remove_listener, NULL);
2948
2949         g_hash_table_destroy(listener_table);
2950 }