1 // Licensed to the .NET Foundation under one or more agreements.
2 // The .NET Foundation licenses this file to you under the MIT license.
3 // See the LICENSE file in the project root for more information.
4 /* ------------------------------------------------------------------------- *
5 * DbgIPCEvents.h -- header file for private Debugger data shared by various
9 * ------------------------------------------------------------------------- */
11 #ifndef _DbgIPCEvents_h_
12 #define _DbgIPCEvents_h_
17 #include <corjit.h> // for ICorDebugInfo::VarLocType & VarLoc
18 #include <specstrings.h>
20 #include "dbgtargetcontext.h"
23 // Get version numbers for IPCHeader stamp
24 #include "ndpversion.h"
26 #include "dbgappdomain.h"
30 //-----------------------------------------------------------------------------
31 // V3 additions to IPC protocol between LS and RS.
32 //-----------------------------------------------------------------------------
34 // Special Exception code for LS to communicate with RS.
35 // LS will raise this exception to communicate managed debug events to the RS.
36 // Exception codes can't use bit 0x10000000, that's reserved by OS.
37 #define CLRDBG_NOTIFICATION_EXCEPTION_CODE ((DWORD) 0x04242420)
39 // This is exception argument 0 included in debugger notification events.
40 // The debugger uses this as a sanity check.
41 // This could be very volatile data that changes between builds.
42 #define CLRDBG_EXCEPTION_DATA_CHECKSUM ((DWORD) 0x31415927)
45 // Reasons for hijack.
46 namespace EHijackReason
50 kUnhandledException = 1,
52 kFirstChanceSuspend = 3,
56 inline bool IsValid(EHijackReason value)
59 return (value > 0) && (value < kMax);
65 #define MAX_LOG_SWITCH_NAME_LEN 256
67 //-----------------------------------------------------------------------------
69 // This file describes the IPC communication protocol between the LS (mscorwks)
70 // and the RS (mscordbi). For Desktop builds, it is private and can change on a
71 // daily basis. The version of the LS will always match the version of the RS
72 // (but see the discussion of CoreCLR below). They are like a single conceptual
73 // DLL split across 2 processes.
74 // The only restriction is that it should be flavor agnostic - so don't change
75 // layout based off '#ifdef DEBUG'. This lets us drop a Debug flavor RS onto
76 // a retail installation w/o any further installation woes. That's very useful
78 //-----------------------------------------------------------------------------
81 // We want this available for DbgInterface.h - put it here.
89 // Names of the setup sync event and shared memory used for IPC between the Left Side and the Right Side. NOTE: these
90 // names must include a %d for the process id. The process id used is the process id of the debuggee.
93 #define CorDBIPCSetupSyncEventName W("CorDBIPCSetupSyncEvent_%d")
96 // This define controls whether we always pass first chance exceptions to the in-process first chance hijack filter
97 // during interop debugging or if we try to short-circuit and make the decision out-of-process as much as possible.
99 #define CorDB_Short_Circuit_First_Chance_Ownership 1
102 // Defines for current version numbers for the left and right sides
104 #define CorDB_LeftSideProtocolCurrent 2
105 #define CorDB_LeftSideProtocolMinSupported 2
106 #define CorDB_RightSideProtocolCurrent 2
107 #define CorDB_RightSideProtocolMinSupported 2
110 // The remaining data structures in this file can be shared between two processes and for network transport
111 // based debugging this can mean two different platforms as well. The two platforms that can share these
112 // data structures must have identical layouts for them (each field must lie at the same offset and have the
113 // same length). The MSLAYOUT macro should be applied to each structure to avoid any compiler packing differences.
117 // DebuggerIPCRuntimeOffsets contains addresses and offsets of important global variables, functions, and fields in
118 // Runtime objects. This is populated during Left Side initialization and is read by the Right Side. This struct is
119 // mostly to facilitate unmanaged debugging support, but it may have some small uses for managed debugging.
121 struct MSLAYOUT DebuggerIPCRuntimeOffsets
123 #ifdef FEATURE_INTEROP_DEBUGGING
124 void *m_genericHijackFuncAddr;
125 void *m_signalHijackStartedBPAddr;
126 void *m_excepForRuntimeHandoffStartBPAddr;
127 void *m_excepForRuntimeHandoffCompleteBPAddr;
128 void *m_signalHijackCompleteBPAddr;
129 void *m_excepNotForRuntimeBPAddr;
130 void *m_notifyRSOfSyncCompleteBPAddr;
131 void *m_raiseExceptionAddr; // The address of kernel32!RaiseException in the debuggee
132 #endif // FEATURE_INTEROP_DEBUGGING
133 SIZE_T m_TLSIndex; // The TLS index the CLR is using to hold Thread objects
134 SIZE_T m_TLSIsSpecialIndex; // The index into the Predef block of the the "IsSpecial" status for a thread.
135 SIZE_T m_TLSCantStopIndex; // The index into the Predef block of the the Can't-Stop count.
136 SIZE_T m_EEThreadStateOffset; // Offset of m_state in a Thread
137 SIZE_T m_EEThreadStateNCOffset; // Offset of m_stateNC in a Thread
138 SIZE_T m_EEThreadPGCDisabledOffset; // Offset of the bit for whether PGC is disabled or not in a Thread
139 DWORD m_EEThreadPGCDisabledValue; // Value at m_EEThreadPGCDisabledOffset that equals "PGC disabled".
140 SIZE_T m_EEThreadDebuggerWordOffset; // Offset of debugger word in a Thread
141 SIZE_T m_EEThreadFrameOffset; // Offset of the Frame ptr in a Thread
142 SIZE_T m_EEThreadMaxNeededSize; // Max memory to read to get what we need out of a Thread object
143 DWORD m_EEThreadSteppingStateMask; // Mask for Thread::TSNC_DebuggerIsStepping
144 DWORD m_EEMaxFrameValue; // The max Frame value
145 SIZE_T m_EEThreadDebuggerFilterContextOffset; // Offset of debugger's filter context within a Thread Object.
146 SIZE_T m_EEThreadCantStopOffset; // Offset of the can't stop count in a Thread
147 SIZE_T m_EEFrameNextOffset; // Offset of the next ptr in a Frame
148 DWORD m_EEIsManagedExceptionStateMask; // Mask for Thread::TSNC_DebuggerIsManagedException
149 void *m_pPatches; // Addr of patch table
150 BOOL *m_pPatchTableValid; // Addr of g_patchTableValid
151 SIZE_T m_offRgData; // Offset of m_pcEntries
152 SIZE_T m_offCData; // Offset of count of m_pcEntries
153 SIZE_T m_cbPatch; // Size per patch entry
154 SIZE_T m_offAddr; // Offset within patch of target addr
155 SIZE_T m_offOpcode; // Offset within patch of target opcode
156 SIZE_T m_cbOpcode; // Max size of opcode
157 SIZE_T m_offTraceType; // Offset of the trace.type within a patch
158 DWORD m_traceTypeUnmanaged; // TRACE_UNMANAGED
160 DebuggerIPCRuntimeOffsets()
162 ZeroMemory(this, sizeof(DebuggerIPCRuntimeOffsets));
167 // The size of the send and receive IPC buffers.
168 // These must be big enough to fit a DebuggerIPCEvent. Also, the bigger they are, the fewer events
169 // it takes to send variable length stuff like the stack trace.
170 // But for perf reasons, they need to be small enough to not just push us over a page boundary in an IPC block.
171 // Unfortunately, there's a lot of other goo in the IPC block, so we can't use some clean formula. So we
172 // have to resort to just tuning things.
175 // When using a network transport rather than shared memory buffers CorDBIPC_BUFFER_SIZE is the upper bound
176 // for a single DebuggerIPCEvent structure. This now relates to the maximal size of a network message and is
177 // orthogonal to the host's page size. Because of this we defer definition of CorDBIPC_BUFFER_SIZE until we've
178 // declared DebuggerIPCEvent at the end of this header (and we can do so because in the transport case there
179 // aren't any embedded buffers in the DebuggerIPCControlBlock).
181 #if defined(DBG_TARGET_X86) || defined(DBG_TARGET_ARM)
182 #define CorDBIPC_BUFFER_SIZE (2088) // hand tuned to ensure that ipc block in IPCHeader.h fits in 1 page.
183 #else // !_TARGET_X86_ && !_TARGET_ARM_
184 // This is the size of a DebuggerIPCEvent. You will hit an assert in Cordb::Initialize() (DI\process.cpp)
185 // if this is not defined correctly. AMD64 actually has a page size of 0x1000, not 0x2000.
186 #define CorDBIPC_BUFFER_SIZE 4016 // (4016 + 6) * 2 + 148 = 8192 (two (DebuggerIPCEvent + alignment padding) +
187 // other fields = page size)
188 #endif // DBG_TARGET_X86 || DBG_TARGET_ARM
191 // DebuggerIPCControlBlock describes the layout of the shared memory shared between the Left Side and the Right
192 // Side. This includes error information, handles for the IPC channel, and space for the send/receive buffers.
194 struct MSLAYOUT DebuggerIPCControlBlock
196 // Version data should be first in the control block to ensure that we can read it even if the control block
198 SIZE_T m_DCBSize; // note this field is used as a semaphore to indicate the DCB is initialized
199 ULONG m_verMajor; // CLR build number for the Left Side.
200 ULONG m_verMinor; // CLR build number for the Left Side.
202 // This next stuff fits in a DWORD.
203 bool m_checkedBuild; // CLR build type for the Left Side.
204 // using the first padding byte to indicate if hosted in fiber mode.
205 // We actually just need one bit. So if needed, can turn this to a bit.
207 bool m_bHostingInFiber;
211 ULONG m_leftSideProtocolCurrent; // Current protocol version for the Left Side.
212 ULONG m_leftSideProtocolMinSupported; // Minimum protocol the Left Side can support.
214 ULONG m_rightSideProtocolCurrent; // Current protocol version for the Right Side.
215 ULONG m_rightSideProtocolMinSupported; // Minimum protocol the Right Side requires.
218 unsigned int m_errorCode;
220 #if defined(DBG_TARGET_WIN64)
221 // 64-bit needs this padding to make the handles after this aligned.
222 // But x86 can't have this padding b/c it breaks binary compatibility between v1.1 and v2.0.
224 #endif // DBG_TARGET_WIN64
227 RemoteHANDLE m_rightSideEventAvailable;
228 RemoteHANDLE m_rightSideEventRead;
230 // @dbgtodo inspection - this is where LSEA and LSER used to be. We need to the padding to maintain binary compatibility.
231 // Eventually, we expect to remove this whole block.
232 RemoteHANDLE m_paddingObsoleteLSEA;
233 RemoteHANDLE m_paddingObsoleteLSER;
235 RemoteHANDLE m_rightSideProcessHandle;
237 //.............................................................................
238 // Everything above this point must have the exact same binary layout as v1.1.
239 // See protocol details below.
240 //.............................................................................
242 RemoteHANDLE m_leftSideUnmanagedWaitEvent;
246 // This is set immediately when the helper thread is created.
247 // This will be set even if there's a temporary helper thread or if the real helper
248 // thread is not yet pumping (eg, blocked on a loader lock).
249 DWORD m_realHelperThreadId;
251 // This is only published once the helper thread starts running in its main loop.
252 // Thus we can use this field to see if the real helper thread is actually pumping.
253 DWORD m_helperThreadId;
255 // This is non-zero if the LS has a temporary helper thread.
256 DWORD m_temporaryHelperThreadId;
258 // ID of the Helper's canary thread.
259 DWORD m_CanaryThreadId;
261 DebuggerIPCRuntimeOffsets *m_pRuntimeOffsets;
262 void *m_helperThreadStartAddr;
263 void *m_helperRemoteStartAddr;
264 DWORD *m_specialThreadList;
266 BYTE m_receiveBuffer[CorDBIPC_BUFFER_SIZE];
267 BYTE m_sendBuffer[CorDBIPC_BUFFER_SIZE];
269 DWORD m_specialThreadListLength;
270 bool m_shutdownBegun;
271 bool m_rightSideIsWin32Debugger; // RS status
272 bool m_specialThreadListDirty;
274 bool m_rightSideShouldCreateHelperThread;
276 // NOTE The Init method works since there are no virtual functions - don't add any virtual functions without
278 // Only initialized by the LS, opened by the RS.
289 #if defined(FEATURE_DBGIPC_TRANSPORT_VM) || defined(FEATURE_DBGIPC_TRANSPORT_DI)
291 // We need an alternate definition for the control block if using the transport, because the control block has to be sent over the transport
292 // In particular we can't nest the send/receive buffers inside of it and we don't use any of the remote handles
294 struct MSLAYOUT DebuggerIPCControlBlockTransport
296 // Version data should be first in the control block to ensure that we can read it even if the control block
298 SIZE_T m_DCBSize; // note this field is used as a semaphore to indicate the DCB is initialized
299 ULONG m_verMajor; // CLR build number for the Left Side.
300 ULONG m_verMinor; // CLR build number for the Left Side.
302 // This next stuff fits in a DWORD.
303 bool m_checkedBuild; // CLR build type for the Left Side.
304 // using the first padding byte to indicate if hosted in fiber mode.
305 // We actually just need one bit. So if needed, can turn this to a bit.
307 bool m_bHostingInFiber;
311 ULONG m_leftSideProtocolCurrent; // Current protocol version for the Left Side.
312 ULONG m_leftSideProtocolMinSupported; // Minimum protocol the Left Side can support.
314 ULONG m_rightSideProtocolCurrent; // Current protocol version for the Right Side.
315 ULONG m_rightSideProtocolMinSupported; // Minimum protocol the Right Side requires.
318 unsigned int m_errorCode;
320 #if defined(DBG_TARGET_WIN64)
321 // 64-bit needs this padding to make the handles after this aligned.
322 // But x86 can't have this padding b/c it breaks binary compatibility between v1.1 and v2.0.
324 #endif // DBG_TARGET_WIN64
326 // This is set immediately when the helper thread is created.
327 // This will be set even if there's a temporary helper thread or if the real helper
328 // thread is not yet pumping (eg, blocked on a loader lock).
329 DWORD m_realHelperThreadId;
331 // This is only published once the helper thread starts running in its main loop.
332 // Thus we can use this field to see if the real helper thread is actually pumping.
333 DWORD m_helperThreadId;
335 // This is non-zero if the LS has a temporary helper thread.
336 DWORD m_temporaryHelperThreadId;
338 // ID of the Helper's canary thread.
339 DWORD m_CanaryThreadId;
341 DebuggerIPCRuntimeOffsets *m_pRuntimeOffsets;
342 void *m_helperThreadStartAddr;
343 void *m_helperRemoteStartAddr;
344 DWORD *m_specialThreadList;
346 DWORD m_specialThreadListLength;
347 bool m_shutdownBegun;
348 bool m_rightSideIsWin32Debugger; // RS status
349 bool m_specialThreadListDirty;
351 bool m_rightSideShouldCreateHelperThread;
353 // NOTE The Init method works since there are no virtual functions - don't add any virtual functions without
355 // Only initialized by the LS, opened by the RS.
360 #endif // defined(FEATURE_DBGIPC_TRANSPORT_VM) || defined(FEATURE_DBGIPC_TRANSPORT_DI)
362 #if defined(FEATURE_DBGIPC_TRANSPORT_VM) || defined(FEATURE_DBGIPC_TRANSPORT_DI)
363 #include "dbgtransportsession.h"
364 #endif // defined(FEATURE_DBGIPC_TRANSPORT_VM) || defined(FEATURE_DBGIPC_TRANSPORT_DI)
366 #if defined(DBG_TARGET_X86) && !defined(FEATURE_CORESYSTEM)
367 // We have an versioning requirement.
368 // Certain portions of the v1.0 and v1.1 IPC block are shared. This is b/c a v1.1 debugger needs to be able
369 // to look at a v2.0 app enough to recognize the version mismatch.
370 // This check is only necessary for platforms that ran on v1.1 (Win32-x86)
372 // Just to catch any potential illegal change in the IPC block, we assert the offsets against the offsets from v1.1.
373 // The constants here are pulled from v1.1.
374 // The RS will look at these versioning fields, so they absolutely must line up.
375 static_assert_no_msg(offsetof(DebuggerIPCControlBlock, m_leftSideProtocolCurrent) == 0x10);
376 static_assert_no_msg(offsetof(DebuggerIPCControlBlock, m_leftSideProtocolMinSupported) == 0x14);
377 static_assert_no_msg(offsetof(DebuggerIPCControlBlock, m_rightSideProtocolCurrent) == 0x18);
378 static_assert_no_msg(offsetof(DebuggerIPCControlBlock, m_rightSideProtocolMinSupported) == 0x1c);
380 // Unfortunately, on detecting such failure, v1.1 will also null out LSEA, LSER and RSPH.
381 // If these get adjusted, a version-mismatch attach will effectively null out random fields.
382 static_assert_no_msg(offsetof(DebuggerIPCControlBlock, m_paddingObsoleteLSEA) == 0x30);
383 static_assert_no_msg(offsetof(DebuggerIPCControlBlock, m_paddingObsoleteLSER) == 0x34);
384 static_assert_no_msg(offsetof(DebuggerIPCControlBlock, m_rightSideProcessHandle) == 0x38);
390 #define INITIAL_APP_DOMAIN_INFO_LIST_SIZE 16
393 //-----------------------------------------------------------------------------
394 // Provide some Type-safety in the IPC block when we pass remote pointers around.
395 //-----------------------------------------------------------------------------
398 //-----------------------------------------------------------------------------
399 // This is the same in both the LS & RS.
400 // Definitions on the LS & RS should be binary compatible. So all storage is
401 // declared in GeneralLsPointer, and then the Ls & RS each have their own
402 // derived accessors.
403 //-----------------------------------------------------------------------------
404 class MSLAYOUT GeneralLsPointer
407 friend ULONG_PTR LsPtrToCookie(GeneralLsPointer p);
411 bool IsNull() { return m_ptr == NULL; }
414 class MSLAYOUT GeneralRsPointer
420 bool IsNull() { return m_data == 0; }
423 // In some cases, we need to get a uuid from a pointer (ie, in a hash)
424 inline ULONG_PTR LsPtrToCookie(GeneralLsPointer p) {
425 return (ULONG_PTR) p.m_ptr;
427 #define VmPtrToCookie(vm) LsPtrToCookie((vm).ToLsPtr())
430 #ifdef RIGHT_SIDE_COMPILE
431 //-----------------------------------------------------------------------------
432 // Infrasturcture for RS Definitions
433 //-----------------------------------------------------------------------------
435 // On the RS, we don't have the LS classes defined, so we can't templatize that
436 // in terms of <class T>, but we still want things to be unique.
437 // So we create an empty enum for each LS type and then templatize it in terms
439 template <typename T>
440 class MSLAYOUT LsPointer : public GeneralLsPointer
452 static LsPointer<T> NullPtr()
454 return MakePtr(NULL);
457 static LsPointer<T> MakePtr(T* p)
460 #pragma warning(push)
461 #pragma warning(disable:6001) // PREfast warning: Using uninitialize memory 't'
473 bool operator!= (void * p) { return m_ptr != p; }
474 bool operator== (void * p) { return m_ptr == p; }
475 bool operator==(LsPointer<T> p) { return p.m_ptr == this->m_ptr; }
477 // We should never UnWrap() them in the RS, so we don't define that here.
481 template <class T> UINT AllocCookie(CordbProcess * pProc, T * p);
482 template <class T> T * UnwrapCookie(CordbProcess * pProc, UINT cookie);
484 UINT AllocCookieCordbEval(CordbProcess * pProc, class CordbEval * p);
485 class CordbEval * UnwrapCookieCordbEval(CordbProcess * pProc, UINT cookie);
487 template <class CordbEval> UINT AllocCookie(CordbProcess * pProc, CordbEval * p)
489 return AllocCookieCordbEval(pProc, p);
491 template <class CordbEval> CordbEval * UnwrapCookie(CordbProcess * pProc, UINT cookie)
493 return UnwrapCookieCordbEval(pProc, cookie);
498 // This is how the RS sees the pointers in the IPC block.
500 class MSLAYOUT RsPointer : public GeneralRsPointer
503 // Since we're being used inside a union, we can't have a ctor.
505 static RsPointer<T> NullPtr()
512 bool AllocHandle(CordbProcess *pProc, T* p)
514 // This will force validation.
515 m_data = AllocCookie<T>(pProc, p);
516 return (m_data != 0);
519 bool operator==(RsPointer<T> p) { return p.m_data == this->m_data; }
521 T* UnWrapAndRemove(CordbProcess *pProc)
523 return UnwrapCookie<T>(pProc, m_data);
529 // Forward declare a class so that each type of LS pointer can have
530 // its own type. We use the real class name to be compatible with VMPTRs.
531 #define DEFINE_LSPTR_TYPE(ls_type, ptr_name) \
533 typedef LsPointer<ls_type> ptr_name;
536 #define DEFINE_RSPTR_TYPE(rs_type, ptr_name) \
538 typedef RsPointer<rs_type> ptr_name;
540 #else // !RIGHT_SIDE_COMPILE
541 //-----------------------------------------------------------------------------
542 // Infrastructure for LS Definitions
543 //-----------------------------------------------------------------------------
545 // This is how the LS sees the pointers in the IPC block.
547 class MSLAYOUT LsPointer : public GeneralLsPointer
550 // Since we're being used inside a union, we can't have a ctor.
553 static LsPointer<T> NullPtr()
555 return MakePtr(NULL);
558 static LsPointer<T> MakePtr(T * p)
561 #pragma warning(push)
562 #pragma warning(disable:6001) // PREfast warning: Using uninitialize memory 't'
574 bool operator!= (void * p) { return m_ptr != p; }
575 bool operator== (void * p) { return m_ptr == p; }
576 bool operator==(LsPointer<T> p) { return p.m_ptr == this->m_ptr; }
578 // @todo - we want to be able to swap out Set + Unwrap functions
582 // We could validate the pointer here.
588 // If we wanted to validate the pointer, here's our chance.
589 return static_cast<T*>(m_ptr);
594 class MSLAYOUT RsPointer : public GeneralRsPointer
597 static RsPointer<n> NullPtr()
604 bool operator==(RsPointer<n> p) { return p.m_data == this->m_data; }
606 // We should never UnWrap() them in the LS, so we don't define that here.
609 #define DEFINE_LSPTR_TYPE(ls_type, ptr_name) \
611 typedef LsPointer<ls_type> ptr_name;
613 #define DEFINE_RSPTR_TYPE(rs_type, ptr_name) \
614 enum __RS__##rs_type { }; \
615 typedef RsPointer<__RS__##rs_type> ptr_name;
617 #endif // !RIGHT_SIDE_COMPILE
619 // We must be binary compatible w/ a pointer.
620 static_assert_no_msg(sizeof(LsPointer<void>) == sizeof(GeneralLsPointer));
622 static_assert_no_msg(sizeof(void*) == sizeof(GeneralLsPointer));
626 //-----------------------------------------------------------------------------
627 // Definitions for Left-Side ptrs.
628 // NOTE: Use VMPTR instead of LSPTR. Don't add new LSPTR types.
630 //-----------------------------------------------------------------------------
634 DEFINE_LSPTR_TYPE(class Assembly, LSPTR_ASSEMBLY);
635 DEFINE_LSPTR_TYPE(class DebuggerJitInfo, LSPTR_DJI);
636 DEFINE_LSPTR_TYPE(class DebuggerMethodInfo, LSPTR_DMI);
637 DEFINE_LSPTR_TYPE(class MethodDesc, LSPTR_METHODDESC);
638 DEFINE_LSPTR_TYPE(class DebuggerBreakpoint, LSPTR_BREAKPOINT);
639 DEFINE_LSPTR_TYPE(class DebuggerEval, LSPTR_DEBUGGEREVAL);
640 DEFINE_LSPTR_TYPE(class DebuggerStepper, LSPTR_STEPPER);
642 // Need to be careful not to annoy the compiler here since DT_CONTEXT is a typedef, not a struct.
643 #if defined(RIGHT_SIDE_COMPILE)
644 typedef LsPointer<DT_CONTEXT> LSPTR_CONTEXT;
645 #else // RIGHT_SIDE_COMPILE
646 typedef LsPointer<DT_CONTEXT> LSPTR_CONTEXT;
647 #endif // RIGHT_SIDE_COMPILE
649 DEFINE_LSPTR_TYPE(struct OBJECTHANDLE__, LSPTR_OBJECTHANDLE);
650 DEFINE_LSPTR_TYPE(class TypeHandleDummyPtr, LSPTR_TYPEHANDLE); // TypeHandle in the LS is not a direct pointer.
652 //-----------------------------------------------------------------------------
653 // Definitions for Right-Side ptrs.
654 //-----------------------------------------------------------------------------
655 DEFINE_RSPTR_TYPE(CordbEval, RSPTR_CORDBEVAL);
658 //---------------------------------------------------------------------------------------
659 // VMPTR_Base is the base type for an abstraction over pointers into the VM so
660 // that DBI can treat them as opaque handles. Classes will derive from it to
661 // provide type-safe Target pointers, which ICD will view as opaque handles.
664 // VMPTR_ objects survive across flushing the DAC cache. Therefore, the underlying
665 // storage must be a target-pointer (and not a marshalled host pointer).
666 // The RS must ensure they're still in sync with the LS (eg, by
667 // tracking unload events).
671 // These handles are TADDR pointers and must not require any cleanup from DAC/DBI.
672 // For direct untyped pointers into the VM, use CORDB_ADDRESS.
675 // 1. This helps enforce that DBI goes through the primitives interface
676 // for all access (and that it doesn't accidentally start calling
677 // dac-ized methods on the objects)
678 // 2. This isolates DBI from VM headers.
679 // 3. This isolates DBI from the dac implementation (of DAC_Ptr)
680 // 4. This is distinct from LSPTR because LSPTRs are truly opaque handles, whereas VMPtrs
681 // move across VM, DAC, and DBI, exposing proper functionality in each component.
682 // 5. VMPTRs are blittable because they are Target Addresses which act as opaque
683 // handles outside of the Target / Dac-marshaller.
685 //---------------------------------------------------------------------------------------
688 template <typename TTargetPtr, typename TDacPtr>
689 class MSLAYOUT VMPTR_Base
691 // Underlying pointer into Target address space.
692 // Target pointers are blittable.
693 // - In Target: can be used as normal local pointers.
694 // - In DAC: must be marshalled to a host-pointer and then they can be used via DAC
695 // - In RS: opaque handles.
700 typedef VMPTR_Base<TTargetPtr,TDacPtr> VMPTR_This;
702 // For DBI, VMPTRs are opaque handles.
703 // But the DAC side is allowed to inspect the handles to get at the raw pointer.
704 #if defined(ALLOW_VMPTR_ACCESS)
706 // Case 1: Using in DAcDbi implementation
710 TDacPtr GetDacPtr() const
713 return TDacPtr(m_addr);
717 // This will initialize the handle to a given target-pointer.
718 // We choose TADDR to make it explicit that it's a target pointer and avoid the risk
719 // of it accidentally getting marshalled to a host pointer.
720 void SetDacTargetPtr(TADDR addr)
726 void SetHostPtr(const TTargetPtr * pObject)
729 m_addr = PTR_HOST_TO_TADDR(pObject);
733 #elif !defined(RIGHT_SIDE_COMPILE)
735 // Case 2: Used in Left-side. Can get/set from local pointers.
738 // This will set initialize from a Target pointer. Since this is happening in the
739 // Left-side (Target), the pointer is local.
740 // This is commonly used by the Left-side to create a VMPTR_ for a notification event.
741 void SetRawPtr(TTargetPtr * ptr)
743 m_addr = reinterpret_cast<TADDR>(ptr);
746 // This will get the raw underlying target pointer.
747 // This can be used by inproc Left-side code to unwrap a VMPTR (Eg, for a func-eval
748 // hijack or in-proc worker threads)
749 TTargetPtr * GetRawPtr()
751 return reinterpret_cast<TTargetPtr*>(m_addr);
754 // Convenience for converting TTargetPtr --> VMPTR
755 static VMPTR_This MakePtr(TTargetPtr * ptr)
758 #pragma warning(push)
759 #pragma warning(disable:6001) // PREfast warning: Using uninitialize memory 't'
774 // Case 3: Used in RS. Opaque handles only.
779 #ifndef DACCESS_COMPILE
780 // For compatibility, these can be converted to LSPTRs on the RS or LS (case 2 and 3). We don't allow
781 // this in the DAC case because it's a cast between address spaces which we're trying to eliminate
783 // @dbgtodo inspection: LSPTRs will go away entirely once we've moved completely over to DAC
784 LsPointer<TTargetPtr> ToLsPtr()
786 return LsPointer<TTargetPtr>::MakePtr( reinterpret_cast<TTargetPtr *>(m_addr));
791 // Operators to emulate Pointer semantics.
793 bool IsNull() { SUPPORTS_DAC; return m_addr == NULL; }
795 static VMPTR_This NullPtr()
800 #pragma warning(push)
801 #pragma warning(disable:6001) // PREfast warning: Using uninitialize memory 't'
813 bool operator!= (VMPTR_This vmOther) const { SUPPORTS_DAC; return this->m_addr != vmOther.m_addr; }
814 bool operator== (VMPTR_This vmOther) const { SUPPORTS_DAC; return this->m_addr == vmOther.m_addr; }
817 #if defined(ALLOW_VMPTR_ACCESS)
818 // Helper macro to define a VMPTR.
819 // This is used in the DAC case, so this definition connects the pointers up to their DAC values.
820 #define DEFINE_VMPTR(ls_type, dac_ptr_type, ptr_name) \
822 typedef VMPTR_Base<ls_type, dac_ptr_type> ptr_name;
825 // Helper macro to define a VMPTR.
826 // This is used in the Right-side and Left-side (but not DAC) case.
827 // This definition explicitly ignores dac_ptr_type to prevent accidental DAC usage.
828 #define DEFINE_VMPTR(ls_type, dac_ptr_type, ptr_name) \
830 typedef VMPTR_Base<ls_type, void> ptr_name;
835 // The naming convention for instantiating a VMPTR is a 'vm' prefix.
837 // VM definition, DAC definition, pretty name for VMPTR
838 DEFINE_VMPTR(class AppDomain, PTR_AppDomain, VMPTR_AppDomain);
840 // Need to be careful not to annoy the compiler here since DT_CONTEXT is a typedef, not a struct.
841 // DEFINE_VMPTR(struct _CONTEXT, PTR_CONTEXT, VMPTR_CONTEXT);
842 #if defined(ALLOW_VMPTR_ACCESS)
843 typedef VMPTR_Base<DT_CONTEXT, PTR_CONTEXT> VMPTR_CONTEXT;
845 typedef VMPTR_Base<DT_CONTEXT, void > VMPTR_CONTEXT;
848 // DomainFile is a base-class for a CLR module, with app-domain affinity.
849 // For domain-neutral modules (like mscorlib), there is a DomainFile instance
850 // for each appdomain the module lives in.
851 // This is the canonical handle ICorDebug uses to a CLR module.
852 DEFINE_VMPTR(class DomainFile, PTR_DomainFile, VMPTR_DomainFile);
853 DEFINE_VMPTR(class Module, PTR_Module, VMPTR_Module);
855 // DomainAssembly derives from DomainFile and represents a manifest module.
856 DEFINE_VMPTR(class DomainAssembly, PTR_DomainAssembly, VMPTR_DomainAssembly);
857 DEFINE_VMPTR(class Assembly, PTR_Assembly, VMPTR_Assembly);
859 DEFINE_VMPTR(class PEFile, PTR_PEFile, VMPTR_PEFile);
860 DEFINE_VMPTR(class MethodDesc, PTR_MethodDesc, VMPTR_MethodDesc);
861 DEFINE_VMPTR(class FieldDesc, PTR_FieldDesc, VMPTR_FieldDesc);
863 // ObjectHandle is a safe way to represent an object into the GC heap. It gets updated
865 DEFINE_VMPTR(struct OBJECTHANDLE__, TADDR, VMPTR_OBJECTHANDLE);
867 DEFINE_VMPTR(class TypeHandle, PTR_TypeHandle, VMPTR_TypeHandle);
869 // A VMPTR_Thread represents a thread that has entered the runtime at some point.
870 // It may or may not have executed managed code yet; and it may or may not have managed code
872 DEFINE_VMPTR(class Thread, PTR_Thread, VMPTR_Thread);
874 DEFINE_VMPTR(class Object, PTR_Object, VMPTR_Object);
876 DEFINE_VMPTR(class CrstBase, PTR_Crst, VMPTR_Crst);
877 DEFINE_VMPTR(class SimpleRWLock, PTR_SimpleRWLock, VMPTR_SimpleRWLock);
878 DEFINE_VMPTR(class SimpleRWLock, PTR_SimpleRWLock, VMPTR_RWLock);
879 DEFINE_VMPTR(struct ReJitInfo, PTR_ReJitInfo, VMPTR_ReJitInfo);
880 DEFINE_VMPTR(struct SharedReJitInfo, PTR_SharedReJitInfo, VMPTR_SharedReJitInfo);
881 DEFINE_VMPTR(class NativeCodeVersionNode, PTR_NativeCodeVersionNode, VMPTR_NativeCodeVersionNode);
882 DEFINE_VMPTR(class ILCodeVersionNode, PTR_ILCodeVersionNode, VMPTR_ILCodeVersionNode);
884 typedef CORDB_ADDRESS GENERICS_TYPE_TOKEN;
887 //-----------------------------------------------------------------------------
888 // We pass some fixed size strings in the IPC block.
889 // Helper class to wrap the buffer and protect against buffer overflows.
890 // This should be binary compatible w/ a wchar[] array.
891 //-----------------------------------------------------------------------------
893 template <int nMaxLengthIncludingNull>
894 class MSLAYOUT EmbeddedIPCString
897 // Set, caller responsibility that wcslen(pData) < nMaxLengthIncludingNull
898 void SetString(const WCHAR * pData)
900 // If the string doesn't fit into the buffer, that's an issue (and so this is a real
901 // assert, not just a simplifying assumption). To fix it, either:
902 // - make the buffer larger
903 // - don't pass the string as an embedded string in the IPC block.
904 // This will truncate (rather than AV on the RS).
906 ret = SafeCopy(pData);
908 // See comment above - caller should guarantee that buffer is large enough.
909 _ASSERTE(ret != STRUNCATE);
912 // Set a string from a substring. This will truncate if necessary.
913 void SetStringTruncate(const WCHAR * pData)
915 // ignore return value because truncation is ok.
919 const WCHAR * GetString()
921 // For a null-termination just in case an issue in the debuggee process
922 // yields a malformed string.
923 m_data[nMaxLengthIncludingNull - 1] = W('\0');
926 int GetMaxSize() const { return nMaxLengthIncludingNull; }
929 int SafeCopy(const WCHAR * pData)
932 m_data, nMaxLengthIncludingNull,
935 WCHAR m_data[nMaxLengthIncludingNull];
939 // Types of events that can be sent between the Runtime Controller and
940 // the Debugger Interface. Some of these events are one way only, while
941 // others go both ways. The grouping of the event numbers is an attempt
942 // to show this distinction and perhaps even allow generic operations
943 // based on the type of the event.
945 enum DebuggerIPCEventType
947 #define IPC_EVENT_TYPE0(type, val) type = val,
948 #define IPC_EVENT_TYPE1(type, val) type = val,
949 #define IPC_EVENT_TYPE2(type, val) type = val,
950 #include "dbgipceventtypes.h"
951 #undef IPC_EVENT_TYPE2
952 #undef IPC_EVENT_TYPE1
953 #undef IPC_EVENT_TYPE0
958 // This is a static debugging structure to help breaking at the right place.
959 // Debug only. This is to track the number of events that have been happened so far.
960 // User can choose to set break point base on the number of events.
961 // Variables are named as the event name with prefix m_iDebugCount. For example
962 // m_iDebugCount_DB_IPCE_BREAKPOINT if for event DB_IPCE_BREAKPOINT.
963 struct MSLAYOUT DebugEventCounter
965 // we don't need the event type 0
966 #define IPC_EVENT_TYPE0(type, val)
967 #define IPC_EVENT_TYPE1(type, val) int m_iDebugCount_##type;
968 #define IPC_EVENT_TYPE2(type, val) int m_iDebugCount_##type;
969 #include "dbgipceventtypes.h"
970 #undef IPC_EVENT_TYPE2
971 #undef IPC_EVENT_TYPE1
972 #undef IPC_EVENT_TYPE0
977 #if !defined(DACCESS_COMPILE)
979 struct MSLAYOUT IPCEventTypeNameMapping
981 DebuggerIPCEventType eventType;
982 const char * eventName;
985 extern const IPCEventTypeNameMapping DECLSPEC_SELECTANY DbgIPCEventTypeNames[] =
987 #define IPC_EVENT_TYPE0(type, val) { type, #type },
988 #define IPC_EVENT_TYPE1(type, val) { type, #type },
989 #define IPC_EVENT_TYPE2(type, val) { type, #type },
990 #include "dbgipceventtypes.h"
991 #undef IPC_EVENT_TYPE2
992 #undef IPC_EVENT_TYPE1
993 #undef IPC_EVENT_TYPE0
994 { DB_IPCE_INVALID_EVENT, "DB_IPCE_Error" }
997 const size_t nameCount = sizeof(DbgIPCEventTypeNames) / sizeof(DbgIPCEventTypeNames[0]);
1000 struct MSLAYOUT IPCENames // We use a class/struct so that the function can remain in a shared header file
1002 static const DebuggerIPCEventType GetEventType(__in_z char * strEventType)
1004 // pass in the string of event name and find the matching enum value
1005 // This is a linear search which is pretty slow. However, this is only used
1006 // at startup time when debug assert is turn on and with registry key set. So it is not that bad.
1008 for (size_t i = 0; i < nameCount; i++)
1010 if (_stricmp(DbgIPCEventTypeNames[i].eventName, strEventType) == 0)
1011 return DbgIPCEventTypeNames[i].eventType;
1013 return DB_IPCE_INVALID_EVENT;
1015 static const char * GetName(DebuggerIPCEventType eventType)
1018 enum DbgIPCEventTypeNum
1020 #define IPC_EVENT_TYPE0(type, val) type##_Num,
1021 #define IPC_EVENT_TYPE1(type, val) type##_Num,
1022 #define IPC_EVENT_TYPE2(type, val) type##_Num,
1023 #include "dbgipceventtypes.h"
1024 #undef IPC_EVENT_TYPE2
1025 #undef IPC_EVENT_TYPE1
1026 #undef IPC_EVENT_TYPE0
1029 unsigned int i, lim;
1031 if (eventType < DB_IPCE_DEBUGGER_FIRST)
1033 i = DB_IPCE_RUNTIME_FIRST_Num + 1;
1034 lim = DB_IPCE_DEBUGGER_FIRST_Num;
1038 i = DB_IPCE_DEBUGGER_FIRST_Num + 1;
1042 for (/**/; i < lim; i++)
1044 if (DbgIPCEventTypeNames[i].eventType == eventType)
1045 return DbgIPCEventTypeNames[i].eventName;
1048 return DbgIPCEventTypeNames[nameCount - 1].eventName;
1052 #endif // !DACCESS_COMPILE
1055 // NOTE: CPU-specific values below!
1057 // DebuggerREGDISPLAY is very similar to the EE REGDISPLAY structure. It holds
1058 // register values that can be saved over calls for each frame in a stack
1061 // DebuggerIPCE_FloatCount is the number of doubles in the processor's
1062 // floating point stack.
1064 // <TODO>Note: We used to just pass the values of the registers for each frame to the Right Side, but I had to add in the
1065 // address of each register, too, to support using enregistered variables on non-leaf frames as args to a func eval. Its
1066 // very, very possible that we would rework the entire code base to just use the register's address instead of passing
1067 // both, but its way, way too late in V1 to undertake that, so I'm just using these addresses to suppport our one func
1068 // eval case. Clearly, this needs to be cleaned up post V1.
1070 // -- Fri Feb 09 11:21:24 2001</TODO>
1073 struct MSLAYOUT DebuggerREGDISPLAY
1075 #if defined(DBG_TARGET_X86)
1076 #define DebuggerIPCE_FloatCount 8
1095 #elif defined(DBG_TARGET_AMD64)
1096 #define DebuggerIPCE_FloatCount 16
1132 #elif defined(DBG_TARGET_ARM)
1133 #define DebuggerIPCE_FloatCount 32
1167 #elif defined(DBG_TARGET_ARM64)
1168 #define DebuggerIPCE_FloatCount 32
1176 #define DebuggerIPCE_FloatCount 1
1185 inline LPVOID GetSPAddress(const DebuggerREGDISPLAY * display)
1187 return (LPVOID)&display->SP;
1190 #if !defined(DBG_TARGET_AMD64) && !defined(DBG_TARGET_ARM)
1191 inline LPVOID GetFPAddress(const DebuggerREGDISPLAY * display)
1193 return (LPVOID)&display->FP;
1195 #endif // !DBG_TARGET_AMD64
1198 class MSLAYOUT FramePointer
1200 friend bool IsCloserToLeaf(FramePointer fp1, FramePointer fp2);
1201 friend bool IsCloserToRoot(FramePointer fp1, FramePointer fp2);
1202 friend bool IsEqualOrCloserToLeaf(FramePointer fp1, FramePointer fp2);
1203 friend bool IsEqualOrCloserToRoot(FramePointer fp1, FramePointer fp2);
1207 static FramePointer MakeFramePointer(LPVOID sp)
1209 LIMITED_METHOD_DAC_CONTRACT;
1215 static FramePointer MakeFramePointer(UINT_PTR sp)
1218 return MakeFramePointer((LPVOID)sp);
1221 inline bool operator==(FramePointer fp)
1223 return (m_sp == fp.m_sp);
1226 inline bool operator!=(FramePointer fp)
1228 return !(*this == fp);
1231 // This is needed because on the RS, the m_id values of CordbFrame and
1232 // CordbChain are really FramePointers.
1233 LPVOID GetSPValue() const
1240 // Declare some private constructors which signatures matching common usage of FramePointer
1241 // to prevent people from accidentally assigning a pointer to a FramePointer().
1242 FramePointer &operator=(LPVOID sp);
1243 FramePointer &operator=(BYTE* sp);
1244 FramePointer &operator=(const BYTE* sp);
1249 // For non-IA64 platforms, we use stack pointers as frame pointers.
1250 // (Stack grows towards smaller address.)
1251 #define LEAF_MOST_FRAME FramePointer::MakeFramePointer((LPVOID)NULL)
1252 #define ROOT_MOST_FRAME FramePointer::MakeFramePointer((LPVOID)-1)
1254 static_assert_no_msg(sizeof(FramePointer) == sizeof(void*));
1257 inline bool IsCloserToLeaf(FramePointer fp1, FramePointer fp2)
1259 return (fp1.m_sp < fp2.m_sp);
1262 inline bool IsCloserToRoot(FramePointer fp1, FramePointer fp2)
1264 return (fp1.m_sp > fp2.m_sp);
1267 inline bool IsEqualOrCloserToLeaf(FramePointer fp1, FramePointer fp2)
1269 return !IsCloserToRoot(fp1, fp2);
1272 inline bool IsEqualOrCloserToRoot(FramePointer fp1, FramePointer fp2)
1274 return !IsCloserToLeaf(fp1, fp2);
1278 // struct DebuggerIPCE_FuncData: DebuggerIPCE_FuncData holds data
1279 // to describe a given function, its
1280 // class, and a little bit about the code for the function. This is used
1281 // in the stack trace result data to pass function information back that
1282 // may be needed. Its also used when getting data about a specific function.
1284 // void* nativeStartAddressPtr: Ptr to CORDB_ADDRESS, which is
1285 // the address of the real start address of the native code.
1286 // This field will be NULL only if the method hasn't been JITted
1287 // yet (and thus no code is available). Otherwise, it will be
1288 // the adress of a CORDB_ADDRESS in the remote memory. This
1289 // CORDB_ADDRESS may be NULL, in which case the code is unavailable
1290 // has been pitched (return CORDBG_E_CODE_NOT_AVAILABLE)
1292 // SIZE_T nVersion: The version of the code that this instance of the
1293 // function is using.
1294 struct MSLAYOUT DebuggerIPCE_FuncData
1296 mdMethodDef funcMetadataToken;
1297 VMPTR_DomainFile vmDomainFile;
1299 mdTypeDef classMetadataToken;
1301 void* ilStartAddress;
1304 SIZE_T currentEnCVersion;
1306 mdSignature localVarSigToken;
1311 // struct DebuggerIPCE_JITFuncData: DebuggerIPCE_JITFuncData holds
1312 // a little bit about the JITted code for the function.
1314 // void* nativeStartAddressPtr: Ptr to CORDB_ADDRESS, which is
1315 // the address of the real start address of the native code.
1316 // This field will be NULL only if the method hasn't been JITted
1317 // yet (and thus no code is available). Otherwise, it will be
1318 // the address of a CORDB_ADDRESS in the remote memory. This
1319 // CORDB_ADDRESS may be NULL, in which case the code is unavailable
1320 // or has been pitched (return CORDBG_E_CODE_NOT_AVAILABLE)
1322 // SIZE_T nativeSize: Size of the native code.
1324 // SIZE_T nativeOffset: Offset from the beginning of the function,
1325 // in bytes. This may be non-zero even when nativeStartAddressPtr
1327 // void * nativeCodeJITInfoToken: An opaque value to hand back to the left
1328 // side when fetching the JITInfo for the native code, i.e. the
1329 // IL->native maps for the variables. This may be NULL if no JITInfo is available.
1330 // void * nativeCodeMethodDescToken: An opaque value to hand back to the left
1331 // side when fetching the code. In addition this token can act as the
1332 // unique identity for the native code in the case where there are
1333 // multiple blobs of native code per IL method (i.e. if the method is
1334 // generic code of some kind)
1335 // BOOL isInstantiatedGeneric: Indicates if the method is
1336 // generic code of some kind.
1337 // BOOL jsutAfterILThrow: indicates that code just threw a software exception and
1338 // nativeOffset points to an instruction just after [call IL_Throw].
1339 // This is being used to figure out a real offset of the exception origin.
1340 // By subtracting STACKWALK_CONTROLPC_ADJUST_OFFSET from nativeOffset you can get
1341 // an address somewhere inside [call IL_Throw] instruction.
1342 // void *ilToNativeMapAddr etc.: If nativeCodeJITInfoToken is not NULL then these
1343 // specify the table giving the mapping of IPs.
1344 struct MSLAYOUT DebuggerIPCE_JITFuncData
1346 TADDR nativeStartAddressPtr;
1347 SIZE_T nativeHotSize;
1349 // If we have a cold region, need its size & the pointer to where starts.
1350 TADDR nativeStartAddressColdPtr;
1351 SIZE_T nativeColdSize;
1354 SIZE_T nativeOffset;
1355 LSPTR_DJI nativeCodeJITInfoToken;
1356 VMPTR_MethodDesc vmNativeCodeMethodDescToken;
1358 #ifdef WIN64EXCEPTIONS
1359 BOOL fIsFilterFrame;
1360 SIZE_T parentNativeOffset;
1361 FramePointer fpParentOrSelf;
1362 #endif // WIN64EXCEPTIONS
1364 // indicates if the MethodDesc is a generic function or a method inside a generic class (or
1366 BOOL isInstantiatedGeneric;
1368 // this is the version of the jitted code
1371 BOOL jsutAfterILThrow;
1375 // DebuggerIPCE_STRData holds data for each stack frame or chain. This data is passed
1376 // from the RC to the DI during a stack walk.
1378 #if defined(_MSC_VER)
1379 #pragma warning( push )
1380 #pragma warning( disable:4324 ) // the compiler pads a structure to comply with alignment requirements
1381 #endif // ARM context structures have a 16-byte alignment requirement
1382 struct MSLAYOUT DebuggerIPCE_STRData
1385 // @dbgtodo stackwalker/shim- Ideally we should be able to get rid of the DebuggerREGDISPLAY and just use the CONTEXT.
1387 DebuggerREGDISPLAY rd;
1388 bool quicklyUnwound;
1390 VMPTR_AppDomain vmCurrentAppDomainToken;
1406 CorDebugChainReason chainReason;
1410 // Data for a Method
1413 struct DebuggerIPCE_FuncData funcData;
1414 struct DebuggerIPCE_JITFuncData jitFuncData;
1416 CorDebugMappingResult mapping;
1420 // Indicates whether the managed method has any metadata.
1421 // Some dynamic methods such as IL stubs and LCG methods don't have any metadata.
1422 // This is used only by the V3 stackwalker, not the V2 one, because we only
1423 // expose dynamic methods as real stack frames in V3.
1428 GENERICS_TYPE_TOKEN exactGenericArgsToken;
1429 DWORD dwExactGenericArgsTokenIndex;
1433 // Data for an Stub Frame.
1436 mdMethodDef funcMetadataToken;
1437 VMPTR_DomainFile vmDomainFile;
1438 VMPTR_MethodDesc vmMethodDesc;
1439 CorDebugInternalFrameType frameType;
1444 #if defined(_MSC_VER)
1445 #pragma warning( pop )
1449 // DebuggerIPCE_BasicTypeData and DebuggerIPCE_ExpandedTypeData
1450 // hold data for each type sent across the
1451 // boundary, whether it be a constructed type List<String> or a non-constructed
1452 // type such as String, Foo or Object.
1454 // Logically speaking DebuggerIPCE_BasicTypeData might just be "typeHandle", as
1455 // we could then send further events to ask what the elementtype, typeToken and moduleToken
1456 // are for the type handle. But as
1457 // nearly all types are non-generic we send across even the basic type information in
1458 // the slightly expanded form shown below, sending the element type and the
1459 // tokens with the type handle itself. The fields debuggerModuleToken, metadataToken and typeHandle
1460 // are only used as follows:
1461 // elementType debuggerModuleToken metadataToken typeHandle
1462 // E_T_INT8 : E_T_INT8 No No No
1463 // Boxed E_T_INT8: E_T_CLASS No No No
1464 // E_T_CLASS, non-generic class: E_T_CLASS Yes Yes No
1465 // E_T_VALUETYPE, non-generic: E_T_VALUETYPE Yes Yes No
1466 // E_T_CLASS, generic class: E_T_CLASS Yes Yes Yes
1467 // E_T_VALUETYPE, generic class: E_T_VALUETYPE Yes Yes Yes
1468 // E_T_BYREF : E_T_BYREF No No Yes
1469 // E_T_PTR : E_T_PTR No No Yes
1470 // E_T_ARRAY etc. : E_T_ARRAY No No Yes
1471 // E_T_FNPTR etc. : E_T_FNPTR No No Yes
1472 // This allows us to always set "typeHandle" to NULL except when dealing with highly nested
1473 // types or function-pointer types (the latter are too complexe to transfer over in one hit).
1476 struct MSLAYOUT DebuggerIPCE_BasicTypeData
1478 CorElementType elementType;
1479 mdTypeDef metadataToken;
1480 VMPTR_Module vmModule;
1481 VMPTR_DomainFile vmDomainFile;
1482 VMPTR_TypeHandle vmTypeHandle;
1485 // DebuggerIPCE_ExpandedTypeData contains more information showing further
1486 // details for array types, byref types etc.
1487 // Whenever you fetch type information from the left-side
1488 // you get back one of these. These in turn contain further
1489 // DebuggerIPCE_BasicTypeData's and typeHandles which you can
1490 // then query to get further information about the type parameters.
1491 // This copes with the nested cases, e.g. jagged arrays,
1492 // String ****, &(String*), Pair<String,Pair<String>>
1495 // So this type information is not "fully expanded", it's just a little
1496 // more detail then DebuggerIPCE_BasicTypeData. For type
1497 // instantiatons (e.g. List<int>) and
1498 // function pointer types you will need to make further requests for
1499 // information about the type parameters.
1500 // For array types there is always only one type parameter so
1501 // we include that as part of the expanded data.
1504 struct MSLAYOUT DebuggerIPCE_ExpandedTypeData
1506 CorElementType elementType; // Note this is _never_ E_T_VAR, E_T_WITH or E_T_MVAR
1509 // used for E_T_CLASS and E_T_VALUECLASS, E_T_PTR, E_T_BYREF etc.
1510 // For non-constructed E_T_CLASS or E_T_VALUECLASS the tokens will be set and the typeHandle will be NULL
1511 // For constructed E_T_CLASS or E_T_VALUECLASS the tokens will be set and the typeHandle will be non-NULL
1512 // For E_T_PTR etc. the tokens will be NULL and the typeHandle will be non-NULL.
1515 mdTypeDef metadataToken;
1516 VMPTR_Module vmModule;
1517 VMPTR_DomainFile vmDomainFile;
1518 VMPTR_TypeHandle typeHandle; // if non-null then further fetches will be needed to get type arguments
1521 // used for E_T_PTR, E_T_BYREF etc.
1524 DebuggerIPCE_BasicTypeData unaryTypeArg; // used only when sending back to debugger
1528 // used for E_T_ARRAY etc.
1531 DebuggerIPCE_BasicTypeData arrayTypeArg; // used only when sending back to debugger
1535 // used for E_T_FNPTR
1538 VMPTR_TypeHandle typeHandle; // if non-null then further fetches needed to get type arguments
1544 // DebuggerIPCE_TypeArgData is used when sending type arguments
1545 // across to a funceval. It contains the DebuggerIPCE_ExpandedTypeData describing the
1546 // essence of the type, but the typeHandle and other
1547 // BasicTypeData fields should be zero and will be ignored.
1548 // The DebuggerIPCE_ExpandedTypeData is then followed
1549 // by the required number of type arguments, each of which
1550 // will be a further DebuggerIPCE_TypeArgData record in the stream of
1551 // flattened type argument data.
1552 struct MSLAYOUT DebuggerIPCE_TypeArgData
1554 DebuggerIPCE_ExpandedTypeData data;
1555 unsigned int numTypeArgs; // number of immediate children on the type tree
1560 // DebuggerIPCE_ObjectData holds the results of a
1561 // GetAndSendObjectInfo, i.e., all the info about an object that the
1562 // Right Side would need to access it. (This include array, string,
1563 // and nstruct info.)
1565 struct MSLAYOUT DebuggerIPCE_ObjectData
1571 // Offset from the beginning of the object to the beginning of the first field
1572 SIZE_T objOffsetToVars;
1574 // The type of the object....
1575 struct DebuggerIPCE_ExpandedTypeData objTypeData;
1582 SIZE_T offsetToStringBase;
1588 SIZE_T offsetToArrayBase;
1589 SIZE_T offsetToLowerBounds; // 0 if not present
1590 SIZE_T offsetToUpperBounds; // 0 if not present
1591 SIZE_T componentCount;
1597 struct DebuggerIPCE_BasicTypeData typedByrefType; // the type of the thing contained in a typedByref...
1603 // Remote enregistered info used by CordbValues and for passing
1604 // variable homes between the left and right sides during a func eval.
1607 enum RemoteAddressKind
1618 const CORDB_ADDRESS kLeafFrameRegAddr = 0;
1619 const CORDB_ADDRESS kNonLeafFrameRegAddr = (CORDB_ADDRESS)(-1);
1621 struct MSLAYOUT RemoteAddress
1623 RemoteAddressKind kind;
1626 CorDebugRegister reg1;
1628 SIZE_T reg1Value; // this is the actual value of the register
1634 CorDebugRegister reg2;
1636 SIZE_T reg2Value; // this is the actual value of the register
1645 // DebuggerIPCE_FuncEvalType specifies the type of a function
1646 // evaluation that will occur.
1648 enum DebuggerIPCE_FuncEvalType
1651 DB_IPCE_FET_NEW_OBJECT,
1652 DB_IPCE_FET_NEW_OBJECT_NC,
1653 DB_IPCE_FET_NEW_STRING,
1654 DB_IPCE_FET_NEW_ARRAY,
1655 DB_IPCE_FET_RE_ABORT
1661 APP_DOMAIN_NAME_CHANGE,
1666 // DebuggerIPCE_FuncEvalArgData holds data for each argument to a
1667 // function evaluation.
1669 struct MSLAYOUT DebuggerIPCE_FuncEvalArgData
1671 RemoteAddress argHome; // enregistered variable home
1672 void *argAddr; // address if not enregistered
1673 CorElementType argElementType;
1674 unsigned int fullArgTypeNodeCount; // Pointer to LS (DebuggerIPCE_TypeArgData *) buffer holding full description of the argument type (if needed - only needed for struct types)
1675 void *fullArgType; // Pointer to LS (DebuggerIPCE_TypeArgData *) buffer holding full description of the argument type (if needed - only needed for struct types)
1676 BYTE argLiteralData[8]; // copy of generic value data
1677 bool argIsLiteral; // true if value is in argLiteralData
1678 bool argIsHandleValue; // true if argAddr is OBJECTHANDLE
1683 // DebuggerIPCE_FuncEvalInfo holds info necessary to setup a func eval
1686 struct MSLAYOUT DebuggerIPCE_FuncEvalInfo
1688 VMPTR_Thread vmThreadToken;
1689 DebuggerIPCE_FuncEvalType funcEvalType;
1690 mdMethodDef funcMetadataToken;
1691 mdTypeDef funcClassMetadataToken;
1692 VMPTR_DomainFile vmDomainFile;
1693 RSPTR_CORDBEVAL funcEvalKey;
1694 bool evalDuringException;
1696 unsigned int argCount;
1697 unsigned int genericArgsCount;
1698 unsigned int genericArgsNodeCount;
1707 // Used in DebuggerIPCFirstChanceData. This tells the LS what action to take within the hijack
1711 HIJACK_ACTION_EXIT_UNHANDLED,
1712 HIJACK_ACTION_EXIT_HANDLED,
1717 // DebuggerIPCFirstChanceData holds info communicated from the LS to the RS when signaling that an exception does not
1718 // belong to the runtime from a first chance hijack. This is used when Win32 debugging only.
1720 struct MSLAYOUT DebuggerIPCFirstChanceData
1722 LSPTR_CONTEXT pLeftSideContext;
1723 HijackAction action;
1728 // DebuggerIPCSecondChanceData holds info communicated from the RS
1729 // to the LS when setting up a second chance exception hijack. This is
1730 // used when Win32 debugging only.
1732 struct MSLAYOUT DebuggerIPCSecondChanceData
1734 DT_CONTEXT threadContext;
1739 //-----------------------------------------------------------------------------
1740 // This struct holds pointer from the LS and needs to copy to
1741 // the RS. We have to free the memory on the RS.
1742 // The transfer function is called when the RS first reads the event. At this point,
1743 // the LS is stopped while sending the event. Thus the LS pointers only need to be
1744 // valid while the LS is in SendIPCEvent.
1746 // Since this data is in an IPC/Marshallable block, it can't have any Ctors (holders)
1748 //-----------------------------------------------------------------------------
1749 struct MSLAYOUT Ls_Rs_BaseBuffer
1751 #ifdef RIGHT_SIDE_COMPILE
1753 // copy data can happen on both LS and RS. In LS case,
1754 // ReadProcessMemory is really reading from its own process memory.
1756 void CopyLSDataToRSWorker(ICorDebugDataTarget * pTargethProcess);
1758 // retrieve the RS data and own it
1759 BYTE *TransferRSDataWorker()
1761 BYTE *pbRS = m_pbRS;
1778 // Only LS can call this API
1779 void SetLsData(BYTE *pbLS, DWORD cbSize)
1785 #endif // RIGHT_SIDE_COMPILE
1789 DWORD GetSize() { return m_cbSize; }
1794 // Size of data in bytes
1797 // If this is non-null, pointer into LS for buffer.
1798 // LS can free this after the debug event is continued.
1799 BYTE *m_pbLS; // @dbgtodo cross-plat- for cross-platform purposes, this should be a TADDR
1801 // If this is non-null, pointer into RS for buffer. RS must then free this.
1802 // This buffer was copied from the LS (via CopyLSDataToRSWorker).
1806 //-----------------------------------------------------------------------------
1807 // Byte wrapper around the buffer.
1808 //-----------------------------------------------------------------------------
1809 struct MSLAYOUT Ls_Rs_ByteBuffer : public Ls_Rs_BaseBuffer
1811 #ifdef RIGHT_SIDE_COMPILE
1812 BYTE *GetRSPointer()
1817 void CopyLSDataToRS(ICorDebugDataTarget * pTarget);
1818 BYTE *TransferRSData()
1820 return TransferRSDataWorker();
1825 //-----------------------------------------------------------------------------
1826 // Wrapper around a Ls_rS_Buffer to get it as a string.
1827 // This can also do some sanity checking.
1828 //-----------------------------------------------------------------------------
1829 struct MSLAYOUT Ls_Rs_StringBuffer : public Ls_Rs_BaseBuffer
1831 #ifdef RIGHT_SIDE_COMPILE
1832 const WCHAR * GetString()
1834 return reinterpret_cast<const WCHAR*> (m_pbRS);
1837 // Copy over the string.
1838 void CopyLSDataToRS(ICorDebugDataTarget * pTarget);
1840 // Caller will pick up ownership.
1841 // Since caller will delete this data, we can't give back a constant pointer.
1842 WCHAR * TransferStringData()
1844 return reinterpret_cast<WCHAR*> (TransferRSDataWorker());
1850 // Data for an Managed Debug Assistant Probe (MDA).
1851 struct MSLAYOUT DebuggerMDANotification
1853 Ls_Rs_StringBuffer szName;
1854 Ls_Rs_StringBuffer szDescription;
1855 Ls_Rs_StringBuffer szXml;
1857 CorDebugMDAFlags flags;
1861 // The only remaining problem is that register number mappings are different for each platform. It turns out
1862 // that the debugger only uses REGNUM_SP and REGNUM_AMBIENT_SP though, so we can just virtualize these two for
1863 // the target platform.
1864 // Keep this is sync with the definitions in inc/corinfo.h.
1865 #if defined(DBG_TARGET_X86)
1866 #define DBG_TARGET_REGNUM_SP 4
1867 #define DBG_TARGET_REGNUM_AMBIENT_SP 9
1869 static_assert_no_msg(DBG_TARGET_REGNUM_SP == ICorDebugInfo::REGNUM_SP);
1870 static_assert_no_msg(DBG_TARGET_REGNUM_AMBIENT_SP == ICorDebugInfo::REGNUM_AMBIENT_SP);
1871 #endif // _TARGET_X86_
1872 #elif defined(DBG_TARGET_AMD64)
1873 #define DBG_TARGET_REGNUM_SP 4
1874 #define DBG_TARGET_REGNUM_AMBIENT_SP 17
1875 #ifdef _TARGET_AMD64_
1876 static_assert_no_msg(DBG_TARGET_REGNUM_SP == ICorDebugInfo::REGNUM_SP);
1877 static_assert_no_msg(DBG_TARGET_REGNUM_AMBIENT_SP == ICorDebugInfo::REGNUM_AMBIENT_SP);
1878 #endif // _TARGET_AMD64_
1879 #elif defined(DBG_TARGET_ARM)
1880 #define DBG_TARGET_REGNUM_SP 13
1881 #define DBG_TARGET_REGNUM_AMBIENT_SP 17
1883 C_ASSERT(DBG_TARGET_REGNUM_SP == ICorDebugInfo::REGNUM_SP);
1884 C_ASSERT(DBG_TARGET_REGNUM_AMBIENT_SP == ICorDebugInfo::REGNUM_AMBIENT_SP);
1885 #endif // _TARGET_ARM_
1886 #elif defined(DBG_TARGET_ARM64)
1887 #define DBG_TARGET_REGNUM_SP 31
1888 #define DBG_TARGET_REGNUM_AMBIENT_SP 34
1889 #ifdef _TARGET_ARM64_
1890 C_ASSERT(DBG_TARGET_REGNUM_SP == ICorDebugInfo::REGNUM_SP);
1891 C_ASSERT(DBG_TARGET_REGNUM_AMBIENT_SP == ICorDebugInfo::REGNUM_AMBIENT_SP);
1892 #endif // _TARGET_ARM64_
1894 #error Target registers are not defined for this platform
1899 // Event structure that is passed between the Runtime Controller and the
1900 // Debugger Interface. Some types of events are a fixed size and have
1901 // entries in the main union, while others are variable length and have
1902 // more specialized data structures that are attached to the end of this
1905 struct MSLAYOUT DebuggerIPCEvent
1907 DebuggerIPCEvent* next;
1908 DebuggerIPCEventType type;
1910 VMPTR_AppDomain vmAppDomain;
1911 VMPTR_Thread vmThread;
1921 // Pointer to a BOOL in the target.
1922 CORDB_ADDRESS pfBeingDebugged;
1923 } LeftSideStartupData;
1927 // Module whos metadata is being updated
1928 // This tells the RS that the metadata for that module has become invalid.
1929 VMPTR_DomainFile vmDomainFile;
1931 } MetadataUpdateData;
1935 // Handle to CLR's internal appdomain object.
1936 VMPTR_AppDomain vmAppDomain;
1941 VMPTR_DomainAssembly vmDomainAssembly;
1944 #ifdef TEST_DATA_CONSISTENCY
1945 // information necessary for testing whether the LS holds a lock on data
1946 // the RS needs to inspect. See code:DataTest::TestDataSafety and
1947 // code:IDacDbiInterface::TestCrst for more information
1950 // the lock to be tested
1952 // indicates whether the LS holds the lock
1956 // information necessary for testing whether the LS holds a lock on data
1957 // the RS needs to inspect. See code:DataTest::TestDataSafety and
1958 // code:IDacDbiInterface::TestCrst for more information
1961 // the lock to be tested
1962 VMPTR_SimpleRWLock vmRWLock;
1963 // indicates whether the LS holds the lock
1966 #endif // TEST_DATA_CONSISTENCY
1968 // Debug event that a module has been loaded
1971 // Module that was just loaded.
1972 VMPTR_DomainFile vmDomainFile;
1978 VMPTR_DomainFile vmDomainFile;
1979 LSPTR_ASSEMBLY debuggerAssemblyToken;
1983 // The given module's pdb has been updated.
1984 // Queury PDB from OOP
1987 VMPTR_DomainFile vmDomainFile;
1988 } UpdateModuleSymsData;
1990 DebuggerMDANotification MDANotification;
1994 LSPTR_BREAKPOINT breakpointToken;
1995 mdMethodDef funcMetadataToken;
1996 VMPTR_DomainFile vmDomainFile;
2000 LSPTR_METHODDESC nativeCodeMethodDescToken; // points to the MethodDesc if !isIL
2005 LSPTR_BREAKPOINT breakpointToken;
2006 } BreakpointSetErrorData;
2010 LSPTR_STEPPER stepperToken;
2011 VMPTR_Thread vmThreadToken;
2012 FramePointer frameToken;
2016 unsigned int totalRangeCount;
2017 CorDebugStepReason reason;
2018 CorDebugUnmappedStop rgfMappingStop;
2019 CorDebugIntercept rgfInterceptStop;
2020 unsigned int rangeCount;
2021 COR_DEBUG_STEP_RANGE range; //note that this is an array
2026 // An unvalidated GC-handle
2027 VMPTR_OBJECTHANDLE GCHandle;
2032 // An unvalidated GC-handle for which we're returning the results
2033 LSPTR_OBJECTHANDLE GCHandle;
2035 // The following are initialized by the LS in response to our query:
2036 VMPTR_AppDomain vmAppDomain; // AD that handle is in (only applicable if fValid).
2037 bool fValid; // Did the LS determine the GC handle to be valid?
2038 } GetGCHandleInfoResult;
2040 // Allocate memory on the left-side
2043 ULONG bufSize; // number of bytes to allocate
2046 // Memory allocated on the left-side
2049 void *pBuffer; // LS pointer to the buffer allocated
2050 HRESULT hr; // success / failure
2053 // Free a buffer allocated on the left-side with GetBuffer
2056 void *pBuffer; // Pointer previously returned in GetBufferResult
2062 } ReleaseBufferResult;
2064 // Apply an EnC edit
2067 VMPTR_DomainFile vmDomainFile; // Module to edit
2068 DWORD cbDeltaMetadata; // size of blob pointed to by pDeltaMetadata
2069 CORDB_ADDRESS pDeltaMetadata; // pointer to delta metadata in debuggee
2070 // it's the RS's responsibility to allocate and free
2071 // this (and pDeltaIL) using GetBuffer / ReleaseBuffer
2072 CORDB_ADDRESS pDeltaIL; // pointer to delta IL in debugee
2073 DWORD cbDeltaIL; // size of blob pointed to by pDeltaIL
2079 } ApplyChangesResult;
2083 mdTypeDef classMetadataToken;
2084 VMPTR_DomainFile vmDomainFile;
2085 LSPTR_ASSEMBLY classDebuggerAssemblyToken;
2090 mdTypeDef classMetadataToken;
2091 VMPTR_DomainFile vmDomainFile;
2092 LSPTR_ASSEMBLY classDebuggerAssemblyToken;
2097 VMPTR_DomainFile vmDomainFile;
2103 VMPTR_OBJECTHANDLE vmExceptionHandle;
2110 VMPTR_Thread vmThreadToken;
2121 } IsTransitionStubResult;
2125 CORDB_ADDRESS startAddress;
2127 VMPTR_Thread vmThreadToken;
2128 VMPTR_DomainFile vmDomainFile;
2129 mdMethodDef mdMethod;
2130 VMPTR_MethodDesc vmMethodDesc;
2133 void * firstExceptionHandler;
2134 } SetIP; // this is also used for CanSetIP
2140 EmbeddedIPCString<MAX_LOG_SWITCH_NAME_LEN + 1> szCategory;
2141 Ls_Rs_StringBuffer szContent;
2149 EmbeddedIPCString<MAX_LOG_SWITCH_NAME_LEN + 1> szSwitchName;
2150 EmbeddedIPCString<MAX_LOG_SWITCH_NAME_LEN + 1> szParentSwitchName;
2151 } LogSwitchSettingMessage;
2153 // information needed to send to the RS as part of a custom notification from the target
2156 // Domain file for the domain in which the notification occurred
2157 VMPTR_DomainFile vmDomainFile;
2159 // metadata token for the type of the CustomNotification object's type
2160 mdTypeDef classToken;
2161 } CustomNotification;
2165 VMPTR_Thread vmThreadToken;
2166 CorDebugThreadState debugState;
2169 DebuggerIPCE_FuncEvalInfo FuncEval;
2173 CORDB_ADDRESS argDataArea;
2174 LSPTR_DEBUGGEREVAL debuggerEvalKey;
2175 } FuncEvalSetupComplete;
2179 RSPTR_CORDBEVAL funcEvalKey;
2184 // AppDomain that the result is in.
2185 VMPTR_AppDomain vmAppDomain;
2187 VMPTR_OBJECTHANDLE vmObjectHandle;
2188 DebuggerIPCE_ExpandedTypeData resultType;
2193 LSPTR_DEBUGGEREVAL debuggerEvalKey;
2198 LSPTR_DEBUGGEREVAL debuggerEvalKey;
2199 } FuncEvalRudeAbort;
2203 LSPTR_DEBUGGEREVAL debuggerEvalKey;
2208 void *objectRefAddress;
2209 VMPTR_OBJECTHANDLE vmObjectHandle;
2215 NameChangeType eventType;
2216 VMPTR_AppDomain vmAppDomain;
2217 VMPTR_Thread vmThread;
2222 VMPTR_DomainFile vmDomainFile;
2227 // EnC Remap opportunity
2230 VMPTR_DomainFile vmDomainFile;
2231 mdMethodDef funcMetadataToken ; // methodDef of function with remap opportunity
2232 SIZE_T currentVersionNumber; // version currently executing
2233 SIZE_T resumeVersionNumber; // latest version
2234 SIZE_T currentILOffset; // the IL offset of the current IP
2235 SIZE_T *resumeILOffset; // pointer into left-side where an offset to resume
2236 // to should be written if remap is desired.
2239 // EnC Remap has taken place
2242 VMPTR_DomainFile vmDomainFile;
2243 mdMethodDef funcMetadataToken; // methodDef of function that was remapped
2246 // Notification that the LS is about to update a CLR data structure to account for a
2247 // specific edit made by EnC (function add/update or field add).
2250 VMPTR_DomainFile vmDomainFile;
2251 mdToken memberMetadataToken; // Either a methodDef token indicating the function that
2252 // was updated/added, or a fieldDef token indicating the
2253 // field which was added.
2254 mdTypeDef classMetadataToken; // TypeDef token of the class in which the update was made
2255 SIZE_T newVersionNumber; // The new function/module version
2262 DebuggerIPCE_BasicTypeData type;
2266 // Event used to tell LS if a single function is user or non-user code.
2267 // Same structure used to get function status.
2268 // @todo - Perhaps we can bundle these up so we can set multiple funcs w/ 1 event?
2271 VMPTR_DomainFile vmDomainFile;
2272 mdMethodDef funcMetadataToken;
2274 } SetJMCFunctionStatus;
2279 } GetThreadForTaskId;
2283 VMPTR_Thread vmThreadToken;
2284 } GetThreadForTaskIdResult;
2288 CONNID connectionId;
2293 CONNID connectionId;
2294 EmbeddedIPCString<MAX_LONGPATH> wzConnectionName;
2305 VMPTR_OBJECTHANDLE vmObjectHandle;
2306 } CreateHandleResult;
2308 // used in DB_IPCE_DISPOSE_HANDLE event
2311 VMPTR_OBJECTHANDLE vmObjectHandle;
2317 FramePointer framePointer;
2319 CorDebugExceptionCallbackType eventType;
2321 VMPTR_OBJECTHANDLE vmExceptionHandle;
2322 } ExceptionCallback2;
2326 CorDebugExceptionUnwindCallbackType eventType;
2332 VMPTR_Thread vmThreadToken;
2333 FramePointer frameToken;
2334 } InterceptException;
2338 VMPTR_Module vmModule;
2339 void * pMetadataStart;
2340 ULONG nMetadataSize;
2341 } MetadataUpdateRequest;
2347 // When using a network transport rather than shared memory buffers CorDBIPC_BUFFER_SIZE is the upper bound
2348 // for a single DebuggerIPCEvent structure. This now relates to the maximal size of a network message and is
2349 // orthogonal to the host's page size. Round the buffer size up to a multiple of 8 since MSVC seems more
2350 // aggressive in this regard than gcc.
2351 #define CorDBIPC_TRANSPORT_BUFFER_SIZE (((sizeof(DebuggerIPCEvent) + 7) / 8) * 8)
2353 // A DebuggerIPCEvent must fit in the send & receive buffers, which are CorDBIPC_BUFFER_SIZE bytes.
2354 static_assert_no_msg(sizeof(DebuggerIPCEvent) <= CorDBIPC_BUFFER_SIZE);
2355 static_assert_no_msg(CorDBIPC_TRANSPORT_BUFFER_SIZE <= CorDBIPC_BUFFER_SIZE);
2357 // 2*sizeof(WCHAR) for the two string terminating characters in the FirstLogMessage
2358 #define LOG_MSG_PADDING 4
2360 #endif /* _DbgIPCEvents_h_ */